WO2016105129A1 - 비면허 대역을 지원하는 무선 접속 시스템에서 축약된 하향링크 물리 공유 채널을 송수신하는 방법 및 이를 지원하는 장치 - Google Patents

비면허 대역을 지원하는 무선 접속 시스템에서 축약된 하향링크 물리 공유 채널을 송수신하는 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
WO2016105129A1
WO2016105129A1 PCT/KR2015/014192 KR2015014192W WO2016105129A1 WO 2016105129 A1 WO2016105129 A1 WO 2016105129A1 KR 2015014192 W KR2015014192 W KR 2015014192W WO 2016105129 A1 WO2016105129 A1 WO 2016105129A1
Authority
WO
WIPO (PCT)
Prior art keywords
spdsch
cell
pdsch
base station
subframe
Prior art date
Application number
PCT/KR2015/014192
Other languages
English (en)
French (fr)
Inventor
김선욱
안준기
김기준
양석철
서한별
이승민
박한준
유향선
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/539,014 priority Critical patent/US10225035B2/en
Publication of WO2016105129A1 publication Critical patent/WO2016105129A1/ko
Priority to US16/261,798 priority patent/US10862607B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0079Acquisition of downlink reference signals, e.g. detection of cell-ID
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0083Multi-mode cell search, i.e. where several modes or systems can be used, e.g. backwards compatible, dual mode or flexible systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0053Interference mitigation or co-ordination of intercell interference using co-ordinated multipoint transmission/reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to a wireless access system supporting an unlicensed band, comprising: a method of configuring a shortened physical downlink shared channel (sPDSCH), a method of scheduling the same, methods of transmitting and receiving the same, and supporting the same Pertaining to devices
  • a wireless access system supporting an unlicensed band comprising: a method of configuring a shortened physical downlink shared channel (sPDSCH), a method of scheduling the same, methods of transmitting and receiving the same, and supporting the same Pertaining to devices
  • Wireless access systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • Another object of the present invention is to propose a frame structure in which an sPDSCH can be configured.
  • Another object of the present invention is to provide methods for transmitting a reservation signal when the sPDSCH is used.
  • Another object of the present invention is to provide methods for transmitting and receiving an acknowledgment signal (ACK / NACK) for the sPDSCH.
  • Another object of the present invention is to provide channel estimation methods when the sPDSCH is configured.
  • the present invention relates to a wireless access system supporting an unlicensed band, and more particularly, to a method for configuring a reduced downlink physical shared channel (sPDSCH), a method for scheduling the same, methods for transmitting and receiving the same, and apparatuses for supporting the same.
  • sPDSCH reduced downlink physical shared channel
  • a method for receiving an abbreviated downlink shared channel (sPDSCH) in a wireless access system supporting an unlicensed band includes length information on an sPDSCH set in an unlicensed band cell (U cell) supporting an unlicensed band.
  • Monitoring a common search space to detect downlink control information (DCI) including the step of receiving a DCI through the common search space and receiving an sPDSCH based on the length information, wherein the sPDSCH is a part Received on a subframe (pSF), the pSF may be configured with a smaller size than the normal subframe.
  • DCI downlink control information
  • a terminal receiving an abbreviated downlink shared channel (sPDSCH) in a wireless access system supporting an unlicensed band may include a receiver and a processor configured to support sPDSCH reception.
  • the processor monitors the common search space to control the receiver to detect downlink control information (DCI) including length information on the sPDSCH set in the unlicensed band cell (U cell) supporting the unlicensed band; Receive the DCI through a common search space; And receive the sPDSCH based on length information.
  • the sPDSCH may be received on a partial subframe (pSF), and the pSF may be configured to have a smaller size than the normal subframe.
  • the sPDSCH may be an ending sPDSCH (Ending PDSCH) ending before the subframe boundary of the U cell corresponding to the subframe boundary of the primary cell (P cell) configured in the licensed band.
  • Ending PDSCH ending sPDSCH
  • the sPDSCH may be scheduled in a cross carrier scheduling scheme or a self carrier scheduling scheme.
  • the common search space may be configured in the U-cell of the unlicensed band.
  • radio resources can be efficiently used by utilizing a frame structure and scheduling method using the sPDSCH.
  • the UE can guarantee successful data decoding through channel estimation.
  • the sPDSCH when used, the sPDSCH can be correctly received by providing methods for configuring a subframe for tracking purposes.
  • the DCI including the length information about the sPDSCH may be received through the common search space.
  • 1 is a diagram illustrating a physical channel and a signal transmission method using the same.
  • FIG. 2 is a diagram illustrating an example of a structure of a radio frame.
  • 3 is a diagram illustrating a resource grid for a downlink slot.
  • FIG. 4 is a diagram illustrating an example of a structure of an uplink subframe.
  • 5 is a diagram illustrating an example of a structure of a downlink subframe.
  • FIG. 6 is a diagram illustrating an example of carrier aggregation used in a component carrier (CC) and LTE_A system.
  • FIG. 7 shows a subframe structure of an LTE-A system according to cross carrier scheduling.
  • FIG. 8 is a diagram illustrating an example of a configuration of a serving cell according to cross carrier scheduling.
  • FIG. 9 is a diagram illustrating one of the SRS transmission methods used in embodiments of the present invention.
  • FIG. 10 is a diagram illustrating an example of a subframe to which a cell specific reference signal (CRS) is allocated, which can be used in embodiments of the present invention.
  • CRS cell specific reference signal
  • FIG. 11 is a diagram illustrating an example of subframes in which CSI-RSs that can be used in embodiments of the present invention are allocated according to the number of antenna ports.
  • FIG. 12 is a diagram illustrating an example in which legacy PDCCH, PDSCH, and E-PDCCH used in an LTE / LTE-A system are multiplexed.
  • FIG. 13 is a diagram illustrating an example of a CA environment supported by an LTE-U system.
  • FIG. 14 is a diagram illustrating one method of setting a TxOP interval.
  • FIG. 15 illustrates a subframe structure that may be applied to an sPDSCH.
  • FIG. 16 illustrates one method of configuring an sPDSCH.
  • FIG. 17 illustrates a DM-RS used in an LTE-A system that can be applied to a LAA system.
  • FIG. 18 is a diagram for describing one of methods of configuring an sPDSCH in a rate matching scheme
  • FIG. 19 is a diagram for comparing the number of bits of CB with respect to the sPDSCH, the CB after rate matching, and the size of CB after coding.
  • 20 is a diagram for describing a method for a base station scheduling two or more SFs on a U cell.
  • FIG. 21 is a means in which the methods described in FIGS. 1 to 20 may be implemented.
  • the present invention relates to a wireless access system that supports an unlicensed band, and proposes a method of configuring an abbreviated downlink physical shared channel (sPDSCH), a method of scheduling the same, methods of transmitting and receiving the same, and apparatuses for supporting the same.
  • sPDSCH abbreviated downlink physical shared channel
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • the base station is meant as a terminal node of a network that directly communicates with a mobile station.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
  • various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an advanced base station (ABS), or an access point.
  • a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), or a mobile subscriber station (MSS). It may be replaced with terms such as a mobile terminal or an advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
  • the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the IEEE 802.xx system, the 3rd Generation Partnership Project (3GPP) system, the 3GPP LTE system, and the 3GPP2 system, which are wireless access systems, and in particular, the present invention.
  • Embodiments of the may be supported by 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 and 3GPP TS 36.331 documents. That is, obvious steps or portions not described among the embodiments of the present invention may be described with reference to the above documents.
  • all terms disclosed in the present document can be described by the above standard document.
  • Transmission Opportunity Period may be used in the same meaning as the term transmission period or RRP (Reserved Resource Period).
  • RRP Reserved Resource Period
  • the LBT process may be performed for the same purpose as a carrier sensing (CS) process for determining whether a channel state is idle.
  • CS carrier sensing
  • 3GPP LTE / LTE-A system will be described as an example of a wireless access system in which embodiments of the present invention can be used.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP Long Term Evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (Advanced) system is an improved system of the 3GPP LTE system.
  • embodiments of the present invention will be described based on the 3GPP LTE / LTE-A system, but can also be applied to IEEE 802.16e / m system and the like.
  • a terminal receives information from a base station through downlink (DL) and transmits information to the base station through uplink (UL).
  • the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information they transmit and receive.
  • FIG. 1 is a diagram for explaining physical channels that can be used in embodiments of the present invention and a signal transmission method using the same.
  • the initial cell search operation such as synchronizing with the base station is performed in step S11.
  • the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain broadcast information in a cell.
  • PBCH physical broadcast channel
  • the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S12. Specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the terminal may perform a random access procedure as in steps S13 to S16 to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S13), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S14).
  • PRACH physical random access channel
  • the UE may perform contention resolution such as transmitting an additional physical random access channel signal (S15) and receiving a physical downlink control channel signal and a corresponding physical downlink shared channel signal (S16). Procedure).
  • the UE After performing the above-described procedure, the UE subsequently receives a physical downlink control channel signal and / or a physical downlink shared channel signal (S17) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure.
  • a transmission (Uplink Shared Channel) signal and / or a Physical Uplink Control Channel (PUCCH) signal may be transmitted (S18).
  • UCI uplink control information
  • HARQ-ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK
  • SR Scheduling Request
  • CQI Channel Quality Indication
  • PMI Precoding Matrix Indication
  • RI Rank Indication
  • UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH when control information and traffic data should be transmitted at the same time.
  • the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • FIG. 2 shows a structure of a radio frame used in embodiments of the present invention.
  • the type 1 frame structure can be applied to both full duplex Frequency Division Duplex (FDD) systems and half duplex FDD systems.
  • FDD Frequency Division Duplex
  • One subframe is defined as two consecutive slots, and the i-th subframe includes slots corresponding to 2i and 2i + 1. That is, a radio frame consists of 10 subframes.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • the slot includes a plurality of OFDM symbols or SC-FDMA symbols in the time domain and a plurality of resource blocks in the frequency domain.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • 10 subframes may be used simultaneously for downlink transmission and uplink transmission during each 10ms period. At this time, uplink and downlink transmission are separated in the frequency domain.
  • the terminal cannot transmit and receive at the same time.
  • the structure of the radio frame described above is just one example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • Type 2 frame structure is applied to the TDD system.
  • the type 2 frame includes a special subframe consisting of three fields: a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • the DwPTS is used for initial cell search, synchronization or channel estimation in the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • Table 1 below shows the structure of the special frame (length of DwPTS / GP / UpPTS).
  • FIG. 3 is a diagram illustrating a resource grid for a downlink slot that can be used in embodiments of the present invention.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block includes 12 ⁇ 7 resource elements.
  • the number NDL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 4 shows a structure of an uplink subframe that can be used in embodiments of the present invention.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a PUCCH carrying uplink control information.
  • a PUSCH carrying user data is allocated.
  • one UE does not simultaneously transmit a PUCCH and a PUSCH.
  • the PUCCH for one UE is allocated an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
  • the RB pair allocated to this PUCCH is said to be frequency hopping at the slot boundary.
  • FIG. 5 shows a structure of a downlink subframe that can be used in embodiments of the present invention.
  • up to three OFDM symbols from the OFDM symbol index 0 in the first slot in the subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which the PDSCH is allocated. to be.
  • a downlink control channel used in 3GPP LTE includes a Physical Control Format Indicator Channel (PCFICH), a PDCCH, and a Physical Hybrid-ARQ Indicator Channel (PHICH).
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH Physical Hybrid-ARQ Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Negative-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • the PDCCH includes resource allocation and transmission format (ie, DL-Grant) of downlink shared channel (DL-SCH) and resource allocation information (ie, uplink grant (UL-) of uplink shared channel (UL-SCH). Grant)), paging information on a paging channel (PCH), system information on a DL-SCH, and an upper-layer control message such as a random access response transmitted on a PDSCH. It may carry resource allocation, a set of transmission power control commands for individual terminals in a certain terminal group, information on whether Voice over IP (VoIP) is activated or the like.
  • VoIP Voice over IP
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of an aggregation of one or several consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • a plurality of multiplexed PDCCHs for a plurality of terminals may be transmitted in a control region.
  • the PDCCH is composed of one or more consecutive CCE aggregations (CCE aggregation).
  • CCE refers to a unit corresponding to nine sets of REGs consisting of four resource elements.
  • QPSK Quadrature Phase Shift Keying
  • RS reference signal
  • the base station may use ⁇ 1, 2, 4, 8 ⁇ CCEs to configure one PDCCH signal, wherein ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level.
  • the number of CCEs used for transmission of a specific PDCCH is determined by the base station according to the channel state. For example, one CCE may be sufficient for a PDCCH for a terminal having a good downlink channel state (close to the base station). On the other hand, in case of a UE having a bad channel state (when it is at a cell boundary), eight CCEs may be required for sufficient robustness.
  • the power level of the PDCCH may also be adjusted to match the channel state.
  • Table 2 below shows a PDCCH format, and four PDCCH formats are supported as shown in Table 2 according to the CCE aggregation level.
  • the reason why the CCE aggregation level is different for each UE is because a format or a modulation and coding scheme (MCS) level of control information carried on the PDCCH is different.
  • MCS level refers to a code rate and a modulation order used for data coding.
  • Adaptive MCS levels are used for link adaptation. In general, three to four MCS levels may be considered in a control channel for transmitting control information.
  • control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • DCI downlink control information
  • the configuration of information carried in the PDCCH payload may vary.
  • the PDCCH payload means an information bit. Table 3 below shows DCI according to DCI format.
  • a DCI format includes a format 0 for PUSCH scheduling, a format 1 for scheduling one PDSCH codeword, a format 1A for compact scheduling of one PDSCH codeword, and a very much DL-SCH.
  • Format 1C for simple scheduling, format 2 for PDSCH scheduling in closed-loop spatial multiplexing mode, format 2A for PDSCH scheduling in open-loop spatial multiplexing mode, for uplink channel
  • Format 3 and 3A for the transmission of Transmission Power Control (TPC) commands.
  • DCI format 1A may be used for PDSCH scheduling, regardless of which transmission mode is configured for the UE.
  • the PDCCH payload length may vary depending on the DCI format.
  • the type and length thereof of the PDCCH payload may vary depending on whether it is a simple scheduling or a transmission mode set in the terminal.
  • the transmission mode may be configured for the UE to receive downlink data through the PDSCH.
  • the downlink data through the PDSCH may include scheduled data, paging, random access response, or broadcast information through BCCH.
  • Downlink data through the PDSCH is related to the DCI format signaled through the PDCCH.
  • the transmission mode may be set semi-statically to the terminal through higher layer signaling (eg, RRC (Radio Resource Control) signaling).
  • the transmission mode may be classified into single antenna transmission or multi-antenna transmission.
  • the terminal is set to a semi-static transmission mode through higher layer signaling.
  • multi-antenna transmission includes transmit diversity, open-loop or closed-loop spatial multiplexing, and multi-user-multiple input multiple outputs.
  • beamforming Transmit diversity is a technique of increasing transmission reliability by transmitting the same data in multiple transmit antennas.
  • Spatial multiplexing is a technology that allows high-speed data transmission without increasing the bandwidth of the system by simultaneously transmitting different data from multiple transmit antennas.
  • Beamforming is a technique of increasing the signal to interference plus noise ratio (SINR) of a signal by applying weights according to channel conditions in multiple antennas.
  • SINR signal to interference plus noise ratio
  • the DCI format is dependent on a transmission mode configured in the terminal (depend on).
  • the UE has a reference DCI format that monitors according to a transmission mode configured for the UE.
  • the transmission mode set in the terminal may have ten transmission modes as follows.
  • transmission mode 1 single antenna port; Port 0
  • Transmission mode 7 Precoding supporting single layer transmission not based on codebook
  • Transmission mode 8 Precoding supporting up to two layers not based on codebook
  • Transmission mode 9 Precoding supporting up to eight layers not based on codebook
  • Transmission mode 10 precoding supporting up to eight layers, used for CoMP, not based on codebook
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • a unique identifier for example, a Radio Network Temporary Identifier (RNTI)
  • RNTI Radio Network Temporary Identifier
  • a paging indication identifier (eg, P-RNTI (P-RNTI)) may be masked to the CRC.
  • P-RNTI P-RNTI
  • SI-RNTI System Information RNTI
  • RA-RNTI random access-RNTI
  • the base station performs channel coding on the control information added with the CRC to generate coded data.
  • channel coding may be performed at a code rate according to the MCS level.
  • the base station performs rate matching according to the CCE aggregation level allocated to the PDCCH format, modulates the coded data, and generates modulation symbols.
  • a modulation sequence according to the MCS level can be used.
  • the modulation symbols constituting one PDCCH may have one of 1, 2, 4, and 8 CCE aggregation levels.
  • the base station maps modulation symbols to physical resource elements (CCE to RE mapping).
  • a plurality of PDCCHs may be transmitted in one subframe. That is, the control region of one subframe includes a plurality of CCEs having indices 0 to N CCE, k ⁇ 1.
  • N CCE, k means the total number of CCEs in the control region of the kth subframe.
  • the UE monitors the plurality of PDCCHs in every subframe. Here, monitoring means that the UE attempts to decode each of the PDCCHs according to the monitored PDCCH format.
  • blind decoding refers to a method in which a UE de-masks its UE ID in a CRC portion and then checks the CRC error to determine whether the corresponding PDCCH is its control channel.
  • the UE monitors the PDCCH of every subframe in order to receive data transmitted to the UE.
  • the UE wakes up in the monitoring interval of every DRX cycle and monitors the PDCCH in a subframe corresponding to the monitoring interval.
  • a subframe in which PDCCH monitoring is performed is called a non-DRX subframe.
  • the UE In order to receive the PDCCH transmitted to the UE, the UE must perform blind decoding on all CCEs present in the control region of the non-DRX subframe. Since the UE does not know which PDCCH format is transmitted, it is necessary to decode all PDCCHs at the CCE aggregation level possible until blind decoding of the PDCCH is successful in every non-DRX subframe. Since the UE does not know how many CCEs the PDCCH uses for itself, the UE should attempt detection at all possible CCE aggregation levels until the blind decoding of the PDCCH succeeds.
  • a search space (SS) concept is defined for blind decoding of a terminal.
  • the search space means a PDCCH candidate set for the UE to monitor and may have a different size according to each PDCCH format.
  • the search space may include a common search space (CSS) and a UE-specific / dedicated search space (USS).
  • the UE In the case of the common search space, all terminals can know the size of the common search space, but the terminal specific search space can be set individually for each terminal. Accordingly, the UE must monitor both the UE-specific search space and the common search space in order to decode the PDCCH, thus performing a maximum of 44 blind decoding (BDs) in one subframe. This does not include blind decoding performed according to different CRC values (eg, C-RNTI, P-RNTI, SI-RNTI, RA-RNTI).
  • CRC values eg, C-RNTI, P-RNTI, SI-RNTI, RA-RNTI
  • the base station may not be able to secure the CCE resources for transmitting the PDCCH to all the terminals to transmit the PDCCH in a given subframe. This is because resources remaining after the CCE location is allocated may not be included in the search space of a specific UE.
  • a terminal specific hopping sequence may be applied to the starting point of the terminal specific search space to minimize this barrier that may continue to the next subframe.
  • Table 4 shows the sizes of the common search space and the terminal specific search space.
  • the UE does not simultaneously perform searches according to all defined DCI formats. Specifically, the terminal always performs a search for DCI formats 0 and 1A in the terminal specific search space (USS). In this case, the DCI formats 0 and 1A have the same size, but the UE may distinguish the DCI formats by using a flag used for distinguishing the DCI formats 0 and 1A included in the PDCCH. In addition, a DCI format other than DCI format 0 and DCI format 1A may be required for the UE. Examples of the DCI formats include 1, 1B, and 2.
  • the UE may search for DCI formats 1A and 1C.
  • the UE may be configured to search for DCI format 3 or 3A, and DCI formats 3 and 3A have the same size as DCI formats 0 and 1A, but the UE uses a CRC scrambled by an identifier other than the UE specific identifier.
  • the DCI format can be distinguished.
  • the CCE according to the PDCCH candidate set m of the search space may be determined by Equation 1 below.
  • M (L) represents the number of PDCCH candidates according to CCE aggregation level L for monitoring in search space, to be.
  • N s represents a slot index in a radio frame.
  • the UE monitors both the UE-specific search space and the common search space to decode the PDCCH.
  • the common search space (CSS) supports PDCCHs having an aggregation level of ⁇ 4, 8 ⁇
  • the UE specific search space supports PDCCHs having an aggregation level of ⁇ 1, 2, 4, 8 ⁇ .
  • Table 5 shows PDCCH candidates monitored by the UE.
  • Y k is defined as in Equation 2.
  • CA Carrier Aggregation
  • LTE system 3rd Generation Partnership Project Long Term Evolution (Rel-8 or Rel-9) system
  • MCM multi-carrier modulation
  • CC component carrier
  • Multi-Carrier Modulation is used.
  • LTE-A system a method such as Carrier Aggregation (CA) may be used in which one or more component carriers are combined to support a wider system bandwidth than the LTE system.
  • CA Carrier Aggregation
  • Carrier aggregation may be replaced with the words carrier aggregation, carrier matching, multi-component carrier environment (Multi-CC) or multicarrier environment.
  • the multi-carrier means the aggregation of carriers (or carrier aggregation), wherein the aggregation of carriers means not only merging between contiguous carriers but also merging between non-contiguous carriers.
  • the number of component carriers aggregated between downlink and uplink may be set differently.
  • the case where the number of downlink component carriers (hereinafter referred to as 'DL CC') and the number of uplink component carriers (hereinafter referred to as 'UL CC') is the same is called symmetric merging. This is called asymmetric merging.
  • Such carrier aggregation may be used interchangeably with terms such as carrier aggregation, bandwidth aggregation, spectrum aggregation, and the like.
  • Carrier aggregation in which two or more component carriers are combined, aims to support up to 100 MHz bandwidth in an LTE-A system.
  • the bandwidth of the combining carrier may be limited to the bandwidth used by the existing system to maintain backward compatibility with the existing IMT system.
  • the existing 3GPP LTE system supports ⁇ 1.4, 3, 5, 10, 15, 20 ⁇ MHz bandwidth
  • the 3GPP LTE-advanced system i.e., LTE-A
  • LTE-A 3GPP LTE-advanced system
  • the carrier aggregation system used in the present invention may support carrier aggregation by defining a new bandwidth regardless of the bandwidth used in the existing system.
  • the carrier aggregation may be divided into an intra-band CA and an inter-band CA.
  • Intra-band carrier merging means that a plurality of DL CCs and / or UL CCs are located adjacent to or in proximity to frequency. In other words, it may mean that the carrier frequencies of the DL CCs and / or UL CCs are located in the same band.
  • an environment far from the frequency domain may be referred to as an inter-band CA.
  • the terminal may use a plurality of radio frequency (RF) terminals to perform communication in a carrier aggregation environment.
  • RF radio frequency
  • the LTE-A system uses the concept of a cell to manage radio resources.
  • the carrier aggregation environment described above may be referred to as a multiple cell environment.
  • a cell is defined as a combination of a downlink resource (DL CC) and an uplink resource (UL CC), but the uplink resource is not an essential element. Accordingly, the cell may be configured with only downlink resources or with downlink resources and uplink resources.
  • a specific UE when a specific UE has only one configured serving cell, it may have one DL CC and one UL CC. However, when a specific terminal has two or more configured serving cells, it may have as many DL CCs as the number of cells and the number of UL CCs may be the same or smaller than that. Alternatively, the DL CC and the UL CC may be configured on the contrary. That is, when a specific UE has a plurality of configured serving cells, a carrier aggregation environment in which a UL CC has more than the number of DL CCs may be supported.
  • Carrier coupling may also be understood as the merging of two or more cells, each having a different carrier frequency (center frequency of the cell).
  • the term 'cell' in terms of carrier combining is described in terms of frequency, and should be distinguished from 'cell' as a geographical area covered by a commonly used base station.
  • intra-band carrier merging is referred to as an intra-band multi-cell
  • inter-band carrier merging is referred to as an inter-band multi-cell.
  • the cell used in the LTE-A system includes a primary cell (P cell) and a secondary cell (S cell).
  • the PCell and the SCell may be used as serving cells.
  • the UE that is in the RRC_CONNECTED state but the carrier aggregation is not configured or does not support the carrier aggregation, there is only one serving cell composed of the PCell.
  • one or more serving cells may exist, and the entire serving cell includes a PCell and one or more SCells.
  • Serving cells may be configured through an RRC parameter.
  • PhyS cell Id is a cell's physical layer identifier and has an integer value from 0 to 503.
  • SCell Index is a short identifier used to identify SCell and has an integer value from 1 to 7.
  • ServCellIndex is a short identifier used to identify a serving cell (P cell or S cell) and has an integer value from 0 to 7. A value of 0 is applied to the P cell, and the S cell Index is given in advance to apply to the S cell. That is, a cell having the smallest cell ID (or cell index) in ServCellIndex becomes a P cell.
  • P cell refers to a cell operating on a primary frequency (or primary CC).
  • the UE may be used to perform an initial connection establishment process or to perform a connection re-establishment process, and may also refer to a cell indicated in a handover process.
  • the P cell refers to a cell serving as a center of control-related communication among serving cells configured in a carrier aggregation environment. That is, the terminal may receive and transmit a PUCCH only in its own Pcell, and may use only the Pcell to acquire system information or change a monitoring procedure.
  • E-UTRAN Evolved Universal Terrestrial Radio Access
  • RRC ConnectionReconfigutaion message of a higher layer including mobility control information to a UE supporting a carrier aggregation environment. It may be.
  • the S cell may refer to a cell operating on a secondary frequency (or, secondary CC). Only one PCell may be allocated to a specific UE, and one or more SCells may be allocated.
  • the SCell is configurable after the RRC connection is established and may be used to provide additional radio resources.
  • PUCCH does not exist in the remaining cells excluding the P cell, that is, the S cell, among the serving cells configured in the carrier aggregation environment.
  • the E-UTRAN may provide all system information related to the operation of the related cell in the RRC_CONNECTED state through a dedicated signal.
  • the change of the system information may be controlled by the release and addition of the related SCell, and at this time, an RRC connection reconfigutaion message of a higher layer may be used.
  • the E-UTRAN may transmit specific signaling having different parameters for each terminal, rather than broadcasting in the related SCell.
  • the E-UTRAN may configure a network including one or more Scells in addition to the Pcells initially configured in the connection establishment process.
  • the Pcell and the SCell may operate as respective component carriers.
  • the primary component carrier (PCC) may be used in the same sense as the PCell
  • the secondary component carrier (SCC) may be used in the same sense as the SCell.
  • FIG. 6 is a diagram illustrating an example of carrier aggregation used in a component carrier (CC) and an LTE_A system used in embodiments of the present invention.
  • Component carriers include a DL CC and an UL CC.
  • One component carrier may have a frequency range of 20 MHz.
  • 6 (b) shows a carrier aggregation structure used in the LTE_A system.
  • 6 (b) shows a case where three component carriers having a frequency size of 20 MHz are combined.
  • the number of DL CCs and UL CCs is not limited.
  • the UE may simultaneously monitor three CCs, receive downlink signals / data, and transmit uplink signals / data.
  • the network may allocate M (M ⁇ N) DL CCs to the UE.
  • the UE may monitor only M limited DL CCs and receive a DL signal.
  • the network may assign L (L ⁇ M ⁇ N) DL CCs to allocate a main DL CC to the UE, in which case the UE must monitor the L DL CCs. This method can be equally applied to uplink transmission.
  • the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by a higher layer message or system information such as an RRC message.
  • a combination of DL resources and UL resources may be configured by a linkage defined by SIB2 (System Information Block Type2).
  • SIB2 System Information Block Type2
  • the linkage may mean a mapping relationship between a DL CC on which a PDCCH carrying a UL grant is transmitted and a UL CC using the UL grant, and a DL CC (or UL CC) and HARQ ACK on which data for HARQ is transmitted. It may mean a mapping relationship between UL CCs (or DL CCs) through which a / NACK signal is transmitted.
  • Cross carrier scheduling may be referred to as Cross Component Carrier Scheduling or Cross Cell Scheduling.
  • Self-scheduling is transmitted through a DL CC in which a PDCCH (DL Grant) and a PDSCH are transmitted in the same DL CC, or a PUSCH transmitted according to a PDCCH (UL Grant) transmitted in a DL CC is linked to a DL CC in which a UL Grant has been received. It means to be.
  • a DL CC in which a PDCCH (DL Grant) and a PDSCH are transmitted to different DL CCs or a UL CC in which a PUSCH transmitted according to a PDCCH (UL Grant) transmitted in a DL CC is linked to a DL CC having received an UL grant This means that it is transmitted through other UL CC.
  • Whether to perform cross-carrier scheduling may be activated or deactivated UE-specifically and may be known for each UE semi-statically through higher layer signaling (eg, RRC signaling).
  • higher layer signaling eg, RRC signaling
  • a carrier indicator field (CIF: Carrier Indicator Field) indicating a PDSCH / PUSCH indicated by the corresponding PDCCH is transmitted to the PDCCH.
  • the PDCCH may allocate PDSCH resource or PUSCH resource to one of a plurality of component carriers using CIF. That is, when the PDCCH on the DL CC allocates PDSCH or PUSCH resources to one of the multi-aggregated DL / UL CC, CIF is set.
  • the DCI format of LTE Release-8 may be extended according to CIF.
  • the set CIF may be fixed as a 3 bit field or the position of the set CIF may be fixed regardless of the DCI format size.
  • the PDCCH structure (same coding and resource mapping based on the same CCE) of LTE Release-8 may be reused.
  • the PDCCH on the DL CC allocates PDSCH resources on the same DL CC or PUSCH resources on a single linked UL CC, CIF is not configured.
  • the same PDCCH structure (same coding and resource mapping based on the same CCE) and DCI format as in LTE Release-8 may be used.
  • the UE When cross carrier scheduling is possible, the UE needs to monitor the PDCCHs for the plurality of DCIs in the control region of the monitoring CC according to the transmission mode and / or bandwidth for each CC. Therefore, it is necessary to configure the search space and PDCCH monitoring that can support this.
  • the terminal DL CC set represents a set of DL CCs scheduled for the terminal to receive a PDSCH
  • the terminal UL CC set represents a set of UL CCs scheduled for the terminal to transmit a PUSCH.
  • the PDCCH monitoring set represents a set of at least one DL CC that performs PDCCH monitoring.
  • the PDCCH monitoring set may be the same as the terminal DL CC set or may be a subset of the terminal DL CC set.
  • the PDCCH monitoring set may include at least one of DL CCs in the terminal DL CC set. Alternatively, the PDCCH monitoring set may be defined separately regardless of the UE DL CC set.
  • the DL CC included in the PDCCH monitoring set may be configured to always enable self-scheduling for the linked UL CC.
  • the UE DL CC set, the UE UL CC set, and the PDCCH monitoring set may be configured UE-specifically, UE group-specifically, or cell-specifically.
  • cross-carrier scheduling When cross-carrier scheduling is deactivated, it means that the PDCCH monitoring set is always the same as the UE DL CC set. In this case, an indication such as separate signaling for the PDCCH monitoring set is not necessary.
  • a PDCCH monitoring set is defined in the terminal DL CC set. That is, in order to schedule PDSCH or PUSCH for the UE, the base station transmits the PDCCH through only the PDCCH monitoring set.
  • FIG. 7 illustrates a subframe structure of an LTE-A system according to cross carrier scheduling used in embodiments of the present invention.
  • DL CC 'A' represents a case in which a PDCCH monitoring DL CC is configured.
  • each DL CC may transmit a PDCCH for scheduling its PDSCH without CIF.
  • the CIF is used through higher layer signaling, only one DL CC 'A' may transmit a PDCCH for scheduling its PDSCH or PDSCH of another CC using the CIF.
  • DL CCs 'B' and 'C' that are not configured as PDCCH monitoring DL CCs do not transmit the PDCCH.
  • FIG. 8 is a diagram illustrating an example of a configuration of a serving cell according to cross carrier scheduling used in embodiments of the present invention.
  • a base station and / or terminals may be composed of one or more serving cells.
  • the base station can support a total of four serving cells, such as A cell, B cell, C cell, and D cell, and terminal A is composed of A cell, B cell, and C cell, and terminal B is B cell, C cell, and the like. It is assumed that the D cell and the terminal C is configured as a B cell. In this case, at least one of the cells configured in each terminal may be configured as a P cell.
  • the PCell is always in an activated state, and the SCell may be activated or deactivated by the base station and / or the terminal.
  • the cell configured in FIG. 8 is a cell capable of adding a cell to a CA based on a measurement report message from a terminal among cells of a base station, and may be configured for each terminal.
  • the configured cell reserves the resources for the ACK / NACK message transmission for the PDSCH signal transmission in advance.
  • An activated cell is a cell configured to transmit a real PDSCH signal and / or a PUSCH signal among configured cells, and performs CSI reporting and SRS (Sounding Reference Signal) transmission.
  • a de-activated cell is a cell configured not to transmit or receive a PDSCH / PUSCH signal by a command or timer operation of a base station, and also stops CSI reporting and SRS transmission.
  • CoMP transmission may be implemented using a carrier aggregation (CA) function in LTE.
  • CA carrier aggregation
  • a carrier operating as a PCell and a carrier operating as an SCell may use the same frequency band as the frequency axis, and are allocated to two geographically separated eNBs.
  • the serving eNB of the UE1 may be allocated to the Pcell, and the neighboring cell which gives a lot of interference may be allocated to the Scell. That is, the base station of the P cell and the base station of the S cell may perform various DL / UL CoMP operations such as joint transmission (JT), CS / CB, and dynamic cell selection with respect to one UE.
  • FIG. 9 shows an example of combining cells managed by two eNBs for one UE (e.g. UE1) as a Pcell and an Scell, respectively.
  • one UE e.g. UE1
  • three or more cells may be combined.
  • some of the three or more cells may be configured to perform a CoMP operation on one terminal in the same frequency band, and other cells to perform a simple CA operation in another frequency band.
  • the Pcell does not necessarily participate in CoMP operation.
  • FIG. 10 is a diagram illustrating an example of a subframe to which a cell specific reference signal (CRS) is allocated, which can be used in embodiments of the present invention.
  • CRS cell specific reference signal
  • CRS 10 shows an allocation structure of a CRS when a system supports four antennas.
  • CRS is used for decoding and channel state measurement. Accordingly, the CRS is transmitted over the entire downlink bandwidth in all downlink subframes in a cell supporting PDSCH transmission, and is transmitted in all antenna ports configured in the eNB.
  • the CRS sequence is mapped to complex-valued modulation symbols used as reference symbols for antenna port p in slot n s .
  • the UE can measure the CSI using the CRS, and can decode the downlink data signal received through the PDSCH in a subframe including the CRS using the CRS. That is, the eNB transmits the CRS at a predetermined position in each RB in all RBs, and the UE detects the PDSCH after performing channel estimation based on the CRS. For example, the UE measures the signal received at the CRS RE. The UE may detect the PDSCH signal from the PD to which the PDSCH is mapped by using a ratio of the reception energy for each CRS RE to the reception energy for each RE to which the PDSCH is mapped.
  • the 3GPP LTE-A system further defines a UE-specific RS (hereinafter, UE-RS) and a channel state information reference signal (CSI-RS) in addition to the CRS.
  • UE-RS is used for demodulation and CSI-RS is used to derive channel state information.
  • UE-RS and CRS are used for demodulation, they can be referred to as demodulation RS in terms of use. That is, the UE-RS may be regarded as a kind of DM-RS (DeModulation Reference Signal).
  • DM-RS Demodulation Reference Signal
  • the CSI-RS and the CRS are used for channel measurement or channel estimation, the CSI-RS and CRS may be referred to as RS for channel state measurement in terms of use.
  • FIG. 11 is a diagram illustrating an example of subframes in which CSI-RSs that can be used in embodiments of the present invention are allocated according to the number of antenna ports.
  • the CSI-RS is a downlink reference signal introduced in the 3GPP LTE-A system not for demodulation purposes but for measuring a state of a wireless channel.
  • the 3GPP LTE-A system defines a plurality of CSI-RS settings for CSI-RS transmission. In subframes in which CSI-RS transmission is configured, the CSI-RS sequence is mapped according to complex modulation symbols used as reference symbols on antenna port p.
  • FIG. 11 (a) shows 20 CSI-RS configurations 0 to 19 available for CSI-RS transmission by two CSI-RS ports among CSI-RS configurations
  • FIG. 11 (b) shows CSI-RS configurations. Of the configurations, 10 CSI-RS configurations available through four CSI-RS ports 0 through 9 are shown, and FIG. 11 (c) shows 5 available by eight CSI-RS ports among the CSI-RS configurations. Branch CSI-RS configuration 0-4 are shown.
  • the CSI-RS port means an antenna port configured for CSI-RS transmission. Since the CSI-RS configuration varies depending on the number of CSI-RS ports, even if the CSI-RS configuration numbers are the same, different CSI-RS configurations are obtained when the number of antenna ports configured for CSI-RS transmission is different.
  • the CSI-RS is configured to be transmitted every predetermined transmission period corresponding to a plurality of subframes. Therefore, the CSI-RS configuration depends not only on the positions of REs occupied by the CSI-RS in a resource block pair but also on the subframe in which the CSI-RS is configured.
  • the CSI-RS configuration may be regarded as different. For example, if the CSI-RS transmission period (T CSI-RS ) is different or the start subframe ( ⁇ CSI-RS ) configured for CSI-RS transmission in one radio frame is different, the CSI-RS configuration may be different.
  • the CSI-RS configuration depends on (1) the CSI-RS configuration to which the CSI-RS configuration number is assigned, and (2) the CSI-RS configuration number, the number of CSI-RS ports, and / or subframes in which the CSI-RS is configured.
  • the configuration of the latter 2 is called a CSI-RS resource configuration.
  • the setting of the former 1 is also referred to as CSI-RS configuration or CSI-RS pattern.
  • eNB informs UE of CSI-RS resource configuration
  • the number of antenna ports, CSI-RS pattern, CSI-RS subframe configuration I CSI-RS , CSI used for transmission of CSI-RSs UE assumption on reference PDSCH transmitted power for feedback (CSI) can be informed about P c , zero power CSI-RS configuration list, zero power CSI-RS subframe configuration, etc. .
  • I CSI-RS is information for specifying the subframe configuration period T CSI-RS and subframe offset ⁇ CSI-RS for the presence of CSI-RSs .
  • Table 4 illustrates CSI-RS subframe configuration index I CSI-RS according to T CSI-RS and ⁇ CSI-RS .
  • CSI-RS-SubframeConfig I CSI-RS CSI-RS periodicity T CSI-RS (subframes) CSI-RS subframe offset ⁇ CSI-RS (subframes) 0-4 5 I CSI-RS 5-14 10 I CSI-RS -5 15-34 20 I CSI-RS -15 35-74 40 I CSI-RS -35 75-154 80 I CSI-RS -75
  • subframes satisfying Equation 3 below are subframes including the CSI-RS.
  • a UE set to a transmission mode defined after 3GPP LTE-A system (for example, transmission mode 9 or another newly defined transmission mode) performs channel measurement using CSI-RS and PDSCH using UE-RS. Can be decoded.
  • a UE set to a transmission mode defined after 3GPP LTE-A system (for example, transmission mode 9 or another newly defined transmission mode) performs channel measurement using CSI-RS and PDSCH using UE-RS. Can be decoded.
  • a cross carrier scheduling (CCS) operation in a combined situation for a plurality of component carrier (CC) cells
  • CC cross carrier scheduling
  • the scheduled CC may be preset to receive DL / UL scheduling only from another scheduling CC (ie, to receive a DL / UL grant PDCCH for the scheduled CC).
  • the scheduling CC may basically perform DL / UL scheduling on itself.
  • the number of OFDM symbols used for transmission of control channels in each subframe may be delivered to the UE dynamically through a physical channel such as PCFICH or in a semi-static manner through RRC signaling.
  • the PDCCH which is a physical channel for transmitting DL / UL scheduling and various control information, has a limitation such as being transmitted through limited OFDM symbols.
  • the PDCCH is transmitted through an OFDM symbol separate from the PDSCH, such as a PDCCH.
  • An extended PDCCH ie E-PDCCH
  • FIG. 12 is a diagram illustrating an example in which legacy PDCCH, PDSCH, and E-PDCCH used in an LTE / LTE-A system are multiplexed.
  • cooperative operations may be performed between network entities. For example, during a particular subframe in which Cell A transmits data, cells other than Cell A transmit only common control information, but do not transmit data, thereby minimizing interference to users receiving data in Cell A. can do.
  • the UE may perform a resource-restricted measurement (RRM) operation.
  • RRM resource-restricted measurement
  • Table 7 below shows an example of a higher layer signal for setting a CSI subframe set.
  • Table 7 shows an example of a CQI-Report Cofig message transmitted to set a CSI subframe set.
  • the CQI report configuration message includes aperiodic CQI report (cqi-ReportAperiodic-r10) IE, nomPDSCH-RS-EPRE-Offset IE, periodic CQI report (cqi-ReportPeriodci-r10) IE, PMI-RI report (pmi-RI- Report-r9) IE and CSI subframe pattern configuration (csi-subframePatternConfig) IE may be included.
  • the CSI subframe pattern configuration IE includes a CSI measurement subframe set 1 information (csi-MeasSubframeSet1) IE and a CSI measurement subframe set 2 information (csi-MeasSubframeSet2) IE indicating a measurement subframe pattern for each subframe set.
  • the CSI measurement subframe set 1 (csi-MeasSubframeSet1-r10) information element (IE) and the CSI measurement subframe set 2 (csi-MeasSubframeSet2-r10) IE are 40 bit bitmap information and belong to each subframe set. Represents information about a subframe.
  • the aperiodic CQI report (CQI-ReportAperiodic-r10) IE is an IE for performing the setting for aperiodic CQI reporting to the terminal
  • the periodic CQI report (CQI-ReportPeriodic-r10) IE is set for the periodic CQI reporting IE is done.
  • nomPDSCH-RS-EPRE-Offset IE Indicates a value. At this time, the actual value is Value * 2 is set to [dB].
  • the PMI-RI Report IE indicates that PMI / IR reporting is configured or not. EUTRAN configures the PMI-RI Report IE only when the transmission mode is set to TM8, 9 or 10.
  • the LTE-U system refers to an LTE system supporting CA conditions of the licensed band and the unlicensed band.
  • the unlicensed band may be a Wi-Fi band or a Bluetooth (BT) band.
  • FIG. 13 is a diagram illustrating an example of a CA environment supported by the LTE-U system.
  • CCs component carriers
  • a licensed CC (LCC: Licensed CC) is a major carrier (can be referred to as a primary CC (PCC or PCell)), an unlicensed carrier (Unlicensed CC: UCC) is a sub-carrier Assume a case of (Secondary CC: SCC or S cell).
  • LCC Licensed CC
  • UCC unlicensed carrier
  • embodiments of the present invention may be extended to a situation in which a plurality of licensed bands and a plurality of unlicensed bands are used in a carrier combining method.
  • the proposed schemes of the present invention can be extended to not only 3GPP LTE system but also other system.
  • FIG. 13 illustrates a case in which one base station supports both a licensed band and an unlicensed band. That is, the terminal can transmit and receive control information and data through a PCC, which is a licensed band, and can also transmit and receive control information and data through an SCC, which is an unlicensed band.
  • a PCC which is a licensed band
  • SCC which is an unlicensed band
  • the terminal may configure a P-cell and a macro base station (M-eNB: Macro eNB) and a small cell (S-eNB: Small eNB) and an S cell.
  • M-eNB Macro eNB
  • S-eNB Small eNB
  • the macro base station and the small base station may be connected through a backhaul network.
  • the unlicensed band may be operated in a contention based random access scheme.
  • an eNB and / or a transmission point (TP) supporting an unlicensed band may first perform a carrier sensing (CS) process before data transmission and reception.
  • the CS process is a process of determining whether the corresponding band is occupied by another entity.
  • the base station eNB and / or TP of the SCell checks whether the current channel is busy or idle. If it is determined that the corresponding band is idle, the base station and / or the TP is a scheduling grant through the (E) PDCCH of the Pcell in the case of the cross carrier scheduling scheme or the PDCCH of the Scell in the case of the self scheduling scheme. Transmits to the terminal to allocate resources, and may attempt to transmit and receive data.
  • the CS process may be performed the same as or similar to that of the List Before Talk (LBT) process.
  • the LBT process is a process in which a base station of a Pcell checks whether a current state of a Ucell (a cell operating in an unlicensed band) is busy or idle. For example, when there is a clear channel assessment (CCA) threshold set by a preset or higher layer signal, when an energy higher than the CCA threshold is detected in the U-cell, it is determined to be busy or otherwise idle. do.
  • CCA clear channel assessment
  • the base station of the Pcell transmits a scheduling grant (ie, DCI, etc.) through the (E) PDCCH of the Pcell or through the PDCCH of the Ucell to schedule resources for the Ucell.
  • the data can be transmitted and received through the U cell.
  • the base station and / or the TP may set a transmission opportunity (TxOP) section consisting of M consecutive subframes.
  • TxOP transmission opportunity
  • the base station may inform the UE of the M value and the use of the M subframes in advance through a higher layer signal, a physical control channel, or a physical data channel through a Pcell.
  • a TxOP period consisting of M subframes may be called a reserved resource period (RRP).
  • the base station may transmit and receive data with one terminal during the TxOP period, or may set a TxOP period consisting of N consecutive subframes to multiple terminals, and transmit and receive data in a TDM or FDM manner. At this time, the base station may transmit and receive data through the P cell and the S cell of the unlicensed band during the TxOP period.
  • the base station transmits data in accordance with the subframe boundary (subframe boundary) of the LTE-A system, which is a licensed band
  • a timing gap exists between the idle determination time of the unlicensed band S cell and the actual data transmission time.
  • the SCell is an unlicensed band that cannot be used exclusively by the corresponding base station and the terminal, and must be used through competition based on CS, so that another system may attempt to transmit information during such a timing gap.
  • the base station may transmit a reservation signal (reservation signal) to prevent another system from attempting to transmit information during the timing gap in the SCell.
  • the reservation signal means a kind of “dummy information” or “copy of a part of PDSCH” transmitted to reserve the corresponding resource region of the SCell as its own resource.
  • the reservation signal may be transmitted during a timing gap (i.e. after the idle determination time of the SCell to before the actual transmission time).
  • FIG. 14 is a diagram illustrating one method of setting a TxOP interval.
  • the base station may set the TxOP interval in a semi-static manner in advance through the Pcell. For example, the base station may transmit the number N of subframes constituting the TxOP interval and configuration information on the purpose of the corresponding TxOP interval to the terminal through an upper layer signal (eg, an RRC signal) (S1410).
  • an upper layer signal eg, an RRC signal
  • step S1410 may be performed dynamically.
  • the base station may transmit the configuration information for the TxOP interval to the terminal through the PDCCH or E-PDCCH.
  • the SCell may check whether a current channel state is idle or busy by performing a carrier sensing process (S1420).
  • the Pcell and the Scell may be managed by different base stations or the same base station. However, when different base stations are managed, information on the channel state of the SCell may be transferred to the PCcell through the backhaul (S1430).
  • the UE may transmit and receive data through the Pcell and the Scell in the subframe set to the TxOP period. If the use of the corresponding TxOP is set to downlink data transmission in step S1410, the UE may receive DL data through the Scell in the TxOP period, and if the use of the TxOP is set to uplink data transmission, the terminal is S UL data may be transmitted through the cell (S1440).
  • the TxOP interval may be used in the same meaning as a DL Tx burst, a DL burst, or an RRP interval.
  • the DL burst or the DL transmission burst may also include a section for transmitting a reservation signal for channel occupation.
  • Embodiments of the present invention relate to an LTE-A system operating in an unlicensed band.
  • a system will be referred to as a Licensed Assisted Access (LAA) system. That is, the LAA system performs the basic operations for LTE / LTE-A as it is, and provides methods for performing data transmission and reception with the LTE terminal in the unlicensed band.
  • LAA Licensed Assisted Access
  • subframes of the SCell are transmitted at the boundary of the subframe SF of the PCell. If allowed to start, the LTE-A system may yield too much channel occupancy to other systems. Therefore, in the LAA system, unlike the existing LTE-A system, it is possible to allow the start of signal transmission at a time point not at the SF boundary.
  • the continuous signal transmission interval may be defined as a data burst.
  • the data burst may be used in the same sense as the aforementioned TxOP, RRP, and the like.
  • Embodiments of the present invention are directed to methods of composing a signal at a time point other than the SF boundary to configure partial SF (pSF) of a unit smaller than 1 ms, and methods of ending data transmission at a time point other than the SF boundary. It is about.
  • the PDSCH transmitted on the pSF may be referred to as a shortened PDSCH (sPDSCH).
  • (s) PDSCH means sPDSCH and / or PDSCH
  • (E) PDCCH means PDCCH and / or EPDCCH.
  • FIG. 15 illustrates a subframe structure that may be applied to an sPDSCH.
  • one subframe may configure one transmission unit in each or in combination.
  • one SF consists of one PDSCH for convenience of description.
  • one SF may include several PDSCHs according to an implementation scheme. If one PDSCH is configured in one SF, pSF may be used in the same meaning as sPDSCH.
  • FIG. 15A illustrates the first type frame structure.
  • the base station may start a backoff process for performing CS in SF #N of the Ucell and confirm that the channel is idle at an intermediate time point of SF # N + 1. Therefore, the base station starts the transmission of the reservation signal (reservation signal) in SF # N + 1 of the U cell, and starts the PDSCH transmission from a predetermined time point. If the channel occupancy time is set to 4 ms in the Ucell, the sPDSCH is transmitted in SF # N + 1 and SF # N + 4, and the four SFs are configured to transmit different transport blocks (TB). Can be. That is, the TxOP section may be composed of TB1, TB2, TB3 and TB4.
  • FIG. 15B is for explaining the second type frame structure.
  • the sPDSCH of SF # N + 1 and the PDSCH of SF # N + 2 may be configured as one TB (e.g., TB1) and transmitted.
  • the same TB may be configured and transmitted only when the length of the sPDSCH is smaller than a specific threshold.
  • the same TB may be configured and transmitted only when the code rate of the sPDSCH is larger than a specific threshold.
  • the base station may configure a PDSCH of SF # N + 3 and an sPDSCH of SF # N + 4 into one TB (that is, TB3) and transmit the same.
  • the fourth type frame structure does not constitute an sPDSCH with the same TB as other PDSCHs to compensate for the disadvantages of the second and third type frame structures, but two sPDSCHs that may exist before and after the 4 ms channel occupancy time. Are composed of one TB. That is, one TB (i.e., TB1) may be divided and mapped to the sPDSCH allocated to the pSF, and the PDSCH may be transmitted to the intact SFs.
  • the fourth type frame structure has advantages in terms of pit data rate compared to the second and third types. However, since the UE must continuously buffer the data of SF # N + 1 to SF # N + 4, the buffer size of the UE is increased. In small cases, there may be a problem in terms of implementation.
  • FIG. 15E illustrates the fifth type frame structure.
  • the eNB configures a PDSCH to be transmitted during the upcoming SF before each SF starts, and transmits the preconfigured PDSCH from a predetermined time point of the SF.
  • the sPDSCH transmission can be started from a point other than the predetermined time point of the SF, and the sPDSCH can be different from the PDSCH configured before the SF start.
  • the eNB and the UE may need additional procedures to successfully transmit and receive the sPDSCH.
  • the fifth type frame structure maintains the original SF of 1 ms of the channel occupancy time intact, and the second SF consists of the sPDSCH.
  • the SF which starts transmission in the Ucell from the middle of SF # N + 1, consists of 1 ms of intact SF.
  • the eNB may immediately transmit the PDSCH prepared in advance without additional process.
  • the base station can preconfigure the sPDSCH for TB2 before the SF # N + 2 starts.
  • the TB on the SFSCH of SF # N + 1 and the sPDSCH of SF # N + 2 are differently allocated, but corresponding subframes may be configured with the same TB.
  • a reservation signal transmission method an sPDSCH configuration method, a U-cell scheduling method, a DCI configuration method, an ACK / NACK transmission method, a channel estimation method, and the like will be proposed for the first to fifth type frame structures described above.
  • the proposed methods in embodiments of the present invention are also applicable to frame structures that do not include the ending sPDSCH (eg, the sPDSCH of SF # N + 4 of FIGS. 15A to 15E). .
  • the base station may determine whether there is an ending sPDSCH according to the channel occupancy time. For example, the base station may configure the terminating sPDSCH only when occupying a channel of X ms or less.
  • the size of the channel occupancy time of the base station may vary according to the channel environment and / or system requirements, and configure the terminating sPDSCH to terminate the DL burst transmission before the allowed channel occupancy time in advance. have. This reduces the time interval between successive DL bursts by creating a timing gap for the LBT process before the next DL burst.
  • the UCell backoff ends There may be a timing gap between the timing point and the actual DL channel transmission start time point.
  • DL channels eg, (E) PDCCH, PDSCH, etc.
  • UCell can not be used exclusively by the eNB and the UE can access the channel on a contention basis. If the eNB does not transmit any signal during this timing gap, another transmitting node may attempt to transmit the signal during that timing gap. Accordingly, the eNB may transmit a reservation signal to occupy a channel during a corresponding timing gap in UCell, and may transmit specific information together with the reservation signal. In this case, the reservation signal may be transmitted by distinguishing between when the start point of the DL channel is the SF boundary (or a predetermined point in time) and when it is not.
  • the base station may transmit a reservation signal for the purpose of channel occupancy only. That is, the base station may not transmit the corresponding reservation signal when the backoff end time coincides with the SF boundary (or predefined specific point in time), and the UE transmits before the SF boundary (or predefined point in time). It may not attempt to receive the reserved signal or expect the presence of the reserved signal.
  • the base station may transmit a reservation signal for the purpose of not only channel occupancy but also specific information transmission.
  • the eNB may inform via the reservation signal that the DL channel is started at a point other than the SF boundary (or a predetermined point in time defined in advance).
  • a maximum length and / or a minimum length of the corresponding reservation signal may be set, and the corresponding value (s) may be a value previously determined or determined through higher layer signaling (eg, RRC signaling).
