WO2016105048A1 - 강판 표면 홈 형성 방법 및 그 장치 - Google Patents

강판 표면 홈 형성 방법 및 그 장치 Download PDF

Info

Publication number
WO2016105048A1
WO2016105048A1 PCT/KR2015/014019 KR2015014019W WO2016105048A1 WO 2016105048 A1 WO2016105048 A1 WO 2016105048A1 KR 2015014019 W KR2015014019 W KR 2015014019W WO 2016105048 A1 WO2016105048 A1 WO 2016105048A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
groove
mirror
scanning mirror
laser beam
Prior art date
Application number
PCT/KR2015/014019
Other languages
English (en)
French (fr)
Inventor
권오열
박현철
김재겸
이원걸
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2017533450A priority Critical patent/JP6482671B2/ja
Priority to EP15873575.3A priority patent/EP3238870A4/en
Priority to CA2972224A priority patent/CA2972224A1/en
Priority to US15/539,628 priority patent/US20170348802A1/en
Priority to CN201580071216.XA priority patent/CN107690368B/zh
Publication of WO2016105048A1 publication Critical patent/WO2016105048A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • B23K26/0821Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head using multifaceted mirrors, e.g. polygonal mirror
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/94Laser ablative material removal

Definitions

  • the present invention relates to a method and apparatus for forming a steel sheet surface groove, and more particularly, by forming grooves on the steel sheet surface by laser irradiation regardless of the oscillation method and beam mode, so that the iron loss improvement effect can be improved regardless of the heat treatment.
  • the present invention relates to a method for forming a steel plate surface groove and an apparatus thereof capable of maximizing iron loss improvement rates applicable to a directional electrical steel sheet process before and after primary recrystallization.
  • a grain-oriented electrical steel sheet is widely used as an iron core material for energy conversion of an electric device such as a transformer, which is intended to selectively induce a magnetic field in the rolling direction by developing an aggregate structure having a biaxial axis for magnetization in the rolling direction.
  • a grain-oriented electrical steel sheet refers to a material having an aggregate structure (also called “Goss Texture”) oriented in the ⁇ 110 ⁇ ⁇ 001> direction in the rolling direction through hot rolling, cold rolling and annealing processes.
  • the ⁇ 110 ⁇ ⁇ 001> direction is superior in magnetic properties as the degree of orientation of iron in the biaxial direction of magnetization is higher.
  • the magnetic micronization method is a technique used to improve the magnetic properties of oriented electrical steel sheets.
  • the magnetic micronization method can be classified into temporary magnetic micronization and permanent magnetic micronization according to whether or not to maintain magnetic micronization effect even after stress relief annealing. .
  • Permanent domain micronization method which can maintain iron loss improvement effect after heat treatment can be divided into etching method, roll method and laser method.
  • the etching method is difficult to control the groove shape because the groove is formed on the surface of the steel sheet by the electrochemical corrosion reaction in acid solution in the solution, and because the groove is formed in the intermediate process (pre-carbon annealing, before high temperature annealing) to produce the steel sheet. It is difficult to guarantee the iron loss characteristics of the final product and it is not environmentally friendly because acid solution is used, and it is difficult to form grooves at high speed in order to form an appropriate groove depth on the surface of steel sheet.
  • Permanent magnetization by rolls is a magnetization technique that forms a groove with a certain width and depth on the surface of the steel sheet by pressing to process the projection shape on the rolls to secure stability in machining and stable iron loss according to thickness. It is difficult to do this and the groove forming process has a complicated disadvantage.
  • the grooved permanent micronization method by laser irradiation not only secures the micronized effect before heat treatment, but also has the disadvantage of deteriorating magnetic flux density after magnetic domains.
  • the laser method using a laser beam of monochromatic light has the advantage of forming a relatively stable groove at a relatively low line speed of the steel sheet compared to the etching and roll method.
  • the optical system design considering the thermal stability of the mirror and the solution of the optical system configuration method by simplifying the mirror configuration Is not presented.
  • the present invention can improve the iron loss improvement effect regardless of heat treatment by forming grooves on the surface of the steel sheet by laser irradiation regardless of the oscillation method and the beam mode. It is an object of the present invention to provide a method for forming a steel plate surface groove and an apparatus thereof.
  • a laser beam from a plurality of laser oscillators are irradiated to the scanning mirror and passed through the scanning mirror after the
  • the surface of steel sheet has the characteristics of improving the iron loss before and after heat treatment by minimizing the heat effect of the groove at a high line speed of 20mpm or more.
  • a groove forming method may be provided.
  • the scanning mirror may have four or more incident surfaces on which a laser beam may be incident.
  • the laser beam irradiated to the scanning mirror may be focused on the condenser mirror and then irradiated onto the surface of the steel sheet.
  • the laser beam irradiated to the scanning mirror may be incident on two or less shape mirrors, and then may be focused on the light converging mirror through the shape mirror and irradiated onto the surface of the steel sheet.
  • two or more and four laser beams may share one scanning mirror.
  • the linear groove with one irradiation line on the surface of the steel sheet by irradiation of the laser beam through the scanning mirror it may be composed of two or less shape mirrors and one condensing mirror.
  • a steel plate surface groove forming apparatus may be provided, which includes a scan mirror irradiated with a laser beam from a plurality of laser oscillators and shares with two or more laser beams.
  • It may include a focusing mirror for focusing the laser beam reflected from the scanning mirror to the surface of the steel sheet.
  • the laser beam reflected from the scanning mirror may be incident, and may include two or less shaping mirrors that reflect the incident laser beam to the condensing mirror.
  • the scanning mirror may be formed in a polyhedron shape having four or more incidence planes through which a laser beam may be incident.
  • two or more and four laser beams may share one scanning mirror.
  • the linear groove with one irradiation line on the surface of the steel sheet by irradiation of the laser beam through the scanning mirror it may be composed of two or less shape mirrors and one condensing mirror.
  • a groove depth of 10% or less of the steel sheet thickness is divided into 3 to 8 parts in a direction of ⁇ 82 to ⁇ 98 ° with respect to the rolling direction of the steel sheet on the surface of the electrical steel sheet moving at 0.33 m / s or more. It is possible to manufacture a low iron loss high magnetic flux density oriented electrical steel sheet micronized product having the characteristics of improving iron loss more than 10% before and after heat treatment without affecting the primary and secondary recrystallization by the groove while forming the linear groove. .
  • FIG. 1 is a schematic configuration diagram of a steel sheet surface groove forming apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of an optical system of a steel plate surface groove forming apparatus according to an embodiment of the present invention.
