WO2016105113A1 - 회전자 - Google Patents

회전자 Download PDF

Info

Publication number
WO2016105113A1
WO2016105113A1 PCT/KR2015/014160 KR2015014160W WO2016105113A1 WO 2016105113 A1 WO2016105113 A1 WO 2016105113A1 KR 2015014160 W KR2015014160 W KR 2015014160W WO 2016105113 A1 WO2016105113 A1 WO 2016105113A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow portion
rotor
inner space
hollow
hollow part
Prior art date
Application number
PCT/KR2015/014160
Other languages
English (en)
French (fr)
Inventor
최진우
김국태
옥지효
박재영
이배한
변창인
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to CA2972225A priority Critical patent/CA2972225A1/en
Priority to JP2017552772A priority patent/JP2018501773A/ja
Publication of WO2016105113A1 publication Critical patent/WO2016105113A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • H02K1/325Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium between salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • H02K9/12Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing wherein the cooling medium circulates freely within the casing

Definitions

  • the present invention relates to a rotor, and more particularly to a rotor that rotates relative to the stator in a generator or electric motor.
  • the rotor rotates by the electromagnetic interaction between the rotor and the stator to perform a desired function includes a generator and an electric motor. Since the rotor must rotate relative to the stator, the lighter the weight is better.
  • An object of the present invention is to solve the problems of the prior art as described above, to reduce the weight of the rotor used in a large generator or electric motor.
  • Another object of the present invention is to facilitate the heat dissipation of the central portion in the longitudinal direction of the rotor in the rotor used in a large generator or electric motor.
  • the present invention is composed of the support is located at both ends of the hollow portion in which the inner space is formed and the inlet hole through which the outside air flows into the inner space of the hollow portion And a rotary pole formed at a predetermined interval on an outer surface of the hollow portion, and a discharge hole is opened to a portion between the silent poles of the outer surface of the hollow portion to an inner space of the hollow portion. As air entered is discharged to the outside through the discharge hole, heat of the hollow portion and the silent pole is released.
  • a plurality of discharge holes are formed at both ends of the discharge hole starting from a region corresponding to the middle portion in the longitudinal direction of the hollow portion on the outer surface of the hollow portion.
  • the inner space formed inside the hollow part is opened to both ends of the hollow part, and a flange provided at the end of the support part is assembled with the hollow part, and the flange has an inlet hole through which cooling air can enter the inner space. .
  • the inflow hole is formed around the flange to form a plurality of circular trajectories.
  • a through hole is formed in the flange through which a fastener connecting the flanges provided at the ends of the support part installed at both ends of the hollow part passes.
  • the through hole is formed at a position on the flange corresponding to a position at which the silent pole is installed.
  • the present invention provides a rotating shaft, a hollow portion having an inner space in which the rotating shaft penetrates the center and is open to both sides, an axis spider supporting the hollow portion on the rotating shaft, and an outer surface of the hollow portion. It includes a silent pole installed at a predetermined interval, the air of the inner space is discharged to the part of the outer surface of the hollow portion between the silent pole to the outside to discharge the heat of the hollow portion and the silent pole.
  • the air discharge portion of the inner space in the hollow portion is a discharge hole formed in the hollow portion, the discharge hole is a plurality of both ends in the region corresponding to the middle portion in the longitudinal direction of the hollow portion on the outer surface of the hollow portion Dogs are formed.
  • the hollow part is formed by stacking a plurality of plates, and a gap is formed between the plates so that air in the inner space is discharged to the outer surface of the hollow part.
  • the discharge hole and the gap are located between an area where the silent pole is mounted on the outer surface of the hollow part.
  • the hollow part is placed in the middle part of the longitudinal direction of the rotating shaft, and air is introduced into the hollow part to discharge heat in the middle part of the rim core and the silent pole while discharging in the centrifugal direction of the rotor.
  • Heat dissipation in the former is more smoothly, and cooling air is smoothly supplied to the rotor center, which is difficult to access cooling air, thereby preventing local deterioration and improving device life and performance.
  • the hollow part is disposed in the longitudinal middle portion of the rotating shaft, the weight of the rotor is reduced as a whole.
  • the rotating shaft is composed of a solid portion and a middle hollow portion of both ends can reduce the weight in the hollow portion can reduce the weight of the rotor without affecting the performance of the rotor, the energy consumed by the rotation of the rotor is While minimizing, the effort required for handling such as transportation can be minimized.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a preferred embodiment of the rotor according to the present invention.
  • Figure 2 is a front view seen from one end side of the rotating shaft showing the configuration of the embodiment of the present invention.
  • Figure 3 is an exploded perspective view showing the main configuration of the embodiment of the present invention.
  • Figure 4 is an operating state showing the air flow in the rotor of the embodiment of the present invention.
  • Figure 5 is a longitudinal cross-sectional view showing the configuration of another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing the configuration of the embodiment shown in FIG.
  • FIG. 7 is an operational state diagram showing air flowing in the embodiment shown in FIG. 5;
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be “connected”, “coupled” or “connected”.
  • the rotor of the embodiment of the present invention is used in a rotating device such as a generator or an electric motor, in particular in a large generator or electric motor.
  • the center of rotation of the rotor is the axis of rotation 10.
  • the rotary shaft 10 has a length up to several meters in the present invention.
  • the rotating shaft 10 is composed of a support 12 of both ends and a hollow 14 of the middle portion.
  • the support 12 is a part rotatably supported by a bearing (not shown) installed in the housing of the rotating apparatus.
  • the support 12 is cylindrical in this embodiment. Of course, the support 12 may be cylindrical.
  • the support 12 may have a circular outer surface of at least a portion supported by the bearing.
  • Flange 16 is formed at each end of the support 12, respectively.
  • the flange 16 is made in the shape of a disc.
  • the flange 16 is formed through a plurality of inlet holes (18).
  • the inlet hole 18 is a portion for allowing outside air to flow into the inner space 20 to be described below.
  • the inlet hole 18 is formed in a plurality of the flange 16, the trajectory is formed to form a circle.
  • the inflow hole 18 itself and its formation trajectory may have various shapes according to design conditions.
  • the flange 16 is fastened by bolts (not shown) for connecting the support portions 12 on both sides.
  • the flange 16 is provided with a through hole (not shown), which may be on the same trajectory as the inlet 18 or on another trajectory.
  • the through hole is not shown in the drawings for convenience.
  • the connection structure of the support part 12 and the hollow part 14 may be variously designed. However, the bolt passing through the through hole should be designed so as not to prevent air from flowing into the discharge hole 22 formed in the hollow portion 14.
  • An inner space 20 is formed inside the hollow part 14.
  • the inner space 20 is open to both ends of the hollow part 14, and the open part is shielded from the outside by the flange 16.
  • Steps 21 are formed on inner surfaces of both inlets of the inner space 20, respectively.
  • the stepped portion 21 is a portion on which the flange 16 is seated.
  • the inner diameter of the inner side of the inner space 20 is formed to be smaller than the outer diameter of the outer side based on the stepped portion 21, so that the flange 16 is further inside the inner space 20 based on the stepped portion 21. Do not enter
  • the hollow part 14 serves as a rim core, and an outer surface thereof is equipped with a silent pole 24 to be described below.
  • a plurality of discharge holes 22 are formed through the hollow part 14 to open to the outer surface of the hollow part 14.
  • the inner space 20 communicates with the outside by the discharge hole 22.
  • the discharge hole 22 is concentrated in the longitudinal central region of the hollow part 14. This is for effectively dissipating heat in the middle portion of the silent pole 24.
  • the discharge hole 22 is formed to open to the outer surface of the hollow portion 14 is not equipped with the silent pole 24 to be described below.
  • a plurality of discharge holes 22 are formed at both ends of the discharge hole 22 starting from a region corresponding to the middle portion in the longitudinal direction of the hollow portion 14 on the outer surface of the hollow portion 14.
  • Air entering the internal space 20 through the inlet hole 18 is discharged through the discharge hole 22 and is discharged to the outside by receiving the heat of the hollow portion 14 and the silent pole 24.
  • the discharge hole 22 is formed to be opened to an area without the silent pole 24 in the outer surface of the hollow part 14, and a plurality of the discharge holes 22 are formed in a row or in a predetermined area. do.
  • a silent pole 24 is mounted on the outer surface of the hollow part 14, ie, the rim core.
  • the silent pole 24 is formed by winding a coil around a stacked core.
  • the plurality of silent poles 24 are mounted to the hollow portion 14 at predetermined intervals.
  • the seal pole 24 may be mounted on the outer surface of the hollow part 14 using a dovetail structure or a bolt.
  • a plurality of cooling fans 26 are provided along both end edges of the hollow part 14.
  • the cooling fan 26 guides the air naturally according to the rotation of the rotor to allow the cooling air to flow to the outer surface of the silent pole 24 and the hollow part 14.
  • the installation position or the number of installation of the cooling fan 26 depends on the design conditions of the rotor.
  • the rotation center of the rotor of the present embodiment is the rotation shaft 110.
  • Both ends of the rotating shaft 110 are support parts 112 supported by a bearing (not shown).
  • the support part 112 is a part rotatably supported by a bearing installed in the housing of the rotating apparatus.
  • the hollow portion 114 is made of a cylindrical shape, and serves as a rim core.
  • An inner space 116 is formed inside the hollow part 114.
  • the rotating shaft 110 penetrates the center of the inner space 116, and the shaft spider 113 connects the inner surface of the inner space 116 and the rotating shaft 110. Both ends of the inner space 116 is open to communicate with the outside.
  • a plurality of discharge holes 118 are formed through the hollow part 114 to open to the outer surface of the hollow part 114.
  • the inner space 116 communicates with the outside by the discharge hole 118.
  • the discharge hole 118 is concentrated in the central region in the longitudinal direction of the hollow part 114. This is for effectively dissipating heat in the middle portion of the silent pole 124 which will be described below.
  • the discharge hole 118 is formed to open to the outer surface of the hollow portion 114 is not equipped with the silent pole 124 to be described below.
  • a plurality of discharge holes 118 are formed at both ends of the discharge hole 118 starting from a region corresponding to the middle portion in the longitudinal direction of the hollow portion 114 on the outer surface of the hollow portion 114.
  • the hollow part 114 may be formed by stacking a plurality of plates, in which case, a gap may be provided between the plates to replace the discharge hole 118.
  • Air entering the inner space 116 through both ends of the inner space 116 is discharged through the discharge hole 118 and is discharged to the outside by receiving the heat of the hollow portion 114 itself and the silent pole 120 Done.
  • the discharge hole 118 is formed to be opened to an area without the silent pole 120 on the outer surface of the hollow part 114, and a plurality of the heat holes 118 are formed in a predetermined area. do.
  • the hollow pole 114 that is, the silent pole 120 is mounted on the outer surface of the rim core.
  • the silent pole 120 is formed by winding a coil around a stacked core.
  • the plurality of silent poles 120 are mounted to the hollow part 114 at predetermined intervals.
  • the seal pole 120 may be mounted on an outer surface of the hollow part 114 using a dovetail structure or a bolt.
  • a plurality of cooling fans 122 are provided along both end edges of the hollow part 114.
  • the cooling fan 122 naturally guides air according to the rotation of the rotor to allow cooling air to flow to the outer surfaces of the silent pole 120 and the hollow part 114.
  • the installation position or the number of installation of the cooling fan 122 depends on the design conditions of the rotor.
  • the rotation shaft 10 is in close contact with the stepped portions 21 of the inlet 21 on both sides of the inner space 20 of the hollow part 14 of the flange 16 of the support part 12. It is made by joining each other in a seated state. Since the internal shaft 20 is formed in the hollow portion 14, the rotation shaft 10 is removed by the volume of the internal space 20 so that the weight is relatively smaller than the rotor of the same size. do.
  • the assembly of the rotor is completed.
  • the rotor thus made is located in a space formed inside the stator in a rotating device such as a generator or an electric motor.
  • the support parts 12 on both sides are rotatably supported by a bearing installed in the housing of the rotating device.
  • the rotor installed in the rotating device rotates by electromagnetic interaction with the stator. That is, the rotor is rotated by the electromagnetic interaction between the coil in the silent pole 24 and the coil installed in the stator. When rotation occurs by such electromagnetic interaction, heat is generated in the coils. If the heat is not released to the outside smoothly or the rotational performance of the rotor is damaged.
  • the air around the silent pole 24 forms an air flow in the centrifugal direction, and the airflow formed by the cooling fan 26 is mostly the silent pole 24. It is not delivered to the central part of and moves to the stator.
  • the air pressure is lowered in the central portion of the silent pole 24 and the hollow portion 14, the air in the inner space 20 is discharged through the discharge hole 22 opened to the outer surface of the hollow portion 14. It is discharged to the outside of the hollow portion 14.
  • the air flow in the inner space 20 is discharged to the discharge hole 22. They meet each other in the vicinity, and are discharged to the outside through the discharge hole 22.
  • the air discharged through the discharge hole 22 discharges heat in a region corresponding to the middle portion of the rotor in the longitudinal direction. Therefore, the airflow formed in the intermediate portions at both ends of the silent pole 24 by the cooling fan 26 does not reach the middle of the silent pole 24, but flows in the centrifugal direction of the rotor and the silent pole 24. And the heat of the middle portion of the hollow portion 14 can be compensated for the overheating of the middle portion.
  • the discharge hole 22 of the hollow portion 14 intensively transfers air to the longitudinal central region of the hollow portion 14 and to the longitudinal middle portion of the silent pole 24. It is to be able to release heat intensively. Therefore, the heat generated from the rotor can be smoothly discharged to the outside as a whole.
  • the heat dissipation in the embodiment illustrated in FIG. 5 to FIG. 7 is similar to that of the embodiment described above, and thus will be briefly described. That is, when the rotation shaft 110 rotates, the air pressure in the internal space 116 of the hollow portion 114 is lowered, so that air in the internal space 116 is discharged through the discharge hole 118. It is delivered to the outside as shown in FIG. Of course, the air flow formed by the cooling fan 122 is also formed along the outer surface of the hollow part 114 to cool the silent pole 120.
  • the air discharged from the internal space 116 through the discharge hole 118 is able to intensively discharge the heat of the middle portion of the silent pole 120 and the hollow portion 114 to the outside.
  • the flange 16 of the support 12 is configured to be fastened to the hollow portion 14 by a bolt, but is not necessarily so.
  • the flange 16 of the support 12 may be directly coupled to the hollow portion 14 or integrally formed without using bolts. That is, the support shaft 12 and the hollow portion 14 may be made integrally by making the rotary shaft 10 using a 3D printer.
  • air may be introduced into the internal space 20 through the gap between the flange 16 and the hollow part. Can be. In this case, these gaps become a kind of the inlet hole 18.
  • the shape of the inlet 18 and the outlet 22 is circular, but is not limited thereto.
  • the inlet hole 18 and the outlet hole 22 may have a variety of shapes such as oval, polygon, as well as circular.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

본 발명은 회전자에 관한 것이다. 본 발명의 회전자는 중공부(14)의 양단에 지지부(12)가 있는 회전축(10)과 상기 중공부(14)의 외면에 소정의 간격을 두고 다수개가 설치되는 세일런트폴(24)을 포함하고, 상기 중공부(14)의 양단 가장자리를 따라 다수개가 배치되어 상기 세일런트폴(24)로 유동되는 기류를 형성하는 냉각팬(26)도 있다. 상기 중공부(14)의 내부에는 내부공간(20)이 형성되고, 상기 내부공간(20)과 외부를 연통시키도록 상기 중공부(14)의 외면으로 개방되게 토출공(22)이 형성된다. 상기 토출공(22)은 상기 중공부(14)의 길이방향 중간에서부터 양단부를 향해 연장되는 영역에 형성된다. 상기 지지부(12)의 단부에는 플랜지(16)가 형성되고 상기 플랜지(16)에는 유입공(18)이 형성되어 회전에 의해 발생되는 기압차이로 상기 내부공간(20)으로 유입되게 한다. 이와 같은 본 발명에 의하면 회전자의 중량을 줄일 수 있고, 회전자에서 발생하는 열을 외부로 원활하게 배출할 수 있어, 회전자의 성능 및 수명을 향상시키는 이점이 있다.

Description

회전자
본 발명은 회전자에 관한 것으로, 더욱 상세하게는 발전기나 전동기에서 고정자에 대해서 상대적으로 회전하는 회전자에 관한 것이다.
회전자와 고정자의 전자기적 상호작용에 의해 회전자가 회전하여 원하는 기능을 수행하는 것에는 발전기, 전동기 등이 있다. 상기 회전자는 상기 고정자에 대해서 상대 회전을 해야 하므로 그 중량이 어느 정도 가벼울 수록 좋다.
그리고, 상기 회전자가 상기 고정자에 대해서 전자기적 상호작용에 의해 장시간 회전해야 하므로, 회전자와 고정자에서 발생하는 열을 외부로 원활하게 방출하도록 하는 것이 필요하다.
하지만, 상기 회전자가 설치되는 회전축의 길이가 수미터에 이르는 긴 대형 수차발전기 등에서는 상기 회전축의 길이방향 중간부분에 대한 방열이 제대로 이루어지지 않게 되는 문제점이 있다.
또한, 회전축의 길이방향 중간부분에 대응되는 회전자의 코일 부분에 대해서도 방열이 제대로 이루어지지 않게 되어 회전자나 고정자의 동작성능이 떨어지거나 열에 의해 소손되는 문제점이 있다. 이는 회전축의 길이방향 중간부분이 가장 외부 공기가 공급되기 어려운 지점이기 때문이다.
그리고, 종래의 회전자들에서 대형 수차발전기 등에서 사용되는 것은 그 중량이 많이 나가므로 경량화를 통해 회전에 방해되는 요소를 제거하고, 회전자의 제작 후에 이동 등이 어렵지 않도록 하는 것이 필요하다.
본 발명의 목적은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 대형 발전기나 전동기에서 사용되는 회전자의 중량을 줄여주는 것이다.
본 발명의 다른 목적은 대형 발전기나 전동기에서 사용되는 회전자에서 회전자의 길이방향 중앙 부분의 열방출이 원활하게 이루어지도록 하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 내부공간이 형성된 중공부의 양단에 지지부가 위치하여 구성되며 외부의 공기가 상기 중공부의 내부공간으로 유입되는 유입공이 상기 중공부에 형성되는 회전축과, 상기 중공부의 외면에 소정의 간격을 두고 설치되는 세일런트폴을 포함하고, 상기 중공부의 외면중 상기 세일런트폴 사이의 부분으로 토출공이 개방되게 형성되어 상기 중공부의 내부공간으로 들어간 공기가 상기 토출공을 통해 외부로 토출되면서 중공부와 상기 세일런트폴의 열을 방출한다.
상기 토출공은 상기 중공부의 외면에서 상기 중공부의 길이방향의 중간부에 해당되는 영역에서 시작해서 양단부쪽으로 다수개가 형성된다.
상기 중공부의 내부에 형성되는 내부공간은 상기 중공부의 양단으로 개방되고 상기 지지부의 단부에 구비되는 플랜지가 상기 중공부와 조립이 되고 상기 플랜지에는 상기 내부공간으로 냉각공기가 들어갈 수 있는 유입공이 형성된다.
상기 유입공은 상기 플랜지를 둘러 다수 개가 원형의 궤적을 형성하도록 형성된다.
상기 중공부 양단에 설치되는 상기 지지부의 단부에 구비되는 플랜지부 사이를 연결하는 체결구가 관통하는 관통공이 상기 플랜지에 형성된다.
상기 관통공은 상기 세일런트폴이 설치된 위치와 대응되는 상기 플랜지 상의 위치에 형성된다.
본 발명의 다른 특징에 따르면, 본 발명은 회전축과, 상기 회전축이 중앙을 관통하고 양측으로 개방된 내부공간이 형성된 중공부와, 상기 회전축에 상기 중공부를 지지하는 축스파이더와, 상기 중공부의 외면에 소정의 간격을 두고 설치되는 세일런트폴을 포함하고, 상기 중공부의 외면중 상기 세일런트폴 사이의 부분으로 상기 내부공간의 공기가 외부로 토출되면서 중공부와 상기 세일런트폴의 열을 방출한다.
상기 중공부에서 상기 내부공간의 공기가 토출되는 부분은 상기 중공부에 형성된 토출공으로서, 상기 토출공은 상기 중공부의 외면에서 상기 중공부의 길이방향의 중간부에 해당되는 영역에서 시작해서 양단부쪽으로 다수개가 형성된다.
상기 중공부는 다수개의 판이 적층되어 형성되는데, 상기 판의 사이에 틈새가 형성되어 상기 내부공간의 공기가 상기 중공부의 외면으로 토출된다.
상기 토출공과 틈새는 상기 중공부의 외면에서 상기 세일런트폴이 장착된 영역 사이에 위치한다.
본 발명에 의한 회전자에서는 다음과 같은 효과를 얻을 수 있다.
먼저, 본 발명에서는 회전축의 길이방향 중간부분에 중공부를 두고, 상기 중공부 내부로 공기를 유입시켜 회전자의 원심방향으로 배출하면서 림코어와 세일런트폴의 중간부분의 열을 방출하도록 하였으므로, 회전자에서의 열방출이 보다 원활하게 이루어지며 냉각공기의 접근이 어려운 회전자중심에 냉각공기를 원활하게 공급함으로써 국부적인 열화를 방지하는 효과와 기기수명 및 성능이 향상되는 효과가 있다.
그리고, 본 발명에서는 회전축의 길이방향 중간부분에 중공부를 두었으므로, 전체적으로 회전자의 중량이 줄어들게 된다. 특히, 회전축이 양단의 중실부와 중간의 중공부로 구성되면서 상기 중공부에서 중량을 줄일 수 있어 회전자의 성능에는 영향이 없으면서 회전자의 중량을 줄일 수 있어 회전자의 회전에 의해 소모되는 에너지가 최소화되면서 이송 등의 취급에 필요한 수고가 최소화되는 효과를 얻을 수 있다.
도 1은 본 발명에 의한 회전자의 바람직한 실시례의 구성을 보인 개략단면도.
도 2는 본 발명 실시례의 구성을 보인 회전축의 일단부 측에서 보인 정면도.
도 3은 본 발명 실시례의 요부 구성을 보인 분해사시도.
도 4는 본 발명 실시례의 회전자에서 공기가 유동되는 것을 보인 동작상태도.
도 5는 본 발명의 다른 실시례의 구성을 보인 종단면도.
도 6은 도 5에 도시된 실시례의 구성을 보인 횡단면도.
도 7은 도 5에 도시된 실시례에서 공기가 유동되는 것을 보인 동작상태도.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도면들에 도시된 바에 따르면, 본 발명 실시례의 회전자는 발전기나 전동기 등의 회전장치에서 사용되는 것으로, 특히 대형의 발전기나 전동기에서 사용된다. 회전자의 회전중심은 회전축(10)이 된다. 상기 회전축(10)은 본 발명에서는 수 미터에 이르는 길이를 가지는 것이다. 상기 회전축(10)은 양단의 지지부(12)와 중간부분의 중공부(14)로 이루어진다. 상기 지지부(12)는 회전장치의 하우징에 설치된 베어링(도시되지 않음)에 회전가능하게 지지되는 부분이다. 상기 지지부(12)는 본 실시례에서는 원기둥형상이다. 물론, 상기 지지부(12)는 원통형상으로 될 수도 있다. 상기 지지부(12)는 적어도 상기 베어링에 지지되는 부분의 외면이 원형으로 되면 된다.
상기 지지부(12)의 일측 단부에는 각각 플랜지(16)가 형성된다. 상기 플랜지(16)는 원판형상으로 만들어지는 것이다. 상기 플랜지(16)에는 다수개의 유입공(18)이 관통하여 형성된다. 상기 유입공(18)은 아래에서 설명될 내부공간(20)으로 외부의 공기가 유입되도록 하는 부분이다. 상기 유입공(18)은 상기 플랜지(16)에 다수개가 형성되는데, 그 궤적이 원형을 이루도록 형성된다. 상기 유입공(18)자체와 그 형성 궤적은 설계조건에 따라 다양한 형상을 가질 수 있다.
한편, 상기 플랜지(16)는 양측의 지지부(12)를 서로 연결하기 위한 볼트(도시되지 않음)에 의해 체결된다. 이를 위해 상기 플랜지(16)에는 관통공(도시되지 않음)이 형성되는데, 상기 관통공은 상기 유입공(18)과 같은 궤적에 있거나 다른 궤적 상에 있을 수 있다. 상기 관통공은 편의상 도면에 도시하지는 않았다. 상기 지지부(12)와 상기 중공부(14)의 연결구조는 다양하게 설계될 수 있다. 하지만, 상기 관통공을 관통하는 볼트가 중공부(14)에 형성된 토출공(22)으로 공기가 유동되는 것을 방해하지 않도록 설계되어야 한다.
상기 중공부(14)의 내부에는 내부공간(20)이 형성된다. 상기 내부공간(20)은 상기 중공부(14)의 양단으로 개방되어 있는데, 상기 개방된 부분은 상기 플랜지(16)에 의해 외부와 차폐된다. 상기 내부공간(20)의 양측 입구 내면에는 각각 단턱(21)이 형성된다. 상기 단턱(21)은 상기 플랜지(16)가 안착되는 부분이다. 상기 단턱(21)을 기준으로 내부공간(20)의 내부쪽의 내경이 외부쪽의 내경보다 작게 형성되어, 상기 플랜지(16)가 상기 단턱(21)을 기준으로 더 내부공간(20)의 내측으로 들어가지 못하도록 한다.
상기 중공부(14)는 림코어(Rim core)의 역할을 하는 것으로, 그 외면에는 아래에서 설명될 세일런트폴(24)이 장착된다. 상기 중공부(14)의 외면으로 개방되게 중공부(14)를 관통하여서는 다수개의 토출공(22)이 형성된다. 상기 토출공(22)에 의해 상기 내부공간(20)이 외부와 연통된다. 상기 토출공(22)은 상기 중공부(14)의 길이방향 중앙영역에 집중적으로 형성된다. 이는 상기 세일런트폴(24) 중간부분의 열을 효과적으로 방출하기 위함이다. 특히, 아래에서 설명될 세일런트폴(24)이 장착되지 않은 상기 중공부(14)의 외면으로 개방되게 토출공(22)이 형성된다. 상기 토출공(22)은 상기 중공부(14)의 외면에서 상기 중공부(14)의 길이방향의 중간부에 해당되는 영역에서 시작해서 양단부쪽으로 다수개가 형성된다.
상기 유입공(18)을 통해 상기 내부공간(20)으로 들어간 공기가 상기 토출공(22)을 통해 토출되면서 중공부(14) 자체와 세일런트폴(24)의 열을 받아 외부로 배출하게 된다. 상기 토출공(22)은 도 3에서 볼 수 있는 바와 같이 상기 중공부(14)의 외면중 세일런트폴(24)이 없는 영역으로 개방되게 형성되고, 다수개가 열을 짓거나 소정의 영역에 형성된다.
상기 중공부(14), 즉 림코어의 외면에는 세일런트폴(24)이 장착된다. 상기 세일런트폴(24)은 적층된 코어에 코일이 감겨져 형성되는 것이다. 상기 세일런트폴(24)은 다수개가 소정의 간격을 두고 상기 중공부(14)에 장착된다. 상기 세일런트폴(24)이 상기 중공부(14)의 외면에 장착되는 것은 도브테일 구조나 볼트를 이용할 수 있다.
상기 중공부(14)의 양측 단부 가장자리를 따라서는 다수개의 냉각팬(26)이 구비된다. 상기 냉각팬(26)은 회전자의 회전에 따라 자연스럽게 공기를 안내하여 상기 세일런트폴(24)과 상기 중공부(14)의 외면으로 냉각공기를 유동되게 하는 것이다. 상기 냉각팬(26)의 설치 위치나 설치 갯수는 회전자의 설계조건에 따라 달라진다.
도 5에서 도 7에 도시된 바에 따르면, 본 실시례의 회전자의 회전중심은 회전축(110)이 된다. 상기 회전축(110)의 양단은 베어링(도시되지 않음)에 의해 지지되는 지지부(112)이다. 상기 지지부(112)는 회전장치의 하우징에 설치된 베어링에 회전가능하게 지지되는 부분이다.
상기 회전축(110)의 외면을 둘러서는 다수개의 축스파이더(113)가 있고, 상기 축스파이더(113)에 의해 상기 회전축(110)의 길이방향 중간부에서 양단부로 소정의 영역에 걸쳐 중공부(114)가 설치된다. 상기 중공부(114)는 원통형상으로 만들어지는 것으로, 림코어(Rim core)의 역할을 한다. 상기 중공부(114)의 내부에는 내부공간(116)이 형성된다. 상기 내부공간(116)의 중앙을 상기 회전축(110)이 관통하고, 상기 내부공간(116)의 내면과 상기 회전축(110)의 사이를 상기 축스파이더(113)이 연결하고 있다. 상기 내부공간(116)의 양단은 개구되어 있어 외부와 연통된다.
상기 중공부(114)의 외면으로 개방되게 중공부(114)를 관통하여서는 다수개의 토출공(118)이 형성된다. 상기 토출공(118)에 의해 상기 내부공간(116)이 외부와 연통된다. 상기 토출공(118)은 상기 중공부(114)의 길이방향 중앙영역에 집중적으로 형성된다. 이는 아래에서 설명될 세일런트폴(124) 중간부분의 열을 효과적으로 방출하기 위함이다. 특히, 아래에서 설명될 세일런트폴(124)이 장착되지 않은 상기 중공부(114)의 외면으로 개방되게 토출공(118)이 형성된다. 상기 토출공(118)은 상기 중공부(114)의 외면에서 상기 중공부(114)의 길이방향의 중간부에 해당되는 영역에서 시작해서 양단부쪽으로 다수개가 형성된다. 참고로, 상기 중공부(114)는 다수개의 판재를 적층하여 형성할 수 있는데, 이 경우에는 상기 판재 사이에 틈새를 두어 토출공(118)을 대신할 수도 있다.
상기 내부공간(116)의 양단을 통해 상기 내부공간(116)으로 들어간 공기가 상기 토출공(118)을 통해 토출되면서 중공부(114) 자체와 세일런트폴(120)의 열을 받아 외부로 배출하게 된다. 상기 토출공(118)은 도 6에서 볼 수 있는 바와 같이 상기 중공부(114)의 외면중 세일런트폴(120)이 없는 영역으로 개방되게 형성되고, 다수개가 열을 짓거나 소정의 영역에 형성된다.
상기 중공부(114), 즉 림코어의 외면에는 세일런트폴(120)이 장착된다. 상기 세일런트폴(120)은 적층된 코어에 코일이 감겨져 형성되는 것이다. 상기 세일런트폴(120)은 다수개가 소정의 간격을 두고 상기 중공부(114)에 장착된다. 상기 세일런트폴(120)이 상기 중공부(114)의 외면에 장착되는 것은 도브테일 구조나 볼트를 이용할 수 있다.
상기 중공부(114)의 양측 단부 가장자리를 따라서는 다수개의 냉각팬(122)이 구비된다. 상기 냉각팬(122)은 회전자의 회전에 따라 자연스럽게 공기를 안내하여 상기 세일런트폴(120)과 상기 중공부(114)의 외면으로 냉각공기를 유동되게 하는 것이다. 상기 냉각팬(122)의 설치 위치나 설치 갯수는 회전자의 설계조건에 따라 달라진다.
이하 상기한 바와 같은 구성을 가지는 본 발명에 의한 회전자가 사용되는 것을 상세하게 설명한다.
먼저, 도 1에 도시된 실시례에서, 상기 회전축(10)은 상기 지지부(12)의 플랜지(16)가 상기 중공부(14)의 내부공간(20) 양측 입구의 단턱(21)에 밀착되게 안착된 상태에서 서로 결합됨에 의해 만들어진다. 이와 같은 회전축(10)은 상기 중공부(14)에 내부공간(20)이 형성됨에 의해, 상기 내부공간(20)의 체적만큼의 중량이 제거되어 같은 크기의 회전자 비해 상대적으로 중량이 작아지게 된다.
상기 중공부(14)의 외면에 다수개의 세일런트폴(24)을 도 2에 도시된 바와 같이, 소정의 간격을 두고 장착하면, 회전자의 조립이 완성된다. 이와 같이 만들어진 회전자는 발전기나 전동기 등의 회전장치에서 고정자의 내부에 형성된 공간에 위치된다. 이때, 상기 양측의 지지부(12)가 상기 회전장치의 하우징에 설치된 베어링에 회전가능하게 지지되도록 한다.
*회전장치에 설치된 회전자는 고정자와의 전자기적 상호작용에 의해 회전하게 된다. 즉, 상기 세일런트폴(24)에 있는 코일과 상기 고정자에 설치된 코일의 전자기적 상호작용에 의해 상기 회전자가 회전하게 된다. 이와 같이 전자기적 상호작용에 의해 회전이 일어날 때, 상기 코일들에서 열이 발생한다. 상기 열이 외부로 원활하게 방출되지 않으면 회전자의 회전성능이 떨어지거나 손상되게 된다.
회전자와 고정자에서 발생하는 열을 배출하는 것을 도 4를 참고하여 설명한다. 상기 회전축(10)이 회전하게 되면, 상기 냉각팬(26)도 일체로 움직이는데, 상기 냉각팬(26)의 움직임은 기류를 형성한다. 상기 기류는 상기 세일런트폴(24)과 상기 중공부(14)의 외면으로 직접 전달된다. 상기 냉각팬(26)은 상기 중공부(14)의 양단 가장자리를 따라 다수개가 설치되어서 상기 중공부(14)의 길이방향 양단에서 중간부를 향해 공기를 유동시킨다. 이와 같이 형성된 기류는 상기 세일런트폴(24)과 상기 중공부(14) 외면과 접촉하면서 열을 흡수하게 된다.
하지만, 상기 회전축(10)이 회전하게 되면 상기 세일런트폴(24) 주변의 공기는 원심방향으로 기류를 형성하게 되어, 상기 냉각팬(26)에 의해 형성된 기류는 대부분 상기 세일런트폴(24)의 중심부분까지 전달되지 않고 고정자로 이동하게 된다. 한편, 상기 세일런트폴(24) 및 상기 중공부(14) 중심부분은 기압이 낮아지게 되므로 상기 중공부(14)의 외면으로 개방된 토출공(22)을 통해서 내부공간(20)의 공기가 상기 중공부(14)의 외부로 배출된다.
상기 내부공간(20)으로는 양단의 지지부(12)의 플랜지(16)에 형성된 유입공(18)을 통해 공기가 유입되므로, 상기 내부공간(20)에서의 공기 흐름은 상기 토출공(22) 부근에서 서로 만나게 되고, 상기 토출공(22)을 통해 외부로 토출된다.
상기 토출공(22)을 통해 토출된 공기는 회전자의 길이방향 중간부에 해당되는 영역의 열을 배출하는 역할을 한다. 따라서 상기 냉각팬(26)에 의해 상기 세일런트폴(24)의 양단에서 중간부로 형성되는 기류가 세일런트폴(24)의 중간까지 미치지 못하고 회전자의 원심방향으로 유동되어 세일런트폴(24)과 중공부(14)의 중간부분의 열을 방출하지 못하는 것과 이로 인해 중간부분이 과열되는 것을 보완할 수 있다.
다시 말해, 상기 중공부(14)의 토출공(22)은 상기 중공부(14)의 길이방향 중앙영역, 상기 세일런트폴(24)의 길이방향 중간부분으로 집중적으로 공기를 전달하여 해당 부분의 열을 집중적으로 방출할 수 있도록 하는 것이다. 따라서, 회전자에서 발생하는 열을 전체적으로 원활하게 외부로 배출할 수 있게 된다.
그리고, 이와 같이 상기 회전자에서 원심방향으로 형성되는 기류들이 상기 토출공(22)에 의해 회전자의 길이방향 전체 영역에 대해 일정하게 됨에 의해 고정자 쪽으로 전달되는 기류가 도 4에서 볼 수 있는 바와 같이 균일하게 되어 고정자에서 발생하는 열도 원활하게 배출할 수 있게 된다.
한편, 도 5에서 도 7에 도시된 실시례에서 열을 배출하는 것은 위에서 설명된 실시례의 경우와 유사하므로 간단하게 설명한다. 즉, 상기 회전축(110)이 회전하면 상기 중공부(114)의 내부공간(116)의 기압이 낮아지게 되므로 상기 토출공(118)을 통해 내부공간(116)의 공기가 중공부(114)의 외부로 도 7에 도시된 바와 같이 전달된다. 물론 상기 냉각팬(122)에 의해 형성된 기류도 상기 중공부(114)의 외면을 따라 형성되어 상기 세일런트폴(120)을 냉각시키게 된다.
여기서, 상기 토출공(118)을 통해 내부공간(116)에서 토출된 공기는 상기 세일런트폴(120)과 중공부(114)의 중간부분의 열을 집중적으로 외부로 배출할 수 있게 된다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
참고로 설명된 실시례에서는 상기 지지부(12)의 플랜지(16)가 중공부(14)에 볼트에 의해 체결되게 구성되어 있으나, 반드시 그러한 것은 아니다. 예를 들면 볼트를 사용하지 않고 지지부(12)의 플랜지(16)가 중공부(14)에 직접 결합되거나 일체로 형성될 수도 있다. 즉, 상기 회전축(10)을 3D프린터를 사용하여 만들어서 지지부(12)와 중공부(14)가 일체로 만들어지도록 할 수도 있다.
그리고, 도시된 실시례에서와 같이 지지부(12)와 중공부(14)가 별도로 만들어져 결합되는 경우에는 상기 플랜지(16)와 중공부 사이의 틈새 등을 통해서도 내부공간(20)으로 공기가 유입될 수 있다. 이런 경우 이들 틈새가 일종의 상기 유입공(18)으로 되는 것이다.
도시된 실시례에서는 상기 유입공(18)과 상기 토출공(22)의 형상이 원형으로 되어 있으나, 이에 한정되는 것은 아니다. 상기 유입공(18)과 토출공(22)의 형상은 원형뿐아니라 타원형, 다각형 등 다양하게 될 수 있다.

Claims (10)

  1. 내부공간이 형성된 중공부의 양단에 지지부가 위치하여 구성되며 외부의 공기가 상기 중공부의 내부공간으로 유입되는 유입공이 상기 중공부에 형성되는 회전축과,
    상기 중공부의 외면에 소정의 간격을 두고 설치되는 세일런트폴을 포함하고,
    상기 중공부의 외면중 상기 세일런트폴 사이의 부분으로 토출공이 개방되게 형성되어 상기 중공부의 내부공간으로 들어간 공기가 상기 토출공을 통해 외부로 토출되면서 중공부와 상기 세일런트폴의 열을 방출하는 회전자.
  2. 제 1 항에 있어서, 상기 토출공은 상기 중공부의 외면에서 상기 중공부의 길이방향의 중간부에 해당되는 영역에서 시작해서 양단부쪽으로 다수개가 형성되는 회전자.
  3. 제 2 항에 있어서, 상기 중공부의 내부에 형성되는 내부공간은 상기 중공부의 양단으로 개방되고 상기 지지부의 단부에 구비되는 플랜지가 상기 중공부와 조립이 되고 상기 플랜지에는 상기 내부공간으로 냉각공기가 들어갈 수 있는 유입공이 형성되는 회전자.
  4. 제 3 항에 있어서, 상기 유입공은 상기 플랜지를 둘러 다수 개가 원형의 궤적을 형성하도록 형성되는 회전자.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 중공부 양단에 설치되는 상기 지지부의 단부에 구비되는 플랜지부 사이를 연결하는 체결구가 관통하는 관통공이 상기 플랜지에 형성되는 회전자.
  6. 제 5 항에 있어서, 상기 관통공은 상기 세일런트폴이 설치된 위치와 대응되는 상기 플랜지 상의 위치에 형성되는 회전자.
  7. 회전축과,
    상기 회전축이 중앙을 관통하고 양측으로 개방된 내부공간이 형성된 중공부와,
    상기 회전축에 상기 중공부를 지지하는 축스파이더와,
    상기 중공부의 외면에 소정의 간격을 두고 설치되는 세일런트폴을 포함하고,
    상기 중공부의 외면중 상기 세일런트폴 사이의 부분으로 상기 내부공간의 공기가 외부로 토출되면서 중공부와 상기 세일런트폴의 열을 방출하는 회전자.
  8. 제 7 항에 있어서, 상기 중공부에서 상기 내부공간의 공기가 토출되는 부분은 상기 중공부에 형성된 토출공으로서, 상기 토출공은 상기 중공부의 외면에서 상기 중공부의 길이방향의 중간부에 해당되는 영역에서 시작해서 양단부쪽으로 다수개가 형성되는 회전자.
  9. 제 7 항에 있어서, 상기 중공부는 다수개의 판이 적층되어 형성되는데, 상기 판의 사이에 틈새가 형성되어 상기 내부공간의 공기가 상기 중공부의 외면으로 토출되는 회전자.
  10. 제 7 항 내지 제 9 항 중 어느 한 항에 있어서, 상기 토출공과 틈새는 상기 중공부의 외면에서 상기 세일런트폴이 장착된 영역 사이에 위치하는 회전자.
PCT/KR2015/014160 2014-12-24 2015-12-23 회전자 WO2016105113A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2972225A CA2972225A1 (en) 2014-12-24 2015-12-23 Rotor
JP2017552772A JP2018501773A (ja) 2014-12-24 2015-12-23 回転子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140189101A KR101711457B1 (ko) 2014-12-24 2014-12-24 발전기 또는 전동기용 회전자
KR10-2014-0189101 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016105113A1 true WO2016105113A1 (ko) 2016-06-30

Family

ID=56151048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014160 WO2016105113A1 (ko) 2014-12-24 2015-12-23 회전자

Country Status (4)

Country Link
JP (1) JP2018501773A (ko)
KR (1) KR101711457B1 (ko)
CA (1) CA2972225A1 (ko)
WO (1) WO2016105113A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016225180A1 (de) 2016-12-15 2018-06-21 Continental Automotive Gmbh Elektrische Maschine
CN108880106A (zh) * 2018-07-30 2018-11-23 山东冬瑞高新技术开发有限公司 一种具有空气冷却装置的电机
JP7011616B2 (ja) * 2019-02-26 2022-01-26 東芝三菱電機産業システム株式会社 同期回転電機
ES2886337T3 (es) 2019-04-03 2021-12-17 Bohumil Mrazek Rotor de motor sin escobillas
CN115694010A (zh) * 2021-07-28 2023-02-03 福伊特专利有限公司 用于电机的转子
DE102021129618A1 (de) 2021-11-12 2023-05-17 MTU Aero Engines AG Rotorwelle für einen Elektromotor, Anordnung für eine Rotorwelle und Verfahren zur Fertigung einer Anordnung für eine Rotorwelle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051503A (ja) * 2000-08-02 2002-02-15 Toshiba Corp 永久磁石式リラクタンス型回転電機
US20030030333A1 (en) * 2001-08-08 2003-02-13 Johnsen Tyrone A. Cooling of a rotor for a rotary electric machine
US6982506B1 (en) * 2004-08-31 2006-01-03 Hamilton Sundstrand Corporation Cooling of high speed electromagnetic rotor with fixed terminals
US20100320850A1 (en) * 2009-06-17 2010-12-23 Lemmers Jr Glenn C Oil cooled generator
JP5629828B2 (ja) * 2011-06-30 2014-11-26 株式会社日立製作所 回転電機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156232A (ja) * 1984-01-25 1985-08-16 Toshiba Corp 突極形回転子
JPS60124267U (ja) * 1984-01-30 1985-08-21 三菱電機株式会社 突極形回転子
IT212393Z2 (it) * 1987-09-09 1989-07-04 Magneti Marelli Spa Rotore per un alternatore partico larmente per autoveicoli
JP5522442B2 (ja) * 2009-10-30 2014-06-18 アイシン・エィ・ダブリュ株式会社 回転電機用ロータ
JP5738007B2 (ja) 2011-03-02 2015-06-17 株式会社小松製作所 電動機の冷却構造及び電動機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051503A (ja) * 2000-08-02 2002-02-15 Toshiba Corp 永久磁石式リラクタンス型回転電機
US20030030333A1 (en) * 2001-08-08 2003-02-13 Johnsen Tyrone A. Cooling of a rotor for a rotary electric machine
US6982506B1 (en) * 2004-08-31 2006-01-03 Hamilton Sundstrand Corporation Cooling of high speed electromagnetic rotor with fixed terminals
US20100320850A1 (en) * 2009-06-17 2010-12-23 Lemmers Jr Glenn C Oil cooled generator
JP5629828B2 (ja) * 2011-06-30 2014-11-26 株式会社日立製作所 回転電機

Also Published As

Publication number Publication date
JP2018501773A (ja) 2018-01-18
KR101711457B1 (ko) 2017-03-13
KR20160078184A (ko) 2016-07-04
CA2972225A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
WO2016105113A1 (ko) 회전자
WO2018038493A1 (ko) 드론용 모터 및 이를 포함하는 드론
CN112994355A (zh) 一种带吊挂结构的空水冷大功率永磁牵引电机
US20110127862A1 (en) Electric machine having radial dividers for guiding cooling air
CN110249509B (zh) 包括转子中的磁体的内部空气冷却系统的封闭式旋转电机
WO2015093739A1 (ko) 다중 벌류트 시로코팬
WO2016093559A1 (ko) 로터 조립체 및 이를 포함하는 모터
TW201212495A (en) Rotating electrical machine and wind power generation system
WO2016186427A1 (ko) 모터 및 그 제작방법
EP2860854B1 (en) Air cooling of a motor using radially mounted fan
EP3968501A1 (en) Stator block, stator assembly, and cooling system for stator assembly
CN101682232B (zh) 车用交流发电机
KR20190096408A (ko) 풍력 터빈 발전기의 스테이터를 위한 스테이터 지지대, 그러한 스테이터 지지대를 포함하는 스테이터, 발전기, 및 풍력 터빈
EP2958218B1 (en) An electric machine
CN116800024A (zh) 一种电机散热结构及无人机
EP3223406B1 (en) Rotary electric machine
WO2014178475A1 (ko) 블로워
CN108736647B (zh) 外转型旋转电机和使用它的电梯用曳引机
CN108155756B (zh) 外转型旋转电机
CN108365703B (zh) 电机风冷叶轮、双风道电机以及电动车
WO2020145603A1 (ko) 전동기
WO2018016870A1 (ko) 팬 모터 및 이를 포함하는 차량
WO2012053714A1 (ko) 보일러용 펌프
KR20200104781A (ko) 회전 전기 기계
WO2020145560A1 (ko) 고압전동기의 회전자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2972225

Country of ref document: CA

Ref document number: 2017552772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873640

Country of ref document: EP

Kind code of ref document: A1