WO2014194655A1 - 频偏估计的方法、装置和计算机可读存储介质 - Google Patents

频偏估计的方法、装置和计算机可读存储介质 Download PDF

Info

Publication number
WO2014194655A1
WO2014194655A1 PCT/CN2013/090481 CN2013090481W WO2014194655A1 WO 2014194655 A1 WO2014194655 A1 WO 2014194655A1 CN 2013090481 W CN2013090481 W CN 2013090481W WO 2014194655 A1 WO2014194655 A1 WO 2014194655A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency offset
value
initial
offset value
interval
Prior art date
Application number
PCT/CN2013/090481
Other languages
English (en)
French (fr)
Inventor
魏继东
高明
李斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014194655A1 publication Critical patent/WO2014194655A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, apparatus, and computer readable storage medium for frequency offset estimation.
  • a new generation of mobile communication systems requires high-speed, high-spectral efficiency, high-capacity multimedia data transmission capabilities.
  • high-speed data transmission will produce severe frequency selective fading, and Orthogonal Frequency Division Multiplexing (OFDM) technology stands out because of its outstanding advantages and becomes the new communication era.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Mainstream technology has become the focus of attention.
  • the OFDM technology has the advantages of high spectrum utilization, anti-multipath fading, and simple MIMO (Multiple Input-Output-Output) technology.
  • the sub-carriers are required to satisfy mutually orthogonal characteristics and are sensitive to frequency offset.
  • the main factor that causes the frequency offset is that the value is relatively small due to the fixed frequency offset caused by the antenna crystal.
  • the second is the Doppler frequency offset value caused by the UE mobile.
  • the value of this value is related to the carrier frequency and the moving speed of the UE. As the speed increases or the carrier frequency increases, the Doppler shift will increase. This problem is especially noticeable in high-speed scenes, for example, when the speed is 1200kph and the carrier frequency is 2.1G or 2.6G.
  • the single Doppler frequency offset value is 2331 Hz or 2886 Hz.
  • the frequency offset problem has become one of the core problems of OFDM technology.
  • many communication engineers have proposed various solutions to the frequency offset problem, which are mainly divided into two categories.
  • One is the data-aided estimation method.
  • the dual pilot frequency offset estimation algorithm this method is mainly for the solution of small frequency offset, the precision is relatively high, and the implementation is relatively simple;
  • the second is the estimation method of blind data (NoData-aided), such method It can solve the problem of large frequency offset, but the accuracy is relatively low, and there are many limitations, for example, limited to single users.
  • the embodiment of the invention provides a method, a device and a computer readable storage medium for frequency offset estimation, so as to solve the problem of high complexity of the frequency offset estimation method in the case of a large frequency offset.
  • An embodiment of the present invention provides a method for estimating a frequency offset, including:
  • each pilot symbol group includes two pilot symbols, and at least two sets of pilot symbols have different time domain intervals;
  • the initial frequency offset value is obtained by processing the initial frequency offset value according to the frequency offset value interval range.
  • the step of determining a range of the frequency offset value corresponding to all or part of the difference includes: a correspondence between the preset difference decision threshold interval and the frequency offset interval range; and selecting the corresponding relationship, optionally
  • the step of processing the initial value of the frequency offset according to the range of the frequency offset value interval to obtain the final frequency offset value includes:
  • a final frequency offset value is obtained according to the restored frequency offset value and the initial frequency offset value without inversion.
  • the final frequency offset value is ultimately at least one of the following:
  • the different frequency offset value interval ranges correspond to different restored values.
  • the step of obtaining the M frequency offset initial values by using the N pilot symbol groups includes: obtaining, by using each pilot symbol group, a frequency offset value corresponding to each pilot symbol group; and a partial initial value, and having a time domain interval
  • an initial value or a weighted average of the frequency offset values corresponding to two or more pilot symbol groups having the same time domain interval is used to obtain an initial value of the frequency offset.
  • the method further includes: performing smoothing on the final frequency offset value.
  • An embodiment of the present invention further provides a frequency offset estimation apparatus, including:
  • a frequency offset initial value obtaining unit configured to obtain M frequency offset initial values by using N pilot symbol groups, each pilot symbol group includes two pilot symbols, and at least two sets of pilot symbols have different time domain intervals ;
  • a difference calculation unit configured to calculate a difference between the initial values of the two frequency offsets
  • An interval determining unit configured to determine a range of frequency offset values corresponding to all or part of the difference
  • a final frequency offset value calculation unit configured to process the initial frequency offset value according to the frequency offset value interval range to obtain a final frequency offset value.
  • the interval determining unit includes:
  • Corresponding relationship preset module which is set to correspond to a preset difference judgment threshold interval and a frequency offset value range
  • an interval determining module configured to determine, according to the correspondence, a range of frequency offset values corresponding to the decision threshold interval in which the difference is located.
  • the final frequency offset value calculation unit includes:
  • An inversion determination module configured to determine that there is a reverse according to a decision threshold interval corresponding to the difference The initial value of the frequency offset or the initial value of the frequency offset without reversal;
  • a frequency offset reduction module configured to process the inverse frequency offset initial value according to the restored value corresponding to the preset frequency offset value range to obtain the restored frequency offset value
  • a final frequency offset value obtaining module configured to obtain a final frequency offset value according to the restored frequency offset value and the initial frequency offset value without inversion.
  • the final frequency offset value is ultimately at least one of the following:
  • the different frequency offset value interval ranges correspond to different restored values.
  • the frequency offset initial value acquiring unit includes:
  • a frequency offset value obtaining module configured to obtain a frequency offset value corresponding to each pilot symbol group by using each pilot symbol group
  • a frequency offset value processing module configured to use a frequency offset value corresponding to a pilot symbol group with a unique time domain interval as an initial frequency offset value corresponding to each pilot symbol group, and when there are pilot symbol groups with the same time domain interval, Performing an arithmetic mean or a weighted average on the frequency offset values corresponding to the two or more pilot symbol groups having the same time domain interval to obtain an initial value of the frequency offset.
  • the apparatus further includes a smoothing processing unit configured to smooth the final frequency offset value.
  • the embodiment of the invention further provides a computer readable storage medium, comprising: a set of instructions for performing the foregoing frequency offset estimation method.
  • the frequency offset estimation method, apparatus and computer readable storage medium of the embodiment of the present invention determine the range of the corresponding frequency offset value by using the difference of the initial values of the frequency offset, and process the initial value of the frequency offset according to the range of the frequency offset value. And finally obtain the final frequency offset value, which can solve the problem of large frequency offset, ensure the performance, reduce the complexity of implementation, and can also be applied to small frequency offset, and improve the frequency offset estimation range and estimation. Accuracy, especially for the current LTE system has a more obvious effect.
  • Embodiment 1 is a schematic diagram of Embodiment 1 of a frequency offset estimation method according to the present invention
  • FIG. 2 is a schematic flow chart showing the steps of processing the initial frequency offset value according to the frequency offset value range according to the frequency offset value range in Embodiment 1;
  • Embodiment 2 of a frequency offset estimation method according to the present invention
  • FIG. 4 is a schematic diagram of pilot mapping of port 0 of an LTE system
  • FIG. 5 is a flowchart of determining a final frequency offset value interval in an application example
  • FIGS. 6 and 7 are schematic diagrams showing the module structure of the embodiment of the frequency offset estimating apparatus. Preferred embodiment of the invention
  • the embodiment 1 of the partial estimation method of the present invention includes:
  • Step 101 Obtain M frequency offset initial values by using N pilot symbol groups, each pilot symbol group includes two pilot symbols, and at least two sets of pilot symbols have different time domain intervals;
  • N M
  • the time domain intervals of each pilot symbol group may be different or partially the same.
  • the initial value of the frequency offset is done by conjugate correlation multiplication (i.e., conjugate multiplication) of the channel estimates on the two pilot symbols. It can also be done by conjugate multiplication of the received data with two pilot symbols. Or part of the pilot symbol group.
  • This step is mainly for frequency offset estimation for two and two pilots. It should be noted that at least two groups are needed.
  • the pilot time domain intervals are not equal.
  • the frequency offset estimation values of the two pilots respectively obtained at different time domain intervals are referred to herein as initial frequency offset values, and are expressed as ⁇ /i, ⁇ 2 , . . . , ⁇ ⁇ , where ⁇ denotes different time domain interval guides. Frequency group index value.
  • Step 102 Calculate a difference between initial values of the two frequency offsets;
  • the inventors have found that the correlation technique uses two pilots to calculate the frequency offset estimation value, once there is a maximum of two pilots.
  • the estimated range value is smaller than the final frequency offset value, the estimated frequency offset estimation value is reversed, resulting in deterioration of the frequency offset estimation accuracy.
  • Range of value intervals to avoid deterioration in accuracy due to inversion are possible.
  • Step 103 Determine a range of frequency offset values corresponding to all the differences
  • the correspondence between the preset difference decision threshold interval and the frequency offset value interval range; and the specific difference between the decision threshold interval and the frequency offset estimation value range according to the difference between the two pilot estimation values In the embodiment of the invention, the correspondence between the threshold value interval and the interval range is preset, and the frequency offset value range corresponding to the final frequency offset value is determined according to the correspondence, and the restored value corresponding to the frequency offset value range is used for processing.
  • the division of the interval range is determined based on the estimated range of the two pilots.
  • the carrier frequency is
  • the maximum speed is 1200kph
  • the maximum single Doppler frequency offset is 2220Hz
  • the fixed Doppler frequency offset is about 200Hz.
  • the maximum is about 2500Hz, that is, the actual frequency offset is less than 3500Hz.
  • Pilot according to the time domain interval of group one, the estimated range of group one is [- ⁇ , ⁇ ], and the estimated range of group two is determined according to the time domain interval of group two is [-1750 ⁇ , 1750 ⁇ ], then, [0 ⁇ , 1000 ⁇ ] is divided into a frequency offset range, [1000 ⁇ , 1750 ⁇ ] is divided into a frequency offset range, [1750Hz, 3500] is divided into a frequency offset range.
  • each difference has a corresponding decision threshold interval.
  • Judge Determine the value of the estimated error. For example, the estimated values of two pilots are
  • the frequency offset is determined by the decision threshold interval in which the difference between the two estimated values of the N estimated values is based on the correspondence between the difference decision threshold interval and the frequency offset value range. Range of value ranges. There are G combinations of the two difference values of the initial values of the N frequency offsets, considering the influence of the estimation error, by defining the error value (or called the threshold floating value)
  • Step 104 Process the initial frequency offset value according to the frequency offset value interval range to obtain a final frequency offset value.
  • the step of processing the initial frequency offset value according to the frequency offset value interval range to obtain a final frequency offset value includes:
  • Step 201 Determine, according to the decision threshold interval corresponding to the difference, that there is an initial value of the frequency offset in which the inversion occurs or an initial value of the frequency offset in which the inversion does not occur;
  • the inverse of the frequency offset estimation value occurs, and the estimation accuracy is deteriorated. Therefore, we use the difference between the estimated values of the two pilots to determine whether the estimated value is inverted, and if so, obtain the correct frequency offset estimate based on the judgment interval. This process is called restoration.
  • the difference thresholds corresponding to the difference values indicate that the initial values of the frequency offsets in which the inversions are different are different, so it is possible to determine which of the initial values of the frequency offsets in which the inversion is reversed based on the decision threshold interval.
  • Step 202 processing the initial value of the frequency offset that is inverted according to the restored value corresponding to the frequency offset value range to obtain the restored frequency offset estimation value;
  • the different frequency offset value interval ranges correspond to different restored values.
  • the reduction value is accurately related to the estimated range of the two pilots and the interval in which they are located.
  • the restored value maximum
  • the estimated range value x 2 is obtained.
  • Step 203 Initially deviating to the final frequency offset value according to the restored frequency offset estimation value and the frequency offset without inversion.
  • the final value of the final frequency offset value is at least one of the following:
  • the initial estimated value of the inversion is restored to obtain the restored frequency offset estimate ⁇ .
  • Re (0, i ⁇ , 2 .N , such that the frequency offset estimation value after the reduction process is within the frequency offset value.
  • the weighted average or arithmetic average of the restored frequency offset estimation value or other processing is obtained by ⁇ /.
  • Embodiment 2 of the frequency offset estimation method of the present invention includes:
  • Step 301 Obtain M frequency offset initial values by using N pilot symbol groups, each pilot symbol group includes two pilot symbols, and at least two sets of pilot symbols have different time domain intervals;
  • the time domain intervals of each pilot symbol group are different or partially the same, and N > M.
  • the initial value of the frequency offset is done by conjugate correlation multiplication (i.e., conjugate multiplication) of the channel estimates on the two pilot symbols. It can also be done by conjugate multiplication of the received data with two pilot symbols. Or part of the pilot symbol group.
  • This step is mainly for frequency offset estimation for two and two pilots. It should be noted that at least two sets of pilot time domain intervals are not equal.
  • the frequency offset estimation values of the two pilots respectively obtained at different time domain intervals are referred to herein as initial frequency offset values, and are expressed as ⁇ 2 , . . . , ⁇ 1 ⁇ 2, where ⁇ denotes different time domain interval guides.
  • Frequency group index value When the frequency offset value corresponding to the pilot symbol group unique in the time domain interval is used as the initial frequency offset corresponding to each group, and there are pilot symbol groups with the same time domain interval, two or more guides having the same time domain interval are used.
  • the frequency offset value corresponding to the frequency symbol group is arithmetically averaged or weighted averaged to obtain an initial value of the frequency offset.
  • Step 302 Calculate a difference between initial values of the two frequency offsets
  • the inventors have found that the correlation technique uses two pilots to calculate the frequency offset estimation value, once there is a maximum of two pilots.
  • the estimated range value is smaller than the final frequency offset value, the estimated frequency offset estimation value is reversed, resulting in deterioration of the frequency offset estimation accuracy.
  • Range of value intervals to avoid deterioration in accuracy due to inversion are possible.
  • Step 303 Determine a range of frequency offset values corresponding to the partial difference values
  • the correspondence between the preset difference decision threshold interval and the frequency offset value interval range is preferferably, the correspondence between the preset difference decision threshold interval and the frequency offset value interval range
  • the correspondence between the decision threshold interval of the difference between the two pilot estimation values and the frequency offset interval range is determined according to the embodiment of the present invention. The relationship determines the range of the frequency offset value corresponding to the final frequency offset value, and performs processing using the restored value corresponding to the frequency offset value range.
  • the division of the frequency offset range is determined based on the estimated range of the two pilots.
  • the carrier frequency is 2.0G
  • the maximum speed is 1200kph
  • the maximum single Doppler frequency offset is 2220Hz
  • the fixed Doppler frequency offset is about 200Hz
  • the maximum is about 2500Hz, that is, the actual frequency offset is less than 3500Hz
  • the estimated range of the group one is [- ⁇ , ⁇ ] according to the time domain interval of the group one
  • the estimated range of the group two is determined according to the time domain interval of the group two [-1750 ⁇ , 1750 ⁇ ]
  • [ 0 ⁇ , 1000 ⁇ ] is divided into a frequency offset range
  • [1000 ⁇ , 1750 ⁇ ] is divided into a frequency offset range
  • [1750Hz, 3500] is divided into a frequency offset range.
  • each difference has a corresponding decision threshold interval. The judgment is made by considering the value of the estimation error.
  • the estimated values of two pilots are
  • the absolute value of the difference between the two estimated values is 2000Hz
  • the error-free offset value of H is + 300Hz.
  • the upper limit of the decision threshold interval is 2300Hz, and the lower limit is 1700Hz.
  • the difference between the estimated values of the corresponding portions of the difference between the difference decision threshold interval and the frequency offset value interval is judged.
  • Step 304 Process the initial value of the frequency offset according to the range of the frequency offset value to obtain a final frequency offset value.
  • the initial estimated value of the inversion is restored to obtain the restored frequency offset estimate ⁇ .
  • Re (0, i ⁇ , 2 .N , such that the restored frequency offset estimate 4 ⁇ . re ( ) is within the range of the frequency offset value.
  • the weighted average or arithmetic mean of the restored frequency offset estimate or Other treatments give ⁇ /.
  • the final value of the final frequency offset value is at least one of the following:
  • Step 305 Smoothing the frequency offset estimation value.
  • the historical frequency offset value can be used for smoothing.
  • smoothing a fixed smoothing factor can be used, or the smoothing factor of the fluctuation can be used for smoothing.
  • the smoothing factor p is a configurable parameter, 0 ⁇
  • «-7 is the historical frequency offset estimate
  • ⁇ /' is the final final offset value after smoothing.
  • the embodiment of the present invention can effectively solve the estimation problem of large frequency offset by using the method of joint estimation of multiple pilots, and has the advantages of low cost and high performance.
  • This embodiment mainly describes the idea of the embodiment of the present invention by estimating the large frequency offset of the LTE downlink PDSCH.
  • the downlink reference signal CRS (cell-specific reference signals) is defined in the 3GPP TS 36.211 protocol.
  • the symbol positions occupied by the CRS on the time domain resources are 0, 4, 7, and 11, respectively. Shown.
  • the idea of the embodiment of the present invention is described in the range of the final frequency offset value [-4660 Hz, 4660 Hz]. It should be noted that the frequency offset of the larger frequency offset range can be performed by using the idea of the embodiment of the present invention. Accurate estimation.
  • the first step calculation of the initial estimate of the frequency offset
  • the frequency offset estimation of the two-two pilot symbols is performed by using the channel estimation value of the CRS as an example.
  • Channel estimation is performed by using a time domain method or a frequency domain method, and pilot symbols 0, 4, and 7, respectively, are obtained.
  • the pilot channel estimate of 11, expressed as H. ), H 4 ), H 7 ), H réelle ) , k ⁇ , 2, ... K, where K represents the number of frequency domain subcarriers occupied by the pilot.
  • channel estimation using two pilot symbols Conjugate multiplication obtain the phase difference between the two pilots, and use the relationship between the phase difference and the frequency offset and the pilot interval to obtain the frequency offset estimation value corresponding to the two pilots.
  • the initial value of the frequency offset is the initial value of the frequency offset.
  • the first pilot symbol group may be [pilot 1 and pilot 3] and/or [pilot 2 and pilot 4], and the corresponding frequency offset estimation initial value y; ; the second pilot symbol group is [pilot 1 and pilot 2] and / or [pilot 3 and pilot 4], the corresponding initial value of the frequency offset estimation is ⁇ / 2 ; the third pilot symbol The group is [pilot 2 and pilot 3], and the corresponding initial value of the frequency offset estimation is ⁇ / 3 .
  • the time interval between the two pilots is represented by ⁇ , ⁇ / 2 and ⁇ / 3 respectively.
  • the third step determining the range of the frequency offset value corresponding to all the differences
  • the correspondence between the preset difference decision threshold interval and the frequency offset value interval range; according to the frequency offset value interval range described herein, the range in which the final frequency offset value is located, and the decision threshold interval is two or two
  • the decision threshold interval is related to the time domain interval of the pilot and the range of the frequency offset value of the actual frequency offset. Because a certain system, such as the time domain resource interval of CRS in LTE, is fixed, different threshold values are given according to different frequency offset value range when determining the threshold interval.
  • the threshold value is the theoretical difference between the estimated initial values of the two pilots when different frequency offset range ranges are used, and combined with the threshold value that may be determined by the estimation error. , that is, the theoretical difference plus/minus error offset value.
  • the frequency offset value range is determined according to the difference between the three initial frequency offset estimation values, and 0, ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6, and ⁇ 7 are defined as the gates of each decision threshold interval. Limit.
  • the fourth step processing the initial value of the frequency offset according to the interval to obtain a final frequency offset value.
  • the method of frequency offset value reduction by the restored value may be used, or the final frequency offset estimation value may be obtained by other methods.
  • the initial estimate is restored, regardless of which method is within the scope of the present invention.
  • the reduction value is accurately related to the estimated range of the two pilots and the interval in which they are located.
  • the restored value the maximum estimated range value X 2 is obtained.
  • the flow shown in Figure 5 is applicable to the case where the pilot sets of three different time-frequency intervals are used for frequency offset estimation.
  • F12 abs (Af Af 2 )
  • F13 abs ( Af Af 3 )
  • F23 abs ( Af 2 -Af 3 )
  • F123 abs ( Af Af 2 /2-Af, /2)
  • abs ( ) indicates the absolute value.
  • the fourth and fifth steps specifically include the following steps:
  • the average of ⁇ ; , and 4 or the average of some two or two or one of them, optionally, the final frequency offset is the average of ⁇ : , ⁇ 2 and .
  • ⁇ / 2 and ⁇ ⁇ may be directly used as the final frequency offset value or the mean of both as the final frequency offset value.
  • the default final frequency offset value is the average of the initial values of the frequency offsets of the three.
  • This step is mainly to avoid a sudden deterioration of the accuracy of the estimation value due to sudden changes in the channel or sudden strong interference or other problems, and to avoid a method of error contagion.
  • Step 6 Smoothing the final frequency offset value
  • the historical frequency offset value can be used for smoothing.
  • smoothing a fixed smoothing factor can be used, or the smoothing factor of the fluctuation can be used. smooth.
  • Smoothing factor ⁇ is a configurable parameter, 0 ⁇ ⁇ ⁇ Where, the current estimated value is expressed, ⁇ /""-7 is the historical frequency offset estimated value, and ⁇ / is the smoothed final frequency offset value.
  • the above smoothing formula is just a common smoothing formula. Of course, other formulas can be used, such as the method of using the golden section, and the smoothing formula is different.
  • the selection of the smoothing factor it is mainly related to the speed of the channel change, or is related to the change of the frequency offset value. For example, if the frequency offset value changes rapidly, the smoothing factor ⁇ takes a large value. If the frequency offset value changes slowly, , the smoothing factor value can be too small. The value of ⁇ needs to be combined with the actual scene to obtain the best value through simulation.
  • the embodiment of the present invention further provides a frequency offset estimation apparatus.
  • the apparatus includes: a frequency offset initial value obtaining unit 61, configured to obtain a preset frequency offset initial value by using one pilot symbol group, and each The pilot symbol group includes two pilot symbols, and at least two sets of pilot symbols have different time domain intervals;
  • a difference calculation unit 62 configured to calculate a difference between the initial values of the two frequency offsets
  • the interval determining unit 63 is configured to determine a range of the frequency offset value corresponding to all or part of the difference; the final frequency offset value calculating unit 64 is configured to enter the initial value of the frequency offset according to the range of the frequency offset value Line processing yields the final frequency offset value.
  • the interval determining unit 63 includes:
  • Corresponding relationship preset module 631 is configured to preset a correspondence between a difference decision threshold interval and a frequency offset value range
  • the interval determining module 632 is configured to determine, according to the correspondence, a range of frequency offset values corresponding to the decision threshold interval where the difference is located.
  • the final frequency offset value calculation unit 64 includes:
  • the inversion determining module 641 is configured to determine, according to the decision threshold interval corresponding to the difference, that there is an initial value of the frequency offset in which the reverse occurs or an initial value of the inverted frequency offset does not occur;
  • the frequency offset reduction module 642 is configured to process the inverse frequency offset initial value according to the restored value corresponding to the preset frequency offset value range to obtain the restored frequency offset value;
  • the final frequency offset value obtaining module 643 is configured to obtain a final frequency offset value according to the restored frequency offset value and the initial frequency offset value without inversion.
  • the final value of the final frequency offset value is at least one of the following:
  • the different frequency offset value interval ranges correspond to different restored values.
  • the frequency offset initial value obtaining unit 61 includes:
  • the frequency offset value obtaining module 611 is configured to obtain, by using each pilot symbol group, a frequency offset value corresponding to each pilot symbol group;
  • the frequency offset value processing module 612 is configured to use a frequency offset value corresponding to the pilot symbol group with a unique time domain interval as the initial frequency offset corresponding to each group; and when there are pilot symbol groups with the same time domain interval, The frequency offset values corresponding to the two or more pilot symbol groups having the same domain interval are arithmetically averaged or weighted averaged to obtain an initial frequency offset value.
  • the device further includes a smoothing processing unit, configured to smooth the final frequency offset value deal with.
  • a smoothing processing unit configured to smooth the final frequency offset value deal with.
  • the difference between the true frequency offset value (or the actual frequency offset value) and the frequency offset estimation value is called the frequency offset estimation error.
  • the accuracy of an estimation method is usually evaluated using the frequency offset estimation error.
  • the accuracy of the estimation method is related to the signal-to-noise ratio (SNR) value and also to the channel characteristics. Generally, the estimation accuracy of slow decay is better than fast decay.
  • the estimation accuracy of the frequency offset estimation value obtained by the method of the embodiment of the present invention is comparable to the estimation precision of the dual pilot frequency offset estimation algorithm with high current estimation accuracy, but the method is simple, easy to implement, and large in estimation range.
  • the frequency offset estimation method and apparatus utilizes a plurality of pilot joint estimations.
  • the difference between the initial values of the frequency offsets is used to determine the range of the corresponding frequency offset value range, and the range of the frequency offset value ranges is
  • the initial value of the frequency offset is processed to obtain the final frequency offset value, which can solve the problem of large frequency offset, ensure the performance, reduce the complexity of the implementation, and can also be applied to the small frequency offset, and improve the frequency offset estimation range and estimation. Accuracy, especially for the current LTE system has a more obvious effect.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of a hardware embodiment, a software embodiment, or an embodiment in combination with software and hardware. Moreover, the invention can be embodied in the form of one or more computer program products embodied on a computer-usable storage medium (including but not limited to disk storage, optical storage, etc.), which includes program code available for the computer.
  • a computer-usable storage medium including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a bootable computer or other programmable data processing device.
  • a computer readable memory that operates in a particular manner, causing instructions stored in the computer readable memory to produce an article of manufacture comprising instruction means implemented in one or more flows and/or block diagrams of the flowchart The function specified in the box or in multiple boxes.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • an embodiment of the present invention further provides a computer readable storage medium, the storage medium comprising a set of instructions for performing the frequency offset estimation method of the foregoing embodiment.
  • the frequency offset estimation method, apparatus, and computer readable storage medium of the embodiments of the present invention determine the range of the corresponding frequency offset value by using the difference of the initial values of the frequency offset, and then the frequency offset initial range according to the frequency offset value range The value is processed to obtain the final frequency offset value, which can solve the problem of large frequency offset, ensure the performance, reduce the complexity of implementation, and can also be applied to small frequency offset, and improve the frequency offset estimation range and estimation accuracy, especially It has obvious effects for the current LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例涉及一种频偏估计的方法、装置和计算机可读存储介质,该方法包括:利用N个导频符号组得到M个频偏初始值,每个导频符号组包括两个导频符号,且至少两组导频符号的时域间隔不同;计算两两频偏初始值的差值;确定全部或部分差值对应的频偏值区间范围;根据所述频偏值区间范围对频偏初始值进行处理得到最终频偏值。

