WO2016106551A1 - 腔体滤波器及具有该腔体滤波器的射频拉远设备、信号收发装置和塔顶放大器 - Google Patents

腔体滤波器及具有该腔体滤波器的射频拉远设备、信号收发装置和塔顶放大器 Download PDF

Info

Publication number
WO2016106551A1
WO2016106551A1 PCT/CN2014/095535 CN2014095535W WO2016106551A1 WO 2016106551 A1 WO2016106551 A1 WO 2016106551A1 CN 2014095535 W CN2014095535 W CN 2014095535W WO 2016106551 A1 WO2016106551 A1 WO 2016106551A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
cavity filter
resonant
resonant column
column
Prior art date
Application number
PCT/CN2014/095535
Other languages
English (en)
French (fr)
Inventor
杨鹤功
李贤祥
杨绍春
Original Assignee
深圳市大富科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大富科技股份有限公司 filed Critical 深圳市大富科技股份有限公司
Priority to PCT/CN2014/095535 priority Critical patent/WO2016106551A1/zh
Priority to CN201480084416.4A priority patent/CN107251314B/zh
Publication of WO2016106551A1 publication Critical patent/WO2016106551A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters

Definitions

  • the present invention relates to the field of filter technologies, and in particular, to a cavity filter and a radio remote device, a signal transceiving device and a tower amplifier having the cavity filter.
  • the cavity filter is widely used in the field of communications as a frequency selection device, especially in the field of radio frequency communication.
  • a filter is used to select a communication signal to filter out clutter or interference signals outside the frequency of the communication signal.
  • FIG. 1 is a partial schematic structural view of a cavity filter in the prior art.
  • the cavity filter includes a cavity 11, a cover plate 12, a resonant rod 13, a tuning screw 14, a tap 15, and a connector 16.
  • the cover 12 covers the cavity 11 to form a resonant cavity.
  • the resonant rod 13 has a cylindrical shape with one end open and the other end closed, and the closed end is screwed to the mounting boss at the bottom of the cavity 11.
  • the open end of the resonant rod 13 is provided with a capacitor disk that projects radially outward.
  • the tuning screw 14 is threadedly coupled to the cover plate 12, the tuning screw 14 is deep into the opening of the resonant rod 13, and the length of the tuning screw 14 deep into the resonant rod 13 is varied to accommodate the RF parameters of the cavity filter.
  • the connector 16 is disposed on the side wall of the cavity 11, and the tap 15 is substantially L-shaped, one end of which is soldered to the resonant rod 13, and the other end is electrically connected to the connector 16.
  • the inventors of the present invention found that the capacitor disk is integrally stamped and formed with the resonance rod, when the market demand changes greatly or the manufacturing has large errors, and the tuning screw is insufficient.
  • the RF parameters of the cavity filter are adjusted to the normal range, only the new resonant rod can be replaced, or the old resonant rod can be removed, and part of the capacitor disk can be cut off and then installed into the cavity.
  • the tap is connected to the resonant rod 13 by means of soldering, and the electromagnetic wave is refracted in the flux during the process of being introduced into the resonant rod by the tap, thereby generating an electromagnetic wave having a frequency different from that of the original input signal, that is, generating noise.
  • the embodiment of the invention provides a cavity filter and a radio remote device having the cavity filter, Signal transceiver and tower amplifier.
  • the technical solution adopted by the embodiments of the present invention to solve the above technical problem is to provide a cavity filter including a cavity and a cover plate, and a connector disposed on the cavity or the cover plate, and the cover cover cavity is formed.
  • a plurality of cascaded resonant cavities wherein the plurality of cascaded resonant cavities are separated by spacers disposed on the cavity or the cover plate; at least two resonant cavities are provided with a hollow column-shaped resonant column, the resonant column One end is fixed on the cover plate or the bottom wall of the cavity, and the cavity filter further includes a connecting member, and the resonant column is electrically connected to the connector through the connecting member, and the connecting member comprises an integrally formed tap and a capacitor loading plate, and the tap and the connection are connected.
  • the device is connected, and the capacitor loading disk is detachably connected to the end surface of the other end of the resonant column.
  • the resonant cavity includes a first cavity for receiving an electromagnetic signal and a tail cavity for emitting an electromagnetic signal, and the first cavity and the tail cavity are provided with a solid column-shaped resonant column.
  • the resonant column is integrally molded with the bottom wall of the cavity.
  • the resonant column is fixed to the bottom wall of the cavity by screws.
  • the cover plate is provided with a tuning screw extending into the resonant column, and the depth of the tuning screw extending into the resonant column is adjustable.
  • the center of the capacitor loading disk is provided with a through hole, the inner wall of the through hole is provided with an internal thread, and the side wall of the resonant column is provided with an external thread, and the capacitor loading disk is fixed by a screw connection. On the resonant column.
  • the internal thread of the through hole of the capacitor loading plate and the external thread of the resonant column are respectively plated with silver.
  • the center of the capacitor loading disk is provided with a through hole, and the capacitor loading disk is stuck to the outer wall of the resonant column through the through hole and is connected with an interference fit.
  • a radio remote device including a radio frequency transceiver module, a power amplifier module, and a cavity filter, a radio frequency transceiver module, and the foregoing
  • the power amplifier module is connected, and the power amplifier module is connected to the cavity filter.
  • a signal transceiving device comprising: a cavity filter as described above, which is connected to a receiving antenna and filters a received signal; a low noise amplifier connected to the signal output of the cavity filter; a circulator connected to the signal output of the RF low noise amplifier; a combiner connected to the circulator; an RF power amplifier with an input terminal and a combiner The signal output ends are connected, and the output end thereof is connected to the cavity filter; the transmitting antenna receives the output signal of the cavity filter and transmits the signal.
  • Another technical solution adopted by the embodiments of the present invention to solve the above technical problems is to provide a tower amplifier including a low noise amplifier and a band pass filter, which is the cavity filter described above.
  • the capacitive loading disk is detachably connected to the resonant column, and when the tuning screw is insufficient to adjust the RF parameter of the cavity filter to a normal range, the battery can be replaced.
  • the capacitor loads the disk without having to replace the entire resonator column or cut off some of the capacitor plates as before.
  • the tap is integrally formed with the capacitor loading disc, and the capacitor loading disc is detachably connected with the resonant column.
