WO2016105130A1 - Method and apparatus for controlling operation of redox flow battery - Google Patents

Method and apparatus for controlling operation of redox flow battery Download PDF

Info

Publication number
WO2016105130A1
WO2016105130A1 PCT/KR2015/014194 KR2015014194W WO2016105130A1 WO 2016105130 A1 WO2016105130 A1 WO 2016105130A1 KR 2015014194 W KR2015014194 W KR 2015014194W WO 2016105130 A1 WO2016105130 A1 WO 2016105130A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell module
flow battery
redox flow
internal resistance
potential difference
Prior art date
Application number
PCT/KR2015/014194
Other languages
French (fr)
Korean (ko)
Inventor
이지영
홍민기
예희창
김수환
Original Assignee
오씨아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오씨아이 주식회사 filed Critical 오씨아이 주식회사
Publication of WO2016105130A1 publication Critical patent/WO2016105130A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method and apparatus for controlling operation of a redox flow battery.
  • the redox flow battery is a kind of secondary battery, and converts chemical energy into electrical energy or converts electrical energy into chemical energy through a charging or discharging process.
  • the material constituting the electrode itself participates in the oxidation / reduction reaction
  • the electrolyte contained in the electrolyte flowing on the electrode surface causes the oxidation / reduction reaction to perform charging and discharging.
  • the redox flow battery may set the charge or discharge capacity by adjusting the electrode area and the volume of the electrolyte.
  • Such a redox flow battery is gradually reduced in efficiency as charging or discharging is repeatedly performed.
  • the most important cause of the deterioration of the redox flow cell is the increase in the internal resistance of the cell.
  • the increase in the internal resistance of the battery includes deterioration of the battery material, an increase in contact resistance, inflow of foreign substances, and a decrease in the reactivity of the electrode.
  • the ion concentration of the electrolyte contained in the electrolyte rapidly increases locally, thus depositing the oxide of the electrolyte in the solid form on the surface of the electrode.
  • the surface area of the electrode involved in the oxidation / reduction reaction is reduced, which leads to a decrease in the reactivity of the electrode.
  • the electrolyte concentration and operating temperature are limitedly set, or the state of charge (SOC) of the battery is limited to a predetermined level or less.
  • SOC state of charge
  • an alkaline solution may be incorporated into a battery, or a method may be used in which an electrode is decomposed and washed with a cleaning solution or the like.
  • the conventional method of limiting the operation conditions of the redox flow battery or stopping the operation has a problem of causing another efficiency degradation of the redox flow battery.
  • An object of the present invention is to provide a method and apparatus for controlling the operation of a redox flow battery which can increase the efficiency of the redox flow battery by appropriately removing the solid form precipitates generated during the operation of the redox flow battery.
  • Another object of the present invention is to provide a method and apparatus for controlling the operation of a redox flow battery which can increase the efficiency of the redox flow battery by removing precipitates without limiting the operation conditions of the redox flow battery or stopping the operation.
  • the present invention provides a method for controlling an operation of a redox flow battery, the method comprising: measuring an initial internal resistance value of a cell module of the redox flow battery; Determining whether the change amount of the resistance value exceeds the first reference value, and when the change amount exceeds the first reference value, the potential difference between the positive electrode and the negative electrode of the cell module is smaller than a predetermined reference potential difference. And controlling the flow of current applied to the cell module.
  • the operation control device of the redox flow battery the measuring unit for measuring the initial internal resistance value of the cell module of the redox flow battery and the amount of change of the internal resistance value of the cell module relative to the initial internal resistance value It is determined whether the first reference value is exceeded, and if the change amount exceeds the first reference value, the potential difference between the positive electrode and the negative electrode of the cell module is smaller than a predetermined reference potential difference. It is another feature that the control unit for controlling the flow of the current applied to the cell module.
  • FIG. 1 is a block diagram of an operation control apparatus of a redox flow battery and a redox flow battery according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating an operation control method of a redox flow battery according to an exemplary embodiment of the present invention.
  • 3 is a graph showing a general charge and discharge curve of the redox flow battery.
  • FIG. 4 is a graph showing a charge and discharge curve of the redox flow battery appearing according to the operation control of the redox flow battery according to an embodiment of the present invention.
  • FIG. 5 is a graph showing a charging curve of a redox flow battery according to the prior art and the redox flow battery according to the operation control of the redox flow battery according to an embodiment of the present invention.
  • FIG. 6 is a graph showing a discharge curve of the redox flow battery according to the prior art and the redox flow battery according to the operation control of the redox flow battery according to an embodiment of the present invention.
  • FIG. 7 is a graph illustrating voltage efficiency before and after performing the operation control of the redox flow battery according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of an operation control apparatus of a redox flow battery and a redox flow battery according to an embodiment of the present invention.
  • a redox flow battery includes a positive electrode tank 102, a negative electrode tank 104, a cell module 106, a positive electrode pump 114, and a negative electrode pump ( 116).
  • a positive electrode electrolyte containing a positive electrode electrolyte is stored in the positive electrode tank 102, and a negative electrode electrolyte containing a negative electrode electrolyte is stored in the negative electrode tank 104. do.
  • the positive electrode pump 114 moves the positive electrode electrolyte stored in the positive electrode tank 102 into the cell module 106, and the positive electrode electrolyte passing through the cell module 106 is again returned. Return to the positive electrode tank 102.
  • the negative electrode pump 116 moves the negative electrode electrolyte stored in the negative electrode tank 104 into the cell module 106, and the negative electrode electrolyte passing through the cell module 106 is again returned. Return to the negative electrode tank 104.
  • the redox flow battery uses vanadium ions as the electrolyte, and V 5+ and V 4+ are used as the (+) electrode electrolyte stored in the (+) electrode tank 102 (- ) V 3+ and V 2+ are used as the negative electrode electrolyte stored in the electrode tank 104.
  • V 5+ and V 4+ are used as the (+) electrode electrolyte stored in the (+) electrode tank 102 (- )
  • V 3+ and V 2+ are used as the negative electrode electrolyte stored in the electrode tank 104.
  • the cell module 106 includes a positive electrode 110, a negative electrode 112, and an ion exchange membrane 108.
  • the positive electrode 110 and the negative electrode 112 are connected to the power supply 118, respectively, and the power supply 118 is connected to the second direction 12, that is, to charge the cell module 106.
  • -) Supply current so that current flows from the electrode to the (+) electrode.
  • the ion exchange membrane 108 prevents mixing between the positive electrode electrolyte and the electrolyte ions contained in the negative electrode electrolyte in the cell module 106, and allows only the transfer of charge carrier ions of each electrolyte.
  • a load (not shown) may be connected to the cell module 106. In this case, a current may flow in the first direction 11, that is, in the positive electrode. Flow toward the negative electrode.
  • a direct cause of lowering the efficiency of the redox flow battery as shown in FIG. 1 is an increase in the internal resistance of the battery.
  • Increasing the internal resistance of the battery is caused by deterioration of the battery material, an increase in contact resistance, inflow of foreign matter and a decrease in reactivity of the electrode.
  • the concentration of each vanadium ion is locally increased at the end of the charging and discharging process, and the vanadium oxide is solid on the electrodes 110 and 112 surface. Precipitates.
  • the surface area to which the electrodes can react is reduced, which causes a decrease in reactivity of the electrodes 110 and 112.
  • V 5+ and V 4+ ions are present at the (+) electrode of the redox flow battery, and V 3+ and V 2+ ions are present at the ( ⁇ ) electrode, and the electromotive force of the redox flow battery is About 1.4V.
  • V 5+ ions present in the (+) electrode tend to be precipitated because they have low solubility compared to V 4+ ions. Therefore, when charging reaction occurs in the redox flow battery according to the current supply by the power supply 118, when there are more V 5+ ions than V 4+ ions in the (+) electrode, V 5+ ions are positive (+) It may precipitate in a solid form on the surface of the electrode 110.
  • the operation control apparatus 120 of the redox flow battery removes the precipitates thus generated through an electrochemical method.
  • an operation control apparatus 120 of a redox flow battery includes a measuring unit 122 and a control unit 124.
  • the measuring unit 122 measures an initial internal resistance value of the cell module 106.
  • the measurement unit 122 measures the voltage, the open circuit voltage (OCV) and the current of the cell module 106 in real time, and the internal resistance value of the cell module 106 according to the following equation. Can be calculated.
  • Equation 1 R is the internal resistance value of the cell module 106
  • V AVR is the average voltage value of the cell module 106
  • OCV AVR is the average OCV value of the cell module 106
  • I is the cell module 106 Indicates the current flowing through
  • the reason for using the average voltage value and the average OCV value of the cell module 106 in [Equation 1] is that the number of cells included in the cell module 106 may vary according to the configuration of the redox flow battery, This is because the voltage value of each cell included in the cell module 106 is calculated differently depending on whether the connection is serial or parallel.
  • the controller 124 uses the initial internal resistance value of the cell module 106 and the internal resistance value of the cell module 106 measured by the measuring unit 122 to determine the internal value of the cell module 106. The amount of change in the resistance value can be calculated. The controller 124 determines whether the change amount of the internal resistance value calculated as described above exceeds the first reference value, and when the change amount of the internal resistance value exceeds the first reference value, (+) of the cell module 106. The flow of current applied to the cell module is controlled such that the potential difference between the electrode 110 and the negative electrode 112 is smaller than a predetermined reference potential difference. In one embodiment of the present invention, the reference potential difference may be defined as the potential difference between the positive electrode 110 and the negative electrode 112 when the discharge of the redox flow battery is completed.
  • control unit 124 is the power supply unit 118 so that the potential difference between the (+) electrode 110 and the (-) electrode 112 of the cell module 106 is smaller than the reference potential difference. ) May supply current in the second direction 12.
  • the first reference value R1 may be defined as follows.
  • R1 R I ⁇ a
  • R I represents an initial resistance value of the cell module 106 and a is a predetermined constant (eg, 1.05). As shown in Equation 2, since the first reference value R1 is a value determined by the initial resistance value R I , it may vary depending on the configuration of the redox flow battery.
  • control unit 124 is a cell module such that the potential difference between the (+) electrode 110 and the (-) electrode 112 of the cell module 106 is smaller than the reference potential difference only during a predetermined control time.
  • the flow of current applied to 106 may be controlled.
  • the controller 124 is applied to the cell module 106 such that the potential difference between the positive electrode 110 and the negative electrode 112 of the cell module 106 is smaller than the reference potential difference.
  • the change in the internal resistance value of the cell module 106 measured after controlling the flow of current is less than the second reference value
  • the potential difference between the positive electrode 110 and the negative electrode 112 of the cell module 106 is determined. May control the flow of current applied to the cell module 106 to be greater than the reference potential difference.
  • the control unit 124 continuously measures the change amount of the internal resistance value of the cell module 106 after causing the power supply unit 118 to supply current in the second direction 12, and the measured change amount is the second reference value. If it is determined to fall down, the power supply unit 118 supplies the current in the first direction 11 again, so that the potential difference between the positive electrode 110 and the negative electrode 112 of the cell module 106 is reduced. It can be made larger than the reference potential difference.
  • the second reference value R2 may be defined as follows.
  • R2 R I ⁇ b
  • R I represents an initial resistance value of the cell module 106 and b is a predetermined constant (eg, 1.005). As shown in Equation 3, since the second reference value R2 is a value determined by the initial resistance value R I , it may vary depending on the configuration of the redox flow battery.
  • FIG. 2 is a flowchart illustrating an operation control method of a redox flow battery according to an exemplary embodiment of the present invention.
  • the measurement unit 122 measures an initial internal resistance value of the cell module 106 (202). Then, the control unit 124 measures the amount of change in the internal resistance value of the cell module 106 with respect to the initial internal resistance value (204). To this end, the measurement unit 122 may measure the internal resistance of the cell module 106 in real time, and the controller 124 may calculate the difference between the measured internal resistance and the initial internal resistance as a change amount of the internal resistance. Can be.
  • the controller 124 determines whether the calculated amount of change in internal resistance exceeds a preset first reference value (206). If the determination 206 results in that the internal resistance change amount does not exceed the first reference value, step 204 is performed again. However, as a result of the determination 206, when the internal resistance change amount exceeds the first reference value, the controller 124 determines that the potential difference between the positive electrode 110 and the negative electrode 112 of the cell module 106 is smaller than the reference potential difference. Control the flow of current applied to the cell module 106 (208).
  • FIG. 1 When the redox flow battery of FIG. 1 operates normally, the power supply unit 118 flows current to the positive electrode 110 and the negative electrode 112 in the first direction 11.
  • 3 is a graph showing a general charge and discharge curve of the redox flow battery.
  • point 302 represents the point where the discharge begins.
  • the potential difference between the positive electrode and the negative electrode is 1.6V to 1.6V.
  • the potential difference decreases to 1V again.
  • the potential difference for example, 1 V
  • FIG. 4 is a graph showing a charge and discharge curve of the redox flow battery appearing according to the operation control of the redox flow battery according to an embodiment of the present invention.
  • the curves before point 1 and after point 7 in FIG. 4 represent the general charge and discharge curves as in FIG. 3.
  • the controller 124 may determine the intervals 1 to 4 of FIG. 2. Likewise, the flow of current flowing in the cell module 106 is controlled so that the potential difference between the positive electrode 110 and the negative electrode 112 is smaller than the reference potential difference, that is, the potential difference (for example, 1 V) at the time when discharge is completed. . As a result, the potential difference of the cell module 106 gradually decreases below zero from the reference potential difference.
  • the controller 124 is applied to the cell module 106 such that the potential difference between the positive electrode 110 and the negative electrode 112 of the cell module 106 is smaller than the reference potential difference. If the amount of change in the internal resistance value of the cell module 106 measured after controlling the flow of the current to be less than the second reference value, the (+) electrode 110 and (-) electrode 112 of the cell module 106 The flow of current applied to the cell module 106 may be controlled such that the potential difference is greater than the reference potential difference. For example, the controller 124 continuously measures the amount of change in the internal resistance of the cell module 106, and if it is determined that the measured amount of change in the internal resistance falls below the second reference value, the sections 1 to 4 in the cell module 106.
  • the current flows in the opposite direction to () so that the potential difference between the positive electrode 110 and the negative electrode 112 of the cell module 106 becomes larger than the reference potential difference as shown in the section 4 to 7 of FIG. 4. Can be. In the periods 4 to 7, the following reactions occur in the positive electrode 110.
  • the potential difference of the redox flow battery after the point 7 may be restored to the reference potential difference or more, and the normal charging and discharging process may be performed again.
  • FIG. 5 is a graph showing a charging curve of a redox flow battery according to the prior art and the redox flow battery according to the operation control of the redox flow battery according to an embodiment of the present invention
  • Figure 6 is a prior art Is a graph showing a discharge curve of a redox flow battery according to the present invention and a redox flow battery according to an operation control of the redox flow battery according to an embodiment of the present invention.
  • Curve 502 in FIG. 5 shows the charging curve in the second cycle after the start of the operation of the redox flow battery
  • curve 602 in FIG. 6 shows the discharge curve in the second cycle after the start of the operation of the redox flow battery. Indicates.
  • curve 504 in FIG. 5 shows a charging curve at the 103rd cycle after the start of operation of the redox flow battery
  • curve 604 in FIG. 6 shows a discharge curve at the 103rd cycle after the start of operation of the redox flow battery. Indicates. As can be seen from FIG. 5 and FIG. 6, when the operating cycle of the redox flow battery increases, a larger voltage appears even though the same current flows during charging due to an increase in the internal resistance of the battery. Even if you pass, smaller voltage appears.
  • the curve 506 of FIG. 5 and the curve 606 of FIG. 6 respectively correspond to the positive electrode 110 and the negative electrode 112 according to the operation control method of the redox flow battery according to the exemplary embodiment of the present invention.
  • the charge and discharge curves at the 105 th cycle are respectively shown after controlling the potential difference of) to be smaller than the reference potential difference.
  • the charge and discharge curves similar to those of the charge and discharge curves 502 and 602 at the second cycle are reduced due to the decrease in the internal resistance of the battery. Discharge curves 506 and 606 reappear.
  • FIG. 7 is a graph illustrating voltage efficiency before and after performing the operation control of the redox flow battery according to an embodiment of the present invention.
  • the point Q is such that the potential difference between the positive electrode 110 and the negative electrode 112 is smaller than the reference potential difference according to the operation control method of the redox flow battery according to the exemplary embodiment of the present invention. It represents the time point at which control is performed. As shown in FIG. 7, the internal resistance of the redox flow battery is reduced based on the point Q, and the voltage efficiency is restored to 89.8%.

Abstract

The present invention relates to a method and an apparatus for controlling operation of a redox flow battery. The method for controlling operation of a redox flow battery according to one embodiment of the present invention comprises the steps of: measuring the initial internal resistance value of a cell module of a redox flow battery; determining whether or not the amount of change in the internal resistance value of the cell module relative to the initial internal resistance value exceeds a first reference value; and if the change amount exceeds the first reference value, controlling flow of an electric current applied to the cell module so that the potential difference between a (+) electrode and a (-) electrode of the cell module becomes smaller than a predetermined reference potential difference. The present invention has an advantage in that the efficiency of a redox flow battery can be enhanced by properly removing solid-state precipitates generated in the course of operation of the redox flow battery.

Description

레독스 흐름 전지의 운전 제어 방법 및 장치Operation control method and apparatus of redox flow battery
본 발명은 레독스 흐름 전지의 운전 제어 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for controlling operation of a redox flow battery.
레독스 흐름 전지는 2차 전지의 일종으로서, 충전 또는 방전 과정을 통하여 화학 에너지를 전기 에너지로 바꾸거나 전기 에너지를 화학 에너지로 변환하여 사용한다. 그러나 일반적인 2차 전지는 전극을 구성하는 물질 자체가 산화/환원 반응에 참여하는 반면에 레독스 흐름 전지는 전극 표면에 흐르는 전해액에 포함된 전해질이 산화/환원 반응을 일으켜 충전 및 방전이 수행된다는 점에서 차이가 있다. 이에 따라 레독스 흐름 전지는 전극 면적 및 전해액의 부피 조절을 통해 충전 또는 방전 용량을 설정할 수 있다.The redox flow battery is a kind of secondary battery, and converts chemical energy into electrical energy or converts electrical energy into chemical energy through a charging or discharging process. However, in the conventional secondary battery, the material constituting the electrode itself participates in the oxidation / reduction reaction, whereas in the redox flow battery, the electrolyte contained in the electrolyte flowing on the electrode surface causes the oxidation / reduction reaction to perform charging and discharging. There is a difference. Accordingly, the redox flow battery may set the charge or discharge capacity by adjusting the electrode area and the volume of the electrolyte.
이와 같은 레독스 흐름 전지는 충전 또는 방전이 반복적으로 수행되면서 그 효율이 점차 감소하게 된다. 레독스 흐름 전지의 효율 저하를 초래하는 가장 중요한 원인은 전지의 내부 저항 증가이다. 전지의 내부 저항이 증가하는 원인으로는 전지 소재의 열화, 접촉 저항의 증가, 이물질의 유입 및 전극의 반응성 감소 등을 들 수 있다.Such a redox flow battery is gradually reduced in efficiency as charging or discharging is repeatedly performed. The most important cause of the deterioration of the redox flow cell is the increase in the internal resistance of the cell. The increase in the internal resistance of the battery includes deterioration of the battery material, an increase in contact resistance, inflow of foreign substances, and a decrease in the reactivity of the electrode.
특히 레독스 흐름 전지의 충전 또는 방전 과정의 말기에서는 전해액에 포함된 전해질의 이온 농도가 국소적으로 급증하게 되고, 이에 따라 전극의 표면 상에 전해질의 산화물이 고체 형태로 석출된다. 이와 같이 전극 표면에 고체의 석출물이 생성될 경우 산화/환원 반응에 관여하는 전극의 표면적이 감소되며, 이는 전극의 반응성 감소로 이어진다.In particular, at the end of the charging or discharging process of the redox flow battery, the ion concentration of the electrolyte contained in the electrolyte rapidly increases locally, thus depositing the oxide of the electrolyte in the solid form on the surface of the electrode. As such, when a solid precipitate is formed on the surface of the electrode, the surface area of the electrode involved in the oxidation / reduction reaction is reduced, which leads to a decrease in the reactivity of the electrode.
종래 기술에 따르면, 레독스 흐름 전지의 운전 중 발생하는 석출물을 제거하기 위하여 전해액의 농도 및 운전 온도를 제한적으로 설정하거나, 전지의 충전 상태(State Of Charge, SOC)를 일정 레벨 이하로 제한한다. 또한 이와 같은 석출물을 제거하기 위하여 알칼리 용액을 전지 내에 혼입시키거나, 전극을 분해한 후 세정액 등으로 세척하는 방법이 사용되기도 한다. 그러나 이와 같이 레독스 흐름 전지의 운전 조건을 제한하거나 운전을 정지시키는 종래의 방법은 레독스 흐름 전지의 또 다른 효율 저하를 일으킨다는 문제가 있다.According to the related art, in order to remove precipitates generated during operation of the redox flow battery, the electrolyte concentration and operating temperature are limitedly set, or the state of charge (SOC) of the battery is limited to a predetermined level or less. In addition, in order to remove such precipitates, an alkaline solution may be incorporated into a battery, or a method may be used in which an electrode is decomposed and washed with a cleaning solution or the like. However, the conventional method of limiting the operation conditions of the redox flow battery or stopping the operation has a problem of causing another efficiency degradation of the redox flow battery.
본 발명은 레독스 흐름 전지의 운전 과정에서 발생하는 고체 형태의 석출물을 적절히 제거함으로써 레독스 흐름 전지의 효율을 높일 수 있는 레독스 흐름 전지의 운전 제어 방법 및 장치를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method and apparatus for controlling the operation of a redox flow battery which can increase the efficiency of the redox flow battery by appropriately removing the solid form precipitates generated during the operation of the redox flow battery.
또한 본 발명은 레독스 흐름 전지의 운전 조건의 제한이나 운전 정지 없이 석출물을 제거함으로써 레독스 흐름 전지의 효율을 높일 수 있는 레독스 흐름 전지의 운전 제어 방법 및 장치를 제공하는 것을 다른 목적으로 한다.Another object of the present invention is to provide a method and apparatus for controlling the operation of a redox flow battery which can increase the efficiency of the redox flow battery by removing precipitates without limiting the operation conditions of the redox flow battery or stopping the operation.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention, which are not mentioned above, can be understood by the following description, and more clearly by the embodiments of the present invention. Also, it will be readily appreciated that the objects and advantages of the present invention may be realized by the means and combinations thereof indicated in the claims.
이러한 목적을 달성하기 위한 본 발명은 레독스 흐름 전지의 운전 제어 방법에 있어서, 상기 레독스 흐름 전지의 셀 모듈의 초기 내부 저항값을 측정하는 단계, 상기 초기 내부 저항값에 대한 상기 셀 모듈의 내부 저항값의 변화량이 제1 기준값을 초과하는지 여부를 판단하는 단계 및 상기 변화량이 상기 제1 기준값을 초과하는 경우 상기 셀 모듈의 (+) 전극과 (-) 전극의 전위차가 미리 정해진 기준 전위차보다 작아지도록 상기 셀 모듈에 인가되는 전류의 흐름을 제어하는 단계를 포함하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a method for controlling an operation of a redox flow battery, the method comprising: measuring an initial internal resistance value of a cell module of the redox flow battery; Determining whether the change amount of the resistance value exceeds the first reference value, and when the change amount exceeds the first reference value, the potential difference between the positive electrode and the negative electrode of the cell module is smaller than a predetermined reference potential difference. And controlling the flow of current applied to the cell module.
또한 본 발명은 레독스 흐름 전지의 운전 제어 장치에 있어서, 상기 레독스 흐름 전지의 셀 모듈의 초기 내부 저항값을 측정하는 측정부 및 상기 초기 내부 저항값에 대한 상기 셀 모듈의 내부 저항값의 변화량이 제1 기준값을 초과하는지 여부를 판단하고, 상기 판단 결과 상기 변화량이 상기 제1 기준값을 초과하는 경우 상기 셀 모듈의 (+) 전극과 (-) 전극의 전위차가 미리 정해진 기준 전위차보다 작아지도록 상기 셀 모듈에 인가되는 전류의 흐름을 제어하는 제어부를 포함하는 것을 다른 특징으로 한다.In another aspect of the present invention, the operation control device of the redox flow battery, the measuring unit for measuring the initial internal resistance value of the cell module of the redox flow battery and the amount of change of the internal resistance value of the cell module relative to the initial internal resistance value It is determined whether the first reference value is exceeded, and if the change amount exceeds the first reference value, the potential difference between the positive electrode and the negative electrode of the cell module is smaller than a predetermined reference potential difference. It is another feature that the control unit for controlling the flow of the current applied to the cell module.
