WO2016104384A1 - Rubber or thermoplastic elastomer composition and molded body formed from said composition - Google Patents

Rubber or thermoplastic elastomer composition and molded body formed from said composition Download PDF

Info

Publication number
WO2016104384A1
WO2016104384A1 PCT/JP2015/085578 JP2015085578W WO2016104384A1 WO 2016104384 A1 WO2016104384 A1 WO 2016104384A1 JP 2015085578 W JP2015085578 W JP 2015085578W WO 2016104384 A1 WO2016104384 A1 WO 2016104384A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
thermoplastic elastomer
fiberized
ptfe
composition
Prior art date
Application number
PCT/JP2015/085578
Other languages
French (fr)
Japanese (ja)
Inventor
晋哉 山田
Original Assignee
株式会社 潤工社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 潤工社 filed Critical 株式会社 潤工社
Publication of WO2016104384A1 publication Critical patent/WO2016104384A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene

Definitions

  • the present invention relates to a rubber or thermoplastic elastomer composition and a molded body comprising the composition. More specifically, the present invention relates to a rubber or elastomer composition having improved mechanical strength such as tear strength and modulus while maintaining properties such as flexibility, and a molded article made of the composition.
  • Rubber or thermoplastic elastomers are widely used in various molded articles such as tubes, sheets, packings, cover materials and the like because they are excellent in properties such as flexibility.
  • rubbers or thermoplastic elastomers have the disadvantage that they are inferior in mechanical strength such as tear strength and modulus, and various studies have been conducted to improve the mechanical strength of rubbers or thermoplastic elastomers. It was.
  • rubber or thermoplastic elastomer compositions reinforced with the addition of polytetrafluoroethylene (hereinafter sometimes referred to as “PTFE”) that can be fiberized are being considered.
  • PTFE polytetrafluoroethylene
  • a rubber molded body having high elongation, tear strength, tensile strength and modulus 1 to 20 parts by weight of PTFE powder and an inorganic filler are mixed, and the PTFE powder has a length of 0.1 to 0.5 ⁇ m.
  • the fiber is made into fibers and the inorganic filler is dispersed between the PTFE fibers, and then the fiberized PTFE in which the inorganic filler is dispersed, and 100 parts by weight of rubber and a vulcanizing agent are kneaded.
  • Have been studied for example, see Patent Document 1).
  • the fiberized PTFE in the rubber composition is kneaded with rubber after being subjected to a treatment such as preliminary fiberization before the PTFE powder is kneaded with rubber, and further fiberized. ing.
  • the fiberized PTFE has a structure in which thin fibers branched shortly form a three-dimensional network due to a high shearing force when kneaded with rubber. Since the fibers are short and thin, the reinforcing effect per one fiberized PTFE is small. Therefore, in order to obtain a sufficient reinforcing effect, the blending amount of PTFE is increased.
  • the rubber or thermoplastic elastomer composition in which the fiberized PTFE is dispersed has improved mechanical strength such as tear strength and modulus, but it is considered to suppress the blending amount of PTFE while improving the mechanical strength. I did not come. When the blending amount of PTFE is suppressed, the flexibility of the composition containing fiberized PTFE is maintained, and molding by extrusion molding becomes possible.
  • the problem to be solved by the present invention is that in a rubber or thermoplastic elastomer composition in which fiberized PTFE is dispersed, mechanical strength such as tear strength and modulus is maintained while maintaining the flexibility of the rubber or thermoplastic elastomer.
  • mechanical strength such as tear strength and modulus is maintained while maintaining the flexibility of the rubber or thermoplastic elastomer.
  • Another subject of this invention is provision of the molded object which consists of the said composition.
  • the inventor of the present invention has made extensive studies in order to solve the above problems, and as a result, rubber obtained by kneading PTFE with rubber or a molten thermoplastic elastomer with a low shearing force and having long fiberized PTFE dispersed therein. Or it discovered that a thermoplastic elastomer composition had the said characteristic, and came to complete this invention.
  • the present invention includes (a) a fiberized polytetrafluoroethylene and (b) a rubber or a thermoplastic elastomer, and (a) a surface or a cross section of 415 mm of the molded body in which the fiberized polytetrafluoroethylene is dispersed.
  • 2 is a rubber or thermoplastic elastomer composition in which there are 5 or more of the above-mentioned (a) fiberized polytetrafluoroethylene having a fiber diameter of 1.5 ⁇ m or more and a fiber length of 0.5 mm or more. is there.
  • the above-mentioned (a) fiber having a fiber diameter of 2 ⁇ m or more and a fiber length of 1 mm or more on the surface or cross section of 415 mm 2 of the molded article in which the fiberized polytetrafluoroethylene is dispersed It is a rubber or thermoplastic elastomer composition in which three or more converted polytetrafluoroethylenes are present.
  • the rubber or thermoplastic elastomer composition contains (a) a fiberized polytetrafluoroethylene having a fiber diameter of 1.5 ⁇ m or more and a fiber length of 0.5 mm or more. The number of branches or crossings with a length of 100 ⁇ m or more per fiber is 1 or less.
  • the present invention is a molded article made of the rubber or thermoplastic elastomer composition.
  • the rubber or thermoplastic elastomer composition of the present invention provides a rubber or thermoplastic elastomer molded article having high strength in which long fiberized PTFE is dispersed.
  • the rubber or thermoplastic elastomer composition of the present invention contains (b) rubber or thermoplastic elastomer as a substrate.
  • the rubber is not limited to a specific rubber. Specific examples of the rubber include natural rubber, nitrile / butadiene rubber, styrene / butadiene rubber, isoprene rubber, chloroprene rubber, acrylic rubber, nitrile rubber, polyolefin rubber, fluorine rubber, silicone rubber, and polyurethane rubber.
  • the thermoplastic elastomer is not limited to a specific thermoplastic elastomer.
  • thermoplastic elastomer examples include a fluorine-based elastomer, a polystyrene-based elastomer, a polyolefin-based elastomer, a polyvinyl chloride-based elastomer, a polyurethane-based elastomer, a polyamide-based elastomer, and a polyester-based elastomer.
  • a fluorine-based elastomer examples include a fluorine-based elastomer, a polystyrene-based elastomer, a polyolefin-based elastomer, a polyvinyl chloride-based elastomer, a polyurethane-based elastomer, a polyamide-based elastomer, and a polyester-based elastomer.
  • One or more rubbers or thermoplastic elastomers are used.
  • the rubber or thermoplastic elastomer composition of the present invention comprises (a) fiberized polytetrafluoroethylene.
  • the polytetrafluoroethylene of the present invention may be a fine powder obtained by emulsion polymerization, for example, as long as it can be fiberized by a shearing force. .
  • the primary particle diameter of the fine powder is about 0.2 ⁇ m.
  • the fine powder usually circulates in the state of secondary particles in which primary particles are aggregated and have a particle diameter of about 100 to 500 ⁇ m. When dispersed in a polymer material, The secondary particles are often used after being pulverized.
  • the fine powder is preferably used in the form of secondary particles.
  • fibers of polytetrafluoroethylene when fiberized have a fiber diameter of 1.5 ⁇ m or more and a fiber length of 0.5 mm or more.
  • the fiber diameter is 1.5 ⁇ m or more and the fiber length is 0.5 mm or more
  • Five or more fiberized polytetrafluoroethylenes are present.
  • the rubber or thermoplastic elastomer composition gives a rubber or thermoplastic elastomer molded body having high strength.
  • the fiber diameter is 1.5 ⁇ m or more and the fiber length is 0.5 mm or more.
  • the rubber or thermoplastic elastomer composition of the present invention is a colorant, impact resistance improver, antioxidant, antifungal agent, flame retardant, antistatic agent, filler, ultraviolet absorber, light stabilizer, foaming agent, etc. Other additives may be included.
  • the method for producing the rubber or thermoplastic elastomer composition of the present invention is not limited to a specific method.
  • the preferred production method is as follows. First, (b) rubber or thermoplastic elastomer is kneaded by a kneader.
  • the kneader include a closed kneader, a mixing roll, a single screw extruder, and a twin screw extruder.
  • a screw having a design that does not apply high shear is selected.
  • a non-engagement type screw is preferably used as a twin-screw extruder.
  • the PTFE fine powder is put into a kneading machine kneading the rubber or the thermoplastic elastomer as it is without being pulverized and kneaded while applying a low shearing force, and the PTFE fine powder is made into a fiber.
  • the shearing force and kneading time must be kept to such an extent that the fiber does not break.
  • a kneader or the like generally used for rubber kneading or the like needs to have a sufficiently long kneading time for dispersion, and a Banbury mixer or the like is not preferable because it is excessively sheared.
  • a mixing roll is suitable for kneading with low shear, but when used for kneading the rubber of the present invention, the gap between the rolls is desirably expanded about twice as much as usual.
  • the twin screw extruder is used for kneading the thermoplastic elastomer, the PTFE fine powder is desirably charged into the molten thermoplastic elastomer from the middle of the cylinder by a side feeder and kneaded. Other additives are added at any time.
  • the rubber or thermoplastic elastomer composition of the present invention is molded into a molded body by various molding methods.
  • a preferable molding machine used for molding is a single screw extruder, an injection molding machine or the like.
  • the rubber or thermoplastic elastomer composition of the present invention is easily formed by extrusion.
  • FIG. 1 shows an example of a molded body molded by a single screw extruder.
  • (A) is the tube which shape
  • (B) is a two-layer tube using the rubber or elastomer composition 1 of the present invention as a coating layer
  • (c) is an example of a multilayer tube using the rubber or elastomer composition 1 of the present invention as an intermediate layer. is there.
  • the number of resin layers or layers to be laminated is selected and molded.
  • the rubber or thermoplastic elastomer composition of the present invention can be molded by a compression molding machine or the like as in the prior art. In this case, since the rubber or thermoplastic elastomer composition of the present invention can be molded even if its viscosity is high, the amount of PTFE added may be increased to some extent.
  • the rubber or thermoplastic elastomer is soluble in a solvent
  • the rubber or thermoplastic elastomer composition of the present invention can be dispersed in a solvent and used as a coating agent.
  • Example 1 Fluorine-based elastomer (Dyneon THV221GZ 3M Co., Ltd.) was put into a Labo Plast Mill (Toyo Seiki Seisakusho) mixer and melted at 200 ° C. After confirming that the torque was stable (appropriate viscosity was obtained), PTFE fine powder (F106, Daikin Industries, Ltd.) 1.0 mass% was added and mixed at 200 ° C. for 5 minutes to obtain a sample. It was.
  • Labo Plast Mill Toyo Seiki Seisakusho
  • Example 2 By changing the grade of the PTFE fine powder of Example 1, another PTFE fine powder (640J, Mitsui / DuPont Fluorochemical Co., Ltd.) was melt-kneaded under the same conditions as in Example 1 to obtain a sample.
  • another PTFE fine powder 640J, Mitsui / DuPont Fluorochemical Co., Ltd.
  • Example 3 Silicone rubber (KE581-U, manufactured by Shin-Etsu Chemical Co., Ltd.) was put into a lab plast mill mixer and kneaded at 50 ° C. After confirming that the torque was stable, 1.0% by mass of PTFE fine powder (F106, Daikin Industries, Ltd.) was added and mixed at 50 ° C. for 5 minutes to obtain a sample.
  • PTFE fine powder F106, Daikin Industries, Ltd.
  • Comparative Example 1 A sample was obtained by melting and kneading the fluoroelastomer (THV221GZ) used in Example 1 under the same conditions as in Example 1 without blending PTFE fine powder.
  • Example 2 The silicone rubber (KE581-U Shin-Etsu Chemical Co., Ltd.) used in Example 3 was kneaded under the same conditions as in Example 3 without blending PTFE fine powder to obtain a sample.
  • Comparative Example 3 A sample was prepared with the same composition as in Example 1 except for the kneading time of the lab plast mill mixer under the same conditions. A sample was obtained by setting the kneading time of the Laboplast Mill mixer to 30 minutes.
  • Example 1 and 2 and Comparative Examples 1 and 3 were pressed at 200 ° C. by a hot press to produce a sheet having a thickness of 1 mm, and various physical properties were measured. The results are shown in Table 1.
  • Example 3 and Comparative Example 2 were pressed by a hot press at 170 ° C., vulcanized for 10 minutes in a pressurized state to produce a sheet having a thickness of 1 mm, and various physical properties were measured. . The results are shown in Table 1.
  • Fiber diameter, fiber length, number of branches or intersections The above sample was pressed at a temperature equal to or higher than the melting point of the sample by a press machine with a heater to produce a sheet having a thickness of about 500 ⁇ m.
  • the fiber length and fiber diameter of the PTFE fibers in the sheet are measured using a digital optical microscope (KH-2700 manufactured by Hilox Co., Ltd.), and the fiber diameter is 1.5 ⁇ m which exists on a 24 mm ⁇ 17 mm scale.
  • the number of fiberized PTFE having the fiber length of 0.5 mm or more was measured.
  • the number of branches or intersections having a length of 100 ⁇ m or more was measured for the PTFE fibers measured above and having a fiber diameter of 1.5 ⁇ m or more and a fiber length of 0.5 mm or more.
  • a portion where PTFE fibers intersect with each other is confirmed with a digital optical microscope, and for each intersected fiber, those having different depths of focus of the microscope are not counted as branches or intersections.
  • a high-contrast X-ray CT apparatus can be used to observe the fiber state.
  • Hardness A digital rubber hardness meter DD2 (Polymer Meter Co., Ltd.) was used, and the hardness was measured with Type A.
  • the measurement method conforms to JIS K6253.
  • the sheets obtained from the fluoroelastomer compositions of Examples 1 and 2 have tear strength and 100% modulus compared to the fluoroelastomer sheet of Comparative Example 1 that does not contain fiberized polytetrafluoroethylene. The hardness was improved and the flexibility was maintained. Fiberized polytetrafluoroethylene present on a 24 mm ⁇ 17 mm scale of a sheet in which fiberized polytetrafluoroethylene is dispersed, having a fiber diameter of 1.5 ⁇ m or more and a fiber length of 0.5 mm or more.
  • the tear strength of the sheet obtained from the fluoroelastomer composition of Comparative Example 3 having a number of less than 5 was considerably smaller than the tear strength of the sheets obtained from the fluororubber compositions of Examples 1 and 2.
  • the sheet obtained from the silicone rubber composition of Example 3 has a tear strength, 100% modulus, and elongation at break as compared to the silicone rubber sheet of Comparative Example 2 that does not contain fiberized polytetrafluoroethylene. Improved, hardness remained almost unchanged and flexibility was maintained.
  • the rubber or thermoplastic elastomer composition of the present invention is suitably extruded into a tube.

Abstract

[Problem] To provide an extrusion-moldable rubber or thermoplastic elastomer composition in which PTFE fibers are dispersed, and which has improved mechanical strength such as tear strength and modulus, while maintaining the flexibility of a rubber or thermoplastic elastomer. [Solution] A rubber or thermoplastic elastomer composition which contains (a) polytetrafluoroethylene fibers and (b) a rubber or a thermoplastic elastomer. In 415 mm2 of the surface or a cross-section of a molded body in which the polytetrafluoroethylene fibers (a) are dispersed, there are 5 or more polytetrafluoroethylene fibers (a) that have a fiber diameter of 1.5 μm or more and a fiber length of 0.5 mm or more.

Description

ゴム又は熱可塑性エラストマー組成物及び当該組成物からなる成形体Rubber or thermoplastic elastomer composition and molded article comprising the composition
 本発明は、ゴム又は熱可塑性エラストマー組成物及び当該組成物からなる成形体に関する。更に詳しくは、柔軟性などの特性を維持しながら、引裂強度、モジュラスなどの機械的強度を向上させたゴム又はエラストマー組成物及び当該組成物からなる成形体に関する。 The present invention relates to a rubber or thermoplastic elastomer composition and a molded body comprising the composition. More specifically, the present invention relates to a rubber or elastomer composition having improved mechanical strength such as tear strength and modulus while maintaining properties such as flexibility, and a molded article made of the composition.
 ゴム又は熱可塑性エラストマーは、柔軟性などの特性に優れることから、チューブ、シート、パッキン、カバー材などの各種成形体に広く使用されている。しかし、ゴム又は熱可塑性エラストマーは、引裂強度、モジュラスなどの機械的強度に劣るという欠点を有しており、様々な検討が、ゴム又は熱可塑性エラストマーの機械的強度を向上させるために行われてきた。例えば、繊維化され得るポリテトラフルオロエチレン(以下、「PTFE」と呼ぶ場合がある)が添加され、補強されたゴム又は熱可塑性エラストマー組成物が検討されている。
 高い伸び率、引裂強度、引張強度及びモジュラスを有するゴム成形体を得るため、1~20重量部のPTFE粉末と無機充填剤が混合されて、PTFE粉末が長さ0.1~0.5μmの繊維に繊維化されると共に無機充填剤がPTFEの繊維間に分散され、次いで、上記無機充填剤が分散された繊維化PTFEと、100重量部のゴム及び加硫系薬剤が混練されて製造されるゴム組成物が検討された(例えば、特許文献1参照)。
Rubber or thermoplastic elastomers are widely used in various molded articles such as tubes, sheets, packings, cover materials and the like because they are excellent in properties such as flexibility. However, rubbers or thermoplastic elastomers have the disadvantage that they are inferior in mechanical strength such as tear strength and modulus, and various studies have been conducted to improve the mechanical strength of rubbers or thermoplastic elastomers. It was. For example, rubber or thermoplastic elastomer compositions reinforced with the addition of polytetrafluoroethylene (hereinafter sometimes referred to as “PTFE”) that can be fiberized are being considered.
In order to obtain a rubber molded body having high elongation, tear strength, tensile strength and modulus, 1 to 20 parts by weight of PTFE powder and an inorganic filler are mixed, and the PTFE powder has a length of 0.1 to 0.5 μm. The fiber is made into fibers and the inorganic filler is dispersed between the PTFE fibers, and then the fiberized PTFE in which the inorganic filler is dispersed, and 100 parts by weight of rubber and a vulcanizing agent are kneaded. Have been studied (for example, see Patent Document 1).
 上記ゴム組成物中の繊維化PTFEは、分散性向上のために、PTFE粉末がゴムと混練される前の予備繊維化などの処理に付されてからゴムと混練され、更なる繊維化がされている。更に、上記繊維化PTFEは、ゴムとの混練時の高剪断力により、短く分岐された細い繊維が3次元ネットワークを形成する構造をとっている。繊維が短く細いため、上記繊維化PTFE1本あたりの補強効果は小さいから、十分な補強効果を得るために、PTFEの配合量が多くなる。しかし、PTFEの配合量が多くなると、繊維化PTFEを含む組成物の柔軟性が低下し、また、粘度が高くなり押出成形が不可能になる。一方、PTFEの配合量が少なくなると、繊維化PTFEの存在密度のばらつきの影響を受けやすく、成形体への繊維化PTFEの補強効果が十分に得られない。
 また、成形性を高めるために溶融張力を向上させたり、難燃性、特に滴化防止性を向上させるために繊維化PTFEを分散させた樹脂組成物なども検討されているが、成形体の補強効果はほとんど得られない。
In order to improve dispersibility, the fiberized PTFE in the rubber composition is kneaded with rubber after being subjected to a treatment such as preliminary fiberization before the PTFE powder is kneaded with rubber, and further fiberized. ing. Further, the fiberized PTFE has a structure in which thin fibers branched shortly form a three-dimensional network due to a high shearing force when kneaded with rubber. Since the fibers are short and thin, the reinforcing effect per one fiberized PTFE is small. Therefore, in order to obtain a sufficient reinforcing effect, the blending amount of PTFE is increased. However, when the blending amount of PTFE increases, the flexibility of the composition containing fiberized PTFE decreases, and the viscosity increases and extrusion molding becomes impossible. On the other hand, when the blending amount of PTFE decreases, it is easily affected by variation in the density of the fiberized PTFE, and the reinforcing effect of the fiberized PTFE on the molded body cannot be sufficiently obtained.
In addition, a resin composition in which fiberized PTFE is dispersed to improve melt tension to improve moldability, or to improve flame retardancy, in particular, to prevent dripping, has been studied. The reinforcement effect is hardly obtained.
特開平5-39384号公報JP-A-5-39384
 繊維化PTFEが分散されているゴム又は熱可塑性エラストマー組成物は、引裂強度、モジュラスなどの機械的強度が向上しているが、機械的強度を向上させながらPTFEの配合量を抑えることは検討されてこなかった。PTFEの配合量を抑えると、繊維化PTFEを含む組成物の柔軟性が維持され、押出成形による成形も可能になる。 The rubber or thermoplastic elastomer composition in which the fiberized PTFE is dispersed has improved mechanical strength such as tear strength and modulus, but it is considered to suppress the blending amount of PTFE while improving the mechanical strength. I did not come. When the blending amount of PTFE is suppressed, the flexibility of the composition containing fiberized PTFE is maintained, and molding by extrusion molding becomes possible.
 本発明が解決しようとする課題は、繊維化PTFEが分散されているゴム又は熱可塑性エラストマー組成物において、ゴム又は熱可塑性エラストマーの柔軟性を維持したまま、引裂強度、モジュラスなどの機械的強度を向上させた、押出成形が可能なゴム又は熱可塑性エラストマー組成物の提供である。本発明の別の課題は、当該組成物からなる成形体の提供である。 The problem to be solved by the present invention is that in a rubber or thermoplastic elastomer composition in which fiberized PTFE is dispersed, mechanical strength such as tear strength and modulus is maintained while maintaining the flexibility of the rubber or thermoplastic elastomer. The provision of an improved extrudable rubber or thermoplastic elastomer composition. Another subject of this invention is provision of the molded object which consists of the said composition.
 本発明の発明者は、上記課題を解決するために鋭意検討した結果、PTFEをゴム又は溶融された熱可塑性エラストマーと低い剪断力で混練して得られる、長い繊維化PTFEが分散された、ゴム又は熱可塑性エラストマー組成物が、上記特性を有することを見出し本発明を完成させるに至った。 The inventor of the present invention has made extensive studies in order to solve the above problems, and as a result, rubber obtained by kneading PTFE with rubber or a molten thermoplastic elastomer with a low shearing force and having long fiberized PTFE dispersed therein. Or it discovered that a thermoplastic elastomer composition had the said characteristic, and came to complete this invention.
 本発明は、(a)繊維化されたポリテトラフルオロエチレンと(b)ゴム又は熱可塑性エラストマーを含み、上記(a)繊維化されたポリテトラフルオロエチレンが分散された成形体の表面又は断面415mmにおいて、繊維径が1.5μm以上であり、かつ繊維長が0.5mm以上である上記(a)繊維化されたポリテトラフルオロエチレン5本以上が存在する、ゴム又は熱可塑性エラストマー組成物である。より好ましくは、(a)繊維化されたポリテトラフルオロエチレンが分散された成形体の表面又は断面415mmにおいて、繊維径が2μm以上であり、かつ繊維長が1mm以上である上記(a)繊維化されたポリテトラフルオロエチレン3本以上が存在する、ゴム又は熱可塑性エラストマー組成物である。
 また、好ましくは、上記ゴム又は熱可塑性エラストマー組成物に含まれる、繊維径が1.5μm以上であり、かつ繊維長が0.5mm以上である上記(a)繊維化されたポリテトラフルオロエチレンの繊維1本当たりの、長さが100μm以上の分岐又は交差の数は1個以下である。
The present invention includes (a) a fiberized polytetrafluoroethylene and (b) a rubber or a thermoplastic elastomer, and (a) a surface or a cross section of 415 mm of the molded body in which the fiberized polytetrafluoroethylene is dispersed. 2 is a rubber or thermoplastic elastomer composition in which there are 5 or more of the above-mentioned (a) fiberized polytetrafluoroethylene having a fiber diameter of 1.5 μm or more and a fiber length of 0.5 mm or more. is there. More preferably, (a) the above-mentioned (a) fiber having a fiber diameter of 2 μm or more and a fiber length of 1 mm or more on the surface or cross section of 415 mm 2 of the molded article in which the fiberized polytetrafluoroethylene is dispersed It is a rubber or thermoplastic elastomer composition in which three or more converted polytetrafluoroethylenes are present.
Preferably, the rubber or thermoplastic elastomer composition contains (a) a fiberized polytetrafluoroethylene having a fiber diameter of 1.5 μm or more and a fiber length of 0.5 mm or more. The number of branches or crossings with a length of 100 μm or more per fiber is 1 or less.
 更に、本発明は、上記ゴム又は熱可塑性エラストマー組成物からなる成形体である。 Furthermore, the present invention is a molded article made of the rubber or thermoplastic elastomer composition.
 本発明のゴム又は熱可塑性エラストマー組成物は、長い繊維化PTFEが分散されている、高い強度を有するゴム又は熱可塑性エラストマー成形体を与える。 The rubber or thermoplastic elastomer composition of the present invention provides a rubber or thermoplastic elastomer molded article having high strength in which long fiberized PTFE is dispersed.
単軸押出機で成形した成形体を示す図The figure which shows the molded object molded with the single screw extruder
 本発明のゴム又は熱可塑性エラストマー組成物は、基体として(b)ゴム又は熱可塑性エラストマーを含む。ゴムは特定のゴムに限定されない。ゴムの具体例は、天然ゴム、ニトリル・ブタジエンゴム、スチレン・ブタジエンゴム、イソプレンゴム、クロロプレンゴム、アクリルゴム、ニトリルゴム、ポリオレフィンゴム、フッ素ゴム、シリコーンゴム、ポリウレタンゴムなどである。熱可塑性エラストマーは特定の熱可塑性エラストマーに限定されない。熱可塑性エラストマーの具体例は、フッ素系エラストマー、ポリスチレン系エラストマー、ポリオレフィン系エラストマー、ポリ塩化ビニル系エラストマー、ポリウレタン系エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマーなどである。1種又は2種以上のゴム又は熱可塑性エラストマーが使用される。 The rubber or thermoplastic elastomer composition of the present invention contains (b) rubber or thermoplastic elastomer as a substrate. The rubber is not limited to a specific rubber. Specific examples of the rubber include natural rubber, nitrile / butadiene rubber, styrene / butadiene rubber, isoprene rubber, chloroprene rubber, acrylic rubber, nitrile rubber, polyolefin rubber, fluorine rubber, silicone rubber, and polyurethane rubber. The thermoplastic elastomer is not limited to a specific thermoplastic elastomer. Specific examples of the thermoplastic elastomer include a fluorine-based elastomer, a polystyrene-based elastomer, a polyolefin-based elastomer, a polyvinyl chloride-based elastomer, a polyurethane-based elastomer, a polyamide-based elastomer, and a polyester-based elastomer. One or more rubbers or thermoplastic elastomers are used.
 本発明のゴム又は熱可塑性エラストマー組成物は、(a)繊維化されたポリテトラフルオロエチレンを含む。本発明のポリテトラフルオロエチレンは、例えば乳化重合によって得られるファインパウダーで、剪断力で繊維化されるものであればよく、10質量%以下の異種モノマーが共重合され得るポリテトラフルオロエチレンである。一般に、当該ファインパウダーの一次粒子径は0.2μm程度である。当該ファインパウダーは、通常、一次粒子が凝集した、粒子径が100~500μm程度の二次粒子の状態で流通しており、高分子材料へ分散される際には、分散性を高めるために、当該2次粒子を粉砕して用いられることが多い。本発明のゴム又は熱可塑性エラストマー組成物には、当該ファインパウダーは、好ましくは、二次粒子の形態で使用される。二次粒子の形態で使用することにより、繊維化された時のポリテトラフルオロエチレンの繊維は、繊維径が1.5μm以上であり、かつ繊維長が0.5mm以上であるものが多く形成される。その結果、(a)繊維化されたポリテトラフルオロエチレンが分散された成形体の表面又は断面415mmにおいて、繊維径が1.5μm以上であり、かつ繊維長が0.5mm以上である(a)繊維化されたポリテトラフルオロエチレン5本以上が存在するようになる。 The rubber or thermoplastic elastomer composition of the present invention comprises (a) fiberized polytetrafluoroethylene. The polytetrafluoroethylene of the present invention may be a fine powder obtained by emulsion polymerization, for example, as long as it can be fiberized by a shearing force. . Generally, the primary particle diameter of the fine powder is about 0.2 μm. The fine powder usually circulates in the state of secondary particles in which primary particles are aggregated and have a particle diameter of about 100 to 500 μm. When dispersed in a polymer material, The secondary particles are often used after being pulverized. In the rubber or thermoplastic elastomer composition of the present invention, the fine powder is preferably used in the form of secondary particles. When used in the form of secondary particles, many fibers of polytetrafluoroethylene when fiberized have a fiber diameter of 1.5 μm or more and a fiber length of 0.5 mm or more. The As a result, (a) on the surface or cross-section 415 mm 2 of the molded product in which the fiberized polytetrafluoroethylene is dispersed, the fiber diameter is 1.5 μm or more and the fiber length is 0.5 mm or more (a ) Five or more fiberized polytetrafluoroethylenes are present.
 (a)繊維化されたポリテトラフルオロエチレンの繊維径が上記範囲にあるから、(a)繊維化されたポリテトラフルオロエチレンは切断され難く、本発明のゴム又は熱可塑性エラストマー組成物は高い引裂強度を有する。(a)繊維化されたポリテトラフルオロエチレンの繊維長が上記範囲にあるから、(a)繊維化されたポリテトラフルオロエチレンと(b)ゴム又は熱可塑性エラストマーとの接触面積が大きくなる。従来の繊維化PTFEを分散させた組成物では、繊維1本当たりの接触面積は大きくとも0.00015mm程度なのに比べ、本発明の繊維化PTFEの接触面積は0.0025mm以上である。接触面積が大きいことで、接触面での摩擦力が大きくなって、ポリテトラフルオロエチレンの添加量が少なくても(a)繊維化されたポリテトラフルオロエチレンによる高い補強効果が得られる。更に、5本以上の(a)繊維化されたポリテトラフルオロエチレンが、(a)繊維化されたポリテトラフルオロエチレンが分散された成形体の表面又は断面415mmにおいて存在するから、本発明のゴム又は熱可塑性エラストマー組成物は、高い強度を有するゴム又は熱可塑性エラストマー成形体を与える。 (A) Since the fiber diameter of the fiberized polytetrafluoroethylene is in the above range, (a) the fiberized polytetrafluoroethylene is difficult to cut, and the rubber or thermoplastic elastomer composition of the present invention has high tearing. Has strength. Since the fiber length of (a) fiberized polytetrafluoroethylene is in the above range, the contact area between (a) fiberized polytetrafluoroethylene and (b) rubber or thermoplastic elastomer is increased. In a conventional composition in which fiberized PTFE is dispersed, the contact area per fiber is at most about 0.00015 mm 2, whereas the contact area of the fiberized PTFE of the present invention is 0.0025 mm 2 or more. Since the contact area is large, the frictional force at the contact surface is increased, and even if the amount of polytetrafluoroethylene added is small, (a) a high reinforcing effect by the fiberized polytetrafluoroethylene can be obtained. Further, since five or more (a) fiberized polytetrafluoroethylenes are present on the surface or cross-section 415 mm 2 of the molded body in which (a) fiberized polytetrafluoroethylene is dispersed, The rubber or thermoplastic elastomer composition gives a rubber or thermoplastic elastomer molded body having high strength.
 好ましくは、繊維径が1.5μm以上であり、かつ繊維長が0.5mm以上である(a)繊維化されたポリテトラフルオロエチレン繊維1本当たりの、長さが100μm以上の分岐又は交差の数が1個以下である。つまり、(a)繊維化されたポリテトラフルオロエチレンの分岐と交差は少なく、(a)繊維化されたポリテトラフルオロエチレンのネットワークが粗であるから、本発明のゴム又は熱可塑性エラストマー組成物は高い柔軟性を有し得る。
 本発明のゴム又は熱可塑性エラストマー組成物は、着色剤、耐衝撃性改良剤、酸化防止剤、防黴剤、難燃剤、帯電防止剤、充填剤、紫外線吸収剤、光安定剤、発泡剤等の、その他の添加剤を含有し得る。
Preferably, the fiber diameter is 1.5 μm or more and the fiber length is 0.5 mm or more. (A) A branched or intersecting length of 100 μm or more per one fiberized polytetrafluoroethylene fiber The number is 1 or less. That is, (a) there are few branches and crossings of the fiberized polytetrafluoroethylene, and (a) the network of the fiberized polytetrafluoroethylene is rough, so the rubber or thermoplastic elastomer composition of the present invention is It can have high flexibility.
The rubber or thermoplastic elastomer composition of the present invention is a colorant, impact resistance improver, antioxidant, antifungal agent, flame retardant, antistatic agent, filler, ultraviolet absorber, light stabilizer, foaming agent, etc. Other additives may be included.
 本発明のゴム又は熱可塑性エラストマー組成物の製造方法は特定の方法に限定されない。好ましい当該製造方法は、次のとおりである。まず、(b)ゴム又は熱可塑性エラストマーが混練機で混練される。混練機の具体例は、密閉型混練機、ミキシングロール、単軸押出機、2軸押出機である。いずれも、高せん断がかからないデザインのスクリューなどが選定され、例えば、2軸押出機として、好ましくは、非噛み合い型スクリューが使用される。次いで、PTFEファインパウダーが、粉砕せずにそのまま(b)ゴム又は熱可塑性エラストマーを混練している混練機に投入され、低い剪断力が付与されながら混練され、当該PTFEファインパウダーが繊維化される。このとき、繊維が破断しない程度のせん断力や混練時間に留めておかなければならない。ゴムの混練などで一般に用いられるニーダーなどは、分散させるために混練時間を十分に長くする必要があり、また、バンバリーミキサーなどはせん断がかかりすぎるため好ましくない。例えば、ミキシングロールは低せん断での混練に向くが、本発明のゴムの混練に使用される場合、ロール間のギャップは、望ましくは通常より2倍程度広げられる。また、2軸押出機が熱可塑性エラストマーの混練に使用される場合、当該PTFEファインパウダーは、望ましくはサイドフィーダーによりシリンダーの途中から溶融した熱可塑性エラストマーへ投入され、混練される。その他の添加剤は、任意の時期に添加される。  The method for producing the rubber or thermoplastic elastomer composition of the present invention is not limited to a specific method. The preferred production method is as follows. First, (b) rubber or thermoplastic elastomer is kneaded by a kneader. Specific examples of the kneader include a closed kneader, a mixing roll, a single screw extruder, and a twin screw extruder. In any case, a screw having a design that does not apply high shear is selected. For example, a non-engagement type screw is preferably used as a twin-screw extruder. Next, the PTFE fine powder is put into a kneading machine kneading the rubber or the thermoplastic elastomer as it is without being pulverized and kneaded while applying a low shearing force, and the PTFE fine powder is made into a fiber. . At this time, the shearing force and kneading time must be kept to such an extent that the fiber does not break. A kneader or the like generally used for rubber kneading or the like needs to have a sufficiently long kneading time for dispersion, and a Banbury mixer or the like is not preferable because it is excessively sheared. For example, a mixing roll is suitable for kneading with low shear, but when used for kneading the rubber of the present invention, the gap between the rolls is desirably expanded about twice as much as usual. Further, when the twin screw extruder is used for kneading the thermoplastic elastomer, the PTFE fine powder is desirably charged into the molten thermoplastic elastomer from the middle of the cylinder by a side feeder and kneaded. Other additives are added at any time. *
 本発明のゴム又は熱可塑性エラストマー組成物は、種々の成形方法で成形体に成形される。成形に使用される好ましい成形機は、単軸押出機、射出成形機などである。本発明のゴム又は熱可塑性エラストマー組成物は、補強材として繊維化されたPTFEを含む従来のゴム又はエラストマー組成物と異なり、容易に押出成形で成形される。例えば、単軸押出機で成形した成形体の一例を図1に示す。(a)は、本発明のゴム又はエラストマー組成物1を単層で成形したチューブである。(b)は、本発明のゴム又はエラストマー組成物1を被覆層として使用した2層チューブであり、(c)は、本発明のゴム又はエラストマー組成物1を中間層とした多層チューブの例である。必要な特性に応じて、積層する樹脂または積層する層の数を選定して成形する。また、本発明のゴム又は熱可塑性エラストマー組成物は、従来のように圧縮成形機などで成形され得る。この場合、本発明のゴム又は熱可塑性エラストマー組成物は、その粘度が高くても成形可能であるため、PTFEの添加量がある程度多くされていても良い。(b)ゴム又は熱可塑性エラストマーが、溶剤に可溶である場合、本発明のゴム又は熱可塑性エラストマー組成物は、溶剤に分散されてコーティング剤として利用可能である。 The rubber or thermoplastic elastomer composition of the present invention is molded into a molded body by various molding methods. A preferable molding machine used for molding is a single screw extruder, an injection molding machine or the like. Unlike the conventional rubber or elastomer composition containing PTFE fiberized as a reinforcing material, the rubber or thermoplastic elastomer composition of the present invention is easily formed by extrusion. For example, FIG. 1 shows an example of a molded body molded by a single screw extruder. (A) is the tube which shape | molded the rubber | gum or elastomer composition 1 of this invention by the single layer. (B) is a two-layer tube using the rubber or elastomer composition 1 of the present invention as a coating layer, and (c) is an example of a multilayer tube using the rubber or elastomer composition 1 of the present invention as an intermediate layer. is there. Depending on the required characteristics, the number of resin layers or layers to be laminated is selected and molded. Further, the rubber or thermoplastic elastomer composition of the present invention can be molded by a compression molding machine or the like as in the prior art. In this case, since the rubber or thermoplastic elastomer composition of the present invention can be molded even if its viscosity is high, the amount of PTFE added may be increased to some extent. (B) When the rubber or thermoplastic elastomer is soluble in a solvent, the rubber or thermoplastic elastomer composition of the present invention can be dispersed in a solvent and used as a coating agent.
 以下、実施例により本発明が詳細に説明されるが、本発明はこれらの実施例に限定されない。
実施例1
 フッ素系エラストマー(ダイニオンTHV221GZ 3M(株)製)がラボプラストミル((株)東洋精機製作所製)ミキサーに投入され、200℃で溶融された。トルクが安定した(適した粘度になった)ことを確認して、PTFEファインパウダー(F106 ダイキン工業(株)製)1.0質量%が投入され、200℃で5分間混合され、試料が得られた。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
Example 1
Fluorine-based elastomer (Dyneon THV221GZ 3M Co., Ltd.) was put into a Labo Plast Mill (Toyo Seiki Seisakusho) mixer and melted at 200 ° C. After confirming that the torque was stable (appropriate viscosity was obtained), PTFE fine powder (F106, Daikin Industries, Ltd.) 1.0 mass% was added and mixed at 200 ° C. for 5 minutes to obtain a sample. It was.
実施例2
 実施例1のPTFEファインパウダーのグレードを変えて、別のPTFEファインパウダー(640J 三井・デュポンフロロケミカル(株)製)が、実施例1と同様の条件で溶融混練され、試料が得られた。
Example 2
By changing the grade of the PTFE fine powder of Example 1, another PTFE fine powder (640J, Mitsui / DuPont Fluorochemical Co., Ltd.) was melt-kneaded under the same conditions as in Example 1 to obtain a sample.
実施例3
シリコーンゴム(KE581-U 信越化学工業(株)製)がラボプラストミルミキサーに投入され、50℃で混練された。トルクが安定したことを確認して、PTFEファインパウダー(F106 ダイキン工業(株)製)1.0質量%が投入され、50℃で5分間混合され、試料が得られた。
Example 3
Silicone rubber (KE581-U, manufactured by Shin-Etsu Chemical Co., Ltd.) was put into a lab plast mill mixer and kneaded at 50 ° C. After confirming that the torque was stable, 1.0% by mass of PTFE fine powder (F106, Daikin Industries, Ltd.) was added and mixed at 50 ° C. for 5 minutes to obtain a sample.
比較例1
 実施例1で使用したフッ素系エラストマー(THV221GZ)にPTFEファインパウダーを配合せずに、実施例1と同様の条件で溶融混練され、試料が得られた。
Comparative Example 1
A sample was obtained by melting and kneading the fluoroelastomer (THV221GZ) used in Example 1 under the same conditions as in Example 1 without blending PTFE fine powder.
比較例2
実施例3で使用したシリコーンゴム(KE581-U 信越化学工業(株)製)にPTFEファインパウダーを配合せずに、実施例3と同様の条件で混練され、試料が得られた。
Comparative Example 2
The silicone rubber (KE581-U Shin-Etsu Chemical Co., Ltd.) used in Example 3 was kneaded under the same conditions as in Example 3 without blending PTFE fine powder to obtain a sample.
比較例3
 実施例1と同じ組成で、ラボプラストミルミキサーの混練時間以外は同様の条件で溶融混練され、試料が作成された。ラボプラストミルミキサーの混練時間を30分間として試料が得られた。
Comparative Example 3
A sample was prepared with the same composition as in Example 1 except for the kneading time of the lab plast mill mixer under the same conditions. A sample was obtained by setting the kneading time of the Laboplast Mill mixer to 30 minutes.
実施例1、2及び比較例1、3で得られた各試料は、ホットプレスにより200℃で加圧され、厚さ1mmのシートが作製され、各種物性が測定された。結果が表1に示される。
実施例3及び比較例2で得られた各試料は、ホットプレスにより170℃で加圧され、加圧状態で10分間加硫されて厚さ1mmのシートが作製され、各種物性が測定された。結果が表1に示される。
Each sample obtained in Examples 1 and 2 and Comparative Examples 1 and 3 was pressed at 200 ° C. by a hot press to produce a sheet having a thickness of 1 mm, and various physical properties were measured. The results are shown in Table 1.
Each sample obtained in Example 3 and Comparative Example 2 was pressed by a hot press at 170 ° C., vulcanized for 10 minutes in a pressurized state to produce a sheet having a thickness of 1 mm, and various physical properties were measured. . The results are shown in Table 1.
 各種物性と測定方法は下記のとおりである。
(1)繊維径、繊維長、分岐又は交差の数
 上記試料が、加熱ヒーター付プレス機により、試料の融点以上の温度で加圧され、厚さ500μm程度のシートが作製された。当該シート中のPTFE繊維の繊維長と繊維径が、デジタル式光学顕微鏡((株)ハイロックス製KH-2700)が使用されて測定され、24mm×17mmスケールに存在する、繊維径が1.5μm以上であり、かつ繊維長が0.5mm以上である繊維化PTFEの数が計測された。
 また、上で計測した、繊維径が1.5μm以上であり、かつ繊維長が0.5mm以上であるPTFE繊維について、100μm以上の長さを有する分岐または交差の数が計測された。PTFE繊維同士が交わった部分をデジタル光学顕微鏡で確認し、交わった各繊維について、顕微鏡の焦点深度が異なるものは分岐又は交差としてカウントされない。より精密な測定方法として、高コントラストX線CT装置を使用し、繊維の状態を観察できる。
Various physical properties and measurement methods are as follows.
(1) Fiber diameter, fiber length, number of branches or intersections The above sample was pressed at a temperature equal to or higher than the melting point of the sample by a press machine with a heater to produce a sheet having a thickness of about 500 μm. The fiber length and fiber diameter of the PTFE fibers in the sheet are measured using a digital optical microscope (KH-2700 manufactured by Hilox Co., Ltd.), and the fiber diameter is 1.5 μm which exists on a 24 mm × 17 mm scale. The number of fiberized PTFE having the fiber length of 0.5 mm or more was measured.
Further, the number of branches or intersections having a length of 100 μm or more was measured for the PTFE fibers measured above and having a fiber diameter of 1.5 μm or more and a fiber length of 0.5 mm or more. A portion where PTFE fibers intersect with each other is confirmed with a digital optical microscope, and for each intersected fiber, those having different depths of focus of the microscope are not counted as branches or intersections. As a more precise measurement method, a high-contrast X-ray CT apparatus can be used to observe the fiber state.
(2)引裂強度
 上記厚さ1mmのシートが、切り込み有りアングル形打ち抜き型が使用されて打ち抜かれ、試験片が作製された。当該試験片が破断されるまでの引張応力の最高値が、引張試験機((株)島津製作所製オートグラフAGS-J)が使用され、チャック間距離50mm、引張速度500mm/minで測定された。測定方法は、JIS K6252に準ずる。
(2) Tear strength The sheet having a thickness of 1 mm was punched using an angled punching die with a cut, and a test piece was produced. The maximum value of the tensile stress until the test piece was broken was measured using a tensile tester (Autograph AGS-J, manufactured by Shimadzu Corporation) at a distance between chucks of 50 mm and a tensile speed of 500 mm / min. . The measurement method conforms to JIS K6252.
(3)引張強度
 上記厚さ1mmのシートが、JIS3号ダンベル形打ち抜き型が使用されて打ち抜かれ、試験片が作製された。当該試験片の破断伸び率、100%モジュラスが、引張試験機((株)島津製作所製オートグラフAGS-J)が使用され、チャック間距離60mm、引張速度500mm/minで測定された。測定方法は、JIS K6251に準ずる。
(3) Tensile strength The sheet having the thickness of 1 mm was punched out using a JIS No. 3 dumbbell-shaped punching die to produce a test piece. The tensile elongation at break and 100% modulus of the test piece were measured using a tensile tester (Autograph AGS-J, manufactured by Shimadzu Corporation) at a distance between chucks of 60 mm and a tensile speed of 500 mm / min. The measuring method conforms to JIS K6251.
(4)硬度
 デジタルゴム硬度計DD2(高分子計器(株))が使用され、硬度がタイプAで測定された。測定方法は、JIS K6253に準ずる。
(4) Hardness A digital rubber hardness meter DD2 (Polymer Meter Co., Ltd.) was used, and the hardness was measured with Type A. The measurement method conforms to JIS K6253.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
1)スリーエムジャパン(株)製THV221GZ
2)信越化学工業(株)製KE581U
3)ダイキン工業(株)製F106
4)三井・デュポンフロロケミカル(株)製640J
1) THV221GZ manufactured by 3M Japan
2) KE581U manufactured by Shin-Etsu Chemical Co., Ltd.
3) Daikin Industries, Ltd. F106
4) 640J manufactured by Mitsui & DuPont Fluorochemical Co., Ltd.
 実施例1及び2のフッ素系エラストマー組成物から得られたシートは、繊維化されたポリテトラフルオロエチレンを含まない比較例1のフッ素系エラストマーのシートと比較して、引裂強度及び100%モジュラスが向上し、硬度はほとんど変わらず、柔軟性が維持された。繊維化されたポリテトラフルオロエチレンが分散されたシートの24mm×17mmスケールに存在する、繊維径が1.5μm以上であり、かつ繊維長が0.5mm以上である繊維化されたポリテトラフルオロエチレンの数が5本未満である比較例3のフッ素系エラストマー組成物から得られたシートの引裂強度は、実施例1及び2のフッ素ゴム組成物から得られたシートの引裂強度よりかなり小さかった。実施例3のシリコーンゴム組成物から得られたシートは、繊維化されたポリテトラフルオロエチレンを含まない比較例2のシリコーンゴムのシートと比較して、引裂強度、100%モジュラス、及び破断伸び率が向上し、硬度はほとんど変わらず、柔軟性が維持された。 The sheets obtained from the fluoroelastomer compositions of Examples 1 and 2 have tear strength and 100% modulus compared to the fluoroelastomer sheet of Comparative Example 1 that does not contain fiberized polytetrafluoroethylene. The hardness was improved and the flexibility was maintained. Fiberized polytetrafluoroethylene present on a 24 mm × 17 mm scale of a sheet in which fiberized polytetrafluoroethylene is dispersed, having a fiber diameter of 1.5 μm or more and a fiber length of 0.5 mm or more The tear strength of the sheet obtained from the fluoroelastomer composition of Comparative Example 3 having a number of less than 5 was considerably smaller than the tear strength of the sheets obtained from the fluororubber compositions of Examples 1 and 2. The sheet obtained from the silicone rubber composition of Example 3 has a tear strength, 100% modulus, and elongation at break as compared to the silicone rubber sheet of Comparative Example 2 that does not contain fiberized polytetrafluoroethylene. Improved, hardness remained almost unchanged and flexibility was maintained.
 本発明のゴム又は熱可塑性エラストマー組成物は、好適にチューブに押出成形される。 The rubber or thermoplastic elastomer composition of the present invention is suitably extruded into a tube.
1・・・ゴム又はエラストマー組成物 1 ... Rubber or elastomer composition

Claims (3)

  1.  (a)繊維化されたポリテトラフルオロエチレンと(b)ゴム又は熱可塑性エラストマーを含み、
     上記(a)繊維化されたポリテトラフルオロエチレンが分散された成形体の、表面又は断面415mmにおいて、繊維径が1.5μm以上であり、かつ繊維長が0.5mm以上である上記(a)繊維化されたポリテトラフルオロエチレン5本以上が存在する、ゴム又は熱可塑性エラストマー組成物。
    (A) comprising fiberized polytetrafluoroethylene and (b) rubber or thermoplastic elastomer,
    (A) In the surface or cross section of 415 mm 2 of the molded product in which the fiberized polytetrafluoroethylene is dispersed, the fiber diameter is 1.5 μm or more and the fiber length is 0.5 mm or more (a ) A rubber or thermoplastic elastomer composition containing 5 or more of fiberized polytetrafluoroethylene.
  2.  繊維径が1.5μm以上であり、かつ繊維長が0.5mm以上である上記(a)繊維化されたポリテトラフルオロエチレンの繊維1本当たりの、長さが100μm以上の分岐又は交差の数が1個以下である、請求項1に記載されているゴム又は熱可塑性エラストマー組成物。 Number of branches or crossings having a length of 100 μm or more per fiber of the above-mentioned (a) fiberized polytetrafluoroethylene having a fiber diameter of 1.5 μm or more and a fiber length of 0.5 mm or more The rubber or thermoplastic elastomer composition according to claim 1, wherein is one or less.
  3.  請求項1又は2に記載されているゴム又は熱可塑性エラストマー組成物からなる成形体。 A molded article comprising the rubber or thermoplastic elastomer composition described in claim 1 or 2.
PCT/JP2015/085578 2014-12-26 2015-12-18 Rubber or thermoplastic elastomer composition and molded body formed from said composition WO2016104384A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014265864A JP6470968B2 (en) 2014-12-26 2014-12-26 Rubber or thermoplastic elastomer composition and molded article comprising the composition
JP2014-265864 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016104384A1 true WO2016104384A1 (en) 2016-06-30

Family

ID=56150403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085578 WO2016104384A1 (en) 2014-12-26 2015-12-18 Rubber or thermoplastic elastomer composition and molded body formed from said composition

Country Status (2)

Country Link
JP (1) JP6470968B2 (en)
WO (1) WO2016104384A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7036035B2 (en) * 2017-01-12 2022-03-15 コニカミノルタ株式会社 Method for manufacturing resin composition and three-dimensional model
US20230028144A1 (en) * 2019-12-11 2023-01-26 Ntn Corporation Shaft seal
JP7390177B2 (en) * 2019-12-11 2023-12-01 Ntn株式会社 shaft seal
WO2022019286A1 (en) * 2020-07-21 2022-01-27 パナソニックIpマネジメント株式会社 Shock absorbing sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306212A (en) * 1993-04-23 1994-11-01 Kanegafuchi Chem Ind Co Ltd Polyolefinic resin composition
JPH08165358A (en) * 1994-12-14 1996-06-25 Kanegafuchi Chem Ind Co Ltd Polyolefin sheet for thermal forming
JPH08253692A (en) * 1995-03-15 1996-10-01 Hitachi Cable Ltd Synthetic resin composition
JP2001172611A (en) * 1999-12-20 2001-06-26 Nichias Corp Joint sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306212A (en) * 1993-04-23 1994-11-01 Kanegafuchi Chem Ind Co Ltd Polyolefinic resin composition
JPH08165358A (en) * 1994-12-14 1996-06-25 Kanegafuchi Chem Ind Co Ltd Polyolefin sheet for thermal forming
JPH08253692A (en) * 1995-03-15 1996-10-01 Hitachi Cable Ltd Synthetic resin composition
JP2001172611A (en) * 1999-12-20 2001-06-26 Nichias Corp Joint sheet

Also Published As

Publication number Publication date
JP6470968B2 (en) 2019-02-13
JP2016124940A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
WO2016104384A1 (en) Rubber or thermoplastic elastomer composition and molded body formed from said composition
JP6958546B2 (en) Fluorine-containing copolymer composition, its production method, and molded article
CN103298879B (en) Elastica/fiber prescription
JP7405074B2 (en) Speaker diaphragm and medical catheter
JP6369961B2 (en) Molding material and heat shrinkable tube made of the molding material
JP6015857B2 (en) Processing aids and compositions
EP2241773A2 (en) Sliding bearing
JP2013133363A (en) Production method for polymer composition and production method for additive for polymer composition
JP2017044335A (en) Heat shrinkage tube with tear characteristic
US9957384B2 (en) Heat-shrinkable tube having tearability
JP6749640B2 (en) Method for manufacturing resin molded body
JP6220768B2 (en) Ultra high molecular weight polyethylene resin composition and method for producing the same
Arayapranee et al. A comparison of the properties of rice husk ash, silica, and calcium carbonate filled 75: 25 NR/EPDM blends
JP5367456B2 (en) Rigid polyvinyl chloride resin composition for injection molding and use thereof
KR102151932B1 (en) Polyethylene-based resin composition and polyethylene-based film
JP2017109859A (en) Sheet feed roller and method for manufacturing the same
JP2019127580A (en) Polyolefin resin composition
JP4192007B2 (en) Thermoplastic elastomer composition having a high coefficient of friction and anti-slip member comprising the same
JP2016222937A (en) Carbon fiber composite material and method for producing thereof
WO2018129115A1 (en) Polyorganosiloxane and polyolefin blend composition in drawn polymer products
JP2012067257A (en) Polyvinyl chloride resin composition and flexible cable protecting tube
JP2018059004A (en) Vinyl chloride-based resin composition and extrusion molding for window frame
JP6009090B2 (en) 2-mercaptoimidazoline-containing masterbatch for chloroprene rubber compound
JP2017066352A (en) Resin composition for slide components and method for producing the same
UEMATSU et al. Origin of reduction in extrudate swell of molten polymer by adding of rigid fillers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872952

Country of ref document: EP

Kind code of ref document: A1