  • the electromagnetic wave does not pass through impurities like flux during the process of being transmitted from the tap to the resonant column, thereby avoiding noise.
  • FIG. 1 is a cross-sectional structural view of a prior art cavity filter
  • Figure 2 is a cross-sectional structural view showing a cavity filter of a first embodiment of the present invention
  • Figure 3 is a perspective view of the cavity filter of Figure 2 with the cover removed;
  • Figure 4 is a cross-sectional structural view showing a cavity filter of a second embodiment of the present invention.
  • FIG. 5 is a structural diagram of a radio remote device according to an embodiment of the present invention.
  • Figure 6 is a structural diagram of a signal transmitting and receiving apparatus of the present invention.
  • Figure 7 is a structural view of a tower amplifier of the present invention.
  • the cavity filter of the embodiment of the invention comprises a cavity and a cover plate, and a connector disposed on the cavity or the cover plate, the cover cover cavity forming a plurality of cascaded resonant cavities and a plurality of cascaded resonant cavities
  • the spacers are arranged by the spacers disposed on the cavity or the cover plate; at least two resonant cavities are provided with a resonant column having a hollow cylinder shape, and one end of the resonant column is fixed on the cover plate or the bottom wall of the cavity body
  • the cavity filter further includes a connecting member electrically connected to the connector through the connecting member, the connecting member comprises an integrally formed tap and a capacitor loading disc, the tap is electrically connected to the connector, and the capacitive loading disc is detachably connected to the other end of the resonant column.
  • the capacitive loading disk is detachably connected to the resonant column, and when the tuning screw is insufficient to adjust the RF parameter of the cavity filter to a normal range, the capacitive loading disk can be replaced without replacing the same as before.
  • the tap is integrally formed with the capacitor loading disc, and the capacitor loading disc is detachably connected with the resonant column. The electromagnetic wave does not pass through impurities like flux during the process of being transmitted from the tap to the resonant column, thereby avoiding noise.
  • a cavity filter of a first embodiment of the present invention includes a cavity 21, a cover plate 22, a connector 24, a tuning screw 25, a resonant column 26, and a connector (not labeled).
  • the cavity 21 includes a bottom wall 211 and a side wall 212 extending perpendicularly from the bottom wall 211 and surrounding the edge of the bottom wall 211.
  • the cover 22 enclosing the cavity 21 forms a plurality of cascaded resonant cavities (not labeled); the plurality of cascaded resonant cavities are separated by spacers (not shown) disposed on the cavity 21 or the cover plate 22
  • At least two resonant cavities are provided with a resonant column 26 in the form of a hollow cylinder.
  • the resonant cavity includes a first cavity that receives an electromagnetic signal and a tail cavity that emits an electromagnetic signal, and the first cavity and the tail cavity are provided with a solid column-shaped resonant column 26.
  • the resonant column 26 and the connector are disposed within the resonant cavity.
  • the resonant column 26 has a hollow cylindrical shape, one end of which is fixed on the bottom wall 211 of the cavity 21, and the resonant column 26 is electrically connected to the connector 24 through a connecting member.
  • the resonant column 26 is integrally molded with the bottom wall of the cavity 21.
  • the resonant column 26 is disposed in a hollow cylindrical shape for the tuning screw 25 to be inserted into the resonant column to adjust the RF parameters of the cavity filter.
  • the structure in which the resonant column 26 is integrally formed with the cavity 21 eliminates the processing and assembly process of the resonant column 26, reducing the manufacturing cost of the cavity filter.
  • the resonant column 26 may also be in the form of a hollow cylinder, fabricated separately from the cavity 21 and then fixed to the bottom wall 211 of the cavity 21 by screws.
  • the connector 24 is disposed on the cavity 21 or the cover 22.
  • the connector 24 is disposed on the sidewall 212 of the cavity 21.
  • the sidewall 212 is provided with a mounting hole (not labeled) that communicates with the cavity and the outside. The connector 24 is fixed to the sidewall 212 through the mounting hole, and the connector 24 partially penetrates into the cavity to be electrically connected to the connector.
  • the outer surface of the side wall 212 of the cavity 21, that is, the outside of the cavity filter, can be seen through the socket (not labeled) of the connector 24 to filter the cavity filter after the corresponding plug is inserted into the jack.
  • the connecting member is a structural member integrally formed by the tap 23 and the capacitive loading disk 28.
  • the resonant column 26 is electrically connected to the connector through the connecting member.
  • the capacitive loading disk 28 is detachably coupled to the end face of the other end of the resonant column 26.
  • a through hole (not shown) is disposed in the center of the capacitor loading disk 28, an inner wall of the through hole is provided with an internal thread, and an external thread is disposed on a sidewall of the resonance column 26, and the capacitance loading disk 28 is fixed by a screw connection.
  • Resonant column 26 Preferably, a silver plating layer is respectively disposed on the inner thread of the through hole of the capacitance loading disk 28 and the outer surface of the external thread of the resonance column 26 to ensure good electrical conductivity of the cavity filter.
  • a through hole is disposed in the center of the capacitive loading disk 28, and the capacitive loading disk 28 is stuck to the outer wall of the resonant column 26 through the through hole and is connected to the interference fit.
  • the capacitive loading disk 28 connected to the resonant column 26 forms a capacitance with the cover plate 22.
  • one end of the tap 23 and the capacitor loading disk 28 are integrally formed. Since the two are integrally formed, the thickness is only equivalent to the thickness of one element manufactured in the prior art. Preferably, the thickness of the capacitive loading disk 28 and the tap 23 is 1 to 2 mm (mm), and the width of the tap 23 is 2 to 3 mm. Further, both the capacitive loading disk 28 and the tap 23 are integrally formed, and the two are relatively small in size and are relatively easy to mount into the cavity 21.
  • the other end of the tap 23 is electrically connected to the connector 24.
  • the connection of the tap 23 to the connector 24 can be connected by soldering or by other detachable means.
  • the tuning screw 25 is disposed on the cover plate 22 and partially penetrates into the resonant column. In other words, the tuning screw 25 passes through the cover plate 22 and is partially inserted into the resonant column.
  • the RF parameters of the cavity filter are adjusted by setting the length variation of the tuning screw 25 into the resonant column.
