WO2016106493A1 - 电子烟控制电路、电子烟和电子烟雾化控制方法 - Google Patents

电子烟控制电路、电子烟和电子烟雾化控制方法 Download PDF

Info

Publication number
WO2016106493A1
WO2016106493A1 PCT/CN2014/095305 CN2014095305W WO2016106493A1 WO 2016106493 A1 WO2016106493 A1 WO 2016106493A1 CN 2014095305 W CN2014095305 W CN 2014095305W WO 2016106493 A1 WO2016106493 A1 WO 2016106493A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
electronic cigarette
real
voltage
heating wire
Prior art date
Application number
PCT/CN2014/095305
Other languages
English (en)
French (fr)
Inventor
刘秋明
Original Assignee
惠州市吉瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市吉瑞科技有限公司 filed Critical 惠州市吉瑞科技有限公司
Priority to PCT/CN2014/095305 priority Critical patent/WO2016106493A1/zh
Priority to CN201490001617.9U priority patent/CN208030261U/zh
Publication of WO2016106493A1 publication Critical patent/WO2016106493A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/22Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element being a thermocouple
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor

Definitions

  • the invention relates to the field of electronic cigarette technology, in particular to an electronic cigarette control circuit, an electronic cigarette and an electronic aerosolization control method.
  • E-cigarettes are a new type of electronic product that has the same appearance as ordinary cigarettes and the same taste as cigarettes, but e-cigarettes are healthier and more environmentally friendly than traditional cigarettes.
  • the electronic cigarette atomizes the smoke liquid containing nicotine and essence into a particle output through an atomizing core. E-cigarettes do not contain tar and other harmful components in ordinary cigarettes, nor do they produce second-hand smoke.
  • the electronic cigarette in the prior art comprises a nozzle, an atomizing component and a battery rod assembly, and the three are fixed end to end in series and fixed in the electronic cigarette.
  • a microcontroller and airflow sensor are also provided on the battery rod assembly. After the airflow sensor senses that the user smokes, the microcontroller controls the battery rod assembly output voltage to the electric heating wire assembly such that the electric heating wire assembly of the atomizing assembly atomizes the liquid smoke within the atomizing assembly.
  • the temperature of the heating wire is high.
  • the electric heating mist When smoky oil is produced, it will produce substances that are toxic to the human body, which is harmful to the health of the user and affects the taste of the electronic cigarette.
  • the invention provides an electronic cigarette control circuit, an electronic cigarette and an electronic aerosolization control method capable of adjusting the temperature of the heating wire, thereby preventing the heating wire from atomizing the smoke oil when the temperature is too high to generate toxic substances.
  • the invention provides an electronic cigarette circuit, comprising an atomizer circuit and a battery rod circuit;
  • the atomizer circuit includes a heating wire, a temperature detecting module and a signal amplifying module, wherein the temperature detecting module is configured to detect a real-time temperature of the heating wire and convert the real-time temperature into a real-time voltage output; the signal amplifying module For amplifying the real-time voltage and transmitting it to the battery rod circuit;
  • the battery rod circuit includes an electronic cigarette battery and a microprocessor, and the microprocessor is connected to the signal amplification module, and is configured to control, according to the real-time voltage, the power output by the electronic cigarette battery as the heating wire, so that When the real-time voltage is less than a preset value, the power increases as the real-time voltage increases, and when the real-time voltage is greater than or equal to a preset value, the power follows the real-time power The pressure increases and decreases.
  • thermocouple a thermocouple
  • thermistor a resistance temperature detector (RTD) or an integrated circuit temperature sensor.
  • RTD resistance temperature detector
  • the electronic cigarette circuit wherein the temperature detecting module is specifically an RTD; the battery rod circuit includes a positive output terminal and a grounded negative output terminal;
  • the signal amplifying module specifically includes a first operational amplifier and a second operational amplifier having a low bias temperature drift, a first resistor, a second resistor, a third resistor, a fourth resistor, a fifth resistor, a sixth resistor, and a seventh a resistor, an eighth resistor, and a first Zener diode;
  • the non-inverting input terminal of the first operational amplifier is connected to one end of the RTD, one end of the first resistor, and one end of the second resistor, and the other end of the first resistor and the anode of the battery rod circuit
  • An output end, one end of the heating wire is connected, the other end of the second resistor is connected to an output end of the first operational amplifier, and the other end of the RTD and the other end of the heating wire are grounded, and
  • the RTD and the heating wire are adjacent to enable the RTD to detect the temperature of the heating wire;
  • An inverting input end of the first operational amplifier is connected to one end of the third resistor, and is further connected to one end of the fourth resistor, and the other end of the third resistor is grounded, and the other end of the fourth resistor Connected to an output of the first operational amplifier;
  • the non-inverting input terminal of the second operational amplifier is connected to the output end of the first operational amplifier, and the inverting input terminal is connected to one end of the fifth resistor, the sixth resistor, and the seventh resistor, and the fifth resistor
  • the other end is connected to the positive output end of the battery rod circuit, the other end of the sixth resistor is grounded, and the other end of the seventh resistor is connected to the output end of the second operational amplifier;
  • An output end of the second operational amplifier is connected to a negative pole of the first Zener diode, and the microprocessor, and a positive pole of the first Zener diode is connected to one end of the eighth resistor, and the eighth The other end of the resistor is grounded;
  • the positive power terminals of the first operational amplifier and the second operational amplifier are both connected to the positive output terminal of the battery rod circuit, and the negative power terminals are both grounded.
  • the electronic cigarette circuit wherein the temperature detecting module is specifically a negative temperature coefficient (NTC) thermistor, and the battery rod circuit comprises a positive output terminal and a grounded negative output terminal;
  • NTC negative temperature coefficient
  • the signal amplifying module specifically includes a third operational amplifier, an adjustable resistor, a resistor, and a resistor. Resistance three, resistance four, resistance five, resistance six, second voltage regulator diode;
  • the two ends of the adjustable resistor are respectively connected with one end of the resistor one and one end of the resistor 2.
  • the other end of the resistor 1 is connected to the positive output end of the battery rod circuit, and the resistor 2 Grounded at the other end;
  • One end of the heating wire is connected to the positive output end of the battery rod circuit, and the other end is grounded;
  • the non-inverting input terminal of the third operational amplifier is connected to one end of the NTC thermistor, the resistor three, and the other end of the NTC thermistor is connected to the positive output terminal of the battery rod circuit, the resistor The other end of the third is grounded; and the NTC thermistor and the heating wire are close to each other such that the NTC thermistor can detect the temperature of the heating wire;
  • An inverting input end of the third operational amplifier is connected to one end of the resistor 4 and the resistor 5.
  • the other end of the resistor 4 is grounded, and the other end of the resistor 5 is connected to the output end of the third operational amplifier. ;
  • An output of the third operational amplifier is further connected to a negative electrode of the microprocessor and the second Zener diode; a positive pole of the second Zener diode is connected to one end of the resistor 6. Grounded at one end;
  • the positive power terminal of the third operational amplifier is connected to the positive output terminal of the battery rod circuit, and the negative power terminal is grounded.
  • the electronic cigarette circuit wherein the battery rod circuit comprises an electronic cigarette battery, a switch, a microprocessor, a field effect transistor, a positive output terminal, a negative output terminal, a first voltage dividing resistor and a second voltage dividing resistor;
  • the anode of the electronic cigarette battery is connected to the positive output end, the negative pole is grounded;
  • the G pole of the FET is connected to the microprocessor, the D pole is connected to the negative output terminal, and the S pole and the electron The negative electrode of the cigarette battery is connected;
  • One end of the first voltage dividing resistor is connected to the D pole of the FET, and the other end is connected to one end of the microprocessor and the second voltage dividing resistor; the other end of the second voltage dividing resistor Connected to the positive electrode of the electronic cigarette battery;
  • the switch is coupled to the microprocessor, and when the microprocessor detects that the switch is triggered, the microprocessor is based on the real-time voltage from the signal amplification module and the first partial voltage The voltage across the resistor controls the conduction ratio between the D and S poles of the FET to control the power output between the positive output and the negative output.
  • the electronic cigarette circuit wherein the battery rod circuit further includes a first capacitor and a third Zener diode;
  • the microprocessor is connected to one end of the first capacitor, the cathode of the third Zener diode, the other end of the first capacitor is grounded, the anode of the third Zener diode is opposite to the electronic cigarette
  • the positive poles are connected.
  • the electronic cigarette circuit wherein the battery rod circuit further includes a current limiting resistor;
  • One end of the current limiting resistor is connected to the D pole of the FET, and the other end is connected to the microprocessor.
  • the electronic cigarette circuit wherein the microprocessor is implemented by a chip SN8P27113AA, MC32P21 or HT46R01.
  • the invention also provides an electronic cigarette comprising the above electronic cigarette control circuit.
  • the invention also provides an electronic aerosolization control method, comprising:
  • the temperature detecting module detects the real-time temperature of the heating wire in the electronic cigarette and converts the real-time temperature into a real-time voltage and sends the voltage to the voltage control module;
  • the voltage control module compares the real-time voltage with a preset value
  • the voltage control module adjusts, according to the comparison result, the battery of the electronic cigarette to be the power output by the electric heating wire, wherein when the real-time voltage is less than a preset value, the voltage control module controls the power according to the The real-time voltage is increased by an increase; when the real-time voltage is greater than or equal to a preset value, the power decreases as the real-time voltage increases.
  • the voltage control module comprises a microprocessor connected to the temperature detecting module, a field effect transistor, a voltage positive output terminal and a voltage negative output terminal, and the positive electrode of the electronic cigarette battery