  • FIG 3 is a view showing a linear groove formed on the surface of the steel sheet according to the steel sheet surface groove forming apparatus according to an embodiment of the present invention.
  • FIG. 4 is an enlarged view of a continuous groove shape of the linear groove formed on the surface of the steel sheet of FIG. 3.
  • the present invention forms a groove in the plate width direction when irradiating a high-power laser at a high speed line speed of 20mpm or more in a method for minimizing iron loss by forming grooves on the surface of the steel sheet by laser irradiation, and maintaining and repairing the optical system.
  • to reduce the scanning width by increasing the number of scanning mirrors to cope with the high line speed it is widely used.However, to minimize the processing cost and operating cost of the optical system including the scanning mirrors, the number of scanning mirrors is minimized. need. If the width of the steel sheet to be irradiated to the scanning mirror increases, the number of gaze mirrors to scan as the width is increased inevitably increases.
  • the scanning mirror can be shared by several oscillators to maximize the depth of the grooves formed on the surface of the plate.
  • the grooves formed on the surface of the steel sheet moving at a speed of 20mpm or more are preferably formed to a depth within about 10% of the sheet thickness. It is reasonable to increase the output.
  • the plate surface groove formation can form a primary groove by a low-power laser, and by forming a secondary groove, the power limitation of the laser for forming the groove can be relaxed and the thermal effect around the groove can be minimized.
  • the present invention improves the iron loss of the electrical steel sheet by forming grooves at a depth of 10% or less of the steel sheet thickness at ⁇ 82 to ⁇ 98 ° in the steel sheet rolling (length) direction on the surface of the electrical steel sheet having a width of 900 mm or more that moves at a high speed of 20mpm or more. It is to let.
  • the groove forming target material may include all steels, wood, plastics, wafers, glass and ceramic materials.
  • an electric steel sheet will be described as an example of the target material for forming the grooves.
  • FIG. 1 is a schematic configuration diagram of a steel sheet surface groove forming apparatus according to an embodiment of the present invention
  • Figure 2 is a schematic configuration diagram of an optical system of the steel sheet surface groove forming apparatus according to an embodiment of the present invention
  • Figure 3 Is a view showing a linear groove formed on the surface of the steel sheet according to the steel sheet surface groove forming apparatus according to an embodiment of the present invention
  • Figure 4 is an enlarged view of the continuous groove shape of the linear groove formed on the surface of the steel sheet of FIG.
  • the laser beam 1 is formed from a plurality of laser oscillators by the scanning mirror 2.
  • a high speed line speed of 20mpm or more is shared by sharing one scanning mirror 2 with two or more laser beams 1. speed) to minimize the thermal effect of the groove portion can have the iron loss improvement characteristics before (after) heat treatment.
  • One scanning mirror 2 is shared with two or more laser beams 1, preferably with two to six laser beams.
  • the scanning mirror 2 may be formed in a polyhedron shape having four or more laser beam incidence surfaces through which two or more laser beams can be incident so as to be shared with two or more laser beams 1.
  • the laser beam 1 irradiated to the scanning mirror 2 may be focused on the condensing mirror 4 and then irradiated onto the surface of the steel sheet.
  • the laser beam 1 irradiated to the scanning mirror 2 is incident on two or less shape mirrors 3, passes through the shape mirrors 3, and then is focused on a condensing mirror 4, so that the surface of the steel sheet Can be investigated.
  • the laser beam 1 is irradiated from a plurality of laser oscillators, and includes a scan mirror 1 which is shared with two or more laser beams. can do.
  • it may include a focusing mirror (4) for condensing the laser beam (1) reflected by the scanning mirror (2) to irradiate the surface of the steel sheet.
  • the laser beam 1 reflected from the scanning mirror 2 is incident, and no more than two shaping mirrors 3 reflecting the incident laser beam 1 on the condensing mirror 4. ) May be included.
  • the shape mirror 3 of FIG. 2 can be omitted when changing the shape of the final laser beam 1.
  • One rotary scanning mirror 2 is shared with two or more laser beams 1, preferably with two to six laser beams.
  • the scanning mirror 2 may be formed in a polyhedron shape having four or more laser beam incidence surfaces through which two or more laser beams can be incident so as to be shared with two or more laser beams 1.
  • FIG. 2 schematically shows an optical system configuration (10 of FIG. 1) for one laser beam irradiated from the laser oscillator shown in FIG. 1.
  • the laser beam 1 irradiated from the laser oscillator deforms the shape of the laser beam 1 via the scanning mirror 2, the shape mirror 3, and the condensing mirror 4, thereby giving four periods to the steel plate surface of FIG. 3.
  • the above continuous linear grooves (5 in FIG. 3) are formed.
  • the linear grooves irradiated from one scanning mirror 2 appear almost straight, thereby forming linear grooves as if they were irradiated from two scanning mirrors 2 in the steel sheet.
  • the divided linear grooves appearing on the surface of the steel sheet appear to be separated into two largely as shown in FIG. If necessary, the position and number of laser beams incident on the scanning mirror 2 may be selectively selected.
  • FIG. 4 is an enlarged representation of the continuous groove shape of the linear groove formed on the surface of the steel sheet of FIG.
  • the irradiation interval Ds named as the distance between the linear groove and the linear groove can form the groove in two ways.
  • linear grooves by the irradiation beams of the upper left and upper right appear on the same line. Therefore, the depth of the linear grooves can be formed deeper by using a low-power laser, and the heat effect generated in the grooves can be minimized. That is, when the laser energy density required to form a groove about 15 ⁇ m deep on the surface of a 0.23 mm thick oriented electrical steel sheet moving at a speed of 20 mpm, for example, is 1.2 J / mm 2, the required laser power is 900 W. Each laser output required to form a linear groove on the grooved surface again to form a final groove depth of 15 ⁇ m can minimize the thermal effect of the groove. Since the heat effect of the groove formed on the surface of the steel sheet is proportional to the laser output, the heat effect around the groove decreases when the laser output decreases.
  • the scanning mirror 2 of FIG. 1 is arranged so that the upper grooves of the upper left end and the upper right end of the scanning mirror 2 cross each other. Irradiating the linear grooves to cross each other has the advantage that the linear grooves can be formed on the surface of the steel sheet at a higher speed.
  • Table 1 shows the results of groove depth and iron loss improvement rate when the scanning mirror is shared on a 0.23 mm thick steel plate moving at 0.83 m / s.
  • B 8 (Telsa) is the magnetic flux density value in Telsa when the magnetic field strength is 800 amp (amps) / m
  • W17 / 50 (W / Kg) is the magnetic flux density value of 1.7 Telsa.
  • the iron loss value is shown when the frequency is 50 Hz.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Laser Beam Processing (AREA)