  • the tuning screw 25 is disposed coaxially with the resonant column 26 to ensure that the cavity filter has a large RF parameter adjustment range.
  • a second embodiment of the present invention includes a cavity 31, a cover 32, a connector 34, a tuning screw 35, a resonant column 36, and a connector (not labeled).
  • the cavity 31 includes a bottom wall and side walls extending perpendicularly from the bottom wall and surrounding the edge of the bottom wall.
  • the cover plate 32 enclosing the cavity 31 forms a plurality of cascaded resonant cavities (not labeled); the plurality of cascaded resonant cavities are spaced apart by spacers (not shown) disposed on the cavity 31 or the cover plate 32.
  • At least two resonant cavities are provided with a resonant column 36 in the form of a hollow cylinder.
  • the resonant cavity includes a first cavity that receives the electromagnetic signal and a tail cavity that emits an electromagnetic signal, and the first cavity and the tail cavity are provided with a solid column-shaped resonant column 36.
  • the resonant column 36, the fastening screw 27 and the connecting member are disposed in the resonant cavity.
  • the resonant column 36 has a hollow cylindrical shape, one end of which is fixed on the cover plate 32, and the resonant column 36 is electrically connected to the connector 34 through a connecting member.
  • the resonant column 36 is integrally molded with the cover plate 32.
  • the resonant column 36 is disposed in a hollow cylindrical shape for the tuning screw 35 to be inserted into the resonant column to adjust the RF parameters of the cavity filter.
  • the structure in which the resonant column 36 is integrally formed with the cover plate 32 eliminates the processing and assembly process of the resonant column 36, reducing the manufacturing cost of the cavity filter.
  • the resonant column 36 can also be hollow cylindrical, fabricated separately from the cover plate 32 and then secured to the cover plate 32 by screws.
  • the connector 34 is disposed on the cavity 31 or the cover plate 32. In this embodiment, the connector 34 is disposed on the sidewall of the cavity 31.
  • the connector is a structural member integrally formed by the tap 33 and the capacitor loading disk 38, and the resonator column 36 is electrically connected to the connector through the connector.
  • the capacitive loading disk 38 is detachably coupled to the end face of the other end of the resonant column 36.
  • a through hole (not shown) is disposed in the center of the capacitor loading disk 38, an inner wall of the through hole is provided with an internal thread, and an external thread is disposed on a sidewall of the resonance column 36, and the capacitor loading disk 38 is fixed by a screw connection.
  • Resonant column 36 Preferably, a silver plating layer is respectively disposed on the inner thread of the through hole of the capacitance loading disk 38 and the outer surface of the external thread of the resonance column 36 to ensure good electrical conductivity of the cavity filter.
  • a through hole is disposed in the center of the capacitor loading disk 38, and the capacitor loading disk 38 is stuck to the outer wall of the resonant column 36 through the through hole and is connected to the interference fit.
  • the capacitive loading disk 38 connected to the resonant column 36 forms a capacitance with the cover plate 32.
  • one end of the tap 33 and the capacitor loading disk 38 are integrally formed. Since the two are integrally formed, the thickness is only equivalent to the thickness of one element manufactured in the prior art. Preferably, the thickness of the capacitive loading disk 38 and the tap 33 is 1 to 2 mm (mm), and the width of the tap 33 is 2 to 3 mm. Further, both the capacitive loading disk 38 and the tap 33 are integrally formed, and the two are relatively small in size and are relatively easy to mount into the cavity 31.
  • the other end of the tap 33 is electrically connected to the connector 34.
  • the connection of the tap 33 to the connector 34 can be connected by soldering or by other detachable means.
  • the tuning screw 35 is disposed on the bottom wall of the cavity 31 and partially penetrates into the resonant column 36. In other words, the tuning screw 35 passes through the bottom wall of the cavity 31 and is partially inserted into the resonant column.
  • the RF parameters of the cavity filter are adjusted by setting the length variation of the tuning screw 35 into the resonant column.
  • the tuning screw 35 is disposed coaxially with the resonant column 36 to ensure that the cavity filter has a large RF parameter adjustment range.
  • the capacitive loading disk is detachably connected to the resonant column, and when the tuning screw is insufficient to adjust the RF parameter of the cavity filter to a normal range, the battery can be replaced.
  • the capacitor loads the disk without having to replace the entire resonator column or cut off some of the capacitor plates as before.
  • the tap is integrally formed with the capacitor loading disc, and the capacitor loading disc is detachably connected with the resonant column.
  • the electromagnetic wave does not pass through impurities like flux during the process of being transmitted from the tap to the resonant column, thereby avoiding noise.
  • the radio remote device includes a radio frequency transceiver module, a power amplifier module, a cavity filter, and a power module.
  • the power module is used to supply power to the RF transceiver module, the power amplifier module, and the cavity filter; the RF transceiver module is connected to the power amplifier module, and the power amplifier module is connected to the cavity filter.
  • the structure of the cavity filter is as described in detail in the foregoing embodiments.
  • the signal received from the antenna port is filtered by the cavity filter and then enters the power amplifier module, and then amplified by the power amplifier module and output to the corresponding receiving channel of the radio frequency transceiver module.
  • the present invention further provides a signal transceiving device.
  • the signal transceiving device includes a cavity filter 1, a radio frequency low noise amplifier 2, a radio frequency power amplifier 3, a circulator 4, a receiving antenna 5, a transmitting antenna 6, and a combiner. 7.
  • the structure of the cavity filter 1 is as described in detail in the foregoing embodiments.
  • the cavity filter 1 is connected to the receiving antenna 5 and filters the received signal; the RF low noise amplifier 2 is connected to the signal output end of the cavity filter 1; and the circulator 4 is connected to the signal output end of the RF low noise amplifier 2;
  • the combiner 7 is connected to the circulator 4; the input end of the RF power amplifier 3 is connected to the signal output end of the combiner 7, the output end is connected to the cavity filter 1; and the transmit antenna 6 receives the output of the cavity filter 1. Signal and transmit the signal.
  • the present invention further provides a tower top amplifier.
  • the tower top amplifier includes a low noise amplifier and a band pass filter.
  • the structure of the band pass filter is as described in detail in the foregoing embodiments.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Transmitters (AREA)