  • the DL channel transmission may not start at the DL channel start time. have.
  • the base station Transmits a reservation signal for the purpose of channel occupancy only for (XY) us and informs that the DL channel starts at a point other than the SF boundary (or predefined point in time) for the remaining Y us (i.e., A reservation signal (which the UE can receive).
  • the start time of the DL channel is an SF boundary (or a predetermined time point defined in advance)
  • a minimum length (e.g., Z us) of a reserved signal to be transmitted may be defined and the UE may not always expect to receive the signal.
  • the eNB should send a reservation signal of at least Z us, and if the reservation signal is required from the UE perspective (eg, for AGC setting purposes). ), You can try to receive only.
  • the UE attempts to receive assuming that the DL channel can start from every SF boundary (or a predefined point in time). If the terminal does not find a DL channel starting at an SF boundary (or a predetermined point in time defined), the terminal is a reservation indicating that the DL channel starts at a point other than the SF boundary (or predefined point in time). Attempt to receive the signal. If the UE successfully finds the reservation signal, the UE may attempt to receive the DL channel at a point other than the SF boundary (or a predetermined point in time after the reception of the reservation signal).
  • the reservation signal transmission / reception method may be applied to both a cross carrier scheduled terminal, a self carrier scheduled terminal, or a hybrid scheduled terminal. In this case, the hybrid scheduled terminal refers to a terminal capable of performing cross-carrier scheduling or self-carrier scheduling for each subframe.
  • FIG. 16 illustrates one method of configuring an sPDSCH.
  • the eNB preconfigures the PDSCH to be transmitted during the SF to be started before each SF starts.
  • TB1 on SF # N + 1 may be configured by puncturing a portion where actual transmission is not performed in the preconfigured PDSCH.
  • the base station may puncture the preceding 8 symbols and transmit them (SF # N + 1 in FIG. 16, Alt. 1). -1 method).
  • the base station may puncture the last 8 symbols and then shift 8 symbols (SF # N + 1 in FIG. 16, Alt). 1-2 method).
  • a mapping method may be introduced in which a base station transmits data from a later symbol after performing frequency priority mapping.
  • the base station performs time-first mapping, but unlike the conventional method of performing the mapping from the front symbol, the base station may perform resource mapping from the rear symbol.
  • the base station is assigned to Alt.
  • the position of the DM-RS may be configured assuming a special SF having a size closest to the size of the corresponding pSF.
  • the base station configures a DM-RS corresponding to the special subframe configuration 9, and then includes seven OFDM symbols in the rear. It is possible to configure DM-RS for pSF by puncturing and shifting the front seven OFDM symbols.
  • a rule may be defined to assume a special SF that is smaller (or larger) than the size of the pSF. For example, if the size of the pSF is 13 OFDM symbols, the base station may assume a special SF configuration 4 (ie, 12 OFDM symbols) or may configure DM-RS assuming intact SF. Alternatively, the base station may assume a special SF configuration consisting of the smallest OFDM symbols larger than the size of the pSF, and assume a special SF configuration consisting of the largest OFDM symbols smaller than the size of the pSF. Can be configured. 17 illustrates a DM-RS used in an LTE-A system that can be applied to a LAA system. That is, the above-described DM-RSs may be used the DM-RSs shown in FIG.
  • the SF # N + 1 and the SF # N + 4 phase TB1 of the fourth type frame structure may be configured by puncturing in a PDSCH configured at a time point of SF # N + 1.
  • the preconfigured PDSCH is 14 OFDM symbols
  • the reserved signal is 3 symbols
  • TB1 of SF # N + 1 is 6 symbols
  • TB1 of SF # N + 4 is 5 symbols will be described as an example.
  • the base station punctures the front 8 symbols of the preconfigured PDSCH and transmits the rear 6 symbols to SF # N + 1, punctures the rear 9 symbols of the preconfigured PDSCH and transmits the front 5 symbols at SF # N + 4 do.
  • the base station punctures the rear 8 symbols of the preconfigured PDSCH and then transmits the front 6 symbols to SF # N + 1 (i.e., the punctured 8 symbols transition), and then punctures the front 9 symbols of the preconfigured PDSCH. Transmit the last 5 symbols to SF # N + 4 (i.e., puncture 9 symbol transitions).
  • the base station After the base station punctures the rear 8 symbols of the preconfigured PDSCH, transmits the front 6 symbols to SF # N + 1 (i.e. 8 symbol transitions), punctures the front 6 symbols and the rear 3 symbols of the preconfigured PDSCH.
  • the middle five symbols are transmitted (six symbol transitions) to SF # N + 4.
  • Alt. 2-3) type is Alt. Compared to the 2-2) method, the success probability of the sPDSCH can be increased.
  • the base station divides the TB transmitted from the MAC layer into one or more code blocks (CBs), and applies turbo coding to each CB.
  • the base station then stores the coded CBs in a circular buffer. If the number of bits required to transmit the PDSCH in the 1 ms long SF is calculated, the eNB performs rate matching for each CB of the bits stored in the circular buffer, performs modulation, etc., and then performs RE mapping. send.
  • the eNB performs a series of processes such as rate matching, modulation, and RE mapping on the bits stored in the circular buffer in the same manner. Can be sent over.
  • the slot unit for performing the CCA may be very short, it may be a problem if a series of processes such as rate matching, modulation, RE mapping, etc. cannot be processed in a very short time according to an eNB implementation. For example, assuming that the CCA slot operates at 9 us, if the time required for the base station to configure the sPDSCH by determining that the CCA result channel state is idle is greater than 9 us, the nature of the unlicensed band operation during that time Interference from other nodes may be caused.
  • the eNB preconfigures the CB (s) for general SF transmission having a length of 1 ms and then extracts data from the CB (s) preconfigured for general SF transmission when the sPDSCH needs to be transmitted as a result of backoff.
  • the sPDSCH may be configured to reduce processing time.
  • the general SF transmission CB (s) may be stored in an additional buffer of the base station.
  • the base station when storing the CB (s) configured in advance for the general SF transmission, the base station may be stored in units of bits or may be stored in units of modulation symbols.
  • FIG. 18 is a diagram for describing one of methods of configuring an sPDSCH in a rate matching scheme
  • FIG. 19 is a diagram for comparing the number of bits of CB with respect to the sPDSCH, the CB after rate matching, and the size of CB after coding.
  • the base station assumes 1 ms of general PDSCH transmission and configures rate-matched CBs generated by CBs for general SF transmission once, and then transmits the sPDSCH.
  • RTI ID 0.0 > (or < / RTI > modulated symbols).
  • the base station configures the CB (s) in the RE-mapped form, and then transmits or punctures specific OFDM symbols for each CB when transmitting the sPDSCH.
  • the eNB In the CA situation of the LTE-A system, the eNB generally schedules through (E) PDCCH of SF # N + 1 for U-cell transmission of SF # N + 1. As such, scheduling may be defined as prescheduling at the time of SF # N + 1 prior to the start of the sPDSCH.
  • the base station may not actually transmit the sPDSCH.
  • the base station and / or the terminal since the base station and / or the terminal does not know the exact start time of the sPDSCH in advance, it may be difficult to determine the TB size or MCS.
  • the base station may perform scheduling for the sPDSCH at SF # N + 1 on the Ucell in the (E) PDCCH at SF # N + 2. Scheduling later than the sPDSCH start time is defined as post scheduling. Post scheduling may mean cross carrier scheduling, self carrier scheduling, or a combination thereof.
  • PDSCH located in SF # N + 1 may be scheduled in (E) PDCCH at SF # N + 1 and (s) located in SF # N + 1 and SF # N + 2. All PDSCHs may be scheduled (eg, in the same TB).
  • the base station can schedule only (s) PDSCH located in SF # N + 1 on (E) PDCCH at SF # N + 2, and located in SF # N + 1 and SF # N + 2. (s) All PDSCHs may be scheduled. Scheduling a specific SF of the same or different time point at a specific SF time point is the same as the scheduling scheme of the existing LTE-A system (in terms of DCI configuration).
  • 20 is a diagram for describing a method for a base station scheduling two or more SFs on a U cell.
  • the base station transmits sPDSCHs of SF # N + 1 and SF # N + 2 of the U cell through the (E) PDCCH of the PCell in SF # N + 1.
  • PDSCH may be scheduled.
  • sPDSCH and PDSCH for two or more SFs are scheduled to the same UE, and the same frequency resources are assigned to each UE for each SF.
  • signaling for the UE as to whether the base station schedules two or more SFs at once or each may be required. For example, by distinguishing the scrambling sequence, the CRC mask, and / or the search space of the DCI, the UE may be informed whether two or more SFs are scheduled at one time. Of course, such information may inform the UE by adding a new field on the DCI.
  • the base station may simultaneously schedule two TB1 in FIG. 15 (b), simultaneously schedule two TB3 in FIG. 15 (c), or configure TB1 and TB2 in the same TB in FIG. 15 (e). Likewise, when transmitting one TB in two SFs, scheduling may be performed using one DCI.
  • the base station may apply one RV to the sPDSCH and the PDSCH in common.
  • the base station may configure the sPDSCH and PDSCH based on the same code bit and transmit to the terminal.
  • the UE may recognize the data received from the sPDSCH and the PDSCH as two TBs in which the same RV is used.
  • the base station may consider the sPDSCH and the PDSCH as one PDSCH, and generate and transmit a coded bit with a specific RV value.
  • the UE may recognize data received from the sPDSCH and the PDSCH as one TB.
  • the base station may set the RV values applied to the sPDSCH and the PDSCH differently according to a predetermined method, even if one RV value is included in the DCI. For example, if the order of RV is set to 0-2-3-1, if the RV field value of DCI is 0, the preceding (s) PDSCH sets the RV value to 0, and the next (s) PDSCH sets the RV value to the next order. Can be assumed to be 2.
  • the UE may determine whether to think of the RV value differently or the same according to the length (or code rate) of the sPDSCH. For example, if the sPDSCH has a length of X1 or less (or a code rate of X2 or more), the RV value may be set equally. Learn more about Alt. 3-1) or Alt. Can operate as 3-2). Conversely, if sPDSCH is greater than X in length, Alt. 3-3) can be operated.
  • the UE may transmit one ACK / NACK. For example, when the scheduling time is SF #K, the UE may transmit ACK / NACK for the corresponding TB to the base station at SF # K + 4 timing.
  • Alt. 4-2) Terminal Alt. If the existing ACK / NACK transmission timing is maintained as in the method 4-1), since the same TB is transmitted over two (s) PDSCHs, it may be insufficient to configure decoding and ACK / NACK. Accordingly, the terminal may transmit the ACK / NACK signal considering the processing time a little longer than the existing timing. For example, when the scheduling timing is SF #K, the UE may transmit ACK / NACK for the corresponding TB at SF # K + 5 timing.
  • the base station may allocate at least one or more of the following information differently for each TB.
  • a front RV value may correspond to a front TB and a rear RV value may be set to a value corresponding to a back TB.
  • the remaining information can also be set in this manner.
  • the UE may transmit ACK / NACK for each TB to the base station at SF # K + 4 timing like the LTE-A system. At this time, ACK / NACK for 2 TB may be bundled.
  • Alt. 5-2 Alt. Since the ACK / NACK bundling method is used in the case of the 5-1) method, even if only one of the two TBs is successful, retransmission is attempted, resulting in waste of resources. Accordingly, when the scheduling time is SF #K, the UE may transmit ACK / NACK for the front TB at SF # K + 4 timing and ACK / NACK for the back TB at SF # K + 5 timing.
  • the UE may transmit ACK / NACK for the front TB at SF # K + 3 timing and ACK / NACK for the back TB at SF # K + 4 timing.
  • the base station may schedule both (s) PDSCHs located in SF # N + 1 and SF # N + 2 in the (E) PDCCH at the time of SF # N + 1 (for example, the same TB). If). In this case, it is necessary to distinguish whether the UE schedules the (s) PDSCH located in SF # N + 1 or the (s) PDSCH located in SF # N + 2 in the corresponding (E) PDCCH.
  • This division may utilize DCI.
  • the scrambling sequence, the CRC mask and / or the search space of the DCI may be distinguished from each other.
  • a new field may be added and distinguished from the DCI. For example, if the new field value is '0', it indicates that the front (s) PDSCH is '1' and scheduling information for the rear (s) PDSCH.
  • the same TB transmitted through the (s) PDSCH of the two SFs may be scheduled to the same UE, and the same frequency resource may be allocated to each UE for each SF.
  • only resource allocation (RA) information may be sufficient in only one of the two DCIs. That is, the base station may carry RA information only on one DCI and additional information on the remaining DCI.
  • the base station uses a post scheduling scheme
  • scheduling for SF # N + 1 sPDSCH and SF # N + 2 PDSCH through (E) PDCCH in SF # N + 2 can do.
  • the DCI for the SF # N + 2 PDSCH may include existing RA information
  • the DCI for the SF # N + 1 sPDSCH may include the length of the sPDSCH instead of the RA information.
  • the UE may transmit one ACK / NACK since the same TB is transmitted through two (s) PDSCHs. For example, when the scheduling time is SF #K, the UE may transmit ACK / NACK for the corresponding TB to the base station at SF # K + 4 timing.
  • the terminal is Alt. If the existing ACK / NACK transmission timing is maintained as in the method 4-1), since the same TB is transmitted over two (s) PDSCHs, it may be insufficient to configure decoding and ACK / NACK. Accordingly, the terminal may transmit the ACK / NACK signal considering the processing time a little longer than the existing timing. For example, when the scheduling timing is SF #K, the UE may transmit ACK / NACK for the corresponding TB at SF # K + 5 timing.
  • the UE may transmit ACK / NACK for the front TB at SF # K + 4 time and ACK / NACK for the back TB at SF # K + 5 time.
  • the UE may transmit ACK / NACK for the front TB at SF # K + 3 time and ACK / NACK for the back TB at SF # K + 4 time.
  • Alt. 7-2 If the length of the sPDSCH is limited, it may be difficult for the base station to transmit all (Y-Z-W) symbols. For example, when the number of symbols that the sPDSCH can have is one of 4, 7, and 11, the number of symbols of the ending sPDSCH is smaller than (YZW) and may be configured as the nearest number of symbols among ⁇ 4,7,11 ⁇ . have. As another example, the number of symbols of the sPDSCH may be limited to all or some of the number of symbols defined on the special SF configuration.
  • the UE may not know the exact value of Z. Therefore, Z may be set to the maximum length of the reservation signal and may be fixed regardless of the transmission length of the actual reservation signal. In this case, the Z value may be a value set through higher layer signaling or a value predefined in the system.
  • the base station may explicitly inform the terminal of the length of the termination sPDSCH by using the DCI. For example, the base station may transmit a new field indicating the length of the ending sPDSCH in the DCI transmitted on the UE specific search space.
  • the base station may inform the terminal of the length of the end sPDSCH (or PEnd) through the DCI on the common search space defined for the Ucell in the LAA system.
  • PEnd is a pSF transmitted with some of the back OFDM symbols omitted and a pSF terminated before the subframe boundary of the U cell corresponding to the subframe boundary of the primary cell (P cell) configured in the licensed band. it means.
  • the terminal in order to receive an abbreviated downlink shared channel (sPDSCH) in a radio access system supporting an unlicensed band, the terminal has a length for an sPDSCH set in an unlicensed band cell (U cell) supporting an unlicensed band.
  • the common search space is monitored to detect downlink control information (DCI) including the information.
  • the terminal may detect and receive the DCI through the common search space, and receive the sPDSCH based on the length information included in the DCI.
  • DCI downlink control information
  • the sPDSCH may be received on a partial subframe (pSF, for example, PEnd), and the pSF may be configured to have a smaller size than the normal subframe.
  • pSF partial subframe
  • the sPDSCH may be scheduled in a cross-carrier scheduling scheme or a self-carrier scheduling scheme, and a common search space may be configured in a Ucell of an unlicensed band. That is, the length information of the sPDSCH is always transmitted through the common search space on the U cell.
  • the base station transmits the DCI through (E) PDCCH on SF # N + 1 in case of prescheduling and (E) PDCCH on SF # N + 2 in case of post scheduling, and the sPDSCH of SF # N + 4.
  • the DCI for does not need to be additionally transmitted.
  • the base station may be configured to transmit the DCI for the terminating sPDSCH in SF # N + 4 or SF # N + 5.
  • the base station may transmit the length information of the end sPDSCH including the DCI.
  • scheduling information eg, RA, RV, HARQ process number, etc.
  • the UE may recognize that the UE includes the information of the end sPDSCH.
  • the base station may accurately inform the terminal whether the ending sPDSCH is present and its length by including the symbol length of the ending sPDSCH instead of the existing resource allocation information in the RA field of the corresponding DCI.
  • the UE may transmit ACK / NACK after 4 ms based on the scheduling time of the terminating sPDSCH.
  • the ACK / NACK information is a result of data decoding considering the start sPDSCH and the end sPDSCH as one PDSCH.
  • the base station is Alt.
  • the DCI for the sPDSCH of SF # N + 4 is not additionally transmitted as in the 8-1) scheme, the UE is 4 ms after the SF # N + 4 for prescheduling and SF for postscheduling.
  • ACK / NACK may be transmitted 4 ms after # N + 5.
  • the PUCCH resource to which the ACK / NACK is transmitted may be a resource linked to the DCI of the starting sPDSCH or a frequency resource specified in the DCI.
  • the UE may transmit ACK / NACK information for the starting sPDSCH after 4 ms based on the scheduling time of the starting sPDSCH. That is, the terminal may transmit ACK / NACK information for the starting sPDSCH and ACK / ANCK information for the ending sPDSCH in the same manner as the existing LTE-A system.
  • the ACK / NACK information of the ending sPDSCH is a result of the data decoding by considering the starting sPDSCH and the ending sPDSCH as one PDSCH.
  • the UE may perform channel estimation and data decoding by using a cell-specific reference signal (CRS) or a UE-specific RS (URS) according to a transmission mode.
  • CRS cell-specific reference signal
  • URS UE-specific RS
  • the UE may increase the data decoding probability of the sPDSCH by using the RS included in the PDSCH immediately before and / or immediately after the sPDSCH.
  • the UE may perform channel estimation and data decoding by using an RS transmitted through a PDSCH of a next SF.
  • the terminal may utilize the RS of the PDSCH included in the immediately preceding SF in the case of the end sPDSCH.
  • the UE configures a virtual SF using an sPDSCH and a neighbor PDSCH, and decodes data using an RS-based channel estimation result received through the same antenna port on the same PRB pair (or PRG). Can be performed.
  • the power of the RS or the PDSCH vs. the power of the RS changes in each subframe due to LBT or power backoff for high modulation order transmission for multiple carriers. Can be.
  • the UE may assume that at least the transmit power powers of the adjacent sPDSCH and the RS present in the PDSCH are the same.
  • both sPDSCH included in pSF and PDSCH of adjacent SF are transmitted based on CRS.
  • the antenna port of the CRS constituting the PDSCH should include at least the antenna port of the CRS constituting the sPDSCH.
  • the power transmitted by the eNB at the antenna port (s) of the CRS constituting the sPDSCH is equal to at least the antenna ports (s) for the CRS constituting the PDSCH for at least the same antenna ports as the antenna ports of the CRS constituting the sPDSCH. It is preferable that the same as the transmission power.
  • the antenna port for the CRS constituting the sPDSCH is ⁇ 1,2 ⁇
  • the antenna port of the CRS constituting the PDSCH should always include ⁇ 1,2 ⁇ .
  • the transmit power of the antenna port ⁇ 1,2 ⁇ of the CRS constituting the sPDSCH and the transmit power of the antenna port ⁇ 1,2 ⁇ of the CRS constituting the PDSCH should be the same.
  • both the sPDSCH and the neighbor PDSCH are URS-based transmission.
  • the UE may estimate the channel of one symbol from the channel of another symbol.
  • the UE not only estimates the channel through the signal on the same antenna port, but the signal is effectively used when estimating the channel only when the signal is within the same PRB pair (or PRG) in the same SF.
  • precoding for URS may be changed. That is, in order to make the effective channel value of the sPDSCH and the PDSCH of the adjacent SF equal, it is preferable that the sPDSCH and the PDSCH of the adjacent SF are transmitted using the same precoding scheme.
  • the UE allocated to the sPDSCH may be similarly allocated to the same PRB pair (or PRG) of the adjacent PDSCH, and may also need a constraint that the precoding scheme used for the URS on the PRB pair (or PRG) should be the same. In addition, the constraint that the URS transmit power on the sPDSCH and the URS transmit power on the PDSCH should be the same.
  • the sPDSCH is transmitted based on the CRS and the neighbor PDSCH is transmitted based only on the URS without transmitting the CRS.
  • the CRS may not be included in the sPDSCH.
  • the sPDSCH may be configured such that at least one RS (such as a CRS and / or a specific URS) exists.
  • the sPDSCH composed of the last two (or one) symbols may be restricted from being transmitted.
  • the base station may be configured to transmit a preamble at every sPDSCH start point.
  • the terminal may perform channel estimation and data decoding by using the preamble.
  • the antenna port to which the base station transmits the preamble may be configured to be identical to the antenna port to which the sPDSCH is transmitted. If the MIMO transmission is to be successfully received, orthogonal preambles may be needed for each layer.
  • Alt. 10-1) Method and Alt. 10-3) can be easily applied to the fourth type frame structure.
  • the CRSs of the start sPDSCH and the end sPDSCH may be configured with the same antenna port. Or, it may be necessary that the precoding used in the URS of the starting sPDSCH and the ending sPDSCH should be the same.
  • the transmission antenna ports of the preamble, the start sPDSCH, and the end sPDSCH may be configured in the same manner.
  • the eNB For tracking between the eNB and the UE or for time-frequency fine synchronization, the eNB uses CRS antenna port 0 (in 0th, 4th, 7th, and 11th OFDM symbols) or the maximum number of antenna ports that the base station can use.
  • a subframe including all corresponding CRS ports may be transmitted on a DL TX burst (meaning a continuous transmission unit of a transmitting node).
  • these subframes are defined as a tracking subframe (tSF: tracking SF).
  • the terminal may be configured to perform blind detection (DB) for the CSI-RS / CSI-IM only for a section within Xms including the tSF.
  • DB blind detection
  • the UE may expect that the sPDSCH is transmitted only for a period within X ms from tSF.
  • tSF may be all SFs, not sPDSCHs, and only a specific subframe among DL TX bursts may be set to tSF.
  • tSF is transmitted only in a specific subframe among DL TX bursts.
  • tSF may be transmitted on the first SF on the DL TX burst, except for the SF on which the sPDSCH is transmitted.
  • the tracking SF is configured in the first subframe in which the DL TX bursts overlap, except for some subframes of 'DRX on duration' or subframes in which 'DRX on duration' and the sPDSCH are transmitted according to the time when the DRX UE wakes up. Can be.
  • the base station may use one of a PCFICH on the corresponding LAA SCell, a PHICH, a common DCI on the PCell, or a terminal-specific DCI to inform the UE that it is tSF.
  • the base station may utilize the tSF indication whenever tSF is transmitted in the first SF on the DL TX burst.
  • the base station may transmit an indication indicating the tSF only when transmitting the tSF in the middle of the DL TX burst in accordance with the time when the DRX UE wakes up.
  • the base station may be configured to detect the tSF depending on the BD of the UE, without an instruction for notifying that the tSF is transmitted.
  • the UE may expect that the sPDSCH is transmitted only for a section within X ms from the time when the tSF is detected.
  • the terminal basically should perform a blind detection (BD) for the tSF on all SF. That is, in order to reduce the implementation complexity of the UE that performs both the BD for the tSF and the BD for the sPDSCH, the base station may transmit an instruction to perform the BD for the sPDSCH after the specific SF.
  • the indication may be an indication indicating the last SF of the DL TX burst.
  • the UE first performs detection for tSF, and when tSF is found, if an indication indicating that the SF is the last SF of the DL TX burst for X ms is found, then X ms after the tracking SF from the last SF of the DL TX burst.
  • SPDSCH can be expected only within a time point.
  • the instruction to perform the BD for the sPDSCH after the specific SF may be transmitted using a PCFICH on the LAA SCell, a PHICH, a common DCI on the PCell, or a UE-specific DCI.
  • the base station and the terminal may use the PHICH on the LAA SCell as at least one of the following uses.
  • the PHICH may be designed in consideration of the following points.
  • the PHICH group always assumes one (i.e., the base station uses a particular WH code (Walsh-Hadamard code) and one of the I / Q phase combinations (eg code 0 and I phase) in that PHICH group and uses that information as the BPSK). Modulate and send to terminal)
  • WH code Wialsh-Hadamard code
  • I / Q phase combinations eg code 0 and I phase
  • FIG. 21 is a means in which the methods described in FIGS. 1 to 20 may be implemented.
  • a UE may operate as a transmitting end in uplink and a receiving end in downlink.
  • an e-Node B eNB
  • eNB e-Node B
  • the terminal and the base station may include transmitters 2140 and 2150 and receivers 2150 and 2170 to control the transmission and reception of information, data and / or messages, respectively. Or antennas 2100 and 2110 for transmitting and receiving messages.
  • the terminal and the base station may each include a processor 2120 and 2130 for performing the above-described embodiments of the present invention, and memories 2180 and 2190 capable of temporarily or continuously storing the processing of the processor. Can be.
  • Embodiments of the present invention can be performed using the components and functions of the above-described terminal and base station apparatus.
  • the processor of the base station may set a backoff counter value and determine whether the backoff allowance interval is in each TTI (or SF). If the processor of the base station performs a backoff allowable interval, the processor may control the transmitter and / or the receiver to perform the CS, and if the CS is performed, the backoff counter value may be decreased by one. Then, when the backoff counter reaches zero, the processor of the base station may transmit or receive a reservation signal and / or data to the terminal through the U-cell.
  • the processor of the base station may use the DCI transmitted on the common search space configured in the U-cell or the P-cell to transmit the length information of the end sPDSCH to the terminal.
  • the processor of the UE receives the DCI by monitoring the common search space, can clearly know the size of the ending sPDSCH based on the length information included in the DCI, and can accurately decode the ending sPDSCH.
  • the transmitter and the receiver included in the terminal and the base station include a packet modulation and demodulation function, a high speed packet channel coding function, an orthogonal frequency division multiple access (OFDMA) packet scheduling, and a time division duplex (TDD) for data transmission. Packet scheduling and / or channel multiplexing may be performed.
  • the terminal and the base station of FIG. 21 may further include a low power radio frequency (RF) / intermediate frequency (IF) unit.
  • RF radio frequency
  • IF intermediate frequency
  • the terminal is a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, a GSM (Global System for Mobile) phone, a WCDMA (Wideband CDMA) phone, an MBS.
  • PDA personal digital assistant
  • PCS personal communication service
  • GSM Global System for Mobile
  • WCDMA Wideband CDMA
  • MBS Multi Mode-Multi Band
  • a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal incorporating data communication functions such as schedule management, fax transmission and reception, which are functions of a personal mobile terminal, in a mobile communication terminal.
  • a multimode multiband terminal can be equipped with a multi-modem chip to operate in both portable Internet systems and other mobile communication systems (e.g., code division multiple access (CDMA) 2000 systems, wideband CDMA (WCDMA) systems, etc.). Speak the terminal.
  • CDMA code division multiple access
  • WCDMA wideband CDMA
  • Embodiments of the invention may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs). Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
  • software code may be stored in the memory units 2180 and 2190 to be driven by the processors 2120 and 2130.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention can be applied to various wireless access systems.
  • various radio access systems include 3rd Generation Partnership Project (3GPP), 3GPP2 and / or IEEE 802.xx (Institute of Electrical and Electronic Engineers 802) systems.
  • Embodiments of the present invention can be applied not only to the various radio access systems, but also to all technical fields to which the various radio access systems are applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 비면허 대역을 지원하는 무선 접속 시스템에 관한 것으로, 축약된 하향링크 물리 공유 채널(sPDSCH)을 구성하는 방법, 이를 스케줄링하는 방법 및 이를 송수신하는 방법들과 이를 지원하는 장치들에 관한 것이다. 본 발명의 일 실시예로서 비면허대역을 지원하는 무선접속시스템에서 축약된 하향링크 공유 채널(sPDSCH)을 수신하는 방법은, 비면허대역을 지원하는 비면허대역셀(U셀)에 설정되는 sPDSCH에 대한 길이 정보를 포함하는 하향링크 제어 정보(DCI)를 검출하기 위해 공용 서치 스페이스를 모니터링하는 단계와 공용 서치 스페이스를 통해 DCI를 수신하는 단계와 길이 정보를 기반으로 sPDSCH를 수신하는 단계를 포함하되, sPDSCH는 부분 서브프레임(pSF) 상에서 수신되고, pSF는 일반 서브프레임보다 작은 크기로 구성될 수 있다.