  • the positive output terminal of the voltage is connected, the G pole of the FET is connected to the microprocessor, the D pole is connected to the negative output end, and the S pole is connected to the negative pole of the electronic cigarette battery;
  • the adjusting, by the voltage control module, the power of the battery of the electronic cigarette to be outputted by the electric heating wire according to the comparison result includes:
  • the microprocessor adjusts the conduction ratio between the D pole and the S pole of the FET according to the comparison result.
  • the present invention has the following advantages:
  • a temperature detecting module is provided to detect the real-time temperature of the heating wire and The real-time temperature is converted into a real-time voltage and output to the microprocessor, so that the microprocessor can control the power of the electronic cigarette battery to be outputted by the heating wire according to the real-time voltage, so that when the real-time voltage is less than a preset value, the power Increasing the real-time voltage, when the real-time voltage is greater than or equal to a preset value, the power decreases as the real-time voltage increases, so that the temperature of the heating wire can be prevented from being too high.
  • the user experience of the electronic cigarette is improved.
  • FIG. 1 is a skeleton diagram of an embodiment of an electronic cigarette circuit of the present invention
  • FIG. 2 is a schematic structural view of an embodiment of a battery rod circuit in an electronic cigarette circuit of the present invention
  • FIG. 3 is a schematic structural view of an embodiment of an atomizer circuit in an electronic cigarette circuit of the present invention.
  • FIG. 4 is a schematic structural view of another embodiment of an atomizer circuit in an electronic cigarette circuit of the present invention.
  • Figure 5 is a flow chart of one embodiment of an electronic aerosolization control method of the present invention.
  • the invention discloses an electronic cigarette control circuit, an electronic cigarette and an electronic aerosolization control method, which can adjust the temperature of the heating wire, thereby preventing the heating wire from atomizing the smoke oil when the temperature is too high to generate toxic substances.
  • FIG. 1 is a frame diagram of an embodiment of an electronic cigarette circuit of the present invention.
  • the electronic cigarette circuit shown in this embodiment includes an atomizer circuit and a battery rod circuit.
  • the atomizer circuit includes a heating wire 1, a temperature detecting module 2 and a signal amplifying module 3, wherein the temperature detecting module 2 is configured to detect a real-time temperature of the heating wire 1 and convert the real-time temperature into a real-time voltage output;
  • the signal amplifying module 3 is configured to amplify the real-time voltage and transmit it to the battery rod circuit.
  • the battery rod circuit includes an electronic cigarette battery 5 and a microprocessor 4, and the microprocessor 4 is connected to the signal amplification module 3 for controlling the electronic cigarette battery 5 as the heating wire according to the real-time voltage. 1 outputting power, such that when the real-time voltage is less than a preset value, the power increases as the real-time voltage increases, and when the real-time voltage is greater than or equal to a preset value, the power The real-time voltage increases and decreases.
  • the temperature detecting module is provided to detect the real-time temperature of the heating wire and convert the real-time temperature into a real-time voltage, and then output to the microprocessor, so that the microprocessor can control the electronic cigarette battery as the heating wire according to the real-time voltage.
  • the temperature detecting module 2 may be any one of a thermocouple, a thermistor, a Resistance Temperature Detector (RTD), and an integrated circuit temperature sensor.
  • the microprocessor 4 is implemented by the chip SN8P27113AA.
  • other chips such as the MC32P21 or the HT46R01, may be used, which is not limited in this embodiment.
  • FIG. 2 is a schematic structural view of an embodiment of a battery rod circuit in an electronic cigarette circuit of the present invention.
  • the battery rod circuit includes an electronic cigarette battery BT, a switch K1, a microprocessor U1, a field effect transistor Q1, a positive output terminal OUT+, a negative output terminal OUT-, a first voltage dividing resistor R10, and a second Voltage dividing resistor R11.
  • the anode of the electronic cigarette battery BT is connected to the positive output terminal OUT+, and the negative electrode is grounded; the G pole of the FET Q1 is connected to the microprocessor U1, and the D pole is connected to the negative output terminal OUT-.
  • the S pole is connected to the negative electrode of the electronic cigarette battery BT.
  • One end of the first voltage dividing resistor R10 is connected to the D pole of the FET Q1, and the other end is connected to one end of the microprocessor U1 and the second voltage dividing resistor R11; the second partial voltage The other end of the resistor R11 is connected to the anode of the electronic cigarette battery BT.
  • the switch K1 is connected to the microprocessor U1.
  • the microprocessor U1 detects that the switch K1 is triggered, the microprocessor U1 is based on the real-time voltage and the slave from the signal amplifying module.
  • the voltage across the first voltage dividing resistor R10 controls the conduction ratio between the D pole and the S pole of the FET Q1 to control the output between the positive output terminal OUT+ and the negative output terminal OUT- power.
  • the switch K1 includes three interfaces, wherein two interfaces are respectively connected to the positive and negative poles of the electronic cigarette battery BT, and the other interface is connected to the microprocessor U1.
  • the battery rod circuit further includes a first capacitor C1 and a third Zener diode D3.
  • the microprocessor U1 is connected to one end of the first capacitor C1, the cathode of the third Zener diode D3, the other end of the first capacitor C1 is grounded, and the anode of the third Zener diode D3 is The positive ends of the electronic cigarettes are connected.
  • the two interfaces of the switch K1 are respectively connected to the positive and negative terminals of the electronic cigarette battery BT, the other interface is connected to the "2" pin of the microprocessor U1.
  • the positive output terminal OUT+ and the negative output terminal OUT- are respectively connected to the atomizer circuit.
  • the microprocessor U1 controls the electronic cigarette battery BT to pass through the positive output terminal OUT+ and the negative output terminal OUT- as the atomizer circuit. powered by.
  • switch K1 can be triggered.
  • the electronic cigarette is provided with a physical button, and when the user wants to smoke the electronic cigarette, the physical button is pressed to trigger; or, the electronic cigarette is provided with an air flow sensor, and when the user smokes the electronic cigarette, the electronic cigarette The internal air pressure changes, which in turn causes the film capacitance of the air flow sensor to be deformed, and the switch K1 is triggered when the shape variable of the film capacitance reaches a threshold.
  • the switch K1 in actual use, which is not limited herein.
  • the switch K1 communicates with the two interfaces respectively connected to the positive and negative terminals of the electronic cigarette battery BT, so that the signal fed back to the "2" pin of the microprocessor U1 by the switch K1 is Low level goes high.
  • the "8" pin of the microprocessor U1 is connected to the signal amplifying module for receiving the real-time voltage sent by the signal amplifying module.
  • the "3" pin of the microprocessor U1 is connected to one end of the first voltage dividing resistor R10 for detecting the voltage across the first voltage dividing resistor R10, and according to the voltage across the first voltage dividing resistor R10. The output voltage between the positive output terminal OUT+ and the negative output terminal OUT- is calculated.
  • the microprocessor U1 When the real-time voltage is less than the preset value, as the real-time voltage increases, the microprocessor U1 needs to increase the voltage between the positive output terminal OUT+ and the negative output terminal OUT- to adjust the temperature of the heating wire to one. Higher suitable temperature.
  • the microprocessor U1 When the real-time voltage is greater than the preset value, in order to avoid the temperature of the heating wire is too high, as the real-time voltage increases, the microprocessor U1 needs to reduce the voltage between the positive output terminal OUT+ and the negative output terminal OUT-. To adjust the temperature of the heating wire to a lower suitable temperature.
  • the microprocessor U1 calculates the current positive output terminal OUT+ and the negative output terminal OUT- according to the voltage across the first voltage dividing resistor R10. The output voltage between the two, then output a Pulse Width Modulation (PWM) pulse wave to control the conduction ratio between the D and S poles of the FET Q1, and adjust the positive output terminal OUT+ and the negative output terminal OUT. - The output voltage, which in turn adjusts the power output between the positive output OUT+ and the negative output OUT-.
  • PWM Pulse Width Modulation
  • the D- and S-poles of the FET Q1 When the D- and S-poles of the FET Q1 are turned on, the internal resistance between the D-pole and the S-pole is constant, and a current flows through the D-pole and the S-pole to form a potential difference. The potential difference is fed back to the microprocessor U1 via the current limiting resistor.
  • the microprocessor U1 detects that the potential difference is greater than a preset value, and turns off the FET Q1 to achieve overcurrent and short-circuit protection.
  • the current limiting resistor prevents the current flowing into the microprocessor U1 from being excessively large and burns the microprocessor U1.
  • the first capacitor C1 is filtered by the microprocessor U1, and the microprocessor U1 can also be used to detect the voltage of the first capacitor C1 to detect the voltage of the electronic cigarette battery BT, thereby implementing the low-voltage detection function.
  • the third Zener diode D3 is used to prevent the microprocessor U1 from supplying power in reverse.
  • FIG. 3 is a schematic structural diagram of an embodiment of an atomizer circuit in an electronic cigarette circuit of the present invention.
  • the temperature detecting module is specifically an RTD.
  • the signal amplifying module specifically includes a first operational amplifier U1 and a second operational amplifier U2 having a low bias temperature drift, a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, and a fifth resistor R5. a sixth resistor R6, a seventh resistor R7, an eighth resistor R8, and a first Zener diode D1;
  • the non-inverting input terminal of the first operational amplifier U1 is connected to one end of the RTD, one end of the first resistor R1, and one end of the second resistor R2, and the other end of the first resistor R1 and the battery a positive output terminal of the rod circuit is connected to one end of the heating wire, and the other end of the second resistor R2 is connected to an output end of the first operational amplifier U1, and the other end of the RTD and the heating wire are further One end is grounded, and the RTD and the heating wire are close to each other, so that the RTD can detect the temperature of the heating wire;
  • An inverting input end of the first operational amplifier U1 is connected to one end of the third resistor R3, and is further connected to one end of the fourth resistor R4, and the other end of the third resistor R3 is grounded.
  • the other end of the fourth resistor R4 is connected to the output end of the first operational amplifier U1;