Abstract

本发明实施例公幵了一种腔体滤波器及具有该腔体滤波器的射频拉远设备、信号收发装置和塔顶放大器,该腔体滤波器包括包括腔体和盖板,以及设置在腔体或者盖板上的连接器,盖板封盖腔体形成若干个级联的谐振腔,若干个级联的谐振腔由设置在腔体或者盖板上的隔离筋间隔幵来;至少两个谐振腔内设有呈空心柱体状的谐振柱,谐振柱的一端固定在盖板或腔体的底壁,腔体滤波器还包括连接件,谐振柱通过连接件与连接器电连接,连接件包括一体成型的抽头和电容加载盘,抽头与连接器连接,电容加载盘可拆卸连接在谐振柱与腔体的底壁相对一端的端面。本发明腔体滤波器具有较低的制造成本以及能够有效避免噪音的产生。

Description

腔体滤波器及具有该腔体滤波器的射频拉远设备、信号收发装置和塔顶放大器
【技术领域】
本发明涉及滤波器技术领域,特别涉及一种腔体滤波器及具有该腔体滤波器的射频拉远设备、信号收发装置和塔顶放大器。
【背景技术】
腔体滤波器作为一种频率选择装置被广泛应用于通信领域,尤其是射频通信领域。在基站中,滤波器用于选择通信信号,滤除通信信号频率外的杂波或干扰信号。
请参见图1,图1是一种现有技术中腔体滤波器的局部结构示意图。腔体滤波器包括腔体11、盖板12、谐振杆13、调谐螺杆14、抽头15和连接器16。盖板12封盖腔体11形成谐振腔,谐振杆13呈一端开口、另一端封闭的圆筒状,其闭口端用螺钉固定于腔体11底部的安装凸台上。谐振杆13的开口端设有沿径向向外伸出的电容盘。调谐螺杆14与盖板12螺纹连接,调谐螺杆14深入谐振杆13的开口内,调谐螺杆14深入谐振杆13内的长度变化来调解腔体滤波器的射频参数。连接器16设置于腔体11的侧壁上,抽头15大致呈L形,其一端焊接至谐振杆13上,另一端与连接器16电连接。
在对现有技术的研究和实践过程中,本发明的发明人发现,电容盘是与谐振杆一体冲压成型的,当市场的需求发生较大改变或者制造出现较大误差、且调谐螺杆不足以将腔体滤波器的射频参数调整至正常范围时,只能更换新的谐振杆,或者将旧谐振杆拆卸下来、切掉部分电容盘后再安装到腔体内。此外,抽头通过焊接的方式与谐振杆13连接,电磁波在由抽头传入谐振杆过程中会在焊剂内发生折射,从而产生与原输入信号频率不同的电磁波,即产生噪音。
因此,需要提供一种可解决上述问题的新型解决方案。
【发明内容】
为了解决现有技术中腔体滤波器的制造成本较高及电磁波进入谐振杆时产生的噪音问题,本发明实施例提供一种腔体滤波器及具有该腔体滤波器的射频拉远设备、信号收发装置和塔顶放大器。
本发明实施例解决上述技术问题所采取的技术方案是提供一种腔体滤波器,其包括腔体和盖板,以及设置在腔体或者盖板上的连接器,盖板封盖腔体形成若干个级联的谐振腔,若干个级联的谐振腔由设置在腔体或者盖板上的隔离筋间隔开来;至少两个谐振腔内设有呈空心柱体状的谐振柱,谐振柱的一端固定在盖板上或腔体的底壁上,腔体滤波器还包括连接件,谐振柱通过连接件与连接器电连接,连接件包括一体成型的抽头和电容加载盘,抽头与连接器连接,电容加载盘可拆卸连接在谐振柱另一端的端面。
其中,谐振腔包括接收电磁信号的首腔和发射电磁信号的尾腔,首腔和尾腔设置有实心柱体状的谐振柱。
其中,所述谐振柱与所述腔体的底壁一体铸造成型。
其中,所述谐振柱用螺钉固定在所述腔体的底壁。
其中,所述盖板上设有伸入所述谐振柱内的调谐螺杆,所述调谐螺杆伸入谐振柱内的深度可调节。
其中,所述电容加载盘中央设有通孔,所述通孔的内壁设有内螺纹,所述谐振柱的侧壁上设有外螺纹,所述电容加载盘通过螺纹连接的方式固定在所述谐振柱上。
其中,所述电容加载盘通孔的内螺纹和所述谐振柱的外螺纹上分别镀银。
其中,所述电容加载盘中央设有通孔,所述电容加载盘通过所述通孔卡至所述谐振柱的外壁并与之过盈配合连接。
本发明实施例解决上述技术问题所采取的另一个技术方案是提供一种射频拉远设备,其包括射频收发信机模块、功放模块以及如上所述的腔体滤波器,射频收发信机模块与功放模块连接,功放模块与腔体滤波器连接。
本发明实施例解决上述技术问题所采取的另一个技术方案是提供一种信号收发装置,其包括:如上所述的腔体滤波器,其与接收天线相连接,并对接收信号进行滤波;射频低噪声放大器,与腔体滤波器的信号输出端连接;环行器,与射频低噪声放大器的信号输出端连接;合路器,与环行器连接;射频功率放大器,其输入端与合路器的信号输出端相连接,其输出端与腔体滤波器连接;发射天线,接收腔体滤波器的输出信号并将信号发射。
本发明实施例解决上述技术问题所采取的另一个技术方案是提供一种塔顶放大器,其包括低噪声放大器和带通滤波器,所述带通滤波器为上所述的腔体滤波器。