전술한 바와 같은 본 발명에 의하면, 레독스 흐름 전지의 운전 과정에서 발생하는 고체 형태의 석출물을 적절히 제거함으로써 레독스 흐름 전지의 효율을 높일 수 있는 장점이 있다. According to the present invention as described above, there is an advantage that the efficiency of the redox flow battery can be improved by appropriately removing the solid form precipitates generated during the operation of the redox flow battery.
또한 본 발명에 의하면 레독스 흐름 전지의 운전 조건의 제한이나 운전 정지 없이 석출물을 제거함으로써 레독스 흐름 전지의 효율을 높일 수 있는 장점이 있다.In addition, according to the present invention there is an advantage that the efficiency of the redox flow battery can be improved by removing the precipitate without limiting the operation conditions or stop operation of the redox flow battery.
도 1은 본 발명의 일 실시예에 따른 레독스 흐름 전지 및 레독스 흐름 전지의 운전 제어 장치의 구성도이다.1 is a block diagram of an operation control apparatus of a redox flow battery and a redox flow battery according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 레독스 흐름 전지의 운전 제어 방법의 흐름도이다.2 is a flowchart illustrating an operation control method of a redox flow battery according to an exemplary embodiment of the present invention.
도 3은 레독스 흐름 전지의 일반적인 충전 및 방전 곡선을 나타내는 그래프이다.3 is a graph showing a general charge and discharge curve of the redox flow battery.
도 4는 본 발명의 일 실시예에 따른 레독스 흐름 전지의 운전 제어에 따라 나타나는 레독스 흐름 전지의 충전 및 방전 곡선을 나타내는 그래프이다.4 is a graph showing a charge and discharge curve of the redox flow battery appearing according to the operation control of the redox flow battery according to an embodiment of the present invention.
도 5는 종래 기술에 따른 레독스 흐름 전지의 충전 곡선과 본 발명의 일 실시예에 따른 레독스 흐름 전지의 운전 제어에 따라 나타나는 레독스 흐름 전지의 충전 곡선을 나타내는 그래프이다.5 is a graph showing a charging curve of a redox flow battery according to the prior art and the redox flow battery according to the operation control of the redox flow battery according to an embodiment of the present invention.
도 6은 종래 기술에 따른 레독스 흐름 전지의 방전 곡선과 본 발명의 일 실시예에 따른 레독스 흐름 전지의 운전 제어에 따라 나타나는 레독스 흐름 전지의 방전 곡선을 나타내는 그래프이다.6 is a graph showing a discharge curve of the redox flow battery according to the prior art and the redox flow battery according to the operation control of the redox flow battery according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 레독스 흐름 전지의 운전 제어 수행 전과 수행 후의 전압 효율을 나타내는 그래프이다.7 is a graph illustrating voltage efficiency before and after performing the operation control of the redox flow battery according to an embodiment of the present invention.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.The above objects, features, and advantages will be described in detail with reference to the accompanying drawings, whereby those skilled in the art to which the present invention pertains may easily implement the technical idea of the present invention. In describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals are used to indicate the same or similar components.
도 1은 본 발명의 일 실시예에 따른 레독스 흐름 전지 및 레독스 흐름 전지의 운전 제어 장치의 구성도이다.1 is a block diagram of an operation control apparatus of a redox flow battery and a redox flow battery according to an embodiment of the present invention.
도 1을 참조하면, 레독스 흐름 전지는 (+) 전극 탱크(102), (-) 전극 탱크(104), 셀 모듈(106), (+) 전극 펌프(114), (-) 전극 펌프(116)로 구성된다. (+) 전극 탱크(102)에는 (+) 전극 전해질을 포함하는 (+) 전극 전해액이 저장되며, (-) 전극 탱크(104)에는 (-) 전극 전해질을 포함하는 (-) 전극 전해액이 저장된다. 또한 (+) 전극 펌프(114)는 (+) 전극 탱크(102)에 저장된 (+) 전극 전해액을 셀 모듈(106) 내부로 이동시키고, 셀 모듈(106)을 거친 (+) 전극 전해액은 다시 (+) 전극 탱크(102)로 복귀한다. 마찬가지로 (-) 전극 펌프(116)는 (-) 전극 탱크(104)에 저장된 (-) 전극 전해액을 셀 모듈(106) 내부로 이동시키고, 셀 모듈(106)을 거친 (-) 전극 전해액은 다시 (-) 전극 탱크(104)로 복귀한다.Referring to FIG. 1, a redox flow battery includes a positive electrode tank 102, a negative electrode tank 104, a cell module 106, a positive electrode pump 114, and a negative electrode pump ( 116). A positive electrode electrolyte containing a positive electrode electrolyte is stored in the positive electrode tank 102, and a negative electrode electrolyte containing a negative electrode electrolyte is stored in the negative electrode tank 104. do. In addition, the positive electrode pump 114 moves the positive electrode electrolyte stored in the positive electrode tank 102 into the cell module 106, and the positive electrode electrolyte passing through the cell module 106 is again returned. Return to the positive electrode tank 102. Similarly, the negative electrode pump 116 moves the negative electrode electrolyte stored in the negative electrode tank 104 into the cell module 106, and the negative electrode electrolyte passing through the cell module 106 is again returned. Return to the negative electrode tank 104.
본 발명의 일 실시예에서, 레독스 흐름 전지는 전해질로서 바나듐 이온을 사용하며, (+) 전극 탱크(102)에 저장되는 (+) 전극 전해질로는 V5+ 및 V4+가 사용되고 (-) 전극 탱크(104)에 저장되는 (-) 전극 전해질로는 V3+ 및 V2+가 사용된다. 이렇게 동일한 원소를 각각 (+) 전극 전해질과 (-) 전극 전해질로 사용할 경우, 전해질의 오염(contamination)에 비교적 자유롭고, 부반응이 일어나지 않으며 전기화학적으로 전극을 재생시킬 수 있다.In one embodiment of the present invention, the redox flow battery uses vanadium ions as the electrolyte, and V 5+ and V 4+ are used as the (+) electrode electrolyte stored in the (+) electrode tank 102 (- ) V 3+ and V 2+ are used as the negative electrode electrolyte stored in the electrode tank 104. When the same element is used as the positive electrode electrolyte and the negative electrode electrolyte, respectively, the same element is relatively free of contamination of the electrolyte, no side reaction occurs, and the electrode can be electrochemically regenerated.
다시 도 1을 참조하면, 셀 모듈(106)은 (+) 전극(110), (-) 전극(112) 및 이온 교환막(108)을 포함한다. (+) 전극(110) 및 (-) 전극(112)은 각각 전원 공급부(118)과 연결되며, 전원 공급부(118)는 셀 모듈(106)의 충전을 위하여 제2 방향(12), 즉 (-) 전극에서 (+) 전극으로 전류가 흐르도록 전류를 공급한다. 이온 교환막(108)은 셀 모듈(106) 내에서 (+) 전극 전해액과 (-) 전극 전해액에 각각 포함된 전해질 이온 간의 혼합을 방지하고, 각 전해질의 전하 운반체 이온의 전달만 허용한다. 또한 레독스 흐름 전지가 방전될 경우, 셀 모듈(106)에는 부하(미도시)가 연결될 수 있으며, 이 경우 셀 모듈(106) 내부에서 전류는 제1 방향(11), 즉 (+) 전극에서 (-) 전극 방향으로 흐른다.Referring back to FIG. 1, the cell module 106 includes a positive electrode 110, a negative electrode 112, and an ion exchange membrane 108. The positive electrode 110 and the negative electrode 112 are connected to the power supply 118, respectively, and the power supply 118 is connected to the second direction 12, that is, to charge the cell module 106. -) Supply current so that current flows from the electrode to the (+) electrode. The ion exchange membrane 108 prevents mixing between the positive electrode electrolyte and the electrolyte ions contained in the negative electrode electrolyte in the cell module 106, and allows only the transfer of charge carrier ions of each electrolyte. In addition, when the redox flow battery is discharged, a load (not shown) may be connected to the cell module 106. In this case, a current may flow in the first direction 11, that is, in the positive electrode. Flow toward the negative electrode.
도 1과 같은 레독스 흐름 전지의 효율 저하를 초래하는 직접적인 원인은 전지의 내부 저항 증가이다. 전지의 내부 저항 증가는 전지 소재의 열화, 접촉 저항의 증가, 이물질의 유입 및 전극의 반응성 감소에 의해 발생한다. 특히 도 1과 같은 레독스 흐름 전지의 운전시, 충전 및 방전 과정의 말단에서는 각각의 바나듐 이온의 농도가 국소적으로 급증하게 되고, 이 때 전극(110, 112) 표면상에서 바나듐의 산화물이 고체 형태로 석출된다. 이와 같이 전극(110, 112) 표면에 고체 형태의 석출물이 발생할 경우 전극이 반응할 수 있는 표면적이 감소되며, 이는 곧 전극(110, 112)의 반응성 감소를 야기한다.A direct cause of lowering the efficiency of the redox flow battery as shown in FIG. 1 is an increase in the internal resistance of the battery. Increasing the internal resistance of the battery is caused by deterioration of the battery material, an increase in contact resistance, inflow of foreign matter and a decrease in reactivity of the electrode. In particular, in the operation of the redox flow battery as shown in FIG. 1, the concentration of each vanadium ion is locally increased at the end of the charging and discharging process, and the vanadium oxide is solid on the electrodes 110 and 112 surface. Precipitates. As such, when solid precipitates are formed on the surfaces of the electrodes 110 and 112, the surface area to which the electrodes can react is reduced, which causes a decrease in reactivity of the electrodes 110 and 112.