  • the non-inverting input terminal of the second operational amplifier U2 is connected to the output end of the first operational amplifier U1, and the inverting input terminal is connected to one end of the fifth resistor R5, the sixth resistor R6, and the seventh resistor R7.
  • the other end of the fifth resistor R5 is connected to the positive output terminal of the battery rod circuit, the other end of the sixth resistor R6 is grounded, and the other end of the seventh resistor R7 and the output of the second operational amplifier U2 Connected to each other;
  • the output end of the second operational amplifier U2 is connected to the negative pole of the first Zener diode D1, the microprocessor, and the anode of the first Zener diode D1 is connected to one end of the eighth resistor R8. The other end of the eighth resistor R8 is grounded;
  • the positive power terminals of the first operational amplifier U1 and the second operational amplifier U2 are both connected to the positive output terminal of the battery rod circuit, and the negative power terminals are both grounded.
  • the positive output terminal and the negative output terminal of the battery rod circuit are respectively connected with the two ends of the heating wire to supply power to the heating wire, so that the heating wire can atomize the smoke oil.
  • the RTD is in close proximity but not in contact with the heating wire and is used to detect the temperature of the heating wire.
  • the resistance of the RTD changes as the resistance of the heating wire changes, so that the voltage across the RTD can reflect the current temperature of the heating wire.
  • the voltage across the RTD is input to the first operational amplifier U1, amplified by the first operational amplifier U1, and then re-entered into the second operational amplifier U2 for a second amplification.
  • the third resistor R3 and the fourth resistor R4 are used to control the amplification factor of the first operational amplifier U1
  • the sixth resistor R6 and the seventh resistor R7 are used to control the amplification factor of the second operational amplifier U2.
  • the output of the second operational amplifier U2 is coupled to the microprocessor to pass the voltage of the RTD to the microprocessor after a second amplification.
  • the voltage range of the corresponding input microprocessor is larger, and thus the electric heating can be performed.
  • the temperature of the wire is adjusted more precisely.
  • FIG. 4 is a schematic structural view of another embodiment of the atomizer circuit in the electronic cigarette circuit of the present invention.
  • the temperature detecting module is specifically a negative temperature coefficient (NTC) thermistor
  • the battery rod circuit includes a positive output terminal and a grounded negative output terminal.
  • NTC negative temperature coefficient
  • the signal amplifying module specifically includes a third operational amplifier U3, an adjustable resistor RF, a resistor R21, a resistor R22, a resistor three R23, a resistor four R24, a resistor five R25, a resistor six R26, and a Two Zener diode D2.
  • the two ends of the adjustable resistor are respectively connected to one end of the resistor R21 and one end of the resistor R22, and the other end of the resistor R21 is connected to the positive output terminal of the battery rod circuit.
  • the other end of the resistor two R22 is grounded.
  • One end of the heating wire is connected to the positive output end of the battery rod circuit, and the other end is grounded.
  • the non-inverting input terminal of the third operational amplifier U3 is connected to one end of the NTC thermistor, the resistor three R23, and the other end of the NTC thermistor is connected to the positive output end of the battery rod circuit.
  • the other end of the resistor three R23 is grounded; and the NTC thermistor and the heating wire are close to each other such that the NTC thermistor can detect the temperature of the heating wire.
  • the inverting input terminal of the third operational amplifier U3 is connected to one end of the resistor four R24 and the resistor five R25, the other end of the resistor four R24 is grounded, and the other end of the resistor five R25 is opposite to the third operation
  • the output of amplifier U3 is connected.
  • the output of the third operational amplifier U3 is also connected to the negative terminal of the microprocessor and the second Zener diode D2; the anode of the second Zener diode D2 is connected to one end of the resistor R R26, The other end of the resistor six R26 is grounded.
  • the positive power terminal of the third operational amplifier U3 is connected to the positive output terminal of the battery rod circuit, and the negative power terminal is grounded.
  • the positive output terminal and the negative output terminal of the battery rod circuit are respectively connected with the two ends of the heating wire to supply power to the heating wire, so that the heating wire can atomize the smoke oil.
  • the NTC thermistor is close to but not in contact with the heating wire and is used to detect the temperature of the heating wire. The temperature of the NTC thermistor varies with the resistance of the heating wire, so that the voltage across the NTC thermistor can reflect the current temperature of the heating wire.
  • the temperature detecting module is an NTC thermistor, and the relationship between temperature and power of the NTC thermistor is nonlinear.
  • the resistance of the adjustable resistor can be adjusted so that the voltage at both ends can correspond to the preset voltage value when the NTC thermistor is at a certain temperature.
  • the voltage across the NTC thermistor is input to the third operational amplifier U3 and amplified by the third operational amplifier U3.
  • the resistor four R24 and the resistor five R25 are used to control the amplification factor of the third operational amplifier U3.
  • the output of the third operational amplifier U3 is connected to the microprocessor to heat the NTC
  • the voltage of the varistor is amplified and input to the microprocessor.
  • the application further provides an electronic cigarette, the electronic cigarette comprising an electronic cigarette circuit, the electronic cigarette circuit comprising an atomizer circuit and a battery rod circuit;
  • the atomizer circuit includes a heating wire, a temperature detecting module and a signal amplifying module, wherein the temperature detecting module is configured to detect a real-time temperature of the heating wire and convert the real-time temperature into a real-time voltage output; the signal amplifying module For amplifying the real-time voltage and transmitting it to the battery rod circuit;
  • the battery rod circuit includes an electronic cigarette battery and a microprocessor, and the microprocessor is connected to the signal amplification module, and is configured to control, according to the real-time voltage, the power output by the electronic cigarette battery as the heating wire, so that When the real-time voltage is less than a preset value, the power increases as the real-time voltage increases, and when the real-time voltage is greater than or equal to a preset value, the power increases with the real-time voltage Large and reduced.
  • an embodiment of the electronic aerosolization control method of the present invention includes:
  • the temperature detecting module detects a real-time temperature of the heating wire in the electronic cigarette and converts the real-time temperature into a real-time voltage and sends the voltage to the voltage control module.
  • the temperature detecting module may be a thermocouple, a thermistor, an RTD, an integrated circuit temperature sensor, or other temperature detecting module, which is not limited herein.
  • the heating wire in the electronic cigarette is used to atomize the smoke oil in the electronic cigarette to generate smoke.
  • the electric heating wire is electrically connected to the electronic cigarette battery.
  • the electronic cigarette battery supplies power to the electric heating wire, so that the heating wire starts to generate heat, and then the atomizing of the oil is started.
  • the temperature detecting module detects the temperature of the heating wire in real time, and converts the temperature of the heating wire into a voltage and sends it to the voltage control module.
  • the voltage control module is configured to control the power output by the electronic cigarette battery as the heating wire.
  • the voltage control module compares the real-time voltage with a preset value.
  • the preset value is the upper limit of the temperature of the heating wire
  • the temperature detecting module converts the upper limit temperature into a voltage value at a temperature.
  • the voltage control module compares the real-time voltage outputted by the temperature detecting module with the preset value to confirm in real time whether the temperature of the heating wire reaches the upper limit temperature.
  • the upper limit temperature in the embodiment is not necessarily the temperature at which the harmful substance is generated when the heating wire atomizes the smoke oil, and may also be a temperature at which the generated smoke taste is optimal and does not generate harmful substances.
  • the voltage control module adjusts, according to the comparison result, a battery of the electronic cigarette as a power output by the electric heating wire, wherein when the real-time voltage is less than a preset value, the voltage control module controls the power to follow
  • the real-time voltage is increased by an increase; when the real-time voltage is greater than or equal to a preset value, the power decreases as the real-time voltage increases.
  • the voltage control module increases the power output by the electronic cigarette battery as the heating wire, so that the temperature of the heating wire reaches the upper limit temperature as soon as possible.
  • the real-time voltage is greater than or equal to the preset value, that is, the temperature of the heating wire has reached or exceeded the upper temperature limit.
  • the voltage control module reduces the power output by the electronic cigarette battery to the heating wire so that the temperature of the heating wire is maintained at the upper line temperature or the upper limit temperature.
  • the temperature detecting module is provided to detect the real-time temperature of the heating wire and convert the real-time temperature into a real-time voltage and output to the voltage control module
  • the voltage control module can control the electronic cigarette battery to be electrically heated according to the real-time voltage.
  • the power output by the wire is such that when the real-time voltage is less than a preset value, the power increases as the real-time voltage increases, and when the real-time voltage is greater than or equal to a preset value, the power The real-time voltage is increased and decreased, so that the temperature of the heating wire can be prevented from being too high, thereby avoiding the generation of toxic substances when the heating wire atomizes the smoke oil, thereby improving the user experience of the electronic cigarette.
  • the voltage control module includes a microprocessor, a field effect transistor, a voltage positive output terminal, and a voltage negative output terminal connected to the temperature detecting module, and the positive electrode of the electronic cigarette battery and the The positive output terminal of the voltage is connected, the G pole of the FET is connected to the microprocessor, the D pole is connected to the negative output end, and the S pole is connected to the negative pole of the electronic cigarette battery.
  • the voltage control module adjusts the power of the battery of the electronic cigarette to be outputted by the electric heating wire according to the comparison result, and specifically includes:
  • the microprocessor adjusts the guide between the D pole and the S pole of the FET according to the comparison result Tongbi.