与现有技术相比,本发明实施例提供的腔体滤波器中,电容加载盘与谐振柱可拆卸连接,当调谐螺杆不足以将腔体滤波器的射频参数调整至正常范围时,可以更换电容加载盘,而不需要像之前那样更换整个谐振柱或者切掉部分电容盘。此外,抽头与电容加载盘一体成型,电容加载盘与谐振柱可拆卸连接,电磁波在由抽头传递给谐振柱的过程中就不会经过像焊剂那样的杂质,避免了产生噪音。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图:
图1是一种现有技术中腔体滤波器的剖视结构图;
图2是本发明第一实施例腔体滤波器的剖视结构图;
图3是图2所示腔体滤波器去掉盖板的立体图;
图4是本发明第二实施例腔体滤波器的剖视结构图;
图5是本发明实施例射频拉远设备的结构图;
图6是本发明信号收发装置的结构图;
图7是本发明塔顶放大器的结构图。
【具体实施方式】
下面将结合本发明实施例的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例腔体滤波器包括腔体和盖板,以及设置在腔体或者盖板上的连接器,盖板封盖腔体形成若干个级联的谐振腔,若干个级联的谐振腔由设置在腔体或者盖板上的隔离筋间隔开来;至少二个谐振腔内设有呈空心柱体状的谐振柱,谐振柱的一端固定在盖板上或者腔体的底壁上,腔体滤波器还包括连接件,谐振柱通过连接件与连接器电连接,连接件包括一体成型的抽头和电容加载盘,抽头与连接器电连接,电容加载盘可拆卸连接在谐振柱另一端的端面。本发明腔体滤波器中,电容加载盘与谐振柱可拆卸连接,当调谐螺杆不足以将腔体滤波器的射频参数调整至正常范围时,可以更换电容加载盘,而不需要像之前那样更换整个谐振柱或者切掉部分电容盘。此外,抽头与电容加载盘一体成型,电容加载盘与谐振柱可拆卸连接,电磁波在由抽头传递给谐振柱的过程中就不会经过像焊剂那样的杂质,避免了产生噪音。
参阅图2和图3,本发明第一实施例腔体滤波器包括腔体21、盖板22、连接器24、调谐螺杆25、谐振柱26和连接件(未标示)。
腔体21包括底壁211和自底壁211垂直延伸且围设于底壁211边缘的侧壁212。盖板22封盖腔体21形成若干个级联的谐振腔(未标示);若干个级联的谐振腔由设置在腔体21或盖板22上的隔离筋(未图示)间隔开来;至少两个谐振腔内设有呈空心柱体状的谐振柱26。具体地,谐振腔包括接收电磁信号的首腔和发射电磁信号的尾腔,首腔和尾腔设置有实心柱体状的谐振柱26。
谐振柱26和连接件设置于谐振腔内。本实施例中,谐振柱26呈空心柱体状,其一端固定在腔体21的底壁211上,谐振柱26通过连接件与连接器24电连接。本实施例中,谐振柱26与腔体21的底壁一体铸造成型。谐振柱26呈空心柱体状设置,以供调谐螺杆25插入谐振柱内调节腔体滤波器的射频参数。谐振柱26采用与腔体21一体成型的结构省却了谐振柱26的加工和装配工序,降低了腔体滤波器的制造成本。
在其他的实施例中,谐振柱26亦可以为空心柱体状,与腔体21分体制造然后再通过螺钉固定至腔体21的底壁211上。连接器24设置于腔体21或盖板22上。本实施例中,连接器24设置于腔体21的侧壁212上。具体含义为,侧壁212上设置连通谐振腔和外部的安装孔(未标示),连接器24通过安装孔固定在侧壁212上,连接器24部分深入谐振腔中以与连接件电连接,同时,自腔体21的侧壁212的外表面即腔体滤波器的外部能够察看到连接器24的插孔(未标示),以在对应的插头插入插孔后实现腔体滤波器的滤波功能。
连接件为抽头23和电容加载盘28一体成型的结构件,谐振柱26通过连接件与连接器电连接。电容加载盘28可拆卸地连接在谐振柱26的另一端的端面。在本实施例中,电容加载盘28中央设置通孔(未标示)、通孔的内壁设有内螺纹,谐振柱26的侧壁上设置外螺纹,电容加载盘28通过螺纹连接的方式固定在谐振柱26上。优选地,电容加载盘28的通孔的内螺纹和谐振柱26的外螺纹的外表面上分别设置镀银层,以保障腔体滤波器的良好的导电性能。
在其他的实施例中,电容加载盘28的中央设置通孔,电容加载盘28通过通孔卡至谐振柱26的外壁并与之过盈配合连接。连接至谐振柱26的电容加载盘28与盖板22形成电容。
本发明中,抽头23的一端和电容加载盘28一体成型。由于二者一体成型设计,因此厚度仅相当于现有技术中制造一个元件的厚度。优选地,电容加载盘28和抽头23的厚度为1~2mm(毫米),抽头23的宽度为2~3mm。进一步地,电容加载盘28和抽头23二者一体成型,二者的体积较小,较易安装至腔体21内。
抽头23的另一端与连接器24电连接。抽头23与连接器24的连接可以通过焊接的方式连接或者通过其他可拆卸的方式进行连接。
调谐螺杆25设于盖板22上且部分深入谐振柱内,换句话说,调谐螺杆25穿过盖板22且部分插设于谐振柱内。通过设置调谐螺杆25伸入谐振柱内的长度变化来调节腔体滤波器的射频参数。调谐螺杆25与谐振柱26同轴设置以确保腔体滤波器具有较大的射频参数调节范围。
参阅图4,本发明第二实施例腔体滤波器包括腔体31、盖板32、连接器34、调谐螺杆35、谐振柱36和连接件(未标示)。
腔体31包括底壁和自底壁垂直延伸且围设于底壁边缘的侧壁。盖板32封盖腔体31形成若干个级联的谐振腔(未标示);若干个级联的谐振腔由设置在腔体31或盖板32上的隔离筋(未图示)间隔开来;至少两个谐振腔内设有呈空心柱体状的谐振柱36。具体地,谐振腔包括接收电磁信号的首腔和发射电磁信号的尾腔,首腔和尾腔设置有实心柱体状的谐振柱36。
谐振柱36、固紧螺钉27和连接件设置于谐振腔内。本实施例中,谐振柱36呈空心柱体状,其一端固定在盖板32上,谐振柱36通过连接件与连接器34电连接。本实施例中,谐振柱36与盖板32一体铸造成型。谐振柱36呈空心柱体状设置,以供调谐螺杆35插入谐振柱内调节腔体滤波器的射频参数。谐振柱36采用与盖板32一体成型的结构省却了谐振柱36的加工和装配工序,降低了腔体滤波器的制造成本。
在其他的实施例中,谐振柱36亦可以为空心柱体状,与盖板32分体制造然后再通过螺钉固定至盖板32上。连接器34设置于腔体31或盖板32上。本实施例中,连接器34设置于腔体31的侧壁上。
连接件为抽头33和电容加载盘38一体成型的结构件,谐振柱36通过连接件与连接器电连接。电容加载盘38可拆卸地连接在谐振柱36的另一端的端面。在本实施例中,电容加载盘38中央设置通孔(未标示)、通孔的内壁设有内螺纹,谐振柱36的侧壁上设置外螺纹,电容加载盘38通过螺纹连接的方式固定在谐振柱36上。优选地,电容加载盘38的通孔的内螺纹和谐振柱36的外螺纹的外表面上分别设置镀银层,以保障腔体滤波器的良好的导电性能。
在其他的实施例中,电容加载盘38的中央设置通孔,电容加载盘38通过通孔卡至谐振柱36的外壁并与之过盈配合连接。连接至谐振柱36的电容加载盘38与盖板32形成电容。
本发明中,抽头33的一端和电容加载盘38一体成型。由于二者一体成型设计,因此厚度仅相当于现有技术中制造一个元件的厚度。优选地,电容加载盘38和抽头33的厚度为1~2mm(毫米),抽头33的宽度为2~3mm。进一步地,电容加载盘38和抽头33二者一体成型,二者的体积较小,较易安装至腔体31内。
抽头33的另一端与连接器34电连接。抽头33与连接器34的连接可以通过焊接的方式连接或者通过其他可拆卸的方式进行连接。
调谐螺杆35设于腔体31的底壁上且部分深入谐振柱36内,换句话说,调谐螺杆35穿过腔体31的底壁且部分插设于谐振柱内。通过设置调谐螺杆35伸入谐振柱内的长度变化来调节腔体滤波器的射频参数。调谐螺杆35与谐振柱36同轴设置以确保腔体滤波器具有较大的射频参数调节范围。
区别于现有技术,本发明实施例所公开的腔体滤波器中,电容加载盘与谐振柱可拆卸连接,当调谐螺杆不足以将腔体滤波器的射频参数调整至正常范围时,可以更换电容加载盘,而不需要像之前那样更换整个谐振柱或者切掉部分电容盘。此外,抽头与电容加载盘一体成型,电容加载盘与谐振柱可拆卸连接,电磁波在由抽头传递给谐振柱的过程中就不会经过像焊剂那样的杂质,避免了产生噪音。
本发明进一步提供一种射频拉远设备,请结合图5,射频拉远设备包括射频收发信机模块、功放模块、腔体滤波器和电源模块。电源模块用于对射频收发信机模块、功放模块和腔体滤波器供电;射频收发信机模块与功放模块连接,功放模块与腔体滤波器连接。腔体滤波器的结构如前述实施例的详细描述。射频拉远设备工作在下行时隙时,来自射频收发信机模块两个通道的发射信号通过功放模块进入腔体滤波器,腔体滤波器对发射信号完成滤波,然后功率合成后发射到天线口。射频拉远设备工作在上行时隙时,从天线口接收到的信号通过腔体滤波器滤波后进入功放模块,再经功放模块放大后输出给射频收发信机模块对应的接收通道。
本发明进一步提供一种信号收发装置,请结合图6,信号收发装置包括腔体滤波器1、射频低噪声放大器2、射频功率放大器3、环形器4、接收天线5、发射天线6和合路器7。腔体滤波器1的结构如前述实施例的详细描述。腔体滤波器1与接收天线5连接,并对接收信号进行滤波;射频低噪声放大器2与腔体滤波器1的信号输出端连接;环形器4与射频低噪声放大器2的信号输出端连接;合路器7与环形器4连接;射频功率放大器3的输入端与合路器7的信号输出端相连接、输出端与腔体滤波器1连接;发射天线6接收腔体滤波器1的输出信号并将信号发射。
本发明进一步提供一种塔顶放大器,请结合图7,塔顶放大器包括低噪声放大器和带通滤波器。其中,带通滤波器的结构如前述实施例的详细描述。
在上述实施例中,仅对本发明实施例进行了示范性描述,但是本领域技术人员在阅读本专利申请后可以在不脱离本发明实施例的精神和范围的情况下对本发明实施例进行各种修改。

Claims (11)

  1. 一种腔体滤波器,其特征在于,包括腔体和盖板,以及设置在所述腔体或者盖板上的连接器,所述盖板封盖所述腔体形成若干个级联的谐振腔,所述若干个级联的谐振腔由设置在所述腔体或者盖板上的隔离筋间隔开来;
    至少二个所述谐振腔内设有呈空心柱体状的谐振柱,所述谐振柱的一端固定在所述盖板上或者所述腔体底壁上,
    所述腔体滤波器还包括连接件,所述谐振柱通过所述连接件与所述连接器电连接,
    所述连接件包括一体成型的抽头和电容加载盘,所述抽头与所述连接器电连接,所述电容加载盘可拆卸连接在所述谐振柱另一端的端面。
  2. 根据权利要求1所述的腔体滤波器,其特征在于,所述谐振腔包括接收电磁信号的首腔和发射电磁信号的尾腔,所述首腔和尾腔设置有所述空心柱体状的谐振柱。
  3. 根据权利要求2所述的腔体滤波器,其特征在于,所述谐振柱与所述腔体的底壁一体铸造成型。
  4. 根据权利要求3所述的腔体滤波器,其特征在于,所述谐振柱用螺钉固定在所述腔体的底壁。
  5. 根据权利要求2至4任意一项所述的腔体滤波器,其特征在于,所述盖板上设有伸入所述谐振柱内的调谐螺杆,所述调谐螺杆伸入谐振柱内的深度可调节。
  6. 根据权利要求2至4任意一项所述的腔体滤波器,其特征在于,所述电容加载盘中央设有通孔,所述通孔的内壁设有内螺纹,所述谐振柱的侧壁上设有外螺纹,所述电容加载盘通过螺纹连接的方式固定在所述谐振柱上。
  7. 根据权利要求6所述的腔体滤波器,其特征在于,所述电容加载盘通孔的内螺纹和所述谐振柱的外螺纹的外表面上分别设置镀银层。
  8. 根据权利要求2至4任意一项所述的腔体滤波器,其特征在于,所述电容加载盘中央设有通孔,所述电容加载盘通过所述通孔卡至所述谐振柱的外壁并与之过盈配合连接。
  9. 一种射频拉远设备,其特征在于:所述射频拉远设备包括射频收发信机模块、功放模块以及权1至8任意一项所述的腔体滤波器,所述射频收发信机模块与所述功放模块连接,所述功放模块与所述腔体滤波器连接。
  10. 一种信号收发装置,其特征在于:所述信号收发装置包括:
    如权利要求1至8任意一项所述的腔体滤波器,其与接收天线相连接,并对接收信号进行滤波;
    射频低噪声放大器,与所述腔体滤波器的信号输出端连接;
    环行器,与所述射频低噪声放大器的信号输出端连接;
    合路器,与所述环行器连接;
    射频功率放大器,其输入端与所述合路器的信号输出端相连接,其输出端与所述腔体滤波器连接;
    发射天线,接收所述腔体滤波器的输出信号并将信号发射。
  11. 一种塔顶放大器,其特征在于:包括低噪声放大器和带通滤波器,所述带通滤波器为权利要求1至8任意一项所述的腔体滤波器。
PCT/CN2014/095535 2014-12-30 2014-12-30 腔体滤波器及具有该腔体滤波器的射频拉远设备、信号收发装置和塔顶放大器 WO2016106551A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/095535 WO2016106551A1 (zh) 2014-12-30 2014-12-30 腔体滤波器及具有该腔体滤波器的射频拉远设备、信号收发装置和塔顶放大器
CN201480084416.4A CN107251314B (zh) 2014-12-30 2014-12-30 腔体滤波器及具有该腔体滤波器的射频拉远设备、信号收发装置和塔顶放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/095535 WO2016106551A1 (zh) 2014-12-30 2014-12-30 腔体滤波器及具有该腔体滤波器的射频拉远设备、信号收发装置和塔顶放大器