Abstract

강판 표면 홈 형성 방법 및 그 장치를 제공한다. 본 발명에 따르면, 레이저 조사로 강판 두께의 10% 이하의 홈 깊이를 강판 표면에 형성하기 위하여, 다수개의 레이저 발진기로부터 레이저 빔이 주사 미러에 조사되고 상기 주사 미러를 통과한 후 상기 강판 표면에 조사되는 경우에 1개의 주사 미러를 2개 이상의 레이저 빔과 공유함으로써 20mpm 이상의 고속의 라인 스피드(line speed)에서 홈 부의 열영향을 최소화시켜 열처리 전(후) 철손 개선 특성을 갖는다.

Description

강판 표면 홈 형성 방법 및 그 장치
본 발명은 강판 표면 홈 형성 방법 및 그 장치에 관한 것으로서, 보다 상세하게는 발진 방식 및 빔 모드에 관계없이 레이저 조사로 강판 표면에 홈을 형성시킴으로써 열처리에 관계없이 철손 개선 효과를 개선할 수 있기 때문에 1차 재결정 전, 후의 방향성 전기강판 공정에 적용 가능한 철손 개선율을 극대화할 수 있는 강판 표면 홈 형성 방법 및 그 장치에 관한 것이다.
예컨대, 방향성 전기강판은 압연방향으로 <001> 자화용이축을 갖는 집합조직을 발달시킴으로써 압연방향으로 자장을 선택적으로 유기하고자 하는 변압기 등의 전기기기의 에너지 변환용 철심재료로 널리 사용되고 있다.
일반적으로, 방향성 전기강판은 열연, 냉연과 소둔공정을 통해 압연방향으로 {110}<001> 방향으로 배향된 집합조직(일명 “Goss Texture” 라고도 함)을 갖고 있는 재료를 말한다. 이러한 방향성 전기강판에 있어서 {110}<001> 방향은 철의 자화용이축 방향으로 배향된 정도가 높을수록 자기적 특성이 우수하다.
자구미세화 방법은 방향성 전기강판의 자기적 특성을 향상시키기 위해 사용되는 기술이며, 자구미세화 방법으로는 응력제거 소둔 후에도 자구미세화 개선효과 유지 유/무에 따라 일시 자구미세화와 영구 자구미세화로 구분할 수 있다.
열처리 후에도 철손 개선 효과를 유지할 수 있는 영구 자구미세화법은 에칭법, 롤법 및 레이저법으로 구분할 수 있다. 에칭법은 용액 내에서 산용액에서 전기화학적인 부식반응에 의해 강판 표면에 홈을 형성시키기 때문에 홈 형상 제어가 어렵고, 강판을 생산하는 중간공정(탈탄소둔, 고온소둔 전)에서 홈을 형성시키기 때문에 최종 제품의 철손 특성의 보증이 어려우며 산용액을 사용하기 때문에 환경 친화적이지도 못하며 강판 표면의 적정 홈 깊이를 형성하기 위해서는 고속으로 홈을 형성시키기 어려운 단점을 갖고 있다.
롤에 의한 영구 자구미세화 방법은 롤에 돌기 모양을 가공하여 가압법에 의해 강판의 표면에 일정한 폭과 깊이를 갖는 홈을 형성하는 자구미세화 기술로 기계 가공에 대한 안정성, 두께에 따른 안정적인 철손을 확보하기에 어려우며 홈 형성프로세스가 복잡한 단점을 갖고 있다.
레이저 조사에 의한 홈 형성 영구 자구미세화 방법은 열처리 전 자구미세화 효과를 확보할 수 없을 뿐 아니라, 자구미세화 후 자속밀도가 열화되는 단점을 갖고 있다.
그러나, 에칭 및 롤법에 비해 단색광의 레이저 빔을 이용하는 레이저법은 비교적 낮은 강판의 라인 스피드(Line Speed)에서 상대적으로 안정적인 홈을 형성시킬 수 있는 장점을 갖고 있다. 하지만, 고속의 라인 스피드(Line Speed)로 이동하는 강판 표면에 홈을 형성하기 위해 고출력의 레이저를 필요로 하는 경우, 미러의 열적 안정성을 고려한 광학계 설계 및 미러 구성 단순화를 통한 광학계 구성방법에 대한 해결책은 제시하지 못하고 있다.
본 발명은 발진 방식 및 빔 모드에 관계없이 레이저 조사로 강판 표면에 홈을 형성시킴으로써 열처리에 관계없이 철손 개선 효과를 개선할 수 있기 때문에 1차 재결정 전, 후의 방향성 전기강판 공정에 적용 가능한 철손 개선율을 극대화할 수 있는 강판 표면 홈 형성 방법 및 그 장치를 제공하고자 한다.
본 발명의 일 구현예에 따르면, 레이저 조사로 강판 두께의 10% 이하의 홈 깊이를 강판 표면에 형성하기 위하여, 다수개의 레이저 발진기로부터 레이저 빔이 주사 미러에 조사되고 상기 주사 미러를 통과한 후 상기 강판 표면에 조사되는 경우에 1개의 주사 미러를 2개 이상의 레이저 빔과 공유함으로써 20mpm 이상의 고속의 라인 스피드(line speed)에서 홈 부의 열영향을 최소화시켜 열처리 전(후) 철손 개선 특성을 갖는 강판 표면 홈 형성 방법이 제공될 수 있다.
상기 주사 미러는 레이저 빔이 입사될 수 있는 4개 이상의 입사면을 가질 수 있다.
상기 주사 미러에 조사된 레이저 빔은 집광 미러에 집광된 후 상기 강판 표면에 조사될 수 있다.