도 1에 도시된 레독스 흐름 전지에 전원 공급부(118)를 통한 전류 공급으로 인해 충전이 일어나거나 부하의 연결로 인해 방전이 일어날 때, 셀 모듈(106) 내에서 일어나는 반응은 각각 다음과 같다.When charging occurs due to supply of current through the power supply unit 118 to the redox flow battery illustrated in FIG. 1 or discharge occurs due to connection of a load, the reactions occurring in the cell module 106 are as follows.
<충전 반응><Charge reaction>
- (+) 전극: V4+ → V5+ + e- - (+) electrode: V → V 5+ 4+ + e -
- (-) 전극: V3+ + e- → V2+ - (-) electrodes: V 3+ + e - → V 2+
<방전 반응><Discharge reaction>
- (+) 전극: V5+ + e- → V4+ - (+) electrode: V 5+ + e - → V 4+
- (-) 전극: V2+ → V3+ + e- - (-) electrodes: V 2+ → V 3+ + e -
즉, 레독스 흐름 전지의 (+) 전극에는 V5+ 및 V4+ 이온이 존재하고, (-) 전극에는 V3+ 및 V2+ 이온이 존재하며, 이 때 레독스 흐름 전지의 기전력은 약 1.4V이다. 그런데 (+) 전극에 존재하는 V5+ 이온은 V4+ 이온에 비해 용해도가 작아 석출되기 쉽다. 따라서 전원 공급부(118)에 의한 전류 공급에 따라 레독스 흐름 전지에서 충전 반응이 일어나는 경우 (+) 전극에는 V4+ 이온보다 V5+ 이온이 더 많이 존재할 때, V5+ 이온은 (+) 전극(110) 표면에서 고체 형태로 석출될 수 있다.That is, V 5+ and V 4+ ions are present at the (+) electrode of the redox flow battery, and V 3+ and V 2+ ions are present at the (−) electrode, and the electromotive force of the redox flow battery is About 1.4V. However, V 5+ ions present in the (+) electrode tend to be precipitated because they have low solubility compared to V 4+ ions. Therefore, when charging reaction occurs in the redox flow battery according to the current supply by the power supply 118, when there are more V 5+ ions than V 4+ ions in the (+) electrode, V 5+ ions are positive (+) It may precipitate in a solid form on the surface of the electrode 110.
이와 같은 고체 형태의 석출물이 (+) 전극(110) 표면에서 생성되면 전극(110)의 반응성이 감소하고, 이는 레독스 흐름 전지의 내부 저항 상승으로 이어진다. 본 발명의 일 실시예에 따른 레독스 흐름 전지의 운전 제어 장치(120)는 이와 같이 발생하는 석출물을 전기 화학적인 방법을 통해 제거한다.When such a solid precipitate is formed on the surface of the positive electrode 110, the reactivity of the electrode 110 decreases, which leads to an increase in internal resistance of the redox flow battery. The operation control apparatus 120 of the redox flow battery according to the exemplary embodiment of the present invention removes the precipitates thus generated through an electrochemical method.
다시 도 1을 참조하면, 본 발명의 일 실시예에 따른 레독스 흐름 전지의 운전 제어 장치(120)는 측정부(122), 제어부(124)를 포함한다. 측정부(122)는 셀 모듈(106)의 초기 내부 저항값을 측정한다. 본 발명의 일 실시예에서 측정부(122)는 실시간으로 셀 모듈(106)의 전압, OCV(Open Circuit Voltage) 및 전류를 측정하고, 다음과 같은 수식에 따라 셀 모듈(106)의 내부 저항값을 계산할 수 있다.Referring back to FIG. 1, an operation control apparatus 120 of a redox flow battery according to an embodiment of the present invention includes a measuring unit 122 and a control unit 124. The measuring unit 122 measures an initial internal resistance value of the cell module 106. In one embodiment of the present invention, the measurement unit 122 measures the voltage, the open circuit voltage (OCV) and the current of the cell module 106 in real time, and the internal resistance value of the cell module 106 according to the following equation. Can be calculated.
[수학식 1][Equation 1]
R = (VAVR - OCVAVR) / IR = (V AVR -OCV AVR ) / I
[수학식 1]에서 R은 셀 모듈(106)의 내부 저항값, VAVR은 셀 모듈(106)의 평균 전압값, OCVAVR은 셀 모듈(106)의 평균 OCV값, I는 셀 모듈(106)에 흐르는 전류를 나타낸다. [수학식 1]에서 셀 모듈(106)의 평균 전압값 및 평균 OCV값을 사용하는 이유는 레독스 흐름 전지의 구성에 따라 셀 모듈(106)에 포함된 셀의 개수가 달라질 수 있고, 회로의 연결이 직렬 또는 병렬인지 여부에 따라 셀 모듈(106)에 포함된 각 셀의 전압값이 다르게 계산되기 때문이다.In Equation 1, R is the internal resistance value of the cell module 106, V AVR is the average voltage value of the cell module 106, OCV AVR is the average OCV value of the cell module 106, I is the cell module 106 Indicates the current flowing through The reason for using the average voltage value and the average OCV value of the cell module 106 in [Equation 1] is that the number of cells included in the cell module 106 may vary according to the configuration of the redox flow battery, This is because the voltage value of each cell included in the cell module 106 is calculated differently depending on whether the connection is serial or parallel.
제어부(124)는 측정부(122)에 의해 측정된 셀 모듈(106)의 초기 내부 저항값 및 셀 모듈(106)의 내부 저항값을 이용하여 초기 내부 저항값에 대한 셀 모듈(106)의 내부 저항값의 변화량을 계산할 수 있다. 제어부(124)는 이와 같이 계산된 내부 저항값의 변화량이 제1 기준값을 초과하는지 여부를 판단하고, 판단 결과 내부 저항값의 변화량이 제1 기준값을 초과하는 경우 셀 모듈(106)의 (+) 전극(110)과 (-) 전극(112)의 전위차가 미리 정해진 기준 전위차보다 작아지도록 상기 셀 모듈에 인가되는 전류의 흐름을 제어한다. 본 발명의 일 실시예에서, 기준 전위차는 레독스 흐름 전지의 방전이 완료되었을 때 (+) 전극(110)과 (-) 전극(112)의 전위차로 정의될 수 있다. 이 때 본 발명의 일 실시예에서, 제어부(124)는 셀 모듈(106)의 (+) 전극(110)과 (-) 전극(112)의 전위차가 기준 전위차보다 작아지게 하기 위하여 전원 공급부(118)로 하여금 제2 방향(12)으로 전류를 공급하게 할 수 있다.The controller 124 uses the initial internal resistance value of the cell module 106 and the internal resistance value of the cell module 106 measured by the measuring unit 122 to determine the internal value of the cell module 106. The amount of change in the resistance value can be calculated. The controller 124 determines whether the change amount of the internal resistance value calculated as described above exceeds the first reference value, and when the change amount of the internal resistance value exceeds the first reference value, (+) of the cell module 106. The flow of current applied to the cell module is controlled such that the potential difference between the electrode 110 and the negative electrode 112 is smaller than a predetermined reference potential difference. In one embodiment of the present invention, the reference potential difference may be defined as the potential difference between the positive electrode 110 and the negative electrode 112 when the discharge of the redox flow battery is completed. At this time, in one embodiment of the present invention, the control unit 124 is the power supply unit 118 so that the potential difference between the (+) electrode 110 and the (-) electrode 112 of the cell module 106 is smaller than the reference potential difference. ) May supply current in the second direction 12.
본 발명의 일 실시예에서 제1 기준값(R1)은 다음과 같이 정의될 수 있다.In an embodiment of the present invention, the first reference value R1 may be defined as follows.
[수학식 2][Equation 2]
R1 = RI × aR1 = R I × a
[수학식 2]에서 RI는 셀 모듈(106)의 초기 저항값을 나타내며 a는 미리 정해진 상수(예컨대, 1.05)이다. [수학식 2]에 나타난 바와 같이 제1 기준값(R1)은 초기 저항값(RI)에 의해 결정되는 값이므로 레독스 흐름 전지의 구성에 따라 달라질 수 있다.In Equation 2, R I represents an initial resistance value of the cell module 106 and a is a predetermined constant (eg, 1.05). As shown in Equation 2, since the first reference value R1 is a value determined by the initial resistance value R I , it may vary depending on the configuration of the redox flow battery.
본 발명의 일 실시예에서, 제어부(124)는 미리 설정된 제어 시간 동안에만 셀 모듈(106)의 (+) 전극(110)과 (-) 전극(112)의 전위차가 기준 전위차보다 작아지도록 셀 모듈(106)에 인가되는 전류의 흐름을 제어할 수 있다.In one embodiment of the present invention, the control unit 124 is a cell module such that the potential difference between the (+) electrode 110 and the (-) electrode 112 of the cell module 106 is smaller than the reference potential difference only during a predetermined control time. The flow of current applied to 106 may be controlled.