Publications (1)

Publication Number Publication Date
WO2016106551A1 true WO2016106551A1 (zh) 2016-07-07

Family

ID=56283835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095535 WO2016106551A1 (zh) 2014-12-30 2014-12-30 腔体滤波器及具有该腔体滤波器的射频拉远设备、信号收发装置和塔顶放大器

Country Status (2)

Country Link
CN (1) CN107251314B (zh)
WO (1) WO2016106551A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108054483A (zh) * 2017-10-23 2018-05-18 四川天邑康和通信股份有限公司 一种可调节端口耦合结构及其在数字直放站腔体滤波器中的应用
CN113013587A (zh) * 2021-04-16 2021-06-22 苏州硕贝德创新技术研究有限公司 基站天线滤波器集成模组及其阵列、制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037949B (zh) * 2018-08-01 2021-02-12 湖南迈克森伟电子科技有限公司 抗烧毁抗干扰天线设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645525A (zh) * 2009-08-07 2010-02-10 大富(深圳)科技有限公司 一种腔体滤波器
CN102097670A (zh) * 2011-02-18 2011-06-15 成都泰格微波技术股份有限公司 一种混合式的tm模介质滤波器
CN201946731U (zh) * 2010-12-17 2011-08-24 摩比天线技术(深圳)有限公司 谐振器及具有谐振器的滤波器
CN202564508U (zh) * 2012-04-28 2012-11-28 成都泰格微波技术股份有限公司 小型化tm模介质滤波器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535560A (en) * 1978-09-04 1980-03-12 Matsushita Electric Ind Co Ltd Coaxial type filter
GB9721803D0 (en) * 1997-10-15 1997-12-17 Filtronic Ltd Composite resonator
FI106658B (fi) * 1997-12-15 2001-03-15 Adc Solitra Oy Suodatin ja säätöelin
CN101471480A (zh) * 2007-12-27 2009-07-01 奥雷通光通讯设备(上海)有限公司 谐振柱结构的加工方法
CN102881964A (zh) * 2011-07-15 2013-01-16 凯镭思通讯设备(上海)有限公司 一种用于波导滤波器的电容耦合装置
CN103151584A (zh) * 2013-03-26 2013-06-12 深圳市大富科技股份有限公司 腔体滤波器、射频拉远设备、信号收发装置及塔顶放大器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645525A (zh) * 2009-08-07 2010-02-10 大富(深圳)科技有限公司 一种腔体滤波器
CN201946731U (zh) * 2010-12-17 2011-08-24 摩比天线技术(深圳)有限公司 谐振器及具有谐振器的滤波器
CN102097670A (zh) * 2011-02-18 2011-06-15 成都泰格微波技术股份有限公司 一种混合式的tm模介质滤波器
CN202564508U (zh) * 2012-04-28 2012-11-28 成都泰格微波技术股份有限公司 小型化tm模介质滤波器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108054483A (zh) * 2017-10-23 2018-05-18 四川天邑康和通信股份有限公司 一种可调节端口耦合结构及其在数字直放站腔体滤波器中的应用
CN113013587A (zh) * 2021-04-16 2021-06-22 苏州硕贝德创新技术研究有限公司 基站天线滤波器集成模组及其阵列、制备方法
CN113013587B (zh) * 2021-04-16 2024-05-24 苏州硕贝德创新技术研究有限公司 基站天线滤波器集成模组及其阵列、制备方法

Also Published As

Publication number Publication date
CN107251314A (zh) 2017-10-13
CN107251314B (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
US9979070B2 (en) Resonator, filter, duplexer, multiplexer, and communications device
CN107210510B (zh) 介质谐振器及滤波器
WO2016106551A1 (zh) 腔体滤波器及具有该腔体滤波器的射频拉远设备、信号收发装置和塔顶放大器
WO2008110040A1 (fr) Combinateur à double fréquence
US20160049717A1 (en) Dielectric resonator and dielectric filter
EP4016734A1 (en) Multifunctional gnss antenna
KR101357027B1 (ko) 리엔트런트 캐비티형 유전체 공진기를 이용한 듀얼 모드 유전체 공진기 필터
CN104900951A (zh) 介质滤波器和通信设备
WO2016106635A1 (zh) 腔体滤波器、双工器、信号收发装置、射频拉远设备和塔顶放大器
CN104900952A (zh) 双模介质谐振器与金属谐振器的耦合结构
CN102723591A (zh) 一种应用于微波毫米波电路的滤波天线
WO2016106550A1 (zh) 腔体滤波器及具有该腔体滤波器的射频拉远设备、信号收发装置和塔顶放大器
WO2017113139A1 (zh) 谐振杆组件、腔体滤波器及包括该腔体滤波器的通信设备
WO2017113164A1 (zh) 一种腔体滤波器及通信射频器件
CN103151589B (zh) 腔体射频器件的分合路结构及采用该结构的腔体射频器件
US11962058B1 (en) Circular filter assembly
CN203553312U (zh) 一种c波段多通道带通滤波器
CN212812562U (zh) 一种10g bosa的屏蔽罩结构
CN202662745U (zh) 一种高传输性时延滤波器
KR20160008486A (ko) 동축 공진기를 포함하는 캐비티 필터
CN203242727U (zh) 腔体射频器件的分合路结构及采用该结构的腔体射频器件
CN209418737U (zh) 腔体滤波器输入输出端口的连接结构
US8710941B2 (en) High-order harmonic device of cavity filter
CN2932894Y (zh) Smd电容式驻极体麦克风
WO2018119825A1 (zh) 一种tem模滤波器及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14909363

Country of ref document: EP

Kind code of ref document: A1