Abstract

一种电子烟控制电路、电子烟和电子烟雾化控制方法。该电子烟控制电路包括雾化器电路和电池杆电路。所述雾化器电路包括电热丝(1)、温度检测模块(2)和信号放大模块(3),温度检测模块(2)用于检测电热丝(1)的实时温度并将实时温度转换为实时电压输出,信号放大模块(3)用于将实时电压放大后传输至电池杆电路中。所述电池杆电路包括电子烟电池(5)以及微处理器(4),微处理器(4)与信号放大模块(3)相连,用于根据实时电压控制电子烟电池(5)为电热丝(1)输出的功率,使得当实时电压小于预置数值时,功率随着实时电压的增大而增大,当实时电压大于等于预置数值时,功率随着实时电压的增大而减小。这样能够避免电热丝(1)在温度过高时雾化烟油而产生有毒物质。

Description

电子烟控制电路、电子烟和电子烟雾化控制方法 技术领域
本发明涉及电子烟技术领域,特别涉及一种电子烟控制电路、电子烟和电子烟雾化控制方法。
背景技术
电子烟是一种新型的电子产品,其与普通的香烟有着相同的外观,以及与香烟相同的味道,但是电子烟相对于传统的香烟更为的健康以及环保。电子烟是通过雾化芯将含有烟碱和香精的烟液雾化成颗粒输出。电子烟中不含普通香烟中的焦油和其他有害成分,也不会产生二手烟。
现有技术中的电子烟包括吸嘴、雾化组件及电池杆组件,该三者依次首尾相接固定,并固定在电子烟内。电池杆组件上还设置有微控制器和气流感应器。当气流感应器感应到用户吸烟后,该微控制器控制电池杆组件输出电压至电热丝组件,以使得雾化组件的电热丝组件雾化所述雾化组件内的烟液。
然而,由于电池杆组件为电热丝输出的电压是不变的,在电子烟内的烟油较少时,会导致电热丝的温度较高,当电热丝的温度超过一定值时,电热丝雾化烟油时会产生对人体有毒的物质,这有害于用户的健康,且影响电子烟的口感。
发明内容
本发明提供了一种能够调节电热丝温度,进而避免电热丝在温度过高时雾化烟油而产生有毒物质的电子烟控制电路、电子烟和电子烟雾化控制方法。
本发明提供了一种电子烟电路,包括雾化器电路和电池杆电路;
所述雾化器电路包括电热丝、温度检测模块和信号放大模块,所述温度检测模块用于检测所述电热丝的实时温度并将所述实时温度转换为实时电压输出;所述信号放大模块用于将所述实时电压放大后传输至所述电池杆电路中;
所述电池杆电路包括电子烟电池以及微处理器,所述微处理器与所述信号放大模块相连,用于根据所述实时电压控制所述电子烟电池为所述电热丝输出的功率,使得当所述实时电压小于预置数值时,所述功率随着所述实时电压的增大而增大,当所述实时电压大于等于预置数值时,所述功率随着所述实时电 压的增大而减小。
所述的电子烟电路,其中,所述温度检测模块为热电偶、热敏电阻、电阻温度检测器(RTD)或者集成电路温度传感器。
所述的电子烟电路,其中,所述温度检测模块具体为RTD;所述电池杆电路包括正极输出端和接地的负极输出端;
所述信号放大模块具体包括具有低偏置温漂的第一运算放大器和第二运算放大器、第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第八电阻和第一稳压二极管;
所述第一运算放大器的同相输入端与所述RTD的一端、所述第一电阻的一端、所述第二电阻的一端相连,所述第一电阻的另一端与所述电池杆电路的正极输出端、所述电热丝的一端相连,所述第二电阻的另一端与所述第一运算放大器的输出端相连,所述RTD的另一端和所述电热丝的另一端均接地,且所述RTD和所述电热丝相靠近,以使得所述RTD能够检测到所述电热丝的温度;
所述第一运算放大器的反相输入端与所述第三电阻的一端相连,还与所述第四电阻的一端相连,所述第三电阻的另一端接地,所述第四电阻的另一端与所述第一运算放大器的输出端相连;
所述第二运算放大器的同相输入端和所述第一运算放大器的输出端相连,反相输入端与所述第五电阻、第六电阻、第七电阻的一端相连,所述第五电阻的另一端与所述电池杆电路的正极输出端相连,所述第六电阻的另一端接地,所述第七电阻的另一端与所述第二运算放大器的输出端相连;
所述第二运算放大器的输出端与所述第一稳压二极管的负极、所述微处理器相连,所述第一稳压二极管的正极与所述第八电阻的一端相连,所述第八电阻的另一端接地;
所述第一运算放大器和第二运算放大器的正电源端均与所述电池杆电路的正极输出端相连,负电源端均接地。
所述的电子烟电路,其中,所述温度检测模块具体为负温度系数(NTC)热敏电阻,所述电池杆电路包括正极输出端和接地的负极输出端;
所述信号放大模块具体包括第三运算放大器、可调电阻、电阻一、电阻二、 电阻三、电阻四、电阻五、电阻六、第二稳压二极管;
所述可调电阻的两端分别和所述电阻一的一端、所述电阻二的一端相联,所述电阻一的另一端与所述电池杆电路的正极输出端相连,所述电阻二的另一端接地;
所述电热丝的一端与所述电池杆电路的正极输出端,另一端接地;
所述第三运算放大器的同相输入端与所述NTC热敏电阻的一端、所述电阻三相连,所述NTC热敏电阻的另一端与所述电池杆电路的正极输出端相连,所述电阻三的另一端接地;且所述NTC热敏电阻和所述电热丝相靠近,以使得所述NTC热敏电阻能够检测到所述电热丝的温度;
所述第三运算放大器的反相输入端与所述电阻四、电阻五的一端相连,所述电阻四的另一端接地,所述电阻五的另一端与所述第三运算放大器的输出端相连;
第三运算放大器的输出端还与所述微处理器、所述第二稳压二极管的负极相连;所述第二稳压二极管的正极与所述电阻六的一端相连,所述电阻六的另一端接地;
所述第三运算放大器的正电源端与所述电池杆电路的正极输出端相连,负电源端接地。
所述的电子烟电路,其中,所述电池杆电路包括电子烟电池、开关、微处理器、场效应管、正极输出端、负极输出端、第一分压电阻和第二分压电阻;
所述电子烟电池的正极与所述正极输出端相连,负极接地;所述场效应管的G极与所述微处理器相连,D极与所述负极输出端相连,S极与所述电子烟电池的负极相连;
所述第一分压电阻的一端与所述场效应管的D极相连,另一端与所述微处理器、所述第二分压电阻的一端相连;所述第二分压电阻的另一端与所述电子烟电池的正极相连;
所述开关与所述微处理器相连,当所述微处理器检测到所述开关被触发时,所述微处理器根据来自所述信号放大模块的所述实时电压和所述第一分压电阻两端的电压控制所述场效应管的D极与S极之间的导通比,以控制所述正极输出端与所述负极输出端之间输出的功率。
所述的电子烟电路,其中,所述电池杆电路还包括第一电容、第三稳压二极管;
所述微处理器和所述第一电容的一端、所述第三稳压二极管的负极相连,所述第一电容的另一端接地,所述第三稳压二极管的正极与所述电子烟的正极相连。
所述的电子烟电路,其中,所述电池杆电路还包括限流电阻;
所述限流电阻的一端与所述场效应管的D极相连,另一端与所述微处理器相连。
所述的电子烟电路,其中,所述微处理器由芯片SN8P27113AA、MC32P21或者HT46R01实现。
本发明还提供一种电子烟,包括上述电子烟控制电路。
本发明还提供一种电子烟雾化控制方法,包括:
温度检测模块检测电子烟内的电热丝的实时温度并将所述实时温度转换为实时电压发送至电压控制模块;
所述电压控制模块将所述实时电压与预置数值进行对比;
所述电压控制模块根据对比结果调整所述电子烟的电池为所述电热丝输出的功率,其中,当所述实时电压小于预置数值时,所述电压控制模块控制所述功率随着所述实时电压的增大而增大;当所述实时电压大于等于预置数值时,所述功率随着所述实时电压的增大而减小。
所述的电子烟控制方法,其中,所述电压控制模块包括与所述温度检测模块相连的微处理器、场效应管、电压正极输出端和电压负极输出端,所述电子烟电池的正极与所述电压正极输出端相连,所述场效应管的G极与所述微处理器相连,D极与所述负极输出端相连,S极与所述电子烟电池的负极相连;
所述电压控制模块根据对比结果调整所述电子烟的电池为所述电热丝输出的功率具体包括:
所述微处理器根据对比结果来调整所述场效应管的D极与S极之间的导通比。
从以上技术方案可以看出,本发明具有以下优点:
本发明的电子烟中,由于设有温度检测模块来检测电热丝的实时温度并将 该实时温度转换为实时电压后输出给微处理器,使得微处理器能够根据该实时电压控制电子烟电池为电热丝输出的功率,使得当所述实时电压小于预置数值时,所述功率随着所述实时电压的增大而增大,当所述实时电压大于等于预置数值时,所述功率随着所述实时电压的增大而减小,这样,可以避免电热丝的温度过高,进而避免电热丝雾化烟油时产生有毒物质,提高了电子烟的用户体验。
附图说明
图1为本发明中电子烟电路的一个实施例的框架图;
图2为本发明的电子烟电路中电池杆电路的一个实施例的结构示意图;
图3为本发明的电子烟电路中雾化器电路的一个实施例的结构示意图;
图4为本发明的电子烟电路中雾化器电路的另一个实施例的结构示意图
图5为本发明的电子烟雾化控制方法的一个实施例的流程图。
具体实施方式
本发明公开了一种电子烟控制电路、电子烟和电子烟雾化控制方法,能够调节电热丝温度,进而避免电热丝在温度过高时雾化烟油而产生有毒物质。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1为本发明中电子烟电路的一个实施例的框架图。本实施例所示的电子烟电路包括雾化器电路和电池杆电路。
所述雾化器电路包括电热丝1、温度检测模块2和信号放大模块3,所述温度检测模块2用于检测所述电热丝1的实时温度并将所述实时温度转换为实时电压输出;所述信号放大模块3用于将所述实时电压放大后传输至所述电池杆电路中。
所述电池杆电路包括电子烟电池5以及微处理器4,所述微处理器4与所述信号放大模块3相连,用于根据所述实时电压控制所述电子烟电池5为所述电热丝1输出的功率,使得当所述实时电压小于预置数值时,所述功率随着所述实时电压的增大而增大,当所述实时电压大于等于预置数值时,所述功率随 着所述实时电压的增大而减小。
本实施例中,由于设有温度检测模块来检测电热丝的实时温度并将该实时温度转换为实时电压后输出给微处理器,使得微处理器能够根据该实时电压控制电子烟电池为电热丝输出的功率,使得当所述实时电压小于预置数值时,所述功率随着所述实时电压的增大而增大,当所述实时电压大于等于预置数值时,所述功率随着所述实时电压的增大而减小,这样,可以避免电热丝的温度过高,进而避免电热丝雾化烟油时产生有毒物质,提高了电子烟的用户体验。
优选的,本实施例中,所述温度检测模块2可以为热电偶、热敏电阻、电阻温度检测器(Resistance Temperature Detector,RTD)和集成电路温度传感器中的任意一种。
优选的,所述微处理器4由芯片SN8P27113AA实现,当然还可采用其他芯片,例如MC32P21或者HT46R01,具体在本实施例中不作限定。
下面对本发明中的电子烟电路的具体结构进行进一步的详细说明。需明确的是,以下为对本发明中的电子烟电路中的各模块的举例说明,并不作限定。
请参阅图2,图2为本发明的电子烟电路中电池杆电路的一个实施例的结构示意图。如图2所示,所述电池杆电路包括电子烟电池BT、开关K1、微处理器U1、场效应管Q1、正极输出端OUT+、负极输出端OUT-、第一分压电阻R10和第二分压电阻R11。
所述电子烟电池BT的正极与所述正极输出端OUT+相连,负极接地;所述场效应管Q1的G极与所述微处理器U1相连,D极与所述负极输出端OUT-相连,S极与所述电子烟电池BT的负极相连。
所述第一分压电阻R10的一端与所述场效应管Q1的D极相连,另一端与所述微处理器U1、所述第二分压电阻R11的一端相连;所述第二分压电阻R11的另一端与所述电子烟电池BT的正极相连。
所述开关K1与所述微处理器U1相连,当所述微处理器U1检测到所述开关K1被触发时,所述微处理器U1根据来自所述信号放大模块的所述实时电压和所述第一分压电阻R10两端的电压控制所述场效应管Q1的D极与S极之间的导通比,以控制所述正极输出端OUT+与所述负极输出端OUT-之间输出的功率。
具体的,本实施例中,开关K1包括三个接口,其中两个接口分别与所述电子烟电池BT的正极和负极相连,另一个接口与所述微处理器U1相连。