본 발명의 일 실시예에서, 제어부(124)는 셀 모듈(106)의 (+) 전극(110)과 (-) 전극(112)의 전위차가 기준 전위차보다 작아지도록 셀 모듈(106)에 인가되는 전류의 흐름을 제어한 이후 측정된 셀 모듈(106)의 내부 저항값의 변화량이 제2 기준값 미만일 경우, 셀 모듈(106)의 (+) 전극(110)과 (-) 전극(112)의 전위차가 기준 전위차보다 커지도록 셀 모듈(106)에 인가되는 전류의 흐름을 제어할 수 있다. 예컨대 제어부(124)는 전원 공급부(118)로 하여금 제2 방향(12)으로 전류를 공급하게 한 이후 셀 모듈(106)의 내부 저항값의 변화량을 지속적으로 측정하고, 측정된 변화량이 제2 기준값 아래로 떨어졌다고 판단되면 전원 공급부(118)로 하여금 다시 제1 방향(11)으로 전류를 공급하게 함으로써 셀 모듈(106)의 (+) 전극(110)과 (-) 전극(112)의 전위차가 기준 전위차보다 커지도록 할 수 있다.In one embodiment of the present invention, the controller 124 is applied to the cell module 106 such that the potential difference between the positive electrode 110 and the negative electrode 112 of the cell module 106 is smaller than the reference potential difference. When the change in the internal resistance value of the cell module 106 measured after controlling the flow of current is less than the second reference value, the potential difference between the positive electrode 110 and the negative electrode 112 of the cell module 106 is determined. May control the flow of current applied to the cell module 106 to be greater than the reference potential difference. For example, the control unit 124 continuously measures the change amount of the internal resistance value of the cell module 106 after causing the power supply unit 118 to supply current in the second direction 12, and the measured change amount is the second reference value. If it is determined to fall down, the power supply unit 118 supplies the current in the first direction 11 again, so that the potential difference between the positive electrode 110 and the negative electrode 112 of the cell module 106 is reduced. It can be made larger than the reference potential difference.
본 발명의 일 실시예에서 제2 기준값(R2)은 다음과 같이 정의될 수 있다.In one embodiment of the present invention, the second reference value R2 may be defined as follows.
[수학식 3][Equation 3]
R2 = RI × bR2 = R I × b
[수학식 3]에서 RI는 셀 모듈(106)의 초기 저항값을 나타내며 b는 미리 정해진 상수(예컨대, 1.005)이다. [수학식 3]에 나타난 바와 같이 제2 기준값(R2)은 초기 저항값(RI)에 의해 결정되는 값이므로 레독스 흐름 전지의 구성에 따라 달라질 수 있다.In Equation 3, R I represents an initial resistance value of the cell module 106 and b is a predetermined constant (eg, 1.005). As shown in Equation 3, since the second reference value R2 is a value determined by the initial resistance value R I , it may vary depending on the configuration of the redox flow battery.
도 2는 본 발명의 일 실시예에 따른 레독스 흐름 전지의 운전 제어 방법의 흐름도이다.2 is a flowchart illustrating an operation control method of a redox flow battery according to an exemplary embodiment of the present invention.
먼저 측정부(122)는 셀 모듈(106)의 초기 내부 저항값을 측정한다(202). 그리고 나서, 제어부(124)는 초기 내부 저항값에 대한 셀 모듈(106)의 내부 저항값의 변화량을 측정한다(204). 이를 위하여 측정부(122)는 실시간으로 셀 모듈(106)의 내부 저항값을 측정할 수 있고, 제어부(124)는 측정된 내부 저항값과 초기 내부 저항값 간의 차이를 내부 저항값의 변화량으로서 계산할 수 있다.First, the measurement unit 122 measures an initial internal resistance value of the cell module 106 (202). Then, the control unit 124 measures the amount of change in the internal resistance value of the cell module 106 with respect to the initial internal resistance value (204). To this end, the measurement unit 122 may measure the internal resistance of the cell module 106 in real time, and the controller 124 may calculate the difference between the measured internal resistance and the initial internal resistance as a change amount of the internal resistance. Can be.
그 다음, 제어부(124)는 계산된 내부 저항 변화량이 미리 설정된 제1 기준값을 초과하는지 판단한다(206). 판단(206) 결과 내부 저항 변화량이 제1 기준값을 초과하지 않으면, 단계(204)가 다시 수행된다. 그러나 판단(206) 결과 내부 저항 변화량이 제1 기준값을 초과하게 되면 제어부(124)는 셀 모듈(106)의 (+) 전극(110)과 (-) 전극(112)의 전위차가 기준 전위차보다 작아지도록 셀 모듈(106)에 인가되는 전류의 흐름을 제어한다(208). Next, the controller 124 determines whether the calculated amount of change in internal resistance exceeds a preset first reference value (206). If the determination 206 results in that the internal resistance change amount does not exceed the first reference value, step 204 is performed again. However, as a result of the determination 206, when the internal resistance change amount exceeds the first reference value, the controller 124 determines that the potential difference between the positive electrode 110 and the negative electrode 112 of the cell module 106 is smaller than the reference potential difference. Control the flow of current applied to the cell module 106 (208).
도 1의 레독스 흐름 전지가 정상적으로 동작할 때 전원 공급부(118)는 제1 방향(11)으로 (+) 전극(110)과 (-) 전극(112)에 전류를 흐르게 한다. 도 3은 레독스 흐름 전지의 일반적인 충전 및 방전 곡선을 나타내는 그래프이다. 도 3에서 지점(302)은 방전이 시작되는 지점을 나타낸다. 전술한 바와 같이 전원 공급부(118)에 의해 제2 방향(12)으로 전류가 공급될 때 레독스 흐름 전지의 충전이 진행되며 이 때 (+) 전극과 (-) 전극의 전위차는 1V에서 1.6V까지 증가한다. 이후 지점(302)에서 셀 모듈(106)에 부하가 연결되어 방전이 시작되면 전위차는 다시 1V까지 감소하게 된다. 본 발명에서는 이와 같이 레독스 흐름 전지의 방전이 완료되었을 때의 전위차(예컨대, 1V)를 기준 전위차로 설정할 수 있다.When the redox flow battery of FIG. 1 operates normally, the power supply unit 118 flows current to the positive electrode 110 and the negative electrode 112 in the first direction 11. 3 is a graph showing a general charge and discharge curve of the redox flow battery. In Figure 3, point 302 represents the point where the discharge begins. As described above, when the current is supplied in the second direction 12 by the power supply unit 118, the charging of the redox flow battery proceeds, and the potential difference between the positive electrode and the negative electrode is 1.6V to 1.6V. To increase. Thereafter, when the load is connected to the cell module 106 at the point 302 and the discharge starts, the potential difference decreases to 1V again. In the present invention, the potential difference (for example, 1 V) when the discharge of the redox flow battery is completed as described above can be set as the reference potential difference.
도 4는 본 발명의 일 실시예에 따른 레독스 흐름 전지의 운전 제어에 따라 나타나는 레독스 흐름 전지의 충전 및 방전 곡선을 나타내는 그래프이다. 도 4에서 지점(1) 이전 및 지점(7) 이후의 곡선은 도 3와 같은 일반적인 충전 및 방전 곡선을 나타낸다.4 is a graph showing a charge and discharge curve of the redox flow battery appearing according to the operation control of the redox flow battery according to an embodiment of the present invention. The curves before point 1 and after point 7 in FIG. 4 represent the general charge and discharge curves as in FIG. 3.
도 2에서 계산된 내부 저항 변화량이 미리 설정된 제1 기준값을 초과하는지 판단(206)한 결과 내부 저항 변화량이 제1 기준값을 초과하게 되면, 제어부(124)는 도 2의 구간(1~4)와 같이 (+) 전극(110)과 (-) 전극(112)의 전위차가 기준 전위차, 즉 방전이 완료된 시점의 전위차(예컨대, 1V)보다 작아지도록 셀 모듈(106) 내에 흐르는 전류의 흐름을 제어한다. 이에 따라 셀 모듈(106)의 전위차는 기준 전위차에서 0이하로 점점 감소한다.When the internal resistance change amount exceeds the first reference value as a result of determining whether the internal resistance change amount calculated in FIG. 2 exceeds a preset first reference value (206), the controller 124 may determine the intervals 1 to 4 of FIG. 2. Likewise, the flow of current flowing in the cell module 106 is controlled so that the potential difference between the positive electrode 110 and the negative electrode 112 is smaller than the reference potential difference, that is, the potential difference (for example, 1 V) at the time when discharge is completed. . As a result, the potential difference of the cell module 106 gradually decreases below zero from the reference potential difference.
도 2의 구간(1~4)와 같이 제어부(124)가 (+) 전극(110)과 (-) 전극(112)의 전위차가 기준 전위차보다 작아지도록 제어할 경우, (+) 전극(110)에서는 다음과 같은 반응이 일어난다.When the control unit 124 controls the potential difference between the (+) electrode 110 and the (−) electrode 112 to be smaller than the reference potential difference as shown in the sections 1 to 4 of FIG. 2, the (+) electrode 110 In Reaction:
- V4+ + e- → V3+ - V 4+ + e - → V 3+
- V3+ + e- → V2+ - V 3+ + e - → V 2+
또한 구간(1~4)에서 (-) 전극(112)에서는 다음과 같은 반응이 일어난다.In addition, in the sections 1 to 4, the following reaction occurs in the negative electrode 112.
- V3+ → V4+ + e- - V 3+ → V 4+ + e -
- V4+ → V5+ + e- - V 4+ → V 5+ + e -
이와 같은 반응에 의해 (+) 전극에 존재하는 전해질과 (-) 전극에 존재하는 전해질은 서로 완전히 바뀌게 되어 (-) 전극에는 V5+ 및 V4+ 이온이 존재하고, (+) 전극에는 V3+ 및 V2+ 이온이 존재하게 된다. 이에 따라 레독스 흐름 전지의 충전 시 (+) 전극(110)에서 발생하는 고체 형태의 석출물 발생이 방지되어 (+) 전극(110)의 반응성이 회복될 수 있다.By this reaction, the electrolyte present in the (+) electrode and the electrolyte present in the (-) electrode are completely changed from each other, so that V 5+ and V 4+ ions are present in the (-) electrode, and V in the (+) electrode. 3+ and V 2+ ions are present. Accordingly, the generation of solid precipitates generated from the (+) electrode 110 during charging of the redox flow battery may be prevented, so that the reactivity of the (+) electrode 110 may be restored.
한편, 본 발명의 일 실시예에서 제어부(124)는 셀 모듈(106)의 (+) 전극(110)과 (-) 전극(112)의 전위차가 기준 전위차보다 작아지도록 셀 모듈(106)에 인가되는 전류의 흐름을 제어한 이후 측정된 셀 모듈(106)의 내부 저항값의 변화량이 제2 기준값 미만일 경우, 셀 모듈(106)의 (+) 전극(110)과 (-) 전극(112)의 전위차가 기준 전위차보다 커지도록 셀 모듈(106)에 인가되는 전류의 흐름을 제어할 수 있다. 예컨대 제어부(124)는 셀 모듈(106)의 내부 저항값의 변화량을 지속적으로 측정하고, 측정된 내부 저항의 변화량이 제2 기준값 아래로 떨어졌다고 판단되면 셀 모듈(106) 내에 구간(1~4)와 반대 방향으로 전류를 흐르게 하여 도 4의 구간(4~7)과 같이 셀 모듈(106)의 (+) 전극(110)과 (-) 전극(112)의 전위차가 기준 전위차보다 커지도록 할 수 있다. 구간(4~7)에서 (+) 전극(110)에서는 다음과 같은 반응이 일어난다.Meanwhile, in one embodiment of the present invention, the controller 124 is applied to the cell module 106 such that the potential difference between the positive electrode 110 and the negative electrode 112 of the cell module 106 is smaller than the reference potential difference. If the amount of change in the internal resistance value of the cell module 106 measured after controlling the flow of the current to be less than the second reference value, the (+) electrode 110 and (-) electrode 112 of the cell module 106 The flow of current applied to the cell module 106 may be controlled such that the potential difference is greater than the reference potential difference. For example, the controller 124 continuously measures the amount of change in the internal resistance of the cell module 106, and if it is determined that the measured amount of change in the internal resistance falls below the second reference value, the sections 1 to 4 in the cell module 106. The current flows in the opposite direction to () so that the potential difference between the positive electrode 110 and the negative electrode 112 of the cell module 106 becomes larger than the reference potential difference as shown in the section 4 to 7 of FIG. 4. Can be. In the periods 4 to 7, the following reactions occur in the positive electrode 110.
- V2+ → V3+ + e- - V 2+ → V 3+ + e -
- V3+ → V4+ + e- - V 3+ → V 4+ + e -
또한 구간(4~7)에서 (-) 전극(112)에서는 다음과 같은 반응이 일어난다.In addition, the following reactions occur in the negative electrode 112 in the intervals 4 to 7.
- V5+ + e- → V4+ - V 5+ + e - → V 4+
- V4+ + e- → V3+ - V 4+ + e - → V 3+
이에 따라 지점(7) 이후 레독스 흐름 전지의 전위차는 기준 전위차 이상으로 회복되어 다시 정상적인 충전과 방전 과정이 수행될 수 있다.As a result, the potential difference of the redox flow battery after the point 7 may be restored to the reference potential difference or more, and the normal charging and discharging process may be performed again.
도 5는 종래 기술에 따른 레독스 흐름 전지의 충전 곡선과 본 발명의 일 실시예에 따른 레독스 흐름 전지의 운전 제어에 따라 나타나는 레독스 흐름 전지의 충전 곡선을 나타내는 그래프이고, 도 6은 종래 기술에 따른 레독스 흐름 전지의 방전 곡선과 본 발명의 일 실시예에 따른 레독스 흐름 전지의 운전 제어에 따라 나타나는 레독스 흐름 전지의 방전 곡선을 나타내는 그래프이다.5 is a graph showing a charging curve of a redox flow battery according to the prior art and the redox flow battery according to the operation control of the redox flow battery according to an embodiment of the present invention, Figure 6 is a prior art Is a graph showing a discharge curve of a redox flow battery according to the present invention and a redox flow battery according to an operation control of the redox flow battery according to an embodiment of the present invention.
도 5에서 곡선(502)은 레독스 흐름 전지의 운전 시작 이후 2번째 사이클에서의 충전 곡선을 나타내고, 도 6에서 곡선(602)은 레독스 흐름 전지의 운전 시작 이후 2번째 사이클에서의 방전 곡선을 나타낸다. Curve 502 in FIG. 5 shows the charging curve in the second cycle after the start of the operation of the redox flow battery, and curve 602 in FIG. 6 shows the discharge curve in the second cycle after the start of the operation of the redox flow battery. Indicates.
또한 도 5에서 곡선(504)은 레독스 흐름 전지의 운전 시작 이후 103번째 사이클에서의 충전 곡선을 나타내고, 도 6에서 곡선(604)은 레독스 흐름 전지의 운전 시작 이후 103번째 사이클에서의 방전 곡선을 나타낸다. 도 5 및 도 6을 통해 알 수 있는 바와 같이 레독스 흐름 전지의 운전 사이클이 증가하게 되면 전지의 내부 저항 증가로 인하여 충전 시에는 동일한 전류를 흘려 주더라도 더 큰 전압이 나타나게 되며 방전 시에는 동일한 전류를 흘려 주더라도 더 작은 전압이 나타나게 된다.In addition, curve 504 in FIG. 5 shows a charging curve at the 103rd cycle after the start of operation of the redox flow battery, and curve 604 in FIG. 6 shows a discharge curve at the 103rd cycle after the start of operation of the redox flow battery. Indicates. As can be seen from FIG. 5 and FIG. 6, when the operating cycle of the redox flow battery increases, a larger voltage appears even though the same current flows during charging due to an increase in the internal resistance of the battery. Even if you pass, smaller voltage appears.
한편, 도 5의 곡선(506) 및 도 6의 곡선(606)은 각각 본 발명의 실시예에 따른 레독스 흐름 전지의 운전 제어 방법에 따라 (+) 전극(110)과 (-) 전극(112)의 전위차가 기준 전위차보다 작아지도록 제어한 이후 105번째 사이클에서의 충전 곡선 및 방전 곡선을 각각 나타낸다. 도 5 및 도 6을 통해 나타난 바와 같이 본 발명에 따른 레독스 흐름 전지의 운전 제어 방법을 적용하면 전지의 내부 저항 감소로 인하여 2번째 사이클에서의 충전 및 방전 곡선(502, 602)과 유사한 충전 및 방전 곡선(506, 606)이 다시 나타나게 된다.Meanwhile, the curve 506 of FIG. 5 and the curve 606 of FIG. 6 respectively correspond to the positive electrode 110 and the negative electrode 112 according to the operation control method of the redox flow battery according to the exemplary embodiment of the present invention. The charge and discharge curves at the 105 th cycle are respectively shown after controlling the potential difference of) to be smaller than the reference potential difference. As shown in FIGS. 5 and 6, when the operation control method of the redox flow battery according to the present invention is applied, the charge and discharge curves similar to those of the charge and discharge curves 502 and 602 at the second cycle are reduced due to the decrease in the internal resistance of the battery. Discharge curves 506 and 606 reappear.
도 7은 본 발명의 일 실시예에 따른 레독스 흐름 전지의 운전 제어 수행 전과 수행 후의 전압 효율을 나타내는 그래프이다.7 is a graph illustrating voltage efficiency before and after performing the operation control of the redox flow battery according to an embodiment of the present invention.
도 7을 참조하면, 레독스 흐름 전지의 운전 사이클이 2번째 사이클에서 100번째 사이클까지 증가할 수록 내부 저항의 증가로 인하여 전지의 전압 효율은 89.7%에서 85%까지 감소하는 것을 알 수 있다.Referring to FIG. 7, it can be seen that as the operation cycle of the redox flow battery increases from the second cycle to the 100th cycle, the voltage efficiency of the battery decreases from 89.7% to 85% due to the increase in internal resistance.
한편, 도 7에서 지점(Q)는 본 발명의 실시예에 따른 레독스 흐름 전지의 운전 제어 방법에 따라 (+) 전극(110)과 (-) 전극(112)의 전위차가 기준 전위차보다 작아지도록 제어가 이루어지는 시점을 나타낸다. 도 7에 나타난 바와 같이 지점(Q)를 기준으로 레독스 흐름 전지의 내부 저항이 감소하게 되어 전압 효율은 다시 89.8%로 회복된다. Meanwhile, in FIG. 7, the point Q is such that the potential difference between the positive electrode 110 and the negative electrode 112 is smaller than the reference potential difference according to the operation control method of the redox flow battery according to the exemplary embodiment of the present invention. It represents the time point at which control is performed. As shown in FIG. 7, the internal resistance of the redox flow battery is reduced based on the point Q, and the voltage efficiency is restored to 89.8%.
도 5 내지 도 7을 통해 나타난 바와 같이, 본 발명의 실시예에 따른 레독스 흐름 전지의 운전 제어 방법에 의하면 충전 과정에서 나타나는 전해질의 석출물로 인해 전극의 반응성이 감소할 때 석출물을 제거하여 전극의 반응성을 재생시킴으로써 전지의 효율을 용이하게 회복시킬 수 있다.As shown in Figure 5 to 7, according to the operation control method of the redox flow battery according to an embodiment of the present invention by removing the precipitate when the reactivity of the electrode due to the precipitate of the electrolyte appearing in the charging process of the electrode By regenerating the reactivity, the efficiency of the battery can be easily recovered.
전술한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.The present invention described above is capable of various substitutions, modifications, and changes without departing from the spirit of the present invention for those skilled in the art to which the present invention pertains. It is not limited by.

Claims (10)

  1. 레독스 흐름 전지의 운전 제어 방법에 있어서,In the operation control method of the redox flow battery,
    상기 레독스 흐름 전지의 셀 모듈의 초기 내부 저항값을 측정하는 단계;Measuring an initial internal resistance of a cell module of the redox flow battery;
    상기 초기 내부 저항값에 대한 상기 셀 모듈의 내부 저항값의 변화량이 제1 기준값을 초과하는지 여부를 판단하는 단계; 및Determining whether a change amount of an internal resistance value of the cell module with respect to the initial internal resistance value exceeds a first reference value; And
    상기 변화량이 상기 제1 기준값을 초과하는 경우 상기 셀 모듈의 (+) 전극과 (-) 전극의 전위차가 미리 정해진 기준 전위차보다 작아지도록 상기 셀 모듈에 인가되는 전류의 흐름을 제어하는 단계를Controlling the flow of current applied to the cell module such that the potential difference between the positive electrode and the negative electrode of the cell module becomes smaller than a predetermined reference potential difference when the amount of change exceeds the first reference value.
    포함하는 레독스 흐름 전지의 운전 제어 방법.Operation control method of a redox flow battery comprising.
  2. 제1항에 있어서,The method of claim 1,
    상기 초기 내부 저항값에 대한 상기 셀 모듈의 내부 저항값의 변화량이 제1 기준값을 초과하는지 여부를 판단하는 단계는Determining whether the change amount of the internal resistance value of the cell module with respect to the initial internal resistance value exceeds a first reference value
    상기 셀 모듈의 평균 전압, 평균 OCV, 전류를 이용하여 상기 내부 저항값을 측정하는 단계; 및Measuring the internal resistance value using an average voltage, an average OCV, and a current of the cell module; And
    측정된 내부 저항값과 상기 초기 내부 저항값 간의 차이를 계산하는 단계를Calculating a difference between the measured internal resistance value and the initial internal resistance value;
    포함하는 레독스 흐름 전지의 운전 제어 방법.Operation control method of a redox flow battery comprising.
  3. 제1항에 있어서,The method of claim 1,
    상기 전류의 흐름을 제어하는 단계는Controlling the flow of the current
    상기 레독스 흐름 전지의 방전이 완료된 후 상기 (+) 전극에서 상기 (-) 전극 방향으로 전류가 흐르도록 상기 전류의 흐름을 제어하는 단계를Controlling the flow of the current so that a current flows from the (+) electrode toward the (−) electrode after discharge of the redox flow battery is completed.
    포함하는 레독스 흐름 전지의 운전 제어 방법.Operation control method of a redox flow battery comprising.
  4. 제1항에 있어서,The method of claim 1,
    상기 전류의 흐름을 제어하는 단계는Controlling the flow of the current
    미리 설정된 제어 시간 동안에만 상기 전위차가 상기 기준 전위차보다 작아지도록 상기 셀 모듈에 인가되는 전류의 흐름을 제어하는 단계를Controlling the flow of current applied to the cell module such that the potential difference is less than the reference potential difference only during a preset control time.
    포함하는 레독스 흐름 전지의 운전 제어 방법.Operation control method of a redox flow battery comprising.
  5. 제1항에 있어서,The method of claim 1,
    상기 전위차가 상기 기준 전위차보다 작아지도록 상기 셀 모듈에 인가되는 전류의 흐름을 제어한 이후 측정된 상기 셀 모듈의 내부 저항값의 변화량이 제2 기준값 미만일 경우, 상기 전위차가 상기 기준 전위차보다 커지도록 상기 셀 모듈에 인가되는 전류의 흐름을 제어하는 단계를The potential difference is greater than the reference potential difference when the amount of change in the internal resistance value of the cell module measured after controlling the flow of current applied to the cell module to be smaller than the reference potential difference is less than a second reference value. Controlling the flow of current applied to the cell module
    더 포함하는 레독스 흐름 전지의 운전 제어 방법.Operation control method of the redox flow battery further comprising.
  6. 레독스 흐름 전지의 운전 제어 장치에 있어서,In the operation control apparatus of the redox flow battery,
    상기 레독스 흐름 전지의 셀 모듈의 초기 내부 저항값을 측정하는 측정부; 및A measuring unit measuring an initial internal resistance of the cell module of the redox flow battery; And
    상기 초기 내부 저항값에 대한 상기 셀 모듈의 내부 저항값의 변화량이 제1 기준값을 초과하는지 여부를 판단하고, 상기 판단 결과 상기 변화량이 상기 제1 기준값을 초과하는 경우 상기 셀 모듈의 (+) 전극과 (-) 전극의 전위차가 미리 정해진 기준 전위차보다 작아지도록 상기 셀 모듈에 인가되는 전류의 흐름을 제어하는 제어부를It is determined whether the change amount of the internal resistance value of the cell module with respect to the initial internal resistance value exceeds a first reference value, and when the change amount exceeds the first reference value, the positive electrode of the cell module is determined. The control unit for controlling the flow of current applied to the cell module so that the potential difference between the (-) electrode is smaller than the predetermined reference potential difference
    포함하는 레독스 흐름 전지의 운전 제어 장치.Operation control device of a redox flow battery comprising.
  7. 제6항에 있어서,The method of claim 6,
    상기 측정부는The measuring unit
    상기 셀 모듈의 평균 전압, 평균 OCV, 전류를 이용하여 상기 내부 저항값을 측정하고,The internal resistance value is measured using the average voltage, average OCV, and current of the cell module.
    상기 제어부는The control unit
    측정된 내부 저항값과 상기 초기 내부 저항값 간의 차이를 계산하는Calculate the difference between the measured internal resistance and the initial internal resistance
    레독스 흐름 전지의 운전 제어 장치.Operation control unit of redox flow battery.
  8. 제6항에 있어서,The method of claim 6,
    상기 제어부는The control unit
    상기 레독스 흐름 전지의 방전이 완료된 후 상기 (+) 전극에서 상기 (-) 전극 방향으로 전류가 흐르도록 상기 전류의 흐름을 제어하는After the discharge of the redox flow battery is completed to control the flow of the current so that the current flows from the (+) electrode toward the (-) electrode
    레독스 흐름 전지의 운전 제어 장치.Operation control unit of redox flow battery.
  9. 제6항에 있어서,The method of claim 6,
    상기 제어부는The control unit
    미리 설정된 제어 시간 동안에만 상기 전위차가 상기 기준 전위차보다 작아지도록 상기 셀 모듈에 인가되는 전류의 흐름을 제어하는Controlling the flow of current applied to the cell module such that the potential difference is smaller than the reference potential difference only during a preset control time.
    레독스 흐름 전지의 운전 제어 장치.Operation control unit of redox flow battery.
  10. 제6항에 있어서,The method of claim 6,
    상기 제어부는The control unit
    상기 전위차가 상기 기준 전위차보다 작아지도록 상기 셀 모듈에 인가되는 전류의 흐름을 제어한 이후 측정된 상기 셀 모듈의 내부 저항값의 변화량이 제2 기준값 미만일 경우, 상기 전위차가 상기 기준 전위차보다 커지도록 상기 셀 모듈에 인가되는 전류의 흐름을 제어하는 단계The potential difference is greater than the reference potential difference when the amount of change in the internal resistance value of the cell module measured after controlling the flow of current applied to the cell module to be smaller than the reference potential difference is less than a second reference value. Controlling the flow of current applied to the cell module
    레독스 흐름 전지의 운전 제어 장치.Operation control unit of redox flow battery.
PCT/KR2015/014194 2014-12-23 2015-12-23 Method and apparatus for controlling operation of redox flow battery WO2016105130A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140187431A KR20160077530A (en) 2014-12-23 2014-12-23 Method and apparatus for controlling operation of redox flow battery
KR10-2014-0187431 2014-12-23

Publications (1)

Publication Number Publication Date
WO2016105130A1 true WO2016105130A1 (en) 2016-06-30

Family

ID=56151060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014194 WO2016105130A1 (en) 2014-12-23 2015-12-23 Method and apparatus for controlling operation of redox flow battery

Country Status (2)

Country Link
KR (1) KR20160077530A (en)
WO (1) WO2016105130A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139566A1 (en) 2018-01-10 2019-07-18 United Technologies Corporation Regeneration of flow battery
IT202000005263A1 (en) 2020-03-11 2021-09-11 Univ Degli Studi Padova MANAGEMENT SYSTEM FOR REDOX FLOW BATTERIES

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102490046B1 (en) * 2020-11-30 2023-01-18 남도금형(주) Redox flow battery with improved electrolyte ion precipitation problem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114359A (en) * 2004-10-14 2006-04-27 Kansai Electric Power Co Inc:The Method for operating redox flow battery
JP2007207620A (en) * 2006-02-02 2007-08-16 Sumitomo Electric Ind Ltd Redox flow battery system
JP2010175484A (en) * 2009-01-31 2010-08-12 Calsonic Kansei Corp Method for estimating internal resistance component of battery and method for estimating charge capacity
KR101394255B1 (en) * 2012-12-18 2014-05-13 한국에너지기술연구원 Redox flow battery and operration method of the same
KR20140080567A (en) * 2012-12-11 2014-07-01 전자부품연구원 Battery Operating System and Operating Method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114359A (en) * 2004-10-14 2006-04-27 Kansai Electric Power Co Inc:The Method for operating redox flow battery
JP2007207620A (en) * 2006-02-02 2007-08-16 Sumitomo Electric Ind Ltd Redox flow battery system
JP2010175484A (en) * 2009-01-31 2010-08-12 Calsonic Kansei Corp Method for estimating internal resistance component of battery and method for estimating charge capacity
KR20140080567A (en) * 2012-12-11 2014-07-01 전자부품연구원 Battery Operating System and Operating Method thereof
KR101394255B1 (en) * 2012-12-18 2014-05-13 한국에너지기술연구원 Redox flow battery and operration method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139566A1 (en) 2018-01-10 2019-07-18 United Technologies Corporation Regeneration of flow battery
EP3738164A4 (en) * 2018-01-10 2021-10-27 Raytheon Technologies Corporation Regeneration of flow battery
US11462761B2 (en) 2018-01-10 2022-10-04 Raytheon Technologies Corporation Regeneration of flow battery
IT202000005263A1 (en) 2020-03-11 2021-09-11 Univ Degli Studi Padova MANAGEMENT SYSTEM FOR REDOX FLOW BATTERIES

Also Published As

Publication number Publication date
KR20160077530A (en) 2016-07-04

Similar Documents

Publication Publication Date Title
WO2019124738A1 (en) Battery charge management device and method
WO2017030309A1 (en) Method for predicting battery charge limit, and method and apparatus for rapidly charging battery using same
WO2018124511A1 (en) Device and method for managing battery to calibrate state of charge of battery
WO2017095066A1 (en) Apparatus and method for detecting battery cell failure due to unknown discharge current
WO2010079904A2 (en) Storage battery recycling apparatus
WO2011102576A1 (en) Abnormality diagnosis device and method of cell balancing circuit
WO2014084628A1 (en) Apparatus for measuring current of battery and method therefor
WO2018074807A1 (en) Method and system for effective battery cell balancing through duty control
WO2016105130A1 (en) Method and apparatus for controlling operation of redox flow battery
WO2012060597A2 (en) Device and method for announcing the replacement time of a battery
WO2019212148A1 (en) Device and method for testing secondary battery
WO2021107323A1 (en) Apparatus and method for diagnosing abnormal degradation of battery cell
WO2022177291A1 (en) Battery management system, battery pack, energy storage system, and battery management method
WO2020190009A1 (en) Apparatus and method for testing safety of battery
JP2010256210A (en) Method of inspection short-circuiting of control valve type lead storage battery and short-circuiting inspection apparatus of the control valve type lead storage battery
WO2016032131A1 (en) Power control system and method for controlling input power limit of dc-dc voltage converter
WO2022145830A1 (en) Battery diagnosis device, battery diagnosis method, battery pack, and electric vehicle
WO2022025725A1 (en) Battery management device, battery pack, battery system, and battery management method
WO2011139108A2 (en) Battery recovery apparatus
CN1190499A (en) Control and termination of battery charging process
WO2018131874A1 (en) Charging control apparatus and method capable of energy saving and quick cell balancing
WO2021085869A1 (en) Method for estimating battery state of charge and battery management system equipped with same
WO2019093625A1 (en) Charging control apparatus and method
WO2021049753A1 (en) Battery diagnosis apparatus and method
WO2014084631A1 (en) Cell balancing device of battery module and method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873657

Country of ref document: EP

Kind code of ref document: A1