WO2016103985A1 - Method for recycling used absorbent article - Google Patents

Method for recycling used absorbent article Download PDF

Info

Publication number
WO2016103985A1
WO2016103985A1 PCT/JP2015/082281 JP2015082281W WO2016103985A1 WO 2016103985 A1 WO2016103985 A1 WO 2016103985A1 JP 2015082281 W JP2015082281 W JP 2015082281W WO 2016103985 A1 WO2016103985 A1 WO 2016103985A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
water
concentration
absorbent article
fuel cell
Prior art date
Application number
PCT/JP2015/082281
Other languages
French (fr)
Japanese (ja)
Inventor
孝義 小西
利夫 平岡
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015187062A external-priority patent/JP6161669B2/en
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Priority to EP15872554.9A priority Critical patent/EP3238840B1/en
Priority to CN201580071046.5A priority patent/CN107107132B/en
Publication of WO2016103985A1 publication Critical patent/WO2016103985A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for recycling a used absorbent article in which at least one material constituting the absorbent article is recovered from the used absorbent article and regenerated.
  • Patent Document 1 is capable of effectively reusing used paper diapers as recycled materials, and flexibly contributing to the reduction of CO 2 emissions compared to the case where used paper diapers are disposed without being recycled.
  • a recycling method for used paper diapers that can be used is disclosed. The recycling method consists of (1) mixing fermented bacteria while crushing paper diapers containing a lot of water such as excrement, and (2) fermenting and drying fertilizer and pulp, etc. (3) After the completion of fermentation, perform the second heating, heat sterilize and dry the residual moisture, produce a regenerated product, (4) use the regenerated material as a fuel (solid fuel), as thermal energy They are collected and reused.
  • the present invention has been made paying attention to such conventional problems, and can be used as a treated wastewater containing pulp fibers, plastic / nonwoven fabric components, and filth that can recycle absorbent articles (such as paper diapers) containing excreta.
  • absorbent articles such as paper diapers
  • the present invention is a method for recycling a used absorbent article that recovers and regenerates at least one material constituting the absorbent article from the used absorbent article, the method comprising the used absorbent article.
  • Treatment with ozone water, ozone concentration adjustment step to adjust the ozone concentration of the wastewater from the ozone treatment step to 0.1 ppm or less, and wastewater adjusted with ozone concentration is put into the microbial fuel cell and drained And a microbial fuel cell process for recovering the electric power generated by power generation.
  • the method further includes a step of adjusting the pH of the waste water from the ozone treatment step to 2.0 or more and 7.0 or less.
  • the pH of the waste water from the microbial fuel cell process is less than 8.0.
  • the method further includes a step of adjusting the TOC concentration of the waste water from the ozone treatment step to 10,000 mg / L or less.
  • the TOC concentration of the waste water from the microbial fuel cell process is 2000 mg / L or less.
  • the present invention it is possible to recover power by power generation simultaneously with purification of water from wastewater containing recycling that has not been recycled and that has increased the burden of purification treatment, and complete recycling of used absorbent articles.
  • System becomes possible. It is possible to increase the activity of microorganisms by giving organic matter (soil, chemicals, decomposed SAP, micropulp fiber, etc.) in the treated wastewater as food in an environment where microorganisms can efficiently act.
  • organic matter soil, chemicals, decomposed SAP, micropulp fiber, etc.
  • FIG. 1 shows a recycling system flow including the method of the present invention.
  • FIG. 2 shows a schematic diagram of a microbial fuel cell.
  • FIG. 3 shows the results of current generation and water purification (TOC reduction) in treatment with the microbial fuel cell of the example.
  • the present invention relates to a method for recycling a used absorbent article in which at least one material constituting the absorbent article is recovered from the used absorbent article and regenerated.
  • the absorbent article is not particularly limited, and examples thereof include disposable diapers, incontinence pads, urine removing pads, sanitary napkins, panty liners, and the like. Of these, incontinence pads and disposable diapers that are collected together in a facility or the like are preferable because they do not require separation and have a relatively large amount of pulp.
  • Absorbent articles are usually composed of materials such as pulp fibers, superabsorbent polymers, non-woven fabrics, plastic films and rubber. That is, the material constituting the absorbent article (hereinafter also simply referred to as “constituent material”) refers to pulp fiber, superabsorbent polymer, nonwoven fabric, plastic film, rubber and the like.
  • the at least one material constituting the absorbent article refers to at least one of pulp fiber, superabsorbent polymer, nonwoven fabric, plastic film, rubber, etc., preferably from the group consisting of pulp fiber, nonwoven fabric and plastic film. At least one selected, and more preferably pulp fiber.
  • pulp fibers are recovered will be mainly described as an example, but the present invention is not limited thereto.
  • a fluffy pulp fiber Although it does not specifically limit as a pulp fiber, A fluffy pulp fiber, a chemical pulp fiber, etc. can be illustrated.
  • Superabsorbent polymer also called SAP (Superabsorbent Polymer)
  • SAP Superabsorbent Polymer
  • nonwoven fabric examples include spunlace nonwoven fabric and air-through nonwoven fabric formed from cellulose fibers such as rayon, thermoplastic resin fibers, and the like.
  • plastic film examples include polyolefin forms (for example, polypropylene film), polyester films (for example, polyethylene terephthalate film), and the like.
  • Examples of rubber include natural rubber, synthetic rubber, and elastic fibers such as spandex.
  • the method of the present invention includes an ozone treatment step of treating a used absorbent article with ozone water.
  • the superabsorbent polymer contained in the used absorbent article is decomposed, reduced in molecular weight, and solubilized.
  • the state in which the highly water-absorbing polymer is decomposed, reduced in molecular weight, and solubilized refers to a state of passing through a 2 mm screen mesh. That is, in this step, the superabsorbent polymer is decomposed to such an extent that it passes through a 2 mm screen mesh.
  • the ozone water used in this step refers to water in which ozone is dissolved.
  • the ozone water can be prepared using, for example, an ozone water generator (ozone generator OS-25V manufactured by Mitsubishi Electric Corporation, ozone water exposure tester ED-OWX-2 manufactured by Ecodesign Co., Ltd.).
  • the ozone concentration of the ozone water is not particularly limited as long as it is a concentration capable of decomposing the superabsorbent polymer, but is preferably 1 to 50 ppm by mass, more preferably 2 to 40 ppm by mass, and further preferably Is 3 to 30 ppm by mass. If the concentration is too low, the superabsorbent polymer cannot be completely solubilized, and the superabsorbent polymer may remain in the collected and regenerated constituent material (for example, pulp fiber). On the other hand, if the concentration is too high, the oxidizing power also increases, which may damage the recovered and reconstructed constituent material (for example, pulp fiber) and may cause a problem in safety.
  • the time for immersing in ozone water is not particularly limited as long as it is a time during which the superabsorbent polymer can be decomposed.
  • the time of immersion in ozone water may be short if the ozone concentration of ozone water is high, and a long time is required if the ozone concentration of ozone water is low.
  • the product of the ozone concentration (ppm) of ozone water and the time (minute) of immersion in ozone water (hereinafter also referred to as “CT value”) is preferably 100 to 6000 ppm ⁇ min, more preferably 200 to 4800 ppm ⁇ min. More preferably, it is 300 to 3600 ppm ⁇ min.
  • the time of immersion in ozone water depends on the ozone concentration of ozone water, but is preferably 5 to 120 minutes, more preferably 10 to 100 minutes, and still more preferably 20 to 80 minutes.
  • the amount of ozone water is not particularly limited as long as it is an amount capable of decomposing the superabsorbent polymer, but is preferably 300 to 5000 parts by mass with respect to 100 parts by mass (dry basis) of the used absorbent article. More preferably, it is 500 to 4000 parts by mass, and still more preferably 800 to 3000 parts by mass. If the amount of ozone water is too small, the superabsorbent polymer cannot be completely solubilized, and the superabsorbent polymer may remain in the collected and regenerated constituent material (for example, pulp fiber). On the other hand, if the amount of the ozone-containing aqueous solution is too large, the production cost may increase.
  • the method of immersing the used absorbent article in ozone water is not particularly limited.
  • ozone water may be put in a container and the used absorbent article may be put in the ozone water. While being immersed, the contents of the container may be stirred, but may not be stirred.
  • ozone gas may be blown into the ozone water contained in the container, and a weak flow may be generated in the ozone water by raising the bubbles of the ozone gas.
  • the temperature of the ozone water is not particularly limited as long as it is a temperature that can decompose the superabsorbent polymer. Although ozone water may be heated, it may remain at room temperature.
  • the superabsorbent polymer In the ozone treatment process, the superabsorbent polymer is subjected to the oxidative decomposition action by ozone, the three-dimensional network structure of the superabsorbent polymer is destroyed, and the superabsorbent polymer loses its water retention, has a low molecular weight and is solubilized.
  • the superabsorbent polymer with high fluidity dissolves in ozone water.
  • hot melt adhesives used for bonding absorbent articles and the like are also oxidized and deteriorated with ozone water, and the bonding strength between the constituent materials of the absorbent articles is weakened.
  • the used absorbent article is primarily disinfected by the disinfection action of ozone, or the constituent material (for example, pulp fiber) to be recovered and regenerated is disinfected, bleached, and deodorized.
  • Ozone water is preferably acidic. More preferably, the pH of the ozone water is 2.5 or less, more preferably 0.5 to 2.5, and still more preferably 1.0 to 2.4.
  • acidic ozone water By using acidic ozone water, the water absorption expansion of the initial superabsorbent polymer can be suppressed, and the decomposition and removal effect of the superabsorbent polymer by ozone is dramatically improved, that is, the superabsorbent polymer in a short time. Can be disassembled.
  • the disinfection effect by an acid can also be provided by processing with acidic ozone water.
  • the principle of suppressing the water absorption expansion of the superabsorbent polymer is that the negatively charged carboxyl group is neutralized by the positively charged hydrogen ion in the acidic aqueous solution, so that the ion repulsive force of the carboxyl group is reduced. It is considered that the water absorbing power will be weakened. If the pH of the ozone water is too low, the water absorption capacity of the pulp fiber may be reduced when the constituent material to be recovered and recycled is pulp fiber. If the pH is too low, it is not clear why the water absorption capacity of the pulp fiber is lowered, but it is considered that the pulp fiber itself is denatured.
  • Acidic ozone water can be prepared by adding an acid to ozone water.
  • the acid is not particularly limited, and an inorganic acid and an organic acid can be used, but an organic acid is preferable. Since organic acids function in a weak acid range and are environmentally friendly, organic acids are preferred from the viewpoint of safety and environmental burden. Although it does not specifically limit as an organic acid, Tartaric acid, glycolic acid, malic acid, a citric acid, a succinic acid, an acetic acid, ascorbic acid etc. can be mentioned, Especially, a citric acid is preferable.
  • the pH of the acidic ozone water can be adjusted depending on the type of acid and the amount of acid added.
  • the concentration of the organic acid in the acidic ozone water is not limited as long as the pH is within a predetermined range, but is preferably 0.1 to 5.0% by mass, more preferably 0.2 to 3.0% by mass. %, And more preferably 0.5 to 2.0% by mass. Further, by adjusting the pH to 2.5 or less with an organic acid, it is difficult to directly touch ozone gas, and the disinfecting effect inside the disposable diaper can be enhanced.
  • the pH of the ozone water may change.
  • the pH of the ozone water here refers to the pH of the ozone water after the used absorbent article is added.
  • the pH can be adjusted, for example, by putting the used absorbent article and ozone water in the treatment tank, adding the acid to the stirring tank while stirring, and adding the acid when the pH of the solution in the treatment tank reaches a predetermined pH. Stop adding.
  • the wastewater contains decomposition products of the superabsorbent polymer, dirt, fine pulp, and the like. This wastewater is hereinafter referred to as “drainage from the ozone treatment process”.
  • the method for separating the used absorbent article and the waste water is not particularly limited.
  • a stopper may be provided at the bottom of the container, the ozone water may be discharged by removing the stopper, or the used absorbent article may be removed from the container, and then the ozone water may be discharged from the container. .
  • discharging ozone water for example, it passes through a 2 mm screen mesh and is discharged.
  • the method of this invention includes the ozone concentration adjustment process of adjusting the ozone concentration of the waste_water
  • the ozone concentration of the wastewater charged into the microbial fuel cell is 0.1 mass ppm or less, preferably 0 to 0.05 mass ppm, more preferably 0 to 0.01 mass ppm. If the ozone concentration is high, microorganisms in the next microbial fuel cell process are killed, so the ozone concentration is adjusted to 0.1 ppm or less in order to protect the microorganisms.
  • the method for reducing the ozone concentration is not particularly limited.
  • a method of diluting with water a method of adding a reducing agent (for example, silica, alumina, manganese dioxide, ferrous oxide, nickel oxide), activated carbon adsorption
  • a reducing agent for example, silica, alumina, manganese dioxide, ferrous oxide, nickel oxide
  • activated carbon adsorption There are decomposition methods, thermal decomposition methods, alkali cleaning methods, chemical solution reduction methods such as sodium sulfite. If the ozone concentration of the waste water from the ozone treatment step is already 0.1 ppm by mass or less at the end of the ozone treatment, this step need not be provided separately. Regardless of whether or not the ozone concentration is actually adjusted, the embodiment is within the scope of the present invention as long as the ozone concentration of the wastewater put into the microbial fuel cell is 0.1 mass ppm or less.
  • the pH of waste water from the ozone treatment step is preferably 2.0 or more and 7.0 or less. If the pH is too low, microorganisms in the microbial fuel cell process of the next process may be killed. If the pH is too high, the power generation efficiency of the next microbial fuel cell process may be reduced. That is, the method of this invention can include the process of adjusting pH of the waste_water
  • the TOC concentration of the waste water from the ozone treatment step is preferably 10,000 mg / L or less, more preferably 100 to 5000 mg / L, still more preferably 300 to 3000 mg / L. If the TOC concentration is too high, the processing time efficiency of the microbial fuel cell process of the next process may be reduced. When the TOC concentration is too low, nutrients for microorganisms in the microbial fuel cell process of the next process are insufficient, and the activity of the microorganisms may be reduced. That is, the method of this invention can include the process of adjusting the TOC density
  • the TOC concentration can be adjusted by diluting the waste water from the ozone treatment process with water.
  • the step of adjusting the TOC concentration can be performed simultaneously with the ozone concentration adjusting step. That is, in the ozone concentration adjusting step, both the ozone concentration and the TOC concentration may be adjusted, or the ozone concentration, the pH, and the TOC. Three of the densities may be adjusted.
  • the method of the present invention includes a microbial fuel cell process in which wastewater whose ozone concentration is adjusted is introduced into a microbial fuel cell to reduce the TOC concentration in the wastewater and to collect power generated by power generation.
  • the microbial fuel cell refers to a device that uses microorganisms to convert organic substances as fuel into electric energy.
  • a microbial fuel cell immerses the negative electrode and the positive electrode in a solution of an organic substance as a fuel, and collects electrons generated when the organic substance is oxidatively decomposed by microorganisms in the negative electrode, and the electrons move to the positive electrode via an external circuit. In the positive electrode, electrons are consumed by the reduction reaction of the oxidizing agent.
  • wastewater whose ozone concentration has been adjusted is introduced into the microbial fuel cell to reduce the TOC concentration in the wastewater and to recover power generated by power generation.
  • the TOC concentration in the wastewater is reduced by oxidizing and decomposing organic matter such as decomposition products of the superabsorbent polymer, filth, and fine pulp contained in the wastewater whose ozone concentration is adjusted, And power generation is performed.
  • the microorganism used in the microbial fuel cell is not particularly limited as long as it can contribute to oxidative decomposition of organic substances and generation of electric energy, but mainly hydrogen-producing microorganisms are used.
  • a facultative anaerobic bacterium is preferably used.
  • FIG. 1 is an ozone treatment drainage tank
  • 2 is a pump
  • 3 is a negative electrode reaction tank
  • 4 is a negative electrode
  • 5 is a proton exchange membrane
  • 6 is a positive electrode tank
  • 7 is a positive electrode
  • 8 is a tester
  • 9 is a personal computer
  • 10 is sludge A sedimentation tank
  • 11 is a pump
  • 12 is a purified water tank.
  • the pH of the wastewater from the microbial fuel cell process is preferably less than 8.0. If the pH of the wastewater from the microbial fuel cell process is too high, the power generation efficiency of the microbial fuel cell process is reduced.
  • the TOC concentration of the waste water from the microbial fuel cell process is 2000 mg / L or less. If the TOC concentration of the wastewater from the microbial fuel cell process is 2000 mg / L or less, the purification process can be easily performed in a general septic tank in the next process. Moreover, when draining directly from a microbial fuel cell process, it is preferable that the TOC density
  • the used absorbent article prior to the ozone treatment step, is physically applied to the used absorbent article in an aqueous solution containing polyvalent metal ions or an acidic aqueous solution having a pH of 2.5 or less. May be included to decompose the used absorbent article into pulp fibers and other materials (hereinafter also simply referred to as “decomposition step”).
  • the used absorbent article is decomposed into pulp fibers and other materials by applying a physical force to the used absorbent article.
  • Absorbent articles are usually composed of materials such as pulp fibers, superabsorbent polymers, non-woven fabrics, plastic films and rubber. In this decomposition step, the used absorbent article is decomposed into the above materials.
  • the degree of decomposition is not limited as long as at least a part of the pulp fiber can be recovered, and may not be complete or may be partial.
  • the method of applying a physical force to the used absorbent article is not limited, and examples thereof include stirring, tapping, thrusting, vibration, tearing, cutting, crushing, and the like. Of these, stirring is preferred. Stirring can be performed in a treatment tank equipped with a stirrer such as a washing machine.
  • the method of the present invention includes a decomposition step, the object to be treated in the next ozone treatment step is not the used absorbent article itself, but a collection of constituent materials of the absorbent article generated by the decomposition of the used absorbent article. Although it becomes a body or a part thereof (for example, pulp fiber), the case of treating them with ozone water is also regarded as corresponding to the “ozone treatment step” in the present invention.
  • This decomposition step is performed in an aqueous solution containing polyvalent metal ions or an acidic aqueous solution having a pH of 2.5 or less.
  • an aqueous solution containing polyvalent metal ions or an acidic aqueous solution having a pH of 2.5 or less the superabsorbent polymer swollen by absorbing water in the used absorbent article is dehydrated.