优选的,所述电池杆电路还包括第一电容C1、第三稳压二极管D3。所述微处理器U1和所述第一电容C1的一端、所述第三稳压二极管D3的负极相连,所述第一电容C1的另一端接地,所述第三稳压二极管D3的正极与所述电子烟的正极相连。
以下对图2所示的电池杆电路的具体工作流程进行详细说明:
由于开关K1的两个接口分别与所述电子烟电池BT的正极和负极相连,另一个接口与所述微处理器U1的第“2”引脚相连。正极输出端OUT+和负极输出端OUT-分别和雾化器电路相连,当开关K1被触发时,微处理器U1控制电子烟电池BT通过正极输出端OUT+和负极输出端OUT-为雾化器电路供电。
开关K1被触发的方式有多种。具体举例来说,电子烟上设有物理按键,当用户要吸食电子烟时,通过按下该物理按键来触发;或者,电子烟内设有气流感应器,在用户吸食电子烟时,电子烟内的气压会产生变化,进而导致气流感应器的薄膜电容发生形变,当该薄膜电容的形变量达到阈值时触发该开关K1。当然,实际运用中还可以有其他方式来触发开关K1,在此不作限制。
具体的,当开关K1被触发时,开关K1与电子烟电池BT的正极和负极分别相连的两个接口之间连通,使得开关K1向微处理器U1的第“2”引脚反馈的信号由低电平变为高电平。所述微处理器U1的第“8”引脚与信号放大模块相连,用于接收所述信号放大模块发送的实时电压。所述微处理器U1的第“3”引脚与第一分压电阻R10的一端相连,用于检测第一分压电阻R10两端的电压,并根据该第一分压电阻R10两端的电压来计算正极输出端OUT+和负极输出端OUT-之间的输出电压。
当该实时电压小于预置数值时,随着该实时电压的增大,微处理器U1需增大正极输出端OUT+和负极输出端OUT-之间的电压,以将电热丝的温度调到一个较高的适宜的温度。当该实时电压大于预置数值时,为避免电热丝的温度过高,随着该实时电压的增大,微处理器U1需减小正极输出端OUT+和负极输出端OUT-之间的电压,以将电热丝的温度调到一个较低的适宜的温度。
具体的,当微处理器U1的第“2”引脚接收到高电平时,微处理器U1根据第一分压电阻R10两端的电压计算出当前的正极输出端OUT+和负极输出端OUT-之间的输出电压,然后输出一个脉冲宽度调制(Pulse Width Modulation,PWM)脉冲波,以控制场效应管Q1的D极和S极之间的导通比,调整正极输出端OUT+和负极输出端OUT-输出的电压,进而调整正极输出端OUT+和负极输出端OUT-之间输出的功率。
在所述场效应管Q1的D极和S极之间导通时,该D极和S极之间的内阻为定值,电流流过该D极和S极,会形成一个电势差,该电势差经限流电阻反馈到微处理器U1。当场效应管Q1的D极和S极发生短路或者过流时,微处理器U1会检测到该电势差大于预设值,并关闭场效应管Q1,实现过流以及短路保护。同时,限流电阻防止流入微处理器U1的电流过大而烧毁微处理器U1。
第一电容C1为微处理器U1滤波,且微处理器U1还可以用于检测第一电容C1出的电压,以检测电子烟电池BT的电压的功能,进而实现低压检测功能。第三稳压二极管D3用于防止微处理器U1反相供电。
请参阅图3,图3为本发明的电子烟电路中雾化器电路的一个实施例的结构示意图。如图3所示,本实施例中,所述温度检测模块具体为RTD。
所述信号放大模块具体包括具有低偏置温漂的第一运算放大器U1和第二运算放大器U2、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第八电阻R8和第一稳压二极管D1;
所述第一运算放大器U1的同相输入端与所述RTD的一端、所述第一电阻R1的一端、所述第二电阻R2的一端相连,所述第一电阻R1的另一端与所述电池杆电路的正极输出端、所述电热丝的一端相连,所述第二电阻R2的另一端与所述第一运算放大器U1的输出端相连,所述RTD的另一端和所述电热丝的另一端均接地,且所述RTD和所述电热丝相靠近,以使得所述RTD能够检测到所述电热丝的温度;
所述第一运算放大器U1的反相输入端与所述第三电阻R3的一端相连,还与所述第四电阻R4的一端相连,所述第三电阻R3的另一端接地,所述第 四电阻R4的另一端与所述第一运算放大器U1的输出端相连;
所述第二运算放大器U2的同相输入端和所述第一运算放大器U1的输出端相连,反相输入端与所述第五电阻R5、第六电阻R6、第七电阻R7的一端相连,所述第五电阻R5的另一端与所述电池杆电路的正极输出端相连,所述第六电阻R6的另一端接地,所述第七电阻R7的另一端与所述第二运算放大器U2的输出端相连;
所述第二运算放大器U2的输出端与所述第一稳压二极管D1的负极、所述微处理器相连,所述第一稳压二极管D1的正极与所述第八电阻R8的一端相连,所述第八电阻R8的另一端接地;
所述第一运算放大器U1和第二运算放大器U2的正电源端均与所述电池杆电路的正极输出端相连,负电源端均接地。
以下对图3所示的雾化器电路的具体工作流程进行详细说明:
当雾化器电路和电池杆电路相连时,电池杆电路的正极输出端和负极输出端分别和电热丝的两端相连,以给电热丝供电,使得电热丝能够雾化烟油。RTD和电热丝相靠近但不接触,用于检测电热丝的温度。RTD的电阻随着电热丝的电阻的变化而变化,使得RTD两端的电压能够反映电热丝的当前温度。
RTD两端的电压输入第一运算放大器U1中,经由第一运算放大器U1放大之后再次进入第二运算放大器U2中,进行第二次放大。其中,第三电阻R3和第四电阻R4用于控制第一运算放大器U1的放大倍数,第六电阻R6和第七电阻R7用于控制第二运算放大器U2的放大倍数。第二运算放大器U2的输出端与微处理器相连,以将RTD的电压经第二次放大后输入至微处理器。
本实施例中,通过两个运算放大器来对RTD两端的电压进行放大,能够使得电热丝的温度在相同的范围内变化时,对应的输入微处理器的电压变化范围更大,进而能对电热丝的温度进行更加精准的调整。
请参阅图4,图4为本发明的电子烟电路中雾化器电路的另一个实施例的结构示意图。如图4所示,本实施例中,所述温度检测模块具体为负温度系数(NTC)热敏电阻,所述电池杆电路包括正极输出端和接地的负极输出端。
所述信号放大模块具体包括第三运算放大器U3、可调电阻RF、电阻一R21、电阻二R22、电阻三R23、电阻四R24、电阻五R25、电阻六R26、第 二稳压二极管D2。
所述可调电阻的两端分别和所述电阻一R21的一端、所述电阻二R22的一端相联,所述电阻一R21的另一端与所述电池杆电路的正极输出端相连,所述电阻二R22的另一端接地。
所述电热丝的一端与所述电池杆电路的正极输出端,另一端接地。
所述第三运算放大器U3的同相输入端与所述NTC热敏电阻的一端、所述电阻三R23相连,所述NTC热敏电阻的另一端与所述电池杆电路的正极输出端相连,所述电阻三R23的另一端接地;且所述NTC热敏电阻和所述电热丝相靠近,以使得所述NTC热敏电阻能够检测到所述电热丝的温度。
所述第三运算放大器U3的反相输入端与所述电阻四R24、电阻五R25的一端相连,所述电阻四R24的另一端接地,所述电阻五R25的另一端与所述第三运算放大器U3的输出端相连。
第三运算放大器U3的输出端还与所述微处理器、所述第二稳压二极管D2的负极相连;所述第二稳压二极管D2的正极与所述电阻六R26的一端相连,所述电阻六R26的另一端接地。
所述第三运算放大器U3的正电源端与所述电池杆电路的正极输出端相连,负电源端接地。
以下对图4所示的雾化器电路的具体工作流程进行详细说明:
当雾化器电路和电池杆电路相连时,电池杆电路的正极输出端和负极输出端分别和电热丝的两端相连,以给电热丝供电,使得电热丝能够雾化烟油。NTC热敏电阻和电热丝相靠近但不接触,用于检测电热丝的温度。NTC热敏电阻的温度随着电热丝的电阻的变化而变化,使得NTC热敏电阻两端的电压能够反映电热丝的当前温度。
本实施例中,温度检测模块为NTC热敏电阻,该NTC热敏电阻的温度与功率的关系为非线性的。可以通过对可调电阻的阻值进行调整,以使得当NTC热敏电阻处于某个温度时两端的电压能对应上预置电压值。
NTC热敏电阻两端的电压输入第三运算放大器U3中,经由第三运算放大器U3放大之后。其中,电阻四R24和电阻五R25用于控制第三运算放大器U3的放大倍数。第三运算放大器U3的输出端与微处理器相连,以将NTC热 敏电阻的电压经放大后输入至微处理器。
本申请还提供一种电子烟,该电子烟包括电子烟电路,该电子烟电路包括雾化器电路和电池杆电路;
所述雾化器电路包括电热丝、温度检测模块和信号放大模块,所述温度检测模块用于检测所述电热丝的实时温度并将所述实时温度转换为实时电压输出;所述信号放大模块用于将所述实时电压放大后传输至所述电池杆电路中;
所述电池杆电路包括电子烟电池以及微处理器,所述微处理器与所述信号放大模块相连,用于根据所述实时电压控制所述电子烟电池为所述电热丝输出的功率,使得当所述实时电压小于预置数值时,所述功率随着所述实时电压的增大而增大,当所述实时电压大于等于预置数值时,所述功率随着所述实时电压的增大而减小。
该电子烟电路的具体结构可参见上述所述的电子烟电路的具体结构,由于该电子烟电路的结构与上述所述的电子烟电路的结构相同,因而也具有相同的效果。
上面对本发明实施例中的电子烟电路和电子烟进行了描述,下面对本发明实施例中的电子烟雾化控制方法进行描述。请参阅图5,本发明中电子烟雾化控制方法的一个实施例包括:
501、温度检测模块检测电子烟内的电热丝的实时温度并将所述实时温度转换为实时电压发送至电压控制模块;
本实施例中,温度检测模块具体可以是热电偶、热敏电阻、RTD、集成电路温度传感器或者其他温度检测模块,在此不作限制。
电子烟内的电热丝用于雾化电子烟内的烟油以产生烟雾。该电热丝与电子烟电池电连接,在电子烟工作时,电子烟电池为电热丝供电,使得电热丝开始发热,进而开始雾化烟油。当电热丝的温度超过一定值时,所产生的烟雾中会包含有害物质。因此,温度检测模块实时检测电热丝的温度,并将该电热丝的温度转换为电压发送至电压控制模块。本实施例中,该电压控制模块用于控制电子烟电池为电热丝所输出的功率。
502、所述电压控制模块将所述实时电压与预置数值进行对比;
电压控制模块内预先存有预置数值,该预置数值是电热丝的温度达到上限 温度时温度检测模块将该上限温度所转换成的电压值。电压控制模块将温度检测模块输出的实时电压与该预置数值相比,以实时确认电热丝的温度是否达到上限温度。需注意的是,本实施例中的上限温度不一定是电热丝雾化烟油时会产生有害物质的温度,也可以是产生的烟雾口感最佳且不会产生有害物质的一个温度。
503、所述电压控制模块根据对比结果调整所述电子烟的电池为所述电热丝输出的功率,其中,当所述实时电压小于预置数值时,所述电压控制模块控制所述功率随着所述实时电压的增大而增大;当所述实时电压大于等于预置数值时,所述功率随着所述实时电压的增大而减小。
当实时电压小于预置数值时,也即电热丝的温度还未达到温度上限。那么随着实时电压增大,电压控制模块增大电子烟电池为电热丝所输出的功率,以使得电热丝的温度尽快达到上限温度。当实时电压大于等于预置数值时,也即电热丝的温度已经达到或者超过温度上限。那么随着实时电压的增大,电压控制模块减小电子烟电池为电热丝所输出的功率,以使得电热丝的温度维持在上线温度或者上限温度左右。
本实施例中,由于设有温度检测模块来检测电热丝的实时温度并将该实时温度转换为实时电压后输出给电压控制模块,使得电压控制模块器能够根据该实时电压控制电子烟电池为电热丝输出的功率,使得当所述实时电压小于预置数值时,所述功率随着所述实时电压的增大而增大,当所述实时电压大于等于预置数值时,所述功率随着所述实时电压的增大而减小,这样,可以避免电热丝的温度过高,进而避免电热丝雾化烟油时产生有毒物质,提高了电子烟的用户体验。
优选的,本实施例中,所述电压控制模块包括与所述温度检测模块相连的微处理器、场效应管、电压正极输出端和电压负极输出端,所述电子烟电池的正极与所述电压正极输出端相连,所述场效应管的G极与所述微处理器相连,D极与所述负极输出端相连,S极与所述电子烟电池的负极相连。
所述步骤503中,所述电压控制模块根据对比结果调整所述电子烟的电池为所述电热丝输出的功率具体包括:
所述微处理器根据对比结果来调整所述场效应管的D极与S极之间的导 通比。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

  1. 一种电子烟电路,其特征在于,包括雾化器电路和电池杆电路;
    所述雾化器电路包括电热丝、温度检测模块和信号放大模块,所述温度检测模块用于检测所述电热丝的实时温度并将所述实时温度转换为实时电压输出;所述信号放大模块用于将所述实时电压放大后传输至所述电池杆电路中;
    所述电池杆电路包括电子烟电池以及微处理器,所述微处理器与所述信号放大模块相连,用于根据所述实时电压控制所述电子烟电池为所述电热丝输出的功率,使得当所述实时电压小于预置数值时,所述功率随着所述实时电压的增大而增大,当所述实时电压大于等于预置数值时,所述功率随着所述实时电压的增大而减小。
  2. 根据权利要求1所述的电子烟电路,其特征在于,
    所述温度检测模块为热电偶、热敏电阻、电阻温度检测器(RTD)或者集成电路温度传感器。
  3. 根据权利要求1所述的电子烟电路,其特征在于,所述温度检测模块具体为RTD;所述电池杆电路包括正极输出端和接地的负极输出端;
    所述信号放大模块具体包括具有低偏置温漂的第一运算放大器和第二运算放大器、第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第八电阻和第一稳压二极管;
    所述第一运算放大器的同相输入端与所述RTD的一端、所述第一电阻的一端、所述第二电阻的一端相连,所述第一电阻的另一端与所述电池杆电路的正极输出端、所述电热丝的一端相连,所述第二电阻的另一端与所述第一运算放大器的输出端相连,所述RTD的另一端和所述电热丝的另一端均接地,且所述RTD和所述电热丝相靠近,以使得所述RTD能够检测到所述电热丝的温度;
    所述第一运算放大器的反相输入端与所述第三电阻的一端相连,还与所述第四电阻的一端相连,所述第三电阻的另一端接地,所述第四电阻的另一端与所述第一运算放大器的输出端相连;
    所述第二运算放大器的同相输入端和所述第一运算放大器的输出端相连,反相输入端与所述第五电阻、第六电阻、第七电阻的一端相连,所述第五电阻 的另一端与所述电池杆电路的正极输出端相连,所述第六电阻的另一端接地,所述第七电阻的另一端与所述第二运算放大器的输出端相连;
    所述第二运算放大器的输出端与所述第一稳压二极管的负极、所述微处理器相连,所述第一稳压二极管的正极与所述第八电阻的一端相连,所述第八电阻的另一端接地;
    所述第一运算放大器和第二运算放大器的正电源端均与所述电池杆电路的正极输出端相连,负电源端均接地。
  4. 根据权利要求1所述的电子烟电路,其特征在于,所述温度检测模块具体为负温度系数(NTC)热敏电阻,所述电池杆电路包括正极输出端和接地的负极输出端;
    所述信号放大模块具体包括第三运算放大器、可调电阻、电阻一、电阻二、电阻三、电阻四、电阻五、电阻六、第二稳压二极管;
    所述可调电阻的两端分别和所述电阻一的一端、所述电阻二的一端相联,所述电阻一的另一端与所述电池杆电路的正极输出端相连,所述电阻二的另一端接地;
    所述电热丝的一端与所述电池杆电路的正极输出端,另一端接地;
    所述第三运算放大器的同相输入端与所述NTC热敏电阻的一端、所述电阻三相连,所述NTC热敏电阻的另一端与所述电池杆电路的正极输出端相连,所述电阻三的另一端接地;且所述NTC热敏电阻和所述电热丝相靠近,以使得所述NTC热敏电阻能够检测到所述电热丝的温度;
    所述第三运算放大器的反相输入端与所述电阻四、电阻五的一端相连,所述电阻四的另一端接地,所述电阻五的另一端与所述第三运算放大器的输出端相连;
    第三运算放大器的输出端还与所述微处理器、所述第二稳压二极管的负极相连;所述第二稳压二极管的正极与所述电阻六的一端相连,所述电阻六的另一端接地;
    所述第三运算放大器的正电源端与所述电池杆电路的正极输出端相连,负电源端接地。
  5. 根据权利要求1所述的电子烟电路,其特征在于,所述电池杆电路包 括电子烟电池、开关、微处理器、场效应管、正极输出端、负极输出端、第一分压电阻和第二分压电阻;
    所述电子烟电池的正极与所述正极输出端相连,负极接地;所述场效应管的G极与所述微处理器相连,D极与所述负极输出端相连,S极与所述电子烟电池的负极相连;
    所述第一分压电阻的一端与所述场效应管的D极相连,另一端与所述微处理器、所述第二分压电阻的一端相连;所述第二分压电阻的另一端与所述电子烟电池的正极相连;
    所述开关与所述微处理器相连,当所述微处理器检测到所述开关被触发时,所述微处理器根据来自所述信号放大模块的所述实时电压和所述第一分压电阻两端的电压控制所述场效应管的D极与S极之间的导通比,以控制所述正极输出端与所述负极输出端之间输出的功率。
  6. 根据权利要求5所述的电子烟电路,其特征在于,所述电池杆电路还包括第一电容、第三稳压二极管;
    所述微处理器和所述第一电容的一端、所述第三稳压二极管的负极相连,所述第一电容的另一端接地,所述第三稳压二极管的正极与所述电子烟的正极相连。
  7. 根据权利要求5所述的电子烟电路,其特征在于,所述电池杆电路还包括限流电阻;
    所述限流电阻的一端与所述场效应管的D极相连,另一端与所述微处理器相连。
  8. 根据权利要求根据权利要求1至5任一项所述的电子烟控制电路,其特征在于,所述微处理器由芯片SN8P27113AA、MC32P21或者HT46R01实现。
  9. 一种电子烟,包括如权利要求1至8任一项所述的电子烟控制电路。
  10. 一种电子烟雾化控制方法,其特征在于,包括:
    温度检测模块检测电子烟内的电热丝的实时温度并将所述实时温度转换为实时电压发送至电压控制模块;
    所述电压控制模块将所述实时电压与预置数值进行对比;
    所述电压控制模块根据对比结果调整所述电子烟的电池为所述电热丝输出的功率,其中,当所述实时电压小于预置数值时,所述电压控制模块控制所述功率随着所述实时电压的增大而增大;当所述实时电压大于等于预置数值时,所述功率随着所述实时电压的增大而减小。
  11. 根据权利要求10所述的电子烟控制方法,其特征在于,所述电压控制模块包括与所述温度检测模块相连的微处理器、场效应管、电压正极输出端和电压负极输出端,所述电子烟电池的正极与所述电压正极输出端相连,所述场效应管的G极与所述微处理器相连,D极与所述负极输出端相连,S极与所述电子烟电池的负极相连;
    所述电压控制模块根据对比结果调整所述电子烟的电池为所述电热丝输出的功率具体包括:
    所述微处理器根据对比结果来调整所述场效应管的D极与S极之间的导通比。
PCT/CN2014/095305 2014-12-29 2014-12-29 电子烟控制电路、电子烟和电子烟雾化控制方法 WO2016106493A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/095305 WO2016106493A1 (zh) 2014-12-29 2014-12-29 电子烟控制电路、电子烟和电子烟雾化控制方法
CN201490001617.9U CN208030261U (zh) 2014-12-29 2014-12-29 电子烟控制电路以及电子烟

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/095305 WO2016106493A1 (zh) 2014-12-29 2014-12-29 电子烟控制电路、电子烟和电子烟雾化控制方法

Publications (1)

Publication Number Publication Date
WO2016106493A1 true WO2016106493A1 (zh) 2016-07-07

Family

ID=56283783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095305 WO2016106493A1 (zh) 2014-12-29 2014-12-29 电子烟控制电路、电子烟和电子烟雾化控制方法

Country Status (2)

Country Link
CN (1) CN208030261U (zh)
WO (1) WO2016106493A1 (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
US10045568B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10045567B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10058130B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10104915B2 (en) 2013-12-23 2018-10-23 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10111470B2 (en) 2013-12-23 2018-10-30 Juul Labs, Inc. Vaporizer apparatus
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
WO2019033888A1 (zh) * 2017-08-15 2019-02-21 惠州市新泓威科技有限公司 电子烟具的发热装置及其控制方法
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
CN109588779A (zh) * 2018-03-27 2019-04-09 深圳瀚星翔科技有限公司 电子雾化设备及其防干烧控制装置
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
WO2019165742A1 (zh) * 2018-03-02 2019-09-06 常州市派腾电子技术服务有限公司 电压输出电路、方法及电子烟
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
CN110250580A (zh) * 2019-06-26 2019-09-20 西安拓尔微电子有限责任公司 一种基于双电源的高精度恒温电子烟
US10512282B2 (en) 2014-12-05 2019-12-24 Juul Labs, Inc. Calibrated dose control
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
US10865001B2 (en) 2016-02-11 2020-12-15 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
USD929651S1 (en) 2019-08-01 2021-08-31 Nicoventures Holdings Limited (A Uk Company) Electronic cigarette vaporizer
USD984730S1 (en) 2021-07-08 2023-04-25 Nicoventures Trading Limited Aerosol generator
USD985187S1 (en) 2021-01-08 2023-05-02 Nicoventures Trading Limited Aerosol generator
US11638443B2 (en) 2018-05-29 2023-05-02 Juul Labs, Inc. Heater control circuitry for vaporizer device
WO2023212884A1 (zh) * 2022-05-06 2023-11-09 深圳麦克韦尔科技有限公司 电子雾化装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3876764A1 (en) 2018-11-05 2021-09-15 Juul Labs, Inc. Cartridges for vaporizer devices
CN111351985B (zh) * 2018-12-24 2022-02-11 深圳御烟实业有限公司 电阻检测系统和方法
KR102212378B1 (ko) * 2019-01-03 2021-02-04 주식회사 케이티앤지 전압 변환기를 포함하는 에어로졸 생성 장치 및 이를 제어하는 방법
CN110025048A (zh) * 2019-04-03 2019-07-19 深圳市合元科技有限公司 电加热发烟系统及挥发性化合物的释放控制方法
JP6613008B1 (ja) * 2019-05-31 2019-11-27 日本たばこ産業株式会社 エアロゾル吸引器用の制御装置及びエアロゾル吸引器
CN110279149A (zh) * 2019-06-11 2019-09-27 深圳市长盈精密技术股份有限公司 一种电子烟雾化器温度补偿电路及控制方法
CN110236230A (zh) * 2019-06-21 2019-09-17 精赟智能科技(上海)有限公司 电子烟的温控装置及电子烟
CN110652043A (zh) * 2019-10-21 2020-01-07 东莞市美迪云电子科技有限公司 一种可调节功率的烟雾发生器以及调节控制方法
JP6667709B1 (ja) * 2019-10-24 2020-03-18 日本たばこ産業株式会社 エアロゾル吸引器の電源ユニット
CN114041635A (zh) * 2021-11-11 2022-02-15 海南摩尔兄弟科技有限公司 一种电池杆、雾化器、电子雾化装置及电池杆的工作方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001502542A (ja) * 1996-10-22 2001-02-27 フイリップ モーリス プロダクツ インコーポレイテッド 電気喫煙システムを作動させる電力制御器及びその方法
US20140014126A1 (en) * 2012-07-11 2014-01-16 Eyal Peleg Hot-wire control for an electronic cigarette
DE202014101125U1 (de) * 2014-03-12 2014-03-27 EWWK UG (haftungsbeschränkt) Elektronische Zigarette oder Pfeife
CN203643774U (zh) * 2013-12-13 2014-06-11 深圳市合元科技有限公司 电子烟
CN203646502U (zh) * 2013-11-28 2014-06-18 刘秋明 一种电子烟的电池组件、雾化组件以及电子烟
CN104116138A (zh) * 2014-06-24 2014-10-29 深圳市麦克韦尔科技有限公司 电子烟及其控制方法
CN203952441U (zh) * 2014-06-11 2014-11-26 深圳市合元科技有限公司 雾化装置及电子烟
CN203986127U (zh) * 2014-07-18 2014-12-10 云南中烟工业有限责任公司 一种精确控温的电加热型卷烟烟具
CN203986103U (zh) * 2014-06-06 2014-12-10 李述彦 电子烟配件装置和电子烟

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001502542A (ja) * 1996-10-22 2001-02-27 フイリップ モーリス プロダクツ インコーポレイテッド 電気喫煙システムを作動させる電力制御器及びその方法
US20140014126A1 (en) * 2012-07-11 2014-01-16 Eyal Peleg Hot-wire control for an electronic cigarette
CN203646502U (zh) * 2013-11-28 2014-06-18 刘秋明 一种电子烟的电池组件、雾化组件以及电子烟
CN203643774U (zh) * 2013-12-13 2014-06-11 深圳市合元科技有限公司 电子烟
DE202014101125U1 (de) * 2014-03-12 2014-03-27 EWWK UG (haftungsbeschränkt) Elektronische Zigarette oder Pfeife
CN203986103U (zh) * 2014-06-06 2014-12-10 李述彦 电子烟配件装置和电子烟
CN203952441U (zh) * 2014-06-11 2014-11-26 深圳市合元科技有限公司 雾化装置及电子烟
CN104116138A (zh) * 2014-06-24 2014-10-29 深圳市麦克韦尔科技有限公司 电子烟及其控制方法
CN203986127U (zh) * 2014-07-18 2014-12-10 云南中烟工业有限责任公司 一种精确控温的电加热型卷烟烟具

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US10638792B2 (en) 2013-03-15 2020-05-05 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10201190B2 (en) 2013-12-23 2019-02-12 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US10070669B2 (en) 2013-12-23 2018-09-11 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10104915B2 (en) 2013-12-23 2018-10-23 Juul Labs, Inc. Securely attaching cartridges for vaporizer devices
US10111470B2 (en) 2013-12-23 2018-10-30 Juul Labs, Inc. Vaporizer apparatus
US10117466B2 (en) 2013-12-23 2018-11-06 Juul Labs, Inc. Vaporization device systems and methods
US10117465B2 (en) 2013-12-23 2018-11-06 Juul Labs, Inc. Vaporization device systems and methods
US10045568B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US11752283B2 (en) 2013-12-23 2023-09-12 Juul Labs, Inc. Vaporization device systems and methods
US10058124B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
US10912331B2 (en) 2013-12-23 2021-02-09 Juul Labs, Inc. Vaporization device systems and methods
US10667560B2 (en) 2013-12-23 2020-06-02 Juul Labs, Inc. Vaporizer apparatus
US10058130B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Cartridge for use with a vaporizer device
US10701975B2 (en) 2013-12-23 2020-07-07 Juul Labs, Inc. Vaporization device systems and methods
US10264823B2 (en) 2013-12-23 2019-04-23 Juul Labs, Inc. Vaporization device systems and methods
US10045567B2 (en) 2013-12-23 2018-08-14 Juul Labs, Inc. Vaporization device systems and methods
US10512282B2 (en) 2014-12-05 2019-12-24 Juul Labs, Inc. Calibrated dose control
US10865001B2 (en) 2016-02-11 2020-12-15 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
USD913583S1 (en) 2016-06-16 2021-03-16 Pax Labs, Inc. Vaporizer device
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
USD929036S1 (en) 2016-06-16 2021-08-24 Pax Labs, Inc. Vaporizer cartridge and device assembly
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
WO2019033888A1 (zh) * 2017-08-15 2019-02-21 惠州市新泓威科技有限公司 电子烟具的发热装置及其控制方法
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
WO2019165742A1 (zh) * 2018-03-02 2019-09-06 常州市派腾电子技术服务有限公司 电压输出电路、方法及电子烟
CN109588779A (zh) * 2018-03-27 2019-04-09 深圳瀚星翔科技有限公司 电子雾化设备及其防干烧控制装置
CN109588779B (zh) * 2018-03-27 2024-03-29 深圳瀚星翔科技有限公司 电子雾化设备及其防干烧控制装置
US11638443B2 (en) 2018-05-29 2023-05-02 Juul Labs, Inc. Heater control circuitry for vaporizer device
US11666086B2 (en) 2018-05-29 2023-06-06 Juul Labs, Inc. Vaporizer cartridge for a vaporizer
CN110250580A (zh) * 2019-06-26 2019-09-20 西安拓尔微电子有限责任公司 一种基于双电源的高精度恒温电子烟
USD945057S1 (en) 2019-08-01 2022-03-01 Nicoventures Trading Limited (a UK company) Electronic cigarette vaporizer mouthpiece
USD943168S1 (en) 2019-08-01 2022-02-08 Nicoventures Holdings Limited Electronic cigarette vaporizer housing plate
USD929651S1 (en) 2019-08-01 2021-08-31 Nicoventures Holdings Limited (A Uk Company) Electronic cigarette vaporizer
USD985187S1 (en) 2021-01-08 2023-05-02 Nicoventures Trading Limited Aerosol generator
USD984730S1 (en) 2021-07-08 2023-04-25 Nicoventures Trading Limited Aerosol generator
WO2023212884A1 (zh) * 2022-05-06 2023-11-09 深圳麦克韦尔科技有限公司 电子雾化装置

Also Published As

Publication number Publication date
CN208030261U (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
WO2016106493A1 (zh) 电子烟控制电路、电子烟和电子烟雾化控制方法
US11684088B2 (en) Electronic vaping devices
CN110892787B (zh) 气溶胶生成装置及实现其反馈控制功能的方法
CN104783332B (zh) 一种能够自动控温的电子烟
CN105011375B (zh) 一种雾化丝阻值能够自动控制的电子烟
JP6918193B2 (ja) 吸引成分生成装置の電源ユニット、吸引成分生成装置の電源ユニットにおける既知抵抗の電気抵抗値の選択方法
CN204217894U (zh) 控制电路及电子烟
CN105899093B (zh) 电子烟控制电路、电子烟以及电子烟的控制方法
US9949511B2 (en) Electronic cigarette and control method therefor
WO2021057297A1 (zh) 具有自动闭环控制输出电源芯片的电子烟
CN106339026B (zh) 电子烟加热功率稳定控制电路
CN204742632U (zh) 电子烟
CN203789154U (zh) 电子烟
WO2016168986A1 (zh) 一种电子烟的雾化器控制电路、电子烟及其雾化器
EP3572775A2 (en) Switch control circuit and switch control method for electronic cigarette and electronic cigarette
CN106820265B (zh) 电子烟及其加热雾化控制方法
WO2020059049A1 (ja) 香味生成装置、電源ユニット、香味生成装置を制御する方法、及びプログラム
CN104950953A (zh) 一种电子烟及其温度控制方法
CN204969459U (zh) 一种雾化丝阻值能够自动控制的电子烟
CN104881063A (zh) 一种自动控温铂金丝电子烟
CN104305527A (zh) 红外感应温控电子烟及其温度控制方法
CN204695034U (zh) 一种电子烟的雾化器控制电路、电子烟及其雾化器
WO2022052611A1 (zh) 恒温控制的电子雾化器
CN213404869U (zh) 一种电子烟防干烧装置
CN204440200U (zh) 一种用于烘焙型烟雾发生装置的加热控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 05.09.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14909306

Country of ref document: EP

Kind code of ref document: A1