Description

频偏估计的方法、 装置和计算机可读存储介质
技术领域
本发明涉及通信技术领域, 尤其涉及一种频偏估计的方法、 装置和计算 机可读存储介质。
背景技术
新一代的移动通信系统要求具备高速率、 高频谱效率、 大容量的多媒体 数据传输能力。 在无线环境下高速数据传输会产生严重的频率选择性衰落, 而正交频分复用(Orthogonal Frequency Division Multiplexing, 简称 OFDM)技 术正是因为它的一些突出的优点, 脱颖而出, 成为新通信时代的主流技术, 成为瞩目的焦点。 OFDM技术除了具有频谱利用率高、 抗多径衰落、 实现 MIMO(Multiple-Input Multiple-Out-put,多输入多输出)技术简单等优点。 但同 时要求子载波之间满足相互正交的特性, 对频偏比较敏感。 产生频偏的主要 因素, 其一是由于天线晶振所带来的固定频偏, 该值相对比较小。 其二就是 由于 UE移动所带来的多普勒频偏值, 该值的大小与载频和 UE的移动速度有 关。 随着速度的增加或者载波频率的增大都会导致多普勒频偏的增大, 此问 题尤其是在高速场景下尤为突出, 比如, 速度为 1200kph, 载波频率为 2.1G 或者 2.6G时, 最大单倍多普勒频偏值则达到 2331Hz或者 2886Hz。
因此, 频偏问题成为 OFDM技术核心问题之一, 目前已有很多通信工程 师提出了各种频偏问题的解决方法, 主要分为两类, 其一是数据辅助 ( Data-aided )的估计方法, 比如, 双导频频偏估计算法, 该类方法主要是针 对小频偏的解决方法, 精度比较高, 而且实现也相对比较简单; 其二是盲算 ( NoData-aided )的估计方法, 此类方法可以解决较大频偏的问题, 但是精度 相对比较低, 而且存在众多的局限性, 比如, 受限于单用户等。 另外, 为了 能够解决大频偏的问题同时要保证估计精度, 很多文献提出通过釆用两次估 计和补偿的方法实现, 虽然一定程度提高了频偏估计的精度, 但同时增加了 成本和实现的复杂度, 而且最终的估计精度与两次估计和补偿精度有关, 一 旦其中估计误差扩大尤其是第一次估计精度较低的情况下有可能导致最终估 计误差的扩大。 另外, 算法的复杂度也是我们关注的一个主要关键, 如果一 个算法复杂度过高, 即便估计精度很高, 由于成本和硬件实现能力导致无法 实现, 尤其是用户设备(UE )侧由于硬件的限制, 复杂的算法无法实现, 而 且同时要解决大频偏的问题也成为一个关注的难点。 发明内容
本发明实施例提供一种频偏估计的方法、 装置和计算机可读存储介质, 以解决相关较大频偏情况下的频偏估计方法复杂度高的问题。
本发明实施例提供了一种频偏估计的方法, 包括:
利用 N个导频符号组得到 M个频偏初始值, 每个导频符号组包括两个导 频符号, 且至少两组导频符号的时域间隔不同;
计算两两频偏初始值的差值;
确定全部或部分差值对应的频偏值区间范围; 以及
根据所述频偏值区间范围对频偏初始值进行处理得到最终频偏值。
可选的, 确定全部或部分差值对应的频偏值区间范围的步骤包括: 预置 差值判决门限区间与频偏值区间范围的对应关系; 以及才艮据所述对应关系, 可选的, 根据所述频偏值区间范围对频偏初始值进行处理得到最终频偏 值的步骤包括:
根据差值对应的判决门限区间判断存在发生反转的频偏初始值或未发生 反转的频偏初始值;
根据预置的频偏值区间范围对应的还原值对发生反转的频偏初始值进行 处理得到还原后的频偏值; 以及
根据所述还原后的频偏值和未发生反转的频偏初始值得到最终频偏值。 可选的, 所述最终频偏值最终取值为以下至少之一:
所述还原后的频偏值和未发生反转的频偏初始值的平均值;
还原后的频偏值和未发生反转的频偏初始值中的部分值的平均值; 任意一个未发生反转的频偏初始值; 以及
任意一个还原后的频偏值。
可选的, 所述不同的频偏值区间范围对应不同的还原值。
可选的, 利用 N个导频符号组得到 M个频偏初始值的步骤包括: 利用各导频符号组得到各导频符号组对应的频偏值; 以及 偏初始值, 且存在时域间隔相同的导频符号组时, 利用时域间隔相同的两个 或多个导频符号组对应的频偏值进行算术平均或加权平均得到一个频偏初始 值。
可选的, 在处理得到最终频偏值后, 所述方法还包括: 对所述最终频偏 值进行平滑处理。
本发明实施例还提供了一种频偏估计装置, 包括:
频偏初始值获取单元, 其设置成利用 N个导频符号组得到 M个频偏初始 值, 每个导频符号组包括两个导频符号, 且至少两组导频符号的时域间隔不 同;
差值计算单元, 其设置成计算两两频偏初始值的差值;
区间确定单元, 其设置成确定全部或部分差值对应的频偏值区间范围; 以及
最终频偏值计算单元, 其设置成根据所述频偏值区间范围对频偏初始值 进行处理得到最终频偏值。
可选的, 所述区间确定单元包括:
对应关系预置模块, 其设置成预置差值判决门限区间与频偏值区间范围 的对应关系; 以及
区间确定模块, 其设置成根据所述对应关系, 确定所述差值所在判决门 限区间对应的频偏值区间范围。
可选的, 最终频偏值计算单元包括:
反转确定模块, 其设置成根据差值对应的判决门限区间判断存在发生反 转的频偏初始值或未发生反转的频偏初始值;
频偏还原模块, 其设置成根据预置的频偏值区间范围对应的还原值对发 生反转的频偏初始值进行处理得到还原后的频偏值; 以及
最终频偏值获取模块, 其设置成根据所述还原后的频偏值和未发生反转 的频偏初始值得到最终频偏值。
可选的, 所述最终频偏值最终取值为以下至少之一:
所述还原后的频偏值和未发生反转的频偏初始值的平均值;
还原后的频偏值和未发生反转的频偏初始值中的部分值的平均值; 任意一个未发生反转的频偏初始值; 以及
任意一个还原后的频偏值。
可选的, 所述不同的频偏值区间范围对应不同的还原值。
可选的, 所述频偏初始值获取单元包括:
频偏值获取模块, 其设置成利用各导频符号组得到各导频符号组对应的 频偏值;
频偏值处理模块, 其设置成将时域间隔唯一的导频符号组对应的频偏值 作为各导频符号组对应的频偏初始值, 存在时域间隔相同的导频符号组时, 用于利用时域间隔相同的两个或多个导频符号组对应的频偏值进行算术平均 或加权平均得到一个频偏初始值。
可选的, 所述装置还包括平滑处理单元, 其设置成对所述最终频偏值进 行平滑处理。 本发明实施例还提供了一种计算机可读存储介质, 包括: 一组指令, 所 述指令用于执行前述的频偏估计方法。
本发明实施例的频偏估计方法、 装置和计算机可读存储介质利用频偏初 始值的差值确定对应的频偏值区间范围, 并才艮据频偏值区间范围对频偏初始 值进行处理, 进而得到最终频偏值, 可解决大频偏的问题, 保证性能的同 时, 降低实现的复杂度, 同时还可适用于小频偏, 并提高频偏估计范围和估 计精度, 尤其针对目前 LTE系统有较明显的效果。 附图概述
图 1为本发明频偏估计方法实施例 1的示意图;
图 2为实施例 1中根据频偏值区间范围对频偏初始值进行处理得到最终 频偏值的步骤的流程示意图;
图 3为本发明频偏估计方法实施例 2的示意图;
图 4为 LTE系统端口 0的导频映射示意图;
图 5为应用实例中最终频偏值区间判断流程图;
图 6、 7为频偏估计装置实施例的模块结构示意图。 本发明的较佳实施方式
下面结合附图和具体实施例对本发明所述技术方案作详细描述, 以使本 领域的技术人员可以更好的理解本发明实施例并能予以实施, 但所举实施例 不作为对本发明的限定。 需要说明的是, 在不冲突的情况下, 本申请中的实 施例及实施例中的特征可以相互组合。
实施例 1
如图 1所示, 本发明偏估计方法实施例 1包括:
步骤 101 : 利用 N个导频符号组得到 M个频偏初始值, 每个导频符号组 包括两个导频符号, 且至少两组导频符号的时域间隔不同;
该实施例中, N=M , 各导频符号组的时域间隔可以均不同或部分相 同。
频偏初始值通过对两个导频符号上的信道估计进行共轭相关乘法 (即, 共轭相乘) 完成。 也可以釆用两导频符号的接受数据共轭相乘完成。 或部分导频符号组。
本步骤主要是针对两两导频进行频偏估计, 需要说明的是至少需要两组 导频时域间隔不相等。 分别获取不同时域间隔的两两导频的频偏估计值, 在 此称为频偏初始值, 表示为 Δ/i , Αΐ2 , . . . , Δ Ν, 其中 Ν表示不同时域间隔导 频组索引值。 步骤 102: 计算两两频偏初始值的差值;
由于两两导频的频偏估计范围与两两导频之间的时域间隔有关系, 发明 人发现, 相关技术利用两导频计算频偏估计值时, 一旦存在某两个导频的最 大估计范围值小于最终频偏值时, 估计出来的频偏估计值就会发生反转, 导 致频偏估计精度恶化。
最终频偏值处于某一频偏值区间范围时, Ν个频偏初始值的两两理想差
值区间范围, 从而避免因反转产生的精度恶化。
步骤 103 : 确定全部差值对应的频偏值区间范围;
较佳的, 预置差值判决门限区间与频偏值区间范围的对应关系; 根据所 两两导频估计值差值的判决门限区间与频偏估计值的区间范围存在特定 的对应关系, 本发明实施例预置差值判决门限区间与区间范围的对应关系, 旨在根据该对应关系确定最终频偏值对应的频偏值区间范围, 利用该频偏值 区间范围对应的还原值进行处理。
区间范围的划分是根据两两导频的估计范围进行确定的。 比如, 载频是
2.0G, 支持最大速度为 1200kph, 最大单倍多普勒频偏为 2220Hz, 固定多普 勒频偏值约 200Hz , 那么, 最大约为 2500Hz , 即实际频偏估计值小于 3500Hz,如有两组导频, 根据组一的时域间隔确定组一的估计范围为 [-ΙΟΟΟΗζ,ΙΟΟΟΗζ] , 根据组二的时域间隔确定组二的估计范围为 [-1750Ηζ,1750Ηζ], 那么, [0Ηζ,1000Ηζ]划分为一个频偏值区间范围, [1000Ηζ,1750Ηζ]划分为一个频偏值区间范围, [1750Hz, 3500]划分为一个频 偏值区间范围。
在一固定的频偏值区间范围内, 每个差值都有相应的判决门限区间。 判 考虑估计误差的值来确定的。 比如, 某两个导频的估计值分别是
-500Hz, 1500Hz, 该两个估计值的差值的绝对值为 2000Hz, H没误差偏移值 是 + 300Hz, 那么该判决门限区间的上限为 2300Hz, 下限为 1700Hz„
Figure imgf000009_0001
此 处可以釆用两两差值的绝对值进行判断。 为了便于说明本发明实施例的思 想, 才艮据差值判决门限区间与频偏值区间范围的对应关系的釆用 N个估计值 的两两估计值的差值所在的判决门限区间确定频偏值区间范围。 N个频偏初 始值的两两差值组合有 G个, 考虑估计误差的影响, 通过定义误差值(或者 称为门限浮动值)
Figure imgf000009_0002
间。
步骤 104: 根据所述频偏值区间范围对频偏初始值进行处理得到最终频 偏值。
如图 2所示, 根据所述频偏值区间范围对频偏初始值进行处理得到最终 频偏值(本文中, 也称为最终的频偏估计值) 的步骤包括:
步骤 201 : 根据差值对应的判决门限区间判断存在发生反转的频偏初始 值或未发生反转的频偏初始值;
如果实际频偏值大于两导频的频偏估计值的范围时就会发生频偏估计值 的反转, 估计精度会恶化。 因此, 我们釆用两两导频估计值的差值进行判定 估计值是否有反转, 如果有的话根据判断区间获取正确的频偏估计值。 这个 过程就称为还原。
差值对应的判决门限区间不同, 表明发生反转的频偏初始值不同, 因此 可基于判决门限区间确定发生反转的频偏初始值到底是哪个。
步骤 202: 根据频偏值区间范围对应的还原值对发生反转的频偏初始值 进行处理得到还原后的频偏估计值;
所述不同的频偏值区间范围对应不同的还原值。
还原值准确的说是与两两导频的估计范围和所处的区间有关系。 在该实 施例中, 如果实际频偏值超出某两导频的最大估计范围值时, 还原值 =最大 估计范围值 x 2得到。
步骤 203 : 根据所述还原后的频偏估计值和未发生反转的频偏初始值得 到最终频偏值。
所述最终频偏值的最终取值为以下至少之一:
所述还原后的频偏估计值和未发生反转的频偏初始值的平均值; 还原后的频偏估计值和未发生反转的频偏初始值中的部分值的平均值; 任意一个未发生反转的频偏初始值;
所有还原后的频偏估计值的平均值;
部分还原后的频偏估计值的平均值;
任意一个还原后的频偏估计值。
利用预定义的判决门限区间, 确定出频偏值区间范围后, 对发生反转的 初始估计值进行还原处理得到还原后的频偏估计值 ^。re(0, i = \, 2 .N , 使 得还原处理后的频偏估计值 位于频偏取值内。 然后对还原后的频偏 估计值 进行加权平均或者算术平均或者其他处理得到 Δ/。
实施例 2
如图 3所示, 本发明频偏估计方法实施例 2包括:
步骤 301 : 利用 N个导频符号组得到 M个频偏初始值, 每个导频符号组 包括两个导频符号, 且至少两组导频符号的时域间隔不同;
该实施例中, 各导频符号组的时域间隔均不同或部分相同, 且 N > M。 频偏初始值通过对两个导频符号上的信道估计进行共轭相关乘法 (即, 共轭相乘) 完成。 也可以釆用两导频符号的接受数据共轭相乘完成。 或部分导频符号组。
本步骤主要是针对两两导频进行频偏估计, 需要说明的是至少需要两组 导频时域间隔不相等。 分别获取不同时域间隔的两两导频的频偏估计值, 在 此称为频偏初始值, 表示为 Α 2 , . . . , Δ½, 其中 Ν表示不同时域间隔导 频组索引值。 将时域间隔唯一的导频符号组对应的频偏值作为各组对应的频 偏初始值, 且存在时域间隔相同的导频符号组时, 利用时域间隔相同的两个 或多个导频符号组对应的频偏值进行算术平均或加权平均得到一个频偏初始 值。
步骤 302: 计算两两频偏初始值的差值;
由于两两导频的频偏估计范围与两两导频之间的时域间隔有关系, 发明 人发现, 相关技术利用两导频计算频偏估计值时, 一旦存在某两个导频的最 大估计范围值小于最终频偏值时, 估计出来的频偏估计值就会发生反转, 导 致频偏估计精度恶化。
最终频偏值处于某一频偏值区间范围时, N个频偏初始值的两两理想差
值区间范围, 从而避免因反转产生的精度恶化。
步骤 303: 确定部分差值对应的频偏值区间范围;
较佳的, 预置差值判决门限区间与频偏值区间范围的对应关系; 根据所
两两导频估计值差值的判决门限区间与频偏值区间范围存在特定的对应 关系, 本发明实施例预置差值判决门限区间与频偏值区间范围的对应关系, 旨在根据该对应关系确定最终频偏值对应的频偏值区间范围, 利用该频偏值 区间范围对应的还原值进行处理。
频偏值区间范围的划分是根据两两导频的估计范围进行确定的。 比如载 频是 2.0G, 支持最大速度为 1200kph, 最大单倍多普勒频偏为 2220Hz, 固定 多普勒频偏值约 200Hz, 那么最大约为 2500Hz, 即实际频偏估计值小于 3500Hz,如有两组导频, 根据组一的时域间隔确定组一的估计范围为 [-ΙΟΟΟΗζ,ΙΟΟΟΗζ] , 根据组二的时域间隔确定组二的估计范围为 [-1750Ηζ,1750Ηζ] , 那么 [0Ηζ,1000Ηζ]划分为一个频偏值区间范围, [1000Ηζ,1750Ηζ]划分为一个频偏值区间范围, [1750Hz, 3500]划分为一个频 偏值区间范围。 在一固定的频偏值区间范围内, 每个差值都有相应的判决门限区间。 判 考虑估计误差的值来确定的。 比如, 某两个导频的估计值分别是
-500Hz, 1500Hz, 该两个估计值的差值的绝对值为 2000Hz, H没误差偏移值 是 + 300Hz, 那么该判决门限区间的上限为 2300Hz, 下限为 1700Hz„
围, 此处可以釆用两两差值的绝对值进行判断。 为了便于说明本发明实施例 的思想, 根据差值判决门限区间与频偏值区间范围的对应关系的釆用部分估 计值之间的差值进行判断。 通过定义误差值(或者称为门限浮动值)结合理
步骤 304: 根据所述频偏值区间范围对频偏初始值进行处理得到最终频 偏值。
利用预定义的判决门限区间, 确定出频偏值区间范围后, 对发生反转的 初始估计值进行还原处理得到还原后的频偏估计值 ^。re(0, i = \, 2 .N , 使 得还原后的频偏估计值 4 ^。re( )位于频偏值区间范围内。 然后对还原后的频 偏估计值 进行加权平均或者算术平均或者其他处理得到 Δ/。
所述最终频偏值的最终取值为以下至少之一:
所述还原后的频偏估计值和未发生反转的频偏初始值的平均值; 还原后的频偏估计值和未发生反转的频偏初始值中的部分值的平均值; 任意一个未发生反转的频偏初始值;
所有还原后的频偏估计值的平均值;
部分还原后的频偏估计值的平均值;
任意一个还原后的频偏估计值。
步骤 305: 对频偏估计值进行平滑处理。
为了提高频偏估计精度, 避免由于信道的突变导致的估计误差突然变 大, 可以利用历史频偏值进行平滑处理, 平滑时可以釆用固定的平滑因子, 也可以釆用波动的平滑因子进行平滑。 平滑因子 p为可配参数, 0≤ρ≤\
Figure imgf000013_0001
其中, 表示当前估计值, «-7表示为历史频偏估计值, Δ/'为平 滑后的最终频偏值。 本发明实施例通过釆用多导频联合估计的方法, 能够有效的解决大频偏 的估计问题, 同时具有低成本, 高性能等优点。
应用实例
本实施例主要以 LTE下行 PDSCH的大频偏进行估计问题来阐述本发明 实施例的思想。 3GPP TS 36.211协议中定义了下行参考信号 CRS(cell-specific reference signals), 在单端口的配置下, CRS在时域资源上所占的符号位置分 别是 0、 4、 7 和 11 , 如图 4 所示。 本实施例以最终频偏值变化范围为 [-4660Hz, 4660Hz]进行本发明实施例的思想的阐述, 需要说明的是釆用本 发明实施例的思想可以进行更大频偏范围的频偏进行精确估计。
为了阐述本发明实施例的思想, 在本实施例以 CRS 为例进行发明思想 的阐述, 具体实施例描述如下:
第一步: 频偏初始估计值的计算;
本实施例釆用 CRS的信道估计值进行两两导频符号的频偏估计为例。 利 用通过时域方法或者频域方法进行信道估计, 分别获取导频符号 0、 4、 7、
11 的导频信道估计, 表示为 H。 )、 H4 )、 H7 )、 H„ ) , k=\,2, ...K, 其 中 K表示导频所占的频域子载波个数。 然后利用两导频符号的信道估计进行 共轭相乘, 获取两导频的相位差, 并利用相位差与频偏和导频间隔的关系, 得到对应两导频的频偏估计值, 在此处我们称之为频偏初始值。
如果导频 1、 2、 3和 4分别表示上述导频符号 0、 4、 7和 11。 根据两两导 频的时域间隔进行分组, 则第一导频符号组可以为【导频 1和导频 3】和 /或【导 频 2和导频 4】, 对应的频偏估计初始值为 y; ;第二导频符号组为【导频 1和导 频 2】和 /或 【导频 3和导频 4】 , 对应的频偏估计初始值为 Δ/2 ; 第三导频符号 组为 【导频 2和导频 3】 , 所对应的频偏估计初始值为 Δ/3 , 本应用实例中, 分 别用 Δ 、 Δ/2、 Δ/3表示两两导频时域间隔为 7、 4和 3所对应的频偏初始值。 第二步: 计算两两频偏初始值的差值;
第三步: 确定全部差值对应的频偏值区间范围;
较佳的, 预置差值判决门限区间与频偏值区间范围的对应关系; 根据所 本文描述的频偏值区间范围指的是最终频偏值所处的范围, 而判决门限 区间是两两导频估计的初始值的差值有关的。 我们利用两两导频估计的初始 围。
判决门限区间与导频的时域间隔和实际频偏所处频偏值区间范围是有关 系的。 因为某一个系统, 比如 LTE中的 CRS的时域资源间隔是固定的, 那 在确定判断门限区间的时候按照不同的频偏值区间范围给定不同的门限值。 较佳的, 门限值的取值就是利用不同的频偏值区间范围时, 两两导频的估计 的初始值之间的理论差值, 并结合可能存在估计误差最终确定的的门限值, 也就是理论差值加 /减误差偏移值。
本应用实例中, 才艮据 3个初始频偏估计值的差值判断频偏值区间范围, 分另定义 0、 ΤΗ1、 ΤΗ2、 ΤΗ3、 ΤΗ4、 ΤΗ5、 ΤΗ6和 ΤΗ7作为各判决门限区 间的门限值。
第四步: 根据所述区间对频偏初始值进行处理得到最终频偏值。
另外, 需要说明是, 在确定了最终频偏值的区间后, 可以釆用通过还原 值进行频偏值还原的方法, 也可以釆用其他方法获取最终的频偏估计值。 比 如 , 通过定义初始值和时域间隔之间的关系进行初始估计值的还原 , 无论釆 用哪种方法都属于本发明的保护范围。
还原值准确的说是与两两导频的估计范围和所处的区间有关系。 在该实 施例中, 如果实际频偏值超出某两导频的最大估计范围值时, 还原值 =最大 估计范围值 X 2得到。 图 5所示流程适用于釆用了三个不同时频间隔的导频组进行频偏估计的 情形。 图中 F12=abs ( Af Af2 ) , F13=abs ( Af Af3 ) , F23=abs ( Af2-Af3 ) , F123=abs ( Af Af2/2-Af,/2) , 其中 abs ( )表示绝对值。
如图 5所示, 第四、 五步具体包括以下步骤:
(a)如果 ^, Δ/2 , ^的两两差值的绝对值不大于 TH1, 该情形下, 判 断不存在发生反转的频偏初始值, 则最终频偏值为八 , ^2和八 三者的平均 值或者其中某两个值的平均值或者其中的某一个值, 可选的, 釆用 ^, ^ 和八 三者的平均值;
( 如果八 , Δ 的差值的绝对值不大于 TH1, 并且 ^与八 , Δ 或者 ( + ^)/2之间差值的绝对值位于[^2, ΤΗ3], 该情形下, 判断 ^发生了 反转, 则进一步进行如下判断:
若 ^为负值, 则
Figure imgf000015_0001
其中, ^为对应的 频偏还原值, Δ 为 Δ/3所对应的还原后的频偏估计值。 因此, 最终频偏值为
Δ ;, 和 4 三者的平均值或者某两两的平均值或者其中某一个值, 可选 的, 最终频偏值为 Δ: , Δ2和 者的平均值。
需要说明的是当频偏初始值的差值判决到此区间时, 可以直接进行利用 Δ/2ΔΛ作为最终频偏值或者两者的均值作为最终频偏值。
(c)如果 Δ/2 , Δ 的差值的绝对值位于 [ΤΗ4, ΤΗ5], 该情形下, 判断^ 与 Δ/2发生了反转, 则进行如下判断: 若 ^为负值, 则 Δ ; ,
Figure imgf000015_0002
,
Figure imgf000015_0003
, 其中 F、和 Δ/^分别为 Δ^和 ^所对应的频偏还原值。 因此, 最终的频偏估计值获取如同上述描述方法一样, 可以釆用三者的平均值或者 某两两的平均值或者其中某一个值, 可选的, 最终频偏值为 Δ— , Δ 和 4/3 三者的平均值。 另外, 需要说明的是, 当频偏初始估计值判决到此区间时, 可以直接利 用 Δ/3作为最终频偏值, 不进行 ^和^2的频偏值的还原操作。
(d)如果 Δ/2 , Δ 的差值的绝对值位于 [ΤΗ6, ΤΗ7], 该情形下, 判断 Δ 2 , ^发生了反转, 则进一步进行如下判断: 若
Figure imgf000016_0001
, A/2^A/2-AF2, 其中 Δ 2和 ΔΖ^分别为 ^和^ ^所对应的频偏还原值。 因此, 最终频偏值取 Δ 和 Δ 的平均值或者其中的某一个值, 可选的, 取 Δ 和 Δ 的平均值。
( e )如果 Α/2 , Δ/3的差值绝对值不满足以上四个判断分支, 则默认 最终频偏值为三者的频偏初始值的平均值。
此步骤主要为了避免由于信道的突变或突然的强烈干扰或其他问题导致 的估计值精度突然恶化, 同时避免误差传染釆用的一种方法。
第六步: 最终频偏值的平滑
为了提高提高频偏估计精度, 避免由于信道的突变导致的估计误差突然 变大, 可以利用历史频偏值进行平滑处理, 平滑时可以釆用固定的平滑因 子, 也可以釆用波动的平滑因子进行平滑。 平滑因子 ρ为可配参数, 0≤Ρ≤ι
Figure imgf000016_0002
其中, 表示当前估计值, Δ/「《-7表示为历史频偏估计值, Δ /为平 滑后的最终频偏值。
以上平滑处理公式只是一种常用的平滑处理公式。 当然也可釆用其他的 公式, 比如利用黄金分割的方法, 其平滑公式就有所不同。 至于平滑因子 的选取, 主要与信道变化快慢有关系, 或者说是与频偏值的变化快慢有关 系, 比如频偏值变化快的话, 平滑因子 ρ取值偏大, 如果频偏值变化慢的 话, 平滑因子取值可以偏小。 ρ 的取值需要结合实际场景, 通过仿真获取最 佳值。
本发明实施例还提供了一种频偏估计装置, 如图 6所示, 该装置包括: 频偏初始值获取单元 61 , 用于利用 Ν个导频符号组得到 Μ个频偏初始 值, 每个导频符号组包括两个导频符号, 且至少两组导频符号的时域间隔不 同;
差值计算单元 62, 用于计算两两频偏初始值的差值;
区间确定单元 63 , 用于确定全部或部分差值对应的频偏值区间范围; 最终频偏值计算单元 64, 用于根据所述频偏值区间范围对频偏初始值进 行处理得到最终频偏值。
如图 7所示, 可选的, 所述区间确定单元 63包括:
对应关系预置模块 631 , 用于预置差值判决门限区间与频偏值区间范围 的对应关系;
区间确定模块 632 , 用于根据所述对应关系, 确定所述差值所在判决门 限区间对应的频偏值区间范围。
最终频偏值计算单元 64包括:
反转确定模块 641 , 用于根据差值对应的判决门限区间判断存在发生反 转的频偏初始值或未发生反转频偏初始值;
频偏还原模块 642 , 用于根据预置的频偏值区间范围对应的还原值对发 生反转的频偏初始值进行处理得到还原后的频偏值;
最终频偏值获取模块 643 , 用于根据所述还原后的频偏值和未发生反转 的频偏初始值得到最终频偏值。
可选的, 所述最终频偏值的最终取值为以下至少之一:
所述还原后的频偏值和未发生反转的频偏初始值的平均值;
还原后的频偏值和未发生反转的频偏初始值中的部分值的平均值; 任意一个未发生反转的频偏初始值;
任意一个还原后的频偏值。
可选的, 所述不同的频偏值区间范围对应不同的还原值。
可选的, 如图 7所示, 所述频偏初始值获取单元 61包括:
频偏值获取模块 611 , 用于利用各导频符号组得到各导频符号组对应的 频偏值;
频偏值处理模块 612 , 用于将时域间隔唯一的导频符号组对应的频偏值 作为各组对应的频偏初始值; 存在时域间隔相同的导频符号组时, 用于利用 时域间隔相同的两个或多个导频符号组对应的频偏值进行算术平均或加权平 均得到一个频偏初始值。
可选的, 该装置还包括平滑处理单元, 用于对所述最终频偏值进行平滑 处理。
一般的, 真实频偏值(或者实际频偏值)与频偏估计值的差值, 称为频 偏估计误差。 通常利用频偏估计误差来评估一个估计方法的精度。 而估计方 法的精度与信噪比 (SNR)值有关, 同时也与信道特性有关, 通常情况下, 慢 衰的估计精度要好于快衰。
基于相同的情形, 利用本发明实施例的方法得到的频偏估计值的估计精 度与目前估计精度较高的双导频频偏估计算法的估计精度相当, 但方法简 单, 实现容易, 估计范围大。
本发明实施例的频偏估计方法及装置利用多个导频联合估计, 较佳的, 利用频偏初始值的差值确定对应的频偏值区间范围, 并才艮据频偏值区间范围 对频偏初始值进行处理, 进而得到最终频偏值, 可解决大频偏的问题, 保证 性能的同时, 降低实现的复杂度, 同时还可适用于小频偏, 并提高频偏估计 范围和估计精度, 尤其针对目前 LTE系统有较明显的效果。
本领域技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算 机程序产品。 因此, 本发明可釆用硬件实施例、 软件实施例、 或结合软件和 硬件方面的实施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计 算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘存储器和光学 存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统) 、 和计算机程序 产品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程 图和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程和 / 或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌 入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通过 计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程 图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的装 置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。
为此, 本发明实施例还提供了一种计算机可读存储介质, 该存储介质包 括一组指令, 所述指令用于执行前述实施例的频偏估计方法。
以上仅为本发明的可选实施案例而已, 并不用于限制本发明, 本发明还 可有其他多种实施例, 在不背离本发明精神及其实质的情况下, 熟悉本领域 的技术人员可根据本发明做出各种相应的改变和变形, 但这些相应的改变和 变形都应属于本发明所附的权利要求的保护范围。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选的, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应的, 上述实施例中的各模块 /单元可以釆 用硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于 任何特定形式的硬件和软件的结合。
工业实用性 本发明实施例的频偏估计方法、 装置和计算机可读存储介质利用频偏初 始值的差值确定对应的频偏值区间范围, 并才艮据频偏值区间范围对频偏初始 值进行处理, 进而得到最终频偏值, 可解决大频偏的问题, 保证性能的同 时, 降低实现的复杂度, 同时还可适用于小频偏, 并提高频偏估计范围和估 计精度, 尤其针对目前 LTE系统有较明显的效果。

Claims

权 利 要 求 书
1、 一种频偏估计的方法, 包括:
利用 N个导频符号组得到 M个频偏初始值, 每个导频符号组包括两个导 频符号, 且至少两组导频符号的时域间隔不同;
计算两两频偏初始值的差值;
确定全部或部分差值对应的频偏值区间范围; 以及
根据所述频偏值区间范围对频偏初始值进行处理得到最终频偏值。
2、 如权利要求 1所述的方法, 其中, 确定全部或部分差值对应的频偏值 区间范围的步骤包括:
预置差值判决门限区间与频偏值区间范围的对应关系; 以及 范围。
3、 如权利要求 2所述的方法, 其中, 根据所述频偏值区间范围对频偏初 始值进行处理得到最终频偏值的步骤包括:
根据差值对应的判决门限区间判断存在发生反转的频偏初始值或未发生 反转的频偏初始值;
根据预置的频偏值区间范围对应的还原值对发生反转的频偏初始值进行 处理得到还原后的频偏值; 以及
根据所述还原后的频偏值和未发生反转的频偏初始值得到最终频偏值。
4、 如权利要求 3所述的方法, 其中, 所述最终频偏值的最终取值为以下 至少之一:
所述还原后的频偏值和未发生反转的频偏初始值的平均值;
还原后的频偏值和未发生反转的频偏初始值中的部分值的平均值; 任意一个未发生反转的频偏初始值; 以及
任意一个还原后的频偏值。
5、 如权利要求 2所述的方法, 其中: 所述不同的频偏值区间范围对应不 同的还原值。
6、 如权利要求 1或 2所述的方法, 其中, 利用 N个导频符号组得到 M 个频偏初始值的步骤包括:
利用各导频符号组得到各导频符号组对应的频偏值; 以及 偏初始值, 且存在时域间隔相同的导频符号组时, 利用时域间隔相同的两个 或多个导频符号组对应的频偏值进行算术平均或加权平均得到一个频偏初始 值。
7、 如权利要求 1或 2所述的方法, 其中, 在处理得到最终频偏值后, 所 述方法还包括: 对所述最终频偏值进行平滑处理。
8、 一种频偏估计装置, 包括:
频偏初始值获取单元, 其设置成利用 N个导频符号组得到 M个频偏初始 值, 每个导频符号组包括两个导频符号, 且至少两组导频符号的时域间隔不 同;
差值计算单元, 其设置成计算两两频偏初始值的差值;
区间确定单元, 其设置成确定全部或部分差值对应的频偏值区间范围; 以及
最终频偏值计算单元, 其设置成根据所述频偏值区间范围对频偏初始值 进行处理得到最终频偏值。
9、 如权利要求 8所述的装置, 其中, 所述区间确定单元包括: 对应关系预置模块, 其设置成预置差值判决门限区间与频偏值区间范围 的对应关系; 以及
区间确定模块, 其设置成根据所述对应关系, 确定所述差值所在判决门 限区间对应的频偏值区间范围。
10、 如权利要求 9所述的装置, 其中, 最终频偏值计算单元包括: 反转确定模块, 其设置成根据差值对应的判决门限区间判断存在发生反 转的频偏初始值或未发生反转的频偏初始值;
频偏还原模块, 其设置成根据预置的频偏值区间范围对应的还原值对发 生反转的频偏初始值进行处理得到还原后的频偏值; 以及
最终频偏值获取模块, 其设置成根据所述还原后的频偏值和未发生反转 的频偏初始值得到最终频偏值。
11、 如权利要求 9所述的装置, 其中, 所述最终频偏值的最终取值为以 下至少之一:
所述还原后的频偏值和未发生反转的频偏初始值的平均值;
还原后的频偏值和未发生反转的频偏初始值中的部分值的平均值; 任意一个未发生反转的频偏初始值; 以及
任意一个还原后的频偏值。
12、 如权利要求 10所述的装置, 其中: 所述不同的频偏值区间范围对应 不同的还原值。
13、 如权利要求 8或 9所述的装置, 其中, 所述频偏初始值获取单元包 括:
频偏值获取模块, 其设置成利用各导频符号组得到各导频符号组对应的 频偏值; 以及
频偏值处理模块, 其设置成将时域间隔唯一的导频符号组对应的频偏值 作为各导频符号组对应的频偏初始值, 存在时域间隔相同的导频符号组时, 用于利用时域间隔相同的两个或多个导频符号组对应的频偏值进行算术平均 或加权平均得到一个频偏初始值。
14、 如权利要求 8或 9所述的装置, 还包括: 平滑处理单元, 其设置成 对所述最终频偏值进行平滑处理。
15、 一种计算机可读存储介质, 包括: 一组指令, 所述指令用于执行权 利要求 1至 7任一项所述的频偏估计方法。
PCT/CN2013/090481 2013-06-07 2013-12-25 频偏估计的方法、装置和计算机可读存储介质 WO2014194655A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310227682.5 2013-06-07
CN201310227682.5A CN104243372B (zh) 2013-06-07 2013-06-07 频偏估计的方法和装置

Publications (1)

Publication Number Publication Date
WO2014194655A1 true WO2014194655A1 (zh) 2014-12-11

Family

ID=52007487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090481 WO2014194655A1 (zh) 2013-06-07 2013-12-25 频偏估计的方法、装置和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN104243372B (zh)
WO (1) WO2014194655A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991484B (zh) * 2015-01-30 2020-04-03 中兴通讯股份有限公司 一种频偏估计的方法和装置
CN111245753B (zh) * 2020-01-14 2021-01-05 北京联盛德微电子有限责任公司 一种基于wifi系统的频偏估计方法和装置
CN114301743B (zh) * 2020-09-23 2023-10-27 紫光展锐(重庆)科技有限公司 频偏估计方法及装置、存储介质、终端
CN115941406B (zh) * 2022-10-28 2023-10-13 上海星思半导体有限责任公司 频偏估计方法、装置、电子设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719815A (zh) * 2004-07-07 2006-01-11 华为技术有限公司 频偏估计和纠正方法及其装置
CN101001231A (zh) * 2006-01-12 2007-07-18 上海原动力通信科技有限公司 宽带时分双工蜂窝系统的频偏校正方法及小区初搜方法
US20080279294A1 (en) * 2007-05-08 2008-11-13 Legend Silicone Corp. Tds-ofdmaa communication system uplink frequency synchronization
CN101547062A (zh) * 2009-03-03 2009-09-30 华为技术有限公司 频偏纠正方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1719815A (zh) * 2004-07-07 2006-01-11 华为技术有限公司 频偏估计和纠正方法及其装置
CN101001231A (zh) * 2006-01-12 2007-07-18 上海原动力通信科技有限公司 宽带时分双工蜂窝系统的频偏校正方法及小区初搜方法
US20080279294A1 (en) * 2007-05-08 2008-11-13 Legend Silicone Corp. Tds-ofdmaa communication system uplink frequency synchronization
CN101547062A (zh) * 2009-03-03 2009-09-30 华为技术有限公司 频偏纠正方法和设备

Also Published As

Publication number Publication date
CN104243372A (zh) 2014-12-24
CN104243372B (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
US20200259693A1 (en) DM-RS of Pi/2-BPSK Signals
JP6824442B2 (ja) アップリンク同期タイミング偏差を決定するための方法および装置
US10148463B2 (en) Method and device for estimating frequency offset
WO2014194655A1 (zh) 频偏估计的方法、装置和计算机可读存储介质
JP2007228592A (ja) 無線接続システムにおけるデータ復調のためのチャネル推定装置及び方法
EP2633660A1 (en) Method and arrangement in wireless communications system
JP6012974B2 (ja) 無線通信システムにおけるチャンネル推定方法及び装置
WO2017097269A1 (zh) 一种干扰估计方法和设备
CN111988246A (zh) 一种广播信道解调参考信号检测方法、装置、设备和介质
WO2013007169A1 (zh) 一种采用导频测速的方法及装置
US10581651B2 (en) Apparatus and method for transmitting/receiving signal in multi-carrier system
CN104301260B (zh) 一种信道参数估计方法及系统
CN102377726B (zh) Ofdm系统的定时同步方法
WO2008145337A3 (en) A method for interference estimation for orthogonal pilot patterns
CN104253771B (zh) 多参数联合估计方法和装置
KR102093266B1 (ko) 신호 감지 방법 및 장치
JP6507260B2 (ja) チャネル推定方法及び装置、記憶媒体
KR102407772B1 (ko) 무선 통신 시스템에서 주파수 오프셋 추정 방법 및 장치
CN104753834B (zh) 一种信道估计方法和装置
CN110475379A (zh) 频域随机接入机会的选择方法及装置、存储介质、终端
CN113660183B (zh) 一种通信方法及装置
WO2012139388A1 (zh) 自适应测速方法及装置
CN108243124B (zh) 一种信道估计方法和装置
CN103428146B (zh) 辅同步信号的检测方法及装置
CN102833195A (zh) Lte/lte-a系统中估计干扰与噪声功率的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886254

Country of ref document: EP

Kind code of ref document: A1