  • a superabsorbent polymer has a hydrophilic group (for example, —COO ⁇ ), and a water molecule is bonded to the hydrophilic group through a hydrogen bond, so that a large amount of water can be absorbed.
  • a superabsorbent polymer that absorbs water When a superabsorbent polymer that absorbs water is placed in an aqueous solution containing a polyvalent metal ion such as calcium ion, the polyvalent metal ion is bonded to a hydrophilic group (for example, —COO ⁇ ) (for example, —COO—Ca—OCO). -), The hydrogen bond between the hydrophilic group and the water molecule is broken, the water molecule is released, the superabsorbent polymer is dehydrated, and the superabsorbent polymer that has absorbed water is dissolved in an acidic aqueous solution of pH 2.5 or less.
  • a hydrophilic group for example, —COO ⁇
  • - for example, —COO—Ca—OCO
  • the negatively charged hydrophilic group (for example, —COO ⁇ ) is neutralized by the positively charged hydrogen ion (H + ) (for example, —COOH), so that the ion repulsive force of the hydrophilic group is weakened. Suck Force is reduced, the superabsorbent polymer is believed to be dehydrated. By dehydrating the superabsorbent polymer, separation of the pulp fiber and superabsorbent polymer is facilitated. When attempting to decompose used absorbent articles in normal water, the superabsorbent polymer absorbs water and swells, increasing the solid content concentration in the tank and reducing the processing efficiency of mechanical decomposition operations. It can be avoided by carrying out in an aqueous solution containing a valent metal ion or an acidic aqueous solution having a pH of 2.5 or lower.
  • alkaline earth metal ions As polyvalent metal ions, alkaline earth metal ions, transition metal ions, and the like can be used.
  • Alkaline earth metal ions include beryllium, magnesium, calcium, strontium and barium ions.
  • Preferred aqueous solutions containing alkaline earth metal ions include aqueous solutions of calcium chloride, calcium nitrate, calcium hydroxide, calcium oxide, magnesium chloride, magnesium nitrate, etc. Among them, an aqueous solution of calcium chloride is preferable.
  • the transition metal ion is not limited as long as it is incorporated into the superabsorbent polymer, and examples thereof include ions of iron, cobalt, nickel, copper and the like.
  • Examples of the aqueous solution containing a transition metal ion include aqueous solutions of transition metal inorganic acid salts, organic acid salts, complexes, and the like. From the viewpoint of cost and availability, an aqueous solution of an inorganic acid salt or an organic acid salt is preferable.
  • inorganic acid salts include iron salts such as iron chloride, iron sulfate, iron phosphate and iron nitrate, cobalt salts such as cobalt chloride, cobalt sulfate, cobalt phosphate and cobalt nitrate, nickel salts such as nickel chloride and nickel sulfate, Examples thereof include copper salts such as copper chloride and copper sulfate.
  • organic acid salts include iron lactate, cobalt acetate, cobalt stearate, nickel acetate, and copper acetate.
  • an aqueous solution of a calcium compound is preferable in consideration of safety and price.
  • ozone used in the subsequent process has the property of decomposing on the alkali side, so an aqueous solution of calcium chloride that is weakly alkaline as close to neutral as possible is stronger than calcium hydroxide or calcium oxide, which is a strong alkali. preferable.
  • the pH of the aqueous solution containing polyvalent metal ions is not particularly limited, but is preferably 11 or less. In the case of using an alkaline compound, the pH of the aqueous solution is preferably greater than 7 and 11 or less.
  • the amount of the polyvalent metal ion is preferably 4 mmol or more, more preferably 4.5 to 10 mmol, further preferably 5 to 8 mmol, per 1 g (dry mass) of the superabsorbent polymer. If the amount of polyvalent metal ions is too small, dehydration of the superabsorbent polymer will be insufficient. If the amount of polyvalent metal ions is too large, excess polyvalent metal ions remain in the treatment liquid without being taken into the superabsorbent polymer, leading to wasted polyvalent metal salts and increasing the treatment cost.
  • the concentration of the polyvalent metal ion in the aqueous solution containing the polyvalent metal ion is not particularly limited as long as it is a concentration at which the polyvalent metal ion is taken into the superabsorbent polymer, but is preferably 10 to 1000 mmol / L, more preferably. 50 to 700 mmol / liter, more preferably 200 to 400 mmol / liter. If the concentration is too low, dehydration of the superabsorbent polymer will be insufficient. If the concentration is too high, excess polyvalent metal ions remain in the treatment liquid without being taken into the superabsorbent polymer, leading to wasted polyvalent metal ions and increasing the treatment cost.
  • the concentration of calcium chloride is preferably 1% by mass or more, but even if it is increased to 10% by mass or more, the effect does not change. Is preferably 10 to 10% by mass, more preferably 3 to 6% by mass.
  • the pH of the acidic aqueous solution is 2.5 or less, preferably 0.5 to 2.5, and more preferably 1.0 to 2.4. If the pH is too high, the superabsorbent polymer may be insufficiently dehydrated. If the pH is too low, the pulp fibers recovered due to strong acid may be damaged.
  • any aqueous solution of an inorganic acid or an organic acid can be used as long as the pH is 2.5 or less.
  • the organic acid include tartaric acid, glycolic acid, malic acid, citric acid, succinic acid, and acetic acid, and citric acid is preferable.
  • the concentration of the organic acid in the aqueous solution is not particularly limited as long as the pH is 2.5 or less, but is preferably 0.1 to 10.0% by mass, more preferably 0.8. It is 5 to 8.0% by mass, and more preferably 1.0 to 5.0% by mass. If the concentration is too low, the superabsorbent polymer may be insufficiently dehydrated. If the concentration is too high, organic acid may be wasted.
  • the method of the present invention may include, after the decomposition step, a step of separating the pulp fibers from the mixture of pulp fibers and other materials generated in the decomposition step (hereinafter also simply referred to as “separation step”).
  • the pulp fibers are separated from a mixture of pulp fibers and other materials (superabsorbent polymer, nonwoven fabric, plastic film, rubber, etc.) produced by the decomposition of the used absorbent article.
  • this step at least a part of the pulp fiber is separated and recovered. Not all of the pulp fibers need be recovered. Further, other materials may be separated and recovered together with the pulp fibers.
  • the separation method usually, at least a part of the superabsorbent polymer is mixed into the separated pulp fiber.
  • the decomposed constituent material is preferably separated into a fraction containing pulp fibers and a superabsorbent polymer and a fraction containing non-woven fabric, plastic film and rubber.
  • the fraction containing pulp fiber and superabsorbent polymer may contain some nonwoven fabric, plastic film and rubber, and the fraction containing nonwoven fabric, plastic film and rubber will contain some pulp fiber and superabsorbent polymer. May be included.
  • a method for separating pulp fibers is not limited, but, for example, a method for separating and separating in water using a difference in specific gravity of decomposed constituent materials, and having a predetermined mesh of constituent materials having different sizes. Examples thereof include a method of separating through a screen and a method of separating with a cyclone centrifuge.
  • the separated pulp fibers are mixed with a high water-absorbing polymer.
  • the superabsorbent polymer remaining in the separated pulp fibers is removed by decomposing, reducing the molecular weight, and solubilizing.
  • the method of the present invention cleans the used absorbent article and constitutes the used absorbent article by stirring the used absorbent article in an aqueous solution or water containing a disinfectant after the ozone treatment step.
  • a step of decomposing into materials (hereinafter also simply referred to as “cleaning / decomposing step”) may be included.
  • the water used in the cleaning / decomposition process does not necessarily include a disinfectant, but an aqueous solution containing the disinfectant may be used.
  • the disinfectant is not particularly limited, and examples thereof include chlorine dioxide, acidic electrolyzed water, and ozone water.
  • the concentration of the disinfectant in the aqueous solution containing the disinfectant is not particularly limited as long as the disinfecting effect is exhibited, but is preferably 10 to 300 ppm by mass, more preferably 30 to 280 ppm by mass, more preferably 50 to 250 ppm by mass. If the concentration is too low, a sufficient disinfection effect cannot be obtained, and bacteria or the like may remain in the recovered pulp fiber. On the other hand, if the concentration is too high, not only will the disinfectant be wasted, but the pulp fibers may be damaged and safety problems may occur.
  • Stirring in the washing / decomposition step is not particularly limited as long as the residue of the absorbent article is washed and decomposed into constituent materials, but can be performed using, for example, a washing machine.
  • the stirring conditions are not particularly limited as long as the residue of the absorbent article is washed and decomposed into constituent materials.
  • the stirring time is preferably 5 to 60 minutes, more preferably 10 to 50 minutes. More preferably, it is 20 to 40 minutes.
  • the cleaning / decomposition process the residue of the absorbent article from which the polymer absorbent material has been removed is washed, and the absorbent article is broken down into constituent materials.
  • the hot melt adhesive used for bonding of absorbent articles is oxidized and deteriorated with ozone water, and the bonding strength between the constituent materials of the absorbent articles is weakened.
  • an absorbent article can be easily decomposed
  • the antibacterial agent treatment is simultaneously performed in the cleaning / decomposition step by adding a cationic antibacterial agent to an aqueous solution or water containing a disinfectant used in the cleaning / decomposition step.
  • the aqueous solution or water containing a disinfectant used in the cleaning / decomposition step preferably contains a cationic antibacterial agent. Since the cationic antibacterial agent adsorbs to the pulp fiber and the pulp fiber is anionic, the cationic antibacterial agent adsorbed to the pulp fiber is not easily desorbed, so that the cationic antibacterial agent remains in the final recycled pulp. To do.
  • the antibacterial agent treatment is preferably carried out at a stage as close to the final process as possible.
  • the method of the present invention may include a step of separating the pulp fibers from the decomposed material of the used absorbent article (hereinafter simply referred to as “pulp fiber separation step”) after the cleaning / decomposition step.
  • a method for separating pulp fibers is not limited, but, for example, a method for separating and separating in water using a difference in specific gravity of decomposed constituent materials, and having a predetermined mesh of constituent materials having different sizes. Examples thereof include a method of separating through a screen and a method of separating with a cyclone centrifuge.
  • the method of the present invention may include a step of washing the separated pulp fibers (hereinafter referred to as “pulp fiber washing step”) after the pulp fiber separation step.
  • pulp fiber washing step a step of washing the separated pulp fibers
  • the method for washing the separated pulp fibers is not limited, but for example, the separated pulp fibers can be put in a mesh bag and rinsed with water.
  • the method of the present invention may include a step of dehydrating the washed pulp fiber (hereinafter referred to as “pulp fiber dehydration step”) after the pulp fiber washing step.
  • the method for dewatering the washed pulp fibers is not limited.
  • the washed pulp fibers contained in the mesh bag can be dehydrated with a dehydrator.
  • the pulp fiber washing step and the pulp fiber dehydration step may be performed once, but may be alternately repeated a plurality of times.
  • the method of the present invention may include a step of drying the dehydrated pulp fiber (hereinafter referred to as “pulp fiber drying step”) after the pulp fiber dehydration step. Since the pulp fiber obtained by the method of the present invention is less prone to mold even in a wet state, it can be stored in a wet state without being dried, and therefore a drying step is not necessarily provided.
  • the method of the present invention may further include a step of separating and collecting the plastic material (hereinafter referred to as “plastic material separating and collecting step”).
  • the plastic material refers to a nonwoven material, a film material, an elastomer material, and the like.
  • the plastic material separation and recovery step can be performed in parallel with the pulp fiber separation step after the washing and decomposition step.
  • the same washing step, dehydration step and drying step as the pulp fiber washing step, pulp fiber dehydration step and pulp fiber drying step can be included.
  • the recovered plastic material can be used as a solid fuel by, for example, RPF processing.
  • FIG. 1 shows a recycling system flow including the method of the present invention.
  • used absorbent articles such as used diapers are first crushed and decomposed (preferably in an SAP inactivated state), then treated with ozone water, and then washed, disinfected, and screen separated.
  • it is divided into a fraction containing mainly plastic and non-woven fabric and a fraction containing mainly pulp and waste water.
  • the waste water generated in the crushing / decomposing process and the waste water generated in the cleaning / disinfection / screen separation are also added to the fraction mainly containing pulp and waste water as necessary.
  • Plastics and non-woven fabrics become solid fuel (RPF).
  • the fraction mainly containing pulp and waste water is further separated into pulp and waste water.
  • the pulp is washed, preferably sterilized, deodorized, bleached, dehydrated and dried to recover and reuse the pulp.
  • the waste water is adjusted to water quality such as ozone concentration, pH, and TOC, and then charged into the negative electrode tank of the microbial fuel cell. Wastewater generated by the washing of the pulp is also fed into the negative electrode tank of the microbial fuel cell as necessary.
  • the TOC of the wastewater is reduced, and at the same time, the power generated by the power generation is recovered.
  • the wastewater with reduced TOC is further purified as necessary and discharged into sewage or the like.
  • the method of the present invention has the following advantages. Since microorganisms grow naturally in the fuel cell, it is not always necessary to add them. It only needs to be replenished when the activity drops. Microbial (anaerobic) biodegradation enables solids reduction and pathogenic bacteria detoxification (death). Power generation and storage by battery system (when battery is installed) is possible. In order to secure an active environment for microorganisms, temperature control may be performed so as to reach room temperature (20 ° C to 40 ° C). The high-concentration COD wastewater generated by the recycling process can also be harmlessly processed by diluting to a certain concentration or less. By changing to electric power, which is the most versatile energy resource, it can be reused without special equipment. Used absorbent articles can be completely recycled (used products ⁇ recycled into pulp fiber, RPF, and electricity).
  • Ozone water generator Mitsubishi Electric Corporation Name: Ozone generator Model: OS-25V Ozone water concentration variable range: 1-80mg / m 3 Ozone water exposure tank volume: 30L
  • SAP decomposition was performed by blowing 150 g of SAP in 20 L of 1% citric acid aqueous solution and blowing 80 g / m 3 of ozone gas for 1 hour.
  • the treated water quality after the treatment for 1 hour was TOC 3700 mg / L, pH 2.5, and ozone water concentration 16.8 mass ppm.
  • the ozone treated waste water after SAP decomposition is diluted with tap water so that the TOC is about 500 mg / L and about 1000 mg / L, and the TOC is diluted to about 500 mg / L.
  • the pH was adjusted to about 6.5, 6.0, 5.5, 5.0, and 3.0.
  • Table 1 shows the pH, TOC, and ozone concentration of the ozone-treated waste water after preparation.
  • the microorganism used in the examples is a sludge composed of a mixed microorganism population, has high polymer degrading activity on cellulose, pectin, etc., has high self-aggregation property, and has a sedimentation coefficient indicating sedimentation separation of microorganisms and purified water.
  • 30 is about 20-40%, and is a complex system of aerobic bacteria contained in wild activated yeast such as Hansenula, Kluybaromyces, Candida, Trichosporon, Pichia, Yarrowia, Debaryomyces and other normal activated sludge. It is a mixed microbial sludge that has been acclimatized and cultured for 3 years or more with carboxymethylcellulose as a carbon source and acclimatized with pulverized pulp for 2 years or more.
  • TOC degradation by microorganisms A 2 L graduated cylinder was filled with 1 L of sludge composed of the microorganisms at a concentration of 1.6 g-MLSS / L, and then the ozone-treated waste water was injected at a flow rate of 0.5 L / d for a total of 1 L over 2 days. The TOC after the treatment (after 2 days) was measured, and the TOC decomposition rate was calculated. The results are shown in Table 1. It was confirmed that TOC decomposition (water purification) by microbial treatment can be efficiently decomposed at a pH of 2 to 7 and a TOC of 1080 mg / L or less.
  • the processing time efficiency is better when processing at TOC 10,000 mg / L or less. More preferably, the TOC is 5,000 mg / L or less.
  • the optimal decomposition rate is preferably 80% or more, and the pH in the tank after treatment is preferably less than 8.0. Based on the above results, in order to perform water purification and power generation treatment of the wastewater from the recycling treatment with the microbial fuel cell, the water quality when it is introduced into the treatment layer is adjusted to pH 2.0 to 7.0 at TOC 10000 mg / L or less. As a result, the TOC decomposition rate is 80% or more and the purification process can be performed efficiently. By controlling the wastewater concentration and flow velocity so that the inside of the treatment tank is not alkalized, it is possible to perform treatment without impairing the power generation efficiency of the microbial fuel cell.
  • the microbial fuel cell process is an anaerobic process, and aeration is not required unlike the conventional activated sludge process, and the processing power cost can be reduced.
  • it is possible to recover power from power generation through recycling at the same time as water purification, from wastewater containing recycling that has not been recycled and that has increased the burden of purification treatment, enabling a complete recycling system for used absorbent articles. It becomes.
  • a 1.6-liter acrylic cylindrical negative electrode reaction tank 3 (diameter 8 cm, height 32 cm) is used, and the negative electrode 4 has a bio-cord made of carbon fibers bundled in a mall shape. (Registered trademark) (made by TB Corp., diameter: 45 mm) is used as one 29 cm, and for the positive electrode 7, a platinum thin film carbon paper (ElectroChem, EC-20-10-7) is cut into a 79 mm ⁇ circle.
  • NeoSepta CMS manufactured by Astom Co., Ltd.
  • the negative electrode reaction tank 3 was filled with the microorganisms, and a decomposition test was started at 1.6 L including the microorganisms.
  • Ozone-treated wastewater (residual ozone 0 ppm) with a TOC of 240 ppm by mass (drainage obtained by ozone-treating used diapers) was continuously injected into the negative electrode reactor 3 for 21 days at a flow rate of 0.8 L / 24 hours. Then, drainage was performed at the same flow rate, and current generation and water purification (TOC reduction) were confirmed. Also, from the 22nd day of continuous injection, the positive electrode was replaced with a new one, and ozone treatment wastewater (residual ozone 0 ppm) having a TOC of 240 mass ppm was continuously injected into the negative electrode reaction tank 3 at 1.2 L / 24 hours for 8 days. Then, drainage was performed from the negative electrode reaction tank 3 at the same flow rate, and current generation and water purification (TOC reduction) were confirmed. The results are shown in FIG.
  • the generated current yield was calculated as follows. First, the theoretical value is calculated.
  • TOC 240 ppm ⁇ 2.2 COD 528 ppm
  • COD528 ppm ⁇ 0.8 L / 24 h ⁇ 4 e ⁇ 1.690 mol ⁇ e ⁇ / 24 h
  • COD 528 ppm ⁇ 1.2 L / 24 h ⁇ 4 e ⁇ 2.5344 mol ⁇ e ⁇ / 24 h
  • the average generated current value for 21 days from the start of the experiment is 1.06 mA (maximum value 1.73 mA, minimum value 0.17 mA).
  • the average generated current for 9 days (10-18 days) was 1.65 mA (maximum value 1.73 mA, minimum value 1.43 mA).
  • the average generated current value for 8 days from the start of the experiment is 2.48 mA (maximum value 2.83 mA, minimum value 1.63 mA).
  • the average generated current for 3 days (24th to 27th days) was 2.66 mA (maximum value 2.83 mA, minimum value 2.54 mA).
  • the method of the present invention can be suitably used in a recycling system for used absorbent articles such as disposable diapers.

Abstract

The purpose of the invention is to effectively recycle even treated wastewater including waste in a method for recycling absorbent articles (paper diapers etc.) including excrement. Disclosed is a method for recycling used absorbent articles in which at least one type of material constituting the absorbent articles is collected and recycled from the used absorbent articles, the method comprising: an ozone treatment step of treating used absorbent articles with ozone water; an ozone concentration adjustment step of adjusting the ozone concentration of the wastewater from the ozone treatment step to 0.1 ppm by mass or less; and a microbial fuel cell step of introducing the ozone-concentration-adjusted wastewater into a microbial fuel cell, to reduce the TOC concentration in the wastewater and also collect electric power produced by power generation.

Description

使用済み吸収性物品のリサイクル方法Recycling method of used absorbent articles
 本発明は、使用済み吸収性物品から前記吸収性物品を構成する材料の少なくとも1種を回収し再生する使用済み吸収性物品のリサイクル方法に関する。 The present invention relates to a method for recycling a used absorbent article in which at least one material constituting the absorbent article is recovered from the used absorbent article and regenerated.
 特許文献1は、使用済み紙おむつを再生物として有効に再生利用することができると共に、使用済み紙おむつを再生物にせずに処分する場合に比べて排出されるCO2の削減に柔軟に寄与することができる使用済み紙おむつの再生利用方法を開示している。その再生利用方法は、(1)排泄物等の水分を沢山含んだ紙おむつを破砕しながら発酵菌を混ぜ合せ、(2)屎尿・パルプ等を微生物発酵分解させ、第1加熱により発酵および乾燥を促進させ、(3)発酵完了後、第2加熱を行い、加熱殺菌および残留水分乾燥を行い、再生物を生成し、(4)再生物を燃材(固形燃料)として利用し、熱エネルギーとして回収し、再利用する、というものである。 Patent Document 1 is capable of effectively reusing used paper diapers as recycled materials, and flexibly contributing to the reduction of CO 2 emissions compared to the case where used paper diapers are disposed without being recycled. A recycling method for used paper diapers that can be used is disclosed. The recycling method consists of (1) mixing fermented bacteria while crushing paper diapers containing a lot of water such as excrement, and (2) fermenting and drying fertilizer and pulp, etc. (3) After the completion of fermentation, perform the second heating, heat sterilize and dry the residual moisture, produce a regenerated product, (4) use the regenerated material as a fuel (solid fuel), as thermal energy They are collected and reused.
国際公開第2006/134941号International Publication No. 2006/134941
 しかし、特許文献1に記載の方法は、(1)発酵菌を混ぜ合わせる必要があり、発酵菌の貯蔵・保管・添加量調整等の装置・作業が必要であり、(2)発酵および乾燥を促進させるために、大きな加熱エネルギーが必要であり、(3)加熱殺菌および残留水分乾燥には、100℃前後までの乾燥が必要であり、また水分率を65%から5%にまで乾燥させるためには、多大な加熱エネルギーが必要であり、高温に対する安全対策(断熱・耐熱)や加熱時に大量発生する臭気を含んだ水蒸気処理等の装置が必要であり、大型化・複雑化・高ランニングコストとなる可能性が高く、(4)生成物が固形燃料であり、設備の無い一般家庭や施設では再利用し難く、また、燃焼による再利用のため、CO2が発生してしまうことと、サーマルリサイクルであり利用用途が限定される、という問題点があった。 However, in the method described in Patent Document 1, (1) it is necessary to mix fermenting bacteria, and equipment and operations such as storage, storage, and addition amount adjustment of the fermenting bacteria are required, and (2) fermentation and drying are performed. In order to promote, large heating energy is required. (3) Heat sterilization and residual moisture drying require drying up to around 100 ° C., and the moisture content is dried from 65% to 5%. Requires a large amount of heating energy, requires high temperature safety measures (insulation and heat resistance), and equipment such as steam treatment that contains a large amount of odor generated during heating. (4) The product is a solid fuel, it is difficult to reuse it in ordinary households and facilities without facilities, and CO 2 is generated due to reuse by combustion, Thermal recycling By and use applications is limited, there is a problem in that.
 本発明は、このような従来の問題点に着目してなされたもので、排泄物を含んだ吸収性物品(紙おむつ等)をリサイクル可能なパルプ繊維とプラスチック/不織布成分と汚物を含む処理排水に分離し、これまで無価値であった汚物を含む処理排水を微生物燃料電池を利用して、微生物分解による排水処理をしながら微生物から電力回収し、電気エネルギーとして再利用することにより、上記課題を解決するものである。 The present invention has been made paying attention to such conventional problems, and can be used as a treated wastewater containing pulp fibers, plastic / nonwoven fabric components, and filth that can recycle absorbent articles (such as paper diapers) containing excreta. By separating and treating wastewater containing waste, which was previously valuable, using a microbial fuel cell, recovering power from microorganisms while performing wastewater treatment by microbial decomposition, and reusing it as electrical energy, the above problems can be solved. It is a solution.
 すなわち、本発明は、使用済み吸収性物品から前記吸収性物品を構成する材料の少なくとも1種を回収し再生する使用済み吸収性物品のリサイクル方法であって、該方法が、使用済み吸収性物品をオゾン水で処理するオゾン処理工程、オゾン処理工程からの排水のオゾン濃度を0.1ppm以下に調整するオゾン濃度調整工程、およびオゾン濃度が調整された排水を微生物燃料電池に投入して排水中のTOC濃度を低減するとともに発電による電力を回収する微生物燃料電池工程を含むことを特徴とする。 That is, the present invention is a method for recycling a used absorbent article that recovers and regenerates at least one material constituting the absorbent article from the used absorbent article, the method comprising the used absorbent article. Treatment with ozone water, ozone concentration adjustment step to adjust the ozone concentration of the wastewater from the ozone treatment step to 0.1 ppm or less, and wastewater adjusted with ozone concentration is put into the microbial fuel cell and drained And a microbial fuel cell process for recovering the electric power generated by power generation.
 前記方法は、好ましくは、オゾン処理工程からの排水のpHを2.0以上、7.0以下に調整する工程をさらに含む。
 好ましくは、微生物燃料電池工程からの排水のpHが8.0未満である。
 前記方法は、好ましくは、オゾン処理工程からの排水のTOC濃度を10,000mg/L以下に調整する工程をさらに含む。
 好ましくは、微生物燃料電池工程からの排水のTOC濃度が2000mg/L以下である。
Preferably, the method further includes a step of adjusting the pH of the waste water from the ozone treatment step to 2.0 or more and 7.0 or less.
Preferably, the pH of the waste water from the microbial fuel cell process is less than 8.0.
Preferably, the method further includes a step of adjusting the TOC concentration of the waste water from the ozone treatment step to 10,000 mg / L or less.
Preferably, the TOC concentration of the waste water from the microbial fuel cell process is 2000 mg / L or less.
 本発明によれば、従来リサイクルされず、浄化処理負担増の基になっていた汚物を含んだリサイクル処理排水から、水質浄化と同時に発電による電力回収が可能となり、使用済み吸収性物品の完全リサイクルシステムが可能となる。処理排水中の有機物(汚物・薬品・分解SAP・微小パルプ繊維等)を微生物が効率的に活動可能な環境で餌として与えることにより、微生物の活性を高めることが可能であり、その増殖した微生物から電力回収することにより、これまで、リサイクル残渣として処分されていた残留有機物も電力としてリサイクル可能となる。従来の微生物処理は、好気処理中心で曝気によるエアー供給が必須であったが、微生物燃料電池は嫌気処理のため、曝気が必要なく、ランニングエネルギーコストも安い。 According to the present invention, it is possible to recover power by power generation simultaneously with purification of water from wastewater containing recycling that has not been recycled and that has increased the burden of purification treatment, and complete recycling of used absorbent articles. System becomes possible. It is possible to increase the activity of microorganisms by giving organic matter (soil, chemicals, decomposed SAP, micropulp fiber, etc.) in the treated wastewater as food in an environment where microorganisms can efficiently act. By recovering power from the power, residual organic matter that has been disposed of as a recycling residue until now can be recycled as power. In the conventional microbial treatment, air supply by aeration is essential at the aerobic treatment center. However, since the microbial fuel cell is anaerobic treatment, aeration is not necessary and the running energy cost is low.
図1は、本発明の方法を含むリサイクルシステムフローを示す。FIG. 1 shows a recycling system flow including the method of the present invention. 図2は、微生物燃料電池の概略図を示す。FIG. 2 shows a schematic diagram of a microbial fuel cell. 図3は、実施例の微生物燃料電池による処理における電流発生および水質浄化(TOC減少)の結果を示す。FIG. 3 shows the results of current generation and water purification (TOC reduction) in treatment with the microbial fuel cell of the example.
 本発明は、使用済み吸収性物品から前記吸収性物品を構成する材料の少なくとも1種を回収し再生する使用済み吸収性物品のリサイクル方法に関する。 The present invention relates to a method for recycling a used absorbent article in which at least one material constituting the absorbent article is recovered from the used absorbent article and regenerated.
 吸収性物品としては、特に限定されず、使い捨ておむつ、失禁パッド、尿取りパッド、生理用ナプキン、パンティーライナー等を例示することができる。なかでも、施設等でまとめて回収される失禁パッドや使い捨ておむつが分別の手間がなくパルプ量が比較的多い点で好ましい。 The absorbent article is not particularly limited, and examples thereof include disposable diapers, incontinence pads, urine removing pads, sanitary napkins, panty liners, and the like. Of these, incontinence pads and disposable diapers that are collected together in a facility or the like are preferable because they do not require separation and have a relatively large amount of pulp.
 吸収性物品は、通常、パルプ繊維、高吸水性ポリマー、不織布、プラスチックフィルム、ゴム等の各材料から構成されている。すなわち、吸収性物品を構成する材料(以下、単に「構成材料」ともいう。)とは、パルプ繊維、高吸水性ポリマー、不織布、プラスチックフィルム、ゴム等をいう。吸収性物品を構成する材料の少なくとも1種とは、パルプ繊維、高吸水性ポリマー、不織布、プラスチックフィルム、ゴム等の少なくとも1種をいうが、好ましくはパルプ繊維、不織布およびプラスチックフィルムからなる群から選択される少なくとも1種であり、より好ましくはパルプ繊維である。以下、主として、パルプ繊維を回収する場合を例にして説明するが、本発明はそれに限定されない。 Absorbent articles are usually composed of materials such as pulp fibers, superabsorbent polymers, non-woven fabrics, plastic films and rubber. That is, the material constituting the absorbent article (hereinafter also simply referred to as “constituent material”) refers to pulp fiber, superabsorbent polymer, nonwoven fabric, plastic film, rubber and the like. The at least one material constituting the absorbent article refers to at least one of pulp fiber, superabsorbent polymer, nonwoven fabric, plastic film, rubber, etc., preferably from the group consisting of pulp fiber, nonwoven fabric and plastic film. At least one selected, and more preferably pulp fiber. Hereinafter, the case where pulp fibers are recovered will be mainly described as an example, but the present invention is not limited thereto.
 パルプ繊維としては、特に限定するものではないが、フラッフ状パルプ繊維、化学パルプ繊維等を例示することができる。 Although it does not specifically limit as a pulp fiber, A fluffy pulp fiber, a chemical pulp fiber, etc. can be illustrated.
 高吸水性ポリマーとは、SAP(Superabsorbent Polymer)とも呼ばれ、水溶性高分子が適度に架橋された三次元網目構造を有するもので、数十倍~数百倍の水を吸収するが、本質的に水不溶性であり、一旦吸収された水は多少の圧力を加えても離水しないものであり、たとえば、デンプン系、アクリル酸系、アミノ酸系の粒子状または繊維状のポリマーを例示することができる。 Superabsorbent polymer, also called SAP (Superabsorbent Polymer), has a three-dimensional network structure in which water-soluble polymers are appropriately cross-linked and absorbs water several tens to several hundreds of times. It is insoluble in water, and once absorbed water does not release even when a certain pressure is applied, for example, starch-based, acrylic acid-based, amino acid-based particulate or fibrous polymers can be exemplified. it can.
 不織布としては、レーヨンなどのセルロース繊維、熱可塑性樹脂繊維などから形成されたスパンレース不織布、エアスルー不織布などを例示することができる。 Examples of the nonwoven fabric include spunlace nonwoven fabric and air-through nonwoven fabric formed from cellulose fibers such as rayon, thermoplastic resin fibers, and the like.
 プラスチックフィルムとしては、ポリオレフィンフォルム(たとえばポリプロピレンフィルム)、ポリエステルフィルム(たとえばポリエチレンテレフタレートフィルム)などを例示することができる。 Examples of the plastic film include polyolefin forms (for example, polypropylene film), polyester films (for example, polyethylene terephthalate film), and the like.
 ゴムとしては、天然ゴム、合成ゴム、スパンデックスのような弾性繊維などを例示することができる。 Examples of rubber include natural rubber, synthetic rubber, and elastic fibers such as spandex.
 本発明の方法は、使用済み吸収性物品をオゾン水で処理するオゾン処理工程を含む。
 この工程において、使用済み吸収性物品中に含まれる高吸水性ポリマーは分解し、低分子量化し、可溶化する。ここで、高吸水性ポリマーが分解し、低分子量化し、可溶化した状態とは、2mmのスクリーンメッシュを通過する状態をいうものとする。すなわち、この工程において、高吸水性ポリマーを、2mmのスクリーンメッシュを通過する程度にまで分解する。
 この工程において用いるオゾン水とは、オゾンが溶解した水をいう。オゾン水は、たとえば、オゾン水発生装置(三菱電機株式会社製オゾン発生装置OS-25V、エコデザイン株式会社製オゾン水曝露試験機ED-OWX-2など)を用いて調製することができる。
The method of the present invention includes an ozone treatment step of treating a used absorbent article with ozone water.
In this step, the superabsorbent polymer contained in the used absorbent article is decomposed, reduced in molecular weight, and solubilized. Here, the state in which the highly water-absorbing polymer is decomposed, reduced in molecular weight, and solubilized refers to a state of passing through a 2 mm screen mesh. That is, in this step, the superabsorbent polymer is decomposed to such an extent that it passes through a 2 mm screen mesh.
The ozone water used in this step refers to water in which ozone is dissolved. The ozone water can be prepared using, for example, an ozone water generator (ozone generator OS-25V manufactured by Mitsubishi Electric Corporation, ozone water exposure tester ED-OWX-2 manufactured by Ecodesign Co., Ltd.).
 オゾン水のオゾン濃度は、高吸水性ポリマーを分解することができる濃度であれば、特に限定されないが、好ましくは1~50質量ppmであり、より好ましくは2~40質量ppmであり、さらに好ましくは3~30質量ppmである。濃度が低すぎると、高吸水性ポリマーを完全に可溶化することができず、回収再生した構成材料(たとえばパルプ繊維)に高吸水性ポリマーが残存する虞がある。逆に、濃度が高すぎると、酸化力も高まるため、回収再生した構成材料(たとえばパルプ繊維)に損傷を与える虞があるとともに、安全性にも問題を生じる虞がある。 The ozone concentration of the ozone water is not particularly limited as long as it is a concentration capable of decomposing the superabsorbent polymer, but is preferably 1 to 50 ppm by mass, more preferably 2 to 40 ppm by mass, and further preferably Is 3 to 30 ppm by mass. If the concentration is too low, the superabsorbent polymer cannot be completely solubilized, and the superabsorbent polymer may remain in the collected and regenerated constituent material (for example, pulp fiber). On the other hand, if the concentration is too high, the oxidizing power also increases, which may damage the recovered and reconstructed constituent material (for example, pulp fiber) and may cause a problem in safety.
 オゾン水に浸漬する時間は、高吸水性ポリマーを分解することができる時間であれば、特に限定されない。オゾン水に浸漬する時間は、オゾン水のオゾン濃度が高ければ短くてよく、オゾン水のオゾン濃度が低ければ長い時間を要する。
 オゾン水のオゾン濃度(ppm)とオゾン水に浸漬する時間(分)の積(以下「CT値」ともいう。)は、好ましくは100~6000ppm・分であり、より好ましくは200~4800ppm・分であり、さらに好ましくは300~3600ppm・分である。CT値が小さすぎると、高吸水性ポリマーを完全に可溶化することができず、回収再生した構成材料(たとえばパルプ繊維)に高吸水性ポリマーが残存する虞がある。逆に、CT値が大きすぎると、回収再生した構成材料(たとえばパルプ繊維)の損傷、安全性の低下、製造原価の増加につながる虞がある。
 オゾン水に浸漬する時間は、オゾン水のオゾン濃度に依存することは、上述のとおりであるが、好ましくは5~120分であり、より好ましくは10~100分であり、さらに好ましくは20~80分である。
The time for immersing in ozone water is not particularly limited as long as it is a time during which the superabsorbent polymer can be decomposed. The time of immersion in ozone water may be short if the ozone concentration of ozone water is high, and a long time is required if the ozone concentration of ozone water is low.
The product of the ozone concentration (ppm) of ozone water and the time (minute) of immersion in ozone water (hereinafter also referred to as “CT value”) is preferably 100 to 6000 ppm · min, more preferably 200 to 4800 ppm · min. More preferably, it is 300 to 3600 ppm · min. If the CT value is too small, the superabsorbent polymer cannot be completely solubilized, and the superabsorbent polymer may remain in the collected and regenerated constituent material (for example, pulp fiber). On the other hand, if the CT value is too large, there is a risk of damage to the collected and recycled constituent materials (for example, pulp fibers), a reduction in safety, and an increase in manufacturing costs.
As described above, the time of immersion in ozone water depends on the ozone concentration of ozone water, but is preferably 5 to 120 minutes, more preferably 10 to 100 minutes, and still more preferably 20 to 80 minutes.
 オゾン水の量は、高吸水性ポリマーを分解することができる量であれば、特に限定されないが、使用済み吸収性物品100質量部(乾燥基準)に対し、好ましくは300~5000質量部であり、より好ましくは500~4000質量部であり、さらに好ましくは800~3000質量部である。オゾン水の量が少なすぎると、高吸水性ポリマーを完全に可溶化することができず、回収再生した構成材料(たとえばパルプ繊維)に高吸水性ポリマーが残存する虞がある。逆に、オゾン含有水溶液の量が多すぎると、製造原価の増加につながる虞がある。 The amount of ozone water is not particularly limited as long as it is an amount capable of decomposing the superabsorbent polymer, but is preferably 300 to 5000 parts by mass with respect to 100 parts by mass (dry basis) of the used absorbent article. More preferably, it is 500 to 4000 parts by mass, and still more preferably 800 to 3000 parts by mass. If the amount of ozone water is too small, the superabsorbent polymer cannot be completely solubilized, and the superabsorbent polymer may remain in the collected and regenerated constituent material (for example, pulp fiber). On the other hand, if the amount of the ozone-containing aqueous solution is too large, the production cost may increase.
 オゾン処理工程において、使用済み吸収性物品をオゾン水に浸漬する方法は、特に限定されないが、たとえば、容器にオゾン水を入れ、そのオゾン水の中に使用済み吸収性物品を入れればよい。浸漬している間、容器の内容物を攪拌してもよいが、攪拌しなくてもよい。また、容器に入れたオゾン水の中にオゾンガスを吹き込み、オゾンガスの泡の上昇によって、オゾン水の中に弱い流れを発生させてもよい。オゾン水の温度は、高吸水性ポリマーを分解することができる温度であれば、特に限定されない。オゾン水を加熱してもよいが、室温のままでもよい。 In the ozone treatment step, the method of immersing the used absorbent article in ozone water is not particularly limited. For example, ozone water may be put in a container and the used absorbent article may be put in the ozone water. While being immersed, the contents of the container may be stirred, but may not be stirred. Alternatively, ozone gas may be blown into the ozone water contained in the container, and a weak flow may be generated in the ozone water by raising the bubbles of the ozone gas. The temperature of the ozone water is not particularly limited as long as it is a temperature that can decompose the superabsorbent polymer. Although ozone water may be heated, it may remain at room temperature.
 オゾン処理工程では、高吸水性ポリマーがオゾンによる酸化分解作用を受け、高吸水性ポリマーの三次元網目構造が崩れ、高吸水性ポリマーは保水性を失い、低分子量化し、可溶化する。流動性が高くなった高吸水性ポリマーはオゾン水中に溶け出す。また、吸収性物品の接合等に使用されているホットメルト接着剤もオゾン水で酸化劣化し、吸収性物品の構成材料間の接合強度が弱くなる。さらに、この工程では、オゾンの消毒作用により、使用済み吸収性物品が一次消毒され、または回収再生する構成材料(たとえばパルプ繊維)が消毒、漂白、消臭される。 In the ozone treatment process, the superabsorbent polymer is subjected to the oxidative decomposition action by ozone, the three-dimensional network structure of the superabsorbent polymer is destroyed, and the superabsorbent polymer loses its water retention, has a low molecular weight and is solubilized. The superabsorbent polymer with high fluidity dissolves in ozone water. Further, hot melt adhesives used for bonding absorbent articles and the like are also oxidized and deteriorated with ozone water, and the bonding strength between the constituent materials of the absorbent articles is weakened. Further, in this process, the used absorbent article is primarily disinfected by the disinfection action of ozone, or the constituent material (for example, pulp fiber) to be recovered and regenerated is disinfected, bleached, and deodorized.
 オゾン水は酸性であることが好ましい。より好ましくは、オゾン水のpHは2.5以下であり、さらに好ましくは0.5~2.5であり、さらに好ましくは1.0~2.4である。酸性のオゾン水を用いることにより、初期の高吸水性ポリマーの吸水膨張を抑制することができ、オゾンによる高吸水性ポリマーの分解除去効果が飛躍的に向上する、すなわち短時間で高吸水性ポリマーを分解することができる。また、酸性のオゾン水で処理することにより、酸による消毒効果も付与することができる。ちなみに、高吸水性ポリマーの吸水膨張の抑制の原理は、酸性水溶液に対しては、マイナスに帯電したカルボキシル基がプラスに帯電された水素イオンによって中和されるため、カルボキシル基のイオン反発力が弱まり、吸水力が低下することとなると考えられる。オゾン水のpHが低すぎると、回収再生する構成材料がパルプ繊維の場合は、パルプ繊維の吸水能力が低下するおそれがある。pHが低すぎると、パルプ繊維の吸水能力が低下する理由は定かではないが、パルプ繊維自体が変性するためと考えられる。 Ozone water is preferably acidic. More preferably, the pH of the ozone water is 2.5 or less, more preferably 0.5 to 2.5, and still more preferably 1.0 to 2.4. By using acidic ozone water, the water absorption expansion of the initial superabsorbent polymer can be suppressed, and the decomposition and removal effect of the superabsorbent polymer by ozone is dramatically improved, that is, the superabsorbent polymer in a short time. Can be disassembled. Moreover, the disinfection effect by an acid can also be provided by processing with acidic ozone water. By the way, the principle of suppressing the water absorption expansion of the superabsorbent polymer is that the negatively charged carboxyl group is neutralized by the positively charged hydrogen ion in the acidic aqueous solution, so that the ion repulsive force of the carboxyl group is reduced. It is considered that the water absorbing power will be weakened. If the pH of the ozone water is too low, the water absorption capacity of the pulp fiber may be reduced when the constituent material to be recovered and recycled is pulp fiber. If the pH is too low, it is not clear why the water absorption capacity of the pulp fiber is lowered, but it is considered that the pulp fiber itself is denatured.
 酸性のオゾン水は、オゾン水に酸を添加することにより調製することができる。
 酸としては、特に限定されるものではなく、無機酸および有機酸を用いることができるが、好ましくは有機酸である。有機酸は弱酸域で機能しかつ環境に優しいので、安全性と環境負荷の観点から有機酸の方が好ましい。有機酸としては、特に限定するものではないが、酒石酸、グリコール酸、リンゴ酸、クエン酸、コハク酸、酢酸、アスコルビン酸等を挙げることができ、なかでもクエン酸が好ましい。
 酸性のオゾン水のpHは、酸の種類および酸の添加量により、調製することができる。酸性のオゾン水中の有機酸の濃度は、pHが所定の範囲内にある限り、限定されないが、好ましくは0.1~5.0質量%であり、より好ましくは0.2~3.0質量%であり、さらに好ましくは0.5~2.0質量%である。
 また、有機酸によりpH2.5以下とすることにより、特にオゾンガスが直接触れ難い、紙おむつ内部の消毒効果を高めることができる。
Acidic ozone water can be prepared by adding an acid to ozone water.
The acid is not particularly limited, and an inorganic acid and an organic acid can be used, but an organic acid is preferable. Since organic acids function in a weak acid range and are environmentally friendly, organic acids are preferred from the viewpoint of safety and environmental burden. Although it does not specifically limit as an organic acid, Tartaric acid, glycolic acid, malic acid, a citric acid, a succinic acid, an acetic acid, ascorbic acid etc. can be mentioned, Especially, a citric acid is preferable.
The pH of the acidic ozone water can be adjusted depending on the type of acid and the amount of acid added. The concentration of the organic acid in the acidic ozone water is not limited as long as the pH is within a predetermined range, but is preferably 0.1 to 5.0% by mass, more preferably 0.2 to 3.0% by mass. %, And more preferably 0.5 to 2.0% by mass.
Further, by adjusting the pH to 2.5 or less with an organic acid, it is difficult to directly touch ozone gas, and the disinfecting effect inside the disposable diaper can be enhanced.
 使用済み吸収性物品をオゾン水に加えると、オゾン水のpHが変化する場合がある。オゾン水のpHが使用済み吸収性物品を加える前と加えた後で異なる場合は、ここでいうオゾン水のpHとは、使用済み吸収性物品を加えた後のオゾン水のpHをいう。
 pHの調整は、たとえば、処理槽に使用済み吸収性物品とオゾン水を入れ、攪拌しながら、そこに酸を添加していき、処理槽内の溶液のpHが所定のpHになったところで酸の添加を止める。
When used absorbent articles are added to ozone water, the pH of the ozone water may change. When the pH of the ozone water differs before and after the used absorbent article is added, the pH of the ozone water here refers to the pH of the ozone water after the used absorbent article is added.
The pH can be adjusted, for example, by putting the used absorbent article and ozone water in the treatment tank, adding the acid to the stirring tank while stirring, and adding the acid when the pH of the solution in the treatment tank reaches a predetermined pH. Stop adding.
 オゾン処理が終了したら、高吸水性ポリマーが取り除かれた使用済み吸収性物品と排水とに分離する。排水には、高吸水性ポリマーの分解生成物、汚物、微細パルプ等が含まれている。この排水を以下「オゾン処理工程からの排水」という。使用済み吸収性物品と排水とに分離する方法は、特に限定されない。たとえば、容器の底部に栓を設けておき、その栓を抜いて、オゾン水を排出してもよいし、容器から使用済み吸収性物品を取り出し、その後、オゾン水を容器から排出してもよい。オゾン水を排出するときは、たとえば、2mmのスクリーンメッシュに通過させて排出する。 When the ozone treatment is completed, the product is separated into used absorbent articles from which the superabsorbent polymer has been removed and waste water. The wastewater contains decomposition products of the superabsorbent polymer, dirt, fine pulp, and the like. This wastewater is hereinafter referred to as “drainage from the ozone treatment process”. The method for separating the used absorbent article and the waste water is not particularly limited. For example, a stopper may be provided at the bottom of the container, the ozone water may be discharged by removing the stopper, or the used absorbent article may be removed from the container, and then the ozone water may be discharged from the container. . When discharging ozone water, for example, it passes through a 2 mm screen mesh and is discharged.
 本発明の方法は、オゾン処理工程からの排水のオゾン濃度を0.1質量ppm以下に調整するオゾン濃度調整工程を含む。微生物燃料電池に投入する排水のオゾン濃度は、0.1質量ppm以下であり、好ましくは0~0.05質量ppmであり、より好ましくは0~0.01質量ppmである。オゾン濃度が高いと次の微生物燃料電池工程の微生物が死滅するので、微生物を保護するためにオゾン濃度を0.1ppm以下に調整する。
 オゾン濃度を低減する方法は、特に限定するものではないが、たとえば、水で希釈する方法、還元剤(たとえばシリカ、アルミナ、二酸化マンガン、酸化第一鉄、酸化ニッケル)を添加する方法、活性炭吸着分解法、加熱分解法、アルカリ洗浄法、亜硫酸ナトリウム等の薬液還元法などがある。
 オゾン処理工程からの排水のオゾン濃度が、オゾン処理終了時点ですでに0.1質量ppm以下である場合には、別途、この工程を設ける必要はない。実際にオゾン濃度を調整するか否かにかかわらず、微生物燃料電池に投入する排水のオゾン濃度が0.1質量ppm以下である限りにおいて、その実施態様は本発明の範囲である。
The method of this invention includes the ozone concentration adjustment process of adjusting the ozone concentration of the waste_water | drain from an ozone treatment process to 0.1 mass ppm or less. The ozone concentration of the wastewater charged into the microbial fuel cell is 0.1 mass ppm or less, preferably 0 to 0.05 mass ppm, more preferably 0 to 0.01 mass ppm. If the ozone concentration is high, microorganisms in the next microbial fuel cell process are killed, so the ozone concentration is adjusted to 0.1 ppm or less in order to protect the microorganisms.
The method for reducing the ozone concentration is not particularly limited. For example, a method of diluting with water, a method of adding a reducing agent (for example, silica, alumina, manganese dioxide, ferrous oxide, nickel oxide), activated carbon adsorption There are decomposition methods, thermal decomposition methods, alkali cleaning methods, chemical solution reduction methods such as sodium sulfite.
If the ozone concentration of the waste water from the ozone treatment step is already 0.1 ppm by mass or less at the end of the ozone treatment, this step need not be provided separately. Regardless of whether or not the ozone concentration is actually adjusted, the embodiment is within the scope of the present invention as long as the ozone concentration of the wastewater put into the microbial fuel cell is 0.1 mass ppm or less.
 オゾン処理工程からの排水のpHは、2.0以上、7.0以下であることが好ましい。pHが低すぎると、次工程の微生物燃料電池工程の微生物が死滅するおそれがある。pHが高すぎると、次工程の微生物燃料電池工程の発電効率が低下するおそれがある。すなわち、本発明の方法は、オゾン処理工程からの排水のpHを2.0以上、7.0以下に調整する工程を含むことができる。pHの調整は、排水にアルカリまたは酸を添加することにより行うことができる。pHを調整する工程は、前記のオゾン濃度調整工程と同時に行なうことができる、すなわち、オゾン濃度調整工程において、オゾン濃度とpHの両方を調整してもよい。 The pH of waste water from the ozone treatment step is preferably 2.0 or more and 7.0 or less. If the pH is too low, microorganisms in the microbial fuel cell process of the next process may be killed. If the pH is too high, the power generation efficiency of the next microbial fuel cell process may be reduced. That is, the method of this invention can include the process of adjusting pH of the waste_water | drain from an ozone treatment process to 2.0 or more and 7.0 or less. Adjustment of pH can be performed by adding an alkali or an acid to waste water. The step of adjusting the pH can be performed simultaneously with the ozone concentration adjusting step, that is, both the ozone concentration and the pH may be adjusted in the ozone concentration adjusting step.
 オゾン処理工程からの排水のTOC濃度は10,000mg/L以下であることが好ましく、より好ましくは100~5000mg/Lであり、さらに好ましくは300~3000mg/Lである。TOC濃度が高すぎると、次工程の微生物燃料電池工程の処理時間効率が低下するおそれがある。TOC濃度が低すぎると、次工程の微生物燃料電池工程の微生物への養分が不足し、微生物の活性が低下するおそれがある。すなわち、本発明の方法は、オゾン処理工程からの排水のTOC濃度を10,000mg/L以下に調整する工程を含むことができる。TOC濃度の調整は、オゾン処理工程からの排水を水で希釈することにより行うことができる。TOC濃度を調整する工程は、前記のオゾン濃度調整工程と同時に行なうことができる、すなわち、オゾン濃度調整工程において、オゾン濃度とTOC濃度の両方を調整してもよいし、オゾン濃度とpHとTOC濃度の3つを調整してもよい。 The TOC concentration of the waste water from the ozone treatment step is preferably 10,000 mg / L or less, more preferably 100 to 5000 mg / L, still more preferably 300 to 3000 mg / L. If the TOC concentration is too high, the processing time efficiency of the microbial fuel cell process of the next process may be reduced. When the TOC concentration is too low, nutrients for microorganisms in the microbial fuel cell process of the next process are insufficient, and the activity of the microorganisms may be reduced. That is, the method of this invention can include the process of adjusting the TOC density | concentration of the waste_water | drain from an ozone treatment process to 10,000 mg / L or less. The TOC concentration can be adjusted by diluting the waste water from the ozone treatment process with water. The step of adjusting the TOC concentration can be performed simultaneously with the ozone concentration adjusting step. That is, in the ozone concentration adjusting step, both the ozone concentration and the TOC concentration may be adjusted, or the ozone concentration, the pH, and the TOC. Three of the densities may be adjusted.
 本発明の方法は、オゾン濃度が調整された排水を微生物燃料電池に投入して排水中のTOC濃度を低減するとともに発電による電力を回収する微生物燃料電池工程を含む。
 ここで、微生物燃料電池とは、微生物を利用して、燃料としての有機物を電気エネルギーに変換する装置をいう。微生物燃料電池は、燃料である有機物の溶液に負極と正極を浸し、負極では有機物が微生物により酸化分解されるときに発生する電子を回収し、その電子は外部回路を経由して正極に移動し、正極では電子が酸化剤の還元反応により消費される。負極で起こる化学反応と正極で起こる化学反応の酸化還元電位の差により電子が流れ、両極の電位差と外部回路を流れる電流の積に相当するエネルギーが外部回路において得られる。
 微生物燃料電池工程では、オゾン濃度が調整された排水を微生物燃料電池に投入して排水中のTOC濃度を低減するとともに発電による電力を回収する。微生物燃料電池内では、微生物がオゾン濃度が調整された排水に含まれる高吸水性ポリマーの分解生成物、汚物、微細パルプ等の有機物を酸化分解することにより、排水中のTOC濃度が低減され、かつ発電が行われる。
 微生物燃料電池に使用される微生物としては、有機物を酸化分解するとともに電気エネルギーを発生するのに寄与し得る限り、特に限定されないが、主に水素産生微生物が用いられ、その中でも偏性嫌気性菌、通性嫌気性菌が好ましく用いられる。
The method of the present invention includes a microbial fuel cell process in which wastewater whose ozone concentration is adjusted is introduced into a microbial fuel cell to reduce the TOC concentration in the wastewater and to collect power generated by power generation.
Here, the microbial fuel cell refers to a device that uses microorganisms to convert organic substances as fuel into electric energy. A microbial fuel cell immerses the negative electrode and the positive electrode in a solution of an organic substance as a fuel, and collects electrons generated when the organic substance is oxidatively decomposed by microorganisms in the negative electrode, and the electrons move to the positive electrode via an external circuit. In the positive electrode, electrons are consumed by the reduction reaction of the oxidizing agent. Electrons flow due to the difference in redox potential between the chemical reaction occurring at the negative electrode and the chemical reaction occurring at the positive electrode, and energy corresponding to the product of the potential difference between the two electrodes and the current flowing through the external circuit is obtained in the external circuit.
In the microbial fuel cell process, wastewater whose ozone concentration has been adjusted is introduced into the microbial fuel cell to reduce the TOC concentration in the wastewater and to recover power generated by power generation. In the microbial fuel cell, the TOC concentration in the wastewater is reduced by oxidizing and decomposing organic matter such as decomposition products of the superabsorbent polymer, filth, and fine pulp contained in the wastewater whose ozone concentration is adjusted, And power generation is performed.
The microorganism used in the microbial fuel cell is not particularly limited as long as it can contribute to oxidative decomposition of organic substances and generation of electric energy, but mainly hydrogen-producing microorganisms are used. A facultative anaerobic bacterium is preferably used.
 本発明に使用する微生物燃料電池の構成の一例を図2に示す。図中、1はオゾン処理排水槽、2はポンプ、3は負極反応槽、4は負極、5はプロトン交換膜、6は正極槽、7は正極、8はテスター、9はパソコン、10は汚泥沈降槽、11はポンプ、12は浄化水槽である。 An example of the configuration of the microbial fuel cell used in the present invention is shown in FIG. In the figure, 1 is an ozone treatment drainage tank, 2 is a pump, 3 is a negative electrode reaction tank, 4 is a negative electrode, 5 is a proton exchange membrane, 6 is a positive electrode tank, 7 is a positive electrode, 8 is a tester, 9 is a personal computer, 10 is sludge A sedimentation tank, 11 is a pump, and 12 is a purified water tank.
 微生物燃料電池工程からの排水のpHは8.0未満であることが好ましい。微生物燃料電池工程からの排水のpHが高すぎると、微生物燃料電池工程の発電効率が低下する。 The pH of the wastewater from the microbial fuel cell process is preferably less than 8.0. If the pH of the wastewater from the microbial fuel cell process is too high, the power generation efficiency of the microbial fuel cell process is reduced.
 微生物燃料電池工程からの排水のTOC濃度は2000mg/L以下であることが好ましい。微生物燃料電池工程からの排水のTOC濃度が2000mg/L以下であれば、次工程の一般的な浄化槽等で簡単に浄化処理が可能である。また、微生物燃料電池工程から直接排水する場合は、排水のTOC濃度が30mg/L以下であることが好ましい。 It is preferable that the TOC concentration of the waste water from the microbial fuel cell process is 2000 mg / L or less. If the TOC concentration of the wastewater from the microbial fuel cell process is 2000 mg / L or less, the purification process can be easily performed in a general septic tank in the next process. Moreover, when draining directly from a microbial fuel cell process, it is preferable that the TOC density | concentration of waste water is 30 mg / L or less.
 本発明の方法は、オゾン処理工程の前に、使用済み吸収性物品を、多価金属イオンを含む水溶液またはpHが2.5以下の酸性水溶液中で、使用済み吸収性物品に物理的な力を作用させることによって、使用済み吸収性物品をパルプ繊維とその他の材料に分解する分解工程(以下単に「分解工程」ともいう。)を含んでもよい。
 この工程では、使用済み吸収性物品に物理的な力を作用させることによって、使用済み吸収性物品をパルプ繊維とその他の材料に分解する。
 吸収性物品は、通常、パルプ繊維、高吸水性ポリマー、不織布、プラスチックフィルム、ゴム等の各材料から構成されている。この分解工程では、使用済み吸収性物品を上記各材料に分解する。分解の程度は、パルプ繊維の少なくとも一部が回収できる程度に分解されればよく、必ずしも完全でなくてもよく、部分的であってもよい。
 ここで、使用済み吸収性物品に物理的な力を作用させる方法としては、限定するものではないが、攪拌、叩き、突き、振動、引き裂き、切断、破砕等を例示することができる。なかでも、攪拌が好ましい。攪拌は、洗濯機のような攪拌機付きの処理槽内で行なうことができる。
 本発明の方法が分解工程を含む場合は、次のオゾン処理工程の処理対象物は、使用済み吸収性物品そのものではなく、使用済み吸収性物品の分解により生成した吸収性物品の構成材料の集合体またはその一部(たとえばパルプ繊維)となるが、それらをオゾン水で処理する場合も、本発明にいう「オゾン処理工程」に該当するものとみなす。
In the method of the present invention, prior to the ozone treatment step, the used absorbent article is physically applied to the used absorbent article in an aqueous solution containing polyvalent metal ions or an acidic aqueous solution having a pH of 2.5 or less. May be included to decompose the used absorbent article into pulp fibers and other materials (hereinafter also simply referred to as “decomposition step”).
In this step, the used absorbent article is decomposed into pulp fibers and other materials by applying a physical force to the used absorbent article.
Absorbent articles are usually composed of materials such as pulp fibers, superabsorbent polymers, non-woven fabrics, plastic films and rubber. In this decomposition step, the used absorbent article is decomposed into the above materials. The degree of decomposition is not limited as long as at least a part of the pulp fiber can be recovered, and may not be complete or may be partial.
Here, the method of applying a physical force to the used absorbent article is not limited, and examples thereof include stirring, tapping, thrusting, vibration, tearing, cutting, crushing, and the like. Of these, stirring is preferred. Stirring can be performed in a treatment tank equipped with a stirrer such as a washing machine.
When the method of the present invention includes a decomposition step, the object to be treated in the next ozone treatment step is not the used absorbent article itself, but a collection of constituent materials of the absorbent article generated by the decomposition of the used absorbent article. Although it becomes a body or a part thereof (for example, pulp fiber), the case of treating them with ozone water is also regarded as corresponding to the “ozone treatment step” in the present invention.
 この分解工程は、多価金属イオンを含む水溶液またはpHが2.5以下の酸性水溶液中で行う。多価金属イオンを含む水溶液またはpHが2.5以下の酸性水溶液を用いることによって、使用済み吸収性物品中の水を吸って膨潤した高吸水性ポリマーを脱水する。
 高吸水性ポリマーは、親水性基(たとえば-COO-)を有し、その親水性基に水分子が水素結合により結合することにより、大量の水を吸収することができるものであるが、水を吸収した高吸水性ポリマーを、カルシウムイオン等の多価金属イオンを含む水溶液中に入れると、親水性基(たとえば-COO-)に多価金属イオンが結合し(たとえば-COO-Ca-OCO-)、親水性基と水分子の水素結合が切れ、水分子が放出され、高吸水性ポリマーが脱水される、また、水を吸収した高吸水性ポリマーを、pH2.5以下の酸性水溶液中に入れると、マイナスに帯電した親水性基(たとえば-COO-)がプラスに帯電した水素イオン(H+)によって中和される(たとえば-COOH)ため、親水性基のイオン反発力が弱まり、吸水力が低下し、高吸水性ポリマーが脱水される、と考えられている。
 高吸水性ポリマーを脱水することによって、パルプ繊維と高吸水性ポリマーの分離が容易になる。使用済み吸収性物品を、通常の水中で分解しようとすると、高吸水性ポリマーが吸水し膨潤して、槽内の固形分濃度が高まり、機械的な分解操作の処理効率が低下するが、多価金属イオンを含む水溶液またはpH2.5以下の酸性水溶液中で行うことによってそれを避けることができる。
This decomposition step is performed in an aqueous solution containing polyvalent metal ions or an acidic aqueous solution having a pH of 2.5 or less. By using an aqueous solution containing polyvalent metal ions or an acidic aqueous solution having a pH of 2.5 or less, the superabsorbent polymer swollen by absorbing water in the used absorbent article is dehydrated.
A superabsorbent polymer has a hydrophilic group (for example, —COO ), and a water molecule is bonded to the hydrophilic group through a hydrogen bond, so that a large amount of water can be absorbed. When a superabsorbent polymer that absorbs water is placed in an aqueous solution containing a polyvalent metal ion such as calcium ion, the polyvalent metal ion is bonded to a hydrophilic group (for example, —COO ) (for example, —COO—Ca—OCO). -), The hydrogen bond between the hydrophilic group and the water molecule is broken, the water molecule is released, the superabsorbent polymer is dehydrated, and the superabsorbent polymer that has absorbed water is dissolved in an acidic aqueous solution of pH 2.5 or less. , The negatively charged hydrophilic group (for example, —COO ) is neutralized by the positively charged hydrogen ion (H + ) (for example, —COOH), so that the ion repulsive force of the hydrophilic group is weakened. Suck Force is reduced, the superabsorbent polymer is believed to be dehydrated.
By dehydrating the superabsorbent polymer, separation of the pulp fiber and superabsorbent polymer is facilitated. When attempting to decompose used absorbent articles in normal water, the superabsorbent polymer absorbs water and swells, increasing the solid content concentration in the tank and reducing the processing efficiency of mechanical decomposition operations. It can be avoided by carrying out in an aqueous solution containing a valent metal ion or an acidic aqueous solution having a pH of 2.5 or lower.
 多価金属イオンとしては、アルカリ土類金属イオン、遷移金属イオン等が使用できる。
 アルカリ土類金属イオンとしては、ベリリウム、マグネシウム、カルシウム、ストロンチウムおよびバリウムのイオンが挙げられる。好ましいアルカリ土類金属イオンを含む水溶液としては、塩化カルシウム、硝酸カルシウム、水酸化カルシウム、酸化カルシウム、塩化マグネシウム、硝酸マグネシウム等の水溶液が挙げられ、なかでも塩化カルシウム水溶液が好ましい。
As polyvalent metal ions, alkaline earth metal ions, transition metal ions, and the like can be used.
Alkaline earth metal ions include beryllium, magnesium, calcium, strontium and barium ions. Preferred aqueous solutions containing alkaline earth metal ions include aqueous solutions of calcium chloride, calcium nitrate, calcium hydroxide, calcium oxide, magnesium chloride, magnesium nitrate, etc. Among them, an aqueous solution of calcium chloride is preferable.
 遷移金属イオンとしては、高吸水性ポリマーに取り込まれるものである限り、限定されないが、鉄、コバルト、ニッケル、銅等のイオンが挙げられる。遷移金属イオンを含む水溶液として、遷移金属の無機酸塩、有機酸塩、錯体等の水溶液が挙げられるが、費用や入手容易性等の点から、無機酸塩または有機酸塩の水溶液が好ましい。無機酸塩としては、たとえば、塩化鉄、硫酸鉄、燐酸鉄、硝酸鉄等の鉄塩、塩化コバルト、硫酸コバルト、燐酸コバルト、硝酸コバルト等のコバルト塩、塩化ニッケル、硫酸ニッケル等のニッケル塩、塩化銅、硫酸銅等の銅塩などが挙げられる。有機酸塩類としては、たとえば、乳酸鉄、酢酸コバルト、ステアリン酸コバルト、酢酸ニッケル、酢酸銅等が挙げられる。 The transition metal ion is not limited as long as it is incorporated into the superabsorbent polymer, and examples thereof include ions of iron, cobalt, nickel, copper and the like. Examples of the aqueous solution containing a transition metal ion include aqueous solutions of transition metal inorganic acid salts, organic acid salts, complexes, and the like. From the viewpoint of cost and availability, an aqueous solution of an inorganic acid salt or an organic acid salt is preferable. Examples of inorganic acid salts include iron salts such as iron chloride, iron sulfate, iron phosphate and iron nitrate, cobalt salts such as cobalt chloride, cobalt sulfate, cobalt phosphate and cobalt nitrate, nickel salts such as nickel chloride and nickel sulfate, Examples thereof include copper salts such as copper chloride and copper sulfate. Examples of the organic acid salts include iron lactate, cobalt acetate, cobalt stearate, nickel acetate, and copper acetate.
 多価金属イオンを含む水溶液を用いる場合は、安全性と価格を考慮し、カルシウム化合物の水溶液が好ましい。カルシウム化合物の中では、後工程で用いるオゾンがアルカリ側では分解してしまう特性があるため、強アルカリの水酸化カルシウムや酸化カルシウムよりも、できるだけ中性に近い弱アルカリ性である塩化カルシウムの水溶液が好ましい。多価金属イオンを含む水溶液のpHは、特に限定されないが、好ましくは11以下である。アルカリ性の化合物を用いる場合は、水溶液のpHは7よりも大きく11以下であることが好ましい。 In the case of using an aqueous solution containing a polyvalent metal ion, an aqueous solution of a calcium compound is preferable in consideration of safety and price. Among calcium compounds, ozone used in the subsequent process has the property of decomposing on the alkali side, so an aqueous solution of calcium chloride that is weakly alkaline as close to neutral as possible is stronger than calcium hydroxide or calcium oxide, which is a strong alkali. preferable. The pH of the aqueous solution containing polyvalent metal ions is not particularly limited, but is preferably 11 or less. In the case of using an alkaline compound, the pH of the aqueous solution is preferably greater than 7 and 11 or less.
 多価金属イオンの量は、高吸水性ポリマー1g(乾燥質量)あたり、好ましくは4ミリモル以上、より好ましくは4.5~10ミリモル、さらに好ましくは5~8ミリモルである。多価金属イオンの量が少なすぎると、高吸水性ポリマーの脱水が不十分となる。多価金属イオンの量が多すぎると、余分の多価金属イオンが高吸水性ポリマーに取り込まれないまま処理液中に残るので、多価金属塩の浪費につながり、処理費用を増加させる。 The amount of the polyvalent metal ion is preferably 4 mmol or more, more preferably 4.5 to 10 mmol, further preferably 5 to 8 mmol, per 1 g (dry mass) of the superabsorbent polymer. If the amount of polyvalent metal ions is too small, dehydration of the superabsorbent polymer will be insufficient. If the amount of polyvalent metal ions is too large, excess polyvalent metal ions remain in the treatment liquid without being taken into the superabsorbent polymer, leading to wasted polyvalent metal salts and increasing the treatment cost.
 多価金属イオンを含む水溶液中の多価金属イオンの濃度は、多価金属イオンが高吸水性ポリマーに取り込まれる濃度であれば特に限定されないが、好ましくは10~1000ミリモル/リットル、より好ましくは50~700ミリモル/リットル、さらに好ましくは200~400ミリモル/リットルである。濃度が低すぎると、高吸水性ポリマーの脱水が不十分となる。濃度が高すぎると、余分の多価金属イオンが高吸水性ポリマーに取り込まれないまま処理液中に残るので、多価金属イオンの浪費につながり、処理費用を増加させる。
 多価金属イオンを含む水溶液として塩化カルシウム水溶液を用いるときは、塩化カルシウムの濃度は、1質量%以上であることが好ましいが、10質量%以上に高くしても、効果が変わらなくなるため、1~10質量%が好ましく、より好ましくは3~6質量%である。
The concentration of the polyvalent metal ion in the aqueous solution containing the polyvalent metal ion is not particularly limited as long as it is a concentration at which the polyvalent metal ion is taken into the superabsorbent polymer, but is preferably 10 to 1000 mmol / L, more preferably. 50 to 700 mmol / liter, more preferably 200 to 400 mmol / liter. If the concentration is too low, dehydration of the superabsorbent polymer will be insufficient. If the concentration is too high, excess polyvalent metal ions remain in the treatment liquid without being taken into the superabsorbent polymer, leading to wasted polyvalent metal ions and increasing the treatment cost.
When a calcium chloride aqueous solution is used as an aqueous solution containing polyvalent metal ions, the concentration of calcium chloride is preferably 1% by mass or more, but even if it is increased to 10% by mass or more, the effect does not change. Is preferably 10 to 10% by mass, more preferably 3 to 6% by mass.
 酸性水溶液を用いる場合、酸性水溶液のpHは2.5以下であり、好ましくは0.5~2.5であり、より好ましくは1.0~2.4である。pHが高すぎると、高吸水性ポリマーの脱水が不充分となるおそれがある。pHが低すぎると、強酸のために回収されるパルプ繊維が損傷するおそれがある。 When an acidic aqueous solution is used, the pH of the acidic aqueous solution is 2.5 or less, preferably 0.5 to 2.5, and more preferably 1.0 to 2.4. If the pH is too high, the superabsorbent polymer may be insufficiently dehydrated. If the pH is too low, the pulp fibers recovered due to strong acid may be damaged.
 pHが2.5以下の酸性水溶液としては、pHが2.5以下である限り、無機酸、有機酸のいずれの水溶液を用いることができるが、どちらかといえば安全性の高い有機酸の水溶液が好ましい。有機酸としては、酒石酸、グリコール酸、リンゴ酸、クエン酸、コハク酸、酢酸を挙げることができるが、なかでもクエン酸が好ましい。 As the acidic aqueous solution having a pH of 2.5 or less, any aqueous solution of an inorganic acid or an organic acid can be used as long as the pH is 2.5 or less. Is preferred. Examples of the organic acid include tartaric acid, glycolic acid, malic acid, citric acid, succinic acid, and acetic acid, and citric acid is preferable.
 有機酸の水溶液を用いる場合、pHが2.5以下である限り、水溶液中の有機酸の濃度は特に限定されないが、好ましくは0.1~10.0質量%であり、より好ましくは0.5~8.0質量%であり、さらに好ましくは1.0~5.0質量%である。濃度が低すぎると、高吸水性ポリマーの脱水が不充分となるおそれがある。濃度が高すぎると、有機酸の浪費につながるおそれがある。 When an aqueous solution of organic acid is used, the concentration of the organic acid in the aqueous solution is not particularly limited as long as the pH is 2.5 or less, but is preferably 0.1 to 10.0% by mass, more preferably 0.8. It is 5 to 8.0% by mass, and more preferably 1.0 to 5.0% by mass. If the concentration is too low, the superabsorbent polymer may be insufficiently dehydrated. If the concentration is too high, organic acid may be wasted.
 本発明の方法は、分解工程の後に、分解工程において生成したパルプ繊維とその他の材料の混合物からパルプ繊維を分離する工程(以下単に「分離工程」ともいう。)を含んでもよい。
 分離工程では、使用済み吸収性物品の分解によって生成したパルプ繊維とその他の材料(高吸水性ポリマー、不織布、プラスチックフィルム、ゴム等)の混合物からパルプ繊維を分離する。この工程では、パルプ繊維の少なくとも一部を分離回収する。パルプ繊維の全部が回収されなくてもよい。また、パルプ繊維と一緒にその他の材料が分離回収されてもよい。分離方法にもよるが、通常、高吸水性ポリマーの少なくとも一部は、分離されたパルプ繊維に混入してくる。たとえば、篩分けにより分離する方法において、パルプ繊維を篩下として回収する場合は、高吸水性ポリマーの大部分が分離回収されたパルプ繊維に混入してくる。この工程では、好ましくは、分解された構成材料を、パルプ繊維および高吸水性ポリマーを含む画分と、不織布、プラスチックフィルムおよびゴムを含む画分に分離する。ただし、パルプ繊維および高吸水性ポリマーを含む画分に若干の不織布、プラスチックフィルム、ゴムが含まれてもよいし、不織布、プラスチックフィルムおよびゴムを含む画分に若干のパルプ繊維、高吸水性ポリマーが含まれてもよい。
 パルプ繊維を分離する方法は、限定するものではないが、たとえば、分解された構成材料の比重差を利用して水中で沈殿分離する方法、分解されたサイズの異なる構成材料を所定の網目を有するスクリーンを通して分離する方法、サイクロン式遠心分離機で分離する方法を例示することができる。
 分離されたパルプ繊維には少なからず高吸水性ポリマーが混入している。分離工程の後のオゾン処理工程では、分離されたパルプ繊維に残留している高吸水性ポリマーを、分解し、低分子量化し、可溶化することにより、除去する。
The method of the present invention may include, after the decomposition step, a step of separating the pulp fibers from the mixture of pulp fibers and other materials generated in the decomposition step (hereinafter also simply referred to as “separation step”).
In the separation step, the pulp fibers are separated from a mixture of pulp fibers and other materials (superabsorbent polymer, nonwoven fabric, plastic film, rubber, etc.) produced by the decomposition of the used absorbent article. In this step, at least a part of the pulp fiber is separated and recovered. Not all of the pulp fibers need be recovered. Further, other materials may be separated and recovered together with the pulp fibers. Although depending on the separation method, usually, at least a part of the superabsorbent polymer is mixed into the separated pulp fiber. For example, in the method of separating by sieving, when the pulp fiber is recovered as a sieve, most of the superabsorbent polymer is mixed into the separated and recovered pulp fiber. In this step, the decomposed constituent material is preferably separated into a fraction containing pulp fibers and a superabsorbent polymer and a fraction containing non-woven fabric, plastic film and rubber. However, the fraction containing pulp fiber and superabsorbent polymer may contain some nonwoven fabric, plastic film and rubber, and the fraction containing nonwoven fabric, plastic film and rubber will contain some pulp fiber and superabsorbent polymer. May be included.
A method for separating pulp fibers is not limited, but, for example, a method for separating and separating in water using a difference in specific gravity of decomposed constituent materials, and having a predetermined mesh of constituent materials having different sizes. Examples thereof include a method of separating through a screen and a method of separating with a cyclone centrifuge.
The separated pulp fibers are mixed with a high water-absorbing polymer. In the ozone treatment step after the separation step, the superabsorbent polymer remaining in the separated pulp fibers is removed by decomposing, reducing the molecular weight, and solubilizing.
 本発明の方法は、オゾン処理工程の後に、使用済み吸収性物品を、消毒薬を含む水溶液または水の中で攪拌することにより、使用済み吸収性物品を洗浄するとともに使用済み吸収性物品を構成材料に分解する工程(以下単に「洗浄・分解工程」ともいう。)を含んでもよい。 The method of the present invention cleans the used absorbent article and constitutes the used absorbent article by stirring the used absorbent article in an aqueous solution or water containing a disinfectant after the ozone treatment step. A step of decomposing into materials (hereinafter also simply referred to as “cleaning / decomposing step”) may be included.
 洗浄・分解工程において使用する水に、消毒薬は必ずしも含まれる必要はないが、消毒薬を含む水溶液を使用してもよい。消毒薬は、特に限定されず、二酸化塩素、酸性電解水、オゾン水等を例示することができる。
 消毒薬を含む水溶液を使用する場合、消毒薬を含む水溶液中の消毒薬の濃度は、消毒の効果が発揮される限り、特に限定されないが、好ましくは10~300質量ppmであり、より好ましくは30~280質量ppmであり、さらに好ましくは50~250質量ppmである。濃度が低すぎると、十分な消毒の効果が得られず、回収されたパルプ繊維に細菌等が残存する虞がある。逆に、濃度が高すぎると、消毒薬の浪費につながるばかりでなく、パルプ繊維を傷めたり、安全性の問題を生じたりする虞がある。
The water used in the cleaning / decomposition process does not necessarily include a disinfectant, but an aqueous solution containing the disinfectant may be used. The disinfectant is not particularly limited, and examples thereof include chlorine dioxide, acidic electrolyzed water, and ozone water.
In the case of using an aqueous solution containing a disinfectant, the concentration of the disinfectant in the aqueous solution containing the disinfectant is not particularly limited as long as the disinfecting effect is exhibited, but is preferably 10 to 300 ppm by mass, more preferably 30 to 280 ppm by mass, more preferably 50 to 250 ppm by mass. If the concentration is too low, a sufficient disinfection effect cannot be obtained, and bacteria or the like may remain in the recovered pulp fiber. On the other hand, if the concentration is too high, not only will the disinfectant be wasted, but the pulp fibers may be damaged and safety problems may occur.
 洗浄・分解工程における攪拌は、吸収性物品の残渣が洗浄され構成材料に分解される限り、特に限定されないが、たとえば洗濯機を用いて行うことができる。攪拌の条件も、吸収性物品の残渣が洗浄され構成材料に分解される限り、特に限定されないが、たとえば、攪拌時間は、好ましくは5~60分であり、より好ましくは10~50分であり、さらに好ましくは20~40分である。 Stirring in the washing / decomposition step is not particularly limited as long as the residue of the absorbent article is washed and decomposed into constituent materials, but can be performed using, for example, a washing machine. The stirring conditions are not particularly limited as long as the residue of the absorbent article is washed and decomposed into constituent materials. For example, the stirring time is preferably 5 to 60 minutes, more preferably 10 to 50 minutes. More preferably, it is 20 to 40 minutes.
 洗浄・分解工程では、高分子吸収材が取り除かれた吸収性物品の残渣が洗浄されるとともに、吸収性物品が構成材料にばらばらに分解される。前記のオゾン水浸漬工程において、吸収性物品の接合等に使用されているホットメルト接着剤がオゾン水で酸化劣化し、吸収性物品の構成材料間の接合強度が弱くなっているので、この洗浄・分解工程において、攪拌により簡単に吸収性物品を構成材料に分解することができる。消毒薬を含む水溶液を使用した場合には、消毒薬による消毒も行われる。 In the cleaning / decomposition process, the residue of the absorbent article from which the polymer absorbent material has been removed is washed, and the absorbent article is broken down into constituent materials. In the ozone water immersion step, the hot melt adhesive used for bonding of absorbent articles is oxidized and deteriorated with ozone water, and the bonding strength between the constituent materials of the absorbent articles is weakened. -In a decomposition process, an absorbent article can be easily decomposed | disassembled into a constituent material by stirring. When an aqueous solution containing a disinfectant is used, disinfection with a disinfectant is also performed.
 オゾン処理工程の後に抗菌剤処理を行うときは、洗浄・分解工程において使用する消毒薬を含む水溶液または水にカチオン性抗菌剤を添加することにより、洗浄・分解工程において抗菌剤処理を同時に行うことができる。すなわち、オゾン処理工程の後に抗菌剤処理を行うときは、洗浄・分解工程において使用する消毒薬を含む水溶液または水がカチオン性抗菌剤を含有することが好ましい。カチオン性抗菌剤はパルプ繊維に吸着し、パルプ繊維はアニオン性なので、パルプ繊維に吸着したカチオン性抗菌剤は、容易には脱着しないので、最終的に得られるリサイクルパルプにカチオン性抗菌剤が残存する。とはいえ、最終工程までの間に多くの工程を経たときは各工程においてカチオン性抗菌剤は少しずつ脱着し、最終的に得られるリサイクルパルプ中のカチオン性抗菌剤の含有量が減少する。したがって、リサイクルパルプ中のカチオン性抗菌剤の含有量の観点からは、抗菌剤処理はできるだけ最終工程に近い段階で実施することが好ましい。 When antibacterial agent treatment is performed after the ozone treatment step, the antibacterial agent treatment is simultaneously performed in the cleaning / decomposition step by adding a cationic antibacterial agent to an aqueous solution or water containing a disinfectant used in the cleaning / decomposition step. Can do. That is, when the antibacterial agent treatment is performed after the ozone treatment step, the aqueous solution or water containing a disinfectant used in the cleaning / decomposition step preferably contains a cationic antibacterial agent. Since the cationic antibacterial agent adsorbs to the pulp fiber and the pulp fiber is anionic, the cationic antibacterial agent adsorbed to the pulp fiber is not easily desorbed, so that the cationic antibacterial agent remains in the final recycled pulp. To do. However, when many steps are performed before the final step, the cationic antibacterial agent is desorbed little by little in each step, and the content of the cationic antibacterial agent in the finally obtained recycled pulp decreases. Therefore, from the viewpoint of the content of the cationic antibacterial agent in the recycled pulp, the antibacterial agent treatment is preferably carried out at a stage as close to the final process as possible.
 本発明の方法は、洗浄・分解工程の後に、分解された使用済み吸収性物品の構成材料からパルプ繊維を分離する工程(以下単に「パルプ繊維分離工程」という。)を含んでもよい。
 パルプ繊維を分離する方法は、限定するものではないが、たとえば、分解された構成材料の比重差を利用して水中で沈殿分離する方法、分解されたサイズの異なる構成材料を所定の網目を有するスクリーンを通して分離する方法、サイクロン式遠心分離機で分離する方法を例示することができる。
The method of the present invention may include a step of separating the pulp fibers from the decomposed material of the used absorbent article (hereinafter simply referred to as “pulp fiber separation step”) after the cleaning / decomposition step.
A method for separating pulp fibers is not limited, but, for example, a method for separating and separating in water using a difference in specific gravity of decomposed constituent materials, and having a predetermined mesh of constituent materials having different sizes. Examples thereof include a method of separating through a screen and a method of separating with a cyclone centrifuge.
 本発明の方法は、パルプ繊維分離工程の後に、分離したパルプ繊維を洗浄する工程(以下「パルプ繊維洗浄工程」という。)を含んでもよい。
 分離したパルプ繊維を洗浄する方法は、限定するものではないが、たとえば、分離したパルプ繊維をメッシュ袋に入れ、水ですすぎ洗いをすることにより行うことができる。
The method of the present invention may include a step of washing the separated pulp fibers (hereinafter referred to as “pulp fiber washing step”) after the pulp fiber separation step.
The method for washing the separated pulp fibers is not limited, but for example, the separated pulp fibers can be put in a mesh bag and rinsed with water.
 本発明の方法は、パルプ繊維洗浄工程の後に、洗浄したパルプ繊維を脱水する工程(以下「パルプ繊維脱水工程」という。)を含んでもよい。
 洗浄したパルプ繊維を脱水する方法は、限定するものではないが、たとえば、メッシュ袋に入った洗浄したパルプ繊維を、脱水機で脱水することにより行うことができる。
 パルプ繊維洗浄工程とパルプ繊維脱水工程は、1回ずつでもよいが、交互に複数回繰り返してもよい。
The method of the present invention may include a step of dehydrating the washed pulp fiber (hereinafter referred to as “pulp fiber dehydration step”) after the pulp fiber washing step.
The method for dewatering the washed pulp fibers is not limited. For example, the washed pulp fibers contained in the mesh bag can be dehydrated with a dehydrator.
The pulp fiber washing step and the pulp fiber dehydration step may be performed once, but may be alternately repeated a plurality of times.
 本発明の方法は、パルプ繊維脱水工程の後に、脱水したパルプ繊維を乾燥する工程(以下「パルプ繊維乾燥工程」という。)を含んでもよい。本発明の方法によって得られるパルプ繊維は湿潤状態においてもカビが発生しにくいので、乾燥せずに湿潤状態で保管することが可能なので、乾燥工程は必ずしも設ける必要はない。 The method of the present invention may include a step of drying the dehydrated pulp fiber (hereinafter referred to as “pulp fiber drying step”) after the pulp fiber dehydration step. Since the pulp fiber obtained by the method of the present invention is less prone to mold even in a wet state, it can be stored in a wet state without being dried, and therefore a drying step is not necessarily provided.
 本発明の方法は、さらに、プラスチック材料を分離回収する工程(以下「プラスチック材料分離回収工程」という。)を含むことができる。ここで、プラスチック材料とは、不織布材料、フィルム材料、エラストマー材料等をいう。プラスチック材料分離回収工程は、前記の洗浄・分解工程の後、パルプ繊維分離工程と並列して行うことができる。プラスチック材料分離回収工程では、前記のパルプ繊維洗浄工程、パルプ繊維脱水工程およびパルプ繊維乾燥工程と同様の洗浄工程、脱水工程および乾燥工程を含むことができる。回収されたプラスチック材料は、たとえば、RPF化処理して、固形燃料として利用することができる。 The method of the present invention may further include a step of separating and collecting the plastic material (hereinafter referred to as “plastic material separating and collecting step”). Here, the plastic material refers to a nonwoven material, a film material, an elastomer material, and the like. The plastic material separation and recovery step can be performed in parallel with the pulp fiber separation step after the washing and decomposition step. In the plastic material separation and recovery step, the same washing step, dehydration step and drying step as the pulp fiber washing step, pulp fiber dehydration step and pulp fiber drying step can be included. The recovered plastic material can be used as a solid fuel by, for example, RPF processing.
 本発明の方法を含むリサイクルシステムフローを図1に示す。このリサイクルシステムによれば、使用済みおむつ等の使用済み吸収性物品を、まず(好ましくはSAP不活化状態で)破砕・分解した後、オゾン水処理を行ない、次いで、洗浄・消毒・スクリーン分離を行ない、主としてプラスチックおよび不織布を含む画分と主としてパルプと排水を含む画分に分ける。なお、破砕・分解工程で発生する排水および洗浄・消毒・スクリーン分離で発生する排水もまた、必要に応じて、主としてパルプと排水を含む画分に加えられる。プラスチックおよび不織布は固体燃料(RPF)化する。主としてパルプと排水を含む画分は、さらに、パルプと排水に分離する。パルプは洗浄し、好ましくは殺菌・消臭・漂白し、脱水・乾燥することにより、パルプを回収し、再利用する。排水は、オゾン濃度、pHおよびTOCなどの水質調整を行った後、微生物燃料電池の負極槽に投入する。パルプの洗浄により発生した排水もまた、必要に応じて、微生物燃料電池の負極槽に投入する。微生物燃料電池では、排水のTOCが低減され、同時に発電による電力を回収する。TOCが低減された排水は、必要に応じて、さらなる浄化処理を行ない、下水等に排出する。 FIG. 1 shows a recycling system flow including the method of the present invention. According to this recycling system, used absorbent articles such as used diapers are first crushed and decomposed (preferably in an SAP inactivated state), then treated with ozone water, and then washed, disinfected, and screen separated. In practice, it is divided into a fraction containing mainly plastic and non-woven fabric and a fraction containing mainly pulp and waste water. In addition, the waste water generated in the crushing / decomposing process and the waste water generated in the cleaning / disinfection / screen separation are also added to the fraction mainly containing pulp and waste water as necessary. Plastics and non-woven fabrics become solid fuel (RPF). The fraction mainly containing pulp and waste water is further separated into pulp and waste water. The pulp is washed, preferably sterilized, deodorized, bleached, dehydrated and dried to recover and reuse the pulp. The waste water is adjusted to water quality such as ozone concentration, pH, and TOC, and then charged into the negative electrode tank of the microbial fuel cell. Wastewater generated by the washing of the pulp is also fed into the negative electrode tank of the microbial fuel cell as necessary. In the microbial fuel cell, the TOC of the wastewater is reduced, and at the same time, the power generated by the power generation is recovered. The wastewater with reduced TOC is further purified as necessary and discharged into sewage or the like.
 本発明の方法は、次のような利点を有する。
 燃料電池内で微生物が自然増殖するため、常に添加する必要がない。活性が落ちた場合にのみ補充すればよい。
 微生物による(嫌気)生分解で固形物量減量化および病原性菌の無害化(死滅)を可能にする。
 電池システムによる発電・蓄電(バッテリー装着時)が可能である。
 微生物の活動環境を確保するために、室温(20℃~40℃)になるような程度の温調管理でよい。
 リサイクル処理で発生する高濃度COD排水も一定濃度以下に希釈処理することで無害処理が可能である。
 最も汎用性の高いエネルギー資源である電力に変化することにより、特別な装置無しで再利用可能である。
 使用済み吸収性物品の完全再資源化が可能となる(使用済み品⇒パルプ繊維、RPF、電力へ再資源化)。
The method of the present invention has the following advantages.
Since microorganisms grow naturally in the fuel cell, it is not always necessary to add them. It only needs to be replenished when the activity drops.
Microbial (anaerobic) biodegradation enables solids reduction and pathogenic bacteria detoxification (death).
Power generation and storage by battery system (when battery is installed) is possible.
In order to secure an active environment for microorganisms, temperature control may be performed so as to reach room temperature (20 ° C to 40 ° C).
The high-concentration COD wastewater generated by the recycling process can also be harmlessly processed by diluting to a certain concentration or less.
By changing to electric power, which is the most versatile energy resource, it can be reused without special equipment.
Used absorbent articles can be completely recycled (used products ⇒ recycled into pulp fiber, RPF, and electricity).
 実施例において、次のオゾン水発生装置を用いた。
[オゾン水発生装置]
 製造元: 三菱電機株式会社
 名称: オゾン発生装置
 型番: OS-25V
 オゾン水濃度可変範囲: 1~80mg/m3
 オゾン水曝露槽容積: 30L
In the examples, the following ozone water generator was used.
[Ozone water generator]
Manufacturer: Mitsubishi Electric Corporation Name: Ozone generator Model: OS-25V
Ozone water concentration variable range: 1-80mg / m 3
Ozone water exposure tank volume: 30L
[SAPのオゾン水による処理]
 SAP150gを20Lの1%クエン酸水溶液中で、80g/m3のオゾンガスを1時間吹き込み、SAP分解を行った。1時間処理後の処理水質は、TOCが3700mg/L、pHが2.5、オゾン水濃度が16.8質量ppmであった。
[SAP treatment with ozone water]
SAP decomposition was performed by blowing 150 g of SAP in 20 L of 1% citric acid aqueous solution and blowing 80 g / m 3 of ozone gas for 1 hour. The treated water quality after the treatment for 1 hour was TOC 3700 mg / L, pH 2.5, and ozone water concentration 16.8 mass ppm.
[オゾン処理排水の調整]
 SAP分解後のオゾン処理排水を水道水でTOCを約500mg/Lと約1000mg/Lの2種類となるように希釈し、さらに、TOCを約500mg/Lに希釈したものについては、5NのNaOHでpHを約6.5、6.0、5.5、5.0、3.0に調整した。調製後のオゾン処理排水のpH、TOC、オゾン濃度を表1に示す。
[Adjustment of ozone treatment wastewater]
The ozone treated waste water after SAP decomposition is diluted with tap water so that the TOC is about 500 mg / L and about 1000 mg / L, and the TOC is diluted to about 500 mg / L. The pH was adjusted to about 6.5, 6.0, 5.5, 5.0, and 3.0. Table 1 shows the pH, TOC, and ozone concentration of the ozone-treated waste water after preparation.
[微生物]
 実施例で用いた微生物は、混合微生物集団からなる汚泥であり、セルロース、ペクチンなどに対する高分子分解活性があり、また自己凝集性が高く、微生物と浄化水の沈降分離を示す沈降係数であるSV30は20~40%程度であり、Hansenula, Kluybaromyces, Candida, Trichosporon, Pichia, Yarrowia, Debaryomyces属など野生酵母と、その他通常の活性汚泥に含まれる好気性細菌の複合系である。カルボキシメチルセルロースを炭素源に3年以上馴養培養し、粉砕パルプでも2年以上馴養してきたものであり、セルロース分解活性の高い混合微生物汚泥である。
[Microorganisms]
The microorganism used in the examples is a sludge composed of a mixed microorganism population, has high polymer degrading activity on cellulose, pectin, etc., has high self-aggregation property, and has a sedimentation coefficient indicating sedimentation separation of microorganisms and purified water. 30 is about 20-40%, and is a complex system of aerobic bacteria contained in wild activated yeast such as Hansenula, Kluybaromyces, Candida, Trichosporon, Pichia, Yarrowia, Debaryomyces and other normal activated sludge. It is a mixed microbial sludge that has been acclimatized and cultured for 3 years or more with carboxymethylcellulose as a carbon source and acclimatized with pulverized pulp for 2 years or more.
[微生物によるTOC分解]
 2Lのメスシリンダーに、濃度1.6g-MLSS/Lの前記微生物からなる汚泥1Lを充填した後、前記オゾン処理排水を0.5L/dの流速で2日間かけて計1L注入した。処理後(2日後)のTOCを測定し、TOC分解率を算出した。結果を表1に示す。
 微生物処理によるTOC分解(水質浄化)は、pHが2~7、TOCが1080mg/L以下で効率よく分解できることが確認できた。また、効率は少し悪くなるが、TOC濃度が高くても処理可能であることが判った。好ましくは、TOC10,000mg/L以下で処理する方が処理時間効率がよい。さらに好ましくはTOC5,000mg/L以下である。
[TOC degradation by microorganisms]
A 2 L graduated cylinder was filled with 1 L of sludge composed of the microorganisms at a concentration of 1.6 g-MLSS / L, and then the ozone-treated waste water was injected at a flow rate of 0.5 L / d for a total of 1 L over 2 days. The TOC after the treatment (after 2 days) was measured, and the TOC decomposition rate was calculated. The results are shown in Table 1.
It was confirmed that TOC decomposition (water purification) by microbial treatment can be efficiently decomposed at a pH of 2 to 7 and a TOC of 1080 mg / L or less. Moreover, although efficiency became a little worse, it turned out that it can process even if TOC density | concentration is high. Preferably, the processing time efficiency is better when processing at TOC 10,000 mg / L or less. More preferably, the TOC is 5,000 mg / L or less.
[TOC分解率とpH変動]
 2Lのメスシリンダーに濃度1.6g-MLSS/Lの前記微生物からなる汚泥1Lを充填した後、pHを2.95、TOCを537mg/Lに調整したオゾン処理排水を0.5L/dの流速で注入し、TOC分解率の経時変化と槽内のpH変動について調べた。その結果を表2に示す。
 TOCの分解が進むにつれて、槽内のpHがアルカリ側に変化することが判明し、アルカリ側では、燃料電池の発電効率が低下することが知られており、処理後のpH8未満で推移可能な状態で管理することが重要である。最適な分解率は80%以上、処理後槽内のpHは8.0未満であることが好ましい。
 以上の結果より、リサイクル処理排水を微生物燃料電池にて水質浄化・発電処理を行うためには、処理層内へ投入する際の水質をTOC10000mg/L以下でpH2.0~7.0に調整することによりTOC分解率を80%以上と効率よく浄化処理が可能である。処理槽内がアルカリ化しないように排水濃度・流速を制御することで、微生物燃料電池の発電効率を阻害すること無く処理することが可能である。また、微生物燃料電池処理は嫌気処理であり、従来の活性汚泥処理のように曝気が必要なく、処理電力コストを低減することが可能である。これにより、従来、リサイクルされず、浄化処理負担増のもとになっていた汚物を含んだリサイクル処理排水から、水質浄化と同時に発電による電力回収可能となり、使用済み吸収性物品の完全リサイクルシステム可能となる。
[TOC degradation rate and pH fluctuation]
After charging 1 L of sludge composed of the above microorganisms at a concentration of 1.6 g-MLSS / L into a 2 L graduated cylinder, the flow rate of ozone treatment wastewater adjusted to pH 2.95 and TOC 537 mg / L was 0.5 L / d. The change in the TOC decomposition rate over time and the pH fluctuation in the tank were examined. The results are shown in Table 2.
It is known that the pH in the tank changes to the alkali side as the decomposition of the TOC proceeds, and it is known that the power generation efficiency of the fuel cell is lowered on the alkali side, and can be kept below pH 8 after the treatment. It is important to manage by state. The optimal decomposition rate is preferably 80% or more, and the pH in the tank after treatment is preferably less than 8.0.
Based on the above results, in order to perform water purification and power generation treatment of the wastewater from the recycling treatment with the microbial fuel cell, the water quality when it is introduced into the treatment layer is adjusted to pH 2.0 to 7.0 at TOC 10000 mg / L or less. As a result, the TOC decomposition rate is 80% or more and the purification process can be performed efficiently. By controlling the wastewater concentration and flow velocity so that the inside of the treatment tank is not alkalized, it is possible to perform treatment without impairing the power generation efficiency of the microbial fuel cell. Moreover, the microbial fuel cell process is an anaerobic process, and aeration is not required unlike the conventional activated sludge process, and the processing power cost can be reduced. As a result, it is possible to recover power from power generation through recycling at the same time as water purification, from wastewater containing recycling that has not been recycled and that has increased the burden of purification treatment, enabling a complete recycling system for used absorbent articles. It becomes.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[微生物燃料電池による処理]
 図2に示す微生物燃料電池において、1.6L容のアクリル製円筒型負極反応槽3(直径8cm,高さ32cm)を用い、負極4には、モール状に炭素繊維を束ねて編み込んだバイオコード(登録商標)(ティービーアール社製、直径45mm)を29cm、1本用い、正極7には、白金薄膜カーボンペーパー(ElectroChem社製,EC-20-10-7)を79mmφの円形に裁断して用いた。プロトン交換膜5には、アストム社製NeoSepta CMSを用い、79mmφの円形に裁断して、負極反応槽3の側面に切り開けた開口部に貼り付け、防水テープで外周を固定し、正極槽の上面に同時に正極を貼り付けた。負極4と正極7をチタン線(0.3mm径)でつなぎ、パソコン9に接続したテスター8で発生電流をモニター記録した。
 負極反応槽3に、前記微生物を充填し、微生物を含め1.6Lで分解試験を開始した。負極反応槽3に、TOCが240質量ppmのオゾン処理排水(残留オゾン0ppm)(使用済みおむつをオゾン処理した排水)を0.8L/24時間の流速で21日間連続注入し、負極反応槽3から同じ流速で排水を行い、電流発生および水質浄化(TOC減少)を確認した。
 また、連続注入22日目から正極電極を新しいものに交換し、負極反応槽3に、TOCが240質量ppmのオゾン処理排水(残留オゾン0ppm)を1.2L/24時間で8日間連続注入し、負極反応槽3から同じ流速で排水を行い、電流発生および水質浄化(TOC減少)を確認した。結果を図3に示す。
[Treatment with microbial fuel cell]
In the microbial fuel cell shown in FIG. 2, a 1.6-liter acrylic cylindrical negative electrode reaction tank 3 (diameter 8 cm, height 32 cm) is used, and the negative electrode 4 has a bio-cord made of carbon fibers bundled in a mall shape. (Registered trademark) (made by TB Corp., diameter: 45 mm) is used as one 29 cm, and for the positive electrode 7, a platinum thin film carbon paper (ElectroChem, EC-20-10-7) is cut into a 79 mmφ circle. Using. For the proton exchange membrane 5, NeoSepta CMS manufactured by Astom Co., Ltd. was cut into a circle of 79 mmφ, attached to the opening cut out on the side of the negative electrode reaction tank 3, the outer periphery was fixed with waterproof tape, and the upper surface of the positive electrode tank At the same time, a positive electrode was attached. The negative electrode 4 and the positive electrode 7 were connected with a titanium wire (0.3 mm diameter), and the generated current was monitored and recorded with a tester 8 connected to a personal computer 9.
The negative electrode reaction tank 3 was filled with the microorganisms, and a decomposition test was started at 1.6 L including the microorganisms. Ozone-treated wastewater (residual ozone 0 ppm) with a TOC of 240 ppm by mass (drainage obtained by ozone-treating used diapers) was continuously injected into the negative electrode reactor 3 for 21 days at a flow rate of 0.8 L / 24 hours. Then, drainage was performed at the same flow rate, and current generation and water purification (TOC reduction) were confirmed.
Also, from the 22nd day of continuous injection, the positive electrode was replaced with a new one, and ozone treatment wastewater (residual ozone 0 ppm) having a TOC of 240 mass ppm was continuously injected into the negative electrode reaction tank 3 at 1.2 L / 24 hours for 8 days. Then, drainage was performed from the negative electrode reaction tank 3 at the same flow rate, and current generation and water purification (TOC reduction) were confirmed. The results are shown in FIG.
 発生電流収率は次のようにして計算した。
 まず、理論値を計算する。
 TOCをCODへ換算すると、
 TOC240ppm×2.2=COD528ppm
 24時間あたり0.8L排水処理時の電子量へ換算すると、
 COD528ppm×0.8L/24h×4e-=1.690mol・e-/24h
 クーロン量へ換算すると、
 1.690×96500C/mol=1.630C/24h
                 =1.89mC/s ・・・ (1)
 24時間あたり1.2L排水処理時の電子量へ換算すると、
 COD528ppm×1.2L/24h×4e-=2.5344mol・e-/24h
 クーロン量へ換算すると、
 2.5344×96500C/mol=2.4457C/24h
                  =2.83mC/s ・・・ (2)
 次に、実際の収率を計算する。
(24時間あたり0.8L排水処理時)
 実験開始から21日間トータルでの平均発生電流値は、1.06mA(最大値1.73mA,最小値0.17mA)。
 安定9日間(10~18日目)の平均発生電流は、1.65mA(最大値1.73mA,最小値1.43mA)。
 発生電流は、A=C/sであるから、
 安定9日間(10~18日目)の平均発生電流は、
           1.65mA=1.65mC/s ・・・ (3)
 (1)と(3)から、
 発生電流収率=実測値/理論値=1.65/1.89=87.3%
(24時間あたり1.2L排水処理時)
 実験開始から8日間トータルでの平均発生電流値は、2.48mA(最大値2.83mA,最小値1.63mA)。
 安定3日間(24~27日目)の平均発生電流は、2.66mA(最大値2.83mA,最小値2.54mA)。
 発生電流は、A=C/sであるから、
 安定3日間(24~27日目)の平均発生電流は、
           2.66mA=2.66mC/s ・・・ (4)
 (2)と(4)から、
 発生電流収率=実測値/理論値=2.66/2.83=94.0%
The generated current yield was calculated as follows.
First, the theoretical value is calculated.
When converting TOC to COD,
TOC 240 ppm × 2.2 = COD 528 ppm
In terms of the amount of electrons at the time of 0.8L wastewater treatment per 24 hours,
COD528 ppm × 0.8 L / 24 h × 4 e = 1.690 mol · e / 24 h
When converted to coulomb amount,
1.690 × 96500C / mol = 1.630C / 24h
= 1.89 mC / s (1)
When converted to the amount of electrons at the time of 1.2L wastewater treatment per 24 hours,
COD 528 ppm × 1.2 L / 24 h × 4 e = 2.5344 mol · e / 24 h
When converted to coulomb amount,
2.5344 × 96500 C / mol = 2.4457 C / 24 h
= 2.83 mC / s (2)
The actual yield is then calculated.
(0.8L wastewater treatment per 24 hours)
The average generated current value for 21 days from the start of the experiment is 1.06 mA (maximum value 1.73 mA, minimum value 0.17 mA).
The average generated current for 9 days (10-18 days) was 1.65 mA (maximum value 1.73 mA, minimum value 1.43 mA).
Since the generated current is A = C / s,
The average generated current for 9 days (10-18 days) is
1.65 mA = 1.65 mC / s (3)
From (1) and (3)
Generated current yield = actual value / theoretical value = 1.65 / 1.89 = 87.3%
(At the time of 1.2L wastewater treatment per 24 hours)
The average generated current value for 8 days from the start of the experiment is 2.48 mA (maximum value 2.83 mA, minimum value 1.63 mA).
The average generated current for 3 days (24th to 27th days) was 2.66 mA (maximum value 2.83 mA, minimum value 2.54 mA).
Since the generated current is A = C / s,
The average generated current for the stable 3 days (24th to 27th days) is
2.66 mA = 2.66 mC / s (4)
From (2) and (4)
Generated current yield = actual value / theoretical value = 2.66 / 2.83 = 94.0%
 本発明の方法は、紙おむつ等の使用済み吸収性物品のリサイクルシステムに好適に利用することができる。 The method of the present invention can be suitably used in a recycling system for used absorbent articles such as disposable diapers.
 1  オゾン処理排水槽
 2  ポンプ
 3  負極反応槽
 4  負極
 5  プロトン交換膜
 6  正極槽
 7  正極
 8  テスター
 9  パソコン
 10  汚泥沈降槽
 11  ポンプ
 12  浄化水槽
DESCRIPTION OF SYMBOLS 1 Ozone treatment drainage tank 2 Pump 3 Negative electrode reaction tank 4 Negative electrode 5 Proton exchange membrane 6 Positive electrode tank 7 Positive electrode 8 Tester 9 Personal computer 10 Sludge sedimentation tank 11 Pump 12 Purified water tank

Claims (5)

  1.  使用済み吸収性物品から前記吸収性物品を構成する材料の少なくとも1種を回収し再生する使用済み吸収性物品のリサイクル方法であって、該方法が、使用済み吸収性物品をオゾン水で処理するオゾン処理工程、オゾン処理工程からの排水のオゾン濃度を0.1質量ppm以下に調整するオゾン濃度調整工程、およびオゾン濃度が調整された排水を微生物燃料電池に投入して排水中のTOC濃度を低減するとともに発電による電力を回収する微生物燃料電池工程を含むことを特徴とする方法。 A method of recycling a used absorbent article for recovering and recycling at least one material constituting the absorbent article from a used absorbent article, wherein the method treats a used absorbent article with ozone water. Ozone treatment process, ozone concentration adjustment process to adjust the ozone concentration of waste water from ozone treatment process to 0.1 mass ppm or less, and waste water adjusted to ozone concentration to microbial fuel cell to reduce TOC concentration in waste water A method comprising a microbial fuel cell step of reducing and recovering power from power generation.
  2.  オゾン処理工程からの排水のpHを2.0以上、7.0以下に調整する工程をさらに含む請求項1に記載の方法。 The method according to claim 1, further comprising a step of adjusting the pH of the waste water from the ozone treatment step to 2.0 or more and 7.0 or less.
  3.  微生物燃料電池工程からの排水のpHが8.0未満であることを特徴とする請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the pH of the waste water from the microbial fuel cell process is less than 8.0.
  4.  オゾン処理工程からの排水のTOC濃度を10,000mg/L以下に調整する工程をさらに含む請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, further comprising a step of adjusting the TOC concentration of waste water from the ozone treatment step to 10,000 mg / L or less.
  5.  微生物燃料電池工程からの排水のTOC濃度が2000mg/L以下であることを特徴とする請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the TOC concentration of waste water from the microbial fuel cell process is 2000 mg / L or less.
PCT/JP2015/082281 2014-12-26 2015-11-17 Method for recycling used absorbent article WO2016103985A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15872554.9A EP3238840B1 (en) 2014-12-26 2015-11-17 Method for recycling used absorbent article
CN201580071046.5A CN107107132B (en) 2014-12-26 2015-11-17 Method for recycling used absorbent article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-266606 2014-12-26
JP2014266606 2014-12-26
JP2015-187062 2015-09-24
JP2015187062A JP6161669B2 (en) 2014-12-26 2015-09-24 Recycling method of used absorbent articles

Publications (1)

Publication Number Publication Date
WO2016103985A1 true WO2016103985A1 (en) 2016-06-30

Family

ID=56150018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082281 WO2016103985A1 (en) 2014-12-26 2015-11-17 Method for recycling used absorbent article

Country Status (1)

Country Link
WO (1) WO2016103985A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018100865A1 (en) * 2016-12-02 2018-06-07 ユニ・チャーム株式会社 Method for recycling used absorbent articles
CN109477297A (en) * 2016-08-05 2019-03-15 尤妮佳股份有限公司 By the method for used absorbent commodity recycling pulp fibers
CN109563682A (en) * 2016-08-05 2019-04-02 尤妮佳股份有限公司 From the method for used absorbent commodity recycling pulp fibers
JP2020124711A (en) * 2020-04-28 2020-08-20 ユニ・チャーム株式会社 Recycling method for used absorbent article
WO2020217757A1 (en) * 2019-04-26 2020-10-29 ユニ・チャーム株式会社 Method for producing recycled pulp fiber from used absorbent article containing highly water-absorbent polymer, pulp fiber, and excrement
CN113853251A (en) * 2019-05-30 2021-12-28 尤妮佳股份有限公司 Method for regenerating superabsorbent polymers derived from used absorbent articles and recycled superabsorbent polymers derived from used absorbent articles
WO2022085359A1 (en) * 2020-10-20 2022-04-28 ユニ・チャーム株式会社 Method for recovering plastic material from used nonwoven faric product which contains used absorent article

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091167A (en) * 1995-06-16 1997-01-07 Hitachi Ltd High-degree water purification system
JPH0929285A (en) * 1995-07-21 1997-02-04 Ebara Corp Advanced treatment method for wastewater and device therefor
JP2001310178A (en) * 2000-04-28 2001-11-06 Daiki:Kk Method for recovering material of stained sanitary article
US20090142627A1 (en) * 2005-09-28 2009-06-04 Tatsuo Shimomura Biological Power Generator, and Method of Treating Organic Solid Pollutant-Containing Waste, a Method of Treating Organic Polymeric Substance-Containing Wastewater, a Method of Treating Organic Substance-Containing Wastewater, as Well as Apparatuses for Implementing These Treatment Methods
JP2009231229A (en) * 2008-03-25 2009-10-08 Kurita Water Ind Ltd Microbial power generation device
JP2013145660A (en) * 2012-01-13 2013-07-25 Maezawa Kasei Ind Co Ltd Microbial fuel cell
JP2013197047A (en) * 2012-03-22 2013-09-30 Uni Charm Corp Biofuel cell
US20140030555A1 (en) * 2012-07-27 2014-01-30 Livolt, LLC Microbial fuel cell, and related systems and methods
JP2014217835A (en) * 2013-04-10 2014-11-20 ユニ・チャーム株式会社 Method for recovering pulp fiber from used sanitary article and regenerated pulp obtained by the method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091167A (en) * 1995-06-16 1997-01-07 Hitachi Ltd High-degree water purification system
JPH0929285A (en) * 1995-07-21 1997-02-04 Ebara Corp Advanced treatment method for wastewater and device therefor
JP2001310178A (en) * 2000-04-28 2001-11-06 Daiki:Kk Method for recovering material of stained sanitary article
US20090142627A1 (en) * 2005-09-28 2009-06-04 Tatsuo Shimomura Biological Power Generator, and Method of Treating Organic Solid Pollutant-Containing Waste, a Method of Treating Organic Polymeric Substance-Containing Wastewater, a Method of Treating Organic Substance-Containing Wastewater, as Well as Apparatuses for Implementing These Treatment Methods
JP2009231229A (en) * 2008-03-25 2009-10-08 Kurita Water Ind Ltd Microbial power generation device
JP2013145660A (en) * 2012-01-13 2013-07-25 Maezawa Kasei Ind Co Ltd Microbial fuel cell
JP2013197047A (en) * 2012-03-22 2013-09-30 Uni Charm Corp Biofuel cell
US20140030555A1 (en) * 2012-07-27 2014-01-30 Livolt, LLC Microbial fuel cell, and related systems and methods
JP2014217835A (en) * 2013-04-10 2014-11-20 ユニ・チャーム株式会社 Method for recovering pulp fiber from used sanitary article and regenerated pulp obtained by the method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477297A (en) * 2016-08-05 2019-03-15 尤妮佳股份有限公司 By the method for used absorbent commodity recycling pulp fibers
CN109563682A (en) * 2016-08-05 2019-04-02 尤妮佳股份有限公司 From the method for used absorbent commodity recycling pulp fibers
US10538878B2 (en) 2016-08-05 2020-01-21 Unicharm Corporation Method for recovering pulp fibers from used absorbent article
CN113264585A (en) * 2016-12-02 2021-08-17 尤妮佳股份有限公司 Method for reusing used absorbent article
JP2018089579A (en) * 2016-12-02 2018-06-14 ユニ・チャーム株式会社 Recycling method for used absorbent article
CN109922899A (en) * 2016-12-02 2019-06-21 尤妮佳股份有限公司 The reuse method of used absorbent commodity
EP3527296A4 (en) * 2016-12-02 2019-10-23 Unicharm Corporation Method for recycling used absorbent articles
CN109922899B (en) * 2016-12-02 2022-08-16 尤妮佳股份有限公司 Method for reusing used absorbent article
WO2018100865A1 (en) * 2016-12-02 2018-06-07 ユニ・チャーム株式会社 Method for recycling used absorbent articles
WO2020217757A1 (en) * 2019-04-26 2020-10-29 ユニ・チャーム株式会社 Method for producing recycled pulp fiber from used absorbent article containing highly water-absorbent polymer, pulp fiber, and excrement
JP2020183585A (en) * 2019-04-26 2020-11-12 ユニ・チャーム株式会社 Method for producing recycled pulp fiber from used absorbent article containing super absorbent polymer, pulp fiber and excrement
CN113767196A (en) * 2019-04-26 2021-12-07 尤妮佳股份有限公司 Method for producing recycled pulp fibers from used absorbent articles containing superabsorbent polymers, pulp fibers and waste
JP7114523B2 (en) 2019-04-26 2022-08-08 ユニ・チャーム株式会社 Method for producing recycled pulp fibers from used absorbent articles containing superabsorbent polymers, pulp fibers and excreta
CN113853251A (en) * 2019-05-30 2021-12-28 尤妮佳股份有限公司 Method for regenerating superabsorbent polymers derived from used absorbent articles and recycled superabsorbent polymers derived from used absorbent articles
CN113853251B (en) * 2019-05-30 2022-10-14 尤妮佳股份有限公司 Method for regenerating superabsorbent polymers derived from used absorbent articles and recycled superabsorbent polymers derived from used absorbent articles
JP7055164B2 (en) 2020-04-28 2022-04-15 ユニ・チャーム株式会社 How to recycle used absorbent goods
JP2020124711A (en) * 2020-04-28 2020-08-20 ユニ・チャーム株式会社 Recycling method for used absorbent article
WO2022085359A1 (en) * 2020-10-20 2022-04-28 ユニ・チャーム株式会社 Method for recovering plastic material from used nonwoven faric product which contains used absorent article

Similar Documents

Publication Publication Date Title
JP6161669B2 (en) Recycling method of used absorbent articles
WO2016103985A1 (en) Method for recycling used absorbent article
US11554520B2 (en) Recycled pulp, absorbent, non-woven fabric, and sanitary article
JP6698506B2 (en) How to recycle used absorbent articles
JP6199243B2 (en) Method for producing recycled pulp from used sanitary products
EP3738686B1 (en) Method for recovering pulp fiber from used sanitary product
JP6505045B2 (en) Method of recovering pulp fibers from used absorbent articles
WO2021075148A1 (en) Production method for biogas using used sanitary articles
JP2019108639A (en) Method for manufacturing recycle pulp fiber
JP2019108640A (en) Method for manufacturing recycle pulp fiber, use for inactivation and decomposition of highly water-absorbing polymer of peracid, and inactivating and decomposing agent of highly water-absorbing polymer containing peracid
JP2017209675A (en) Method for decomposing used sanitary product, and method for separating pulp fiber from used sanitary product
JP2019084470A (en) Method of and system for recovering pulp fiber and highly water-absorbing polymer from used absorbent article
JP7055164B2 (en) How to recycle used absorbent goods
KR102379007B1 (en) Method for recovering organic acid and excreta, and method for manufacturing recycled pulp fiber
WO2017179251A1 (en) Method for producing glucose from used absorbent articles
JP2004009007A (en) Method of treating urine absorber after use and urine absorber
JP2019076902A (en) Use of recycled pulp for sanitary product and sanitary product
JP2004025574A (en) Method and device for treatment of disposable diaper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872554

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015872554

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE