JP6749640B2 - Method for manufacturing resin molded body - Google Patents

Method for manufacturing resin molded body Download PDF

Info

Publication number
JP6749640B2
JP6749640B2 JP2016229412A JP2016229412A JP6749640B2 JP 6749640 B2 JP6749640 B2 JP 6749640B2 JP 2016229412 A JP2016229412 A JP 2016229412A JP 2016229412 A JP2016229412 A JP 2016229412A JP 6749640 B2 JP6749640 B2 JP 6749640B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin
melting point
fine powder
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016229412A
Other languages
Japanese (ja)
Other versions
JP2018083926A (en
Inventor
祐一郎 角
祐一郎 角
重樹 黒木
重樹 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TBM Co Ltd
Original Assignee
TBM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TBM Co Ltd filed Critical TBM Co Ltd
Priority to JP2016229412A priority Critical patent/JP6749640B2/en
Priority to PCT/JP2017/037343 priority patent/WO2018096834A1/en
Publication of JP2018083926A publication Critical patent/JP2018083926A/en
Application granted granted Critical
Publication of JP6749640B2 publication Critical patent/JP6749640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene

Description

本発明は、樹脂成形体の製造方法に関する。 The present invention relates to a method for manufacturing a resin molded body.

熱可塑性樹脂に無機微細粉末を配合して樹脂成形体を製造する場合、白色度、不透明度などの光学的性質と、弾性率、曲げ強さなどの力学的性質をバランスさせることが重要である。 When blending inorganic fine powder with a thermoplastic resin to produce a resin molded body, it is important to balance optical properties such as whiteness and opacity with mechanical properties such as elastic modulus and bending strength. ..

無機微細粉末高配合の樹脂成形体のシートを得るために、無機微細粉末を樹脂に高配合してシートをつくり、さらに該シートを延伸する方法が提案されている。すなわち特許文献1には、無機物質粉末を60重量%〜82重量%、熱可塑性樹脂を18重量%〜40重量%含む樹脂組成物を混練後ダイスを通してシート状に成形した後、縦または/及び横方向に延伸して、白色度及び不透明度を向上させてつくる無機物質粉末高配合薄膜シートの製造方法が開示されている。 In order to obtain a sheet of a resin molded product having a high content of inorganic fine powder, a method has been proposed in which inorganic fine powder is highly mixed with a resin to form a sheet, and the sheet is further stretched. That is, in Patent Document 1, after kneading a resin composition containing 60% by weight to 82% by weight of an inorganic powder and 18% by weight to 40% by weight of a thermoplastic resin, the resin composition is formed into a sheet through a die, and then vertically or/and Disclosed is a method for producing a thin film sheet having a high content of an inorganic substance powder, which is produced by stretching in the transverse direction to improve whiteness and opacity.

特開2013−10931号公報JP, 2013-10931, A

熱可塑性樹脂を主成分とするプラスチックシートは、一般に、透明乃至は透明に近い。このシートに無機微細粉末を充填していくと、シートの不透明度が向上するが、白色度は低いレベルにとどまる。 A plastic sheet containing a thermoplastic resin as a main component is generally transparent or nearly transparent. When this sheet is filled with the inorganic fine powder, the opacity of the sheet is improved, but the whiteness remains at a low level.

上記の場合でも、延伸倍率を高めると、白色度は顕著に向上し、不透明度も若干向上するが、曲げ強さは低下する。しかし、その後、実用面で、延伸したシートの、特に曲げ強さに問題が出始めた。 Even in the above case, when the stretch ratio is increased, the whiteness is remarkably improved and the opacity is slightly improved, but the bending strength is decreased. However, after that, practically, a problem began to occur in the stretched sheet, particularly in bending strength.

一方で、熱可塑性樹脂を主成分とする樹脂成形体シートを延伸処理する場合、通常延伸後に原料の熱可塑性樹脂のガラス転移点または軟化点または軟化点以下で熱処理(いわゆるアニーリング処理)を行なうことが多い。その目的は、その前工程までに生じたシート内の残留応力により製品となった後に起る寸法変化や強度の低下を防ぐことにある。 On the other hand, when a resin molded sheet containing a thermoplastic resin as a main component is subjected to a stretching treatment, a heat treatment (so-called annealing treatment) is usually performed after stretching at a glass transition point or a softening point of the raw material thermoplastic resin or below the softening point. There are many. The purpose is to prevent dimensional changes and reduction in strength that occur after the product is finished due to residual stress in the sheet that has occurred up to the preceding process.

しかし、上記アニーリング処理といわれる熱処理としては、通常は長時間以上にわたって高温度に保つ方法が多い。 However, as the heat treatment called the above-mentioned annealing treatment, there are usually many methods of maintaining the high temperature for a long time or longer.

本発明は以上の実情に鑑みてなされたものであり、白色度及び不透明度等の光学的性質を出来る限り高く保ちながら、弾性率及び曲げ強さが優れた樹脂成形体の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a method for producing a resin molded article having excellent elastic modulus and bending strength while maintaining optical properties such as whiteness and opacity as high as possible. The purpose is to

本発明者らは、まず延伸によって、シートの白色度及び不透明度の光学的性質と曲げ強さのバランスがどのように変わるか実験したところ、下記の表1のような結果を得た。すなわち、無機微細粉末を充填し、延伸を強めていくと、白色度は顕著に向上し、不透明度も若干ではあるが上昇し、測定値として100%に到達したものもある。しかし、曲げ強さは著しく減少し、引張強さにも減少の傾向が認められた。 The inventors of the present invention first conducted an experiment to find out how the balance between the optical properties of whiteness and opacity and the bending strength of the sheet was changed by stretching, and the results shown in Table 1 below were obtained. That is, when the inorganic fine powder is filled and the stretching is strengthened, the whiteness is remarkably improved, and the opacity is slightly increased, and the measured value reaches 100% in some cases. However, the bending strength was remarkably reduced, and the tensile strength also tended to decrease.

本発明者らは、上記問題点を改善するため、融点の異なる2種類の熱可塑性樹脂について、延伸後の熱処理温度を、一方の融点より高い温度かつ他方の融点以下で行うことで、白色度及び不透明度を出来る限り高く保持しながら、弾性率及び曲げ強さが優れた樹脂成形体を得られることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のようなものを提供することを目的とする。 In order to improve the above-mentioned problems, the inventors of the present invention perform a heat treatment temperature after stretching for two types of thermoplastic resins having different melting points at a temperature higher than one melting point and equal to or lower than the other melting point to obtain a whiteness degree. Further, they have found that a resin molded product having an excellent elastic modulus and bending strength can be obtained while maintaining the opacity as high as possible, and completed the present invention. More specifically, the present invention aims to provide the following.

(1) 樹脂成形体の製造方法であって、
第1の熱可塑性樹脂と、該第1の熱可塑性樹脂より融点の高い第2の熱可塑性樹脂と、無機微細粉末とを混合し、樹脂組成物を得る工程と、
前記樹脂組成物を前記第1の熱可塑性樹脂の融点未満で延伸する工程と、
延伸後の樹脂組成物を、前記第1の熱可塑性樹脂の融点以上でありかつ前記第2の熱可塑性樹脂の融点未満の温度で熱処理する工程と、を有する、方法。
(1) A method for manufacturing a resin molded body, comprising:
A step of obtaining a resin composition by mixing a first thermoplastic resin, a second thermoplastic resin having a higher melting point than the first thermoplastic resin, and an inorganic fine powder,
Stretching the resin composition below the melting point of the first thermoplastic resin;
And a step of heat-treating the stretched resin composition at a temperature not lower than the melting point of the first thermoplastic resin and lower than the melting point of the second thermoplastic resin.

(2) 樹脂組成物を得る工程において、前記無機微細粉末が、樹脂組成物全体の質量に対して50質量%以上混合される、(1)に記載の方法。 (2) The method according to (1), wherein in the step of obtaining a resin composition, the inorganic fine powder is mixed in an amount of 50% by mass or more based on the mass of the entire resin composition.

(3) 前記第1の熱可塑性樹脂がポリエチレンであり、前記第2の熱可塑性樹脂がポリプロピレンである、(1)又は(2)に記載の方法。 (3) The method according to (1) or (2), wherein the first thermoplastic resin is polyethylene and the second thermoplastic resin is polypropylene.

(4) 前記無機微細粉末が、炭酸カルシウムを含む、(1)から(3)のいずれかに記載の方法。 (4) The method according to any one of (1) to (3), wherein the inorganic fine powder contains calcium carbonate.

本発明によれば、白色度及び不透明度と曲げ強さ及び弾性率のバランスに優れた樹脂成形体を得ることができる。 According to the present invention, it is possible to obtain a resin molded article having an excellent balance of whiteness and opacity and bending strength and elastic modulus.

以下、本発明の実施形態について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものでなく。本発明の目的の範囲内において適宜変更を加えて実施することができる。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments. It can be implemented with appropriate modifications within the scope of the object of the present invention.

本発明の樹脂成形体の製造方法は、第1の熱可塑性樹脂と、第1の熱可塑性樹脂より融点の高い第2の熱可塑性樹脂と、無機微細粉末とを混合し、樹脂組成物を得る工程と、樹脂組成物を第1の熱可塑性樹脂の融点未満で延伸する工程と、延伸後の樹脂組成物を、第1の熱可塑性樹脂の融点以上でありかつ第2の樹脂の融点未満の温度で熱処理する工程とを有する方法である。 In the method for producing a resin molded product of the present invention, a resin composition is obtained by mixing a first thermoplastic resin, a second thermoplastic resin having a melting point higher than that of the first thermoplastic resin, and an inorganic fine powder. A step of stretching the resin composition at a temperature below the melting point of the first thermoplastic resin, and a step of stretching the resin composition at a temperature equal to or higher than the melting point of the first thermoplastic resin and lower than the melting point of the second resin. And a step of performing heat treatment at a temperature.

本発明は、第1の熱可塑性樹脂と第2の熱可塑性樹脂と無機微細粉末とを含む樹脂組成物について、第1の熱可塑性樹脂の融点未満の温度で延伸する工程を含むので、この際に樹脂組成物中に多数の空孔が形成される。さらに、その後の工程で、樹脂組成物を第1の熱可塑性樹脂の融点以上であり、かつ第2の樹脂の融点未満の温度で熱処理することにより、弾性率と曲げ強さが向上する一方、内部歪みが取り除かれるとともに、第1の熱可塑性樹脂に由来する空孔の多くは閉塞され、第2の熱可塑性樹脂に由来する空孔の多くは残るため、白色度及び不透明度が比較的高く維持される。その結果、白色度及び不透明度等の光学的性質と弾性率、曲げ強さ等の力学的性質のバランスが優れた樹脂成形体を得ることができる。 Since the present invention includes a step of stretching the resin composition containing the first thermoplastic resin, the second thermoplastic resin and the inorganic fine powder at a temperature lower than the melting point of the first thermoplastic resin, A large number of holes are formed in the resin composition. Further, in the subsequent step, by heat-treating the resin composition at a temperature equal to or higher than the melting point of the first thermoplastic resin and lower than the melting point of the second resin, the elastic modulus and the bending strength are improved, While the internal strain is removed, most of the pores derived from the first thermoplastic resin are closed, and most of the pores derived from the second thermoplastic resin remain, so the whiteness and opacity are relatively high. Maintained. As a result, it is possible to obtain a resin molded product having an excellent balance of optical properties such as whiteness and opacity and mechanical properties such as elastic modulus and bending strength.

以下、本発明の樹脂成形体の製造方法における各工程について、それぞれ説明する。 Hereinafter, each step in the method for producing a resin molded product of the present invention will be described.

[樹脂組成物を得る工程]
本発明における樹脂組成物を得る工程においては、第1の熱可塑性樹脂と第2の熱可塑性樹脂と無機微細粉末とを混合し、樹脂組成物を得る。具体的には、第1の熱可塑性樹脂と第2の熱可塑性樹脂と無機微細粉末とを、第2の熱可塑性樹脂の融点以上で溶融させて混練し、樹脂組成物を得る。樹脂組成物を得る方法は、混錬機で予め混錬を行い、一旦混合ペレットを製造した後、押出成形機でシートに成形してもよく、または二軸の押出成形などによって、直接混錬と成形を単一の機械で行ってシート化してもよい。熱可塑性樹脂に無機微細粉末を均一に分散させる観点から、高い剪断応力を作用させて混練することが好ましく、例えば二軸混練機で混練することが好ましい。また、無機微細粉末を含む樹脂組成物は溶融時粘度が高いため、押出成形機の混練部分を長くする等の設計がとられている。
[Step of obtaining resin composition]
In the step of obtaining the resin composition in the present invention, the first thermoplastic resin, the second thermoplastic resin and the inorganic fine powder are mixed to obtain a resin composition. Specifically, the first thermoplastic resin, the second thermoplastic resin, and the inorganic fine powder are melted at a melting point of the second thermoplastic resin or higher and kneaded to obtain a resin composition. The resin composition may be obtained by kneading in advance with a kneader and once producing mixed pellets, and then forming into a sheet with an extruder, or by direct kneading by biaxial extrusion molding or the like. The sheet may be formed into a sheet by performing molding with a single machine. From the viewpoint of uniformly dispersing the inorganic fine powder in the thermoplastic resin, it is preferable to apply a high shearing stress to knead, for example, a biaxial kneader is preferable. Further, since the resin composition containing the inorganic fine powder has a high viscosity when melted, it is designed such that the kneading portion of the extruder is lengthened.

[樹脂組成物を延伸する工程]
本発明における樹脂組成物を延伸する工程においては、樹脂組成物を、第1の熱可塑性樹脂の融点未満の温度で延伸する。樹脂組成物を第1の熱可塑性樹脂の融点未満で延伸することにより、樹脂組成物中に空孔が生じやすくなり、不透明度・白色度が高い樹脂成形体を得やすい。
[Step of stretching the resin composition]
In the step of stretching the resin composition in the present invention, the resin composition is stretched at a temperature lower than the melting point of the first thermoplastic resin. By stretching the resin composition at a temperature lower than the melting point of the first thermoplastic resin, voids are easily generated in the resin composition, and a resin molded product having high opacity and whiteness is easily obtained.

延伸条件は、樹脂成形体に応じて、さらに所望の比重(密度)により適宜設定する必要があり、また縦若しくは横方向に一軸、又は、縦及び横方向に逐次延伸若しくは同時二軸の延伸処理のいずれかを採用する。 The stretching conditions need to be appropriately set according to the desired specific gravity (density) according to the resin molded product, and the stretching treatment may be uniaxial in the longitudinal or transverse direction, or sequential or simultaneous biaxial stretching in the longitudinal and transverse directions. Adopt one of.

必要な延伸倍率は、計算により算出することも可能である。延伸をかける前の樹脂組成物の1平方メートルあたりの重量(坪量ともいう。)W(g/m)を測定し、生産計画で定められた製品の見かけ比重D及び縦横比(縦方向と横方向の延伸倍率の比)Rと、横延伸後の製品の厚さの目標値T(cm)を使って、次式により延伸倍率(縦方向X倍、横方向Y倍)を決め、延伸を行うことができ、さらに装置ごとの操業経験で容易に推定可能である。
(式1)
=W×10−4/(D×Z×R×T)
X=RY
式中、 D:生産計画で定められた製品の見かけ比重
R:生産計画で定められた縦横比(縦方向と横方向の延伸倍率の比)
W:縦延伸をかける前の薄膜材料の1平方メートルあたりの重量(g)
X:縦方向の延伸倍率
Y:横方向の延伸倍率
Z:縦延伸によるシートの横方向の長さの収縮倍率もしくは伸長倍率
The necessary draw ratio can also be calculated. The weight per square meter (also referred to as the basis weight) W (g/m 2 ) of the resin composition before being stretched is measured, and the apparent specific gravity D and aspect ratio (longitudinal direction) of the product determined in the production plan are measured. The ratio of the draw ratio in the transverse direction) R and the target value T (cm) of the thickness of the product after the transverse drawing are used to determine the draw ratio (longitudinal direction X times, transverse direction Y times) by the following formula Can be performed, and can be easily estimated from the operating experience of each device.
(Formula 1)
X 2 =W×10 −4 /(D×Z×R×T)
X=RY
In the formula, D: apparent specific gravity of the product specified in the production plan
R: Aspect ratio defined in the production plan (ratio of stretching ratio in the machine direction and the machine direction)
W: Weight per square meter of thin film material before longitudinal stretching (g)
X: draw ratio in the machine direction
Y: draw ratio in the transverse direction
Z: Shrinkage ratio or expansion ratio of the transverse length of the sheet by longitudinal stretching

[熱処理する工程]
本発明における熱処理する工程においては、延伸後の樹脂組成物を、前記第1の熱可塑性樹脂の融点以上でありかつ前記第2の熱可塑性樹脂の融点未満の温度で熱処理する。これにより、熱処理された樹脂成形体は、内部歪みが取り除かれるとともに、第1の熱可塑性樹脂に由来する空孔の少なくとも一部は閉塞され、第2の熱可塑性樹脂に由来する空孔は残る。その結果、白色度及び不透明度をかなりのレベルに維持しながらも、曲げ強さと弾性率の優れた樹脂成形体を得ることができる。
[Process of heat treatment]
In the heat treatment step of the present invention, the stretched resin composition is heat treated at a temperature which is equal to or higher than the melting point of the first thermoplastic resin and lower than the melting point of the second thermoplastic resin. As a result, in the heat-treated resin molded body, the internal strain is removed, at least some of the pores derived from the first thermoplastic resin are closed, and the pores derived from the second thermoplastic resin remain. .. As a result, it is possible to obtain a resin molded product having excellent bending strength and elastic modulus while maintaining whiteness and opacity at a considerable level.

熱処理の工程の条件、特に熱処理の温度を上下に変化させることにより、白色度及び不透明度の数値は大きく変わる。延伸後の樹脂組成物を第1の熱可塑性樹脂の融点未満で熱処理した場合には、不透明度と白色度は確保されても、曲げ強さと弾性率が低下してしまう。延伸後の樹脂組成物を第2の熱可性樹脂の融点超の温度で熱処理すると、曲げ強さと弾性率は確保されても、不透明度と白色度が低下してしまう。 The numerical values of whiteness and opacity greatly change by changing the condition of the heat treatment process, especially the temperature of the heat treatment up and down. When the stretched resin composition is heat-treated at a temperature lower than the melting point of the first thermoplastic resin, the bending strength and the elastic modulus are reduced although the opacity and whiteness are secured. When the stretched resin composition is heat-treated at a temperature above the melting point of the second heat-curable resin, the opacity and whiteness are reduced even though the bending strength and elastic modulus are secured.

熱処理する温度は、第1の熱可塑性樹脂の融点以上でありかつ前記第2の熱可塑性樹脂の融点未満の温度であれば、特に限定されず、両者の融点に応じて適宜設定すればよいが、曲げ強さと弾性率を確保する点からは、第1の熱可塑性樹脂の融点よりも第2の熱可塑性樹脂の融点に近い方が好ましく、例えば、第2の熱可塑性樹脂の融点−40℃〜第2の熱可塑性樹脂の融点であることが好ましく、第2の熱可塑性樹脂の融点−30℃〜第2の熱可塑性樹脂の融点であることがより好ましく、第2の熱可塑性樹脂の融点−20℃〜第2の熱可塑性樹脂の融点であることがさらに好ましく、第2の熱可塑性樹脂の融点−10℃〜第2の熱可塑性樹脂の融点であることがより一層好ましい。他方、白色度及び不透明度が高くなる観点から、熱処理の温度は、第2の熱可塑性樹脂の融点よりも第1の熱可塑性樹脂の融点に近い方が好ましく、例えば、第1の熱可塑性樹脂の融点〜第1の熱可塑性樹脂の融点+40℃であることがより好ましく、第1の熱可塑性樹脂の融点〜第1の熱可塑性樹脂の融点+30℃であることがさらに好ましく、第1の熱可塑性樹脂の融点〜第1の熱可塑性樹脂の融点+20℃であることがより一層好ましく、第1の熱可塑性樹脂の融点〜第1の熱可塑性樹脂の融点+10℃であることがより一層好ましい。 The temperature for heat treatment is not particularly limited as long as it is a temperature equal to or higher than the melting point of the first thermoplastic resin and lower than the melting point of the second thermoplastic resin, and may be appropriately set according to both melting points. From the viewpoint of ensuring bending strength and elastic modulus, it is preferable that the melting point of the second thermoplastic resin is closer to that of the second thermoplastic resin than the melting point of the first thermoplastic resin, for example, the melting point of the second thermoplastic resin −40° C. To the melting point of the second thermoplastic resin, preferably the melting point of the second thermoplastic resin −30° C. to the melting point of the second thermoplastic resin, and more preferably the melting point of the second thermoplastic resin. It is more preferably −20° C. to the melting point of the second thermoplastic resin, and even more preferably −10° C. to the melting point of the second thermoplastic resin. On the other hand, from the viewpoint of high whiteness and opacity, the temperature of the heat treatment is preferably closer to the melting point of the first thermoplastic resin than the melting point of the second thermoplastic resin, for example, the first thermoplastic resin. From the melting point of the first thermoplastic resin to the melting point of the first thermoplastic resin+40° C., more preferably from the melting point of the first thermoplastic resin to the melting point of the first thermoplastic resin+30° C., The melting point of the thermoplastic resin to the melting point of the first thermoplastic resin +20°C is even more preferable, and the melting point of the first thermoplastic resin to the melting point of the first thermoplastic resin +10°C is even more preferable.

[熱可塑性樹脂]
第1の熱可塑性樹脂及び第2の熱可塑性樹脂の選択は、第2の熱可塑性樹脂が第1の熱可塑性樹脂より融点が高ければ特に制限されず、例えば、ポリエチレン(高密度ポリエチレン・低密度ポリエチレン、超高分子量ポリエチレン)、超高分子量ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレート等の樹脂などの中から、融点を考慮して第1の熱可塑性樹脂と第2の熱可塑性樹脂を選択することができる。このうち、弾性率や曲げ強さの優位性から、第1の熱可塑性樹脂としてポリエチレン樹脂(特に高密度ポリエチレンまたは超高分子量ポリエチレン)を用い、第2の熱可塑性樹脂としてポリプロピレン樹脂(特にアイソタクチックホモポリプロピレン)を用いることが好ましい。
[Thermoplastic resin]
The selection of the first thermoplastic resin and the second thermoplastic resin is not particularly limited as long as the second thermoplastic resin has a higher melting point than the first thermoplastic resin. For example, polyethylene (high density polyethylene/low density Polyethylene, ultra-high molecular weight polyethylene), ultra-high molecular weight polyethylene, polypropylene, polystyrene, polyethylene terephthalate and other resins, the first thermoplastic resin and the second thermoplastic resin can be selected in consideration of the melting point. it can. Among them, polyethylene resin (especially high-density polyethylene or ultra-high molecular weight polyethylene) is used as the first thermoplastic resin and polypropylene resin (especially isotactic resin) is used as the second thermoplastic resin because of its superiority in elastic modulus and bending strength. Chick homopolypropylene) is preferably used.

第1の熱可塑性樹脂と第2の熱可塑性樹脂の配合比は、所望の樹脂成形体に応じて適宜設定されればよく、特に制限されないが、延伸する温度と、白色度及び不透明度と曲げ強さ及び弾性率とのバランスを取りやすい点から、1:0.2〜5であることが好ましく、1:0.3〜3.3であることがさらに好ましく、1:0.5〜2であることが特に好ましい。 The blending ratio of the first thermoplastic resin and the second thermoplastic resin may be appropriately set according to the desired resin molded product, and is not particularly limited, but the stretching temperature, whiteness and opacity, and bending From the viewpoint of easily balancing the strength and the elastic modulus, it is preferably 1:0.2 to 5, more preferably 1:0.3 to 3.3, and 1:0.5 to 2 Is particularly preferable.

また、第2熱可塑性樹脂の重量平均分子量Mw、数平均分子量Mnの比である分子量分布Mw/Mnは、1以上20以下が好ましく、5以上15以下がより好ましい。第2熱可塑性樹脂の平均分子量Mz、数平均分子量Mnの比である分子量分布Mz/Mnは、10以上100以下が好ましく、20以上50以下がより好ましい。第2熱可塑性樹脂の分子量分布Mw/Mn、Mz/Mnが上記範囲にあることにより、白色度及び不透明度と曲げ強さ及び弾性率とのバランスに優れた樹脂成形体を得やすい。分子量分布が狭すぎると、2つの熱可塑性樹脂の混練性が悪化し、白色性および不透明性が不均一になりやすく、さらにシートの物性も不均一になる。分子量分布が広すぎると、融点のスポットが広くなるため、延伸温度と熱処理温度を制御しにくくなり、所望の白色度及び不透明度と曲げこわさ及び弾性率を得難くなる。 The molecular weight distribution Mw/Mn, which is the ratio of the weight average molecular weight Mw and the number average molecular weight Mn of the second thermoplastic resin, is preferably 1 or more and 20 or less, more preferably 5 or more and 15 or less. The molecular weight distribution Mz/Mn, which is the ratio of the average molecular weight Mz and the number average molecular weight Mn of the second thermoplastic resin, is preferably 10 or more and 100 or less, and more preferably 20 or more and 50 or less. When the molecular weight distributions Mw/Mn and Mz/Mn of the second thermoplastic resin are in the above ranges, it is easy to obtain a resin molded product having an excellent balance between whiteness and opacity, bending strength and elastic modulus. If the molecular weight distribution is too narrow, the kneadability of the two thermoplastic resins deteriorates, whiteness and opacity tend to become non-uniform, and the physical properties of the sheet also become non-uniform. If the molecular weight distribution is too wide, the spot of the melting point becomes wide, so that it becomes difficult to control the stretching temperature and the heat treatment temperature, and it becomes difficult to obtain desired whiteness and opacity, and bending stiffness and elastic modulus.

また、第1熱可塑性樹脂の重量平均分子量Mw、数平均分子量Mnの比である分子量分布Mw/Mnは、1以上100以下が好ましく、10以上40以下がより好ましい。第1熱可塑性樹脂の平均分子量Mz、数平均分子量Mnの比である分子量分布Mz/Mnは、50以上200以下が好ましく、80以上150以下がより好ましい。第1熱可塑性樹脂の分子量分布Mw/Mn・Mz/Mnが上記範囲にあることにより、白色度及び不透明度と曲げ強さ及び弾性率とのバランスに優れた樹脂成形体を得やすい。分子量分布が狭すぎると、2つの熱可塑性樹脂の混練性が悪化し、白色性および不透明性が不均一になりやすく、さらにシートの物性も不均一になる。分子量分布が広すぎると、融点のスポットが広くなるため、延伸温度と熱処理温度を制御しにくくなり、所望の白色度及び不透明度と曲げこわさ及び弾性率を得難くなる。 The molecular weight distribution Mw/Mn, which is the ratio of the weight average molecular weight Mw and the number average molecular weight Mn of the first thermoplastic resin, is preferably 1 or more and 100 or less, more preferably 10 or more and 40 or less. The molecular weight distribution Mz/Mn, which is the ratio of the average molecular weight Mz and the number average molecular weight Mn of the first thermoplastic resin, is preferably 50 or more and 200 or less, and more preferably 80 or more and 150 or less. When the molecular weight distribution Mw/Mn·Mz/Mn of the first thermoplastic resin is within the above range, it is easy to obtain a resin molded product having an excellent balance of whiteness and opacity, bending strength and elastic modulus. If the molecular weight distribution is too narrow, the kneadability of the two thermoplastic resins is deteriorated, whiteness and opacity are likely to be nonuniform, and the physical properties of the sheet are also nonuniform. If the molecular weight distribution is too wide, the spot of the melting point becomes wide, so that it becomes difficult to control the stretching temperature and the heat treatment temperature, and it becomes difficult to obtain desired whiteness and opacity, and bending stiffness and elastic modulus.

本発明において、重量平均分子量Mw、数平均分子量Mn、平均分子量Mzは、ゲルパーミエーション(GPC)法により測定する。 In the present invention, the weight average molecular weight Mw, the number average molecular weight Mn, and the average molecular weight Mz are measured by a gel permeation (GPC) method.

また、第1の熱可塑性樹脂のメルトマスフローレイト(MFR)は、0.02g/10以上2.0g/10分以下であることが好ましく、0.1g/10以上1.0g/10分以下であることがより好ましく、第1熱可塑性樹脂のメルトマスフローレイトが上記範囲にあることにより、白色度及び不透明度と曲げ強さ及び弾性率とのバランスに優れた樹脂成形体を得やすい。 The melt mass flow rate (MFR) of the first thermoplastic resin is preferably 0.02 g/10 or more and 2.0 g/10 minutes or less, and 0.1 g/10 or more and 1.0 g/10 minutes or less. It is more preferable that the first thermoplastic resin has a melt mass flow rate in the above range, and thus it is easy to obtain a resin molded product having an excellent balance of whiteness and opacity, bending strength and elastic modulus.

また、第2の熱可塑性樹脂のメルトマスフローレイト(MFR)は、0.02g/10以上2.0g/10分以下であることが好ましく、0.1g/10以上1.0g/10分以下であることが好ましい。第2の熱可塑性樹脂のメルトマスフローレイトが上記範囲にあることにより、白色度及び不透明度と曲げ強さ及び弾性率とのバランスに優れた樹脂成形体を得やすい。 The melt mass flow rate (MFR) of the second thermoplastic resin is preferably 0.02 g/10 or more and 2.0 g/10 minutes or less, and 0.1 g/10 or more and 1.0 g/10 minutes or less. Preferably. When the melt mass flow rate of the second thermoplastic resin is within the above range, it is easy to obtain a resin molded product having an excellent balance of whiteness and opacity, bending strength and elastic modulus.

メルトマスフローレイトは、溶融時の流動性を示す指標であり、JIS K 7210に準じて測定される値を意味する。メルトフローレイトの測定方法として、具体的には、JIS K 7210に準じて、メルトインデクサーにより、荷重21.18N、ポリプロピレン樹脂においては温度230℃、ポリエチレン樹脂に関しては190℃の条件でメルトフローレイトを測定する方法がある。 The melt mass flow rate is an index showing fluidity at the time of melting, and means a value measured according to JIS K 7210. As a method for measuring the melt flow rate, specifically, according to JIS K 7210, a melt indexer is used to measure a load of 21.18 N, a temperature of 230° C. for polypropylene resin, and a temperature of 190° C. for polyethylene resin. There is a way to measure.

[無機微細粉末]
無機微細粉末の配合比は、特に限定されないが、量が多い方が延伸時に空孔が生じやすくなり、不透明度が良好となることから、樹脂組成物全体の質量に対して50質量%以上が好ましく、60質量%以上がさらにより好ましい。組成物全体に含まれる無機微細粉末の量の上限は特に限定されないが、混練性や曲げ強さの点から、80質量%以下がより好ましい。
[Inorganic fine powder]
The compounding ratio of the inorganic fine powder is not particularly limited, but as the amount increases, voids are more likely to occur during stretching and the opacity becomes good, so 50% by mass or more based on the mass of the entire resin composition is preferable. It is preferably 60% by mass or more, and even more preferably 60% by mass or more. The upper limit of the amount of the inorganic fine powder contained in the entire composition is not particularly limited, but 80% by mass or less is more preferable from the viewpoint of kneading property and bending strength.

無機微細粉末の平均粒子径は、0.1μm以上50μm以下が好ましく、1.0μm以上15μm以下がより好ましい。無機微細粉末の平均粒子径が上記範囲にあることにより、白色度及び不透明度と曲げ強さ及び弾性率とのバランスに優れた樹脂成形体を得やすい。無機微細粉末の平均粒子径が大きすぎると、樹脂成形体の表面から無機微細粉末が離脱しやすくなる。無機微細粉末の平均粒径が小さすぎると、熱可塑性樹脂と混練した際に粘度が上昇し、混練性が悪化しやすくなる。本発明における無機微細粉末の平均粒子径は、レーザー回折式粒度分布測定装置で測定した、積算%の分布曲線から得られる50%粒子径(d50)である。 The average particle diameter of the inorganic fine powder is preferably 0.1 μm or more and 50 μm or less, more preferably 1.0 μm or more and 15 μm or less. When the average particle size of the inorganic fine powder is within the above range, it is easy to obtain a resin molded product having an excellent balance of whiteness and opacity, bending strength and elastic modulus. If the average particle size of the inorganic fine powder is too large, the inorganic fine powder easily separates from the surface of the resin molded body. If the average particle size of the inorganic fine powder is too small, the viscosity increases when kneaded with the thermoplastic resin, and the kneadability tends to deteriorate. The average particle size of the inorganic fine powder in the present invention is a 50% particle size (d50) obtained from a distribution curve of integrated% measured by a laser diffraction type particle size distribution measuring device.

無機微細粉末としては、炭酸カルシウム、酸化チタン、シリカ、クレー、タルク、カオリン、水酸化アルミニウム等が挙げられ、特に炭酸カルシウムが好ましい。これらは単独で使用しても、2種類以上併用してもよい。また、無機微細粉末の分散性又は反応性を高めるために、無機微細粉末の表面を予め常法に従い改質しておいてもよい。 Examples of the inorganic fine powder include calcium carbonate, titanium oxide, silica, clay, talc, kaolin, aluminum hydroxide and the like, and calcium carbonate is particularly preferable. These may be used alone or in combination of two or more. Further, in order to enhance the dispersibility or reactivity of the inorganic fine powder, the surface of the inorganic fine powder may be modified in advance by a conventional method.

本発明の樹脂組成物は、上記した熱可塑性樹脂と無機微細粉末の他に滑剤、酸化防止剤、紫外線吸収剤、着色用顔料、分散剤、帯電防止剤、難燃剤等の中から選ばれる1種以上の補助剤を、目的に反しない範囲で添加することができる。 The resin composition of the present invention is selected from lubricants, antioxidants, ultraviolet absorbers, coloring pigments, dispersants, antistatic agents, flame retardants, etc. in addition to the above-mentioned thermoplastic resin and inorganic fine powder. One or more auxiliaries can be added within a range not deviating from the purpose.

製造した樹脂成形体の用途は特に限定されないが、特に、白色度及び不透明度と曲げ強さ及び弾性率のバランスに適していることから、例えば、印刷用紙、情報用紙、包装用、カード用(例えば、名刺等)、加工厚紙等に適している。 The application of the produced resin molded product is not particularly limited, but since it is particularly suitable for the balance of whiteness and opacity and bending strength and elastic modulus, for example, printing paper, information paper, packaging, card ( For example, it is suitable for business cards), processed cardboard, etc.

以下、本発明を実施例に基づいて説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.

[参考試験]
炭酸カルシウム微細粉末充填高密度ポリエチレン樹脂シートの試料A、試料Bを作製し、光学的性質及び力学的性質の変化を評価した。
[Reference test]
Samples A and B of high-density polyethylene resin sheets filled with calcium carbonate fine powder were prepared, and changes in optical properties and mechanical properties were evaluated.

試料Aのシートは、炭酸カルシウムの微細粉末と、ポリエチレン樹脂とを60:40の質量比で、二軸同軸押出機を用いて直接混錬し、Тダイよりシート状に押出し、下記表1に示す条件で延伸することで作製した。試料Bは、炭酸カルシウムの微細粉末とポリエチレン樹脂との質量比を70:30に変更し、試料Aと同様にシート状に押出しした後、下記表1に示す条件で延伸することで作製した。 The sheet of sample A was obtained by directly kneading calcium carbonate fine powder and polyethylene resin at a mass ratio of 60:40 using a twin-screw coaxial extruder and extruding into a sheet form from a Т die. It was produced by stretching under the conditions shown. Sample B was produced by changing the mass ratio of the fine powder of calcium carbonate and the polyethylene resin to 70:30, extruding it into a sheet like Sample A, and then stretching it under the conditions shown in Table 1 below.

Figure 0006749640
Figure 0006749640

表1に示すように、高密度ポリエチレン樹脂シートが炭酸カルシウムを多量に含むことで、高い不透明度を得られることがわかった。また、延伸倍率を高めると、白色度が顕著に向上し、不透明度も若干向上した。一方、テーバーこわさ(曲げ強さ)は低下した。 As shown in Table 1, it was found that the high-density polyethylene resin sheet contains a large amount of calcium carbonate, and thus high opacity can be obtained. Moreover, when the stretching ratio was increased, the whiteness was remarkably improved and the opacity was also slightly improved. On the other hand, Taber stiffness (bending strength) decreased.

[実施例1]
第1の熱可塑性樹脂として、分子量分布Mw/Mn=20.8、分子量分布Mz/Mn=121、メルトマスフローレイトMFR=0.3、融点133℃である高密度ポリエチレン単独重合体(京葉ポリエチレン社製:B5803)(以下、PEと表記する)を用意した。第2の熱可塑性樹脂として、分子量分布Mw/Mn=10.3、Mz/Mn=29.1、メルトマスフローレイトMFR=0.5、融点=165℃であるポリプロピレン単独重合体(プライムポリマー(株)製:E111G)(以下、PPと表記する)を用意した。無機微細粉末として、炭酸カルシウム(白石カルシウム社製:ライトンS4)(以下、CCと表記する)を用意した。これらを、PE/PP/CC=2/2/6の仕込み比で、二軸同軸押出機を用いて直接混錬し、250℃でТダイよりシート状に押出し、70℃のキャストロールで冷却固化して樹脂組成物を得た。この樹脂組成物を、125℃で予熱し、縦方向に2倍延伸した。そして、延伸した樹脂組成物を、150℃で熱処理した後、30℃に冷却してワインダーで巻き取った。得られたシート状樹脂成形体の物性を表2に示す。
[Example 1]
As the first thermoplastic resin, a high-density polyethylene homopolymer having a molecular weight distribution Mw/Mn=20.8, a molecular weight distribution Mz/Mn=121, a melt mass flow rate MFR=0.3, and a melting point of 133° C. (Keiyo Polyethylene Corporation). Manufacturing: B5803) (hereinafter referred to as PE) was prepared. As the second thermoplastic resin, a polypropylene homopolymer having a molecular weight distribution of Mw/Mn=10.3, Mz/Mn=29.1, melt mass flow rate MFR=0.5, and melting point=165° C. (Prime Polymer ):E111G) (hereinafter referred to as PP) was prepared. As the inorganic fine powder, calcium carbonate (manufactured by Shiraishi Calcium Co., Ltd.: Ryton S4) (hereinafter referred to as CC) was prepared. These were directly kneaded with a twin-screw coaxial extruder at a charge ratio of PE/PP/CC=2/2/6, extruded into a sheet form from a T die at 250°C, and cooled with a cast roll at 70°C. It solidified and the resin composition was obtained. This resin composition was preheated at 125° C. and stretched twice in the machine direction. Then, the stretched resin composition was heat-treated at 150° C., cooled to 30° C., and wound by a winder. Table 2 shows the physical properties of the obtained sheet-shaped resin molded product.

[実施例2]
実施例1と同様に、第1の熱可塑性樹脂、第2の熱可塑性樹脂、及び無機微細粉末を、PE/PP/CC=2/2/6の仕込み比で、二軸同軸押出機を用いて直接混錬し、250℃でТダイよりシート状に押出し、70℃のキャストロールで冷却固化して樹脂組成物を得た。この樹脂組成物を、125℃で予熱し、縦方向に2倍延伸した。そして、延伸した樹脂組成物を、140℃で熱処理した後、30℃に冷却してワインダーで巻き取った。得られたシート状樹脂成形体の物性を表2に示す。
[Example 2]
In the same manner as in Example 1, the first thermoplastic resin, the second thermoplastic resin, and the inorganic fine powder were used at a charging ratio of PE/PP/CC=2/2/6 using a twin-screw coaxial extruder. Was directly kneaded, extruded into a sheet form from a T die at 250° C., and cooled and solidified by a cast roll at 70° C. to obtain a resin composition. This resin composition was preheated at 125° C. and stretched twice in the machine direction. Then, the stretched resin composition was heat-treated at 140° C., cooled to 30° C. and wound with a winder. Table 2 shows the physical properties of the obtained sheet-shaped resin molded product.

[実施例3]
実施例1と同様に、第1の熱可塑性樹脂、第2の熱可塑性樹脂、及び無機微細粉末を、PE/PP/CC=2/2/6の仕込み比で、二軸同軸押出機を用いて直接混錬し、250℃でТダイよりシート状に押出し、70℃のキャストロールで冷却固化して樹脂組成物を得た。この樹脂組成物を、125℃で予熱し、縦方向に2倍延伸した。そして、延伸した樹脂組成物を、135℃で熱処理した後、30℃に冷却してワインダーで巻き取った。得られたシート状樹脂成形体の物性を表2に示す。
[Example 3]
In the same manner as in Example 1, the first thermoplastic resin, the second thermoplastic resin, and the inorganic fine powder were used at a charging ratio of PE/PP/CC=2/2/6 using a twin-screw coaxial extruder. Was directly kneaded, extruded into a sheet form from a T die at 250° C., and cooled and solidified by a cast roll at 70° C. to obtain a resin composition. This resin composition was preheated at 125° C. and stretched twice in the machine direction. Then, the stretched resin composition was heat-treated at 135° C., cooled to 30° C., and wound by a winder. Table 2 shows the physical properties of the obtained sheet-shaped resin molded product.

[比較例1]
実施例1と同様に、第1の熱可塑性樹脂、第2の熱可塑性樹脂、及び無機微細粉末を、PE/PP/CC=2/2/6の仕込み比で、二軸同軸押出機を用いて直接混錬し、250℃でТダイよりシート状に押出し、70℃のキャストロールで冷却固化した後、125℃で予熱し、縦方向に2倍延伸した。そして、延伸した樹脂組成物を、125℃で熱処理した後、30℃に冷却してワインダーで巻き取った。得られたシート状樹脂成形体の物性を表2に示した。
[Comparative Example 1]
In the same manner as in Example 1, the first thermoplastic resin, the second thermoplastic resin, and the inorganic fine powder were used at a charging ratio of PE/PP/CC=2/2/6 using a twin-screw coaxial extruder. Was directly kneaded, extruded into a sheet form from a T die at 250° C., cooled and solidified by a 70° C. cast roll, preheated at 125° C., and stretched twice in the longitudinal direction. Then, the stretched resin composition was heat-treated at 125° C., cooled to 30° C., and wound by a winder. Table 2 shows the physical properties of the obtained sheet-shaped resin molded product.

なお、シート状樹脂成形体の物性は、下記に示す方法に準拠して測定した。
密度:JIS K 7112
坪量:JIS P 8124
破断点強度及び破断伸び:JIS K 7162
引き裂き強度:JIS K 7128−3
曲げこわさ:JIS K 7106
白色度:JIS P 8148
不透明度の測定:JIS P 8149
平滑度:JIS P 8155
弾性率:JIS K7161
The physical properties of the sheet-shaped resin molded product were measured according to the methods described below.
Density: JIS K 7112
Basis weight: JIS P 8124
Strength at break and elongation at break: JIS K 7162
Tear strength: JIS K 7128-3
Bending stiffness: JIS K 7106
Whiteness: JIS P 8148
Opacity measurement: JIS P 8149
Smoothness: JIS P 8155
Elastic modulus: JIS K7161

Figure 0006749640
Figure 0006749640

[評価]
表2の結果から、実施例1、実施例2、実施例3のシート樹脂成形体は、比較例1と同様に、破断点強度、破断伸び、及び引き裂き強度等の強度を適度に有しつつ不透明度・白色度とを確保しながらも、比較例1に比べ、曲げこわさが向上していることがわかる。特に、実施例1のシート樹脂成形体は、比較例1に比べ曲げ強さ及び弾性率が大きく向上していることがわかる。
[Evaluation]
From the results of Table 2, the sheet resin moldings of Example 1, Example 2 and Example 3 have moderate strengths such as strength at break, elongation at break, and tear strength as in Comparative Example 1. It can be seen that the bending stiffness is improved as compared with Comparative Example 1 while ensuring the opacity and whiteness. In particular, it can be seen that the sheet resin molded body of Example 1 has greatly improved bending strength and elastic modulus as compared with Comparative Example 1.

Claims (3)

樹脂成形体の製造方法であって、
第1の熱可塑性樹脂と、該第1の熱可塑性樹脂より融点の高い第2の熱可塑性樹脂と、無機微細粉末と、を混合し、樹脂組成物を得る工程と、
前記樹脂組成物を前記第1の熱可塑性樹脂の融点未満で延伸する工程と、
延伸後の樹脂組成物を、前記第1の熱可塑性樹脂の融点以上でありかつ前記第2の熱可塑性樹脂の融点未満の温度で熱処理する工程と、を有
前記第1の熱可塑性樹脂がポリエチレンであり、
前記第2の熱可塑性樹脂がポリプロピレンであり、
前記第1の熱可塑性樹脂と前記第2の熱可塑性樹脂との配合比が1:0.2〜1:5である、
方法。
A method of manufacturing a resin molded body,
A step of mixing a first thermoplastic resin, a second thermoplastic resin having a melting point higher than that of the first thermoplastic resin, and an inorganic fine powder to obtain a resin composition;
Stretching the resin composition below the melting point of the first thermoplastic resin;
The resin composition after stretching, have a, a step of heat treatment at the first and at least the melting point of the thermoplastic resin and said temperature below the melting point of the second thermoplastic resin,
The first thermoplastic resin is polyethylene,
The second thermoplastic resin is polypropylene,
The compounding ratio of the first thermoplastic resin to the second thermoplastic resin is 1:0.2 to 1:5,
Method.
樹脂組成物を得る工程において、前記無機微細粉末が、樹脂組成物全体の質量に対して50質量%以上混合される、請求項1に記載の方法。 The method according to claim 1, wherein in the step of obtaining a resin composition, the inorganic fine powder is mixed in an amount of 50% by mass or more based on the mass of the entire resin composition. 前記無機微細粉末が、炭酸カルシウムを含む、請求項1又は2に記載の方法。 The method according to claim 1 or 2 , wherein the inorganic fine powder comprises calcium carbonate.
JP2016229412A 2016-11-25 2016-11-25 Method for manufacturing resin molded body Active JP6749640B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016229412A JP6749640B2 (en) 2016-11-25 2016-11-25 Method for manufacturing resin molded body
PCT/JP2017/037343 WO2018096834A1 (en) 2016-11-25 2017-10-16 Method for producing molded resin object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016229412A JP6749640B2 (en) 2016-11-25 2016-11-25 Method for manufacturing resin molded body

Publications (2)

Publication Number Publication Date
JP2018083926A JP2018083926A (en) 2018-05-31
JP6749640B2 true JP6749640B2 (en) 2020-09-02

Family

ID=62195877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016229412A Active JP6749640B2 (en) 2016-11-25 2016-11-25 Method for manufacturing resin molded body

Country Status (2)

Country Link
JP (1) JP6749640B2 (en)
WO (1) WO2018096834A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6738107B1 (en) * 2019-07-08 2020-08-12 株式会社Tbm Printing sheet and method for manufacturing printing sheet
JP6738108B1 (en) 2019-07-17 2020-08-12 株式会社Tbm Laminated structure, food packaging container and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621830A (en) * 1979-07-31 1981-02-28 Oji Yuka Gouseishi Kk Film being excellent in printing property
JPH0813895B2 (en) * 1987-09-24 1996-02-14 王子油化合成紙株式会社 Synthetic resin film with excellent printability
JPS6481829A (en) * 1987-09-24 1989-03-28 Oji Yuka Goseishi Kk Synthetic resin film with outstanding printability
JPH04107127A (en) * 1990-08-29 1992-04-08 Teijin Ltd Polyester film for magnetic card
JPH0966564A (en) * 1995-08-31 1997-03-11 Nan Ya Plast Corp Preparation of synthetic paper and product thereof
JP2001214013A (en) * 1999-11-24 2001-08-07 Yupo Corp Resin drawn film and method for producing the same
JP5461614B2 (en) * 2011-05-31 2014-04-02 株式会社Tbm Manufacturing method of inorganic substance powder high-mixing thin film sheet
WO2015186808A1 (en) * 2014-06-04 2015-12-10 三菱樹脂株式会社 Moisture permeable film

Also Published As

Publication number Publication date
WO2018096834A1 (en) 2018-05-31
JP2018083926A (en) 2018-05-31

Similar Documents

Publication Publication Date Title
TWI631151B (en) Stretched polypropylene film
Leong et al. Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites
CN103044773B (en) A kind of enhancing melt strength polypropylene material and preparation method thereof
CN107614237A (en) The polyethylene of excellent sheet material extrusion thennoforming performance
Ludueña et al. Preparation and characterization of polybutylene‐succinate/poly (ethylene‐glycol)/cellulose nanocrystals ternary composites
JP6601972B2 (en) Solid state stretched HDPE
JP6749640B2 (en) Method for manufacturing resin molded body
JP6101280B2 (en) Acrylic resin film excellent in transparency and impact resistance and method for producing the same
Zhou et al. Fabrication of super‐ductile PP/LDPE blended parts with a chemical blowing agent
Kamleitner et al. Upcycling of polypropylene—The influence of polyethylene impurities
JP5954931B2 (en) Polypropylene resin composition based on ethylene-propylene block copolymer with excellent impact strength, surface properties and fluidity
JP2002003663A (en) Polyethylene resin composition and container using it
Elloumi et al. Phase structure and mechanical properties of PP/EPR/CaCO 3 nanocomposites: Effect of particle's size and treatment
JP2012229303A (en) Propylenic resin composition, and injection molding thereof
JP2016196589A (en) High concentrated antiblocking agent masterbatch resin composition
Vozniak et al. Improvement of mechanical properties of polylactide by equal channel multiple angular extrusion
JP6948977B2 (en) Propylene resin composition and injection molded product
WO2020020716A1 (en) Polyethylene composition having improved environmental stress cracking resistance
Costantino et al. Characterization of PP/TPV/MMT ternary nanocomposites produced by injection molding
JP7176358B2 (en) Polyolefin resin composition
CN110964258B (en) Low-shrinkage polypropylene composition and preparation method and application thereof
KR102290455B1 (en) Nylon film
EP3620488A1 (en) Electrically conductive resin composition and preparation method thereof
Kim et al. Comonomer effect on the mechanical and morphological behavior on the calcite‐filled PP, CoPP, and TerPP
JP4742213B2 (en) Polyolefin resin degreasing film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191028

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200225

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200805

R150 Certificate of patent or registration of utility model

Ref document number: 6749640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250