상기 주사 미러에 조사된 레이저 빔은 2개 이하의 형상 미러에 입사된 후 상기 형상 미러를 통하여 집광 미러에 집광되어 상기 강판 표면에 조사될 수 있다.
상기 주사 미러를 통한 레이저 빔의 조사에 의하여 강판 표면에 1개의 조사선으로 선상 홈을 형성시킴에 있어서, 1개의 주사 미러를 2개 이상 4개 이하의 레이저 빔이 공유할 수 있다.
상기 주사 미러를 통한 상기 레이저 빔의 조사에 의하여 강판 표면에 1개의 조사선으로 선상 홈을 형성시킴에 있어서, 2개 이하의 형상 미러 및 1개의 집광 미러로 구성될 수 있다.
또한, 본 발명의 일 구현예에 따르면, 레이저 조사로 강판 두께의 10% 이하의 홈 깊이를 강판 표면에 형성 시 20mpm 이상의 고속의 라인 스피드(line speed)에서 홈 부의 열영향을 최소화시켜 열처리 전(후) 철손 개선 특성을 가질 수 있도록 하기 위하여,
다수개의 레이저 발진기로부터 레이저 빔이 조사되고, 2개 이상의 레이저 빔과 공유하는 회전 주사 미러(scan mirror)를 포함하는 강판 표면 홈 형성 장치가 제공될 수 있다.
상기 주사 미러에서 반사되는 레이저 빔을 집광하여 강판 표면에 조사하기 위한 집광 미러(focusing mirror)를 포함할 수 있다.
상기 주사 미러에서 반사되는 레이저 빔이 입사되고, 상기 입사된 레이저 빔을 상기 집광 미러에 반사하는 2개 이하의 형상 미러(shaping mirror)를 포함할 수 있다.
상기 주사 미러는 레이저 빔이 입사될 수 있는 4개 이상의 입사면을 갖는 다면체 형태로 형성될 수 있다.
상기 주사 미러를 통한 레이저 빔의 조사에 의하여 강판 표면에 1개의 조사선으로 선상 홈을 형성시킴에 있어서, 1개의 주사 미러를 2개 이상 4개 이하의 레이저 빔이 공유할 수 있다.
상기 주사 미러를 통한 상기 레이저 빔의 조사에 의하여 강판 표면에 1개의 조사선으로 선상 홈을 형성시킴에 있어서, 2개 이하의 형상 미러 및 1개의 집광 미러로 구성될 수 있다.
본 발명의 구현예에 따르면, 0.33m/s 이상으로 이동하는 전기강판 표면에 강판 두께의 10% 이하의 홈 깊이를 강판 압연방향에 대해 ±82~±98°로 3~8개 부분으로 나뉘어진 선상의 홈을 형성시키면서 홈에 의해 1, 2차 재결정 형성에 영향을 미치지 않고 열처리 전/후 10% 이상의 철손 개선 효과 특성을 갖는 저철손 고자속밀도 방향성 전기강판 자구미세화 제품을 제조하는 것이 가능하다.
도 1은 본 발명의 일 구현예에 따른 강판 표면 홈 형성 장치의 개략적인 구성도이다.
도 2는 본 발명의 일 구현예에 따른 강판 표면 홈 형성 장치의 광학계의 개략적인 구성도이다.
도 3은 본 발명의 일 구현예에 따른 강판 표면 홈 형성 장치에 따라 강판 표면에 형성된 선상 홈을 나타낸 도면이다.
도 4는 도 3의 강판 표면에 형성된 선상 홈의 연속적인 홈 모양을 확대한 도면이다.
이하, 첨부한 도면을 참조하여, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 구현예를 설명한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 이해할 수 있는 바와 같이, 후술하는 구현예는 본 발명의 개념과 범위를 벗어나지 않는 한도 내에서 다양한 형태로 변형될 수 있다. 가능한 한 동일하거나 유사한 부분은 도면에서 동일한 도면부호를 사용하여 나타낸다.
이하에서 사용되는 전문용어는 단지 특정 구현예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 “포함하는” 의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
이하에서 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
본 발명은 레이저 조사로 강판 표면에 홈을 형성함으로써 철손 개선율을 극대화 하고자 하는 자구미세화 방법에서 20mpm 이상의 고속 Line Speed에서 고출력 레이저에 조사 시 판 폭 방향으로 안정적인 홈을 형성시키고, 광학계와 관련한 유지/보수 비용을 최소화 하기 위해서는,
첫째, 고속의 라인 스피드(line speed)에서 열적 안정성이 우수한 주사 미러를 적용하는 것이 바람직하다. 강판 진행 속도에 관계 없이 판 표면에 동일한 에너지 밀도로 레이저를 조사할 경우, 주사 미러의 열적 안정성을 확보하는 것이 무엇보다 중요하다.
둘째, 주사 미러 개수를 최소화하면서 고속의 라인 스피드에 대응하는 것이 필요하다. 일반적으로 고속의 라인 스피드에 대응하기 위해서는 주사 미러 개수를 증가시켜 주사 폭을 감소시키는 것이 널리 사용되는 접근법이나, 주사 미러를 포함한 광학계 가공비용 및 운영비용을 최소화하기 위해서는 주사 미러의 개수를 최소화 시키는 것이 필요하다. 주사 미러에 조사하는 강판의 폭이 증가하게 되면, 폭 증가에 따라 주사하는 주시미러 개수도 증대될 수 밖에 없다.