Description

비면허 대역을 지원하는 무선 접속 시스템에서 축약된 하향링크 물리 공유 채널을 송수신하는 방법 및 이를 지원하는 장치
본 발명은 비면허 대역을 지원하는 무선 접속 시스템에 관한 것으로, 축약된 하향링크 물리 공유 채널(sPDSCH: shortened Physical Downlink Shared Channel)을 구성하는 방법, 이를 스케줄링하는 방법 및 이를 송수신하는 방법들과 이를 지원하는 장치들에 관한 것이다
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 sPDSCH를 구성하는 방법 및 스케줄링하는 방법을 제공하는 것이다.
본 발명의 다른 목적은 sPDSCH가 설정될 수 있는 프레임 구조를 제안하는 것이다.
본 발명의 또 다른 목적은 sPDSCH가 사용되는 경우에 예약 신호를 전송하는 방법들을 제공하는 것이다.
본 발명의 또 다른 목적은 sPDSCH에 대한 수신확인신호(ACK/NACK)을 송수신하는 방법들을 제공하는 것이다.
본 발명의 또 다른 목적은 sPDSCH가 구성되는 경우 채널 추정 방법들을 제공하는 것이다.
본 발명의 또 다른 목적은 sPDSCH가 사용되는 경우 트래킹 목적의 서브프레임을 구성하는 방법들을 제공하는 것이다.
본 발명의 또 다른 목적은 이러한 방법들을 지원하는 장치들을 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 발명은 비면허 대역을 지원하는 무선 접속 시스템에 관한 것으로, 축약된 하향링크 물리 공유 채널(sPDSCH)을 구성하는 방법, 이를 스케줄링하는 방법 및 이를 송수신하는 방법들과 이를 지원하는 장치들에 관한 것이다
본 발명의 일 양태로서 비면허대역을 지원하는 무선접속시스템에서 축약된 하향링크 공유 채널(sPDSCH)을 수신하는 방법은, 비면허대역을 지원하는 비면허대역셀(U셀)에 설정되는 sPDSCH에 대한 길이 정보를 포함하는 하향링크 제어 정보(DCI)를 검출하기 위해 공용 서치 스페이스를 모니터링하는 단계와 공용 서치 스페이스를 통해 DCI를 수신하는 단계와 길이 정보를 기반으로 sPDSCH를 수신하는 단계를 포함하되, sPDSCH는 부분 서브프레임(pSF) 상에서 수신되고, pSF는 일반 서브프레임보다 작은 크기로 구성될 수 있다.
본 발명의 다른 양태로서 비면허대역을 지원하는 무선접속시스템에서 축약된 하향링크 공유 채널(sPDSCH)을 수신하는 단말은 수신기 및 sPDSCH 수신을 지원하도록 구성된 프로세서를 포함할 수 있다. 이때, 프로세서는 수신기를 제어하여 비면허대역을 지원하는 비면허대역셀(U셀)에 설정되는 sPDSCH에 대한 길이 정보를 포함하는 하향링크 제어 정보(DCI)를 검출하기 위해 공용 서치 스페이스를 모니터링하고; 공용 서치 스페이스를 통해 상기 DCI를 수신하고; 및 길이 정보를 기반으로 상기 sPDSCH를 수신하도록 구성될 수 있다. 이때, sPDSCH는 부분 서브프레임(pSF) 상에서 수신되고, pSF는 일반 서브프레임보다 작은 크기로 구성될 수 있다.
sPDSCH는 면허대역에서 구성되는 프라이머리셀(P셀)의 서브프레임 경계에 대응되는 U셀의 서브프레임 경계 이전에서 종료되는 종료 sPDSCH(Ending PDSCH)일 수 있다.
sPDSCH는 크로스 캐리어 스케줄링 방식 또는 셀프 캐리어 스케줄링 방식으로 스케줄링될 수 있다.
공용 서치 스페이스는 비면허 대역의 U셀에서 구성될 수 있다.
상술한 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명의 실시예들에 따르면 다음과 같은 효과가 있다.
본 발명의 실시예들에 따르면 다음과 같은 효과가 있다.
첫째, 비면허대역에서 P셀과 경계가 맞지 않는 경우에도 sPDSCH가 사용되는 프레임 구조, 스케줄링하는 방법 등을 활용하여 무선 자원을 효율적으로 사용할 수 있다.
둘째, sPDSCH가 사용되는 경우에 예약 신호를 전송하는 방법들을 제공함으로써 다른 시스템에서 갑자기 채널이 점유되는 것을 방지할 수 있다.
셋째, sPDSCH에 대한 수신확인신호(ACK/NACK)을 송수신하는 방법들을 제공함으로써 신뢰성있는 sPDSCH 송수신이 가능하다.
넷째, sPDSCH가 구성되는 경우에도 단말이 채널 추정을 통해 성공적인 데이터 디코딩을 보장할 수 있다.
다섯째, sPDSCH가 사용되는 경우 트래킹 목적의 서브프레임을 구성하는 방법들을 제공함으로써 sPDSCH를 정확하게 수신할 수 있다.
여섯째, sPDSCH에 대한 길이 정보를 포함하는 DCI를 공용 서치 스페이스를 통해 수신할 수 있다.
본 발명의 실시예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되고, 첨부된 도면들은 본 발명에 대한 다양한 실시예들을 제공한다. 또한, 첨부된 도면들은 상세한 설명과 함께 본 발명의 실시 형태들을 설명하기 위해 사용된다.
도 1은 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 무선 프레임의 구조의 일례를 나타내는 도면이다.
도 3는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 4는 상향링크 서브 프레임의 구조의 일례를 나타내는 도면이다.
도 5는 하향링크 서브 프레임의 구조의 일례를 나타내는 도면이다.
도 6은 컴포넌트 캐리어(CC) 및 LTE_A 시스템에서 사용되는 캐리어 병합의 일례를 나타내는 도면이다.
도 7은 크로스 캐리어 스케줄링에 따른 LTE-A 시스템의 서브 프레임 구조를 나타낸다.
도 8은 크로스 캐리어 스케줄링에 따른 서빙셀 구성의 일례를 나타내는 도면이다.
도 9는 본 발명의 실시예들에서 사용되는 SRS 전송 방법 중 하나를 나타내는 도면이다.
도 10은 본 발명의 실시예들에서 사용될 수 있는 셀 특정 참조 신호(CRS: Cell specific Reference Signal)가 할당된 서브프레임의 일례를 나타내는 도면이다.
도 11은 본 발명의 실시예들에서 사용될 수 있는 CSI-RS가 안테나 포트의 개수에 따라 할당된 서브프레임들의 일례를 나타내는 도면이다.
도 12는 LTE/LTE-A 시스템에서 사용되는 레가시 PDCCH(Legacy PDCCH), PDSCH 및 E-PDCCH가 다중화되는 일례를 나타내는 도면이다.
도 13는 LTE-U 시스템에서 지원하는 CA 환경의 일례를 나타내는 도면이다.
도 14는 TxOP 구간을 설정하는 방법 중 하나를 나타내는 도면이다.
도 15는 sPDSCH에 적용될 수 있을 서브프레임 구조를 설명하기 위한 도면이다.
도 16은 sPDSCH를 구성하는 방법 중 하나를 설명하기 위한 도면이다.
도 17은 LAA 시스템에 적용될 수 있는 LTE-A 시스템에서 사용되는 DM-RS를 도시한 도면이다.
도 18은 레이트 매칭 방식으로 sPDSCH를 구성하는 방법들 중 하나를 설명하기 위한 도면이고, 도 19는 sPDSCH에 대한 CB의 비트수와 레이트 매칭 후의 CB, 코딩 후의 CB의 크기를 비교하기 위한 도면이다.
도 20은 기지국이 U셀 상의 둘 이상의 SF들을 스케줄링하는 방법을 설명하기 위한 도면이다.
도 21에서 설명하는 장치는 도 1 내지 도 20에서 설명한 방법들이 구현될 수 있는 수단이다.
본 발명은 비면허 대역을 지원하는 무선접속시스템에 관한 것으로, 축약된 하향링크 물리 공유 채널(sPDSCH)을 구성하는 방법, 이를 스케줄링하는 방법 및 이를 송수신하는 방법들과 이를 지원하는 장치들을 제안한다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 발명의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 본 발명의 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 발명의 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 및 3GPP TS 36.331 문서들에 의해 뒷받침 될 수 있다. 즉, 본 발명의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 발명의 실시예들에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
예를 들어, 전송기회구간(TxOP: Transmission Opportunity Period)라는 용어는 전송구간 또는 RRP(Reserved Resource Period)라는 용어와 동일한 의미로 사용될 수 있다. 또한, LBT(Listen Before Talk) 과정은 채널 상태가 유휴인지 여부를 판단하기 위한 캐리어 센싱(CS: Carrier Sencing) 과정과 동일한 목적으로 수행될 수 있다.
이하에서는 본 발명의 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP LTE/LTE-A 시스템에 대해서 설명한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다. 본 발명의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 발명의 실시예들을 3GPP LTE/LTE-A 시스템을 위주로 기술하지만 IEEE 802.16e/m 시스템 등에도 적용될 수 있다.
1. 3GPP LTE/LTE_A 시스템
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
1.1 시스템 일반
도 1은 본 발명의 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 S11 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 S12 단계에서 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S13 내지 단계 S16과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S14). 경쟁 기반 임의 접속의 경우, 단말은 추가적인 물리임의접속채널 신호의 전송(S15) 및 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신(S16)과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함한다.
LTE 시스템에서 UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 본 발명의 실시예들에서 사용되는 무선 프레임의 구조를 나타낸다.
도 2(a)는 타입 1 프레임 구조(frame structure type 1)를 나타낸다. 타입 1 프레임 구조는 전이중(full duplex) FDD(Frequency Division Duplex) 시스템과 반이중(half duplex) FDD 시스템 모두에 적용될 수 있다.
하나의 무선 프레임(radio frame)은 Tf = 307200*Ts = 10ms의 길이를 가지고, Tslot = 15360*Ts = 0.5ms의 균등한 길이를 가지며 0부터 19의 인덱스가 부여된 20개의 슬롯으로 구성된다. 하나의 서브프레임은 2개의 연속된 슬롯으로 정의되며, i 번째 서브프레임은 2i 와 2i+1에 해당하는 슬롯으로 구성된다. 즉, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 서브프레임을 전송하는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. 여기서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼 또는 SC-FDMA 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block)을 포함한다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함한다.
전이중 FDD 시스템에서는 각 10ms 구간 동안 10개의 서브프레임은 하향링크 전송과 상향링크 전송을 위해 동시에 이용될 수 있다. 이때, 상향링크와 하향링크 전송은 주파수 영역에서 분리된다. 반면, 반이중 FDD 시스템의 경우 단말은 전송과 수신을 동시에 할 수 없다.
상술한 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 서브 프레임의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2(b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. 타입 2 프레임 구조는 TDD 시스템에 적용된다. 하나의 무선 프레임(radio frame)은 Tf = 307200*Ts = 10ms의 길이를 가지며, 153600*Ts = 5ms 길이를 가지는 2개의 하프프레임(half-frame)으로 구성된다. 각 하프프레임은 30720*Ts = 1ms의 길이를 가지는 5개의 서브프레임으로 구성된다. i 번째 서브프레임은 2i 와 2i+1에 해당하는 각 Tslot = 15360*Ts = 0.5ms의 길이를 가지는 2개의 슬롯으로 구성된다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다.
타입 2 프레임에는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot)인 3가지의 필드로 구성되는 특별 서브프레임을 포함한다. 여기서, DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
다음 표 1는 특별 프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
표 1
Figure PCTKR2015014192-appb-T000001
도 3은 본 발명의 실시예들에서 사용될 수 있는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3을 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 NDL은 하향링크 전송 대역폭(bandwidth)에 종속한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 4는 본 발명의 실시예들에서 사용될 수 있는 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH가 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH가 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH에는 서브 프레임 내에 RB 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이러한 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot 경계)에서 주파수 도약(frequency hopping)된다고 한다.
도 5는 본 발명의 실시예들에서 사용될 수 있는 하향링크 서브 프레임의 구조를 나타낸다.
도 5를 참조하면, 서브 프레임내의 첫번째 슬롯에서 OFDM 심볼 인덱스 0부터 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH, PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫 번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Negative-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
1.2 PDCCH(Physical Downlink Control Channel)
1.2.1 PDCCH 일반
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(즉, 하향링크 그랜트(DL-Grant)), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(즉, 상향링크 그랜트(UL-Grant)), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 여부에 관한 정보 등을 나를 수 있다.
복수의 PDCCH가 제어영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation)으로 구성된다. 하나 또는 몇몇 연속적인 CCE의 집합으로 구성된 PDCCH는 서브블록 인터리빙(subblock interleaving)을 거친 후에 제어 영역을 통해 전송될 수 있다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(REG: resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다
1.2.2 PDCCH 구조
복수의 단말에 대한 다중화된 복수의 PDCCH가 제어영역 내에서 전송될 수 있다. PDCCH는 하나 또는 2 이상의 연속적인 CCE의 집합(CCE aggregation)으로 구성된다. CCE는 4개의 자원 요소로 구성된 REG의 9개의 세트에 대응하는 단위를 말한다. 각 REG에는 4개의 QPSK(Quadrature Phase Shift Keying) 심볼이 매핑 된다. 참조 신호(RS: Reference Signal)에 의하여 점유된 자원 요소들은 REG에 포함되지 않는다. 즉, OFDM 심볼 내에서 REG의 총 개수는 셀 특정 참조 신호가 존재하는지 여부에 따라 달라질 수 있다. 4개의 자원 요소를 하나의 그룹에 매핑하는 REG의 개념은 다른 하향링크 제어 채널(예를 들어, PCFICH 또는 PHICH)에도 적용될 수 있다. PCFICH 또는 PHICH에 할당되지 않는 REG를 NREG라 하면 시스템에서 이용 가능한 CCE의 개수는 NCCE = floor(NREG/9)이며, 각 CCE는 0부터 NCCE-1 까지 인덱스를 가진다.
단말의 디코딩 프로세스를 단순화하기 위해서, n개의 CCE를 포함하는 PDCCH 포맷은 n의 배수와 동일한 인덱스를 가지는 CCE부터 시작될 수 있다. 즉, CCE 인덱스가 i인 경우 imod(n) = 0 을 만족하는 CCE부터 시작될 수 있다.
기지국은 하나의 PDCCH 신호를 구성하기 위해 {1, 2, 4, 8} 개의 CCE들을 사용할 수 있으며, 이때의 {1, 2, 4, 8}은 CCE 집합 레벨(aggregation level)이라고 부른다. 특정 PDCCH의 전송을 위해 사용되는 CCE의 개수는 채널 상태에서 따라 기지국에 의하여 결정된다. 예를 들어, 양호한 하향링크 채널 상태(기지국에 가까운 경우)를 가지는 단말을 위한 PDCCH는 하나의 CCE만으로 충분할 수 있다. 반면, 좋지 않은 채널 상태(셀 경계에 있는 경우)를 가지는 단말의 경우는 8개의 CCE들이 충분한 강인함(robustness)을 위하여 요구될 수 있다. 게다가, PDCCH의 파워 레벨도 채널 상태에 매칭되어 조절될 수 있다.
다음 표 2는 PDCCH 포맷을 나타내며, CCE 집합 레벨에 따라 표 2과 같이 4가지의 PDCCH 포맷이 지원된다.
표 2
PDCCH 포맷 CCE 개수 (n) REG 개수 PDCCH 비트 수
0 1 9 72
1 2 18 144
2 4 36 288
3 8 72 576
단말마다 CCE 집합 레벨이 다른 이유는 PDCCH에 실리는 제어정보의 포맷 또는 MCS(Modulation and Coding Scheme) 레벨이 다르기 때문이다. MCS 레벨은 데이터 코딩에 사용되는 코드 레이트(code rate)와 변조 차수(modulation order)를 의미한다. 적응적인 MCS 레벨은 링크 적응(link adaptation)을 위해 사용된다. 일반적으로 제어정보를 전송하는 제어채널에서는 3~4개 정도의 MCS 레벨을 고려할 수 있다.
제어정보의 포맷을 설명하면, PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(DCI)라고 한다. DCI 포맷에 따라 PDCCH 페이로드(payload)에 실리는 정보의 구성이 달라질 수 있다. PDCCH 페이로드는 정보 비트(information bit)를 의미한다. 다음 표 3은 DCI 포맷에 따른 DCI를 나타낸다.
표 3
DCI 포맷 내용
Format 0 Resource grants for PUSCH transmissions (uplink)
Format 1 Resource assignments for single codeword PDSCH transmission (transmission modes 1, 2 and 7)
Format 1A Compact signaling of resource assignments for sigle codeword PDSCH (all modes)
Format 1B Compact resource assignments for PDSCH using rank-1 closed loop precoding (mode 6)
Format 1C Very compact resource assignments for PDSCH (e.g., paging/broadcast system information)
Format 1D Compact resource assignments for PDSCH using multi-user MIMO(mode 5)
Format 2 Resource assignments for PDSCH for closed loop MIMO operation (mode 4)
Format 2A resource assignments for PDSCH for open loop MIMO operation (mode 3)
Format 3/3A Power control commands for PUCCH and PUSCH with 2-bit/1-bit power adjustment
Format 4 Scheduling of PUSCH in one UL cell with multi-antenna port transmission mode
표 3을 참조하면, DCI 포맷으로는 PUSCH 스케줄링을 위한 포맷 0, 하나의 PDSCH 코드워드의 스케줄링을 위한 포맷 1, 하나의 PDSCH 코드워드의 간단한(compact) 스케줄링을 위한 포맷 1A, DL-SCH의 매우 간단한 스케줄링을 위한 포맷 1C, 폐루프(Closed-loop) 공간 다중화(spatial multiplexing) 모드에서 PDSCH 스케줄링을 위한 포맷 2, 개루프(Openloop) 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 2A, 상향링크 채널을 위한 TPC(Transmission Power Control) 명령의 전송을 위한 포맷 3 및 3A가 있다. DCI 포맷 1A는 단말에 어떤 전송 모드가 설정되어도 PDSCH 스케줄링을 위해 사용될 수 있다.
DCI 포맷에 따라 PDCCH 페이로드 길이가 달라질 수 있다. 또, PDCCH 페이로드의 종류와 그에 따른 길이는 간단한(compact) 스케줄링인지 여부 또는 단말에 설정된 전송 모드(transmission mode) 등에 의해 달라질 수 있다.
전송 모드는 단말이 PDSCH를 통한 하향링크 데이터를 수신하기 위해 설정(configuration)될 수 있다. 예를 들어, PDSCH를 통한 하향링크 데이터는 단말에 대한 스케줄된 데이터(scheduled data), 페이징, 랜덤 액세스 응답 또는 BCCH를 통한 브로드캐스트 정보 등이 있다. PDSCH를 통한 하향링크 데이터는 PDCCH를 통해 시그널되는 DCI 포맷과 관계가 있다. 전송 모드는 상위 계층 시그널링(예를 들어, RRC(Radio Resource Control) 시그널링)을 통해 단말에 반정적으로(semi-statically) 설정될 수 있다. 전송 모드는 싱글 안테나 전송(Single antenna transmission) 또는 멀티 안테나(Multi-antenna) 전송으로 구분할 수 있다.
단말은 상위 계층 시그널링을 통해 반정적(semi-static)으로 전송 모드가 설정된다. 예를 들어, 멀티 안테나 전송에는 전송 다이버시티(Transmit diversity), 개루프(Open-loop) 또는 폐루프(Closed-loop) 공간 다중화(Spatial multiplexing), MU-MIMO(Multi-user-Multiple Input Multiple Output) 또는 빔 형성(Beamforming) 등이 있다. 전송 다이버시티는 다중 송신 안테나에서 동일한 데이터를 전송하여 전송 신뢰도를 높이는 기술이다. 공간 다중화는 다중 송신 안테나에서 서로 다른 데이터를 동시에 전송하여 시스템의 대역폭을 증가시키지 않고 고속의 데이터를 전송할 수 있는 기술이다. 빔 형성은 다중 안테나에서 채널 상태에 따른 가중치를 가하여 신호의 SINR(Signal to Interference plus Noise Ratio)을 증가시키는 기술이다.
DCI 포맷은 단말에 설정된 전송 모드에 종속된다(depend on). 단말은 자신에게 설정된 전송 모드에 따라 모니터링하는 참조(Reference) DCI 포맷이 있다. 단말에 설정되는 전송 모드는 다음과 같이 10개의 전송 모드를 가질 수 있다.
(1) 전송모드 1: 단일 안테나 포트; 포트 0
(2) 전송모드 2: 전송 다이버시티(Transmit Diversity)
(3) 전송모드 3: 개루프 공간 다중화 (Open-loop Spatial Multiplexing)
(4) 전송모드 4: 폐루프 공간 다중화 (Closed-loop Spatial Multiplexing)
(5) 전송모드 5: 다중 사용자 MIMO
(6) 전송모드 6: 폐루프, 랭크 = 1 프리코딩
(7) 전송모드 7: 코드북에 기반하지 않는, 단일 레이어 전송을 지원하는 프리코딩
(8) 전송모드 8: 코드북에 기반하지 않는, 두 개까지 레이어를 지원하는 프리코딩
(9) 전송모드 9: 코드북에 기반하지 않는, 여덟 개까지 레이어를 지원하는 프리코딩
(10) 전송모드 10: 코드북에 기반하지 않는, CoMP를 위해 사용되는, 여덟 개까지 레이어를 지원하는 프리코딩
1.2.3 PDCCH 전송
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(예를 들어, RNTI(Radio Network Temporary Identifier))가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자(예를 들어, C-RNTI(Cell-RNTI))가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자(예를 들어, P-RNTI(Paging-RNTI))가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: System Information Block)를 위한 PDCCH라면 시스템 정보 식별자(예를 들어, SI-RNTI(System Information RNTI))가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여 RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
이어, 기지국은 CRC가 부가된 제어정보를 채널 코딩을 수행하여 부호화된 데이터(coded data)를 생성한다. 이때, MCS 레벨에 따른 코드 레이트로 채널 코딩을 수행할 수 있다. 기지국은 PDCCH 포맷에 할당된 CCE 집합 레벨에 따른 전송률 매칭(rate matching)을 수행하고, 부호화된 데이터를 변조하여 변조 심볼들을 생성한다. 이때, MCS 레벨에 따른 변조 서열을 사용할 수 있다. 하나의 PDCCH를 구성하는 변조 심볼들은 CCE 집합 레벨이 1, 2, 4, 8 중 하나일 수 있다. 이후, 기지국은 변조 심볼들을 물리적인 자원요소에 맵핑(CCE to RE mapping)한다.
1.2.4 블라인드 디코딩(BS: Blind Decoding)
하나의 서브프레임 내에서 복수의 PDCCH가 전송될 수 있다. 즉, 하나의 서브프레임의 제어영역은 인덱스 0 ~ NCCE,k-1 을 가지는 복수의 CCE로 구성된다. 여기서, NCCE,k는 k번째 서브프레임의 제어 영역 내의 총 CCE의 개수를 의미한다. 단말은 매 서브프레임마다 복수의 PDCCH들을 모니터링한다. 여기서, 모니터링이란 단말이 모니터링되는 PDCCH 포맷에 따라 PDCCH들의 각각의 디코딩을 시도하는 것을 말한다.
서브프레임 내에서 할당된 제어영역에서 기지국은 단말에게 해당하는 PDCCH가 어디에 있는지에 관한 정보를 제공하지 않는다. 단말은 기지국으로부터 전송된 제어채널을 수신하기 위해서 자신의 PDCCH가 어느 위치에서 어떤 CCE 집합 레벨이나 DCI 포맷으로 전송되는지 알 수 없으므로, 단말은 서브프레임 내에서 PDCCH 후보(candidate)들의 집합을 모니터링하여 자신의 PDCCH를 찾는다. 이를 블라인드 디코딩(BD)이라 한다. 블라인드 디코딩은 단말이 CRC 부분에 자신의 단말 식별자(UE ID)를 디 마스킹(De-Masking) 시킨 후, CRC 오류를 검토하여 해당 PDCCH가 자신의 제어채널인지 여부를 확인하는 방법을 말한다.
활성 모드(active mode)에서 단말은 자신에게 전송되는 데이터를 수신하기 위해 매 서브프레임의 PDCCH를 모니터링한다. DRX 모드에서 단말은 매 DRX 주기의 모니터링 구간에서 깨어나(wake up) 모니터링 구간에 해당하는 서브프레임에서 PDCCH를 모니터링한다. PDCCH의 모니터링이 수행되는 서브프레임을 non-DRX 서브프레임이라 한다.
단말은 자신에게 전송되는 PDCCH를 수신하기 위해서는 non-DRX 서브프레임의 제어영역에 존재하는 모든 CCE에 대해 블라인드 디코딩을 수행해야 한다. 단말은 어떤 PDCCH 포맷이 전송될지 모르므로, 매 non-DRX 서브프레임 내에서 PDCCH의 블라인드 디코딩이 성공할 때까지 가능한 CCE 집단 레벨로 PDCCH를 모두 디코딩해야 한다. 단말은 자신을 위한 PDCCH가 몇 개의 CCE를 사용하는지 모르기 때문에 PDCCH의 블라인드 디코딩이 성공할 때까지 가능한 모든 CCE 집단 레벨로 검출을 시도해야 한다.
LTE 시스템에서는 단말의 블라인드 디코딩을 위해서 서치 스페이스(SS: Search Space) 개념을 정의한다. 서치 스페이스는 단말이 모니터링하기 위한 PDCCH 후보 세트를 의미하며, 각 PDCCH 포맷에 따라 상이한 크기를 가질 수 있다. 서치 스페이스는 공용 서치 스페이스(CSS: Common Search Space)와 단말 특정 서치 스페이스(USS: UE-specific/Dedicated Search Space)로 구성될 수 있다.
공용 서치 스페이스의 경우, 모든 단말이 공용 서치 스페이스의 크기에 대하여 알 수 있으나, 단말 특정 서치 스페이스는 각 단말마다 개별적으로 설정될 수 있다. 따라서, 단말은 PDCCH를 디코딩하기 위해 단말 특정 서치 스페이스 및 공용 서치 스페이스를 모두 모니터링해야 하며, 따라서 하나의 서브프레임에서 최대 44번의 블라인드 디코딩(BD)을 수행하게 된다. 여기에는 상이한 CRC 값(예를 들어, C-RNTI, P-RNTI, SI-RNTI, RA-RNTI)에 따라 수행하는 블라인드 디코딩은 포함되지 않는다.
서치 스페이스의 제약으로 인하여, 기지국은 주어진 서브프레임 내에서 PDCCH를 전송하고자 하는 단말들 모두에게 PDCCH를 전송하기 위한 CCE 자원이 확보될 수 없는 경우가 발생할 수 있다. 왜냐하면, CCE 위치가 할당되고 남은 자원들은 특정 단말의 서치 스페이스 내에 포함되지 않을 수 있기 때문이다. 다음 서브프레임에도 계속될 수 있는 이러한 장벽을 최소화하기 위하여 단말 특정 도약(hopping) 시퀀스가 단말 특정 서치 스페이스의 시작 지점에 적용될 수 있다.
표 4는 공용 서치 스페이스와 단말 특정 서치 스페이스의 크기를 나타낸다.
표 4
PDCCH 포맷 CCE 개수 (n) CSS에서 후보 개수 USS에서 후보 개수
0 1 - 6
1 2 - 6
2 4 4 2
3 8 2 2
블라인드 디코딩을 시도하는 횟수에 따른 단말의 부하를 경감하기 위해, 단말은 정의된 모든 DCI 포맷에 따른 서치를 동시에 수행하지 않는다. 구체적으로, 단말은 단말 특정 서치 스페이스(USS)에서 항상 DCI 포맷 0 과 1A에 대한 서치를 수행한다. 이때, DCI 포맷 0과 1A는 동일한 크기를 가지나, 단말은 PDCCH에 포함된 DCI 포맷 0과 1A를 구분하는데 사용되는 플래그(flag for format 0/format 1A differentiation)를 이용하여 DCI 포맷을 구분할 수 있다. 또한, 단말에 DCI 포맷 0과 DCI 포맷 1A외에 다른 DCI 포맷이 요구될 수 있는데, 그 일례로 DCI 포맷 1, 1B, 2가 있다.
공용 서치 스페이스(CSS)에서 단말은 DCI 포맷 1A와 1C를 서치할 수 있다. 또한 단말은 DCI 포맷 3 또는 3A를 서치하도록 설정될 수 있으며, DCI 포맷 3과 3A는 DCI 포맷 0과 1A와 동일한 크기를 가지나, 단말은 단말 특정 식별자가 아닌 다른 식별자에 의하여 스크램블된 CRC를 이용하여 DCI 포맷을 구별할 수 있다.
서치 스페이스
Figure PCTKR2015014192-appb-I000001
는 집합 레벨
Figure PCTKR2015014192-appb-I000002
에 따른 PDCCH 후보 세트를 의미한다. 서치 스페이스의 PDCCH 후보 세트 m에 따른 CCE는 다음과 같은 수학식 1에 의해 결정될 수 있다.
수학식 1
Figure PCTKR2015014192-appb-M000001
여기서, M(L)은 서치 스페이스에서 모니터하기 위한 CCE 집합 레벨 L에 따른 PDCCH 후보들의 개수를 나타내며,
Figure PCTKR2015014192-appb-I000003
이다. i는 PDCCH 에서 각 PDCCH 후보에서 개별 CCE를 지정하는 인덱스로서 i = 0, ..., L-1이다.
Figure PCTKR2015014192-appb-I000004
이며, ns는 무선 프레임 내에서 슬롯 인덱스를 나타낸다.
상술한 바와 같이, 단말은 PDCCH를 디코딩하기 위해 단말 특정 서치 스페이스 및 공용 서치 스페이스를 모두 모니터링한다. 여기서, 공용 서치 스페이스(CSS)는 {4, 8}의 집합 레벨을 갖는 PDCCH들을 지원하고, 단말 특정 서치 스페이스(USS)는 {1, 2, 4, 8}의 집합 레벨을 갖는 PDCCH들을 지원한다. 표 5는 단말에 의하여 모니터링되는 PDCCH 후보를 나타낸다.
표 5
Figure PCTKR2015014192-appb-T000002
수학식 1을 참조하면, 공용 서치 스페이스의 경우 2개의 집합 레벨, L=4 및 L=8에 대해 Yk는 0으로 설정된다. 반면, 집합 레벨 L에 대해 단말 특정 서치 스페이스의 경우 Yk는 수학식 2와 같이 정의된다.
수학식 2
Figure PCTKR2015014192-appb-M000002
여기서,
Figure PCTKR2015014192-appb-I000005
이며, nRNTI는 RNTI 값을 나타낸다. 또한, A = 39827이고, D = 65537이다.
2. 캐리어 병합(CA: Carrier Aggregation) 환경
2.1 CA 일반
3GPP LTE(3rd Generation Partnership Project Long Term Evolution; Rel-8 또는 Rel-9) 시스템(이하, LTE 시스템)은 단일 컴포넌트 캐리어(CC: Component Carrier)를 여러 대역으로 분할하여 사용하는 다중 반송파 변조(MCM: Multi-Carrier Modulation) 방식을 사용한다. 그러나, 3GPP LTE-Advanced 시스템(이하, LTE-A 시스템) 에서는 LTE 시스템보다 광대역의 시스템 대역폭을 지원하기 위해서 하나 이상의 컴포넌트 캐리어를 결합하여 사용하는 캐리어 병합(CA: Carrier Aggregation)과 같은 방법을 사용할 수 있다. 캐리어 병합은 반송파 집성, 반송파 정합, 멀티 컴포넌트 캐리어 환경(Multi-CC) 또는 멀티캐리어 환경이라는 말로 대체될 수 있다.
본 발명에서 멀티 캐리어는 캐리어의 병합(또는, 반송파 집성)을 의미하며, 이때 캐리어의 병합은 인접한(contiguous) 캐리어 간의 병합뿐 아니라 비 인접한(non-contiguous) 캐리어 간의 병합을 모두 의미한다. 또한, 하향링크와 상향링크 간에 집성되는 컴포넌트 캐리어들의 수는 다르게 설정될 수 있다. 하향링크 컴포넌트 캐리어(이하, 'DL CC'라 한다) 수와 상향링크 컴포넌트 캐리어(이하, 'UL CC'라 한다) 수가 동일한 경우를 대칭적(symmetric) 병합이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 병합이라고 한다. 이와 같은 캐리어 병합은 반송파 집성, 대역폭 집성(bandwidth aggregation), 스펙트럼 집성(spectrum aggregation) 등과 같은 용어와 혼용되어 사용될 수 있다.
두 개 이상의 컴포넌트 캐리어가 결합되어 구성되는 캐리어 병합은 LTE-A 시스템에서는 100MHz 대역폭까지 지원하는 것을 목표로 한다. 목표 대역보다 작은 대역폭을 가지는 1개 이상의 캐리어를 결합할 때, 결합하는 캐리어의 대역폭은 기존 IMT 시스템과의 호환성(backward compatibility) 유지를 위해서 기존 시스템에서 사용하는 대역폭으로 제한할 수 있다.
예를 들어서 기존의 3GPP LTE 시스템에서는 {1.4, 3, 5, 10, 15, 20}MHz 대역폭을 지원하며, 3GPP LTE-advanced 시스템(즉, LTE-A)에서는 기존 시스템과의 호환을 위해 상기의 대역폭들만을 이용하여 20MHz보다 큰 대역폭을 지원하도록 할 수 있다. 또한, 본 발명에서 사용되는 캐리어 병합 시스템은 기존 시스템에서 사용하는 대역폭과 상관없이 새로운 대역폭을 정의하여 캐리어 병합을 지원하도록 할 수도 있다.
또한, 위와 같은 캐리어 병합은 인트라-밴드 CA(Intra-band CA) 및 인터-밴드 CA(Inter-band CA)로 구분될 수 있다. 인트라-밴드 캐리어 병합이란, 다수의 DL CC 및/또는 UL CC들이 주파수상에서 인접하거나 근접하여 위치하는 것을 의미한다. 다시 말해, DL CC 및/또는 UL CC들의 캐리어 주파수가 동일한 밴드 내에 위치하는 것을 의미할 수 있다. 반면, 주파수 영역에서 멀리 떨어져 있는 환경을 인터-밴드 CA(Inter-Band CA)라고 부를 수 있다. 다시 말해, 다수의 DL CC 및/또는 UL CC들의 캐리어 주파수가 서로 다른 밴드들에 위치하는 것을 의미할 수 있다. 이와 같은 경우, 단말은 캐리어 병합 환경에서의 통신을 수행하기 위해서 복수의 RF(radio frequency)단을 사용할 수도 있다.
LTE-A 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다. 상술한 캐리어 병합 환경은 다중 셀(multiple cells) 환경으로 일컬을 수 있다. 셀은 하향링크 자원(DL CC)과 상향링크 자원(UL CC) 한 쌍의 조합으로 정의되나, 상향링크 자원은 필수 요소는 아니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다.
예를 들어, 특정 단말이 단 하나의 설정된 서빙 셀(configured serving cell)을 가지는 경우 1개의 DL CC와 1개의 UL CC를 가질 수 있다. 그러나, 특정 단말이 2개 이상의 설정된 서빙 셀을 가지는 경우에는 셀의 수만큼의 DL CC를 가지며 UL CC의 수는 그와 같거나 그보다 작을 수 있다. 또는, 그 반대로 DL CC와 UL CC가 구성될 수도 있다. 즉, 특정 단말이 다수의 설정된 서빙 셀을 가지는 경우 DL CC의 수보다 UL CC가 더 많은 캐리어 병합 환경도 지원될 수 있다.
또한, 캐리어 결합(CA)은 각각 캐리어 주파수(셀의 중심 주파수)가 서로 다른 둘 이상의 셀들의 병합으로 이해될 수 있다. 캐리어 결합에서 말하는 '셀(Cell)'은 주파수 관점에서 설명되는 것으로, 일반적으로 사용되는 기지국이 커버하는 지리적 영역으로서의 '셀'과는 구분되어야 한다. 이하, 상술한 인트라-밴드 캐리어 병합을 인트라-밴드 다중 셀이라고 지칭하며, 인터-밴드 캐리어 병합을 인터-밴드 다중 셀이라고 지칭한다.
LTE-A 시스템에서 사용되는 셀은 프라이머리 셀(P셀: Primary Cell) 및 세컨더리 셀(S셀: Secondary Cell)을 포함한다. P셀(PCell)과 S셀(SCell)은 서빙 셀(Serving Cell)로 사용될 수 있다. RRC_CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, P셀로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우 하나 이상의 서빙 셀이 존재할 수 있으며, 전체 서빙 셀에는 P셀과 하나 이상의 S셀이 포함된다.
서빙 셀(P셀과 S셀)은 RRC 파라미터를 통해 설정될 수 있다. PhyS셀 Id는 셀의 물리 계층 식별자로 0부터 503까지의 정수값을 가진다. S셀 Index는 S셀을 식별하기 위하여 사용되는 간략한(short) 식별자로 1부터 7까지의 정수값을 가진다. ServCellIndex는 서빙 셀(P셀 또는 S셀)을 식별하기 위하여 사용되는 간략한(short) 식별자로 0부터 7까지의 정수값을 가진다. 0값은 P셀에 적용되며, S셀Index는 S셀에 적용하기 위하여 미리 부여된다. 즉, ServCellIndex에서 가장 작은 셀 ID (또는 셀 인덱스)을 가지는 셀이 P셀이 된다.
P셀은 프라이머리 주파수(또는, primary CC) 상에서 동작하는 셀을 의미한다. 단말이 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재-설정 과정을 수행하는데 사용될 수 있으며, 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. 또한, P셀은 캐리어 병합 환경에서 설정된 서빙 셀 중 제어관련 통신의 중심이 되는 셀을 의미한다. 즉, 단말은 자신의 P셀에서만 PUCCH를 할당 받아 전송할 수 있으며, 시스템 정보를 획득하거나 모니터링 절차를 변경하는데 P셀만을 이용할 수 있다. E-UTRAN(Evolved Universal Terrestrial Radio Access)은 캐리어 병합 환경을 지원하는 단말에게 이동성 제어 정보(mobilityControlInfo)를 포함하는 상위 계층의 RRC 연결 재설정(RRCConnectionReconfigutaion) 메시지를 이용하여 핸드오버 절차를 위해 P셀만을 변경할 수도 있다.
S셀은 세컨더리 주파수(또는, Secondary CC) 상에서 동작하는 셀을 의미할 수 있다. 특정 단말에 P셀은 하나만 할당되며, S셀은 하나 이상 할당될 수 있다. S셀은 RRC 연결 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. 캐리어 병합 환경에서 설정된 서빙 셀 중에서 P셀을 제외한 나머지 셀들, 즉 S셀에는 PUCCH가 존재하지 않는다.
E-UTRAN은 S셀을 캐리어 병합 환경을 지원하는 단말에게 추가할 때, RRC_CONNECTED 상태에 있는 관련된 셀의 동작과 관련된 모든 시스템 정보를 특정 시그널(dedicated signal)을 통해 제공할 수 있다. 시스템 정보의 변경은 관련된 S셀의 해제 및 추가에 의하여 제어될 수 있으며, 이 때 상위 계층의 RRC 연결 재설정 (RRCConnectionReconfigutaion) 메시지를 이용할 수 있다. E-UTRAN은 관련된 S셀 안에서 브로드캐스트하기 보다는 단말 별로 상이한 파라미터를 가지는 특정 시그널링(dedicated signaling)을 전송할 수 있다.
초기 보안 활성화 과정이 시작된 이후에, E-UTRAN은 연결 설정 과정에서 초기에 구성되는 P셀에 부가하여 하나 이상의 S셀을 포함하는 네트워크를 구성할 수 있다. 캐리어 병합 환경에서 P셀 및 S셀은 각각의 컴포넌트 캐리어로서 동작할 수 있다. 이하의 실시예에서는 프라이머리 컴포넌트 캐리어(PCC)는 P셀과 동일한 의미로 사용될 수 있으며, 세컨더리 컴포넌트 캐리어(SCC)는 S셀과 동일한 의미로 사용될 수 있다.
도 6은 본 발명의 실시예들에서 사용되는 컴포넌트 캐리어(CC) 및 LTE_A 시스템에서 사용되는 캐리어 병합의 일례를 나타내는 도면이다.
도 6(a)는 LTE 시스템에서 사용되는 단일 캐리어 구조를 나타낸다. 컴포넌트 캐리어에는 DL CC와 UL CC가 있다. 하나의 컴포넌트 캐리어는 20MHz의 주파수 범위를 가질 수 있다.
도 6(b)는 LTE_A 시스템에서 사용되는 캐리어 병합 구조를 나타낸다. 도 6(b)의 경우에 20MHz의 주파수 크기를 갖는 3 개의 컴포넌트 캐리어가 결합된 경우를 나타낸다. DL CC와 UL CC가 각각 3 개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 캐리어 병합의 경우 단말은 3개의 CC를 동시에 모니터링할 수 있고, 하향링크 신호/데이터를 수신할 수 있고 상향링크 신호/데이터를 송신할 수 있다.
만약, 특정 셀에서 N개의 DL CC가 관리되는 경우에는, 네트워크는 단말에 M (M≤N)개의 DL CC를 할당할 수 있다. 이때, 단말은 M 개의 제한된 DL CC 만을 모니터링하고 DL 신호를 수신할 수 있다. 또한, 네트워크는 L (L≤M≤N)개의 DL CC에 우선순위를 주어 주된 DL CC를 단말에 할당할 수 있으며, 이러한 경우 UE는 L 개의 DL CC는 반드시 모니터링해야 한다. 이러한 방식은 상향링크 전송에도 똑같이 적용될 수 있다.
하향링크 자원의 반송파 주파수(또는 DL CC)와 상향링크 자원의 반송파 주파수(또는, UL CC) 사이의 링키지(linkage)는 RRC 메시지와 같은 상위계층 메시지나 시스템 정보에 의해 지시될 수 있다. 예를 들어, SIB2(System Information Block Type2)에 의해서 정의되는 링키지에 의해서 DL 자원과 UL 자원의 조합이 구성될 수 있다. 구체적으로, 링키지는 UL 그랜트를 나르는 PDCCH가 전송되는 DL CC와 상기 UL 그랜트를 사용하는 UL CC간의 맵핑 관계를 의미할 수 있으며, HARQ를 위한 데이터가 전송되는 DL CC(또는 UL CC)와 HARQ ACK/NACK 신호가 전송되는 UL CC(또는 DL CC)간의 맵핑 관계를 의미할 수도 있다.
2.2 크로스 캐리어 스케줄링(Cross Carrier Scheduling)
캐리어 병합 시스템에서는 캐리어(또는 반송파) 또는 서빙 셀(Serving Cell)에 대한 스케줄링 관점에서 자가 스케줄링(Self-Scheduling) 방법 및 크로스 캐리어 스케줄링(Cross Carrier Scheduling) 방법의 두 가지가 있다. 크로스 캐리어 스케줄링은 크로스 컴포넌트 캐리어 스케줄링(Cross Component Carrier Scheduling) 또는 크로스 셀 스케줄링(Cross Cell Scheduling)으로 일컬을 수 있다.
자가 스케줄링은 PDCCH(DL Grant)와 PDSCH가 동일한 DL CC로 전송되거나, DL CC에서 전송된 PDCCH(UL Grant)에 따라 전송되는 PUSCH가 UL Grant를 수신한 DL CC와 링크되어 있는 UL CC를 통해 전송되는 것을 의미한다.
크로스 캐리어 스케줄링은 PDCCH(DL Grant)와 PDSCH가 각각 다른 DL CC로 전송되거나, DL CC에서 전송된 PDCCH(UL Grant)에 따라 전송되는 PUSCH가 UL 그랜트를 수신한 DL CC와 링크되어 있는 UL CC가 아닌 다른 UL CC를 통해 전송되는 것을 의미한다.
크로스 캐리어 스케줄링 여부는 단말 특정(UE-specific)하게 활성화 또는 비활성화될 수 있으며, 상위계층 시그널링(예를 들어, RRC 시그널링)을 통해서 반정적(semi-static)으로 각 단말 별로 알려질 수 있다.
크로스 캐리어 스케줄링이 활성화된 경우, PDCCH에 해당 PDCCH가 지시하는 PDSCH/PUSCH가 어느 DL/UL CC를 통해서 전송되는지를 알려주는 캐리어 지시자 필드(CIF: Carrier Indicator Field)가 필요하다. 예를 들어, PDCCH는 PDSCH 자원 또는 PUSCH 자원을 CIF를 이용하여 다수의 컴포넌트 캐리어들 중 하나에 할당할 수 있다. 즉, DL CC 상에서의 PDCCH가 다중 집성된 DL/UL CC 중 하나에 PDSCH 또는 PUSCH 자원을 할당하는 경우 CIF가 설정된다. 이 경우, LTE Release-8의 DCI 포맷은 CIF에 따라 확장될 수 있다. 이때 설정된 CIF는 3bit 필드로 고정되거나, 설정된 CIF의 위치는 DCI 포맷 크기와 무관하게 고정될 수 있다. 또한, LTE Release-8의 PDCCH 구조(동일 코딩 및 동일한 CCE 기반의 자원 매핑)를 재사용할 수도 있다.
반면, DL CC 상에서의 PDCCH가 동일한 DL CC 상에서의 PDSCH 자원을 할당하거나 단일 링크된 UL CC 상에서의 PUSCH 자원을 할당하는 경우에는 CIF가 설정되지 않는다. 이 경우, LTE Release-8과 동일한 PDCCH 구조(동일 코딩 및 동일한 CCE 기반의 자원 매핑)와 DCI 포맷이 사용될 수 있다.
크로스 캐리어 스케줄링이 가능할 때, 단말은 CC별 전송 모드 및/또는 대역폭에 따라 모니터링 CC의 제어영역에서 복수의 DCI에 대한 PDCCH를 모니터링하는 것이 필요하다. 따라서, 이를 지원할 수 있는 검색 공간의 구성과 PDCCH 모니터링이 필요하다.
캐리어 병합 시스템에서, 단말 DL CC 집합은 단말이 PDSCH를 수신하도록 스케줄링된 DL CC의 집합을 나타내고, 단말 UL CC 집합은 단말이 PUSCH를 전송하도록 스케줄링된 UL CC의 집합을 나타낸다. 또한, PDCCH 모니터링 집합(monitoring set)은 PDCCH 모니터링을 수행하는 적어도 하나의 DL CC의 집합을 나타낸다. PDCCH 모니터링 집합은 단말 DL CC 집합과 같거나, 단말 DL CC 집합의 부집합(subset)일 수 있다. PDCCH 모니터링 집합은 단말 DL CC 집합내의 DL CC들 중 적어도 어느 하나를 포함할 수 있다. 또는 PDCCH 모니터링 집합은 단말 DL CC 집합에 상관없이 별개로 정의될 수 있다. PDCCH 모니터링 집합에 포함되는 DL CC는 링크된 UL CC에 대한 자기-스케줄링(self-scheduling)은 항상 가능하도록 설정될 수 있다. 이러한, 단말 DL CC 집합, 단말 UL CC 집합 및 PDCCH 모니터링 집합은 단말 특정(UE-specific), 단말 그룹 특정(UE group-specific) 또는 셀 특정(Cell-specific)하게 설정될 수 있다.
크로스 캐리어 스케줄링이 비활성화된 경우에는 PDCCH 모니터링 집합이 항상 단말 DL CC 집합과 동일하다는 것을 의미하며, 이러한 경우에는 PDCCH 모니터링 집합에 대한 별도의 시그널링과 같은 지시가 필요하지 않다. 그러나, 크로스 캐리어 스케줄링이 활성화된 경우에는 PDCCH 모니터링 집합이 단말 DL CC 집합 내에서 정의되는 것이 바람직하다. 즉, 단말에 대하여 PDSCH 또는 PUSCH를 스케줄링하기 위하여 기지국은 PDCCH 모니터링 집합만을 통해 PDCCH를 전송한다.
도 7은 본 발명의 실시예들에서 사용되는 크로스 캐리어 스케줄링에 따른 LTE-A 시스템의 서브 프레임 구조를 나타낸다.
도 7을 참조하면, LTE-A 단말을 위한 DL 서브프레임은 3개의 하향링크 컴포넌트 캐리어(DL CC)가 결합되어 있으며, DL CC 'A'는 PDCCH 모니터링 DL CC로 설정된 경우를 나타낸다. CIF가 사용되지 않는 경우, 각 DL CC는 CIF 없이 자신의 PDSCH를 스케줄링하는 PDCCH를 전송할 수 있다. 반면, CIF가 상위 계층 시그널링을 통해 사용되는 경우, 단 하나의 DL CC 'A'만이 CIF를 이용하여 자신의 PDSCH 또는 다른 CC의 PDSCH를 스케줄링하는 PDCCH를 전송할 수 있다. 이때, PDCCH 모니터링 DL CC로 설정되지 않은 DL CC 'B' 와 'C'는 PDCCH를 전송하지 않는다.
도 8은 본 발명의 실시예들에서 사용되는 크로스 캐리어 스케줄링에 따른 서빙셀 구성의 일례를 나타내는 도면이다.
캐리어 결합(CA)을 지원하는 무선 접속 시스템에서 기지국 및/또는 단말들은 하나 이상의 서빙 셀들로 구성될 수 있다. 도 8에서 기지국은 A셀, B셀, C셀 및 D셀 등 총 4개의 서빙셀을 지원할 수 있으며, 단말 A는 A셀, B셀 및 C셀로 구성되고, 단말 B는 B셀, C셀 및 D셀로 구성되며, 단말 C는 B셀로 구성된 경우를 가정한다. 이때, 각 단말에 구성된 셀들 중 적어도 하나는 P셀로 설정될 수 있다. 이때, P셀은 항상 활성화된 상태이며, S셀은 기지국 및/또는 단말에 의해 활성화 또는 비활성화될 수 있다.
도 8에서 구성된 셀은 기지국의 셀 중에서 단말로부터의 측정 보고(measurement report) 메시지를 기반으로 CA에 셀 추가가 가능한 셀로서 단말별로 설정 가능하다. 구성된 셀은 PDSCH 신호 전송에 대한 ACK/NACK 메시지 전송을 위한 자원을 미리 예약해 둔다. 활성화된 셀(Activated cell)은 구성된 셀들 중에서 실제 PDSCH 신호 및/또는 PUSCH 신호를 전송하도록 설정된 셀이며, CSI 보고 및 SRS(Sounding Reference Signal) 전송을 수행하게 된다. 비활성화된 셀(De-Activated cell)은 기지국의 명령 또는 타이머 동작에 의해서 PDSCH/PUSCH 신호 송수신을 수행하지 않도록 구성되는 셀이며, CSI 보고 및 SRS 전송도 중단된다.
2.3 CA 환경 기반의 CoMP 동작
이하에서는 본 발명의 실시예들에 적용될 수 있는 협력적 다중 포인트(CoMP: Cooperative Multi-Point) 전송 동작에 대해서 설명한다.
LTE-A 시스템에서 LTE에서의 CA(carrier aggregation) 기능을 이용하여 CoMP 전송을 구현할 수 있다. 도 9는 CA 환경을 기반으로 동작하는 CoMP 시스템의 개념도이다.
도 9에서, P셀로 동작하는 캐리어와 S셀로 동작하는 캐리어는 주파수 축으로 동일한 주파수 대역을 사용할 수 있으며, 지리적으로 떨어진 두 eNB에 각각 할당된 경우를 가정한다. 이때, UE1의 서빙 eNB를 P셀로 할당하고, 많은 간섭을 주는 인접셀을 S셀로 할당할 수 있다. 즉, 하나의 단말에 대해서 P셀의 기지국과 S셀의 기지국이 서로 JT(Joint Transmission), CS/CB 및 동적 셀 선택(Dynamic cell selection) 등 다양한 DL/UL CoMP 동작을 수행할 수 있다.
도 9는 하나의 단말(e.g., UE1)에 대해 두 개의 eNB들이 관리하는 셀들을 각각 P셀과 S셀로써 결합하는 경우에 대한 예시를 나타낸다. 다만, 다른 예로서 3개 이상의 셀이 결합될 수 있다. 예를 들어, 세 개 이상의 셀들 중 일부 셀들은 동일 주파수 대역에서 하나의 단말에 대해 CoMP 동작을 수행하고, 다른 셀들은 다른 주파수 대역에서 단순 CA 동작을 하도록 구성되는 것도 가능하다. 이때, P셀은 반드시 CoMP 동작에 참여할 필요는 없다.
2.4 참조신호(RS: Reference Signal)
이하에서는 본 발명의 실시예들에서 사용될 수 있는 참조신호들에 대해서 설명한다.
도 10은 본 발명의 실시예들에서 사용될 수 있는 셀 특정 참조 신호(CRS: Cell specific Reference Signal)가 할당된 서브프레임의 일례를 나타내는 도면이다.
도 10에서는 시스템에서 4개 안테나를 지원하는 경우에 CRS의 할당 구조를 나타낸다. 3GPP LTE/LTE-A 시스템에서 CRS는 디코딩 및 채널 상태 측정을 목적으로 사용된다. 따라서, CRS는 PDSCH 전송을 지원하는 셀(cell) 내 모든 하향링크 서브프레임에서 전체 하향링크 대역폭에 걸쳐 전송되며, 기지국(eNB)에 구성된 모든 안테나 포트에서 전송된다.
구체적으로 CRS 시퀀스는 슬롯 ns에서 안테나 포트 p를 위한 참조 심볼들로서 사용되는 복소 변조 심볼(complex-valued modulation symbols)에 맵핑된다.
UE는 CRS를 이용하여 CSI를 측정할 수 있으며, CRS를 이용하여 CRS를 포함하는 서브프레임에서 PDSCH를 통해 수신된 하향링크 데이터 신호를 디코딩할 수 있다. 즉, eNB는 모든 RB에서 각 RB 내 일정한 위치에 CRS를 전송하고 UE는 상기 CRS를 기준으로 채널 추정을 수행한 다음에 PDSCH를 검출하였다. 예를 들어, UE는 CRS RE에서 수신된 신호를 측정한다. UE는 CRS RE별 수신 에너지와 PDSCH이 맵핑된 RE별 수신 에너지에 대한 비를 이용하여 PDSCH가 맵핑된 RE로부터 PDSCH 신호를 검출할 수 있다.
이와 같이, CRS를 기반으로 PDSCH 신호가 전송되는 경우에, eNB는 모든 RB에 대해서 CRS를 전송해야 하므로 불필요한 RS 오버헤드가 발생하게 된다. 이러한 문제점을 해결하기 위하여 3GPP LTE-A 시스템에서는 CRS 외에 UE-특정 RS(이하, UE-RS) 및 채널상태정보 참조신호(CSI-RS: Channel State Information Reference Signal)를 추가로 정의한다. UE-RS는 복조를 위해 사용되고, CSI-RS는 채널 상태 정보를 획득하기(derive) 위해 사용된다.
UE-RS 및 CRS는 복조를 위해 사용되므로 용도의 측면에서 복조용 RS라고 할 수 있다. 즉, UE-RS는 DM-RS(DeModulation Reference Signal)의 일종으로 볼 수 있다. 또한, CSI-RS 및 CRS는 채널 측정 또는 채널 추정에 사용되므로 용도의 측면에서는 채널 상태 측정용 RS라고 할 수 있다.
도 11은 본 발명의 실시예들에서 사용될 수 있는 CSI-RS가 안테나 포트의 개수에 따라 할당된 서브프레임들의 일례를 나타내는 도면이다.
CSI-RS는 복조 목적이 아니라 무선 채널의 상태 측정을 위해 3GPP LTE-A 시스템에서 도입된 하향링크 참조신호이다. 3GPP LTE-A 시스템은 CSI-RS 전송을 위해 복수의 CSI-RS 설정들을 정의하고 있다. CSI-RS 전송이 구성된 서브프레임들에서 CSI-RS 시퀀스는 안테나 포트 p 상의 참조 심볼들로서 사용되는 복소 변조 심볼들에 따라 맵핑된다.
도 11(a)는 CSI-RS 구성들 중 2개의 CSI-RS 포트들에 의한 CSI-RS 전송에 이용 가능한 20가지 CSI-RS 구성 0~19를 나타낸 것이고, 도 11(b)는 CSI-RS 구성들 중 4개의 CSI-RS 포트들에 의해 이용 가능한 10가지 CSI-RS 구성 0~9를 나타낸 것이며, 도 11(c)는 CSI-RS 구성 중 8개의 CSI-RS 포트들에 의해 이용 가능한 5가지 CSI-RS 구성 0~4를 도시한 것이다.
여기서 CSI-RS 포트는 CSI-RS 전송을 위해 설정된 안테나 포트를 의미한다. CSI-RS 포트의 개수에 따라 CSI-RS 구성이 달라지므로 CSI-RS 구성 번호가 동일하다고 하더라도 CSI-RS 전송을 위해 구성된 안테나 포트의 개수가 다르면 다른 CSI-RS 구성이 된다.
한편 CSI-RS는 매 서브프레임마다 전송되도록 구성된 CRS와 달리 다수의 서브프레임들에 해당하는 소정 전송 주기마다 전송되도록 설정된다. 따라서, CSI-RS 구성은 자원 블록 쌍 내에서 CSI-RS가 점유하는 RE들의 위치뿐만 아니라 CSI-RS가 설정되는 서브프레임에 따라서도 달라진다.
또한, CSI-RS 구성 번호가 동일하다고 하더라도 CSI-RS 전송을 위한 서브프레임이 다르면 CSI-RS 구성도 다르다고 볼 수 있다. 예를 들어, CSI-RS 전송 주기(TCSI-RS)가 다르거나 일 무선 프레임 내에서 CSI-RS 전송이 구성된 시작 서브프레임(ΔCSI-RS)이 다르면 CSI-RS 구성이 다르다고 볼 수 있다.
이하에서는 (1) CSI-RS 구성 번호가 부여된 CSI-RS 구성과 (2) CSI-RS 구성 번호, CSI-RS 포트의 개수 및/또는 CSI-RS가 구성된 서브프레임에 따라 달라지는 CSI-RS 구성을 구분하기 위하여, 후자 (2)의 구성을 CSI-RS 자원 구성(CSI-RS resource configuration)이라고 칭한다. 전자(1)의 설정은 CSI-RS 구성 또는 CSI-RS 패턴이라고도 칭한다.
eNB는 UE에게 CSI-RS 자원 구성을 알려줄 때 CSI-RS들의 전송을 위해 사용되는 안테나 포트의 개수, CSI-RS 패턴, CSI-RS 서브프레임 구성(CSI-RS subframe configuration) ICSI-RS, CSI 피드백을 위한 참조 PDSCH 전송 전력에 관한 UE 가정 (UE assumption on reference PDSCH transmitted power for CSI feedback) Pc, 제로 파워 CSI-RS 구성 리스트, 제로 파워 CSI-RS 서브프레임 구성 등에 관한 정보를 알려 줄 수 있다.
CSI-RS 서브프레임 구성 인덱스 ICSI-RS는 CSI-RS들의 존재(occurrence)에 대한 서브프레임 구성 주기 TCSI-RS 및 서브프레임 오프셋 ΔCSI-RS을 특정하기 위한 정보이다. 다음 표 4는 TCSI-RS 및 ΔCSI-RS에 따른 CSI-RS 서브프레임 구성 인덱스 ICSI-RS을 예시한 것이다.
표 6
CSI-RS-SubframeConfig ICSI-RS CSI-RS periodicity TCSI-RS (subframes) CSI-RS subframe offset ΔCSI-RS (subframes)
0-4 5 ICSI-RS
5-14 10 ICSI-RS - 5
15-34 20 ICSI-RS - 15
35-74 40 ICSI-RS - 35
75-154 80 ICSI-RS - 75
이때, 다음 수학식 3를 만족하는 서브프레임들이 CSI-RS를 포함하는 서브프레임들이 된다.
수학식 3
Figure PCTKR2015014192-appb-M000003
3GPP LTE-A 시스템 이후에 정의된 전송 모드(예를 들어, 전송 모드 9 또는 그 외 새로이 정의되는 전송 모드)로 설정된 UE는 CSI-RS를 이용하여 채널 측정을 수행하고 UE-RS를 이용하여 PDSCH를 복호할 수 있다.
3GPP LTE-A 시스템 이후에 정의된 전송 모드(예를 들어, 전송 모드 9 또는 그 외 새로이 정의되는 전송 모드)로 설정된 UE는 CSI-RS를 이용하여 채널 측정을 수행하고 UE-RS를 이용하여 PDSCH를 복호할 수 있다.
2.5 Enhanced PDCCH (EPDCCH)
3GPP LTE/LTE-A 시스템에서 복수의 콤퍼넌트 캐리어(CC: Component Carrier = (serving) cell)에 대한 결합 상황에서의 크로스 캐리어 스케줄링(CCS: Cross Carrier Scheduling) 동작을 정의하면, 하나의 스케줄되는 CC (i.e. scheduled CC)는 다른 하나의 스케줄링 CC (i.e. scheduling CC)로부터만 DL/UL 스케줄링을 받을 수 있도록 (즉, 해당 scheduled CC에 대한 DL/UL grant PDCCH를 수신할 수 있도록) 미리 설정될 수 있다. 이때, 스케줄링 CC는 기본적으로 자기 자신에 대한 DL/UL 스케줄링을 수행할 수 있다. 다시 말해, 상기 CCS 관계에 있는 스케줄링/스케줄되는 CC를 스케줄하는 PDCCH에 대한 서치 스페이스(SS: Search Space)는 모든 스케줄링 CC의 제어채널 영역에 존재할 수 있다.
한편, LTE 시스템에서 FDD DL 캐리어 또는 TDD DL 서브프레임들은 각 서브프레임의 첫 n개(n<=4)의 OFDM 심볼을 각종 제어 정보 전송을 위한 물리 채널인 PDCCH, PHICH 및 PCFICH 등의 전송에 사용하고 나머지 OFDM 심볼들을 PDSCH 전송에 사용하도록 구성된다. 이때, 각 서브프레임에서 제어채널 전송에 사용하는 OFDM 심볼의 개수는 PCFICH 등의 물리 채널을 통해 동적으로 또는 RRC 시그널링을 통한 반 정적인 방식으로 단말에게 전달될 수 있다.
한편, LTE/LTE-A 시스템에서는 DL/UL 스케줄링 및 각종 제어 정보를 전송하기 위한 물리채널인 PDCCH는 제한된 OFDM 심볼들을 통해서 전송되는 등의 한계가 있으므로 PDCCH와 같이 PDSCH와 분리된 OFDM 심볼을 통해 전송되는 제어 채널 대신에 PDSCH와 FDM/TDM 방식으로 조금 더 자유롭게 다중화되는 확장된 PDCCH(i.e. E-PDCCH)를 도입할 수 있다. 도 12는 LTE/LTE-A 시스템에서 사용되는 레가시 PDCCH(Legacy PDCCH), PDSCH 및 E-PDCCH가 다중화되는 일례를 나타내는 도면이다.
2.6 제한된 CSI 측정
무선 네트워크에서 셀 간에 미치는 간섭에 따른 영향을 줄이기 위해서 네트워크 개체간에 협력 동작을 수행할 수 있다. 예를 들어, 셀 A가 데이터를 전송하는 특정 서브프레임 동안 셀 A 이외의 다른 셀들은 공용 제어 정보만을 전송하고 데이터는 전송하지 않게 제한함으로써, 셀 A에서 데이터 수신을 받고 있는 사용자에 대한 간섭을 최소화할 수 있다.
이와 같은 방법으로, 네트워크 내에 셀 간에 협력을 통해 특정 순간에 데이터를 전송하는 셀을 제외한 다른 셀들에서 최소한의 공용 제어 정보만을 전송함으로써 셀 간 미치는 간섭의 영향을 줄일 수 있다.
이를 위해, 상위 계층에서 두 개의 CSI 측정 서브프레임 집합 CCSI,0 및 CCSI,1을 설정하는 경우, 단말은 자원 제한 측정(RRM: Resource-Restricted Measurement) 동작을 수행할 수 있다. 이때, 두 측정 서브프레임 집합에 해당하는 CSI 참조 자원은 두 개의 서브프레임 집합 중 하나에만 속하는 것을 가정한다.
다음 표 7은 CSI 서브프레임 집합(Subframe Set)을 설정하는 상위 계층 신호의 일례를 나타낸다.
표 7
Figure PCTKR2015014192-appb-T000003
표 7은 CSI 서브프레임 집합을 설정하기 위해 전송되는 CQI 보고 구성(CQI-Report Cofig) 메시지의 일례를 나타낸다. 이때, CQI 보고 구성 메시지에는 비주기적 CQI 보고(cqi-ReportAperiodic-r10) IE, nomPDSCH-RS-EPRE-Offset IE, 주기적 CQI 보고 (cqi-ReportPeriodci-r10) IE, PMI-RI 리포트(pmi-RI-Report-r9) IE 및 CSI 서브프레임패턴구성(csi-subframePatternConfig) IE가 포함될 수 있다. 이때, CSI 서브프레임패턴구성 IE는 서브프레임 집합 별로 측정서브프레임패턴을 나타내는 CSI 측정서브프레임집합1 정보(csi-MeasSubframeSet1) IE 및 CSI 측정서브프레임집합2 정보(csi-MeasSubframeSet2) IE를 포함한다.
여기서 CSI 측정서브프레임집합1(csi-MeasSubframeSet1-r10) 정보요소(IE: Information Element) 및 CSI 측정서브프레임집합2(csi-MeasSubframeSet2-r10) IE는 40 비트 비트맵 정보로서 각 서브프레임 집합에 속하는 서브프레임에 대한 정보를 나타낸다. 또한, 비주기적 CQI보고 (CQI-ReportAperiodic-r10) IE는 단말에 대한 비주기적 CQI 보고를 위한 설정을 수행하기 위한 IE이며, 주기적 CQI 보고(CQI-ReportPeriodic-r10) IE는 주기적 CQI 보고를 위한 설정을 수행하는 IE이다.
nomPDSCH-RS-EPRE-Offset IE는
Figure PCTKR2015014192-appb-I000006
값을 나타낸다. 이때, 실제 값(Actual Value)는
Figure PCTKR2015014192-appb-I000007
값 * 2 [dB]로 설정된다. 또한, PMI-RI 리포트 IE는 PMI/IR 보고가 구성되거나 되지 않는 것을 나타낸다. EUTRAN은 전송모드가 TM8, 9 또는 10으로 설정된 경우에만 PMI-RI 리포트 IE를 구성한다.
3. LTE-U 시스템
3.1 LTE-U 시스템 구성
이하에서는 면허 대역(Licensed Band)인 LTE-A 대역과 비면허 대역(Unlicensed Band)의 반송파 결합 환경에서 데이터를 송수신하는 방법들에 대해서 설명한다. 본 발명의 실시예들에서 LTE-U 시스템은 이러한 면허 대역과 비면허 대역의 CA 상황을 지원하는 LTE 시스템을 의미한다. 비면허 대역은 와이파이(WiFi) 대역 또는 블루투스(BT) 대역 등이 이용될 수 있다.
도 13은 LTE-U 시스템에서 지원하는 CA 환경의 일례를 나타내는 도면이다.
이하에서는 설명의 편의를 위해서, UE가 두 개의 요소 반송파(CC: Component Carrier)를 이용하여 면허 대역과 비면허 대역 각각에서 무선 통신을 수행 하도록 설정된 상황을 가정한다. 물론, UE에 세 개 이상의 CC들이 구성된 경우에도 이하 설명하는 방법들이 적용될 수 있다.
본 발명의 실시예들에서, 면허 대역의 반송파(LCC: Licensed CC)는 주요소 반송파(Primary CC: PCC 또는 P셀로 부를 수 있음)이고, 비 면허 대역의 반송파(Unlicensed CC: UCC)는 부요소 반송파(Secondary CC: SCC 또는 S셀로 부를 수 있음)인 경우를 가정한다. 다만, 본 발명의 실시예들은 다수 개의 면허 대역과 다수 개의 비면허 대역들이 캐리어 결합 방식으로 이용되는 상황에도 확장 적용될 수 있다. 또한, 본 발명의 제안 방식들은 3GPP LTE 시스템뿐만 아니라 다른 특성의 시스템 상에서도 확장 적용이 가능하다.
도 13에서는 하나의 기지국에서 면허 대역과 비면허 대역을 모두 지원하는 경우를 나타내었다. 즉, 단말은 면허 대역인 PCC를 통해 제어 정보 및 데이터를 송수신할 수 있고, 또한 비면허 대역인 SCC를 통해 제어 정보 및 데이터를 송수신할 수 있다. 그러나, 도 13에 도시된 상황은 하나의 일례이며, 하나의 단말이 다수 개의 기지국과 접속하는 CA 환경에도 본 발명의 실시예들이 적용될 수 있다.
예를 들어, 단말은 매크로 기지국(M-eNB: Macro eNB)과 P셀을 구성하고, 스몰 기지국(S-eNB: Small eNB)과 S셀을 구성할 수 있다. 이때, 매크로 기지국과 스몰 기지국은 백홀 망을 통해 연결되어 있을 수 있다.
본 발명의 실시예들에서, 비면허 대역은 경쟁 기반의 임의 접속 방식으로 동작될 수 있다. 이때, 비면허 대역을 지원하는 eNB 및/또는 전송점(TP: Transmission Point)는 데이터 송수신 전에 먼저 케리어 센싱(CS: Carrier Sensing) 과정을 수행할 수 있다. CS 과정은 해당 대역이 다른 개체에 의해 점유되어 있는지 여부를 판단하는 과정이다.
예를 들어, S셀의 기지국(eNB) 및/또는 TP는 현재 채널이 사용중인 비지(busy) 상태인지 또는 사용하지 않는 유휴(idle) 상태인지를 체크한다. 만약, 해당 대역이 유휴 상태라고 판단되면, 기지국 및/또는 TP는 크로스 캐리어 스케줄링 방식인 경우 P셀의 (E)PDCCH를 통해 또는 셀프 스케줄링 방식인 경우 S셀의 PDCCH를 통해 스케줄링 그랜트(scheduling grant)를 단말에 전송하여 자원을 할당하고, 데이터 송수신을 시도할 수 있다.
CS 과정은 LBT(Listen Before Talk) 과정과 동일 또는 유사하게 수행될 수 있다. LBT 과정은 P셀의 기지국이 U셀(비면허대역에서 동작하는 셀)의 현재 상태가 비지 상태인지 또는 유휴 상태인지를 체크하는 과정이다. 예를 들어, 기설정된 또는 상위 계층 신호에 의해 설정된 CCA(Clear Channel Assessment) 임계값이 존재하는 경우, U셀에서 해당 CCA 임계값보다 높은 에너지가 검출되면 비지 상태로 판단되고, 아니면 유휴 상태로 판단된다. U셀이 유휴 상태로 판단되는 경우, P셀의 기지국은 P셀의 (E)PDCCH를 통해 또는 U셀의 PDCCH를 통해 스케줄링 그랜트(즉, DCI 등)를 전송하여 U셀에 대한 자원을 스케줄링하고, U셀을 통해 데이터 송수신을 수행할 수 있다.
이때, 기지국 및/또는 TP는 M개의 연속된 서브프레임으로 구성된 전송 기회(TxOP: Transmission OPportunity) 구간을 설정할 수 있다. 여기서, M값 및 M개의 서브프레임의 용도를 사전에 기지국이 단말에게 P셀을 통해 상위 계층 시그널이나 물리 제어채널 또는 물리 데이터 채널을 통해 알려줄 수 있다. M개의 서브프레임으로 구성된 TxOP 구간은 예약된 자원 구간(RRP: Reserved Resource Period)으로 불릴 수 있다.
3.2 TxOP 구간
기지국은 TxOP 구간 동안 하나의 단말과 데이터를 송수신할 수도 있고, 여러 단말들에게 각각 N개의 연속된 서브프레임으로 구성된 TxOP 구간을 설정하고 TDM 또는 FDM 방식으로 데이터를 송수신할 수도 있다. 이때, 기지국은 TxOP 구간 동안 면허 대역인 P셀 및 비면허 대역인 S셀을 통해 데이터를 송수신할 수 있다.
다만, 기지국이 면허 대역인 LTE-A 시스템의 서브프레임 경계(subframe 경계)에 맞춰서 데이터 전송을 한다면, 비면허 대역인 S셀의 유휴 판단 시점과 실제 데이터 전송 시점 사이에 타이밍 갭(timing gap)이 존재할 수 있다. 특히, S셀은 해당 기지국과 단말이 독점적으로 사용할 수 없는 비면허 대역으로, CS에 기반한 경쟁을 통하여 이용해야 하므로 이와 같은 타이밍 갭 동안에 다른 시스템이 정보 전송을 시도할 수도 있다.
따라서, 기지국은 S셀에서 타이밍 갭 동안에 다른 시스템이 정보 전송을 시도하는 것을 방지하기 위해 예약 신호(예약 신호)를 전송할 수도 있다. 여기서 예약 신호는 S셀의 해당 자원 영역을 자신의 자원으로 예약해놓기 위해 전송하는 일종의 “dummy 정보” 또는 “PDSCH의 일부분에 대한 복사본”을 의미한다. 예약 신호는 타이밍 갭(i.e., S셀의 유휴 판단 시점 이후부터 실제 전송 시점 이전까지) 동안 전송될 수 있다.
3.3 TxOP 구간 설정 방법
도 14는 TxOP 구간을 설정하는 방법 중 하나를 나타내는 도면이다.
기지국은 P셀을 통해 TxOP 구간을 미리 반 정적인 방식으로 설정할 수 있다. 예를 들어, 기지국은 상위계층신호(예를 들어, RRC 신호)를 통해 TxOP 구간을 구성하는 서브프레임의 개수 N 값과 해당 TxOP 구간의 용도에 대한 구성 정보를 단말에 전송할 수 있다 (S1410).
다만, 시스템 구성에 따라 S1410 단계는 동적으로 수행될 수 있다. 이러한 경우에 기지국은 TxOP 구간에 대한 구성 정보는 PDCCH 또는 E-PDCCH를 통해 단말에 전송될 수 있다.
S셀에서는 캐리어 센싱(CS) 과정을 수행하여 현재 채널 상태가 유휴 상태인지 또는 비지 상태인지를 체크할 수 있다 (S1420).
P셀과 S셀은 서로 다른 기지국 또는 서로 동일한 기지국이 관리할 수 있다. 다만, 서로 다른 기지국이 관리하는 경우에는 백홀을 통해 S셀의 채널 상태에 대한 정보가 P셀에 전달될 수 있다 (S1430).
이후, TxOP 구간으로 설정된 서브프레임에서 단말은 P셀 및 S셀을 통해 데이터를 송수신할 수 있다. 만약, S1410 단계에서 해당 TxOP의 용도가 하향링크 데이터 전송으로 설정된 경우에 단말은 TxOP 구간에서 S셀을 통해 DL 데이터를 수신할 수 있고, TxOP의 용도가 상향링크 데이터 전송으로 설정된 경우에 단말은 S셀을 통해 UL 데이터를 송신할 수 있다 (S1440).
본 발명의 실시예들에서 TxOP 구간은 DL 전송 버스트(DL Tx burst), DL 버스트, 또는 RRP 구간과 동일한 의미로 사용될 수 있다. 다만, DL 버스트 또는 DL 전송 버스트 등은 채널 점유를 위한 예약신호를 전송하는 구간도 포함할 수 있다.
4. 부분 서브프레임 구성 및 데이터 전송 방법
본 발명의 실시예들은 비면허 대역에서 동작하는 LTE-A 시스템에 관한 것이다. 본 발명의 실시예들에서 이러한 시스템을 LAA(Licensed Assisted Access) 시스템이라고 부르기로 한다. 즉, LAA 시스템에서는 LTE/LTE-A에 대한 기본적인 동작을 그대로 수행하되, 비면허 대역에서 LTE 단말과 데이터 송수신을 수행하는 방법들을 제공한다.
비면허 대역에서 경쟁 기반 접속 방식으로 공존하는 WiFi 시스템 또는 인터 오퍼레이트(inter-operate) 시스템을 고려하면, S셀의 서브프레임(SF: SubFrame)들이 P셀의 서브프레임(SF)의 경계에 맞춰 전송 시작을 허용한다면, LTE-A 시스템이 다른 시스템에게 지나치게 채널 점유를 양보하게 될 수 있다. 따라서, LAA 시스템에서는 기존 LTE-A 시스템과 달리 SF 경계가 아닌 시점에서 신호 전송의 시작을 허용할 수 있다. 이때, 연속적인 신호 전송 구간을 데이터 버스트(Data Burst)라고 정의할 수 있다. 데이터 버스트는 상술한 TxOP, RRP 등과 동일한 의미로 사용될 수 있다.
본 발명의 실시예들은 SF 경계가 아닌 시점에 신호 전송을 시작하여 1ms 보다 작은 단위의 부분 SF(pSF: partial SF)를 구성하는 방법들 및 SF 경계가 아닌 시점에서 데이터 전송이 종료되는 방법들에 관한 것이다. 이때, pSF 상에 전송되는 PDSCH를 축약된 PDSCH(sPDSCH: shortened PDSCH)라 부를 수 있다.
이하에서는 먼저 가능한 sPDSCH의 프레임 구조들에 대해서 설명하고, 각 프레임 구조들에 대한 sPDSCH의 구조, 스케줄링 방법 및 DCI 구성, 채널 추정 및 ACK/NACK 전송 방법들에 대해 설명한다.
본 발명의 실시예들에서 (s)PDSCH는 sPDSCH 및/또는 PDSCH를 의미하는 것이며, (E)PDCCH는 PDCCH 및/또는 EPDCCH를 의미하는 것이다.
4.1 프레임 구조
도 15는 sPDSCH에 적용될 수 있을 서브프레임 구조를 설명하기 위한 도면이다.
도 15에서는 TxOP 구간의 길이가 4ms (즉, 4TTI)인 경우를 가정하여 설명한다. 또한, 하나의 서브프레임(pSF 및 온전한 SF)는 각각 또는 조합으로 하나의 전송단위를 구성할 수 있다. 이때, 설명의 편의를 위해 하나의 SF는 하나의 PDSCH로 구성되는 것을 가정한다. 다만, 구현 방식에 따라 하나의 SF는 여러 개의 PDSCH를 포함할 수 있다. 만약, 하나의 SF에 하나의 PDSCH가 구성되는 경우, pSF는 sPDSCH와 동일한 의미로 사용될 수 있다.
도 15(a)는 제1타입 프레임 구조를 설명하기 위한 것이다. 도 15(a)를 참조하면, 기지국은 Ucell의 SF #N에서 CS 수행을 위한 백오프 과정을 시작하여 SF #N+1 중간 시점에서 채널이 유휴 상태임을 확인할 수 있다. 따라서, 기지국은 U셀의 SF#N+1에서 예약 신호(reservation signal) 전송을 시작하고, 미리 정해진 시점부터 PDSCH 전송을 시작하였다. 만약 Ucell에서 채널 점유 시간이 4 ms로 설정되어 있었다면, SF #N+1과 SF #N+4에서 sPDSCH를 전송하게 되고, 4개의 SF는 각기 다른 전송 블록(TB: Transport Block)을 전송하도록 구성될 수 있다. 즉, TxOP 구간은 TB1, TB2, TB3 및 TB4로 구성될 수 있다.
도 15(b)는 제2타입 프레임 구조를 설명하기 위한 것이다. 제1타입 프레임 구조의 경우, SF #N+1의 sPDSCH 길이가 너무 짧아서 참조 신호(RS)가 충분하지 않으므로, 단말이 성공적으로 데이터를 수신하기 힘들 수 있다. 이를 보완하기 위해 도 15(b)와 같이 SF #N+1의 sPDSCH와 SF #N+2의 PDSCH를 하나의 TB(e.g., TB1)로 구성하여 전송할 수 있다.
또는 sPDSCH의 길이가 특정 임계값 보다 작은 경우에만 동일 TB로 구성하여 전송될 수 있다.
또는, sPDSCH의 코드 레이트(code rate)가 특정 임계값 보다 큰 경우에만 동일 TB로 구성하여 전송될 수 있다.
도 15(c)는 제3타입 프레임 구조를 설명하기 위한 것이다. DL 버스트 내에서 마지막 SF(e.g., SF #N+4)의 경우에도 sPDSCH의 길이가 너무 짧아 RS가 충분히 전송되지 못하는 문제가 발생할 수 있다. 이러한 경우, 기지국은 도 15(c)와 같이 SF #N+3의 PDSCH와 SF #N+4의 sPDSCH를 하나의 TB(즉, TB3)로 구성하여 전송할 수 있다.
하지만, 도 15(b) 및 (c)의 프레임 구조들의 경우, sPDSCH의 TB를 다른 PDSCH의 TB와 동일하게 구성함으로써 기존 PDSCH의 신뢰성(reliability)은 증가할 수 있지만 피크 데이터 레이트(peak data rate)가 올라가지 못한다는 단점이 있다.
도 15(d)는 제4타입 프레임 구조를 설명하기 위한 것이다. 제4타입 프레임 구조는 제2 및 제3 타입 프레임 구조의 단점을 보완하기 위해, sPDSCH를 다른 PDSCH와 동일 TB로 구성하는 것이 아니라, 4 ms의 채널 점유 시간 앞쪽과 뒤쪽에 존재할 수 있는 두 개의 sPDSCH들을 하나의 TB로 구성하는 것이다. 즉, pSF에 할당되는 sPDSCH에는 하나의 TB(i.e., TB1)가 나눠져 매핑되고, 온전한 SF들에는 PDSCH가 전송될 수있다.
제4타입 프레임 구조는 제2 및 제3 타입에 비해 피트 데이터 레이트 측면에서는 장점이 있지만, 단말이 SF #N+1의 데이터를 SF #N+4까지 계속 버퍼링하고 있어야 하므로, 단말의 버퍼 크기가 작은 경우 구현 측면에서 문제가 있을 수 있다.
도 15(e)는 제5타입 프레임 구조를 설명하기 위한 것이다. 기존 LTE-A 시스템에서 eNB는 각 SF 시작 전에 곧 시작할 SF 동안 전송할 PDSCH를 미리 구성해 두고 해당 SF의 정해진 시점부터 미리 구성된 PDSCH를 전송한다.
하지만 LAA 시스템에서는 SF 시작 전에 PDSCH를 미리 구성해 두더라도, 기지국이 U셀에서 CS 및 백오프 과정을 수행한 이후에 U셀이 유휴 상태인 경우에 비로소 데이터 전송을 시작할 수 있다. 따라서, 해당 SF의 정해진 시점이 아닌 다른 시점부터 sPDSCH 전송을 시작할 수 있고 해당 sPDSCH는 SF 시작 전에 미리 구성해 둔 PDSCH와 다를 수 있다. 이로 인해 eNB 및 UE는 sPDSCH를 성공적으로 전송 및 수신하기 위해 추가적인 과정이 필요할 수 있다.
이러한 단점을 보완하기 위해 제5타입 프레임 구조는 채널 점유 시간의 첫 SF은 온전한 1 ms의 기존 SF 형태를 유지하고, 두 번째 SF이 sPDSCH로 구성된다. 도 15(e)를 참조하면, SF #N+1 중간부터 Ucell에서 전송을 시작한 SF은 1 ms의 온전한 SF으로 구성된다. 이때, eNB는 미리 준비해 둔 PDSCH를 추가적인 과정 없이 바로 전송할 수 있다. 또한, 변동된 SF 시작 지점으로 인한 SF #N+2의 sPDSCH의 길이를 미리 알 수 있으므로, 기지국은 TB2에 대한 sPDSCH를 SF #N+2 시작 전에 미리 구성해 둘 수 있다. 하지만 SF #N+1과 SF #N+2 사이의 SF 경계가 Lcell과 Ucell 간에 정렬되어 있지 않기 때문에 기존의 CA 가정에 위배된다는 단점이 있다. 도 15(e)에서 SF #N+1의 PDSCH와 SF #N+2의 sPDSCH 상의 TB가 서로 다르게 할당된 경우를 나타내고 있으나, 해당 서브프레임들이 동일 TB로 구성될 수 있다.
이하에서는, 상술한 제1 내지 제5타입 프레임 구조들에 대해서 예약신호 전송 방법, sPDSCH 구성방법, U셀 스케줄링 방법, DCI 구성 방법, ACK/NACK 전송 방법, 채널 추정 방법 등을 제안한다. 본 발명의 실시예들에서 제안된 방법들은 종료 sPDSCH(예를 들어, 도 15(a) 내지 도 15(e)의 SF #N+4의 sPDSCH)가 포함되지 않은 프레임 구조들에 대해서도 적용 가능하다.
본 실시예의 다른 측면으로서, 기지국은 채널 점유 시간에 따라 종료 sPDSCH의 존재 여부를 결정할 수 있다. 예를 들어, 기지국은 X ms 이하의 채널을 점유할 때에만 종료 sPDSCH를 구성할 수 있다.
본 실시예의 다른 측면으로서, 기지국의 채널 점유 시간의 크기는 채널 환경 및/또는 시스템 요구 사항에 따라 가변될 수 있으며, 종료 sPDSCH를 구성하여 허용된 채널 점유 시간 이전에 미리 DL 버스트 전송을 종료할 수 있다. 이로 인해 다음 DL 버스트 전송 전 LBT 과정을 위한 타이밍 갭을 생성해 줌으로써 연속하는 DL 버스트 간의 시간 간격을 줄일 수 있다.
예를 들어, 도 15 (a) 에서 SF #N+3에서 12 OFDM 심볼 정도로 구성된 sPDSCH를 전송하고, SF #N+3의 남은 2 OFDM 심볼 동안 LBT가 성공하면 SF #N+4의 시작부터 다음 DL 버스트를 전송할 수 있는 장점이 있다.
4.2 예약 신호 전송 방법
LAA 시스템에서 eNB가 DL 채널들(e.g., (E)PDCCH, PDSCH 등)의 전송을 시작할 수 있는 시점이 제한되어 있다면(e.g., 매 OFDM 심볼 경계 또는 일부 OFDM 심볼 경계 등), UCell의 백오프 종료 시점과 실제 DL 채널 전송 시작 가능 시점 사이에 타이밍 갭(timing gap)이 존재할 수 있다.
특히, UCell은 해당 eNB와 UE가 독점적으로 사용할 수 없고 경쟁 기반으로 채널에 접속할 수 있다. 만약, 이와 같은 타이밍 갭 동안에 eNB가 어떤 신호도 전송하지 않는다면, 해당 타이밍 갭 동안 다른 전송 노드가 신호 전송을 시도할 수도 있다. 따라서, eNB는 UCell에서 해당 타이밍 갭 동안 채널을 점유하기 위해 예약 신호를 전송할 수 있는데, 해당 예약 신호에 특정 정보를 함께 전송할 수 있다. 이때, DL 채널의 시작 시점이 SF 경계(또는, 사전에 정의된 특정 시점) 일 때와 그렇지 않을 때를 구별하여 예약 신호가 전송될 수 있다.
예를 들어, U셀의 DL 채널의 시작 시점이 P셀의 SF 경계(또는, 사전에 정의된 특정 시점)인 경우는, 기지국은 채널 점유만을 목적으로 예약 신호를 전송할 수 있다. 즉, 기지국은 백오프 종료 시점이 SF 경계(또는 사전에 정의된 특정 시점) 와 일치하는 경우는 해당 예약 신호를 전송하지 않을 수 있고, UE는 SF 경계(또는 사전에 정의된 특정 시점) 앞에 전송될 예약 신호 수신을 시도하지 않거나 예약 신호의 존재를 기대하지 않을 수 있다.
U셀의 DL 채널의 시작 시점이 SF 경계(또는, 사전에 정의된 특정 시점)가 아닌 경우는, 기지국은 채널 점유뿐만 아니라 특정 정보 전송을 목적으로 예약 신호를 전송할 수 있다. 예를 들어, eNB는 SF 경계(또는, 사전에 정의된 특정 시점)가 아닌 지점에서 DL 채널이 시작됨을 예약 신호을 통해 알릴 수 있다. 이때, 해당 예약 신호의 최대 길이 및/또는 최소 길이가 설정될 수 있고, 해당 값(들)은 사전에 미리 정해지거나 상위 계층 시그널링(예를 들어, RRC 시그널링)을 통해 결정된 값일 수 있다.
만약 예약 신호의 최소 길이가 설정되어 있다면, 백오프 종료 시점과 DL 채널의 시작 가능 시점 사이의 타이밍 갭이 설정된 최소 길이보다 짧다면, 해당 DL 채널 시작 가능 시점에서는 DL 채널의 전송이 시작되지 못할 수 있다.
만약 예약 신호의 최대 길이가 설정되어 있다면, 백오프 종료 시점과 DL 채널 시작 가능 시점 사이의 타이밍 갭(e.g., X us)이 설정된 최대 길이(e.g., Y us)보다 길다면(X > Y), 기지국은 (X-Y) us 동안은 오직 채널 점유만을 목적으로 하는 예약 신호를 전송하고, 나머지 Y us 동안은 SF 경계(또는, 사전에 정의된 특정 시점)가 아닌 지점에서 DL 채널이 시작됨을 알리는(즉, UE가 수신할 수 있는) 예약 신호를 전송할 수 있다.
이때, DL 채널의 시작 시점이 SF 경계(또는 사전에 정의된 특정 시점)인 경우 전송하는 예약 신호는 최소 길이(e.g., Z us)만 정의될 뿐 항상 UE가 수신을 기대하지 않을 수 있다. 예를 들어, DL 채널의 시작 시점이 SF 경계(또는 사전에 정의된 특정 시점)인 경우 eNB는 최소 Z us 이상의 예약 신호를 보내야 하고, UE 관점에서 해당 예약 신호가 필요한 경우(e.g., AGC 세팅 용도)에 한해서 수신을 시도할 수 있다.
UE는 매 SF 경계(또는 사전에 정의된 특정 시점)부터 DL 채널이 시작할 수 있음을 가정하고 수신을 시도한다. 만약, 단말이 SF 경계(또는 사전에 정의된 특정 시점)에서 시작되는 DL 채널을 발견하지 못한 경우, 단말은 SF 경계(또는 사전에 정의된 특정 시점)가 아닌 지점에서 DL 채널이 시작됨을 알리는 예약 신호 수신을 시도한다. 만약 단말이 성공적으로 해당 예약 신호를 발견하면, 해당 예약 신호 수신 이후 SF 경계(또는 사전에 정의된 특정 시점)가 아닌 지점에서 DL 채널의 수신을 시도할 수 있다. 해당 예약 신호 송수신 방법은 크로스 캐리어 스케줄된 단말, 셀프 캐리어 스케줄된 단말 또는 하이브리드 스케줄된 단말 모두에게 적용 가능하다. 이때, 하이브리드 스케줄된 단말은 서브프레임마다 크로스 캐리어 스케줄링 또는 셀프 캐리어 스케줄링이 수행될 수 있는 단말을 의미한다.
4.3 sPDSCH 구조
4.3.1 펑쳐링을 통한 sPDSCH 구성방법
도 16은 sPDSCH를 구성하는 방법 중 하나를 설명하기 위한 도면이다.
LTE-A 시스템에서 eNB는 각 SF 시작 전에 곧 시작할 SF 동안 전송할 PDSCH를 미리 구성해 둔다. 상술한 제1타입 내지 제4타입 프레임 구조에서 SF #N+1 상 TB1은 미리 구성된 PDSCH에서 실제 전송이 이뤄지지 않은 부분을 펑쳐링하여 구성될 수 있다.
예를 들어, 도 16을 참조하면, 미리 구성된 PDSCH가 14 OFDM 심볼일 때, sPDSCH가 6 심볼이라면 기지국은 앞쪽 8 심볼은 펑쳐링하여 전송할 수 있다 (도 16의 SF#N+1, Alt. 1-1 방식 참조). 다른 방법으로, 미리 구성된 PDSCH가 14 OFDM 심볼일 때, sPDSCH가 6 심볼이라면 기지국은 뒤쪽 8 심볼을 펑쳐링한 후, 8 심볼을 천이하여 전송할 수 있다 (도 16의 SF#N+1, Alt. 1-2 방식 참조).
LTE-A 시스템이 PDSCH에 대해 주파수 우선 매핑(frequency-first mapping)을 수행하므로(또한, RV(Redundancy Version)가 '0'일 때), 시간상 앞쪽에 위치한 심볼일수록 시스테믹 비트(systematic bit)가 전송될 확률이 크다. 따라서 도 16에서 Alt. 1-1 방식을 위한 PDSCH를 구성하는 경우에는, 기지국은 주파수 우선 매핑을 수행한 후 뒤쪽 심볼부터 데이터를 전송하는 매핑 방법이 도입될 수 있다. 또는, 기지국은 시간 우선 매핑(time-first mapping)을 수행하되, 앞쪽 심볼부터 매핑을 수행하는 기존 방법과 달리 뒤쪽 심볼부터 자원 매핑을 수행할 수 있다.
기지국이 도 16의 Alt. 1-2 방식과 같이 펑쳐링한 심볼을 천이하여 pSF를 구성하는 경우, DM-RS의 위치는 해당 pSF 의 크기와 가장 근사한 크기의 특별 SF(special SF)을 가정하여 구성될 수 있다.
예를 들어, 7 개의 OFDM 심볼로 pSF이 구성될 경우 가장 근사치를 갖는 특별 SF의 크기는 6 OFDM 심볼이므로, 기지국은 특별 서브프레임 구성 9에 해당하는 DM-RS를 구성한 후, 뒤쪽 7 개 OFDM 심볼을 펑쳐링하고 앞쪽 7 개의 OFDM 심볼을 천이하여 pSF에 대한 DM-RS를 구성할 수 있다.
만약, pSF의 크기와 가장 가까운 크기의 특별 SF이 두 개인 경우에는, pSF의 크기보다 작은(또는 큰) 특별 SF을 가정하도록 규칙이 정의될 수 있다. 예를 들어, pSF의 크기가 13 OFDM 심볼인 경우, 기지국은 특별 SF 구성 4(즉, 12 OFDM 심볼)를 가정할 수 있고, 또는 온전한 SF을 가정하여 DM-RS를 구성할 수 도 있다. 다른 방법으로는, 기지국은 pSF의 크기보다 큰 최소의 OFDM 심볼들로 구성된 특별 SF 구성을 가정할 수 있고, pSF의 크기보다 작은 최대의 OFDM 심볼들로 구성된 특별 SF 구성을 가정하여 DM-RS를 구성할 수 있다. 도 17은 LAA 시스템에 적용될 수 있는 LTE-A 시스템에서 사용되는 DM-RS를 도시한 도면이다. 즉, 상술한 DM-RS들은 도 17에 도시된 DM-RS들이 이용될 수 있다.
제4 타입 프레임 구조의 SF #N+1과 SF #N+4상 TB1은 SF #N+1 시점에 미리 구성된 PDSCH에서 펑쳐링하여 구성될 수 있다. 미리 구성된 PDSCH가 14 OFDM 심볼이고 예약 신호가 3 심볼, SF #N+1의 TB1이 6 심볼, SF #N+4의 TB1이 5 심볼인 경우를 예로 들어 설명한다.
Alt. 2-1) 방식
기지국은 미리 구성된 PDSCH의 앞쪽 8 심볼을 펑쳐링한 후 뒤쪽 6 심볼을 SF #N+1에 전송하고, 미리 구성된 PDSCH의 뒤쪽 9 심볼을 펑쳐링한 후 앞쪽 5 심볼을 SF #N+4에서 전송한다.
Alt. 2-2) 방식
기지국은 미리 구성된 PDSCH의 뒤쪽 8 심볼을 펑쳐링한 후 앞쪽 6 심볼을 SF #N+1에 전송하고(즉, 펑쳐링한 8 심볼은 천이), 미리 구성된 PDSCH의 앞쪽 9 심볼을 펑쳐링한 후 뒤쪽 5 심볼을 SF #N+4에 전송(즉, 펑쳐링한 9 심볼 천이)한다.
Alt. 2-3) 방식
기지국은 미리 구성된 PDSCH의 뒤쪽 8 심볼을 펑쳐링한 후 앞쪽 6 심볼을 SF #N+1에 전송하고(즉, 8 심볼 천이), 미리 구성된 PDSCH의 앞쪽 6 심볼과 뒤쪽 3 심볼을 펑쳐링한 후 가운데 5 심볼을 SF #N+4에 전송(6 심볼 천이)한다. 기존의 LTE-A 시스템 상, 위에서 언급한 바와 같이 시간상 앞쪽에 위치한 심볼일수록 시스테매틱 비트가 전송될 확률이 크다. 따라서 Alt. 2-3) 방식은 Alt. 2-2) 방식에 비해 sPDSCH의 성공 확률을 높일 수 있다.
4.3.2 레이트 매칭을 이용한 sPDSCH 구성방법
상술한 방법들은 펑쳐링을 통해 sPDSCH를 구성하는 방법들에 대해서 설명하였으나, 해당 방법들을 레이트 매칭(rate matching)을 통해 sPDSCH를 구성하는 것도 가능하다. 이하에서는 레이트 매칭 방법으로 sPDSCH를 구성하는 방법들에 대해서 설명한다.
LTE-A 시스템에서 기지국은 MAC 계층에서 전달된 TB를 하나 이상의 코드 블록(CB: Code Block)들로 나누고, 각 CB 별로 터보 코딩을 적용한다. 이후, 기지국은 코딩된 CB들을 순환 버퍼(circular buffer)에 저장한다. 만약, 1 ms 길이의 일반 SF 내에서 PDSCH를 전송할 때 필요한 비트수가 계산되면, eNB는 순환 버퍼에 저장된 비트들에 대해 CB 별로 레이트 매칭을 수행하고 변조(modulation) 등의 과정을 거친 후 RE 매핑하여 전송한다.
만약, U셀에서의 백오프 동작이 SF 경계가 아닌 시점에 끝나서, sPDSCH를 전송하는 경우라도 eNB는 마찬가지 방법으로 순환 버퍼에 저장된 비트들에 대해 레이트 매칭, 변조, RE 매핑 등의 일련의 과정을 거쳐 전송할 수 있다.
하지만, CCA 수행을 위한 슬롯 단위가 매우 짧을 수 있음을 고려할 때, eNB의 구현에 따라 레이트 매칭, 변조, RE 매핑 등의 일련의 과정을 매우 짧은 시간 안에 처리할 수 없다면 문제될 수 있다. 예를 들어, CCA 슬롯이 9 us로 동작한다고 가정할 때, 기지국이 CCA 결과 채널 상태가 유휴 상태임을 판단하여 sPDSCH를 구성할 때까지 걸리는 시간이 9 us 보다 크다면, 그 동안 비면허 대역 동작의 특성상 다른 노드로부터의 간섭이 유발될 수 있다.
이를 해결하기 위해, eNB는 1 ms 길이의 일반 SF 전송용 CB(들)을 미리 구성한 후, 백오프 결과 sPDSCH를 전송해야 할 경우 일반 SF 전송 용으로 미리 구성해 놓은 CB(들)로부터 데이터를 뽑아 펑쳐링 또는 레이트 매칭을 수행한 후 sPDSCH를 구성하여 처리 시간(processing time)을 줄일 수 있다.
이때, 일반 SF 전송 용 CB(들)은 기지국의 추가 버퍼에 저장될 수 도 있다. 또한, 기지국은 일반 SF 전송 용으로 미리 구성해 놓은 CB(들)을 저장할 때, 비트 단위로 저장할 수 도 있고, 변조 심볼 단위로 저장할 수 도 있다.
도 18은 레이트 매칭 방식으로 sPDSCH를 구성하는 방법들 중 하나를 설명하기 위한 도면이고, 도 19는 sPDSCH에 대한 CB의 비트수와 레이트 매칭 후의 CB, 코딩 후의 CB의 크기를 비교하기 위한 도면이다.
도 18을 참조하면, 기지국은 1 ms의 일반 PDSCH 전송을 가정하고 생성한 레이트 매칭된 CB들을 일단 일반 SF 전송 용 CB들로 구성해 놓은 후, 만약 sPDSCH를 전송하게 될 경우, eNB는 미리 구성된 비트들(또는 변조된 심볼들)에 대해 펑쳐링 또는 레이트 매칭을 수행하여 전송한다.
또 다른 방법으로는, 기지국은 RE 매핑된 형태로 CB(들)을 구성한 후, sPDSCH를 전송할 때 특정 OFDM 심볼들을 CB 별로 펑쳐링 또는 레이트 매칭하여 전송할 수 있다.
4.4 sPDSCH에 대한 스케줄링 방법
LTE-A 시스템의 CA 상황에서 eNB는 SF #N+1의 U셀 전송을 위해서 SF #N+1의 (E)PDCCH를 통해 스케줄링하는 것이 일반적이다. 이와 같이 sPDSCH 시작보다 앞서서 SF #N+1 시점에 스케줄링을 수행하는 것을 프리 스케줄링이라 정의할 수 있다.
이때, 프리 스케줄링의 경우, 기지국이 (E)PDCCH를 보냈더라도 해당 SF 내내 채널이 비지하여 실제로는 기지국이 sPDSCH를 전송하지 않을 수 있다. 또한 기지국 및/또는 단말이 sPDSCH의 정확한 시작 시점을 미리 알 수 없으므로 TB 크기 또는 MCS 결정 등이 어려울 수 있다.
이를 고려하여 기지국은 Ucell 상의 SF #N+1 시점의 sPDSCH에 대한 스케줄링을 SF #N+2 시점의 (E)PDCCH에서 수행할 수 있다. sPDSCH 시작시점 보다 늦게 스케줄링하는 것을 포스트 스케줄링이라 정의한다. 포스트 스케줄링은 크로스 캐리어 스케줄링, 셀프 캐리어 스케줄링 또는 그 조합 모두를 의미할 수 있다.
프리 스케줄링시, SF #N+1 시점의 (E)PDCCH에서 SF #N+1에 위치한 (s)PDSCH만을 스케줄링할 수 도 있고, SF #N+1과 SF #N+2에 위치한 (s)PDSCH들을 모두 스케줄링할 수 도 있다(예를 들어, 동일 TB인 경우).
포스트 스케줄링의 경우에도, 기지국은 SF #N+2 시점의 (E)PDCCH에서 SF #N+1에 위치한 (s)PDSCH만을 스케줄링할 수 있고, SF #N+1과 SF #N+2에 위치한 (s)PDSCH들을 모두 스케줄링할 수 도 있다. 특정 SF 시점에서 동일한 또는 다른 시점의 특정 SF을 스케줄링하는 것은 기존 LTE-A 시스템의 스케줄링 방식과 같다 (DCI 구성 관점에서).
이하에서는 특정 SF 시점에서 두 개 이상의 SF에 대해서 sPDSCH 및 PDSCH를 스케줄링하는 방법들을 제안한다.
도 20은 기지국이 U셀 상의 둘 이상의 SF들을 스케줄링하는 방법을 설명하기 위한 도면이다.
도 20을 참조하면, 프리 스케줄링 및 크로스 캐리어 스케줄링이 구성된 경우, 기지국은 SF #N+1에서 P셀의 (E)PDCCH를 통해 U셀의 SF #N+1과 SF #N+2의 sPDSCH 및 PDSCH를 스케줄링할 수 있다.
이하에서는 둘 이상의 SF을 스케줄링하기 위해 공통의 DCI를 활용하는 방법들 및 각각의 DCI를 이용하는 방법들에 대해서 설명한다. 또한 각각의 경우에 대한 ACK/NACK 전송 방법들에 대해서 설명한다. 본 발명의 실시예뜰은 별다른 언급이 없는한 프리 스케줄링 및 포스트 스케줄링에 모두 동일하게 적용될 수 있다.
4.4.1 하나의 DCI 포맷을 이용하여 둘 이상의 SF를 스케줄링하는 방법
기지국은 하나의 DCI를 통해 둘 이상의 SF을 스케줄링하므로, 둘 이상의 SF에 대한 sPDSCH 및 PDSCH는 동일 단말에게 스케줄링되고, 각 단말에게 SF 별로 동일한 주파수 자원이 할당된다.
또한, 기지국이 둘 이상의 SF들을 한번에 스케줄링하는지 또는 각각 스케줄링하는지 여부에 대한 단말에 대한 시그널링이 필요할 수 있다. 예를 들어, DCI의 스크램블링 시퀀스, CRC 마스크 및/또는 서치 스페이스에 구분을 줌으로써 단말에 둘 이상의 SF들이 한 번에 스케줄링되는지 여부를 알려줄 수 있다. 물론, 이러한 정보는 DCI 상에 새로운 필드를 추가함으로써 단말에 알려줄 수 있다.
4.4.1.1 동일 TB 일 때 스케줄링 방법 및 DCI 구성
기지국은 도 15(b)에서 두 개의 TB1에 대해 동시에 스케줄링하거나, 도 15(c)에서 두 개의 TB3에 대해 동시에 스케줄링하거나, 도 15(e)에서 TB1과 TB2를 같은 TB로 구성하는 경우들과 같이, 두 개의 SF에서 하나의 TB를 전송할 때 하나의 DCI를 이용하여 스케줄링을 할 수 있다.
Alt. 3-1) 기지국은 하나의 RV를 sPDSCH 및 PDSCH에 공통으로 적용할 수 있다. 또한, 기지국은 동일한 코드 비트를 기반으로 sPDSCH 및 PDSCH를 구성하여 각각 단말에 전송할 수 있다. 이때, UE는 sPDSCH 및 PDSCH로부터 수신한 데이터를 동일한 RV가 사용된 두 개의 TB로 인지할 수 있다.
Alt. 3-2) 기지국은 sPDSCH 및 PDSCH를 하나의 PDSCH로 고려하여, 특정 RV값으로 코드 비트(coded bit)를 생성하여 전송할 수 있다. 이때, UE는 sPDSCH 및 PDSCH로부터 수신한 데이터를 하나의 TB로 인지할 수 있다.
Alt. 3-3) 기지국은 DCI에 포함된 하나의 RV 값이라고 할 지라도 미리 정해진 방식에 따라 sPDSCH 및 PDSCH에 적용된 RV 값을 다르게 설정할 수 있다. 예를 들어, RV의 순서가 0-2-3-1로 정해졌다면, DCI의 RV field 값이 0이면 앞선 (s)PDSCH는 RV값을 0으로, 다음 (s)PDSCH는 RV값을 다음 순서인 2로 가정할 수 있다.
Alt. 3-4) 단말은 sPDSCH의 길이(또는 코드 레이트)에 따라 RV 값을 다르게 생각할 것인지, 같게 생각할 것인지 결정할 수 있다. 예를 들어, sPDSCH이 길이가 X1 이하이면 (또는, 코드 레이트가 X2 이상이면) RV 값을 동일하게 설정할 수 있다. 자세히는 Alt. 3-1) 혹은 Alt. 3-2)와 같이 동작할 수 있다. 반대로 sPDSCH이 길이가 X보다 크면 Alt. 3-3)와 같이 동작할 수 있다.
4.4.1.2 동일 TB 일 때 ACK/NACK 전송
이하에서는 동일 TB이 두 개의 SF를 통해 전송될 때, 단말이 ACK/NACK 신호를 전송하는 방법들에 대해서 설명한다.
Alt. 4-1) 단말은 두 (s)PDSCH를 통해 동일 TB가 전송되므로 하나의 ACK/NACK을 전송할 수 있다. 예를 들어, 스케줄링 타임이 SF #K일 때, 단말은 SF #K+4 타이밍에 해당 TB에 대한 ACK/NACK을 기지국에 전송할 수 있다.
Alt. 4-2) 단말이 Alt. 4-1) 방식처럼 기존의 ACK/NACK 전송 타이밍을 유지하면, 동일 TB가 두 (s)PDSCH에 걸쳐 전송되므로 디코딩 및 ACK/NACK을 구성하는데 시간이 부족할 수 있다. 따라서, 단말은 기존 타이밍보다 처리 시간을 조금 더 고려하여 ACK/NACK 신호를 전송할 수 있다. 예를 들어, 스케줄링 타이밍이 SF #K일 때, 단말은 SF #K+5 타이밍에 해당 TB에 대한 ACK/NACK을 전송할 수 있다.
4.4.1.3 다른 TB 일 때 스케줄링 방법 및 DCI 구성
기지국은 다음과 같은 정보들 중 적어도 하나 이상은 각 TB별로 다르게 할당할 수 있다.
- HARQ process number
- RV
- NDI
- DAI (TDD인 경우에 한함)
예를 들어, 두 개의 RV 필드가 하나의 DCI에 포함되는 경우, 앞쪽 RV 값은 앞쪽 TB에 해당하는 값이고, 뒤쪽 RV 값은 뒤쪽 TB에 해당하는 값으로 설정될 수 있다. 나머지 정보들도 이와 같은 방식으로 설정될 수 있다.
4.4.1.4 다른 TB일 때 ACK/NACK 전송
Alt. 5-1) 스케줄링 시간이 SF #K일 때, 단말은 LTE-A 시스템과 같이 SF #K+4 타이밍에 각 TB에 대한 ACK/NACK을 기지국에 전송할 수 있다. 이 때, 2 TB에 대한 ACK/NACK은 번들링될 수 있다.
Alt. 5-2) Alt. 5-1) 방식의 경우에 ACK/NACK 번들링 방식이 이용되므로, 두 TB 중 하나만 성공한 경우라도 모두 재전송을 시도하게 되므로 자원 낭비가 발생한다. 따라서, 스케줄링 시간이 SF #K일 때, 단말은 앞쪽 TB에 대한 ACK/NACK은 SF #K+4 타이밍에 뒤쪽 TB에 대한 ACK/NACK은 SF #K+5 타이밍에 전송할 수 있다.
Alt. 5-3) 스케줄링 시간이 SF #K일 때, 단말은 앞쪽 TB에 대한 ACK/NACK은 SF #K+3 타이밍에 뒤쪽 TB에 대한 ACK/NACK은 SF #K+4 타이밍에 전송할 수 있다.
4.4.2 둘 이상의 SF를 별개의 DCI를 이용하여 스케줄링하는 방법
이하에서는 둘 이상의 SF에 대한 (s)PDSCH들을 각각 스케줄링하는 방법들에 대해서 설명한다.
프리 스케줄링 방식의 경우에, 기지국은 SF #N+1 시점의 (E)PDCCH에서 SF #N+1과 SF #N+2에 위치한 (s)PDSCH들을 모두 스케줄링할 수 있다 (예를 들어 동일 TB인 경우). 이때, 해당 (E)PDCCH에서 SF #N+1에 위치한 (s)PDSCH를 스케줄링하는 것인지, SF #N+2에 위치한 (s)PDSCH를 스케줄링하는 것인지 단말에 구별해줄 필요가 있다.
이러한 구분은 DCI를 활용할 수 있다. 예를 들어, DCI의 스크램블링 시퀀스, CRC 마스크 및/또는 서치 스페이스 등에 구분을 주어 구별하도록 할 수 있다. 또 다른 예로, DCI 상에 새로운 필드를 추가하여 구분해 줄 수 있다. 예를 들어, 새로운 필드 값이 ‘0’이면 앞쪽 (s)PDSCH, ‘1’이면 뒤쪽 (s)PDSCH에 대한 스케줄링 정보인 것을 나타낸다.
4.4.2.1 동일 TB일 때 스케줄링 방법 및 DCI 구성
두 SF의 (s)PDSCH를 통해 전송되는 동일한 TB는 같은 UE에게 스케줄링되고, 각 UE에게 SF 별로 동일한 주파수 자원이 할당될 수 있다. 이러한 경우, 두 개의 DCI 중 하나에서만 자원 할당(RA: Resource Allocation) 정보만 있어도 충분할 수 있다. 즉, 기지국은 하나의 DCI에만 RA 정보를 싣고, 나머지 DCI에는 추가적인 정보를 실을 수 있다.
예를 들어, 도 15(b)를 참조하면, 기지국은 포스트 스케줄링 방식을 이용하는 경우, SF #N+2에서 (E)PDCCH를 통해 SF #N+1 sPDSCH 및 SF #N+2 PDSCH에 대한 스케줄링을 할 수 있다. 이때, SF #N+2 PDSCH에 대한 DCI에서는 기존의 RA 정보를 포함하고, SF #N+1 sPDSCH에 대한 DCI에서는 RA 정보 대신 sPDSCH의 길이를 포함할 수 있다.
4.4.2.2 동일 TB일 때 ACK/NACK 전송
이하에서는 동일 TB이 두 개의 SF를 통해 전송될 때, 단말이 ACK/NACK 신호를 전송하는 방법들에 대해서 설명한다.
단말은 두 (s)PDSCH를 통해 동일 TB가 전송되므로 하나의 ACK/NACK을 전송할 수 있다. 예를 들어, 스케줄링 타임이 SF #K일 때, 단말은 SF #K+4 타이밍에 해당 TB에 대한 ACK/NACK을 기지국에 전송할 수 있다.
단말이 Alt. 4-1) 방식처럼 기존의 ACK/NACK 전송 타이밍을 유지하면, 동일 TB가 두 (s)PDSCH에 걸쳐 전송되므로 디코딩 및 ACK/NACK을 구성하는데 시간이 부족할 수 있다. 따라서, 단말은 기존 타이밍보다 처리 시간을 조금 더 고려하여 ACK/NACK 신호를 전송할 수 있다. 예를 들어, 스케줄링 타이밍이 SF #K일 때, 단말은 SF #K+5 타이밍에 해당 TB에 대한 ACK/NACK을 전송할 수 있다.
4.4.2.3 다른 TB일 때 ACK/NACK 전송
Alt. 6-1) 스케줄링 시간이 SF #K일 때, 단말은 앞쪽 TB에 대한 ACK/NACK은 SF #K+4 시간에, 뒤쪽 TB에 대한 ACK/NACK은 SF #K+5 시간에 전송할 수 있다.
Alt. 6-2) 스케줄링 시간이 SF #K일 때, 단말은 앞쪽 TB에 대한 ACK/NACK은 SF #K+3 시간에, 뒤쪽 TB에 대한 ACK/NACK은 SF #K+4 시간에 전송할 수 있다.
4.5 종료 sPDSCH 길이(Ending sPDSCH length)
Alt. 7-1) 종료 sPDSCH가 할당되는 SF 내의 PDSCH 심볼 개수를 Y, DL 버스트 시작시 전송한 예약 신호의 심볼 개수를 Z, 시작 sPDSCH의 심볼 개수를 W 라고 가정할 때, 종료 sPDSCH는 (Y-Z-W) 개의 심볼로 구성될 수 있다.
Alt. 7-2) 만약 sPDSCH의 길이에 제약이 있다면 기지국은 (Y-Z-W) 개의 심볼 모두 전송하기 어려울 수 있다. 예를 들어, sPDSCH가 가질 수 있는 심볼 개수는 4, 7, 11 중 하나인 경우에, 종료 sPDSCH의 심볼 개수는 (Y-Z-W) 보다 작고 {4,7,11} 중 가장 가까운 심볼 개수로 구성될 수 있다. 다른 예로, sPDSCH의 심볼 개수는 특별 SF 구성 상에 정의된 전부 또는 일부 심볼 개수로 제한될 수 있다.
상술한 Alt. 7-1) 방식과 Alt. 7-2) 방식에 대해서, UE의 입장에서는 Z의 정확한 값을 알지 못할 수 있다. 따라서 Z는 예약 신호의 최대 길이로 설정되고 실제 예약 신호의 전송 길이와 무관하게 고정될 수 있다. 이때, Z 값은 상위 계층 시그널링을 통해 설정된 값 혹은 시스템 상에 미리 정의된 값일 수 있다.
4.5.1 종료 sPDSCH의 길이 지시 방법
기지국은 종료 sPDSCH의 길이를 명시적으로 DCI를 활용하여 단말에 알려줄 수 있다. 예를 들어, 기지국은 UE 특정 서치 스페이스 상에 전송되는 DCI에 종료 sPDSCH의 길이를 지시하는 새로운 필드를 포함하여 전송할 수 있다.
다른 예로, 기지국은 LAA 시스템에서 U셀을 위해 정의되는 공용 서치 스페이스(common search space) 상의 DCI를 통해 종료 sPDSCH(또는 PEnd)의 길이를 단말에 알려줄 수 있다. 이때, PEnd는 뒤쪽 OFDM 심볼들 중 일부가 생략된 채로 전송되는 pSF로, 면허대역에서 구성되는 프라이머리셀(P셀)의 서브프레임 경계에 대응되는 상기 U셀의 서브프레임 경계 이전에서 종료되는 pSF를 의미한다.
이를 보다 상세히 설명하면, 단말은 비면허대역을 지원하는 무선접속시스템에서 축약된 하향링크 공유 채널(sPDSCH)을 수신하기 위해서, 비면허대역을 지원하는 비면허대역셀(U셀)에 설정되는 sPDSCH에 대한 길이 정보를 포함하는 하향링크 제어 정보(DCI)를 검출하기 위해 공용 서치 스페이스를 모니터링한다. 단말은 공용 서치 스페이스를 통해 DCI를 검출 및 수신하고, DCI에 포함된 길이 정보를 기반으로 sPDSCH를 수신할 수 있다.
이때, sPDSCH는 부분 서브프레임(pSF, 예를 들어 PEnd) 상에서 수신되고, pSF는 일반 서브프레임보다 작은 크기로 구성될 수 있다.
이러한 경우에 sPDSCH는 크로스 캐리어 스케줄링 방식 또는 셀프 캐리어 스케줄링 방식으로 스케줄링될 수 있으며, 공용 서치 스페이스는 비면허 대역의 U셀에서 구성될 수 있다. 즉, sPDSCH의 길이 정보는 항상 U셀 상의 공용 서치 스페이스를 통해 전송된다.
4.6 제4타입 프레임 구조에서 시작 sPDSCH 및 종료 sPDSCH에 대한 스케줄링 방법
4.6.1 DCI 구성 및 스케줄링 방법
Alt. 8-1) 도 15(d)를 참조하면, SF #N+1과 SF #N+4의 sPDSCH는 동일 TB이므로 하나의 DCI만으로 스케줄링이 충분할 수 있다. 따라서, 기지국은 프리 스케줄링의 경우 SF #N+1 상의 (E)PDCCH를 통해, 포스트 스케줄링의 경우에는 SF #N+2 상의 (E)PDCCH를 통해 DCI를 전송하고, SF #N+4의 sPDSCH에 대한 DCI는 추가로 전송하지 않아도 된다.
Alt. 8-2) Alt. 8-1) 방식에서 제안한 스케줄링 방식에 추가적으로, 기지국은 SF #N+4 또는 SF #N+5에서 종료 sPDSCH에 대한 DCI를 전송하도록 구성될 수 있다. 기지국은 DCI에 종료 sPDSCH의 길이 정보를 포함하여 전송할 수 있다. 이때, 시작 sPDSCH와 종료 sPDSCH를 통해 동일 TB가 전송되므로, 시작 sPDSCH와 종료 sPDSCH에 대한 스케줄링 정보(예를 들어, RA, RV, HARQ process number 등)가 같을 수 있다.
만약 단말이 4 ms 만에 HARQ 프로세스 번호가 이전 SF과 동일한 DCI를 수신하면, 단말은 종료 sPDSCH의 정보가 포함된 DCI라고 인식할 수 있다. 이 때, 기지국은 해당 DCI의 RA 필드에 기존 자원 할당 정보 대신 종료 sPDSCH의 심볼 길이를 포함하여 단말에게 종료 sPDSCH의 존재 여부 및 그 길이를 정확하게 알려줄 수 도 있다.
4.6.2 ACK/NACK 전송
Alt. 9-1) 단말은 종료 sPDSCH의 스케줄링 시간을 기준으로 4 ms 이후에 ACK/NACK을 전송할 수 있다. 이때, ACK/NACK 정보는 시작 sPDSCH와 종료 sPDSCH를 하나의 PDSCH로 고려하여 데이터 디코딩을 수행한 결과이다. 만약, 기지국이 Alt. 8-1) 방식과 같이 SF #N+4의 sPDSCH에 대한 DCI는 추가로 전송하지 않는다고 할지라도, 단말은 프리 스케줄링의 경우는 SF #N+4 기준으로 4 ms 후에, 포스트 스케줄링의 경우에는 SF #N+5 기준으로 4 ms 후에 ACK/NACK을 전송할 수 있다. 이때, ACK/NACK이 전송되는 PUCCH 자원은 시작 sPDSCH의 DCI와 링크된 자원이거나 또는 DCI에 명시된 주파수 자원일 수 있다.
Alt. 9-2) Alt. 9-1) 방식에서 제안한 방법에 추가적으로, 단말은 시작 sPDSCH에 대한 ACK/NACK 정보를 시작 sPDSCH의 스케줄링 시간을 기준으로 4 ms 후에 전송할 수 있다. 즉, 단말은 시작 sPDSCH에 대한 ACK/NACK 정보와 종료 sPDSCH에 대한 ACK/ANCK 정보를 기존의 LTE-A 시스템과 동일한 방법으로 전송할 수 있다. 이때, 종료 sPDSCH의 ACK/NACK 정보는 단말이 시작 sPDSCH와 종료 sPDSCH를 하나의 PDSCH로 고려하여 데이터 디코딩을 수행한 결과이다.
4.7 채널 추정 방법
LTE-A 시스템에서 단말은 전송 모드에 따라 셀 특정 참조 신호(CRS: cell-specific reference signal) 또는 단말 특정 참조 신호(URS: UE-specific RS)를 활용하여 채널 추정과 데이터 디코딩을 수행할 수 있다.
하지만 본 발명에서 제안하는 sPDSCH의 경우(예를 들어, 제1, 2 및 5 타입 프레임 구조 참조) 해당 SF에서 충분한 RS가 전송되지 않아, 단말에 해당 sPDSCH에 대한 성공적인 디코딩을 보장하지 못할 수 있다. 이하에서는 이러한 문제를 해결하기 위한 방법들을 제안한다.
Alt. 10-1) 단말은 sPDSCH 직전 및/또는 직후 PDSCH에 포함되는 RS를 활용하여 sPDSCH의 데이터 디코딩 확률을 높일 수 있다.
예를 들어, 단말은 시작 sPDSCH의 경우, 다음 SF의 PDSCH를 통해 전송되는 RS를 활용하여 채널 추정 및 데이터 디코딩을 수행할 수 있다. 또한, 단말은 종료 sPDSCH의 경우, 직전 SF에 포함되는 PDSCH의 RS를 활용할 수 있다. 보다 상세하게, 단말은 sPDSCH와 인접 PDSCH를 활용해 가상 SF(virtual SF)을 구성하고, 동일 PRB pair(또는, PRG) 상의 동일 안테나 포트를 통해 수신되는 RS 기반의 채널 추정 결과를 활용하여 데이터 디코딩을 수행할 수 있다.
LAA 시스템의 S셀에서 다중 캐리어에 대한 LBT 또는 고 변조 차수(high modulation order) 전송을 위한 전력 백오프(power backoff) 등의 이유로 인해 서브프레임마다 RS의 전력 또는 RS 전력 대비 PDSCH 전력 값이 변화하게 될 수 있다. 하지만 단말이 sPDSCH에 대한 채널 추정을 수행함에 있어서, 인접한 SF에 할당된 PDSCH 상의 RS를 활용할 수 있다면 단말은 적어도 인접하는 sPDSCH와 PDSCH에 존재하는 RS의 전송 전력 전력은 동일하다고 가정할 수 있다.
4.7.1 모두 CRS인 경우
먼저, pSF에 포함되는 sPDSCH와 인접 SF의 PDSCH 모두 CRS 기반으로 전송되는 경우를 가정한다.
표 8
Figure PCTKR2015014192-appb-T000004
3GPP TS 36.211 규격 문서의 일부를 발췌한 표 8을 참조하면, CRS의 경우 단말이 어떤 심볼에 대한 채널을 다른 심볼의 채널로부터 추정할 때, 동일한 안테나 포트 상의 신호를 통해서만 가능하므로, 기지국은 인접 (s)PDSCH들끼리 같은 안테나 포트로 구성된 CRS를 전송해야 한다.
또는, PDSCH를 구성하는 CRS의 안테나 포트는 적어도 sPDSCH를 구성하는 CRS의 안테나 포트를 포함해야 한다.
또한 sPDSCH를 구성하는 CRS의 안테나 포트(들)에서 eNB가 전송한 전력은 적어도 sPDSCH를 구성하는 CRS의 안테나 포트들과 동일한 안테나 포트들에 대해 PDSCH를 구성하는 CRS에 대한 안테나 포트(들)에서의 전송 전력과 동일한 것이 바람직하다.
예를 들어, sPDSCH를 구성하는 CRS에 대한 안테나 포트가 {1,2}라면, PDSCH를 구성하는 CRS의 안테나 포트는 {1,2}를 항상 포함해야 한다. 또한 sPDSCH를 구성하는 CRS의 안테나 포트인 {1,2}의 전송 전력과 PDSCH를 구성하는 CRS의 안테나 포트 {1,2} 의 전송 전력은 동일해야 한다.
4.7.2 모두 URS인 경우
sPDSCH와 인접 PDSCH 모두 URS 기반의 전송일 경우를 가정한다.
표 8을 참조하면, URS의 경우, 단말이 어떤 심볼의 채널을 다른 심볼 의 채널로부터 추정할 수 있다. 이때, 단말은 동일한 안테나 포트 상의 신호를 통해서 채널 추정할 뿐 아니라, 해당 신호는 동일 SF 내의 동일 PRB pair (또는, PRG) 내의 신호일 때만 채널 추정시 유효하게 사용된다.
또한, 기존의 LTE-A 구조상 SF이 바뀔 때, 동일 UE에게 동일 PRB pair (또는, PRG)가 할당된다고 할지라도, URS에 대한 프리코딩이 바뀔 수 있다. 즉, sPDSCH와 인접 SF의 PDSCH에 대한 유효 채널(effective channel) 값을 같게 만들기 위해서는, sPDSCH와 인접 SF의 PDSCH는 동일한 프리코딩 방식을 사용하여 전송되는 것이 바람직하다.
따라서 sPDSCH에 할당된 UE는 인접 PDSCH의 동일한 PRB pair (혹은 PRG) 에도 마찬가지로 할당되어야 하고, 또한 해당 PRB pair (혹은 PRG) 상의 URS에 사용된 프리코딩 방식은 동일해야 한다는 제약이 필요할 수 있다. 또한 sPDSCH 상의 URS 전송 전력과 PDSCH 상의 URS 전송 전력은 동일해야 한다는 제약이 필요할 수 있다.
4.7.3 sPDSCH에 적어도 하나의 RS 구성 방법
Alt. 10-2) sPDSCH는 CRS 기반으로 전송되고 인접 PDSCH는 CRS 전송 없이 URS 만을 기반으로 전송되는 경우를 가정한다. 이때, sPDSCH의 길이가 매우 짧은 경우, sPDSCH에 CRS가 전혀 포함되어 있지 않을 수 있다. 이를 해결하기 위해 적어도 하나의 RS(CRS 및/또는 특정 URS 등의 RS) 가 존재하도록 sPDSCH를 구성할 수 있다.
시작 sPDSCH를 예로 들면, CRS 안테나 포트 0의 경우 마지막 OFDM 심볼이 12번째 심볼이므로, 마지막 두 개(또는, 한 개)의 심볼들로 구성된 sPDSCH는 전송되지 않도록 제한될 수 있다.
4.7.4 프리엠블을 이용한 채널 추정 방법
Alt. 10-3) 기지국이 매 sPDSCH 시작 지점에서 프리엠블을 전송하도록 구성할 수 있다. 단말은 이러한 프리엠블을 이용하여 채널 추정 및 데이터 디코딩을 수행할 수 있다. 예를 들어, 단말이 프리엠블을 통한 채널 추정을 위해, 기지국이 프리엠블을 전송한 안테나 포트는 sPDSCH를 전송한 안테나 포트와 동일하게 구성될 수 있다. 만약, MIMO 전송의 성공적인 수신을 위해서라면 레이어 별로 직교한 프리엠블이 필요할 수 있다.
상술한 Alt. 10-1) 방식과 Alt. 10-3) 방식은 제4타입 프레임 구조에도 쉽게 적용될 수 있다. 예를 들어, Alt. 10-1) 방식의 경우, 시작 sPDSCH와 종료 sPDSCH의 CRS는 동일한 안테나 포트로 구성될 수 있다. 또는, 시작 sPDSCH와 종료 sPDSCH의 URS에 사용된 프리코딩은 동일해야 한다는 제약이 필요할 수 있다. 다른 예로, Alt. 10-3) 방식의 경우, 프리엠블, 시작 sPDSCH, 종료 sPDSCH의 전송 안테나 포트를 서로 동일하게 구성할 수 있다.
4.8 트래킹 서브프레임(tSF)
eNB와 UE간 트래킹 또는 시간 주파수 정밀 동기(time-frequency fine synchronization) 용도로, eNB는 CRS 안테나 포트 0 (in 0th, 4th, 7th, and 11th OFDM 심볼) 또는 기지국이 사용할 수 있는 최대 안테나 포트 개수에 해당하는 모든 CRS 포트들을 포함한 서브프레임을 DL TX 버스트(전송 노드의 연속한 전송 단위를 의미) 상에 전송할 수 있다.
본 발명의 실시예들에서 이러한 서브프레임들을 트래킹 서브프레임 (tSF: tracking SF)으로 정의한다. 단말은 tSF를 수신한 이후 tSF를 포함하여 Xms 이내의 구간에 대해서만 CSI-RS/CSI-IM에 대한 DB(Blind Detection)를 수행하도록 설정될 수 있다.
또한, UE는 tSF로부터 X ms 이내의 구간에 대해서만 sPDSCH가 전송됨을 기대할 수 있다. eNB 관점에서는 tSF는 sPDSCH가 아닌 모든 SF이 될 수 있으며, DL TX 버스트 중 특정 서브프레임만 tSF로 설정될 수 도 있다.
tSF이 DL TX 버스트 중 특정 서브프레임에서만 전송되는 경우를 가정한다. 예를 들어, tSF은 sPDSCH 가 전송되는 SF를 제외하고, DL TX 버스트 상의 첫 번째 SF에서 전송될 수 있다. 또는, DRX UE가 깨어나는 시점에 맞춰서 ‘DRX on duration’ 중 일부 서브프레임 또는 ‘DRX on duration’과 sPDSCH가 전송되는 서브프레임을 제외하고 DL TX 버스트가 중첩되는 첫 번째 서브프레임에서 트래킹 SF이 구성될 수 있다.
기지국은 tSF임을 단말에 알리기 위해, 해당 LAA SCell 상의 PCFICH, PHICH, PCell 상의 공용 DCI 또는 단말 특정 DCI 중 하나를 이용할 수 있다.
또는, 기지국은 DL TX burst 상의 첫 번째 SF에서 tSF이 전송될 때마다 tSF 지시를 활용할 수 있다.
또는, 기지국은 DRX UE가 깨어나는 시점에 맞춰 DL TX 버스트의 중간에서 tSF를 전송하는 경우만 tSF을 알리는 지시를 전송할 수 있다.
또는, 기지국은 tSF가 전송됨을 알리기 위한 지시 없이, UE의 BD에 의존하여 tSF를 검출하도록 설정할 수 있다.
상술한 바와 같이, 단말은 tSF를 검출한 시점으로부터 X ms 이내의 구간에 대해서만 sPDSCH가 전송됨을 기대할 수 있다. 하지만 tSF이 언제 전송되는지에 대한 정확힌 지시가 없다면, 단말은 기본적으로 모든 SF 상에서 tSF에 대한 BD(blind detection)를 수행해야 한다. 즉, tSF에 대한 BD와 sPDSCH에 대한 BD를 모두 수행하는 UE의 구현 복잡도를 줄이기 위해, 기지국은 sPDSCH에 대한 BD는 특정 SF 이후부터 수행하라는 지시를 전송할 수 있다. 예를 들어, 해당 지시는 DL TX burst의 마지막 SF임을 알리는 지시일 수 있다.
따라서, UE는 우선적으로 tSF에 대한 검출을 수행하고, tSF 이 발견되었을 때 해당 tSF로부터 X ms 동안 DL TX burst의 마지막 SF 임을 알리는 지시가 발견되면, DL TX burst의 마지막 SF으로부터 트래킹 SF 이후 X ms 시점 내에서만 sPDSCH를 기대할 수 있다.
예를 들어, X = 10 ms 이고, SF#N에서 tSF이 발견되었고 SF#N+3에서 DL TX 버스트의 마지막 SF이라는 지시가 발견되면, 단말은 SF#N+4부터 SF#N+10 내에서만 sPDSCH 의 존재에 대한 BD를 수행할 수 있다. 이때, sPDSCH에 대한 BD을 특정 SF 이후부터 수행하라는 지시는 LAA SCell 상의 PCFICH, PHICH, PCell 상의 공용 DCI, 또는 UE-specific DCI를 활용하여 전송될 수 있다.
상술한 바와 같이, 기지국 및 단말은 LAA SCell 상의 PHICH를 다음과 같은 용도 중 적어도 하나로 사용할 수 있다.
(1) DL TX burst 상의 첫 번째 SF에서 tSF이 전송되는 지 여부를 지시
(2) DRX UE가 깨어나는 시점에 맞춰 DL TX burst의 중간에 전송되는 tSF을 지시
(3) sPDSCH에 대한 BD는 특정 SF 이후부터 수행하라는 지시
(4) sPDSCH의 길이
(5) sPDSCH가 DL TX burst 상의 처음에 할당되는지 또는 마지막에 할당되는지 여부
(6) 이때, PHICH는 다음과 같은 점들을 고려하여 설계될 수 있다.
i) PHICH 구간은 항상 1 OFDM 심볼을 가정
ii) PHICH 그룹은 항상 하나를 가정 (즉, 기지국은 해당 PHICH 그룹에서 특정 WH 코드(Walsh-Hadamard code)와 I/Q 페이즈 조합 중 하나(e.g. code 0 및 I phase)를 사용하고 해당 정보를 BPSK 변조하여 단말에 전송)
iii) 만약 상기 나열한 것과 같이 PHICH 에 두 개 이상의 정보가 실리는 경우, 추가적인 PHICH group 혹은 (추가적인 PHICH group 없이) WH code 혹은 I/Q phase를 구분하여 사용
상기 설명한 제안 방식에 대한 일례들 또한 본 발명의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수 도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수 도 있다. 상기 제안 방법들의 적용 여부 정보 (혹은 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (e.g., 물리 계층 시그널 혹은 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 가 있다.
5. 구현 장치
도 21에서 설명하는 장치는 도 1 내지 도 20에서 설명한 방법들이 구현될 수 있는 수단이다.
단말(UE: User Equipment)은 상향링크에서는 송신단으로 동작하고, 하향링크에서는 수신단으로 동작할 수 있다. 또한, 기지국(eNB: e-Node B)은 상향링크에서는 수신단으로 동작하고, 하향링크에서는 송신단으로 동작할 수 있다.
즉, 단말 및 기지국은 정보, 데이터 및/또는 메시지의 전송 및 수신을 제어하기 위해 각각 송신기(Transmitter: 2140, 2150) 및 수신기(Receiver: 2150, 2170)를 포함할 수 있으며, 정보, 데이터 및/또는 메시지를 송수신하기 위한 안테나(2100, 2110) 등을 포함할 수 있다.
또한, 단말 및 기지국은 각각 상술한 본 발명의 실시예들을 수행하기 위한 프로세서(Processor: 2120, 2130)와 프로세서의 처리 과정을 임시적으로 또는 지속적으로 저장할 수 있는 메모리(2180, 2190)를 각각 포함할 수 있다.
상술한 단말 및 기지국 장치의 구성성분 및 기능들을 이용하여 본원 발명의 실시예들이 수행될 수 있다. 예를 들어, 기지국의 프로세서는 백오프 카운터 값을 설정하고, 각 TTI (또는, SF)에서 백오프 허용 구간인지 여부를 판단할 수 있다. 만약, 기지국의 프로세서는 백오프 허용 구간이면 송신기 및/또는 수신기를 제어하여 CS를 수행하고, CS가 수행되면 백오프 카운터 값을 1씩 줄일 수 있다. 이후 백오프 카운터가 0이되면, 기지국의 프로세서는 예약 신호 및/또는 데이터를 U셀을 통해 단말에 송신하거나 단말로부터 수신할 수 있다.
또한, 기지국의 프로세서는 종료 sPDSCH의 길이 정보를 단말에 전송하기 위해 U셀 또는 P셀에 구성되는 공용 서치 스페이스 상에서 전송되는 DCI를 이용할 수 있다. 단말의 프로세서는 공용 서치 스페이스를 모니터링하여 DCI를 수신하고, DCI에 포함된 길이 정보를 기반으로 종료 sPDSCH의 크기를 명확히 알 수 있으며, 종료 sPDSCH를 정확하게 디코딩할 수 있다.
단말 및 기지국에 포함된 송신기 및 수신기는 데이터 전송을 위한 패킷 변복조 기능, 고속 패킷 채널 코딩 기능, 직교주파수분할다중접속(OFDMA: Orthogonal Frequency Division Multiple Access) 패킷 스케줄링, 시분할듀플렉스(TDD: Time Division Duplex) 패킷 스케줄링 및/또는 채널 다중화 기능을 수행할 수 있다. 또한, 도 21의 단말 및 기지국은 저전력 RF(Radio Frequency)/IF(Intermediate Frequency) 유닛을 더 포함할 수 있다.
한편, 본 발명에서 단말로 개인휴대단말기(PDA: Personal Digital Assistant), 셀룰러폰, 개인통신서비스(PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA(Wideband CDMA) 폰, MBS(Mobile Broadband System) 폰, 핸드헬드 PC(Hand-Held PC), 노트북 PC, 스마트(Smart) 폰 또는 멀티모드 멀티밴드(MM-MB: Multi Mode-Multi Band) 단말기 등이 이용될 수 있다.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.
본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리 유닛(2180, 2190)에 저장되어 프로세서(2120, 2130)에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 발명의 실시예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project), 3GPP2 및/또는 IEEE 802.xx (Institute of Electrical and Electronic Engineers 802) 시스템 등이 있다. 본 발명의 실시예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다.

Claims (8)

  1. 비면허대역을 지원하는 무선접속시스템에서 축약된 하향링크 공유 채널(sPDSCH)을 수신하는 방법에 있어서,
    상기 비면허대역을 지원하는 비면허대역셀(U셀)에 설정되는 상기 sPDSCH에 대한 길이 정보를 포함하는 하향링크 제어 정보(DCI)를 검출하기 위해 공용 서치 스페이스를 모니터링하는 단계;
    상기 공용 서치 스페이스를 통해 상기 DCI를 수신하는 단계; 및
    상기 길이 정보를 기반으로 상기 sPDSCH를 수신하는 단계를 포함하되,
    상기 sPDSCH는 부분 서브프레임(pSF) 상에서 수신되고,
    상기 pSF는 일반 서브프레임보다 작은 크기로 구성되는, sPDSCH 수신방법.
  2. 제1항에 있어서,
    상기 sPDSCH는 면허대역에서 구성되는 프라이머리셀(P셀)의 서브프레임 경계에 대응되는 상기 U셀의 서브프레임 경계 이전에서 종료되는 종료 sPDSCH(Ending PDSCH)인, sPDSCH 수신방법.
  3. 제1항에 있어서,
    상기 sPDSCH는 셀프 캐리어 스케줄링 방식 또는 크로스 캐리어 스케줄링 방식으로 스케줄링되는, sPDSCH 수신방법.
  4. 제1항에 있어서,
    상기 공용 서치 스페이스는 상기 비면허 대역의 상기 U셀에서 구성되는, sPDSCH 수신 방법.
  5. 비면허대역을 지원하는 무선접속시스템에서 축약된 하향링크 공유 채널(sPDSCH)을 수신하는 단말에 있어서,
    수신기; 및
    상기 sPDSCH 수신을 지원하도록 구성된 프로세서를 포함하되,
    상기 프로세서는 상기 수신기를 제어하여:
    상기 비면허대역을 지원하는 비면허대역셀(U셀)에 설정되는 상기 sPDSCH에 대한 길이 정보를 포함하는 하향링크 제어 정보(DCI)를 검출하기 위해 공용 서치 스페이스를 모니터링하고;
    상기 공용 서치 스페이스를 통해 상기 DCI를 수신하고; 및
    상기 길이 정보를 기반으로 상기 sPDSCH를 수신하도록 구성되되,
    상기 sPDSCH는 부분 서브프레임(pSF) 상에서 수신되고,
    상기 pSF는 일반 서브프레임보다 작은 크기로 구성되는, 단말.
  6. 제5항에 있어서,
    상기 sPDSCH는 면허대역에서 구성되는 프라이머리셀(P셀)의 서브프레임 경계에 대응되는 상기 U셀의 서브프레임 경계 이전에서 종료되는 종료 sPDSCH(Ending PDSCH)인, 단말.
  7. 제5항에 있어서,
    상기 sPDSCH는 크로스 캐리어 스케줄링 방식 또는 셀프 캐리어 스케줄링 방식으로 스케줄링되는, 단말.
  8. 제5항에 있어서,
    상기 공용 서치 스페이스는 상기 비면허 대역의 상기 U셀에서 구성되는, 단말.
PCT/KR2015/014192 2014-12-23 2015-12-23 비면허 대역을 지원하는 무선 접속 시스템에서 축약된 하향링크 물리 공유 채널을 송수신하는 방법 및 이를 지원하는 장치 WO2016105129A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/539,014 US10225035B2 (en) 2014-12-23 2015-12-23 Method for transceiving shortened physical downlink shared channel in wireless access system supporting unlicensed band, and device supporting same
US16/261,798 US10862607B2 (en) 2014-12-23 2019-01-30 Method for transceiving shortened physical downlink shared channel in wireless access system supporting unlicensed band, and device supporting same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201462095782P 2014-12-23 2014-12-23
US62/095,782 2014-12-23
US201562202168P 2015-08-07 2015-08-07
US62/202,168 2015-08-07
US201562207899P 2015-08-20 2015-08-20
US62/207,899 2015-08-20
US201562237588P 2015-10-06 2015-10-06
US62/237,588 2015-10-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/539,014 A-371-Of-International US10225035B2 (en) 2014-12-23 2015-12-23 Method for transceiving shortened physical downlink shared channel in wireless access system supporting unlicensed band, and device supporting same
US16/261,798 Continuation US10862607B2 (en) 2014-12-23 2019-01-30 Method for transceiving shortened physical downlink shared channel in wireless access system supporting unlicensed band, and device supporting same

Publications (1)

Publication Number Publication Date
WO2016105129A1 true WO2016105129A1 (ko) 2016-06-30

Family

ID=56151059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014192 WO2016105129A1 (ko) 2014-12-23 2015-12-23 비면허 대역을 지원하는 무선 접속 시스템에서 축약된 하향링크 물리 공유 채널을 송수신하는 방법 및 이를 지원하는 장치

Country Status (2)

Country Link
US (2) US10225035B2 (ko)
WO (1) WO2016105129A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10104677B2 (en) 2017-03-13 2018-10-16 Microsoft Technology Licensing, Llc Code shortening at a secondary station
CN110932829A (zh) * 2018-09-20 2020-03-27 维沃移动通信有限公司 非授权频段的传输时间指示方法、网络设备和终端
CN111344969A (zh) * 2017-11-10 2020-06-26 高通股份有限公司 具有灵活起始点的nr免许可传输机会结构
CN114710241A (zh) * 2016-08-21 2022-07-05 Lg 电子株式会社 无线通信系统中的上行链路传输的方法及其设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10219256B2 (en) * 2015-01-13 2019-02-26 Qualcomm Incorporated Control information feedback for eCC on PCell
CN105992373B (zh) * 2015-01-30 2020-09-15 中兴通讯股份有限公司 数据传输方法、装置、基站及用户设备
CN114070539B (zh) 2015-10-29 2023-09-01 苹果公司 在授权辅助接入(laa)中的部分子帧内的(e)pdcch的设计与传输
KR101982994B1 (ko) * 2016-01-26 2019-05-27 소니 주식회사 단말 장치, 기지국 장치 및 통신 방법
WO2017129751A1 (en) * 2016-01-29 2017-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Clear channel assessment technique
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
US10200990B2 (en) * 2016-08-10 2019-02-05 Nokia Technologies Oy Method and apparatus for implementing dynamic signaling of downlink control usage
CN110034848B (zh) * 2018-01-12 2021-03-23 华为技术有限公司 一种信息传输方法和装置
EP3751932B1 (en) * 2018-10-12 2023-01-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and terminal equipment for repeatedly transmitting information

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013006006A2 (ko) * 2011-07-07 2013-01-10 엘지전자 주식회사 무선통신시스템에서 신호 전송 방법 및 장치
WO2013113158A1 (en) * 2012-02-01 2013-08-08 Renesas Mobile Corporation Random access channel enhancement for carrier aggregation with different uplink/downlink configuration
US20130286907A1 (en) * 2010-10-20 2013-10-31 Nokia Corporation Shortened subframe format for fdd
WO2014112937A1 (en) * 2013-01-16 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for sending and receiving downlink control information
US20140226609A1 (en) * 2011-09-23 2014-08-14 Nokia Solutions And Networks Oy Spectrum Sharing Using Sharing Profiles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1827039B1 (en) * 2004-12-14 2016-08-17 Fujitsu Limited Wireless communication device, and communication method
US7821913B2 (en) * 2005-03-29 2010-10-26 Qualcomm Incorporated Method and apparatus for data and pilot structures supporting equalization
KR101227529B1 (ko) * 2010-01-08 2013-01-31 엘지전자 주식회사 반송파 집성을 지원하는 무선 통신 시스템에서 하향링크 신호 수신 방법 및 이를 위한 장치
JP2011259242A (ja) * 2010-06-09 2011-12-22 Ntt Docomo Inc 移動端末装置、無線基地局装置及び無線通信方法
CN103430469B (zh) 2011-03-14 2016-08-17 Lg电子株式会社 用于在无线通信系统中发送控制信息的方法和设备
DE112011105429B4 (de) * 2011-07-12 2020-10-29 Avago Technologies International Sales Pte. Ltd. Suchraum für eine komponententrägerspezifische UL/DL Konfiguration
US9306725B2 (en) * 2013-03-13 2016-04-05 Samsung Electronics Co., Ltd. Channel state information for adaptively configured TDD communication systems
CN107079333B (zh) * 2014-11-15 2021-02-19 松下电器(美国)知识产权公司 资源调度方法、资源确定方法、eNode B和用户设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130286907A1 (en) * 2010-10-20 2013-10-31 Nokia Corporation Shortened subframe format for fdd
WO2013006006A2 (ko) * 2011-07-07 2013-01-10 엘지전자 주식회사 무선통신시스템에서 신호 전송 방법 및 장치
US20140226609A1 (en) * 2011-09-23 2014-08-14 Nokia Solutions And Networks Oy Spectrum Sharing Using Sharing Profiles
WO2013113158A1 (en) * 2012-02-01 2013-08-08 Renesas Mobile Corporation Random access channel enhancement for carrier aggregation with different uplink/downlink configuration
WO2014112937A1 (en) * 2013-01-16 2014-07-24 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for sending and receiving downlink control information

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114710241A (zh) * 2016-08-21 2022-07-05 Lg 电子株式会社 无线通信系统中的上行链路传输的方法及其设备
CN114710241B (zh) * 2016-08-21 2024-04-16 Lg电子株式会社 无线通信系统中的上行链路传输的方法及其设备
US10104677B2 (en) 2017-03-13 2018-10-16 Microsoft Technology Licensing, Llc Code shortening at a secondary station
CN111344969A (zh) * 2017-11-10 2020-06-26 高通股份有限公司 具有灵活起始点的nr免许可传输机会结构
CN110932829A (zh) * 2018-09-20 2020-03-27 维沃移动通信有限公司 非授权频段的传输时间指示方法、网络设备和终端

Also Published As

Publication number Publication date
US20190165875A1 (en) 2019-05-30
US20180019836A1 (en) 2018-01-18
US10225035B2 (en) 2019-03-05
US10862607B2 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2016018125A1 (ko) 비면허대역을 지원하는 무선접속시스템에서 전송 기회 구간을 설정하는 방법 및 장치
WO2016105127A1 (ko) 비면허 대역을 지원하는 무선 접속 시스템에서 향상된 물리 하향링크 제어채널을 송수신하는 방법 및 이를 지원하는 장치
WO2016105129A1 (ko) 비면허 대역을 지원하는 무선 접속 시스템에서 축약된 하향링크 물리 공유 채널을 송수신하는 방법 및 이를 지원하는 장치
WO2017010764A1 (ko) 비면허 대역 및 캐리어 결합을 지원하는 무선접속시스템에서 데이터 버스트 전송 방법 및 장치
WO2017047973A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 멀티 캐리어 상에서 lbt 과정을 수행하는 방법 및 장치
WO2019194660A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2017010773A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 디스커버리 참조 신호를 전송하는 방법 및 장치
WO2017039141A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 우선순위 클래스를 고려하여 경쟁 윈도우 크기를 조절하는 방법 및 이를 지원하는 장치
WO2017043878A1 (ko) 협대역 사물인터넷을 지원하는 무선 접속 시스템에서 하향링크 물리 방송 채널 수신 방법 및 장치
WO2017030417A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 경쟁윈도우크기를 조정하는 방법 및 장치
WO2017010762A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 디스커버리 참조 신호를 송수신하는 방법 및 장치
WO2017126935A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 신호를 전송하는 방법 및 이를 지원하는 장치
WO2018174653A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2016182356A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 서로 다른 타입의 신호를 전송하기 위한 채널 접속 과정을 수행하는 방법 및 장치
WO2018021821A1 (ko) 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 이를 지원하는 장치
WO2016182366A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 harq-ack 정보를 기반으로 경쟁 윈도우 크기를 조정하는 방법 및 이를 지원하는 장치
WO2016182355A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 경쟁 윈도우 크기를 조정하는 방법 및 이를 지원하는 장치
WO2016036097A1 (ko) 비면허대역을 지원하는 무선접속시스템에서 채널상태측정 및 보고 방법
WO2017023043A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 트랙킹 참조 신호를 송수신하는 방법 및 장치
WO2016099196A1 (ko) 단말 간 (device-to-device, d2d) 통신을 지원하는 무선 통신 시스템에서 전송 자원을 할당하는 방법
WO2016122268A1 (ko) 협대역 사물인터넷을 지원하는 무선 접속 시스템에서 공용 제어 메시지를 송수신하는 방법 및 장치
WO2017065524A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 서브프레임 길이 정보를 송수신하는 방법 및 장치
WO2019194531A1 (ko) 무선 통신 시스템에서 신호의 송수신 방법 및 이를 위한 장치
WO2018143749A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2017057984A1 (ko) 협대역 사물인터넷을 지원하는 무선 접속 시스템에서 주동기신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15539014

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873656

Country of ref document: EP

Kind code of ref document: A1