따라서, 레이저 발진기에서 강판에 이르는 레이저 빔의 전송 경로를 최소화 시키면서 고속화 주사를 함으로써 고속의 라인 스피드로 이동하는 판에 홈을 형성시키는 것이 가능하게 된다.
셋째, 주사 미러를 수개의 발진기가 공유함으로써 판 표면에 형성되는 홈의 깊이를 극대화 할 수 있다. 20mpm 이상의 속도로 이동하는 강판 표면에 형성되는 홈은 판 두께의 약 10% 이내 깊이로 형성되는 것이 바람직하며, 강판 이동 속도에 관계없이 동일한 홈 깊이를 판 표면에 형성시키기 위해서는 판 속도 증가에 따라 레이저 출력을 증가시키는 것이 합리적이다.
그러나, 레이저 출력 증가 시 표면에 형성되는 홈 주위의 열영향이 증가하기 때문에 홈 형성후 재결정에 열영향을 미치기 때문에 2차 재결정이 불완전하게 형성됨으로써 철손 및 자속밀도 특성이 열화될 수 있기 때문에 바람직하지 않다. 판 표면 홈 형성이 낮은 출력의 레이저에 의해서 1차 홈을 형성시키고, 2차 홈을 형성시킴으로써 홈을 형성시키기 위한 레이저의 출력 제한을 완화시킬 수 있고 홈 주위의 열영향을 최소화 할 수 있다.
본 발명은 20mpm 이상의 고속으로 이동하는 폭 900mm 이상의 전기강판 표면에 강판 두께의 10% 이하 깊이 홈을 강판 압연(길이)방향에 대해 ±82~±98°로 홈을 형성시킴으로써 전기강판의 철손을 개선시키는 것이다.
물론, 홈을 형성함에 있어 대상재를 전기강판에 국한할 필요는 없다. 홈 형성 대상재로는 전기강판 외에, 강재, 목재, 플라스틱(Plastic), 웨이퍼(Wafer), 글래스(Glass) 및 세라믹 재료 등을 모두 포함할 수 있다. 이하에서는 홈을 형성하는 대상재로서 전기강판을 예로 들어 설명한다.
도 1은 본 발명의 일 구현예에 따른 강판 표면 홈 형성 장치의 개략적인 구성도이고, 도 2는 본 발명의 일 구현예에 따른 강판 표면 홈 형성 장치의 광학계의 개략적인 구성도이며, 도 3은 본 발명의 일 구현예에 따른 강판 표면 홈 형성 장치에 따라 강판 표면에 형성된 선상 홈을 나타낸 도면이고, 도 4는 도 3의 강판 표면에 형성된 선상 홈의 연속적인 홈 모양을 확대한 도면이다.
본 발명의 일 구현예에 따른 강판 표면 홈 형성 방법은, 레이저 조사로 강판 두께의 10% 이하의 홈 깊이를 강판 표면에 형성하기 위하여, 다수개의 레이저 발진기로부터 레이저 빔(1)이 주사 미러(2)에 조사되고 상기 주사 미러(2)를 통과한 후 상기 강판 표면에 조사되는 경우에, 1개의 주사 미러(2)를 2개 이상의 레이저 빔(1)과 공유함으로써 20mpm 이상의 고속의 라인 스피드(line speed)에서 홈 부의 열영향을 최소화시켜 열처리 전(후) 철손 개선 특성을 가질 수 있다.
1개의 주사 미러(2)를 2개 이상의 레이저 빔(1)과 공유하며, 바람직하게는 2개 내지 6개의 레이저 빔과 공유할 수 있다.
상기 주사 미러(2)는 2개 이상의 레이저 빔(1)과 공유할 수 있도록 2개 이상의 레이저 빔이 입사될 수 있는 4개 이상의 레이저 빔 입사면을 갖는 다면체 형태로 형성될 수 있다.
상기 주사 미러(2)에 조사된 레이저 빔(1)은 집광 미러(4)에 집광된 후 상기 강판 표면에 조사될 수 있다.
또한, 상기 주사 미러(2)에 조사된 레이저 빔(1)은 2개 이하의 형상 미러(3)에 입사되고 상기 형상 미러(3)를 통과한 후 집광 미러(4)에 집광되어 상기 강판 표면에 조사될 수 있다.
상기 주사 미러(2)를 통한 레이저 빔(1)의 조사에 의하여 강판 표면에 1개의 조사선으로 선상 홈을 형성시킴에 있어서, 1개의 주사 미러(2)를 2개 이상 4개 이하의 레이저 빔이 공유할 수 있다.
또한, 상기 주사 미러(2)를 통한 상기 레이저 빔(1)의 조사에 의하여 강판 표면에 1개의 조사선으로 선상 홈을 형성시킴에 있어서, 2개 이하의 형상 미러(3) 및 1개의 집광 미러(4)로 구성될 수 있다.
본 발명의 일 구현예에 따른 강판 표면 홈 형성 장치는, 레이저 조사로 강판 두께의 10% 이하의 홈 깊이를 강판 표면에 형성 시 20mpm 이상의 고속의 라인 스피드(line speed)에서 홈 부의 열영향을 최소화시켜 열처리 전(후) 철손 개선 특성을 가질 수 있도록 하기 위하여, 다수개의 레이저 발진기로부터 레이저 빔(1)이 조사되고, 2개 이상의 레이저 빔과 공유하는 회전 주사 미러(scan mirror)(1)를 포함할 수 있다.
또한, 상기 주사 미러(2)에서 반사되는 레이저 빔(1)을 집광하여 강판 표면에 조사하기 위한 집광 미러(focusing mirror)(4)를 포함할 수 있다.
또한, 상기 주사 미러(2)에서 반사되는 레이저 빔(1)이 입사되고, 상기 입사된 레이저 빔(1)을 상기 집광 미러(4)에 반사하는 2개 이하의 형상 미러(shaping mirror)(3)를 포함할 수 있다.
그러나, 즉, 최종 레이저 빔(1)의 형상 변경 시 도 2의 형상 미러(3)를 생략할 수 있다.
1개의 회전 주사 미러(2)를 2개 이상의 레이저 빔(1)과 공유하며, 바람직하게는 2개 내지 6개의 레이저 빔과 공유할 수 있다.
상기 주사 미러(2)는 2개 이상의 레이저 빔(1)과 공유할 수 있도록 2개 이상의 레이저 빔이 입사될 수 있는 4개 이상의 레이저 빔 입사면을 갖는 다면체 형태로 형성될 수 있다.
상기 주사 미러(2)를 통한 레이저 빔(1)의 조사에 의하여 강판 표면에 1개의 조사선으로 선상 홈을 형성시킴에 있어서, 1개의 주사 미러(2)를 2개 이상 4개 이하의 레이저 빔이 공유할 수 있다.
또한, 상기 주사 미러(2)를 통한 상기 레이저 빔(1)의 조사에 의하여 강판 표면에 1개의 조사선으로 선상 홈을 형성시킴에 있어서, 2개 이하의 형상 미러(3) 및 1개의 집광 미러(4)로 구성될 수 있다.
이하에서, 도 1 내지 도 4를 참조하여, 본 발명의 일 구현예에 따른 강판 표면 홈 형성 방법 및 그 장치의 작동에 대해서 설명한다.
도 1에서와 같이 주사 미러(1)의 입사면에 레이저 발진기로부터 조사되는 레이저 빔(1)이 입사되기 때문에 주사 미러(2) 1개로 예컨대, 주사 미러 4개를 적용한 효과를 얻을 수 있다.
도 2는 도 1에서 나타낸 레이저 발진기로부터 조사되는 레이저 빔 1개에 대한 광학계 구성(도 1의 10)을 개략적으로 나타낸 것이다. 레이저 발진기로부터 조사되는 레이저 빔(1)은 주사 미러(2), 형상 미러(3), 및 집광 미러(4)를 거쳐 레이저 빔(1)의 모양을 변형시킴으로써, 도 3의 강판 표면에 4주기 이상의 연속적인 선상 홈(도 3의 5)을 형성 시키게 된다.
도 3에서와 같이 한 개의 주사 미러(2)에서 조사된 선상 홈은 거의 일직선상으로 나타남으로써 마치 2개의 주사 미러(2)에서 조사된 것과 같은 선상 홈을 강판에 형성시키게 된다.
따라서, 강판 표면에 나타나는 구분된 선상 홈은 도 3에서와 같이 크게는 2개로만 분리된 것 같이 나타나게 된다. 또한, 필요에 따라서는 주사 미러(2)에 입사하는 레이저 빔의 위치와 개수를 선별적으로 선택할 수도 있다.
도 4는 도3의 강판 표면에 형성된 선상 홈의 연속적인 홈 모양을 확대해서 표현한 것이다. 도 4에서 선상 홈과 선상 홈 사이의 거리로 명명되는 조사간격 (Ds)은 두 가지 방법으로 홈을 형성시킬 수 있다.
첫째, 도 1의 주사 미러(2)를 중심으로 좌상단과 우상단의 조사빔에 의한 선상 홈이 서로 동일 선상에 나타나도록 하는 것이다. 따라서, 저출력의 레이저를 이용하여 선상 홈의 깊이를 보다 깊게 형성시킬 수 있으며 홈 부에서 발생하는 열영향을 최소화 할 수 있다. 즉, 20mpm 속도로 이동하는 예컨대, 0.23mm 두께의 방향성 전기강판 표면에 약 15㎛ 깊이의 홈을 형성하기 위해 필요한 레이저 에너지 밀도가 1.2J/mm2 인 경우, 필요한 레이저의 출력은 900W 이지만, 일차 선상 홈이 형성된 면에 다시 선상 홈을 형성하여 최종 홈 깊이 15㎛을 형성시키기 위해서 필요한 각각의 레이저 출력은 450W로 홈 부의 열영향을 최소화 할 수 있다. 강판 표면에 형성되는 홈 부의 열영향은 레이저 출력에 비례하기 때문에 레이저 출력이 감소하면 홈 부 주변의 열영향은 감소하게 된다.
둘째, 도 1의 주사 미러(2)를 중심의 좌상단과 우상단의 조사빔에 의한 선 상홈이 서로 교차되도록 하는 것이다. 선상 홈이 서로 교차되도록 조사함으로써 보다 고속으로 강판 표면에 선상 홈을 형성시킬 수 있는 장점을 갖고 있다.
[표 1]은 0.83m/s 에서 이동하는 0.23mm 두께의 강판에 주사 미러를 공유한 경우, 홈의 깊이와 철손 개선율 결과를 나타낸 것이다.
표 1
Figure PCTKR2015014019-appb-T000001
(* 주사 미러 좌우 대칭인 면의 레이저 빔 주사한 경우 자성값)
(** 주사 미러에 하나의 레이저 빔만을 전송하여 주사한 경우 자성값 )
여기서, B8(Telsa)은 자장의 세기가 800 amp(암페어)/m 일 때의 자속밀도 값을 Telsa 단위로 나타난 것이며, W17/50(W/Kg)은 자속밀도의 값이 1.7 Telsa 일 때 주파수가 50Hz인 경우의 철손 값을 나타낸 것이다.

Claims (12)

  1. 레이저 조사로 강판 두께의 10% 이하의 홈 깊이를 강판 표면에 형성하기 위하여, 다수개의 레이저 발진기로부터 레이저 빔이 주사 미러에 조사되고 상기 주사 미러를 통과한 후 상기 강판 표면에 조사되는 경우에 1개의 주사 미러를 2개 이상의 레이저 빔과 공유함으로써 20mpm 이상의 고속의 라인 스피드(line speed)에서 홈 부의 열영향을 최소화시켜 열처리 전(후) 철손 개선 특성을 갖는 강판 표면 홈 형성 방법.
  2. 제1항에 있어서,
    상기 주사 미러는 2개 이상의 레이저 빔과 공유될 수 있는 4개 이상의 레이저 빔 입사면을 갖는 강판 표면 홈 형성 방법.
  3. 제2항에 있어서,
    상기 주사 미러에 조사된 레이저 빔은 집광 미러에 집광된 후 상기 강판 표면에 조사되는 강판 표면 홈 형성 방법.
  4. 제3항에 있어서,
    상기 주사 미러에 조사된 레이저 빔은 2개 이하의 형상 미러에 입사된 후 상기 형상 미러를 통하여 집광 미러에 집광되어 상기 강판 표면에 조사되는 강판 표면 홈 형성 방법.
  5. 제3항 또는 제4항에 있어서,
    상기 주사 미러를 통한 레이저 빔의 조사에 의하여 강판 표면에 1개의 조사선으로 선상 홈을 형성시킴에 있어서, 1개의 주사 미러를 2개 이상 4개 이하의 레이저 빔이 공유하는 강판 표면 홈 형성 방법.
  6. 제4항에 있어서,
    상기 주사 미러를 통한 상기 레이저 빔의 조사에 의하여 강판 표면에 1개의 조사선으로 선상 홈을 형성시킴에 있어서, 2개 이하의 형상 미러 및 1개의 집광 미러로 구성되는 강판 표면 홈 형성 방법.
  7. 레이저 조사로 강판 두께의 10% 이하의 홈 깊이를 강판 표면에 형성 시 20mpm 이상의 고속의 라인 스피드(line speed)에서 홈 부의 열영향을 최소화시켜 열처리 전(후) 철손 개선 특성을 가질 수 있도록 하기 위하여,
    다수개의 레이저 발진기로부터 레이저 빔이 조사되고, 2개 이상의 레이저 빔과 공유하는 회전 주사 미러(scan mirror)를 포함하는 강판 표면 홈 형성 장치.
  8. 제7항에 있어서,
    상기 주사 미러에서 반사되는 레이저 빔을 집광하여 강판 표면에 조사하기 위한 집광 미러(focusing mirror)를 포함하는 강판 표면 홈 형성 장치.
  9. 제8항에 있어서,
    상기 주사 미러에서 반사되는 레이저 빔이 입사되고, 상기 입사된 레이저 빔을 상기 집광 미러(shaping mirror)에 반사하는 형상 미러를 포함하는 강판 표면 홈 형성 장치.
  10. 제8항 또는 제9항에 있어서,
    상기 주사 미러는 2개 이상의 레이저 빔과 공유될 수 있는 4개 이상의 레이저 빔 입사면을 갖는 다면체 형태로 형성되는 강판 표면 홈 형성 장치.
  11. 제10항에 있어서,
    상기 주사 미러를 통한 레이저 빔의 조사에 의하여 강판 표면에 1개의 조사선으로 선상 홈을 형성시킴에 있어서, 1개의 주사 미러를 2개 이상 4개 이하의 레이저 빔이 공유하는 강판 표면 홈 형성 장치.
  12. 제9항에 있어서,
    상기 주사 미러를 통한 상기 레이저 빔의 조사에 의하여 강판 표면에 1개의 조사선으로 선상 홈을 형성시킴에 있어서, 2개 이하의 형상 미러 및 1개의 집광 미러로 구성되는 강판 표면 홈 형성 장치.
PCT/KR2015/014019 2014-12-24 2015-12-21 강판 표면 홈 형성 방법 및 그 장치 WO2016105048A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017533450A JP6482671B2 (ja) 2014-12-24 2015-12-21 鋼板表面の溝形成方法およびその装置
EP15873575.3A EP3238870A4 (en) 2014-12-24 2015-12-21 Method for forming groove in surface of steel plate, and apparatus therefor
CA2972224A CA2972224A1 (en) 2014-12-24 2015-12-21 Method for forming groove in surface of steel plate, and apparatus therefor
US15/539,628 US20170348802A1 (en) 2014-12-24 2015-12-21 Method for forming groove in surface of steel plate, and apparatus therefor
CN201580071216.XA CN107690368B (zh) 2014-12-24 2015-12-21 在钢板表面形成凹槽的方法及其装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140188976A KR101711853B1 (ko) 2014-12-24 2014-12-24 강판 표면 홈 형성 방법 및 그 장치
KR10-2014-0188976 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016105048A1 true WO2016105048A1 (ko) 2016-06-30

Family

ID=56150996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014019 WO2016105048A1 (ko) 2014-12-24 2015-12-21 강판 표면 홈 형성 방법 및 그 장치

Country Status (7)

Country Link
US (1) US20170348802A1 (ko)
EP (1) EP3238870A4 (ko)
JP (1) JP6482671B2 (ko)
KR (1) KR101711853B1 (ko)
CN (1) CN107690368B (ko)
CA (1) CA2972224A1 (ko)
WO (1) WO2016105048A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323044B (zh) * 2018-03-30 2021-02-19 宝山钢铁股份有限公司 一种耐热磁畴细化型取向硅钢及其制造方法
CN111185693A (zh) * 2020-01-13 2020-05-22 哈尔滨锅炉厂有限责任公司 一种用于焊接弧形管片的mpm生产线滚轮
CN116981977A (zh) 2021-03-30 2023-10-31 日本制铁株式会社 激光扫描装置、激光扫描方法、激光加工装置以及电磁钢板的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025084A (ja) * 2001-07-12 2003-01-28 Sony Corp レーザー加工装置及び加工方法
JP2004179389A (ja) * 2001-11-30 2004-06-24 Semiconductor Energy Lab Co Ltd レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP2005151988A (ja) * 2003-11-21 2005-06-16 Hauni Maschinenbau Ag レーザー穿孔するための方法および装置
KR20130075953A (ko) * 2011-12-28 2013-07-08 비나텍주식회사 칩 타입의 슈퍼 커패시터의 테스트 장치
KR20130128214A (ko) * 2012-05-16 2013-11-26 주식회사 포스코 방향성 전기강판 및 그 제조방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423647B2 (ko) * 1974-04-25 1979-08-15
JPH05228669A (ja) * 1991-12-27 1993-09-07 Polymer Processing Res Inst 光線による穴開きウェブの製法および装置
US5744780A (en) * 1995-09-05 1998-04-28 The United States Of America As Represented By The United States Department Of Energy Apparatus for precision micromachining with lasers
JPH09288243A (ja) * 1996-04-23 1997-11-04 Sony Corp 光合波装置および光出力装置
JP4227388B2 (ja) * 2002-10-07 2009-02-18 新日本製鐵株式会社 方向性電磁鋼板の製造方法
JP3822188B2 (ja) * 2002-12-26 2006-09-13 日立ビアメカニクス株式会社 多重ビームレーザ穴あけ加工装置
JP4705382B2 (ja) * 2005-02-25 2011-06-22 新日本製鐵株式会社 一方向性電磁鋼板およびその製造方法
RU2371487C1 (ru) * 2005-11-01 2009-10-27 Ниппон Стил Корпорейшн Способ и устройство для изготовления листа текстурированной электротехнической стали с прекрасными магнитными свойствами
PL2554685T3 (pl) * 2010-04-01 2017-01-31 Nippon Steel & Sumitomo Metal Corporation Blacha ze stali elektrotechnicznej o ziarnach zorientowanych i sposób jej produkcji
KR101370634B1 (ko) * 2011-12-29 2014-03-07 주식회사 포스코 전기강판 및 그 제조방법
EP2843062B1 (en) * 2012-04-27 2020-07-29 Nippon Steel Corporation Grain-oriented electrical steel sheet and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025084A (ja) * 2001-07-12 2003-01-28 Sony Corp レーザー加工装置及び加工方法
JP2004179389A (ja) * 2001-11-30 2004-06-24 Semiconductor Energy Lab Co Ltd レーザ照射装置およびレーザ照射方法、並びに半導体装置の作製方法
JP2005151988A (ja) * 2003-11-21 2005-06-16 Hauni Maschinenbau Ag レーザー穿孔するための方法および装置
KR20130075953A (ko) * 2011-12-28 2013-07-08 비나텍주식회사 칩 타입의 슈퍼 커패시터의 테스트 장치
KR20130128214A (ko) * 2012-05-16 2013-11-26 주식회사 포스코 방향성 전기강판 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3238870A4 *

Also Published As

Publication number Publication date
JP2018507111A (ja) 2018-03-15
CN107690368A (zh) 2018-02-13
KR20160078151A (ko) 2016-07-04
CA2972224A1 (en) 2016-06-30
JP6482671B2 (ja) 2019-03-13
EP3238870A1 (en) 2017-11-01
US20170348802A1 (en) 2017-12-07
EP3238870A4 (en) 2018-02-21
KR101711853B1 (ko) 2017-03-03
CN107690368B (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
BR112014025281B1 (pt) Chapa de aço magnético com grão orientado e método para produção da mesma
RU2509814C1 (ru) Электротехническая листовая сталь с ориентированными зернами и способ ее производства
WO2016105048A1 (ko) 강판 표면 홈 형성 방법 및 그 장치
EP1953249B1 (en) Production method and production system of directional electromagnetic steel plate having excellent magnetic characteristics
CN106181044B (zh) 方向性电磁钢板及其制造方法
WO2015012562A1 (ko) 방향성 전기강판 및 그 제조방법
CN102639726A (zh) 低铁损、高磁通密度取向电工钢板
US9607744B2 (en) Laser processing apparatus and laser irradiation method
CA3052692C (en) Grain-oriented electrical steel sheet
WO2020111735A2 (ko) 방향성 전기강판 및 그의 제조 방법
JP2018035412A (ja) 方向性電磁鋼板の製造方法、及び方向性電磁鋼板
WO2017090853A1 (ko) 레이저 초점 조정 장치 및 방법
WO2020130639A1 (ko) 방향성 전기강판 및 그의 제조 방법
BR112013030612B1 (pt) Aparelho para a fabricação de chapa de aço para fins elétricos de grãos orientados e método para fabricar chapa de aço para fins elétricos de grãos orientados
WO2024012439A1 (zh) 一种用于低铁损取向硅钢板的激光刻痕方法及取向硅钢板
WO2017115888A1 (ko) 방향성 전기 강판의 자구 미세화 방법 및 그 장치
JP2006117964A (ja) 磁気特性の優れた方向性電磁鋼板とその製造方法
WO2022139334A1 (ko) 방향성 전기강판 및 그 자구미세화 방법
WO2024019197A1 (ko) 라인 레이저빔을 사용하여 피절단물을 선형으로 절단하는 방법
JPH0619111B2 (ja) レ−ザスキヤニング装置
WO2020130646A1 (ko) 방향성 전기강판 및 그의 제조 방법
JPS5850297B2 (ja) 磁気特性のすぐれた電磁鋼板
CN117672655A (zh) 一种铁损性能均匀良好的取向硅钢板及其激光刻痕方法
BR112020014316A2 (pt) Chapa de aço elétrico com grão orientado

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017533450

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2972224

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015873575

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15539628

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE