WO2016103936A1 - Solid-state imaging element and method for manufacturing solid-state imaging element - Google Patents

Solid-state imaging element and method for manufacturing solid-state imaging element Download PDF

Info

Publication number
WO2016103936A1
WO2016103936A1 PCT/JP2015/081624 JP2015081624W WO2016103936A1 WO 2016103936 A1 WO2016103936 A1 WO 2016103936A1 JP 2015081624 W JP2015081624 W JP 2015081624W WO 2016103936 A1 WO2016103936 A1 WO 2016103936A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
light shielding
light
solid
shielding film
Prior art date
Application number
PCT/JP2015/081624
Other languages
French (fr)
Japanese (ja)
Inventor
裕行 川野
康彦 末吉
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2016566011A priority Critical patent/JP6301500B2/en
Publication of WO2016103936A1 publication Critical patent/WO2016103936A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation

Definitions

  • the present invention relates to a solid-state imaging device and a method for manufacturing the solid-state imaging device, and more particularly to a solid-state imaging device including a light-shielding unit that shields an optical black region and a method for manufacturing the solid-state imaging device.
  • Patent Document 1 in order to solve the problem of a single-layer aluminum light-shielding portion (hereinafter, aluminum is abbreviated as “Al”) “local light transmission occurs due to metal voids”
  • Al aluminum
  • a light shielding part having a three-layer structure including an Al light shielding film, an intervening film, and an upper Al light shielding film is disclosed.
  • FIG. 14 the light-shielding part according to Patent Document 1 will be described.
  • FIG. 14 is a cross-sectional view of the solid-state imaging device 1000 including the light shielding unit 20 according to Patent Document 1.
  • the solid-state imaging device 1000 disclosed in Patent Document 1 includes a light receiving unit 101 formed in a semiconductor substrate 120 and interlayer insulating films 106, 109, 112, formed on the semiconductor substrate 120. 114 and a conventional light shielding part 20 formed on the interlayer insulating film 114.
  • the conventional light shielding portion 20 includes a conventional lower light shielding film 20d, a conventional intervening film 20m, and a conventional upper light shielding film 20u in order from the side closer to the semiconductor substrate 120.
  • the conventional light shielding unit 20 includes a conventional lower Al light shielding film 20d, a conventional upper Al light shielding film 20u formed in a layer above the conventional lower Al light shielding film 20d, and a conventional lower layer. It includes a three-layer structure including a conventional intervening film 20m formed in a region sandwiched between the Al light shielding film 20d and the conventional upper Al light shielding film 20u.
  • the conventional intervening film 20m is formed of a refractory metal having a particle diameter smaller than that of Al and its nitride film, silicide film, or oxide film.
  • the metal voids in the conventional lower Al light shielding film 20d and the metal voids in the conventional upper Al light shielding film 20u are discontinuous, and the conventional light shielding part 20 passes through the metal voids. This prevents a decrease in light shielding performance due to light leaking.
  • the film thickness of the conventional upper Al light shielding film 20u is the film of the conventional intervening film 20m in order to ensure the light shielding property. It is thicker than the thickness.
  • a method for securing and improving the light shielding property of the light shielding part a method of increasing the thickness of the light shielding film included in the light shielding part is generally used. It is.
  • the inventors of the present invention have found that the conventional upper-layer Al light-shielding film 20u is thick in the conventional light-shielding portion 20, and therefore metal voids are likely to occur.
  • the mechanism of occurrence of metal voids is not clear, there are holes in the conventional upper Al light shielding film 20u, and the voids are caused by external factors (for example, film stress of the conventional light shielding part 20, And the heat treatment temperature, etc.), it is considered that the metal agglomerates and becomes metal voids or metal bubbles.
  • the conventional upper Al light shielding film 20u has a large film thickness and many vacancies, and therefore metal voids are likely to occur.
  • the conventional light-shielding portion 20 is prone to metal bubbles (aggregation of metal voids) due to stress generated from the difference in thermal expansion coefficient between the conventional upper Al light-shielding film 20u and the conventional intervening film 20m. it is conceivable that.
  • the present invention has been made in view of the above problems, and an object of the present invention is to reduce the light shielding property of the light shielding part while suppressing the thickness of the light shielding part that shields the OB region.
  • An object of the present invention is to provide an imaging device and a method for manufacturing a solid-state imaging device.
  • a solid-state imaging device is a solid-state imaging device including a light-shielding unit that shields an optical black region formed on a substrate.
  • a lower-layer light-shielding film, an intervening film, and an upper-layer light-shielding film are included, and the lower-layer light-shielding film and the upper-layer light-shielding film are formed of aluminum or an aluminum alloy containing aluminum as a main component.
  • the film thickness is 50 nm or more and 125 nm or less.
  • a method for manufacturing a solid-state imaging device is a method for manufacturing a solid-state imaging device including a light-shielding portion that shields an optical black region formed on a substrate.
  • the light shielding portion includes a lower light shielding film, an intervening film, and an upper light shielding film in order from the side closer to the substrate, and a lower light shielding film forming step of forming the lower light shielding film with aluminum or an aluminum alloy containing aluminum as a main component.
  • an upper light-shielding film forming step of forming the upper light-shielding film which is aluminum or an aluminum alloy containing aluminum as a main component and has a film thickness of 50 nm or more and 125 nm or less.
  • FIG. 1 is sectional drawing explaining the manufacturing process following the manufacturing process shown in FIG. It is a flowchart explaining the outline
  • the solid-state image sensor 100 is, for example, a CMOS image sensor.
  • the outline of the solid-state imaging device 100 will be described as follows.
  • the solid-state imaging device 100 is a solid-state imaging device including a light-shielding unit 170 that shields the optical black region B formed on the semiconductor substrate 120 (substrate), and the light-shielding unit 170 is from the side close to the semiconductor substrate 120.
  • it includes a third layer aluminum wiring 10 (lower light shielding film), an intervening film 11, and an upper layer aluminum light shielding film 12 (upper layer light shielding film), and the third layer aluminum wiring 10 and upper layer aluminum light shielding film 12 are made of aluminum or aluminum.
  • the upper aluminum light-shielding film 12 has a thickness of 50 nm or more and 125 nm or less.
  • one cause of the metal void generated in the upper layer aluminum (hereinafter abbreviated as “Al”) light shielding film 12 is a hole existing in the upper layer Al light shielding film 12.
  • the solid-state imaging device 100 reduces the film thickness of the upper Al light shielding film 12, specifically, by setting the film thickness of the upper aluminum light shielding film 12 to 50 nm or more and 125 nm or less. 12 is reduced. Therefore, the solid-state imaging device 100 can prevent the occurrence of metal voids in the upper Al light-shielding film 12 and avoid the deterioration of the light-shielding property.
  • the thickness of the upper light shielding part 12 can be suppressed by reducing the film thickness of the upper Al light shielding film 12 to 50 nm or more and 125 nm or less. That is, the solid-state imaging device 100 can avoid a reduction in the light shielding property of the light shielding unit 170 while suppressing the thickness of the light shielding unit 170 that shields the optical black region (hereinafter abbreviated as “OB region”).
  • OB region optical black region
  • the tensile stress of the intervening film 11 of the solid-state imaging device 100 is 5.0E8 Pa or more and 7.0E8 Pa or less.
  • the solid-state imaging device 100 is controlled so that the difference in thermal expansion coefficient between the intervening film 11 and the upper aluminum light shielding film 12 is reduced. Therefore, the solid-state imaging device 100 can suppress the generation of metal bubbles due to the stress caused by the film stress.
  • the solid-state imaging device 100 includes a third-layer Al wiring 10, an upper-layer Al light shielding film 12 formed in a layer above the third-layer Al wiring 10, and a third-layer Al wiring 10 in the OB region. And an intervening film 11 formed in a region sandwiched between the upper Al light shielding film 12 and a light shielding portion 170 having a multilayer structure.
  • the third layer Al wiring 10 in the OB region also serves as a lower Al light shielding film.
  • the solid-state imaging device 100 can reduce the voids in the upper Al light shielding film 12 that are a cause of metal voids, and suppress the generation of metal voids, thereby reducing the light shielding performance. It can be avoided.
  • the solid-state imaging device 100 can suppress the thickness of the entire light shielding unit 170. Therefore, the solid-state imaging device 100 can avoid a decrease in the light shielding property of the light shielding unit 170 while suppressing the thickness of the light shielding unit 170 that shields the optical black region (hereinafter abbreviated as “OB region”).
  • OB region optical black region
  • FIG. 1 is a cross-sectional view of a solid-state imaging device 100 according to Embodiment 1 of the present invention.
  • the solid-state imaging device 100 has the same configuration as that of a general CMOS type image sensor except for the configuration related to the light shielding unit 170, and the details will be omitted. However, the outline will be described as follows. .
  • the solid-state imaging device 100 includes a light receiving unit 101, a floating diffusion unit 102, and an element separation unit 103.
  • the light receiving unit 101 includes, for example, a photodiode (photoelectric conversion element), is arranged in a matrix form in the semiconductor substrate 120, and generates a signal charge by photoelectric conversion of image light (incident light) from a subject.
  • the floating diffusion unit 102 (hereinafter abbreviated as “FD unit 102”) is provided for each pixel of the plurality of light receiving units 101, and converts signal charges obtained by photoelectric conversion into voltage signals.
  • the element separating unit 103 is for electrically separating the light receiving unit 101 and the FD unit 102.
  • the solid-state imaging device 100 also includes a gate insulating film 104, a charge transfer electrode 105 made of a polysilicon electrode, an interlayer insulating film 106, a through hole 107, a first layer Al wiring 108, an interlayer insulating film 109, a through hole 110, a first hole.
  • a second layer Al wiring 111, an interlayer insulating film 112, and a through hole 113 are included.
  • the solid-state imaging device 100 further includes a light shielding unit 170 that shields the optical black region B formed on the semiconductor substrate 120 (substrate).
  • the light shielding portion 170 includes a third-layer Al wiring 10, which is a lower AL light shielding film, an intervening film 11, and an upper aluminum light shielding film 12 in order from the side closer to the semiconductor substrate 120.
  • the third-layer Al wiring 10 and the upper-layer aluminum light shielding film 12 are made of aluminum or an aluminum alloy containing aluminum as a main component.
  • the third-layer Al wiring 10 is an Al wiring as a lower-layer Al light-shielding film provided on the side closest to the semiconductor substrate 120 in the light-shielding portion 170, and the film thickness of the third-layer Al wiring 10 is 150 nm or more, 250 nm or less.
  • the solid-state imaging device 100 uses titanium nitride (TiN) as the interposition film 11, and the interposition film 11 has a thickness of 100 nm.
  • the film thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less, and more preferably 50 nm or more and 90 nm or less. In the solid-state imaging device 100, the upper Al light shielding film 12 has a thickness of 70 nm and is thinner than the intervening film 11 having a thickness of 100 nm.
  • the film thickness of the upper Al light shielding film 12 may be 50 nm or more and 125 nm or less, and the film thickness of the upper Al light shielding film 12 is larger than the intervening film 11 having a film thickness of 100 nm. Thinness is not essential.
  • the thickness of the upper Al light shielding film 12 may be 125 nm, and the thickness of the intervening film 11 may be 100 nm.
  • the film thickness of the upper Al light shielding film 12 is 125 nm or less, it is possible to reduce the occurrence probability of vacancies existing in the upper Al light shielding film 12 and suppress the generation of metal bubbles.
  • the film thickness of the upper Al light shielding film 12 is smaller than 50 nm, the transmittance of incident light is increased and the light shielding property is deteriorated.
  • FIG. 2 is a plan view showing a schematic configuration of the solid-state imaging device according to each embodiment of the present invention.
  • the solid-state imaging device 100 includes a rectangular effective pixel area A formed in the center, an OB area B arranged around the effective pixel area A, and an OB area B. And a peripheral circuit region C arranged around the periphery.
  • the light receiving portions 101 are arranged in a matrix, and the effective pixel area A and the OB area B constitute a pixel area.
  • the effective pixel region A is a region where the light receiving unit 101 that is actually used for imaging is arranged in the light receiving units 101 arranged in a matrix, and generates signal charges by photoelectrically converting incident light from a subject.
  • the OB region B is a region in which the light receiving units 101 used for black detection are arranged among the light receiving units 101 arranged in a matrix.
  • the peripheral circuit area C is an area in which drivers (peripheral circuits) for controlling signal transfer and signal reading are arranged.
  • FIG. 3 shows an embodiment in which the film thickness of the upper AL light shielding film 12 is thinner than the film thickness of the intervening film 11, and the third layer AL included in the light shielding part 170 for the light shielding part 170 of the solid-state imaging device 100.
  • 4 is a cross-sectional view for explaining the film thicknesses of a wiring 10, an intervening film 11, and an upper aluminum light shielding film 12.
  • FIG. 3 As shown in FIG. 3, in the light shielding portion 170 of the solid-state imaging device 100, the film thickness of the upper AL light shielding film 12 is thinner than the film thickness of the intervening film 11.
  • the solid-state imaging device 100 includes a light shielding unit 170 having a multilayer structure using an AL wiring layer used for a peripheral circuit.
  • the film thickness of the upper AL light shielding film 12 of the light shielding portion 170 is smaller than the film thickness of the intervening film 11.
  • one cause of the metal void generated in the upper Al light shielding film 12 is a vacancy existing in the upper Al light shielding film 12.
  • the thickness of the upper Al light-shielding film 12 is 50 nm or more and 90 nm or less, which is smaller than the thickness of the intervening film 11, so that the holes present in the upper Al light-shielding film 12 are further reduced. It is decreasing.
  • the solid-state imaging device 100 can avoid a decrease in light shielding property due to metal bubbles. Further, in the solid-state imaging device 100, the thickness of the entire light shielding portion 170 can be further suppressed by making the film thickness of the upper Al light shielding film 12 50 nm or more and 90 nm or less, which is smaller than the film thickness of the intervening film 11. In addition, an increase in the distance between the semiconductor substrate 120 and the lens 17 can be minimized. Therefore, since the solid-state imaging device 100 has a short distance until the incident light shown in FIG. 1 reaches the light receiving unit 101, attenuation of the incident light can be reduced and deterioration of sensitivity can be prevented. In addition, although the light shielding part of the CMOS type image sensor has been described so far, the light shielding part of the CCD type image sensor can be configured similarly.
  • the inventor of the present invention experimented how the metal bubble occurrence frequency, the film thickness of the upper light-shielding Al film, the film stress of the intervening film, and the hydrogen sintering temperature were related, and obtained the following knowledge . That is, the inventors of the present invention have found that the generation of metal bubbles can be suppressed by setting the film thickness of the upper light-shielding film to 50 nm or more and 125 nm or less. The inventors of the present invention have also found that the generation of metal bubbles can be suppressed by setting the tensile stress of the intervening film to 5.0E8 Pa or more and 7.0E8 Pa or less.
  • the inventors of the present invention have found that the generation of metal bubbles can be suppressed by setting the hydrogen sintering temperature to 400 ° C. or more and 450 ° C. or less for the hydrogen sintering treatment.
  • the details of how the metal bubble generation frequency, the film thickness of the upper light-shielding Al film, the film stress of the intervening film, and the hydrogen sintering temperature are related to each other will be described below.
  • FIG. 11 is a diagram for explaining the relationship between the film thickness of the upper light-shielding Al film of the solid-state imaging device and the metal bubble occurrence frequency according to each embodiment of the present invention.
  • the inventor of the present invention sets the film stress of the upper light-shielding Al film by setting the film stress of the intervening film to Tensile 6.0E8 Pa (that is, the interstitial film tensile stress is 6.0E8 Pa), the hydrogen sintering temperature to 420 ° C.
  • Tensile 6.0E8 Pa that is, the interstitial film tensile stress is 6.0E8 Pa
  • the hydrogen sintering temperature to 420 ° C.
  • the frequency of occurrence of metal bubbles increases as the thickness of the upper Al light shielding film 12 is increased.
  • the film thickness of the upper Al light shielding film 12 is 50 nm or more and 90 nm or less, the film of the upper Al light shielding film 12 is larger than the case where the film thickness of the upper Al light shielding film 12 is larger than 90 nm. It was confirmed that the rate of increase in the frequency of occurrence of metal bubbles (compared to the prior art) with increasing thickness was moderate.
  • the film thickness of the upper Al light shielding film 12 is thicker than 125 nm, it is confirmed that the frequency of occurrence of metal bubbles (compared to the prior art) increases rapidly as the film thickness of the upper Al light shielding film 12 increases. did. Furthermore, when the film thickness of the upper Al light shielding film 12 is less than 50 nm, the transmittance of incident light is increased and the light shielding property is deteriorated.
  • the thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less. Further, the inventors of the present invention have found that the film thickness of the upper Al light shielding film 12 is 50 nm or more and more preferably 90 nm or less.
  • the film thickness of the upper Al light shielding film 12 is 50 nm or more and 125 nm or less, it is possible to reduce the generation probability of holes existing in the upper Al light shielding film 12 and suppress the generation of metal bubbles. it can. Further, when the film thickness of the upper Al light shielding film 12 is 50 nm or more and 90 nm or less, the generation probability of vacancies in the upper Al light shielding film 12 is further reduced, and the generation of metal bubbles is further reduced. It can be effectively suppressed.
  • FIG. 12 is a diagram for explaining the relationship between the intervening film stress and the frequency of occurrence of metal bubbles.
  • the intervening film stress film stress of the intervening film
  • film stress When a thin film is formed on a flat substrate (wafer), mechanical stress (film stress) is generated in the film due to the difference between the thermal expansion coefficient (thermal expansion coefficient) of the film and the thermal expansion coefficient of the substrate. To do.
  • the substrate In order to relieve the film stress, the substrate is warped.
  • the direction in which the periphery of the substrate is pulled is stretched (tensile), and the direction in which the periphery of the substrate is suppressed is compressed (compressive).
  • the film stress (film stress) is based on the substrate (wafer), when it acts in the direction of pulling the periphery of the substrate, and when it acts in the direction of restraining the periphery of the substrate, it is compressed. It is called stress (Compressive Stress).
  • the inventor of the present invention conducted an experiment on the relationship between the film stress of the intervening film and the frequency of occurrence of metal bubbles with the film thickness of the upper Al light shielding film 12 being 85 nm and the hydrogen sintering temperature being 420 ° C.
  • the experimental results shown are obtained. That is, as shown in FIG. 12, the film stress (film stress) of the intervening film is Tensile (that is, film stress in the direction of pulling the periphery), 5.0E8 Pa or more, 7.0E8 Pa or less (5.0E9 dyne /
  • the inventor of the present invention has found that it is preferable to set it to cm 2 or more and 7.0E9 dyne / cm 2 or less. In other words, the inventors of the present invention have found that the tensile stress of the intervening film is preferably 5.0E8 Pa or more and 7.0E8 Pa or less.
  • FIG. 13 is a diagram for explaining the relationship between the hydrogen sintering temperature and the metal bubble occurrence frequency.
  • the inventor of the present invention sets the film thickness of the upper Al light shielding film 12 to 85 nm, sets the film stress of the intervening film to Tensile 6.0E8 Pa (that is, sets the tensile stress of the intervening film to 6.0E8 Pa), and performs the hydrogen sintering treatment temperature.
  • Experiments were performed on the relationship between (hydrogen sinter temperature when performing hydrogen sinter treatment) and metal bubble generation frequency, and experimental results shown in FIG. 13 were obtained.
  • the hydrogen sintering temperature is 420 ° C. or higher and 450 ° C. or lower
  • the frequency of occurrence of metal bubbles accompanying the increase in the hydrogen sintering temperature (as compared to when the hydrogen sintering temperature is higher than 450 ° C.) It was confirmed that the rate of increase) was moderate.
  • the hydrogen sintering temperature was higher than 450 ° C., it was confirmed that the frequency of occurrence of metal bubbles (compared to the prior art) increased rapidly as the hydrogen sintering temperature increased.
  • the inventors of the present invention show that when the hydrogen sintering process is performed at a temperature higher than 450 ° C., the stress applied to the light-shielding portion is increased compared to when the hydrogen sintering temperature is set to 450 ° C. or lower. It was confirmed that the occurrence frequency of metal bubbles increased.
  • the hydrogen sintering temperature is less than 400 ° C.
  • the device characteristics of the solid-state imaging device are deteriorated due to white scratches and dark current.
  • the hydrogen sintering temperature is preferably 400 ° C. or higher and 450 ° C. or lower.
  • the manufacturing method of the solid-state image sensor 100 is demonstrated in detail using FIGS. 4-6.
  • the solid-state imaging device 100 has the same configuration as that of a general CMOS image sensor except for the configuration related to the light shielding unit 170.
  • the manufacturing method of the solid-state imaging device 100 is also the same as the manufacturing method of the configuration of a general CMOS image sensor because the manufacturing method of the configuration other than the light shielding unit 170 is the same as that of the general CMOS type image sensor.
  • FIG. 4 is a cross-sectional view illustrating a method for manufacturing the solid-state imaging device 100.
  • FIG. 4A shows a part of the cross-sectional structure of the solid-state imaging device 100, and the through holes 113 are formed based on a manufacturing method similar to a general CMOS image sensor manufacturing method. Yes.
  • the third-layer Al wiring 10 which is the lower Al light shielding film, the intervening film 11, and the upper Al light shielding film 12 are formed.
  • the manufacturing method of the light shielding part 170 more specifically, the manufacturing method of each of the third layer Al wiring 10, the intervening film 11, and the upper layer Al light shielding film 12 will be described in detail.
  • the third layer Al wiring 10 which is an Al wiring is formed.
  • the third layer Al wiring 10 was formed of aluminum or an aluminum alloy containing aluminum as a main component, and the film thickness of the third layer Al wiring 10 was 150 nm or more and 250 nm or less.
  • the intervening film 11 is formed using titanium nitride (TiN).
  • the thickness of the intervening film 11 was 100 nm.
  • the film stress of the intervening film 11 is set to Tensile of 5.0E8 Pa or more and 7.0E8 Pa or less as shown in FIG. Is preferred.
  • the intervening film 11 is formed by setting the film stress of the intervening film 11 to Tensile 6.0E8 Pa.
  • the inventor of the present invention has found that the generation of metal bubbles can be suppressed by reducing the difference between the thermal expansion coefficient (thermal expansion coefficient) of the upper Al light shielding film 12 and the thermal expansion coefficient of the intervening film 11. did.
  • the intervening film 11 and the upper Al light shielding film 12 are arranged such that the direction of the film stress of the intervening film 11 and the direction of the film stress of the upper Al light shielding film 12 are both in the direction of extension (Tensile). It means that was formed.
  • the interstitial film 11 has a film stress of Tensile 5.0E8 Pa or more and 7.0E8 Pa or less, that is, the interstitial film 11 has a tensile stress of 5.0E8 Pa or more and 7.0E8 Pa or less. It was discovered that the formation of the intervening film 11 can suppress the generation of metal bubbles.
  • the generation mechanism of the metal bubble is not clear, since the difference between the thermal expansion coefficient of the intervening film 11 and the thermal expansion coefficient of the upper Al light shielding film 12 is reduced, the stress on the upper Al light shielding film 12 is reduced and metal voids are generated. It is thought that it is hard to generate. Note that the gas flow rate, pressure, temperature, and film thickness at the time of forming the intervening film 11 are controlled so that the film stress of the intervening film 11 is set to Tensile 5.0E8 Pa or more and 7.0E8 Pa or less.
  • the upper Al light shielding film 12 was formed using aluminum or an aluminum alloy mainly composed of aluminum.
  • the film thickness of the upper Al light shielding film 12 was 70 nm.
  • the thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less, and more preferably 50 nm or more and 90 nm or less.
  • the film thickness of the upper Al light shielding film 12 is 125 nm or less, the generation probability of vacancies existing in the upper Al light shielding film 12 is reduced, and the generation of metal bubbles can be suppressed.
  • the thickness of the upper Al light shielding film 12 is smaller than 50 nm, the transmittance of incident light is increased and the light shielding property is deteriorated.
  • a resist 18 for leaving the upper Al light shielding film 12 and the intervening film 11 is formed.
  • an upper Al light shielding film 12 and an intervening film 11 are formed in the OB pixel region B by using photolithography and dry etching.
  • FIG. 5 is a cross-sectional view illustrating a manufacturing method of the solid-state image sensor 100, and is a cross-sectional view illustrating a manufacturing process of the solid-state image sensor 100 following the manufacturing process illustrated in FIG.
  • the third-layer Al wiring 10 is left in the effective pixel area A, the third-layer Al wiring 10, the intervening film 11, and the upper-layer Al light shielding film in the OB pixel area B.
  • a resist 19 for leaving 12 is formed.
  • a resist 19 is also formed around the upper Al light shielding film 12 and the interposition film 11 in order to leave the upper Al light shielding film 12 and the interposition film 11 in the OB pixel region B with certainty.
  • a third-layer Al wiring 10 is formed as a lower Al light shielding film in the OB pixel region B.
  • an interlayer insulating film 13 is formed by HDP film formation and CMP process.
  • FIG. 6 is a cross-sectional view illustrating a manufacturing method of the solid-state image sensor 100, and is a cross-sectional view illustrating a manufacturing process of the solid-state image sensor 100 following the manufacturing process illustrated in FIG.
  • a passivation film 14 is further formed by a general CMOS image sensor manufacturing method, and a hydrogen sintering process is performed.
  • the hydrogen sintering process can be performed any time after the formation of the Al wiring layer structure. However, by performing the hydrogen sintering process after forming the passivation film 14, the following effects are obtained. That is, by performing the hydrogen sintering process after the formation of all the Al wiring layer structures, the effect of the hydrogen sintering process can be obtained for all the processes.
  • the hydrogen sintering process is performed after the passivation film 14 is formed, but may be performed in any process as long as it is after the formation of the light shielding portion 170 having a multilayer structure. At this time, in order to suppress the frequency of occurrence of metal bubbles and avoid a decrease in light shielding properties, it is preferable that the hydrogen sintering temperature be 400 ° C. or higher and 450 ° C. or lower.
  • the inventor of the present invention when performing the hydrogen sintering process with the hydrogen sintering temperature higher than 450 ° C., the stress applied to the light shielding portion 170 is increased as compared with the case where the hydrogen sintering temperature is set to 450 ° C. or lower. It was confirmed that the occurrence frequency of metal bubbles increased. When the frequency of occurrence of metal bubbles increases, the light shielding property of the light shielding unit 170 deteriorates. On the other hand, when the hydrogen sintering temperature is less than 400 ° C., the device characteristics of the solid-state imaging device 100 deteriorate due to white scratches and dark current. Accordingly, the hydrogen sintering temperature is preferably 400 ° C. or higher and 450 ° C. or lower.
  • the stress applied to the upper AL light shielding film 12 is reduced to suppress metal voids, and the light shielding property of the OB pixel region B is improved. It is improving.
  • the inventors of the present invention performed the hydrogen sintering treatment at a hydrogen sintering treatment temperature of 420 ° C. in consideration of the influence on device characteristics other than “avoidance of deterioration in light shielding”.
  • the color filter 15 is formed so as to have the desired spectral characteristics of Red, Green, and Blue, and the protective film 16 and the microlens 17 are formed to complete the solid-state imaging device 100.
  • FIG. 7 is a flowchart for explaining the outline of the manufacturing method of the solid-state imaging device 100.
  • the method for manufacturing the solid-state imaging device 100 includes the step of controlling the film stress of the intervening film to form the intervening film (S100: intervening film forming step) and the thickness of the upper aluminum light-shielding film. Controlling to form an upper aluminum light shielding film (S200: upper aluminum light shielding film forming step), controlling a hydrogen sintering temperature to perform hydrogen sintering (S300: hydrogen sintering process execution step), including.
  • the intervening film 11 is formed by controlling the tensile stress of the intervening film 11 to be 5.0E8 Pa or more and 7.0E8 Pa or less.
  • the upper-layer Al light-shielding film 12 (upper-layer light-shielding film) is controlled so that the film thickness of the upper-layer Al light-shielding film 12 is 50 nm or more and 125 nm or less. It is made of an aluminum alloy containing as a main component.
  • the upper-layer Al light-shielding film 12 is formed by controlling the film thickness of the upper-layer Al light-shielding film 12 (upper light-shielding film) to be 50 nm or more and 90 nm or less. Is preferred.
  • the hydrogen sintering process execution step (S300) after forming the light shielding part 170, the hydrogen sintering process is performed at a hydrogen sintering temperature of 400 ° C. or higher and 450 ° C. or lower.
  • the manufacturing method of the solid-state imaging device 100 is a manufacturing method of the solid-state imaging device including the light-shielding unit 170 that shields the OB region B formed on the semiconductor substrate 120 (substrate).
  • the third layer Al wiring 10 lower light shielding film
  • the third layer Al wiring 10 lower light shielding film
  • Lower layer light shielding film forming step for forming third layer Al wiring 10 and upper layer for forming upper aluminum light shielding film 12 having a film thickness of 50 nm or more and 125 nm or less by aluminum or an aluminum alloy containing aluminum as a main component A light shielding film forming step (S200).
  • the upper light-shielding film forming step (S200) it is preferable to form the upper aluminum light-shielding film 12 having a thickness smaller than that of the intervening film 11.
  • the tensile stress of the intervening film 11 is 5.0E8 Pa or more and 7.0E8 Pa or less after the lower layer light shielding film formation step and before the upper layer light shielding film formation step (S200).
  • an intervening film forming step (S100) for forming the intervening film 11 is further included.
  • the method for manufacturing the solid-state imaging device 100 further includes a hydrogen sintering process execution step (S300) of performing a hydrogen sintering process at a hydrogen sintering temperature of 400 ° C. or higher and 450 ° C. or lower after the light shielding portion 170 is formed.
  • S300 hydrogen sintering process execution step of performing a hydrogen sintering process at a hydrogen sintering temperature of 400 ° C. or higher and 450 ° C. or lower after the light shielding portion 170 is formed.
  • the stress of the intervening film 11 immediately below the upper Al light-shielding film 12 is set to a Tensile of 5.0E8 Pa or more and 7.0E8 Pa or less.
  • the upper Al light shielding film 12 is formed with a film thickness in the range of 50 nm to 125 nm, and (3) the hydrogen sintering temperature is 450 ° C. or lower, thereby shielding light from metal bubbles. It is possible to avoid a decrease in performance, and to minimize an increase in the distance between the semiconductor substrate 120 and the lens 17.
  • the third layer Al wiring 10 as the lowermost layer of the light shielding portion 170 having a multilayer structure in the OB pixel region B, the following effects are obtained. That is, the second layer Al wiring 111 and the first layer Al wiring 108 can be formed under the third layer Al wiring 10. That is, the second-layer Al wiring 111 and the first-layer Al wiring 108 below the third-layer Al wiring 10 in the OB pixel region B are connected to the light-receiving unit 101 and the FD unit 102 for transmitting signals. As wiring, it can be used in circuit design. Considering the degree of freedom in circuit design using Al wiring for signal transmission to the light receiving unit 101 and the FD unit 102, it is most preferable to provide the light shielding unit 170 having a multilayer structure in the uppermost layer.
  • FIG. 8 is a cross-sectional view of the solid-state imaging device 200 according to Embodiment 2 of the present invention.
  • the solid-state image sensor 200 is, for example, a CMOS image sensor.
  • the outline of the solid-state imaging device 200 will be described as follows.
  • the solid-state imaging device 200 is a solid-state imaging device including a light shielding unit 270 that shields the OB region B formed on the semiconductor substrate 120 (substrate), and the light shielding unit 270 is sequentially arranged from the side closer to the semiconductor substrate 120.
  • Second layer Al wiring 111 lower layer light shielding film
  • intervening film 11 and upper layer aluminum light shielding film 12 (upper layer light shielding film).
  • Second layer Al wiring 111 and upper layer aluminum light shielding film 12 are made of aluminum or aluminum.
  • the upper aluminum light-shielding film 12 has a thickness of 50 nm or more and 125 nm or less.
  • the manufacturing method of the solid-state imaging device 200 is a manufacturing method of the solid-state imaging device including the light-shielding unit 270 that shields the OB region B formed on the semiconductor substrate 120 (substrate).
  • the second layer Al wiring 111 lower light shielding film
  • the intervening film 11 the upper aluminum shielding film 12 (upper light shielding film) are used.
  • the upper-layer Al light-shielding film 12 is formed by controlling the film thickness of the upper-layer Al light-shielding film 12 (upper light-shielding film) to be 50 nm or more and 90 nm or less. Is preferred.
  • the differences between the solid-state image sensor 100 and the solid-state image sensor 200 are summarized as follows. That is, in the light shielding unit 170 of the solid-state imaging device 100, the third layer AL wiring 10 is provided on the side closest to the semiconductor substrate 120, whereas in the light shielding unit 270 of the solid-state imaging device 200, The second layer Al wiring 111 is provided on the side closest to the semiconductor substrate 120. Except for this point, the solid-state imaging device 100 and the solid-state imaging device 200 have substantially the same configuration. Therefore, in the following description, this point will be mainly described, and the same configuration as that described in the above embodiment will be described. Description of is omitted.
  • the solid-state imaging device 200 has the same configuration as that of a general CMOS image sensor except for the configuration related to the light shielding unit 270, the details are omitted.
  • the solid-state imaging device 200 includes a gate insulating film 104, a charge transfer electrode 105 made of a polysilicon electrode, an interlayer insulating film 106, a through-hole 107, a first layer Al wiring 108, an interlayer insulation. A film 109 and a through hole 110 are sequentially formed. Thereafter, a second layer Al wiring 111, an intervening film 11, and an upper Al light shielding film 12 are formed.
  • the second-layer Al wiring 111 is an Al wiring as a lower-layer Al light-shielding film provided on the side closest to the semiconductor substrate 120 in the light-shielding portion 270 of the OB pixel region B, and is a film of the second-layer Al wiring 111.
  • the thickness was 150 nm or more and 250 nm or less.
  • the solid-state imaging device 200 uses titanium nitride (TiN) as the intervening film 11, and the intervening film 11 has a thickness of 100 nm.
  • the film thickness of the upper Al light shielding film 12 was 70 nm.
  • the thickness of the intervening film 11 is smaller than the thickness of the second layer Al wiring 111 (lower Al light shielding film), and the thickness of the upper Al light shielding film 12 is the thickness of the intervening film 11. Thinner than.
  • the film thickness of the upper Al light-shielding film 12 may be 50 nm or more and 125 nm or less, and it is not essential that the film thickness of the upper Al light-shielding film 12 is thinner than the intervening film 11 having a film thickness of 100 nm. Absent.
  • the thickness of the upper Al light shielding film 12 may be 125 nm, and the thickness of the intervening film 11 may be 100 nm.
  • the film stress of the intervening film 11 is set to Tensile of 5.0E8 Pa or higher, 7 as shown in FIG. 0.0E8 Pa or less is preferable. That is, it is preferable to form the intervening film 11 so that the tensile stress of the intervening film 11 is 5.0E8 Pa or more and 7.0E8 Pa or less.
  • the intervening film 11 and the upper Al light shielding film 12 are both extended (
  • the gas flow rate, pressure, temperature, and film thickness at the time of forming the intervening film 11 are controlled so that the film stress of the intervening film 11 is set to Tensile 5.0E8 Pa or more and 7.0E8 Pa or less.
  • the intervening film 11 is formed by setting the film stress of the intervening film 11 to Tensile 6.0E8 Pa.
  • the film thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less as shown in FIG.
  • the film thickness of the upper Al light shielding film 12 is 125 nm or less, vacancies existing in the upper Al light shielding film 12 can be reduced and generation of metal bubbles can be suppressed.
  • the thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less.
  • the second layer Al wiring 111 is left in the effective pixel region A by using photolithography and dry etching, and the OB pixel In the region B, the second-layer Al wiring 111, the intervening film 11, and the upper-layer Al light shielding film 12 are left.
  • the second-layer Al wiring 111 that remains in the OB pixel region B is formed as a lower-layer Al light-shielding film provided on the light-shielding portion 270 on the side closest to the semiconductor substrate 120.
  • an interlayer insulating film 112 is formed by HDP film formation and CMP process. Then, using a general CMOS image sensor manufacturing method, the through hole 113, the third-layer AL wiring 10, the interlayer insulating film 13, and the passivation film 14 are formed, and hydrogen sintering is performed.
  • the hydrogen sintering process can be performed any time after the formation of the Al wiring layer structure. However, by performing the hydrogen sintering process after forming the passivation film 14, the following effects are obtained. That is, by performing the hydrogen sintering process after the formation of all the Al wiring layer structures, the effect of the hydrogen sintering process can be obtained for all the processes.
  • the hydrogen sintering process is performed after the passivation film 14 is formed, but may be performed in any process as long as it is after the formation of the light-shielding portion 270 having a multilayer structure. At this time, in order to suppress the frequency of occurrence of metal bubbles and avoid a decrease in light shielding properties, it is preferable that the hydrogen sintering temperature be 400 ° C. or higher and 450 ° C. or lower.
  • the hydrogen sintering temperature is higher than 450 ° C.
  • the light shielding performance of the light shielding portion 270 is deteriorated as compared with the case where the hydrogen sintering temperature is 450 ° C. or lower.
  • the hydrogen sintering temperature is less than 400 ° C.
  • the device characteristics of the solid-state imaging device 200 deteriorate due to white scratches and dark current.
  • the hydrogen sintering temperature is preferably 400 ° C. or higher and 450 ° C. or lower.
  • the inventor of the present invention performed the hydrogen sintering process at a hydrogen sintering process temperature of 420 ° C. in consideration of the influence on device characteristics other than “avoidance of a decrease in light shielding”.
  • the color filter 15 is formed so as to have red, green, and blue spectral requirements, and the protective film 16 and the microlens 17 are formed to complete the solid-state imaging device 200.
  • the intervening film 11 immediately below the upper Al light-shielding film 12 has a thickness of 5.0E8 Pa or more of Tensile.
  • the second layer Al wiring 111 as the Al light shielding film in the OB pixel region B, the following effects are obtained. That is, the first layer Al wiring 108 formed immediately below the second layer Al wiring 111 is below the second layer Al wiring 111 for signal transmission to the light receiving unit 101 and the FD unit 102.
  • the Al wiring can be used in circuit design. Therefore, the solid-state imaging device 200 can improve the degree of freedom in circuit design using Al wiring for signal transmission to the light receiving unit 101 and the FD unit 102.
  • the solid-state imaging device 200 can be provided with the light-shielding portion 370 near the light-receiving portion 101 as compared with the first embodiment (solid-state imaging device 100), and the light-shielding performance can be improved as compared with the first embodiment.
  • FIG. 9 is a cross-sectional view of a solid-state imaging device 300 according to Embodiment 3 of the present invention.
  • the solid-state image sensor 300 is, for example, a CMOS image sensor.
  • the outline of the solid-state imaging device 300 will be described as follows.
  • the solid-state imaging device 300 is a solid-state imaging device including a light shielding unit 370 that shields the OB region B formed on the semiconductor substrate 120 (substrate), and the light shielding unit 370 is sequentially arranged from the side closer to the semiconductor substrate 120.
  • First layer Al wiring 108 lower layer light shielding film
  • intervening film 11 and upper layer aluminum light shielding film 12 (upper layer light shielding film).
  • First layer Al wiring 108 and upper layer aluminum light shielding film 12 are made of aluminum or aluminum.
  • the upper aluminum light-shielding film 12 has a thickness of 50 nm or more and 125 nm or less.
  • the manufacturing method of the solid-state imaging device 300 is a manufacturing method of a solid-state imaging device including a light shielding unit 370 that shields the OB region B formed on the semiconductor substrate 120 (substrate), and the light shielding unit 370 is a semiconductor substrate.
  • the first layer Al wiring 108 (lower light shielding film), the intervening film 11, and the upper aluminum shielding film 12 (upper light shielding film) are made of aluminum or an aluminum alloy containing aluminum as a main component.
  • the upper-layer Al light-shielding film 12 is formed by controlling the film thickness of the upper-layer Al light-shielding film 12 (upper light-shielding film) to be 50 nm or more and 90 nm or less. Is preferred.
  • the differences between the solid-state image sensor 100 and the solid-state image sensor 300 are summarized as follows. That is, in the light shielding portion 170 of the solid-state imaging device 100, the third layer Al wiring 10 is provided on the side closest to the semiconductor substrate 120, whereas in the light shielding portion 370 of the solid-state imaging device 300, The first layer Al wiring 108 is provided on the side closest to the semiconductor substrate 120. Except for this point, the solid-state imaging device 100 and the solid-state imaging device 300 have substantially the same configuration. Therefore, in the following description, the description will be focused on this point, and the same configuration as that described in the first embodiment. Description of is omitted.
  • the configuration of the solid-state imaging device 300 is the same as that of a general CMOS image sensor except for the configuration related to the light shielding unit 370, and thus the details are omitted.
  • a gate insulating film 104 As shown in FIG. 9, in the solid-state imaging device 300, first, a gate insulating film 104, a charge transfer electrode 105 made of a polysilicon electrode, an interlayer insulating film 106, and a through hole 107 are sequentially formed. Thereafter, the first layer Al wiring 108, the intervening film 11, and the upper Al light shielding film 12 are formed.
  • the first-layer Al wiring 108 is an Al wiring as a lower-layer Al light-shielding film provided on the side closest to the semiconductor substrate 120 in the light-shielding portion 370 of the OB pixel region B, and is a film of the first-layer Al wiring 108.
  • the thickness was 150 nm or more and 250 nm or less.
  • the solid-state imaging device 300 uses titanium nitride (TiN) as the intervening film 11, and the intervening film 11 has a thickness of 100 nm.
  • the film thickness of the upper Al light shielding film 12 was 70 nm.
  • the thickness of the intervening film 11 is smaller than the thickness of the first layer Al wiring 108 (lower Al light shielding film), and the thickness of the upper Al light shielding film 12 is the thickness of the intervening film 11. Thinner than.
  • the film thickness of the upper Al light-shielding film 12 may be 50 nm or more and 125 nm or less, and it is not essential that the film thickness of the upper Al light-shielding film 12 is thinner than the intervening film 11 having a film thickness of 100 nm. Absent.
  • the thickness of the upper Al light shielding film 12 may be 125 nm, and the thickness of the intervening film 11 may be 100 nm.
  • the film stress of the intervening film 11 is set to Tensile of 5.0E8 Pa or higher, 7 as shown in FIG. 0.0E8 Pa or less is preferable. That is, it is preferable to form the intervening film 11 so that the tensile stress of the intervening film 11 is 5.0E8 Pa or more and 7.0E8 Pa or less.
  • the intervening film 11 and the upper Al light shielding film 12 are both extended (
  • the gas flow rate, pressure, temperature, and film thickness at the time of forming the intervening film 11 are controlled so that the film stress of the intervening film 11 is set to Tensile 5.0E8 Pa or more and 7.0E8 Pa or less.
  • the intervening film 11 is formed by setting the film stress of the intervening film 11 to Tensile 6.0E8 Pa.
  • the film thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less as shown in FIG.
  • the film thickness of the upper Al light shielding film 12 is 125 nm or less, vacancies existing in the upper Al light shielding film 12 can be reduced and generation of metal bubbles can be suppressed.
  • the thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less.
  • the first-layer Al wiring 108 After forming the first-layer Al wiring 108, the intervening film 11, and the upper-layer Al light-shielding film 12, the first-layer Al wiring 108 is left in the effective pixel region A by using photolithography and dry etching, and the OB pixel In the region B, the first-layer Al wiring 108, the intervening film 11, and the upper-layer Al light shielding film 12 are left.
  • the first layer Al wiring 108 remaining in the OB pixel region B is formed as a lower Al light shielding film provided on the light shielding portion 370 on the side closest to the semiconductor substrate 120.
  • an interlayer insulating film 109 is formed by HDP film formation and CMP process. Then, using a general CMOS image sensor manufacturing method, the through hole 110, the second layer wiring 111, the interlayer insulating film 112, the through hole 113, the third layer AL wiring 10, the interlayer insulating film 13, and the passivation. A film 14 is formed and hydrogen sintering is performed.
  • the hydrogen sintering process can be performed any time after the formation of the Al wiring layer structure. However, by performing the hydrogen sintering process after forming the passivation film 14, the following effects are obtained. That is, by performing the hydrogen sintering process after the formation of all the Al wiring layer structures, the effect of the hydrogen sintering process can be obtained for all the processes.
  • the hydrogen sintering process is performed after the passivation film 14 is formed, but may be performed in any process as long as it is after the formation of the light shielding portion 370 having a multilayer structure. At this time, in order to suppress the frequency of occurrence of metal bubbles and avoid a decrease in light shielding properties, it is preferable that the hydrogen sintering temperature be 400 ° C. or higher and 450 ° C. or lower.
  • the hydrogen sintering temperature is higher than 450 ° C.
  • the light shielding performance of the light shielding portion 370 is deteriorated as compared with the case where the hydrogen sintering temperature is 450 ° C. or lower.
  • the hydrogen sintering temperature is lower than 400 ° C.
  • the device characteristics of the solid-state imaging device 300 deteriorate due to white scratches and dark current.
  • the hydrogen sintering temperature is preferably 400 ° C. or higher and 450 ° C. or lower.
  • the inventor of the present invention performed the hydrogen sintering process at a hydrogen sintering temperature of 420 ° C. in consideration of the influence on device characteristics other than “avoidance of light shielding performance reduction”.
  • the color filter 15 is formed so as to have red, green, and blue spectral requirements, and the protective film 16 and the microlens 17 are formed to complete the solid-state imaging device 300.
  • the intervening film 11 immediately below the upper Al light-shielding film 12 is set to 5.0E8 Pa or more when the film stress of the intervening film 11 is Tensile, (2) forming the upper Al light shielding film 12 by controlling the film thickness of the upper Al light shielding film 12 to be 50 nm or more and 125 nm or less; and (3) By performing the hydrogen sinter treatment at a hydrogen sinter temperature of 450 ° C. or lower, it is possible to avoid a reduction in light shielding property due to the generation of metal bubbles, and between the semiconductor substrate 120 (substrate) and the lens 17. The increase in distance can be minimized.
  • the circuit design using the Al wiring is more than that in the first embodiment (solid-state imaging device 100) and the second embodiment (solid-state imaging device 200).
  • the light shielding unit 370 can be provided closest to the light receiving unit 101, and the light shielding performance can be further improved.
  • FIG. 10 is a cross-sectional view illustrating a method for manufacturing the solid-state imaging device 400 according to Embodiment 4 of the present invention.
  • the solid-state image sensor 400 is, for example, a CCD image sensor.
  • the outline of the solid-state imaging device 400 will be described as follows.
  • the solid-state imaging device 400 is a solid-state imaging device including a light shielding unit 470 that shields the OB region B formed on the semiconductor substrate 120 (substrate), and the light shielding unit 470 is in order from the side closer to the semiconductor substrate 120.
  • Lower Al light shielding film 115 lower light shielding film
  • intervening film 11 intervening film 11
  • upper aluminum light shielding film 12 upper layer light shielding film.
  • Lower Al light shielding film 115 and upper aluminum light shielding film 12 are mainly composed of aluminum or aluminum.
  • the upper aluminum light shielding film 12 is made of an aluminum alloy and has a thickness of 50 nm or more and 125 nm or less.
  • the manufacturing method of the solid-state imaging device 400 is a manufacturing method of the solid-state imaging device including the light-shielding unit 470 that shields the OB region B formed on the semiconductor substrate 120 (substrate).
  • the lower Al light shielding film 115 lower light shielding film
  • the upper-layer Al light-shielding film 12 is formed by controlling the film thickness of the upper-layer Al light-shielding film 12 (upper light-shielding film) to be 50 nm or more and 90 nm or less. Is preferred.
  • the differences between the solid-state image sensor 100 and the solid-state image sensor 400 can be summarized as follows. That is, in the light shielding unit 170 of the solid-state imaging device 100, the third layer Al wiring 10 is provided on the side closest to the semiconductor substrate 120, whereas in the light shielding unit 470 of the solid-state imaging device 400, A lower Al light shielding film 115 is provided on the side closest to the semiconductor substrate 120. Except for this point, the solid-state imaging device 100 and the solid-state imaging device 400 have substantially the same configuration. Therefore, in the following description, this point will be mainly described and the same configuration as that described in the first embodiment will be described. Description of is omitted.
  • the configuration of the solid-state imaging device 400 is the same as that of a general CCD type image sensor except for the configuration related to the light shielding unit 470, and therefore the details are omitted.
  • the light receiving portion 101 the gate insulating film 104 (gate oxide film 104B), the charge transfer electrode 105 made of a polysilicon electrode, the gate A tungsten (W) light-shielding film 114B, an interlayer insulating film 106, and a through hole (peripheral circuit portion, not shown) for sequentially suppressing noise generated by light incidence on the oxide film 104B are formed.
  • the gate insulating film 104 gate oxide film 104B
  • the charge transfer electrode 105 made of a polysilicon electrode
  • the gate A tungsten (W) light-shielding film 114B the gate A tungsten (W) light-shielding film 114B
  • an interlayer insulating film 106 an interlayer insulating film 106
  • a through hole peripheral circuit portion, not shown
  • an Al film for wiring (peripheral circuit portion, not shown) and a lower Al light shielding film 115 in the OB pixel region B are simultaneously deposited, and the intervening film 11 and upper Al light shielding are further deposited.
  • a film 12 is formed.
  • the lower Al light shielding film 115 is an Al wiring as a lower Al light shielding film provided on the side closest to the semiconductor substrate 120 in the light shielding portion 470 of the OB pixel region B, and the film thickness of the lower Al light shielding film 115 is 150 nm. As mentioned above, it was set to 250 nm or less.
  • the solid-state imaging device 400 uses titanium nitride (TiN) as the intervening film 11, and the intervening film 11 has a thickness of 100 nm.
  • the film thickness of the upper Al light shielding film 12 was 70 nm.
  • the thickness of the intervening film 11 is smaller than the thickness of the lower Al light shielding film 115 (lower Al light shielding film), and the thickness of the upper Al light shielding film 12 is larger than the thickness of the intervening film 11. thin.
  • the film thickness of the upper Al light-shielding film 12 may be 50 nm or more and 125 nm or less, and it is not essential that the film thickness of the upper Al light-shielding film 12 is thinner than the intervening film 11 having a film thickness of 100 nm. Absent.
  • the thickness of the upper Al light shielding film 12 may be 125 nm, and the thickness of the intervening film 11 may be 100 nm.
  • the film stress of the intervening film 11 is set to Tensile of 5.0E8 Pa or higher, 7 as shown in FIG. 0.0E8 Pa or less is preferable. That is, it is preferable to form the intervening film 11 so that the tensile stress of the intervening film 11 is 5.0E8 Pa or more and 7.0E8 Pa or less.
  • the intervening film 11 and the upper Al light shielding film 12 are both extended (
  • the gas flow rate, pressure, temperature, and film thickness at the time of forming the intervening film 11 are controlled so that the film stress of the intervening film 11 is set to Tensile 5.0E8 Pa or more and 7.0E8 Pa or less.
  • the intervening film 11 is formed by setting the film stress of the intervening film 11 to Tensile 6.0E8 Pa.
  • the film thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less as shown in FIG.
  • the film thickness of the upper Al light shielding film 12 is 125 nm or less, vacancies existing in the upper Al light shielding film 12 can be reduced and generation of metal bubbles can be suppressed.
  • the thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less.
  • Al wiring (not shown) is left in the peripheral circuit portion C, and in the OB pixel region B, the lower Al light shielding film 115, the intervening film 11, and the upper Al light shielding film 12 To remain.
  • an interlayer insulating film 13 and a passivation film 14 are formed, and hydrogen sintering is performed.
  • the hydrogen sintering treatment is preferably performed at a hydrogen sintering temperature of 400 ° C. or higher and 450 ° C. or lower.
  • the hydrogen sintering temperature is higher than 450 ° C.
  • the light shielding performance of the light shielding portion 470 is deteriorated as compared with the case where the hydrogen sintering temperature is 450 ° C. or lower.
  • the hydrogen sintering temperature is less than 400 ° C.
  • the device characteristics of the solid-state imaging device 400 are deteriorated due to white scratches and dark current.
  • the hydrogen sintering temperature is preferably 400 ° C. or higher and 450 ° C. or lower.
  • the inventor of the present invention performed the hydrogen sintering process at a hydrogen sintering process temperature of 420 ° C. in consideration of the effect on device characteristics other than “avoidance of light shielding performance reduction”.
  • the color filter 15 is formed so as to have red, green, and blue spectral requirements, and the protective film 16 and the microlens 17 are formed to complete the solid-state imaging device 400.
  • the intervening film 11 immediately below the upper Al light-shielding film 12 is 5.0E8 Pa or more at which the film stress of the intervening film 11 is Tensile
  • the intervening film 11 and the upper Al film are aligned so that the direction of the film stress of the intervening film 11 and the direction of the film stress of the upper Al light shielding film 12 are both in the direction of extension (Tensile).
  • the formation of the light shielding film 12 can suppress the generation of metal bubbles ”.
  • the direction of the film stress of the intervening film 11 extends (
  • the intervening film 11 and the upper Al light shielding film 12 may be formed so that the direction of the film stress of the upper Al light shielding film 12 is the compression (compressive) direction.
  • the thermal expansion coefficient (thermal expansion coefficient) of the intervening film 11 and the thermal expansion coefficient (thermal expansion coefficient) of the upper Al light-shielding film 12 are small, the direction of the film stress of the intervening film 11 is extended (tensile, Even if the direction of the film stress of the upper Al light-shielding film 12 is the compression (compressive) direction, the stress on the upper Al light-shielding film 12 is reduced, and metal voids are less likely to occur. It is possible.
  • the direction of the film stress of the intervening film 11 and the upper layer The direction of the film stress of the Al light shielding film 12 does not need to match.
  • the film thickness of the upper Al light shielding film (upper Al light shielding film 12) is 50 nm or more and 125 nm or less has been described.
  • the film thickness of the lower Al light shielding film (third layer Al wiring 10, first layer Al wiring 108, second layer Al wiring 111, and lower Al light shielding film 115) is 50 nm or more.
  • the film thickness of the lower Al light shielding film is 50 nm or more and 90 nm or less.
  • the solid-state imaging device (100, 200, 300, 400) has a light shielding portion (170, 270, 370, 470) that shields the optical black region (B) formed on the substrate (semiconductor substrate 120).
  • the light-shielding portion is formed of a lower-layer light-shielding film (a third-layer aluminum wiring 10, a second-layer Al wiring 111, and a first-layer Al wiring in order from the side closer to the substrate).
  • the lower light shielding film and the upper light shielding film are made of aluminum or an aluminum alloy containing aluminum as a main component.
  • the upper light-shielding film is formed with a thickness of 50 nm or more and 125 nm or less.
  • the said solid-state image sensor makes the film thickness of the said upper layer light shielding film thin, specifically, the film thickness of the upper layer aluminum light shielding film 12 shall be 50 nm or more and 125 nm or less.
  • the vacancies existing in the upper light shielding film are reduced. Therefore, the solid-state imaging device can suppress the generation of metal voids in the upper light-shielding film and avoid a reduction in light-shielding performance.
  • the thickness of the entire light-shielding portion can be suppressed by making the thickness of the upper light-shielding film thinner than the thickness of the intervening film.
  • the solid-state imaging device can avoid a reduction in the light shielding property of the light shielding part while suppressing the thickness of the light shielding part that shields the optical black region.
  • the interstitial film may have a tensile stress of 5.0E8 Pa or more and 7.0E8 Pa or less.
  • the tensile stress of the said interposition film is 5.0E8Pa or more and 7.0E8Pa or less, and the thermal expansion coefficient of the said interposition film and the said upper layer light shielding film is The difference is small.
  • the inventor of the present application considered that the occurrence of the metal void is related to the film stress of the intervening film. Therefore, it was considered that the generation of the metal voids due to the stress caused by the film stress can be suppressed by reducing the difference in thermal expansion coefficient (thermal expansion coefficient) between the intervening film and the upper light shielding film. And this inventor confirmed that generation
  • the first layer Al wiring 108, the lower layer Al light shielding film 115), the intervening film (11), the upper layer light shielding film (upper layer aluminum light shielding film 12), and the lower layer light shielding film is made of aluminum or an aluminum alloy mainly composed of aluminum.
  • a lower-layer light-shielding film forming step of forming aluminum, and aluminum or an aluminum alloy containing aluminum as a main component, and having a film thickness of 50 nm or more, nm was controlled to become less including, an upper light shielding film formed step (S200) of forming the upper light shielding film.
  • the interstitial film has a tensile stress of 5 after the lower light-shielding film forming step and before the upper light-shielding film forming step.
  • An intervening film forming step (S100) for forming the intervening film by controlling the pressure to be 0E8Pa or higher and 7.0E8Pa or lower may be further included.
  • the method for manufacturing a solid-state imaging device according to Aspect 5 of the present invention is the method of Aspect 3 or 4, wherein after the light shielding portion is formed, the hydrogen sintering process is performed at a hydrogen sintering temperature of 400 ° C. or higher and 450 ° C. or lower.
  • a hydrogen sintering process execution step (S300) may be further included.
  • the inventor of the present invention shows that when the hydrogen sintering temperature is higher than 450 ° C., the frequency of occurrence of metal bubbles (compared to the prior art) is higher than that when the hydrogen sintering temperature is 450 ° C. or lower. It was confirmed that the temperature rapidly increased as the sintering temperature increased. Further, the inventors of the present invention have confirmed that when the hydrogen sintering temperature is less than 400 ° C., the device characteristics of the solid-state imaging device are deteriorated due to white scratches and dark current.
  • the solid-state imaging device having good device characteristics while suppressing the frequency of occurrence of metal bubbles that cause a reduction in light shielding properties.
  • the solid-state imaging device can be applied to various electronic devices such as camera-equipped mobile phones, digital video cameras, digital still cameras, security cameras (surveillance cameras), door phones, image input cameras, scanners, and facsimiles.
  • electronic devices such as camera-equipped mobile phones, digital video cameras, digital still cameras, security cameras (surveillance cameras), door phones, image input cameras, scanners, and facsimiles.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

To avoid decrease in the light blocking properties of a light blocking part that blocks light to an optical black region, while suppressing the thickness of the light blocking part. A light blocking part (170), which is formed on a semiconductor substrate (120) and blocks light to an optical black region (B), is provided with an upper Al light blocking film (12) that has a film thickness from 50 nm to 125 nm (inclusive).

Description

固体撮像素子、および固体撮像素子の製造方法Solid-state imaging device and method for manufacturing solid-state imaging device
 本発明は、固体撮像素子および固体撮像素子の製造方法に関し、より詳細には、オプティカルブラック領域を遮光する遮光部を備えた固体撮像素子および固体撮像素子の製造方法に関する。 The present invention relates to a solid-state imaging device and a method for manufacturing the solid-state imaging device, and more particularly to a solid-state imaging device including a light-shielding unit that shields an optical black region and a method for manufacturing the solid-state imaging device.
 従来より、固体撮像素子のオプティカルブラック領域(以下、OB領域と称する)を遮光する遮光部について、遮光性を確保するための研究が進められている。 2. Description of the Related Art Conventionally, research is being conducted to ensure the light shielding property of a light shielding portion that shields an optical black region (hereinafter referred to as an OB region) of a solid-state imaging device.
 例えば、下掲の特許文献1には、「メタルボイドによる局所的な光透過が発生する」という単層アルミニウム遮光部(以下、アルミニウムは「Al」と略記する)の問題を解決するため、下層Al遮光膜と、介在膜と、上層Al遮光膜とを含む3層構造の遮光部が開示されている。図14を参照して、前記特許文献1に係る遮光部について説明する。 For example, in Patent Document 1 listed below, in order to solve the problem of a single-layer aluminum light-shielding portion (hereinafter, aluminum is abbreviated as “Al”) “local light transmission occurs due to metal voids” A light shielding part having a three-layer structure including an Al light shielding film, an intervening film, and an upper Al light shielding film is disclosed. With reference to FIG. 14, the light-shielding part according to Patent Document 1 will be described.
 図14は、特許文献1に係る遮光部20を含む固体撮像素子1000の断面図である。図14に示すように、特許文献1に開示された固体撮像素子1000は、半導体基板120中に形成された受光部101と、半導体基板120上に形成される層間絶縁膜106、109、112、114と、層間絶縁膜114上に形成される従来型の遮光部20と、を含む。従来型の遮光部20は、半導体基板120に近い側から順に、従来型の下層遮光膜20d、従来型の介在膜20m、従来型の上層遮光膜20uを含む。すなわち、従来型の遮光部20は、従来型の下層Al遮光膜20dと、従来型の下層Al遮光膜20dより上の層に形成される従来型の上層Al遮光膜20uと、従来型の下層Al遮光膜20dと従来型の上層Al遮光膜20uとの間に挟まれた領域に形成される従来型の介在膜20mと、から成る3層構造を含む。そして、従来型の介在膜20mは、Alよりも粒径の小さい高融点金属およびその窒化膜またはシリサイド膜、または酸化膜により形成されている。したがって、従来型の遮光部20において、従来型の下層Al遮光膜20dのメタルボイドと従来型の上層Al遮光膜20uのメタルボイドとは不連続となり、従来型の遮光部20は、メタルボイドを通して光が漏れ込むことによる遮光性の低下を防いでいる。 FIG. 14 is a cross-sectional view of the solid-state imaging device 1000 including the light shielding unit 20 according to Patent Document 1. As shown in FIG. 14, the solid-state imaging device 1000 disclosed in Patent Document 1 includes a light receiving unit 101 formed in a semiconductor substrate 120 and interlayer insulating films 106, 109, 112, formed on the semiconductor substrate 120. 114 and a conventional light shielding part 20 formed on the interlayer insulating film 114. The conventional light shielding portion 20 includes a conventional lower light shielding film 20d, a conventional intervening film 20m, and a conventional upper light shielding film 20u in order from the side closer to the semiconductor substrate 120. That is, the conventional light shielding unit 20 includes a conventional lower Al light shielding film 20d, a conventional upper Al light shielding film 20u formed in a layer above the conventional lower Al light shielding film 20d, and a conventional lower layer. It includes a three-layer structure including a conventional intervening film 20m formed in a region sandwiched between the Al light shielding film 20d and the conventional upper Al light shielding film 20u. The conventional intervening film 20m is formed of a refractory metal having a particle diameter smaller than that of Al and its nitride film, silicide film, or oxide film. Therefore, in the conventional light shielding part 20, the metal voids in the conventional lower Al light shielding film 20d and the metal voids in the conventional upper Al light shielding film 20u are discontinuous, and the conventional light shielding part 20 passes through the metal voids. This prevents a decrease in light shielding performance due to light leaking.
日本国公開特許公報「特開平6-151794号公報(1994年5月31日公開)」Japanese Patent Publication “JP-A-6-151794 (published May 31, 1994)”
 図14に示すように、前記特許文献1に係る従来型の遮光部20において、従来型の上層Al遮光膜20uの膜厚は、遮光性を確保するために、従来型の介在膜20mの膜厚よりも厚くなっている。そして、固体撮像素子のOB領域を遮光する遮光部について、該遮光部の遮光性を確保し向上させるための方法としては、該遮光部に含まれる遮光膜の膜厚を厚くする方法が一般的である。 As shown in FIG. 14, in the conventional light shielding unit 20 according to Patent Document 1, the film thickness of the conventional upper Al light shielding film 20u is the film of the conventional intervening film 20m in order to ensure the light shielding property. It is thicker than the thickness. For a light shielding part that shields the OB region of the solid-state imaging device, as a method for securing and improving the light shielding property of the light shielding part, a method of increasing the thickness of the light shielding film included in the light shielding part is generally used. It is.
 これに対し、本願発明の発明者は、従来型の遮光部20について、従来型の上層Al遮光膜20uは膜厚が厚いため、メタルボイドが発生しやすいことを発見した。メタルボイドの発生するメカニズムは明らかでないが、従来型の上層Al遮光膜20uの中には空孔が存在し、該空孔が、外的要因(例えば、従来型の遮光部20の膜ストレス、および熱処理温度等)によって移動して凝集し、メタルボイドまたはメタルバブルになると考えられる。 On the other hand, the inventors of the present invention have found that the conventional upper-layer Al light-shielding film 20u is thick in the conventional light-shielding portion 20, and therefore metal voids are likely to occur. Although the mechanism of occurrence of metal voids is not clear, there are holes in the conventional upper Al light shielding film 20u, and the voids are caused by external factors (for example, film stress of the conventional light shielding part 20, And the heat treatment temperature, etc.), it is considered that the metal agglomerates and becomes metal voids or metal bubbles.
 つまり、従来型の上層Al遮光膜20uは、膜厚が厚く空孔が多く存在するため、メタルボイドが発生しやすいものと考えられる。 That is, it is considered that the conventional upper Al light shielding film 20u has a large film thickness and many vacancies, and therefore metal voids are likely to occur.
 また、従来型の遮光部20は、従来型の上層Al遮光膜20uと従来型の介在膜20mとの熱膨張係数の差から生じる応力により、メタルバブル(メタルボイドの凝集)が発生しやすいものと考えられる。 Further, the conventional light-shielding portion 20 is prone to metal bubbles (aggregation of metal voids) due to stress generated from the difference in thermal expansion coefficient between the conventional upper Al light-shielding film 20u and the conventional intervening film 20m. it is conceivable that.
 そして、メタルバブル(メタルボイドの凝集)が発生すると、該メタルバブルを通して光が漏れ込むことにより、遮光性の低下が発生する。 When metal bubbles (aggregation of metal voids) are generated, light leaks through the metal bubbles, resulting in a reduction in light shielding performance.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、OB領域を遮光する遮光部の厚みを抑制しつつ、該遮光部の遮光性の低下を回避することのできる固体撮像素子、および固体撮像素子の製造方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to reduce the light shielding property of the light shielding part while suppressing the thickness of the light shielding part that shields the OB region. An object of the present invention is to provide an imaging device and a method for manufacturing a solid-state imaging device.
 上記の課題を解決するために、本発明の一態様に係る固体撮像素子は、基板に形成されたオプティカルブラック領域を遮光する遮光部を備えた固体撮像素子であって、前記遮光部は、前記基板に近い側から順に、下層遮光膜、介在膜、上層遮光膜を含み、前記下層遮光膜および前記上層遮光膜は、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で形成されており、前記上層遮光膜の膜厚は、50nm以上であって、125nm以下である。 In order to solve the above-described problem, a solid-state imaging device according to an aspect of the present invention is a solid-state imaging device including a light-shielding unit that shields an optical black region formed on a substrate. In order from the side closer to the substrate, a lower-layer light-shielding film, an intervening film, and an upper-layer light-shielding film are included, and the lower-layer light-shielding film and the upper-layer light-shielding film are formed of aluminum or an aluminum alloy containing aluminum as a main component. The film thickness is 50 nm or more and 125 nm or less.
 上記の課題を解決するために、本発明の一態様に係る固体撮像素子の製造方法は、基板に形成されたオプティカルブラック領域を遮光する遮光部を備えた固体撮像素子の製造方法であって、前記遮光部は、前記基板に近い側から順に、下層遮光膜、介在膜、上層遮光膜を含み、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で、前記下層遮光膜を形成する下層遮光膜形成ステップと、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で、膜厚が50nm以上であって、125nm以下である前記上層遮光膜を形成する上層遮光膜形成ステップと、を含む。 In order to solve the above problems, a method for manufacturing a solid-state imaging device according to an aspect of the present invention is a method for manufacturing a solid-state imaging device including a light-shielding portion that shields an optical black region formed on a substrate. The light shielding portion includes a lower light shielding film, an intervening film, and an upper light shielding film in order from the side closer to the substrate, and a lower light shielding film forming step of forming the lower light shielding film with aluminum or an aluminum alloy containing aluminum as a main component. And an upper light-shielding film forming step of forming the upper light-shielding film which is aluminum or an aluminum alloy containing aluminum as a main component and has a film thickness of 50 nm or more and 125 nm or less.
 本発明の一態様によれば、OB領域を遮光する遮光部の厚みを抑制しつつ、該遮光部の遮光性の低下を回避することができるという効果を奏する。 According to one aspect of the present invention, there is an effect that it is possible to avoid a reduction in the light shielding property of the light shielding part while suppressing the thickness of the light shielding part that shields the OB region.
本発明の実施形態1に係る固体撮像素子の断面図である。It is sectional drawing of the solid-state image sensor which concerns on Embodiment 1 of this invention. 本発明の各実施形態に係る固体撮像素子の概略構成を示す平面図である。It is a top view which shows schematic structure of the solid-state image sensor which concerns on each embodiment of this invention. 図1の固体撮像素子の遮光部について、該遮光部に含まれる下層遮光膜、介在膜、上層遮光膜の膜厚を説明するための断面図である。2 is a cross-sectional view for explaining the film thicknesses of a lower layer light shielding film, an intervening film, and an upper layer light shielding film included in the light shielding part of the light shielding part of the solid-state imaging device of FIG. 図1の固体撮像素子の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the solid-state image sensor of FIG. 図1の固体撮像素子の製造方法を説明する断面図であり、図4に示した製造工程に続く製造工程を説明する断面図である。It is sectional drawing explaining the manufacturing method of the solid-state image sensor of FIG. 1, and is sectional drawing explaining the manufacturing process following the manufacturing process shown in FIG. 図1の固体撮像素子の製造方法を説明する断面図であり、図5に示した製造工程に続く製造工程を説明する断面図である。It is sectional drawing explaining the manufacturing method of the solid-state image sensor of FIG. 1, and is sectional drawing explaining the manufacturing process following the manufacturing process shown in FIG. 図1の固体撮像素子の製造方法の概要を説明するフロー図である。It is a flowchart explaining the outline | summary of the manufacturing method of the solid-state image sensor of FIG. 本発明の実施形態2に係る固体撮像素子の断面図である。It is sectional drawing of the solid-state image sensor which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る固体撮像素子の断面図である。It is sectional drawing of the solid-state image sensor which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る固体撮像素子の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the solid-state image sensor which concerns on Embodiment 4 of this invention. 本発明の各実施形態に係る固体撮像素子の上層遮光Al膜の膜厚とメタルバブル発生頻度との関係を説明する図である。It is a figure explaining the relationship between the film thickness of the upper-layer light shielding Al film of the solid-state image sensor which concerns on each embodiment of this invention, and a metal bubble generation frequency. 介在膜ストレスとメタルバブル発生頻度との関係を説明する図である。It is a figure explaining the relationship between intervening film stress and metal bubble generation frequency. 水素シンター処理温度とメタルバブル発生頻度との関係を説明する図である。It is a figure explaining the relationship between hydrogen sintering process temperature and metal bubble generation frequency. 特許文献1に係る固体撮像素子の断面図である。It is sectional drawing of the solid-state image sensor concerning patent document 1. FIG.
 〔実施形態1〕
 以下、図1から図7に基づいて、本発明の一実施形態に係る固体撮像素子100について、詳細に説明する。固体撮像素子100は、例えば、CMOS型イメージセンサである。最初に、固体撮像素子100の概要を説明しておけば、以下の通りである。
[Embodiment 1]
Hereinafter, a solid-state imaging device 100 according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 7. The solid-state image sensor 100 is, for example, a CMOS image sensor. First, the outline of the solid-state imaging device 100 will be described as follows.
 すなわち、固体撮像素子100は、半導体基板120(基板)に形成されたオプティカルブラック領域Bを遮光する遮光部170を備えた固体撮像素子であって、遮光部170は、半導体基板120に近い側から順に、第三層目アルミニウム配線10(下層遮光膜)、介在膜11、上層アルミニウム遮光膜12(上層遮光膜)を含み、第三層目アルミニウム配線10および上層アルミニウム遮光膜12は、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で形成されており、上層アルミニウム遮光膜12の膜厚は、50nm以上であって、125nm以下である。 That is, the solid-state imaging device 100 is a solid-state imaging device including a light-shielding unit 170 that shields the optical black region B formed on the semiconductor substrate 120 (substrate), and the light-shielding unit 170 is from the side close to the semiconductor substrate 120. In order, it includes a third layer aluminum wiring 10 (lower light shielding film), an intervening film 11, and an upper layer aluminum light shielding film 12 (upper layer light shielding film), and the third layer aluminum wiring 10 and upper layer aluminum light shielding film 12 are made of aluminum or aluminum. The upper aluminum light-shielding film 12 has a thickness of 50 nm or more and 125 nm or less.
 ここで、上層アルミニウム(以下、アルミニウムは「Al」と略記する)遮光膜12に発生するメタルボイドの一因は、上層Al遮光膜12中に存在する空孔であると考えられる。固体撮像素子100は、上層Al遮光膜12の膜厚を薄くする、具体的には、上層アルミニウム遮光膜12の膜厚を、50nm以上であって、125nm以下にすることにより、上層Al遮光膜12中に存在する空孔を減少させている。したがって、固体撮像素子100は、上層Al遮光膜12におけるメタルボイドの発生を抑制して遮光性の低下を回避することができる。また、固体撮像素子100は、上層Al遮光膜12の膜厚を50nm以上であって、125nm以下と薄くすることにより、遮光部170全体の厚みを抑えることができる。つまり、固体撮像素子100は、オプティカルブラック領域(以下、「OB領域」と略記する)を遮光する遮光部170の厚みを抑制しつつ、遮光部170の遮光性の低下を回避することができる。 Here, it is considered that one cause of the metal void generated in the upper layer aluminum (hereinafter abbreviated as “Al”) light shielding film 12 is a hole existing in the upper layer Al light shielding film 12. The solid-state imaging device 100 reduces the film thickness of the upper Al light shielding film 12, specifically, by setting the film thickness of the upper aluminum light shielding film 12 to 50 nm or more and 125 nm or less. 12 is reduced. Therefore, the solid-state imaging device 100 can prevent the occurrence of metal voids in the upper Al light-shielding film 12 and avoid the deterioration of the light-shielding property. Further, in the solid-state imaging device 100, the thickness of the upper light shielding part 12 can be suppressed by reducing the film thickness of the upper Al light shielding film 12 to 50 nm or more and 125 nm or less. That is, the solid-state imaging device 100 can avoid a reduction in the light shielding property of the light shielding unit 170 while suppressing the thickness of the light shielding unit 170 that shields the optical black region (hereinafter abbreviated as “OB region”).
 さらに、固体撮像素子100の介在膜11の引張応力は、5.0E8Pa以上であって、7.0E8Pa以下である。詳細は図12を用いて後述するが、固体撮像素子100は、介在膜11と上層アルミニウム遮光膜12との熱膨張係数の差が小さくなるよう制御されている。したがって、固体撮像素子100は、膜ストレスから生じる応力によるメタルバブルの発生を抑制することができる。 Furthermore, the tensile stress of the intervening film 11 of the solid-state imaging device 100 is 5.0E8 Pa or more and 7.0E8 Pa or less. Although details will be described later with reference to FIG. 12, the solid-state imaging device 100 is controlled so that the difference in thermal expansion coefficient between the intervening film 11 and the upper aluminum light shielding film 12 is reduced. Therefore, the solid-state imaging device 100 can suppress the generation of metal bubbles due to the stress caused by the film stress.
 固体撮像素子100の概要は、以下のように言い換えることもできる。すなわち、固体撮像素子100は、OB領域に、第三層目Al配線10と、第三層目Al配線10より上の層に形成される上層Al遮光膜12と、第三層目Al配線10と上層Al遮光膜12との間に挟まれた領域に形成される介在膜11と、を含む多層構造の遮光部170を備えている。このOB領域内の第三層目Al配線10は、下層Al遮光膜を兼用している。 The outline of the solid-state imaging device 100 can be paraphrased as follows. That is, the solid-state imaging device 100 includes a third-layer Al wiring 10, an upper-layer Al light shielding film 12 formed in a layer above the third-layer Al wiring 10, and a third-layer Al wiring 10 in the OB region. And an intervening film 11 formed in a region sandwiched between the upper Al light shielding film 12 and a light shielding portion 170 having a multilayer structure. The third layer Al wiring 10 in the OB region also serves as a lower Al light shielding film.
 上記の構成によれば、固体撮像素子100は、メタルボイドの一因である、上層Al遮光膜12中の空孔を減少させることができ、メタルボイドの発生を抑制して遮光性の低下を回避することができる。また、固体撮像素子100は、遮光部170全体の厚みを抑えることができる。したがって、固体撮像素子100は、オプティカルブラック領域(以下、「OB領域」と略記する)を遮光する遮光部170の厚みを抑制しつつ、遮光部170の遮光性の低下を回避することができる。 According to the above configuration, the solid-state imaging device 100 can reduce the voids in the upper Al light shielding film 12 that are a cause of metal voids, and suppress the generation of metal voids, thereby reducing the light shielding performance. It can be avoided. In addition, the solid-state imaging device 100 can suppress the thickness of the entire light shielding unit 170. Therefore, the solid-state imaging device 100 can avoid a decrease in the light shielding property of the light shielding unit 170 while suppressing the thickness of the light shielding unit 170 that shields the optical black region (hereinafter abbreviated as “OB region”).
 以上に概要を説明した固体撮像素子100について、特に固体撮像素子100の遮光部170について、次に、図1を参照して詳細に説明する。 Next, the solid-state imaging device 100 having been outlined above, in particular, the light-shielding portion 170 of the solid-state imaging device 100 will be described in detail with reference to FIG.
  (固体撮像素子の詳細)
 図1は、本発明の実施形態1に係る固体撮像素子100の断面図である。なお、固体撮像素子100は、遮光部170に係る構成以外の構成については、一般的なCMOS型イメージセンサの構成と同様であるため詳細は略記するが、概略を説明すれば以下の通りである。
(Details of solid-state image sensor)
FIG. 1 is a cross-sectional view of a solid-state imaging device 100 according to Embodiment 1 of the present invention. The solid-state imaging device 100 has the same configuration as that of a general CMOS type image sensor except for the configuration related to the light shielding unit 170, and the details will be omitted. However, the outline will be described as follows. .
 すなわち、固体撮像素子100は、図1に示すように、受光部101と、フローティングディフュージョン部102と、素子分離部103と、を備える。受光部101は、例えばフォトダイオード(光電変換素子)により構成され、半導体基板120中に行列状に配列され、被写体からの画像光(入射光)の光電変換により信号電荷を生成する。フローティングディフュージョン部102(以下、「FD部102」と略記する)は、複数の受光部101の画素毎に設けられ、光電変換により得られた信号電荷を電圧信号に変換するものである。素子分離部103は、受光部101とFD部102とを電気的に分離するためのものである。 That is, as shown in FIG. 1, the solid-state imaging device 100 includes a light receiving unit 101, a floating diffusion unit 102, and an element separation unit 103. The light receiving unit 101 includes, for example, a photodiode (photoelectric conversion element), is arranged in a matrix form in the semiconductor substrate 120, and generates a signal charge by photoelectric conversion of image light (incident light) from a subject. The floating diffusion unit 102 (hereinafter abbreviated as “FD unit 102”) is provided for each pixel of the plurality of light receiving units 101, and converts signal charges obtained by photoelectric conversion into voltage signals. The element separating unit 103 is for electrically separating the light receiving unit 101 and the FD unit 102.
 固体撮像素子100は、また、ゲート絶縁膜104、ポリシリコン電極からなる電荷転送電極105、層間絶縁膜106、貫通孔107、第一層目Al配線108、層間絶縁膜109、貫通孔110、第二層目Al配線111、層間絶縁膜112、および貫通孔113を含む。 The solid-state imaging device 100 also includes a gate insulating film 104, a charge transfer electrode 105 made of a polysilicon electrode, an interlayer insulating film 106, a through hole 107, a first layer Al wiring 108, an interlayer insulating film 109, a through hole 110, a first hole. A second layer Al wiring 111, an interlayer insulating film 112, and a through hole 113 are included.
 固体撮像素子100は、さらに、半導体基板120(基板)に形成されたオプティカルブラック領域Bを遮光する遮光部170を備えている。図1に示すように、遮光部170は、半導体基板120に近い側から順に、下層AL遮光膜である第三層目Al配線10、介在膜11、上層アルミニウム遮光膜12を含む。第三層目Al配線10および上層アルミニウム遮光膜12は、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で形成されている。 The solid-state imaging device 100 further includes a light shielding unit 170 that shields the optical black region B formed on the semiconductor substrate 120 (substrate). As shown in FIG. 1, the light shielding portion 170 includes a third-layer Al wiring 10, which is a lower AL light shielding film, an intervening film 11, and an upper aluminum light shielding film 12 in order from the side closer to the semiconductor substrate 120. The third-layer Al wiring 10 and the upper-layer aluminum light shielding film 12 are made of aluminum or an aluminum alloy containing aluminum as a main component.
 第三層目Al配線10は、遮光部170において半導体基板120に最も近い側に設けられた下層Al遮光膜としてのAl配線であり、第三層目Al配線10の膜厚は、150nm以上、250nm以下である。また、固体撮像素子100は、介在膜11として、窒化チタン(TiN)を用いており、介在膜11の膜厚は100nmである。上層Al遮光膜12の膜厚は、50nm以上、125nm以下にするのが好ましく、50nm以上、90nm以下にするのがより好ましい。固体撮像素子100において、上層Al遮光膜12の膜厚は70nmであり、膜厚が100nmである介在膜11よりも、膜厚が薄い。 The third-layer Al wiring 10 is an Al wiring as a lower-layer Al light-shielding film provided on the side closest to the semiconductor substrate 120 in the light-shielding portion 170, and the film thickness of the third-layer Al wiring 10 is 150 nm or more, 250 nm or less. Further, the solid-state imaging device 100 uses titanium nitride (TiN) as the interposition film 11, and the interposition film 11 has a thickness of 100 nm. The film thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less, and more preferably 50 nm or more and 90 nm or less. In the solid-state imaging device 100, the upper Al light shielding film 12 has a thickness of 70 nm and is thinner than the intervening film 11 having a thickness of 100 nm.
 ただし、後述するように、上層Al遮光膜12の膜厚は、50nm以上、125nm以下であればよく、膜厚が100nmである介在膜11よりも、上層Al遮光膜12の膜厚の方が薄いことは必須ではない。例えば、上層Al遮光膜12の膜厚が125nmであって、介在膜11の膜厚が100nmであってもよい。 However, as will be described later, the film thickness of the upper Al light shielding film 12 may be 50 nm or more and 125 nm or less, and the film thickness of the upper Al light shielding film 12 is larger than the intervening film 11 having a film thickness of 100 nm. Thinness is not essential. For example, the thickness of the upper Al light shielding film 12 may be 125 nm, and the thickness of the intervening film 11 may be 100 nm.
 上層Al遮光膜12の膜厚が125nm以下である場合、上層Al遮光膜12内に存在する空孔の発生確率を減少して、メタルバブルの発生を抑制することができる。ただし、上層Al遮光膜12の膜厚が50nmよりも小さい場合、入射光の透過率が増加して遮光性が悪化する。 When the film thickness of the upper Al light shielding film 12 is 125 nm or less, it is possible to reduce the occurrence probability of vacancies existing in the upper Al light shielding film 12 and suppress the generation of metal bubbles. However, when the film thickness of the upper Al light shielding film 12 is smaller than 50 nm, the transmittance of incident light is increased and the light shielding property is deteriorated.
 これまで図1を用いて説明してきた固体撮像素子100について、次に、その概略構成を、図2を用いて説明する。 Next, a schematic configuration of the solid-state imaging device 100 described so far with reference to FIG. 1 will be described with reference to FIG.
 図2は、本発明の各実施形態に係る固体撮像素子の概略構成を示す平面図である。図2に示されるように、固体撮像素子100は、中央部に形成された矩形の有効画素領域Aと、当該有効画素領域Aの周囲に配置されたOB領域Bと、さらに当該OB領域Bの周囲に配置された周辺回路領域Cとを有している。 FIG. 2 is a plan view showing a schematic configuration of the solid-state imaging device according to each embodiment of the present invention. As shown in FIG. 2, the solid-state imaging device 100 includes a rectangular effective pixel area A formed in the center, an OB area B arranged around the effective pixel area A, and an OB area B. And a peripheral circuit region C arranged around the periphery.
 有効画素領域AおよびOB領域Bには、受光部101がマトリクス状に配列されており、有効画素領域AとOB領域Bとで画素領域を構成している。有効画素領域Aは、マトリクス状に配列された受光部101のうち、実際に撮像に用いられる受光部101が配置された領域であり、被写体からの入射光を光電変換して信号電荷を生成する。OB領域Bは、マトリクス状に配列された受光部101のうち、黒の検出に用いられる受光部101が配置された領域である。周辺回路領域Cは、信号転送および信号読み出しを制御するドライバ(周辺回路)などが配置された領域である。 In the effective pixel area A and the OB area B, the light receiving portions 101 are arranged in a matrix, and the effective pixel area A and the OB area B constitute a pixel area. The effective pixel region A is a region where the light receiving unit 101 that is actually used for imaging is arranged in the light receiving units 101 arranged in a matrix, and generates signal charges by photoelectrically converting incident light from a subject. . The OB region B is a region in which the light receiving units 101 used for black detection are arranged among the light receiving units 101 arranged in a matrix. The peripheral circuit area C is an area in which drivers (peripheral circuits) for controlling signal transfer and signal reading are arranged.
 図3は、上層AL遮光膜12の膜厚が介在膜11の膜厚よりも薄い場合の実施例であり、固体撮像素子100の遮光部170について、遮光部170に含まれる第三層目AL配線10、介在膜11、上層アルミニウム遮光膜12の膜厚を説明するための断面図である。図3に示すように、固体撮像素子100の遮光部170において、上層AL遮光膜12の膜厚は、介在膜11の膜厚よりも薄い。 FIG. 3 shows an embodiment in which the film thickness of the upper AL light shielding film 12 is thinner than the film thickness of the intervening film 11, and the third layer AL included in the light shielding part 170 for the light shielding part 170 of the solid-state imaging device 100. 4 is a cross-sectional view for explaining the film thicknesses of a wiring 10, an intervening film 11, and an upper aluminum light shielding film 12. FIG. As shown in FIG. 3, in the light shielding portion 170 of the solid-state imaging device 100, the film thickness of the upper AL light shielding film 12 is thinner than the film thickness of the intervening film 11.
 図3に示すように、固体撮像素子100は、周辺回路に使用するAL配線層を利用した多層構造の遮光部170を備える。そして、遮光部170の上層AL遮光膜12の膜厚は、介在膜11の膜厚よりも薄い。ここで、上層Al遮光膜12に発生するメタルボイドの一因は、上層Al遮光膜12中に存在する空孔であると考えられる。固体撮像素子100は、上層Al遮光膜12の膜厚を50nm以上であって、90nm以下と介在膜11の膜厚よりも薄くすることにより、上層Al遮光膜12中に存在する空孔をより減少させている。したがって、固体撮像素子100は、メタルバブルによる遮光性の低下を回避することができる。また、固体撮像素子100は、上層Al遮光膜12の膜厚を50nm以上であって、90nm以下と介在膜11の膜厚よりも薄くすることにより、遮光部170全体の厚みをより抑えることができ、半導体基板120とレンズ17との間の距離の増加を最小限に抑えることができる。したがって、固体撮像素子100は、図1に示す入射光が受光部101に達するまでの距離が短いため、入射光の減衰を軽減して感度の悪化を防止することができる。なお、CMOS型イメージセンサの遮光部についてこれまで説明してきたが、CCD型イメージセンサの遮光部についても同様の構成とすることができる。 As shown in FIG. 3, the solid-state imaging device 100 includes a light shielding unit 170 having a multilayer structure using an AL wiring layer used for a peripheral circuit. The film thickness of the upper AL light shielding film 12 of the light shielding portion 170 is smaller than the film thickness of the intervening film 11. Here, it is considered that one cause of the metal void generated in the upper Al light shielding film 12 is a vacancy existing in the upper Al light shielding film 12. In the solid-state imaging device 100, the thickness of the upper Al light-shielding film 12 is 50 nm or more and 90 nm or less, which is smaller than the thickness of the intervening film 11, so that the holes present in the upper Al light-shielding film 12 are further reduced. It is decreasing. Therefore, the solid-state imaging device 100 can avoid a decrease in light shielding property due to metal bubbles. Further, in the solid-state imaging device 100, the thickness of the entire light shielding portion 170 can be further suppressed by making the film thickness of the upper Al light shielding film 12 50 nm or more and 90 nm or less, which is smaller than the film thickness of the intervening film 11. In addition, an increase in the distance between the semiconductor substrate 120 and the lens 17 can be minimized. Therefore, since the solid-state imaging device 100 has a short distance until the incident light shown in FIG. 1 reaches the light receiving unit 101, attenuation of the incident light can be reduced and deterioration of sensitivity can be prevented. In addition, although the light shielding part of the CMOS type image sensor has been described so far, the light shielding part of the CCD type image sensor can be configured similarly.
 次に、本願発明の理解をより容易にするため、本願発明の発明者がメタルバブル発生頻度について得た知見について、図11~13を用いて説明する。 Next, in order to facilitate understanding of the present invention, the knowledge obtained by the inventor of the present invention regarding the frequency of occurrence of metal bubbles will be described with reference to FIGS.
  (本願発明に至るまでに本願発明の発明者が発見した事項の整理)
 本願発明の発明者は、メタルバブル発生頻度と、上層遮光Al膜の膜厚、介在膜の膜ストレス、水素シンター処理温度とがそれぞれどのように関係するかを実験し、以下の知見を得た。すなわち、本願発明の発明者は、上層遮光膜の膜厚を、50nm以上、125nm以下にすることにより、メタルバブルの発生を抑制することができることを発見した。また、本願発明の発明者は、介在膜の引張応力を、5.0E8Pa以上、7.0E8Pa以下にすることにより、メタルバブルの発生を抑制することができることを発見した。さらに、本願発明の発明者は、水素シンター処理について、水素シンター温度を、400℃以上、450℃以下にすることにより、メタルバブルの発生を抑制することができることを発見した。以下、メタルバブル発生頻度と、上層遮光Al膜の膜厚、介在膜の膜ストレス、水素シンター処理温度とがそれぞれどのように関係するかについて、詳細を説明する。
(Organization of matters discovered by the inventors of the present invention up to the present invention)
The inventor of the present invention experimented how the metal bubble occurrence frequency, the film thickness of the upper light-shielding Al film, the film stress of the intervening film, and the hydrogen sintering temperature were related, and obtained the following knowledge . That is, the inventors of the present invention have found that the generation of metal bubbles can be suppressed by setting the film thickness of the upper light-shielding film to 50 nm or more and 125 nm or less. The inventors of the present invention have also found that the generation of metal bubbles can be suppressed by setting the tensile stress of the intervening film to 5.0E8 Pa or more and 7.0E8 Pa or less. Furthermore, the inventors of the present invention have found that the generation of metal bubbles can be suppressed by setting the hydrogen sintering temperature to 400 ° C. or more and 450 ° C. or less for the hydrogen sintering treatment. The details of how the metal bubble generation frequency, the film thickness of the upper light-shielding Al film, the film stress of the intervening film, and the hydrogen sintering temperature are related to each other will be described below.
   (上層遮光Al膜の膜厚とメタルバブル発生頻度との関係について)
 図11は、本発明の各実施形態に係る固体撮像素子の上層遮光Al膜の膜厚とメタルバブル発生頻度との関係を説明する図である。本願発明の発明者は、介在膜の膜ストレスをTensileの6.0E8Paとし(つまり、介在膜の引張応力を6.0E8Paとし)、水素シンター温度を420℃として、上層遮光Al膜の膜厚とメタルバブル発生頻度との関係について実験を行なったところ、図11に示す実験結果を得た。
(Relationship between film thickness of upper light-shielding Al film and frequency of occurrence of metal bubbles)
FIG. 11 is a diagram for explaining the relationship between the film thickness of the upper light-shielding Al film of the solid-state imaging device and the metal bubble occurrence frequency according to each embodiment of the present invention. The inventor of the present invention sets the film stress of the upper light-shielding Al film by setting the film stress of the intervening film to Tensile 6.0E8 Pa (that is, the interstitial film tensile stress is 6.0E8 Pa), the hydrogen sintering temperature to 420 ° C. Experiments were conducted on the relationship with the frequency of occurrence of metal bubbles, and the experimental results shown in FIG. 11 were obtained.
 すなわち、図11に示すように、上層Al遮光膜12の膜厚が50nm以上である場合、上層Al遮光膜12の膜厚を厚くするにしたがって、メタルバブルの発生頻度(従来比)は増加している。しかし、上層Al遮光膜12の膜厚が50nm以上であって、90nm以下である場合、上層Al遮光膜12の膜厚が90nmよりも大きくなった場合に比べて、上層Al遮光膜12の膜厚の増加に伴うメタルバブルの発生頻度(従来比)の増加率は、穏やかであることを確認した。また、上層Al遮光膜12の膜厚を125nmよりも厚くした場合、メタルバブルの発生頻度(従来比)は、上層Al遮光膜12の膜厚の増加に伴って、急激に上昇することを確認した。さらに、上層Al遮光膜12の膜厚が50nm未満の場合は、入射光の透過率が増加して遮光性が悪化する。 That is, as shown in FIG. 11, when the thickness of the upper Al light shielding film 12 is 50 nm or more, the frequency of occurrence of metal bubbles (compared to the conventional) increases as the thickness of the upper Al light shielding film 12 is increased. ing. However, when the film thickness of the upper Al light shielding film 12 is 50 nm or more and 90 nm or less, the film of the upper Al light shielding film 12 is larger than the case where the film thickness of the upper Al light shielding film 12 is larger than 90 nm. It was confirmed that the rate of increase in the frequency of occurrence of metal bubbles (compared to the prior art) with increasing thickness was moderate. In addition, when the film thickness of the upper Al light shielding film 12 is thicker than 125 nm, it is confirmed that the frequency of occurrence of metal bubbles (compared to the prior art) increases rapidly as the film thickness of the upper Al light shielding film 12 increases. did. Furthermore, when the film thickness of the upper Al light shielding film 12 is less than 50 nm, the transmittance of incident light is increased and the light shielding property is deteriorated.
 したがって、本願発明の発明者は、上層Al遮光膜12の膜厚は、50nm以上であって、125nm以下であることが好ましいことを発見した。また、本願発明の発明者は、上層Al遮光膜12の膜厚は、50nm以上であって、90nm以下であることがより好ましいことを発見した。 Therefore, the inventors of the present invention have found that the thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less. Further, the inventors of the present invention have found that the film thickness of the upper Al light shielding film 12 is 50 nm or more and more preferably 90 nm or less.
 上層Al遮光膜12の膜厚を、50nm以上であって、125nm以下にした場合、上層Al遮光膜12内に存在する空孔の発生確率を減少させて、メタルバブルの発生を抑制することができる。また、上層Al遮光膜12の膜厚を、50nm以上であって、90nm以下にした場合、上層Al遮光膜12内に存在する空孔の発生確率をより減少させて、メタルバブルの発生をより効果的に抑制することができる。 When the film thickness of the upper Al light shielding film 12 is 50 nm or more and 125 nm or less, it is possible to reduce the generation probability of holes existing in the upper Al light shielding film 12 and suppress the generation of metal bubbles. it can. Further, when the film thickness of the upper Al light shielding film 12 is 50 nm or more and 90 nm or less, the generation probability of vacancies in the upper Al light shielding film 12 is further reduced, and the generation of metal bubbles is further reduced. It can be effectively suppressed.
   (介在膜の膜ストレスとメタルバブル発生頻度との関係について)
 図12は、介在膜ストレスとメタルバブル発生頻度との関係を説明する図である。なお、説明の便宜上、介在膜ストレス(介在膜の膜ストレス)について、用語等を最初に説明しておく。
(Relationship between interstitial film stress and metal bubble frequency)
FIG. 12 is a diagram for explaining the relationship between the intervening film stress and the frequency of occurrence of metal bubbles. For convenience of explanation, terms and the like regarding the intervening film stress (film stress of the intervening film) will be described first.
 平坦な基板(ウェハ)上に、薄い膜を形成すると、該膜の熱膨張率(熱膨張係数)と該基板の熱膨張率との違いにより、該膜に機械的応力(膜ストレス)が発生する。そして、前記膜ストレスを緩和するため、前記基板には反りが発生することになる。ここで、前記基板の周辺が引っ張られる方向は伸長(テンサイル、Tensile)、前記基板の周辺が抑え込まれる方向は圧縮(コンプレッシブ、Compressive)とされる。膜ストレス(膜応力)は、基板(ウェハ)を基準に、該基板の周辺を引っ張る方向に作用した場合には引張応力(Tensile Stress)、該基板の周辺を抑え込む方向に作用した場合には圧縮応力(Compressive Stress)と呼ばれる。 When a thin film is formed on a flat substrate (wafer), mechanical stress (film stress) is generated in the film due to the difference between the thermal expansion coefficient (thermal expansion coefficient) of the film and the thermal expansion coefficient of the substrate. To do. In order to relieve the film stress, the substrate is warped. Here, the direction in which the periphery of the substrate is pulled is stretched (tensile), and the direction in which the periphery of the substrate is suppressed is compressed (compressive). The film stress (film stress) is based on the substrate (wafer), when it acts in the direction of pulling the periphery of the substrate, and when it acts in the direction of restraining the periphery of the substrate, it is compressed. It is called stress (Compressive Stress).
 本願発明の発明者は、上層Al遮光膜12の膜厚を85nmとし、水素シンター温度を420℃として、介在膜の膜ストレスとメタルバブル発生頻度との関係について実験を行なったところ、図12に示す実験結果を得た。すなわち、図12に示すとおり、介在膜の膜ストレス(膜応力)は、Tensileの(つまり、周辺を引っ張る方向の膜応力であって)、5.0E8Pa以上、7.0E8Pa以下(5.0E9dyne/cm以上、7.0E9dyne/cm以下)にすることが好ましいことを本願発明の発明者は発見した。言い換えれば、介在膜の引張応力は、5.0E8Pa以上、7.0E8Pa以下とするのが好ましいことを本願発明の発明者は発見した。 The inventor of the present invention conducted an experiment on the relationship between the film stress of the intervening film and the frequency of occurrence of metal bubbles with the film thickness of the upper Al light shielding film 12 being 85 nm and the hydrogen sintering temperature being 420 ° C. The experimental results shown are obtained. That is, as shown in FIG. 12, the film stress (film stress) of the intervening film is Tensile (that is, film stress in the direction of pulling the periphery), 5.0E8 Pa or more, 7.0E8 Pa or less (5.0E9 dyne / The inventor of the present invention has found that it is preferable to set it to cm 2 or more and 7.0E9 dyne / cm 2 or less. In other words, the inventors of the present invention have found that the tensile stress of the intervening film is preferably 5.0E8 Pa or more and 7.0E8 Pa or less.
 図12に示すように、介在膜の引張応力を、5.0E8Paよりも小さくした場合、介在膜の引張応力を小さくするほど、メタルバブルの発生頻度(従来比)は増加した。これに対し、介在膜の引張応力が、5.0E8Pa以上、7.0E8Pa以下であるとき、メタルバブルの発生頻度(従来比)は増加していない。 As shown in FIG. 12, when the tensile stress of the intervening film was made smaller than 5.0E8 Pa, the frequency of occurrence of metal bubbles (compared to the conventional) increased as the tensile stress of the intervening film was reduced. On the other hand, when the tensile stress of the intervening film is 5.0E8 Pa or more and 7.0E8 Pa or less, the frequency of occurrence of metal bubbles (compared to the conventional) is not increased.
   (水素シンター処理温度とメタルバブル発生頻度との関係について)
 図13は、水素シンター処理温度とメタルバブル発生頻度との関係を説明する図である。本願発明の発明者は、上層Al遮光膜12の膜厚を85nmとし、介在膜の膜ストレスをTensileの6.0E8Paとして(つまり、介在膜の引張応力を6.0E8Paとして)、水素シンター処理温度(水素シンター処理を実行する際の水素シンター温度)とメタルバブル発生頻度との関係について実験を行なったところ、図13に示す実験結果を得た。
(Relationship between hydrogen sintering temperature and metal bubble frequency)
FIG. 13 is a diagram for explaining the relationship between the hydrogen sintering temperature and the metal bubble occurrence frequency. The inventor of the present invention sets the film thickness of the upper Al light shielding film 12 to 85 nm, sets the film stress of the intervening film to Tensile 6.0E8 Pa (that is, sets the tensile stress of the intervening film to 6.0E8 Pa), and performs the hydrogen sintering treatment temperature. Experiments were performed on the relationship between (hydrogen sinter temperature when performing hydrogen sinter treatment) and metal bubble generation frequency, and experimental results shown in FIG. 13 were obtained.
 すなわち、図13に示すように、水素シンター処理温度を420℃以上にした場合、水素シンター処理温度を上昇させるにしたがって、メタルバブルの発生頻度(従来比)は増加している。 That is, as shown in FIG. 13, when the hydrogen sintering temperature is set to 420 ° C. or higher, the frequency of occurrence of metal bubbles (compared to the conventional technology) increases as the hydrogen sintering temperature is increased.
 しかし、水素シンター処理温度が420℃以上であって450℃以下である場合、水素シンター処理温度を450℃よりも大きくした場合に比べて、水素シンター処理温度の上昇に伴うメタルバブルの発生頻度(従来比)の増加率は、穏やかであることを確認した。これに対し、水素シンター処理温度を450℃よりも大きくした場合、メタルバブルの発生頻度(従来比)は、水素シンター処理温度の上昇に伴って、急激に上昇することを確認した。 However, when the hydrogen sintering temperature is 420 ° C. or higher and 450 ° C. or lower, the frequency of occurrence of metal bubbles accompanying the increase in the hydrogen sintering temperature (as compared to when the hydrogen sintering temperature is higher than 450 ° C.) It was confirmed that the rate of increase) was moderate. On the other hand, when the hydrogen sintering temperature was higher than 450 ° C., it was confirmed that the frequency of occurrence of metal bubbles (compared to the prior art) increased rapidly as the hydrogen sintering temperature increased.
 また、本願発明の発明者は、水素シンター温度を450℃よりも高い温度にして水素シンター処理行った場合、水素シンター温度を450℃以下にした場合に比べて、遮光部にかかるストレスが増加し、メタルバブルの発生頻度が上昇することを確認した。 In addition, the inventors of the present invention show that when the hydrogen sintering process is performed at a temperature higher than 450 ° C., the stress applied to the light-shielding portion is increased compared to when the hydrogen sintering temperature is set to 450 ° C. or lower. It was confirmed that the occurrence frequency of metal bubbles increased.
 さらに、水素シンター処理温度を400℃未満にした場合、白傷、暗電流によって固体撮像素子のデバイス特性が悪化する原因となる。 Furthermore, when the hydrogen sintering temperature is less than 400 ° C., the device characteristics of the solid-state imaging device are deteriorated due to white scratches and dark current.
 したがって、本願発明の発明者は、水素シンター処理温度を、400℃以上であって、450℃以下であることが好ましいことを発見した。 Therefore, the inventors of the present invention have found that the hydrogen sintering temperature is preferably 400 ° C. or higher and 450 ° C. or lower.
  (製造方法の詳細)
 以下に、固体撮像素子100の製造方法について、図4から図6を用いて、詳細を説明する。なお、前述の通り、固体撮像素子100は、遮光部170に係る構成以外の構成については、一般的なCMOS型イメージセンサの構成と同様である。固体撮像素子100の製造方法についても、遮光部170以外の構成の製造方法は、一般的なCMOS型イメージセンサの構成の製造方法と同様であるため、詳細は略記する。
(Details of manufacturing method)
Below, the manufacturing method of the solid-state image sensor 100 is demonstrated in detail using FIGS. 4-6. As described above, the solid-state imaging device 100 has the same configuration as that of a general CMOS image sensor except for the configuration related to the light shielding unit 170. The manufacturing method of the solid-state imaging device 100 is also the same as the manufacturing method of the configuration of a general CMOS image sensor because the manufacturing method of the configuration other than the light shielding unit 170 is the same as that of the general CMOS type image sensor.
 図4は、固体撮像素子100の製造方法を説明する断面図である。図4の(a)は、固体撮像素子100の断面構造の一部を示しており、一般的なCMOS型イメージセンサの製造方法と同様の製造方法に基づいて、貫通孔113までが形成されている。固体撮像素子100の製造方法において、貫通孔113を形成した後、下層Al遮光膜である第三層目Al配線10と、介在膜11と、上層Al遮光膜12と、を成膜する。以下、遮光部170の製造方法について、より具体的には、第三層目Al配線10、介在膜11、上層Al遮光膜12の各々の製造方法について、詳細を説明する。 FIG. 4 is a cross-sectional view illustrating a method for manufacturing the solid-state imaging device 100. FIG. 4A shows a part of the cross-sectional structure of the solid-state imaging device 100, and the through holes 113 are formed based on a manufacturing method similar to a general CMOS image sensor manufacturing method. Yes. In the method for manufacturing the solid-state imaging device 100, after forming the through hole 113, the third-layer Al wiring 10, which is the lower Al light shielding film, the intervening film 11, and the upper Al light shielding film 12 are formed. Hereinafter, the manufacturing method of the light shielding part 170, more specifically, the manufacturing method of each of the third layer Al wiring 10, the intervening film 11, and the upper layer Al light shielding film 12 will be described in detail.
 先ず、遮光部170において半導体基板120に最も近い側に設けられる下層Al遮光膜として、Al配線である第三層目Al配線10を形成する。第三層目Al配線10は、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で形成し、第三層目Al配線10の膜厚は、150nm以上、250nm以下とした。 First, as the lower Al light shielding film provided on the side closest to the semiconductor substrate 120 in the light shielding portion 170, the third layer Al wiring 10 which is an Al wiring is formed. The third layer Al wiring 10 was formed of aluminum or an aluminum alloy containing aluminum as a main component, and the film thickness of the third layer Al wiring 10 was 150 nm or more and 250 nm or less.
 次に、窒化チタン(TiN)を用いて介在膜11を形成する。介在膜11の膜厚は100nmとした。このとき、メタルバブル発生頻度を抑制して遮光性の低下を回避するには、介在膜11の膜ストレスを、図12に示すように、Tensileの5.0E8Pa以上、7.0E8Pa以下にすることが好ましい。本実施形態においては、介在膜11の膜ストレスをTensileの6.0E8Paとして、介在膜11を形成した。 Next, the intervening film 11 is formed using titanium nitride (TiN). The thickness of the intervening film 11 was 100 nm. At this time, in order to suppress the metal bubble occurrence frequency and avoid the deterioration of the light shielding property, the film stress of the intervening film 11 is set to Tensile of 5.0E8 Pa or more and 7.0E8 Pa or less as shown in FIG. Is preferred. In this embodiment, the intervening film 11 is formed by setting the film stress of the intervening film 11 to Tensile 6.0E8 Pa.
 本願発明の発明者は、上層Al遮光膜12の熱膨張係数(熱膨張率)と介在膜11の熱膨張係数との差を減少させることにより、メタルバブルの発生を抑制することができることを発見した。具体的には、介在膜11の膜ストレスの方向と、上層Al遮光膜12の膜ストレスの方向とが、共に伸長(テンサイル、Tensile)方向になるように、介在膜11および上層Al遮光膜12を形成したことを指す。具体的には、介在膜11の膜ストレスが、Tensileの5.0E8Pa以上、7.0E8Pa以下になるよう、つまり、介在膜11の引張応力が5.0E8Pa以上、7.0E8Pa以下になるよう、介在膜11を形成することにより、メタルバブルの発生を抑制できることを発見した。 The inventor of the present invention has found that the generation of metal bubbles can be suppressed by reducing the difference between the thermal expansion coefficient (thermal expansion coefficient) of the upper Al light shielding film 12 and the thermal expansion coefficient of the intervening film 11. did. Specifically, the intervening film 11 and the upper Al light shielding film 12 are arranged such that the direction of the film stress of the intervening film 11 and the direction of the film stress of the upper Al light shielding film 12 are both in the direction of extension (Tensile). It means that was formed. Specifically, the interstitial film 11 has a film stress of Tensile 5.0E8 Pa or more and 7.0E8 Pa or less, that is, the interstitial film 11 has a tensile stress of 5.0E8 Pa or more and 7.0E8 Pa or less. It was discovered that the formation of the intervening film 11 can suppress the generation of metal bubbles.
 メタルバブルの発生メカニズムは明らかでないが、介在膜11の熱膨張率と上層Al遮光膜12の熱膨張率との差が小さくなったため、上層Al遮光膜12へのストレスが低下してメタルボイドが発生しにくいと考えられる。なお、介在膜11の膜ストレスをTensileの5.0E8Pa以上、7.0E8Pa以下にするために、介在膜11の膜形成時のガス流量、圧力、温度、および膜厚を制御している。 Although the generation mechanism of the metal bubble is not clear, since the difference between the thermal expansion coefficient of the intervening film 11 and the thermal expansion coefficient of the upper Al light shielding film 12 is reduced, the stress on the upper Al light shielding film 12 is reduced and metal voids are generated. It is thought that it is hard to generate. Note that the gas flow rate, pressure, temperature, and film thickness at the time of forming the intervening film 11 are controlled so that the film stress of the intervening film 11 is set to Tensile 5.0E8 Pa or more and 7.0E8 Pa or less.
 最後に、遮光部170における上層Al遮光膜として、上層Al遮光膜12を、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金を用いて形成した。上層Al遮光膜12の膜厚は70nmとした。 Finally, as the upper Al light shielding film in the light shielding part 170, the upper Al light shielding film 12 was formed using aluminum or an aluminum alloy mainly composed of aluminum. The film thickness of the upper Al light shielding film 12 was 70 nm.
 ここで、上層Al遮光膜12の膜厚は、50nm以上、125nm以下にするのが好ましく、50nm以上、90nm以下にするのがより好ましい。上層Al遮光膜12の膜厚が125nm以下である場合、上層Al遮光膜12内に存在する空孔の発生確率が減少し、メタルバブルの発生を抑制することができる。ただし、上層Al遮光膜12の膜厚が50nmより小さい場合、入射光の透過率が増加して遮光性が悪化する。 Here, the thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less, and more preferably 50 nm or more and 90 nm or less. When the film thickness of the upper Al light shielding film 12 is 125 nm or less, the generation probability of vacancies existing in the upper Al light shielding film 12 is reduced, and the generation of metal bubbles can be suppressed. However, when the thickness of the upper Al light shielding film 12 is smaller than 50 nm, the transmittance of incident light is increased and the light shielding property is deteriorated.
 次に、図4の(b)に示すように、上層Al遮光膜12と介在膜11とを残存させるためのレジスト18を形成する。その後、フォトリソグラフィ、およびドライエッチングを用いて、図4の(c)に示すように、OB画素領域Bに上層Al遮光膜12と介在膜11を形成する。 Next, as shown in FIG. 4B, a resist 18 for leaving the upper Al light shielding film 12 and the intervening film 11 is formed. Thereafter, as shown in FIG. 4C, an upper Al light shielding film 12 and an intervening film 11 are formed in the OB pixel region B by using photolithography and dry etching.
 図5は、固体撮像素子100の製造方法を説明する断面図であり、図4に示した製造工程に続く固体撮像素子100の製造工程を説明する断面図である。図5の(a)に示すように、有効画素領域Aに第三層目Al配線10を残存させ、OB画素領域Bに第三層目Al配線10と、介在膜11と、上層Al遮光膜12とを残存させるためのレジスト19を形成する。その際、OB画素領域Bの上層Al遮光膜12と介在膜11とを確実に残すため、上層Al遮光膜12と介在膜11との周辺にもレジスト19を形成する。その後、フォトリソグラフィ、およびドライエッチングを用いて、図5の(b)に示すように、OB画素領域Bに、第三層目Al配線10を、下層Al遮光膜として形成する。さらに、図5の(c)に示すように、HDP成膜、およびCMPプロセスにより、層間絶縁膜13を形成する。 FIG. 5 is a cross-sectional view illustrating a manufacturing method of the solid-state image sensor 100, and is a cross-sectional view illustrating a manufacturing process of the solid-state image sensor 100 following the manufacturing process illustrated in FIG. As shown in FIG. 5A, the third-layer Al wiring 10 is left in the effective pixel area A, the third-layer Al wiring 10, the intervening film 11, and the upper-layer Al light shielding film in the OB pixel area B. And a resist 19 for leaving 12 is formed. At that time, a resist 19 is also formed around the upper Al light shielding film 12 and the interposition film 11 in order to leave the upper Al light shielding film 12 and the interposition film 11 in the OB pixel region B with certainty. Thereafter, by using photolithography and dry etching, as shown in FIG. 5B, a third-layer Al wiring 10 is formed as a lower Al light shielding film in the OB pixel region B. Further, as shown in FIG. 5C, an interlayer insulating film 13 is formed by HDP film formation and CMP process.
 図6は、固体撮像素子100の製造方法を説明する断面図であり、図5に示した製造工程に続く固体撮像素子100の製造工程を説明する断面図である。図6に示すように、図5の(c)に示した製造工程の後、さらに、一般的なCMOS型イメージセンサの製造方法により、パッシベーション膜14を形成し、水素シンター処理を行う。 FIG. 6 is a cross-sectional view illustrating a manufacturing method of the solid-state image sensor 100, and is a cross-sectional view illustrating a manufacturing process of the solid-state image sensor 100 following the manufacturing process illustrated in FIG. As shown in FIG. 6, after the manufacturing process shown in FIG. 5C, a passivation film 14 is further formed by a general CMOS image sensor manufacturing method, and a hydrogen sintering process is performed.
 水素シンター処理工程は、Al配線層構造の形成後であればいつでも行うことができる。しかしながら、パッシベーション膜14を形成した後に水素シンター処理を行うことによって、以下の効果を得る。すなわち、すべてのAl配線層構造の形成後に水素シンター処理を行うことにより、すべての工程に対して水素シンター処理の効果をもたらすことができるという効果を得る。 The hydrogen sintering process can be performed any time after the formation of the Al wiring layer structure. However, by performing the hydrogen sintering process after forming the passivation film 14, the following effects are obtained. That is, by performing the hydrogen sintering process after the formation of all the Al wiring layer structures, the effect of the hydrogen sintering process can be obtained for all the processes.
 なお、水素シンター処理は、パッシベーション膜14を形成後に行ったが、多層構造の遮光部170の形成以降であれば、どの工程で行ってもよい。このとき、メタルバブル発生頻度を抑制して遮光性の低下を回避するためには、水素シンター処理温度は、400℃以上、450℃以下で行うことが好ましい。 The hydrogen sintering process is performed after the passivation film 14 is formed, but may be performed in any process as long as it is after the formation of the light shielding portion 170 having a multilayer structure. At this time, in order to suppress the frequency of occurrence of metal bubbles and avoid a decrease in light shielding properties, it is preferable that the hydrogen sintering temperature be 400 ° C. or higher and 450 ° C. or lower.
 本願発明の発明者は、水素シンター温度を450℃よりも高い温度にして水素シンター処理を行った場合、水素シンター温度を450℃以下にした場合に比べて、遮光部170にかかるストレスが増加し、メタルバブルの発生頻度が上昇することを確認した。メタルバブルの発生頻度が上昇すると、遮光部170の遮光性が悪化する。また、水素シンター温度を400℃未満にすると、白傷、暗電流によって、固体撮像素子100のデバイス特性が悪化する。したがって、水素シンター温度は、400℃以上、450℃以下が好ましい。 The inventor of the present invention, when performing the hydrogen sintering process with the hydrogen sintering temperature higher than 450 ° C., the stress applied to the light shielding portion 170 is increased as compared with the case where the hydrogen sintering temperature is set to 450 ° C. or lower. It was confirmed that the occurrence frequency of metal bubbles increased. When the frequency of occurrence of metal bubbles increases, the light shielding property of the light shielding unit 170 deteriorates. On the other hand, when the hydrogen sintering temperature is less than 400 ° C., the device characteristics of the solid-state imaging device 100 deteriorate due to white scratches and dark current. Accordingly, the hydrogen sintering temperature is preferably 400 ° C. or higher and 450 ° C. or lower.
 多層構造の遮光部170を形成した後に行う水素シンター処理における水素シンター温度を制御することにより、上層AL遮光膜12にかかるストレスを軽減してメタルボイドを抑制し、OB画素領域Bの遮光性を向上させている。 By controlling the hydrogen sintering temperature in the hydrogen sintering process performed after forming the light shielding portion 170 having the multilayer structure, the stress applied to the upper AL light shielding film 12 is reduced to suppress metal voids, and the light shielding property of the OB pixel region B is improved. It is improving.
 本願発明の発明者は、「遮光性低下の回避」以外のデバイス特性に与える影響を考慮して、水素シンター処理温度を420℃として、水素シンター処理を行なった。 The inventors of the present invention performed the hydrogen sintering treatment at a hydrogen sintering treatment temperature of 420 ° C. in consideration of the influence on device characteristics other than “avoidance of deterioration in light shielding”.
 その後、カラーフィルタ15をRed、Green,Blueの分光所望となるよう形成し、保護膜16、マイクロレンズ17を形成して固体撮像素子100を完成させる。 After that, the color filter 15 is formed so as to have the desired spectral characteristics of Red, Green, and Blue, and the protective film 16 and the microlens 17 are formed to complete the solid-state imaging device 100.
  (製造方法の概要)
 次に、図7を用いて、これまでに説明してきた固体撮像素子100の製造方法を整理して説明する。
(Outline of manufacturing method)
Next, the manufacturing method of the solid-state imaging device 100 described so far will be described in an organized manner with reference to FIG.
 図7は、固体撮像素子100の製造方法の概要を説明するフロー図である。図7に示すように、固体撮像素子100の製造方法は、介在膜の膜ストレスを制御して、介在膜を形成するステップ(S100:介在膜形成ステップ)と、上層アルミニウム遮光膜の膜厚を制御して、上層アルミニウム遮光膜を形成するステップ(S200:上層アルミニウム遮光膜形成ステップ)と、水素シンター処理温度を制御して、水素シンター処理を行うステップ(S300:水素シンター処理実行ステップ)と、を含む。 FIG. 7 is a flowchart for explaining the outline of the manufacturing method of the solid-state imaging device 100. As shown in FIG. 7, the method for manufacturing the solid-state imaging device 100 includes the step of controlling the film stress of the intervening film to form the intervening film (S100: intervening film forming step) and the thickness of the upper aluminum light-shielding film. Controlling to form an upper aluminum light shielding film (S200: upper aluminum light shielding film forming step), controlling a hydrogen sintering temperature to perform hydrogen sintering (S300: hydrogen sintering process execution step), including.
 ここで、前記介在膜形成ステップ(S100)は、介在膜11の引張応力が、5.0E8Pa以上、7.0E8Pa以下となるよう制御して、介在膜11を形成する。 Here, in the intervening film formation step (S100), the intervening film 11 is formed by controlling the tensile stress of the intervening film 11 to be 5.0E8 Pa or more and 7.0E8 Pa or less.
 また、前記上層アルミニウム遮光膜形成ステップ(S200)は、上層Al遮光膜12(上層遮光膜)を、上層Al遮光膜12の膜厚が50nm以上、125nm以下となるよう制御して、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で形成する。特に、前記上層アルミニウム遮光膜形成ステップ(S200)は、上層Al遮光膜12(上層遮光膜)の膜厚が、50nm以上、90nm以下となるよう制御して、上層Al遮光膜12を形成することが好ましい。 In the upper-layer aluminum light-shielding film forming step (S200), the upper-layer Al light-shielding film 12 (upper-layer light-shielding film) is controlled so that the film thickness of the upper-layer Al light-shielding film 12 is 50 nm or more and 125 nm or less. It is made of an aluminum alloy containing as a main component. In particular, in the upper-layer aluminum light-shielding film forming step (S200), the upper-layer Al light-shielding film 12 is formed by controlling the film thickness of the upper-layer Al light-shielding film 12 (upper light-shielding film) to be 50 nm or more and 90 nm or less. Is preferred.
 さらに、水素シンター処理実行ステップ(S300)は、遮光部170を形成した後、400℃以上、450℃以下の水素シンター温度で、水素シンター処理を行う。 Further, in the hydrogen sintering process execution step (S300), after forming the light shielding part 170, the hydrogen sintering process is performed at a hydrogen sintering temperature of 400 ° C. or higher and 450 ° C. or lower.
 これまでに説明してきた固体撮像素子100の製造方法は、以下のように整理することができる。すなわち、固体撮像素子100の製造方法は、半導体基板120(基板)に形成されたOB領域Bを遮光する遮光部170を備えた固体撮像素子の製造方法であって、遮光部170は、半導体基板120に近い側から順に、第三層目Al配線10(下層遮光膜)、介在膜11、上層アルミニウム遮光膜12(上層遮光膜)を含み、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で、第三層目Al配線10を形成する下層遮光膜形成ステップと、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で、膜厚が50nm以上であって、125nm以下である上層アルミニウム遮光膜12を形成する上層遮光膜形成ステップ(S200)と、を含む。なお、上層遮光膜形成ステップ(S200)は、介在膜11の膜厚よりも膜厚の薄い上層アルミニウム遮光膜12を形成する方が好ましい。 The manufacturing method of the solid-state imaging device 100 described so far can be organized as follows. That is, the manufacturing method of the solid-state imaging device 100 is a manufacturing method of the solid-state imaging device including the light-shielding unit 170 that shields the OB region B formed on the semiconductor substrate 120 (substrate). In order from the side close to 120, the third layer Al wiring 10 (lower light shielding film), the intervening film 11, and the upper aluminum shielding film 12 (upper light shielding film) are made of aluminum or an aluminum alloy containing aluminum as a main component. Lower layer light shielding film forming step for forming third layer Al wiring 10 and upper layer for forming upper aluminum light shielding film 12 having a film thickness of 50 nm or more and 125 nm or less by aluminum or an aluminum alloy containing aluminum as a main component A light shielding film forming step (S200). In the upper light-shielding film forming step (S200), it is preferable to form the upper aluminum light-shielding film 12 having a thickness smaller than that of the intervening film 11.
 固体撮像素子100の製造方法は、前記下層遮光膜形成ステップの後、前記上層遮光膜形成ステップ(S200)よりも前に、介在膜11の引張応力が、5.0E8Pa以上、7.0E8Pa以下となるよう制御して、介在膜11を形成する介在膜形成ステップ(S100)をさらに含む。 In the manufacturing method of the solid-state imaging device 100, the tensile stress of the intervening film 11 is 5.0E8 Pa or more and 7.0E8 Pa or less after the lower layer light shielding film formation step and before the upper layer light shielding film formation step (S200). In addition, an intervening film forming step (S100) for forming the intervening film 11 is further included.
 固体撮像素子100の製造方法は、遮光部170を形成した後、400℃以上、450℃以下の水素シンター温度で水素シンター処理を行う水素シンター処理実行ステップ(S300)をさらに含む。 The method for manufacturing the solid-state imaging device 100 further includes a hydrogen sintering process execution step (S300) of performing a hydrogen sintering process at a hydrogen sintering temperature of 400 ° C. or higher and 450 ° C. or lower after the light shielding portion 170 is formed.
 周辺回路に使用するAl配線層を利用した多層構造の遮光部170について、(1)上層Al遮光膜12の直下にある介在膜11の膜ストレスをTensileの5.0E8Pa以上、7.0E8Pa以下の範囲で形成し、(2)上層Al遮光膜12の膜厚を50nm以上、125nm以下の範囲で形成し、かつ(3)水素シンター処理温度を450℃以下で行うことにより、メタルバブル発生による遮光性の低下を回避することができ、また、半導体基板120とレンズ17との間の距離の増加を最小限に抑えることができる。 Regarding the light-shielding portion 170 having a multilayer structure using the Al wiring layer used for the peripheral circuit, (1) the stress of the intervening film 11 immediately below the upper Al light-shielding film 12 is set to a Tensile of 5.0E8 Pa or more and 7.0E8 Pa or less. (2) The upper Al light shielding film 12 is formed with a film thickness in the range of 50 nm to 125 nm, and (3) the hydrogen sintering temperature is 450 ° C. or lower, thereby shielding light from metal bubbles. It is possible to avoid a decrease in performance, and to minimize an increase in the distance between the semiconductor substrate 120 and the lens 17.
 また、第三層目Al配線10を、OB画素領域Bにおける多層構造の遮光部170の最下層として形成することにより、以下の効果を得る。すなわち、第三層目Al配線10の下に、第二層目Al配線111および第一層目Al配線108を形成することができる。つまり、OB画素領域Bの第三層目Al配線10の下にある第二層目Al配線111および第一層目Al配線108を、受光部101およびFD部102への信号伝達のためのAl配線として、回路設計上、使用することができる。受光部101およびFD部102への信号伝達のためのAl配線による回路設計の自由度を考慮すれば、多層構造の遮光部170は最上層に設けるのが最も好ましい。 Further, by forming the third layer Al wiring 10 as the lowermost layer of the light shielding portion 170 having a multilayer structure in the OB pixel region B, the following effects are obtained. That is, the second layer Al wiring 111 and the first layer Al wiring 108 can be formed under the third layer Al wiring 10. That is, the second-layer Al wiring 111 and the first-layer Al wiring 108 below the third-layer Al wiring 10 in the OB pixel region B are connected to the light-receiving unit 101 and the FD unit 102 for transmitting signals. As wiring, it can be used in circuit design. Considering the degree of freedom in circuit design using Al wiring for signal transmission to the light receiving unit 101 and the FD unit 102, it is most preferable to provide the light shielding unit 170 having a multilayer structure in the uppermost layer.
 〔実施形態2〕
 本発明の他の実施形態について、図8に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図8は、本発明の実施形態2に係る固体撮像素子200の断面図である。固体撮像素子200は、例えば、CMOS型イメージセンサである。最初に、固体撮像素子200の概要を説明しておけば、以下の通りである。 FIG. 8 is a cross-sectional view of the solid-state imaging device 200 according to Embodiment 2 of the present invention. The solid-state image sensor 200 is, for example, a CMOS image sensor. First, the outline of the solid-state imaging device 200 will be described as follows.
 すなわち、固体撮像素子200は、半導体基板120(基板)に形成されたOB領域Bを遮光する遮光部270を備えた固体撮像素子であって、遮光部270は、半導体基板120に近い側から順に、第二層目Al配線111(下層遮光膜)、介在膜11、上層アルミニウム遮光膜12(上層遮光膜)を含み、第二層目Al配線111および上層アルミニウム遮光膜12は、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で形成されており、上層アルミニウム遮光膜12の膜厚は、50nm以上であって、125nm以下である。 That is, the solid-state imaging device 200 is a solid-state imaging device including a light shielding unit 270 that shields the OB region B formed on the semiconductor substrate 120 (substrate), and the light shielding unit 270 is sequentially arranged from the side closer to the semiconductor substrate 120. , Second layer Al wiring 111 (lower layer light shielding film), intervening film 11 and upper layer aluminum light shielding film 12 (upper layer light shielding film). Second layer Al wiring 111 and upper layer aluminum light shielding film 12 are made of aluminum or aluminum. The upper aluminum light-shielding film 12 has a thickness of 50 nm or more and 125 nm or less.
 次に、固体撮像素子200の製造方法について概要を説明しておけば以下の通りである。すなわち、固体撮像素子200の製造方法は、半導体基板120(基板)に形成されたOB領域Bを遮光する遮光部270を備えた固体撮像素子の製造方法であって、遮光部270は、半導体基板120に近い側から順に、第二層目Al配線111(下層遮光膜)、介在膜11、上層アルミニウム遮光膜12(上層遮光膜)を含み、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で、第二層目Al配線111を形成する下層遮光膜形成ステップと、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で、膜厚が50nm以上であって、125nm以下である上層アルミニウム遮光膜12を形成する上層遮光膜形成ステップ(S200)と、を含む。特に、前記上層アルミニウム遮光膜形成ステップ(S200)は、上層Al遮光膜12(上層遮光膜)の膜厚が、50nm以上、90nm以下となるよう制御して、上層Al遮光膜12を形成することが好ましい。 Next, the outline of the method for manufacturing the solid-state imaging device 200 will be described as follows. That is, the manufacturing method of the solid-state imaging device 200 is a manufacturing method of the solid-state imaging device including the light-shielding unit 270 that shields the OB region B formed on the semiconductor substrate 120 (substrate). In order from the side close to 120, the second layer Al wiring 111 (lower light shielding film), the intervening film 11, and the upper aluminum shielding film 12 (upper light shielding film) are used. Lower layer light shielding film forming step for forming second-layer Al wiring 111, and upper layer for forming upper aluminum light shielding film 12 having a thickness of 50 nm or more and 125 nm or less with aluminum or an aluminum alloy containing aluminum as a main component A light shielding film forming step (S200). In particular, in the upper-layer aluminum light-shielding film forming step (S200), the upper-layer Al light-shielding film 12 is formed by controlling the film thickness of the upper-layer Al light-shielding film 12 (upper light-shielding film) to be 50 nm or more and 90 nm or less. Is preferred.
 なお、固体撮像素子100と固体撮像素子200との相違点を整理しておけば以下の通りである。すなわち、固体撮像素子100の遮光部170において、半導体基板120に最も近い側に設けられているのは第三層目AL配線10であったのに対し、固体撮像素子200の遮光部270において、半導体基板120に最も近い側に設けられているのは第二層目Al配線111である。この点を除けば、固体撮像素子100と固体撮像素子200とはほぼ同じ構成であるため、以下の説明においても、この点を中心に説明を行ない、前記実施形態にて説明した構成と同じ構成については、説明を省略する。 Note that the differences between the solid-state image sensor 100 and the solid-state image sensor 200 are summarized as follows. That is, in the light shielding unit 170 of the solid-state imaging device 100, the third layer AL wiring 10 is provided on the side closest to the semiconductor substrate 120, whereas in the light shielding unit 270 of the solid-state imaging device 200, The second layer Al wiring 111 is provided on the side closest to the semiconductor substrate 120. Except for this point, the solid-state imaging device 100 and the solid-state imaging device 200 have substantially the same configuration. Therefore, in the following description, this point will be mainly described, and the same configuration as that described in the above embodiment will be described. Description of is omitted.
 以下、固体撮像素子200およびその製造方法について詳細を説明する。ただし、固体撮像素子200は、遮光部270に係る構成以外の構成については、一般的なCMOS型イメージセンサの構成と同様であるため、詳細は略記する。 Hereinafter, details of the solid-state imaging device 200 and the manufacturing method thereof will be described. However, since the solid-state imaging device 200 has the same configuration as that of a general CMOS image sensor except for the configuration related to the light shielding unit 270, the details are omitted.
 固体撮像素子200は、図8に示すように、先ず、ゲート絶縁膜104、およびポリシリコン電極からなる電荷転送電極105、層間絶縁膜106、貫通孔107、第一層目Al配線108、層間絶縁膜109、貫通孔110、が順次形成されている。その後、第二層目Al配線111と、介在膜11と、上層Al遮光膜12とが成膜される。 As shown in FIG. 8, the solid-state imaging device 200 includes a gate insulating film 104, a charge transfer electrode 105 made of a polysilicon electrode, an interlayer insulating film 106, a through-hole 107, a first layer Al wiring 108, an interlayer insulation. A film 109 and a through hole 110 are sequentially formed. Thereafter, a second layer Al wiring 111, an intervening film 11, and an upper Al light shielding film 12 are formed.
 第二層目Al配線111は、OB画素領域Bの遮光部270における、半導体基板120に最も近い側に設けられた下層Al遮光膜としてのAl配線であり、第二層目Al配線111の膜厚は、150nm以上、250nm以下とした。また、固体撮像素子200は、介在膜11として、窒化チタン(TiN)を用いており、介在膜11の膜厚は100nmである。上層Al遮光膜12の膜厚は70nmとした。 The second-layer Al wiring 111 is an Al wiring as a lower-layer Al light-shielding film provided on the side closest to the semiconductor substrate 120 in the light-shielding portion 270 of the OB pixel region B, and is a film of the second-layer Al wiring 111. The thickness was 150 nm or more and 250 nm or less. Further, the solid-state imaging device 200 uses titanium nitride (TiN) as the intervening film 11, and the intervening film 11 has a thickness of 100 nm. The film thickness of the upper Al light shielding film 12 was 70 nm.
 つまり、固体撮像素子200において、介在膜11の膜厚は第二層目Al配線111(下層Al遮光膜)の膜厚よりも薄く、上層Al遮光膜12の膜厚は介在膜11の膜厚よりも薄い。 That is, in the solid-state imaging device 200, the thickness of the intervening film 11 is smaller than the thickness of the second layer Al wiring 111 (lower Al light shielding film), and the thickness of the upper Al light shielding film 12 is the thickness of the intervening film 11. Thinner than.
 ただし、上層Al遮光膜12の膜厚は、50nm以上、125nm以下であればよく、膜厚が100nmである介在膜11よりも、上層Al遮光膜12の膜厚の方が薄いことは必須ではない。例えば、上層Al遮光膜12の膜厚が125nmであって、介在膜11の膜厚が100nmであってもよい。 However, the film thickness of the upper Al light-shielding film 12 may be 50 nm or more and 125 nm or less, and it is not essential that the film thickness of the upper Al light-shielding film 12 is thinner than the intervening film 11 having a film thickness of 100 nm. Absent. For example, the thickness of the upper Al light shielding film 12 may be 125 nm, and the thickness of the intervening film 11 may be 100 nm.
 介在膜11の形成に際しては、メタルバブルの発生頻度を抑制して遮光性の低下を回避するために、介在膜11の膜ストレスを、図12に示すように、Tensileの5.0E8Pa以上、7.0E8Pa以下にすることが好ましい。つまり、介在膜11の引張応力が5.0E8Pa以上、7.0E8Pa以下になるよう、介在膜11を形成するのが好ましい。介在膜11の膜ストレスを上記のように設定することにより、メタルバブルの発生を抑制することができる。つまり、上層Al遮光膜12の熱膨張係数と介在膜11の熱膨張係数との差を減少させ、介在膜11の膜ストレスの方向と上層Al遮光膜12の膜ストレスの方向とが共に伸長(テンサイル、Tensile)方向になるように、介在膜11および上層Al遮光膜12を形成することにより、メタルバブルの発生を抑制することができる。なお、介在膜11の膜ストレスをTensileの5.0E8Pa以上、7.0E8Pa以下にするために、介在膜11の膜形成時のガス流量、圧力、温度、および膜厚を制御している。本実施形態では、介在膜11の膜ストレスをTensileの6.0E8Paとして、介在膜11を形成した。 In forming the intervening film 11, in order to suppress the occurrence frequency of metal bubbles and avoid the deterioration of the light shielding property, the film stress of the intervening film 11 is set to Tensile of 5.0E8 Pa or higher, 7 as shown in FIG. 0.0E8 Pa or less is preferable. That is, it is preferable to form the intervening film 11 so that the tensile stress of the intervening film 11 is 5.0E8 Pa or more and 7.0E8 Pa or less. By setting the film stress of the intervening film 11 as described above, the generation of metal bubbles can be suppressed. That is, the difference between the thermal expansion coefficient of the upper Al light shielding film 12 and the thermal expansion coefficient of the intervening film 11 is reduced, and the direction of the film stress of the intervening film 11 and the direction of the film stress of the upper Al light shielding film 12 are both extended ( By forming the intervening film 11 and the upper Al light shielding film 12 so as to be in the direction of Tensile, the generation of metal bubbles can be suppressed. Note that the gas flow rate, pressure, temperature, and film thickness at the time of forming the intervening film 11 are controlled so that the film stress of the intervening film 11 is set to Tensile 5.0E8 Pa or more and 7.0E8 Pa or less. In this embodiment, the intervening film 11 is formed by setting the film stress of the intervening film 11 to Tensile 6.0E8 Pa.
 また、メタルバブル発生頻度を抑制して遮光性の低下を回避するためには、上層Al遮光膜12の膜厚は、図11に示すように、50nm以上、125nm以下にすることが好ましい。上層Al遮光膜12の膜厚が125nm以下である場合、上層Al遮光膜12内に存在する空孔を減少させ、メタルバブルの発生を抑制することができる。ただし、上層Al遮光膜12の膜厚が50nm未満の場合、入射光の透過率が増加して遮光性が悪化する。したがって、上層Al遮光膜12の膜厚は、50nm以上、125nm以下にすることが好ましい。 Further, in order to suppress the metal bubble generation frequency and avoid the deterioration of the light shielding property, the film thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less as shown in FIG. When the film thickness of the upper Al light shielding film 12 is 125 nm or less, vacancies existing in the upper Al light shielding film 12 can be reduced and generation of metal bubbles can be suppressed. However, when the thickness of the upper Al light shielding film 12 is less than 50 nm, the transmittance of incident light is increased and the light shielding property is deteriorated. Therefore, the thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less.
 第二層目Al配線111、介在膜11、上層Al遮光膜12を形成した後、フォトリソグラフィ、およびドライエッチングを用いて、有効画素領域Aに第二層目Al配線111を残存させ、OB画素領域Bに第二層目Al配線111と介在膜11と上層Al遮光膜12を残存させる。OB画素領域Bに残存させる第二層目Al配線111は、遮光部270において半導体基板120に最も近い側に設けられる下層Al遮光膜として形成される。 After the second layer Al wiring 111, the intervening film 11, and the upper layer Al light shielding film 12 are formed, the second layer Al wiring 111 is left in the effective pixel region A by using photolithography and dry etching, and the OB pixel In the region B, the second-layer Al wiring 111, the intervening film 11, and the upper-layer Al light shielding film 12 are left. The second-layer Al wiring 111 that remains in the OB pixel region B is formed as a lower-layer Al light-shielding film provided on the light-shielding portion 270 on the side closest to the semiconductor substrate 120.
 その後、HDP成膜、およびCMPプロセスにより層間絶縁膜112を形成する。そして、一般的なCMOS型イメージセンサの製造方法を用いて、貫通孔113、第三層目AL配線10、層間絶縁膜13、パッシベーション膜14を形成し、水素シンター処理を行う。 Thereafter, an interlayer insulating film 112 is formed by HDP film formation and CMP process. Then, using a general CMOS image sensor manufacturing method, the through hole 113, the third-layer AL wiring 10, the interlayer insulating film 13, and the passivation film 14 are formed, and hydrogen sintering is performed.
 水素シンター処理工程は、Al配線層構造の形成後であればいつでも行うことができる。しかしながら、パッシベーション膜14を形成した後に水素シンター処理を行うことによって、以下の効果を得る。すなわち、すべてのAl配線層構造の形成後に水素シンター処理を行うことにより、すべての工程に対して水素シンター処理の効果をもたらすことができるという効果を得る。 The hydrogen sintering process can be performed any time after the formation of the Al wiring layer structure. However, by performing the hydrogen sintering process after forming the passivation film 14, the following effects are obtained. That is, by performing the hydrogen sintering process after the formation of all the Al wiring layer structures, the effect of the hydrogen sintering process can be obtained for all the processes.
 なお、水素シンター処理は、パッシベーション膜14を形成後に行ったが、多層構造の遮光部270の形成以降であれば、どの工程で行ってもよい。このとき、メタルバブル発生頻度を抑制して遮光性の低下を回避するためには、水素シンター処理温度は、400℃以上、450℃以下で行うことが好ましい。 The hydrogen sintering process is performed after the passivation film 14 is formed, but may be performed in any process as long as it is after the formation of the light-shielding portion 270 having a multilayer structure. At this time, in order to suppress the frequency of occurrence of metal bubbles and avoid a decrease in light shielding properties, it is preferable that the hydrogen sintering temperature be 400 ° C. or higher and 450 ° C. or lower.
 水素シンター温度を450℃よりも高い温度で行った場合、水素シンター温度を450℃以下にした場合に比べて、遮光部270の遮光性が悪化する。また、水素シンター温度を400℃未満にすると、白傷、暗電流によって固体撮像素子200のデバイス特性が悪化する。したがって、水素シンター温度は、400℃以上、450℃以下が好ましい。固体撮像素子200の製造において、本願発明の発明者は、「遮光性低下の回避」以外のデバイス特性に与える影響を考慮して、水素シンター処理温度を420℃として、水素シンター処理を行なった。 When the hydrogen sintering temperature is higher than 450 ° C., the light shielding performance of the light shielding portion 270 is deteriorated as compared with the case where the hydrogen sintering temperature is 450 ° C. or lower. On the other hand, when the hydrogen sintering temperature is less than 400 ° C., the device characteristics of the solid-state imaging device 200 deteriorate due to white scratches and dark current. Accordingly, the hydrogen sintering temperature is preferably 400 ° C. or higher and 450 ° C. or lower. In manufacturing the solid-state imaging device 200, the inventor of the present invention performed the hydrogen sintering process at a hydrogen sintering process temperature of 420 ° C. in consideration of the influence on device characteristics other than “avoidance of a decrease in light shielding”.
 その後、カラーフィルタ15をRed、Green,Blueの分光所望となるよう形成し、保護膜16、マイクロレンズ17を形成して固体撮像素子200を完成させる。 After that, the color filter 15 is formed so as to have red, green, and blue spectral requirements, and the protective film 16 and the microlens 17 are formed to complete the solid-state imaging device 200.
 周辺回路に使用するAl配線層を利用した多層構造の遮光部270について、(1)上層Al遮光膜12の直下にある介在膜11を、介在膜11の膜ストレスがTensileの5.0E8Pa以上、7.0E8Pa以下となるように制御して、形成し、(2)上層Al遮光膜12を、上層Al遮光膜12の膜厚が50nm以上、125nm以下となるよう制御して、形成し、かつ(3)水素シンター処理を、水素シンター温度を450℃以下で行うことにより、メタルバブルの発生による遮光性の低下を回避することができ、また、半導体基板120(基板)とレンズ17との間の距離の増加を最小限に抑えることができる。 Regarding the light-shielding portion 270 having a multilayer structure using an Al wiring layer used for the peripheral circuit, (1) the intervening film 11 immediately below the upper Al light-shielding film 12 has a thickness of 5.0E8 Pa or more of Tensile. (2) forming the upper Al light shielding film 12 by controlling the film thickness of the upper Al light shielding film 12 to be 50 nm or more and 125 nm or less; and (3) By performing the hydrogen sinter treatment at a hydrogen sinter temperature of 450 ° C. or lower, it is possible to avoid a reduction in light shielding property due to the generation of metal bubbles, and between the semiconductor substrate 120 (substrate) and the lens 17. The increase in distance can be minimized.
 さらに、OB画素領域BにおけるAl遮光膜として第二層目Al配線111を形成することにより、以下の効果を得る。すなわち、第二層目Al配線111の直下に形成した第一層目Al配線108を、受光部101およびFD部102への信号伝達のための、第二層目Al配線111よりも下にあるAl配線として、回路設計上、用いることができる。したがって、固体撮像素子200は、受光部101およびFD部102への信号伝達のためのAl配線による回路設計の自由度を向上させることができる。また、固体撮像素子200は、実施形態1(固体撮像素子100)に比べて、遮光部370を受光部101の近くに設けることができ、実施形態1よりも遮光性を向上させることができる。 Further, by forming the second layer Al wiring 111 as the Al light shielding film in the OB pixel region B, the following effects are obtained. That is, the first layer Al wiring 108 formed immediately below the second layer Al wiring 111 is below the second layer Al wiring 111 for signal transmission to the light receiving unit 101 and the FD unit 102. The Al wiring can be used in circuit design. Therefore, the solid-state imaging device 200 can improve the degree of freedom in circuit design using Al wiring for signal transmission to the light receiving unit 101 and the FD unit 102. Further, the solid-state imaging device 200 can be provided with the light-shielding portion 370 near the light-receiving portion 101 as compared with the first embodiment (solid-state imaging device 100), and the light-shielding performance can be improved as compared with the first embodiment.
 〔実施形態3〕
 本発明の他の実施形態について、図9に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
The following will describe another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図9は、本発明の実施形態3に係る固体撮像素子300の断面図である。固体撮像素子300は、例えば、CMOS型イメージセンサである。最初に、固体撮像素子300の概要を説明しておけば、以下の通りである。 FIG. 9 is a cross-sectional view of a solid-state imaging device 300 according to Embodiment 3 of the present invention. The solid-state image sensor 300 is, for example, a CMOS image sensor. First, the outline of the solid-state imaging device 300 will be described as follows.
 すなわち、固体撮像素子300は、半導体基板120(基板)に形成されたOB領域Bを遮光する遮光部370を備えた固体撮像素子であって、遮光部370は、半導体基板120に近い側から順に、第一層目Al配線108(下層遮光膜)、介在膜11、上層アルミニウム遮光膜12(上層遮光膜)を含み、第一層目Al配線108および上層アルミニウム遮光膜12は、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で形成されており、上層アルミニウム遮光膜12の膜厚は、50nm以上であって、125nm以下である。 That is, the solid-state imaging device 300 is a solid-state imaging device including a light shielding unit 370 that shields the OB region B formed on the semiconductor substrate 120 (substrate), and the light shielding unit 370 is sequentially arranged from the side closer to the semiconductor substrate 120. , First layer Al wiring 108 (lower layer light shielding film), intervening film 11 and upper layer aluminum light shielding film 12 (upper layer light shielding film). First layer Al wiring 108 and upper layer aluminum light shielding film 12 are made of aluminum or aluminum. The upper aluminum light-shielding film 12 has a thickness of 50 nm or more and 125 nm or less.
 次に、固体撮像素子300の製造方法について概要を説明しておけば以下の通りである。すなわち、固体撮像素子300の製造方法は、半導体基板120(基板)に形成されたOB領域Bを遮光する遮光部370を備えた固体撮像素子の製造方法であって、遮光部370は、半導体基板120に近い側から順に、第一層目Al配線108(下層遮光膜)、介在膜11、上層アルミニウム遮光膜12(上層遮光膜)を含み、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で、第一層目Al配線108を形成する下層遮光膜形成ステップと、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で、膜厚が50nm以上であって、125nm以下である上層アルミニウム遮光膜12を形成する上層遮光膜形成ステップ(S200)と、を含む。特に、前記上層アルミニウム遮光膜形成ステップ(S200)は、上層Al遮光膜12(上層遮光膜)の膜厚が、50nm以上、90nm以下となるよう制御して、上層Al遮光膜12を形成することが好ましい。 Next, the outline of the manufacturing method of the solid-state imaging device 300 will be described as follows. That is, the manufacturing method of the solid-state imaging device 300 is a manufacturing method of a solid-state imaging device including a light shielding unit 370 that shields the OB region B formed on the semiconductor substrate 120 (substrate), and the light shielding unit 370 is a semiconductor substrate. In order from the side close to 120, the first layer Al wiring 108 (lower light shielding film), the intervening film 11, and the upper aluminum shielding film 12 (upper light shielding film) are made of aluminum or an aluminum alloy containing aluminum as a main component. Lower-layer light-shielding film forming step for forming first-layer Al wiring 108, and upper layer for forming upper-layer aluminum light-shielding film 12 having a thickness of 50 nm or more and 125 nm or less with aluminum or an aluminum alloy containing aluminum as a main component A light shielding film forming step (S200). In particular, in the upper-layer aluminum light-shielding film forming step (S200), the upper-layer Al light-shielding film 12 is formed by controlling the film thickness of the upper-layer Al light-shielding film 12 (upper light-shielding film) to be 50 nm or more and 90 nm or less. Is preferred.
 なお、固体撮像素子100と固体撮像素子300との相違点を整理しておけば以下の通りである。すなわち、固体撮像素子100の遮光部170において、半導体基板120に最も近い側に設けられているのは第三層目Al配線10であったのに対し、固体撮像素子300の遮光部370において、半導体基板120に最も近い側に設けられているのは第一層目Al配線108である。この点を除けば、固体撮像素子100と固体撮像素子300とはほぼ同じ構成であるため、以下の説明においても、この点を中心に説明を行ない、実施形態1にて説明した構成と同じ構成については、説明を省略する。 Note that the differences between the solid-state image sensor 100 and the solid-state image sensor 300 are summarized as follows. That is, in the light shielding portion 170 of the solid-state imaging device 100, the third layer Al wiring 10 is provided on the side closest to the semiconductor substrate 120, whereas in the light shielding portion 370 of the solid-state imaging device 300, The first layer Al wiring 108 is provided on the side closest to the semiconductor substrate 120. Except for this point, the solid-state imaging device 100 and the solid-state imaging device 300 have substantially the same configuration. Therefore, in the following description, the description will be focused on this point, and the same configuration as that described in the first embodiment. Description of is omitted.
 以下、固体撮像素子300およびその製造方法について詳細を説明する。ただし、固体撮像素子300は、遮光部370に係る構成以外の構成については、一般的なCMOS型イメージセンサの構成と同様であるため、詳細は略記する。 Hereinafter, details of the solid-state imaging device 300 and the manufacturing method thereof will be described. However, the configuration of the solid-state imaging device 300 is the same as that of a general CMOS image sensor except for the configuration related to the light shielding unit 370, and thus the details are omitted.
 固体撮像素子300は、図9に示すように、先ず、ゲート絶縁膜104、およびポリシリコン電極からなる電荷転送電極105、層間絶縁膜106、貫通孔107、が順次形成されている。その後、第一層目Al配線108と、介在膜11と、上層Al遮光膜12と、が成膜される。 As shown in FIG. 9, in the solid-state imaging device 300, first, a gate insulating film 104, a charge transfer electrode 105 made of a polysilicon electrode, an interlayer insulating film 106, and a through hole 107 are sequentially formed. Thereafter, the first layer Al wiring 108, the intervening film 11, and the upper Al light shielding film 12 are formed.
 第一層目Al配線108は、OB画素領域Bの遮光部370における、半導体基板120に最も近い側に設けられた下層Al遮光膜としてのAl配線であり、第一層目Al配線108の膜厚は、150nm以上、250nm以下とした。また、固体撮像素子300は、介在膜11として、窒化チタン(TiN)を用いており、介在膜11の膜厚は100nmである。上層Al遮光膜12の膜厚は70nmとした。 The first-layer Al wiring 108 is an Al wiring as a lower-layer Al light-shielding film provided on the side closest to the semiconductor substrate 120 in the light-shielding portion 370 of the OB pixel region B, and is a film of the first-layer Al wiring 108. The thickness was 150 nm or more and 250 nm or less. The solid-state imaging device 300 uses titanium nitride (TiN) as the intervening film 11, and the intervening film 11 has a thickness of 100 nm. The film thickness of the upper Al light shielding film 12 was 70 nm.
 つまり、固体撮像素子300において、介在膜11の膜厚は第一層目Al配線108(下層Al遮光膜)の膜厚よりも薄く、上層Al遮光膜12の膜厚は介在膜11の膜厚よりも薄い。 That is, in the solid-state imaging device 300, the thickness of the intervening film 11 is smaller than the thickness of the first layer Al wiring 108 (lower Al light shielding film), and the thickness of the upper Al light shielding film 12 is the thickness of the intervening film 11. Thinner than.
 ただし、上層Al遮光膜12の膜厚は、50nm以上、125nm以下であればよく、膜厚が100nmである介在膜11よりも、上層Al遮光膜12の膜厚の方が薄いことは必須ではない。例えば、上層Al遮光膜12の膜厚が125nmであって、介在膜11の膜厚が100nmであってもよい。 However, the film thickness of the upper Al light-shielding film 12 may be 50 nm or more and 125 nm or less, and it is not essential that the film thickness of the upper Al light-shielding film 12 is thinner than the intervening film 11 having a film thickness of 100 nm. Absent. For example, the thickness of the upper Al light shielding film 12 may be 125 nm, and the thickness of the intervening film 11 may be 100 nm.
 介在膜11の形成に際しては、メタルバブルの発生頻度を抑制して遮光性の低下を回避するために、介在膜11の膜ストレスを、図12に示すように、Tensileの5.0E8Pa以上、7.0E8Pa以下にすることが好ましい。つまり、介在膜11の引張応力が5.0E8Pa以上、7.0E8Pa以下になるよう、介在膜11を形成するのが好ましい。介在膜11の膜ストレスを上記のように設定することにより、メタルバブルの発生を抑制することができる。つまり、上層Al遮光膜12の熱膨張係数と介在膜11の熱膨張係数との差を減少させ、介在膜11の膜ストレスの方向と上層Al遮光膜12の膜ストレスの方向とが共に伸長(テンサイル、Tensile)方向になるように、介在膜11および上層Al遮光膜12を形成することにより、メタルバブルの発生を抑制することができる。なお、介在膜11の膜ストレスをTensileの5.0E8Pa以上、7.0E8Pa以下にするために、介在膜11の膜形成時のガス流量、圧力、温度、および膜厚を制御している。本実施形態では、介在膜11の膜ストレスをTensileの6.0E8Paとして、介在膜11を形成した。 In forming the intervening film 11, in order to suppress the occurrence frequency of metal bubbles and avoid the deterioration of the light shielding property, the film stress of the intervening film 11 is set to Tensile of 5.0E8 Pa or higher, 7 as shown in FIG. 0.0E8 Pa or less is preferable. That is, it is preferable to form the intervening film 11 so that the tensile stress of the intervening film 11 is 5.0E8 Pa or more and 7.0E8 Pa or less. By setting the film stress of the intervening film 11 as described above, the generation of metal bubbles can be suppressed. That is, the difference between the thermal expansion coefficient of the upper Al light shielding film 12 and the thermal expansion coefficient of the intervening film 11 is reduced, and the direction of the film stress of the intervening film 11 and the direction of the film stress of the upper Al light shielding film 12 are both extended ( By forming the intervening film 11 and the upper Al light shielding film 12 so as to be in the direction of Tensile, the generation of metal bubbles can be suppressed. Note that the gas flow rate, pressure, temperature, and film thickness at the time of forming the intervening film 11 are controlled so that the film stress of the intervening film 11 is set to Tensile 5.0E8 Pa or more and 7.0E8 Pa or less. In this embodiment, the intervening film 11 is formed by setting the film stress of the intervening film 11 to Tensile 6.0E8 Pa.
 また、メタルバブル発生頻度を抑制して遮光性の低下を回避するためには、上層Al遮光膜12の膜厚は、図11に示すように、50nm以上、125nm以下にすることが好ましい。上層Al遮光膜12の膜厚が125nm以下である場合、上層Al遮光膜12内に存在する空孔を減少させ、メタルバブルの発生を抑制することができる。ただし、上層Al遮光膜12の膜厚が50nm未満の場合、入射光の透過率が増加して遮光性が悪化する。したがって、上層Al遮光膜12の膜厚は、50nm以上、125nm以下にすることが好ましい。 Further, in order to suppress the metal bubble generation frequency and avoid the deterioration of the light shielding property, the film thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less as shown in FIG. When the film thickness of the upper Al light shielding film 12 is 125 nm or less, vacancies existing in the upper Al light shielding film 12 can be reduced and generation of metal bubbles can be suppressed. However, when the thickness of the upper Al light shielding film 12 is less than 50 nm, the transmittance of incident light is increased and the light shielding property is deteriorated. Therefore, the thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less.
 第一層目Al配線108、介在膜11、上層Al遮光膜12を形成した後、フォトリソグラフィ、およびドライエッチングを用いて、有効画素領域Aに第一層目Al配線108を残存させ、OB画素領域Bに第一層目Al配線108と介在膜11と上層Al遮光膜12を残存させる。OB画素領域Bに残存させる第一層目Al配線108は、遮光部370において半導体基板120に最も近い側に設けられる下層Al遮光膜として形成される。 After forming the first-layer Al wiring 108, the intervening film 11, and the upper-layer Al light-shielding film 12, the first-layer Al wiring 108 is left in the effective pixel region A by using photolithography and dry etching, and the OB pixel In the region B, the first-layer Al wiring 108, the intervening film 11, and the upper-layer Al light shielding film 12 are left. The first layer Al wiring 108 remaining in the OB pixel region B is formed as a lower Al light shielding film provided on the light shielding portion 370 on the side closest to the semiconductor substrate 120.
 その後、HDP成膜、およびCMPプロセスにより層間絶縁膜109を形成する。そして、一般的なCMOS型イメージセンサの製造方法を用いて、貫通孔110、第二層目配線111、層間絶縁膜112、貫通孔113、第三層目AL配線10、層間絶縁膜13、パッシベーション膜14を形成し、水素シンター処理を行う。 Thereafter, an interlayer insulating film 109 is formed by HDP film formation and CMP process. Then, using a general CMOS image sensor manufacturing method, the through hole 110, the second layer wiring 111, the interlayer insulating film 112, the through hole 113, the third layer AL wiring 10, the interlayer insulating film 13, and the passivation. A film 14 is formed and hydrogen sintering is performed.
 水素シンター処理工程は、Al配線層構造の形成後であればいつでも行うことができる。しかしながら、パッシベーション膜14を形成した後に水素シンター処理を行うことによって、以下の効果を得る。すなわち、すべてのAl配線層構造の形成後に水素シンター処理を行うことにより、すべての工程に対して水素シンター処理の効果をもたらすことができるという効果を得る。 The hydrogen sintering process can be performed any time after the formation of the Al wiring layer structure. However, by performing the hydrogen sintering process after forming the passivation film 14, the following effects are obtained. That is, by performing the hydrogen sintering process after the formation of all the Al wiring layer structures, the effect of the hydrogen sintering process can be obtained for all the processes.
 なお、水素シンター処理は、パッシベーション膜14を形成後に行ったが、多層構造の遮光部370の形成以降であれば、どの工程で行ってもよい。このとき、メタルバブル発生頻度を抑制して遮光性の低下を回避するためには、水素シンター処理温度は、400℃以上、450℃以下で行うことが好ましい。 The hydrogen sintering process is performed after the passivation film 14 is formed, but may be performed in any process as long as it is after the formation of the light shielding portion 370 having a multilayer structure. At this time, in order to suppress the frequency of occurrence of metal bubbles and avoid a decrease in light shielding properties, it is preferable that the hydrogen sintering temperature be 400 ° C. or higher and 450 ° C. or lower.
 水素シンター温度を450℃よりも高い温度で行った場合、水素シンター温度を450℃以下にした場合に比べて、遮光部370の遮光性が悪化する。また、水素シンター温度を400℃未満にすると、白傷、暗電流によって固体撮像素子300のデバイス特性が悪化する。したがって、水素シンター温度は、400℃以上、450℃以下が好ましい。固体撮像素子300の製造において、本願発明の発明者は、「遮光性低下の回避」以外のデバイス特性に与える影響を考慮して、水素シンター処理温度を420℃として、水素シンター処理を行なった。 When the hydrogen sintering temperature is higher than 450 ° C., the light shielding performance of the light shielding portion 370 is deteriorated as compared with the case where the hydrogen sintering temperature is 450 ° C. or lower. On the other hand, when the hydrogen sintering temperature is lower than 400 ° C., the device characteristics of the solid-state imaging device 300 deteriorate due to white scratches and dark current. Accordingly, the hydrogen sintering temperature is preferably 400 ° C. or higher and 450 ° C. or lower. In manufacturing the solid-state imaging device 300, the inventor of the present invention performed the hydrogen sintering process at a hydrogen sintering temperature of 420 ° C. in consideration of the influence on device characteristics other than “avoidance of light shielding performance reduction”.
 その後、カラーフィルタ15をRed、Green,Blueの分光所望となるよう形成し、保護膜16、マイクロレンズ17を形成して固体撮像素子300を完成させる。 After that, the color filter 15 is formed so as to have red, green, and blue spectral requirements, and the protective film 16 and the microlens 17 are formed to complete the solid-state imaging device 300.
 周辺回路に使用するAl配線層を利用した多層構造の遮光部370について、(1)上層Al遮光膜12の直下にある介在膜11を、介在膜11の膜ストレスがTensileの5.0E8Pa以上、7.0E8Pa以下となるように制御して、形成し、(2)上層Al遮光膜12を、上層Al遮光膜12の膜厚が50nm以上、125nm以下となるよう制御して、形成し、かつ(3)水素シンター処理を、水素シンター温度を450℃以下で行うことにより、メタルバブルの発生による遮光性の低下を回避することができ、また、半導体基板120(基板)とレンズ17との間の距離の増加を最小限に抑えることができる。 Regarding the light-shielding portion 370 having a multilayer structure using an Al wiring layer used for the peripheral circuit, (1) the intervening film 11 immediately below the upper Al light-shielding film 12 is set to 5.0E8 Pa or more when the film stress of the intervening film 11 is Tensile, (2) forming the upper Al light shielding film 12 by controlling the film thickness of the upper Al light shielding film 12 to be 50 nm or more and 125 nm or less; and (3) By performing the hydrogen sinter treatment at a hydrogen sinter temperature of 450 ° C. or lower, it is possible to avoid a reduction in light shielding property due to the generation of metal bubbles, and between the semiconductor substrate 120 (substrate) and the lens 17. The increase in distance can be minimized.
 さらに、OB画素領域BにおけるAl遮光膜として第一層目Al配線108を形成することにより、実施形態1(固体撮像素子100)および実施形態2(固体撮像素子200)よりもAl配線による回路設計の自由度は劣るものの、固体撮像素子300は、受光部101のもっとも近くに遮光部370を設けることができ、遮光性をさらに向上させることができる。 Further, by forming the first-layer Al wiring 108 as the Al light-shielding film in the OB pixel region B, the circuit design using the Al wiring is more than that in the first embodiment (solid-state imaging device 100) and the second embodiment (solid-state imaging device 200). However, in the solid-state imaging device 300, the light shielding unit 370 can be provided closest to the light receiving unit 101, and the light shielding performance can be further improved.
 〔実施形態4〕
 本発明の他の実施形態について、図10に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 4]
The following will describe another embodiment of the present invention with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図10は、本発明の実施形態4に係る固体撮像素子400の製造方法を説明する断面図である。固体撮像素子400は、例えば、CCD型イメージセンサである。最初に、固体撮像素子400の概要を説明しておけば、以下の通りである。 FIG. 10 is a cross-sectional view illustrating a method for manufacturing the solid-state imaging device 400 according to Embodiment 4 of the present invention. The solid-state image sensor 400 is, for example, a CCD image sensor. First, the outline of the solid-state imaging device 400 will be described as follows.
 すなわち、固体撮像素子400は、半導体基板120(基板)に形成されたOB領域Bを遮光する遮光部470を備えた固体撮像素子であって、遮光部470は、半導体基板120に近い側から順に、下層Al遮光膜115(下層遮光膜)、介在膜11、上層アルミニウム遮光膜12(上層遮光膜)を含み、下層Al遮光膜115および上層アルミニウム遮光膜12は、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で形成されており、上層アルミニウム遮光膜12の膜厚は、50nm以上であって、125nm以下である。 That is, the solid-state imaging device 400 is a solid-state imaging device including a light shielding unit 470 that shields the OB region B formed on the semiconductor substrate 120 (substrate), and the light shielding unit 470 is in order from the side closer to the semiconductor substrate 120. , Lower Al light shielding film 115 (lower light shielding film), intervening film 11, and upper aluminum light shielding film 12 (upper layer light shielding film). Lower Al light shielding film 115 and upper aluminum light shielding film 12 are mainly composed of aluminum or aluminum. The upper aluminum light shielding film 12 is made of an aluminum alloy and has a thickness of 50 nm or more and 125 nm or less.
 次に、固体撮像素子400の製造方法について概要を説明しておけば以下の通りである。すなわち、固体撮像素子400の製造方法は、半導体基板120(基板)に形成されたOB領域Bを遮光する遮光部470を備えた固体撮像素子の製造方法であって、遮光部470は、半導体基板120に近い側から順に、下層Al遮光膜115(下層遮光膜)、介在膜11、上層アルミニウム遮光膜12(上層遮光膜)を含み、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で、下層Al遮光膜115を形成する下層遮光膜形成ステップと、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で、膜厚が50nm以上であって、125nm以下である上層アルミニウム遮光膜12を形成する上層遮光膜形成ステップ(S200)と、を含む。特に、前記上層アルミニウム遮光膜形成ステップ(S200)は、上層Al遮光膜12(上層遮光膜)の膜厚が、50nm以上、90nm以下となるよう制御して、上層Al遮光膜12を形成することが好ましい。 Next, the outline of the manufacturing method of the solid-state imaging device 400 will be described as follows. That is, the manufacturing method of the solid-state imaging device 400 is a manufacturing method of the solid-state imaging device including the light-shielding unit 470 that shields the OB region B formed on the semiconductor substrate 120 (substrate). In order from the side close to 120, the lower Al light shielding film 115 (lower light shielding film), the intervening film 11, and the upper aluminum light shielding film 12 (upper light shielding film) are made of aluminum or an aluminum alloy containing aluminum as a main component, and the lower Al light shielding. A lower light-shielding film forming step for forming the film 115, and an upper light-shielding film forming step for forming the upper aluminum light-shielding film 12 of aluminum or an aluminum alloy containing aluminum as a main component and having a film thickness of 50 nm or more and 125 nm or less. (S200). In particular, in the upper-layer aluminum light-shielding film forming step (S200), the upper-layer Al light-shielding film 12 is formed by controlling the film thickness of the upper-layer Al light-shielding film 12 (upper light-shielding film) to be 50 nm or more and 90 nm or less. Is preferred.
 なお、固体撮像素子100と固体撮像素子400との相違点を整理しておけば以下の通りである。すなわち、固体撮像素子100の遮光部170において、半導体基板120に最も近い側に設けられているのは第三層目Al配線10であったのに対し、固体撮像素子400の遮光部470において、半導体基板120に最も近い側に設けられているのは下層Al遮光膜115である。この点を除けば、固体撮像素子100と固体撮像素子400とはほぼ同じ構成であるため、以下の説明においても、この点を中心に説明を行ない、実施形態1にて説明した構成と同じ構成については、説明を省略する。 The differences between the solid-state image sensor 100 and the solid-state image sensor 400 can be summarized as follows. That is, in the light shielding unit 170 of the solid-state imaging device 100, the third layer Al wiring 10 is provided on the side closest to the semiconductor substrate 120, whereas in the light shielding unit 470 of the solid-state imaging device 400, A lower Al light shielding film 115 is provided on the side closest to the semiconductor substrate 120. Except for this point, the solid-state imaging device 100 and the solid-state imaging device 400 have substantially the same configuration. Therefore, in the following description, this point will be mainly described and the same configuration as that described in the first embodiment will be described. Description of is omitted.
 以下、固体撮像素子400およびその製造方法について詳細を説明する。ただし、固体撮像素子400は、遮光部470に係る構成以外の構成については、一般的なCCD型イメージセンサの構成と同様であるため、詳細は略記する。 Hereinafter, details of the solid-state imaging device 400 and the manufacturing method thereof will be described. However, the configuration of the solid-state imaging device 400 is the same as that of a general CCD type image sensor except for the configuration related to the light shielding unit 470, and therefore the details are omitted.
 図10の(a)に示すように、固体撮像素子400の製造方法においては、先ず、受光部101、ゲート絶縁膜104(ゲート酸化膜104B)、およびポリシリコン電極からなる電荷転送電極105、ゲート酸化膜104Bへの光入射によって発生するノイズを抑制するためのタングステン(W)遮光膜114B、層間絶縁膜106、貫通孔(周辺回路部、図示なし)が順次形成される。 As shown in FIG. 10A, in the method of manufacturing the solid-state imaging device 400, first, the light receiving portion 101, the gate insulating film 104 (gate oxide film 104B), the charge transfer electrode 105 made of a polysilicon electrode, the gate A tungsten (W) light-shielding film 114B, an interlayer insulating film 106, and a through hole (peripheral circuit portion, not shown) for sequentially suppressing noise generated by light incidence on the oxide film 104B are formed.
 その後、図10の(b)に示すように、配線用Al膜(周辺回路部、図示なし)とOB画素領域Bの下層Al遮光膜115とを同時に堆積し、さらに介在膜11と上層Al遮光膜12とを成膜する。 Thereafter, as shown in FIG. 10B, an Al film for wiring (peripheral circuit portion, not shown) and a lower Al light shielding film 115 in the OB pixel region B are simultaneously deposited, and the intervening film 11 and upper Al light shielding are further deposited. A film 12 is formed.
 下層Al遮光膜115は、OB画素領域Bの遮光部470における、半導体基板120に最も近い側に設けられた下層Al遮光膜としてのAl配線であり、下層Al遮光膜115の膜厚は、150nm以上、250nm以下とした。また、固体撮像素子400は、介在膜11として、窒化チタン(TiN)を用いており、介在膜11の膜厚は100nmである。上層Al遮光膜12の膜厚は70nmとした。 The lower Al light shielding film 115 is an Al wiring as a lower Al light shielding film provided on the side closest to the semiconductor substrate 120 in the light shielding portion 470 of the OB pixel region B, and the film thickness of the lower Al light shielding film 115 is 150 nm. As mentioned above, it was set to 250 nm or less. The solid-state imaging device 400 uses titanium nitride (TiN) as the intervening film 11, and the intervening film 11 has a thickness of 100 nm. The film thickness of the upper Al light shielding film 12 was 70 nm.
 つまり、固体撮像素子400において、介在膜11の膜厚は下層Al遮光膜115(下層Al遮光膜)の膜厚よりも薄く、上層Al遮光膜12の膜厚は介在膜11の膜厚よりも薄い。 That is, in the solid-state imaging device 400, the thickness of the intervening film 11 is smaller than the thickness of the lower Al light shielding film 115 (lower Al light shielding film), and the thickness of the upper Al light shielding film 12 is larger than the thickness of the intervening film 11. thin.
 ただし、上層Al遮光膜12の膜厚は、50nm以上、125nm以下であればよく、膜厚が100nmである介在膜11よりも、上層Al遮光膜12の膜厚の方が薄いことは必須ではない。例えば、上層Al遮光膜12の膜厚が125nmであって、介在膜11の膜厚が100nmであってもよい。 However, the film thickness of the upper Al light-shielding film 12 may be 50 nm or more and 125 nm or less, and it is not essential that the film thickness of the upper Al light-shielding film 12 is thinner than the intervening film 11 having a film thickness of 100 nm. Absent. For example, the thickness of the upper Al light shielding film 12 may be 125 nm, and the thickness of the intervening film 11 may be 100 nm.
 介在膜11の形成に際しては、メタルバブルの発生頻度を抑制して遮光性の低下を回避するために、介在膜11の膜ストレスを、図12に示すように、Tensileの5.0E8Pa以上、7.0E8Pa以下にすることが好ましい。つまり、介在膜11の引張応力が5.0E8Pa以上、7.0E8Pa以下になるよう、介在膜11を形成するのが好ましい。介在膜11の膜ストレスを上記のように設定することにより、メタルバブルの発生を抑制することができる。つまり、上層Al遮光膜12の熱膨張係数と介在膜11の熱膨張係数との差を減少させ、介在膜11の膜ストレスの方向と上層Al遮光膜12の膜ストレスの方向とが共に伸長(テンサイル、Tensile)方向になるように、介在膜11および上層Al遮光膜12を形成することにより、メタルバブルの発生を抑制することができる。なお、介在膜11の膜ストレスをTensileの5.0E8Pa以上、7.0E8Pa以下にするために、介在膜11の膜形成時のガス流量、圧力、温度、および膜厚を制御している。本実施形態では、介在膜11の膜ストレスをTensileの6.0E8Paとして、介在膜11を形成した。 In forming the intervening film 11, in order to suppress the occurrence frequency of metal bubbles and avoid the deterioration of the light shielding property, the film stress of the intervening film 11 is set to Tensile of 5.0E8 Pa or higher, 7 as shown in FIG. 0.0E8 Pa or less is preferable. That is, it is preferable to form the intervening film 11 so that the tensile stress of the intervening film 11 is 5.0E8 Pa or more and 7.0E8 Pa or less. By setting the film stress of the intervening film 11 as described above, the generation of metal bubbles can be suppressed. That is, the difference between the thermal expansion coefficient of the upper Al light shielding film 12 and the thermal expansion coefficient of the intervening film 11 is reduced, and the direction of the film stress of the intervening film 11 and the direction of the film stress of the upper Al light shielding film 12 are both extended ( By forming the intervening film 11 and the upper Al light shielding film 12 so as to be in the direction of Tensile, the generation of metal bubbles can be suppressed. Note that the gas flow rate, pressure, temperature, and film thickness at the time of forming the intervening film 11 are controlled so that the film stress of the intervening film 11 is set to Tensile 5.0E8 Pa or more and 7.0E8 Pa or less. In this embodiment, the intervening film 11 is formed by setting the film stress of the intervening film 11 to Tensile 6.0E8 Pa.
 また、メタルバブル発生頻度を抑制して遮光性の低下を回避するためには、上層Al遮光膜12の膜厚は、図11に示すように、50nm以上、125nm以下にすることが好ましい。上層Al遮光膜12の膜厚が125nm以下である場合、上層Al遮光膜12内に存在する空孔を減少させ、メタルバブルの発生を抑制することができる。ただし、上層Al遮光膜12の膜厚が50nm未満の場合、入射光の透過率が増加して遮光性が悪化する。したがって、上層Al遮光膜12の膜厚は、50nm以上、125nm以下にすることが好ましい。 Further, in order to suppress the metal bubble generation frequency and avoid the deterioration of the light shielding property, the film thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less as shown in FIG. When the film thickness of the upper Al light shielding film 12 is 125 nm or less, vacancies existing in the upper Al light shielding film 12 can be reduced and generation of metal bubbles can be suppressed. However, when the thickness of the upper Al light shielding film 12 is less than 50 nm, the transmittance of incident light is increased and the light shielding property is deteriorated. Therefore, the thickness of the upper Al light shielding film 12 is preferably 50 nm or more and 125 nm or less.
 次にフォトリソグラフィ、およびドライエッチングを用いて、周辺回路部CにはAl配線(図示なし)を残存させ、OB画素領域Bには下層Al遮光膜115と介在膜11と上層Al遮光膜12とを残存させる。 Next, by using photolithography and dry etching, Al wiring (not shown) is left in the peripheral circuit portion C, and in the OB pixel region B, the lower Al light shielding film 115, the intervening film 11, and the upper Al light shielding film 12 To remain.
 その後、図10の(c)に示すように、層間絶縁膜13、パッシベーション膜14を形成し、水素シンター処理を行う。メタルバブル発生頻度を抑制して遮光性の低下を回避するためには、図13に示すように、水素シンター処理は、水素シンター温度を、400℃以上、450℃以下にして行うことが好ましい。 Thereafter, as shown in FIG. 10C, an interlayer insulating film 13 and a passivation film 14 are formed, and hydrogen sintering is performed. In order to suppress the metal bubble generation frequency and avoid the deterioration of the light shielding property, as shown in FIG. 13, the hydrogen sintering treatment is preferably performed at a hydrogen sintering temperature of 400 ° C. or higher and 450 ° C. or lower.
 水素シンター温度を450℃よりも高い温度で行った場合、水素シンター温度を450℃以下にした場合に比べて、遮光部470の遮光性が悪化する。また、水素シンター温度を400℃未満にすると、白傷、暗電流によって固体撮像素子400のデバイス特性が悪化する。したがって、水素シンター温度は、400℃以上、450℃以下が好ましい。固体撮像素子400の製造において、本願発明の発明者は、「遮光性低下の回避」以外のデバイス特性に与える影響を考慮して、水素シンター処理温度を420℃として、水素シンター処理を行なった。 When the hydrogen sintering temperature is higher than 450 ° C., the light shielding performance of the light shielding portion 470 is deteriorated as compared with the case where the hydrogen sintering temperature is 450 ° C. or lower. On the other hand, when the hydrogen sintering temperature is less than 400 ° C., the device characteristics of the solid-state imaging device 400 are deteriorated due to white scratches and dark current. Accordingly, the hydrogen sintering temperature is preferably 400 ° C. or higher and 450 ° C. or lower. In the manufacture of the solid-state imaging device 400, the inventor of the present invention performed the hydrogen sintering process at a hydrogen sintering process temperature of 420 ° C. in consideration of the effect on device characteristics other than “avoidance of light shielding performance reduction”.
 その後、カラーフィルタ15をRed、Green,Blueの分光所望となるよう形成し、保護膜16、マイクロレンズ17を形成して固体撮像素子400を完成させる。 Thereafter, the color filter 15 is formed so as to have red, green, and blue spectral requirements, and the protective film 16 and the microlens 17 are formed to complete the solid-state imaging device 400.
 周辺回路に使用するAl配線層を利用した多層構造の遮光部470について、(1)上層Al遮光膜12の直下にある介在膜11を、介在膜11の膜ストレスがTensileの5.0E8Pa以上、7.0E8Pa以下となるように制御して、形成し、(2)上層Al遮光膜12を、上層Al遮光膜12の膜厚が50nm以上、125nm以下となるよう制御して、形成し、かつ(3)水素シンター処理を、水素シンター温度を450℃以下で行うことにより、メタルバブル発生による遮光性低下のない良好な遮光部470を固体撮像素子400のOB画素領域Bに形成することができる。 Regarding the light-shielding portion 470 having a multilayer structure using an Al wiring layer used for the peripheral circuit, (1) the intervening film 11 immediately below the upper Al light-shielding film 12 is 5.0E8 Pa or more at which the film stress of the intervening film 11 is Tensile, (2) forming the upper Al light shielding film 12 by controlling the film thickness of the upper Al light shielding film 12 to be 50 nm or more and 125 nm or less; and (3) By performing the hydrogen sintering process at a hydrogen sintering temperature of 450 ° C. or less, it is possible to form a good light-shielding portion 470 in the OB pixel region B of the solid-state imaging device 400 without causing a light-shielding deterioration due to the generation of metal bubbles. .
 〔付記事項1〕
 実施形態1から4において、「介在膜11の膜ストレスの方向と、上層Al遮光膜12の膜ストレスの方向とが、共に伸長(テンサイル、Tensile)方向になるように、介在膜11および上層Al遮光膜12を形成することにより、メタルバブルの発生を抑制できる」ことを説明した。しかしながら、介在膜11の熱膨張係数(熱膨張率)と上層Al遮光膜12の熱膨張係数(熱膨張率)との差を小さくすることができれば、介在膜11の膜ストレスの方向が伸長(テンサイル、Tensile)方向であって、上層Al遮光膜12の膜ストレスの方向は圧縮(コンプレッシブ、Compressive)方向となるように、介在膜11および上層Al遮光膜12を形成してもよい。
[Appendix 1]
In the first to fourth embodiments, “the intervening film 11 and the upper Al film are aligned so that the direction of the film stress of the intervening film 11 and the direction of the film stress of the upper Al light shielding film 12 are both in the direction of extension (Tensile). The formation of the light shielding film 12 can suppress the generation of metal bubbles ”. However, if the difference between the thermal expansion coefficient (thermal expansion coefficient) of the intervening film 11 and the thermal expansion coefficient (thermal expansion coefficient) of the upper Al light shielding film 12 can be reduced, the direction of the film stress of the intervening film 11 extends ( The intervening film 11 and the upper Al light shielding film 12 may be formed so that the direction of the film stress of the upper Al light shielding film 12 is the compression (compressive) direction.
 これは、介在膜11の熱膨張係数(熱膨張率)と上層Al遮光膜12の熱膨張係数(熱膨張率)との差が小さければ、介在膜11の膜ストレスの方向が伸長(テンサイル、Tensile)方向であって、上層Al遮光膜12の膜ストレスの方向は圧縮(コンプレッシブ、Compressive)方向であっても、上層Al遮光膜12へのストレスが低下し、メタルボイドが発生しにくくなると考えられるからである。 If the difference between the thermal expansion coefficient (thermal expansion coefficient) of the intervening film 11 and the thermal expansion coefficient (thermal expansion coefficient) of the upper Al light-shielding film 12 is small, the direction of the film stress of the intervening film 11 is extended (tensile, Even if the direction of the film stress of the upper Al light-shielding film 12 is the compression (compressive) direction, the stress on the upper Al light-shielding film 12 is reduced, and metal voids are less likely to occur. It is possible.
 すなわち、介在膜11の熱膨張係数(熱膨張率)と上層Al遮光膜12の熱膨張係数(熱膨張率)との差を小さくするのであれば、介在膜11の膜ストレスの方向と、上層Al遮光膜12の膜ストレスの方向とは一致していなくともよい。 That is, if the difference between the thermal expansion coefficient (thermal expansion coefficient) of the intervening film 11 and the thermal expansion coefficient (thermal expansion coefficient) of the upper Al light shielding film 12 is reduced, the direction of the film stress of the intervening film 11 and the upper layer The direction of the film stress of the Al light shielding film 12 does not need to match.
 〔付記事項2〕
 実施形態1から4において、上層Al遮光膜(上層Al遮光膜12)の膜厚を、50nm以上であって、125nm以下にする場合について説明した。しかしながら、下層Al遮光膜(第三層目Al配線10、第一層目Al配線108、第二層目Al配線111、および下層Al遮光膜115)についても、膜厚を50nm以上であって、125nm以下にすることにより、該下層Al遮光膜中に存在する空孔を減少させて、該下層Al遮光膜におけるメタルボイドの発生を抑制して遮光性の低下を回避することができると考えられる。また、上層Al遮光膜の膜厚について既に説明したのと同じ理由から、下層Al遮光膜の膜厚を、50nm以上であって、90nm以下にすることが、より好ましい。
[Appendix 2]
In the first to fourth embodiments, the case where the film thickness of the upper Al light shielding film (upper Al light shielding film 12) is 50 nm or more and 125 nm or less has been described. However, the film thickness of the lower Al light shielding film (third layer Al wiring 10, first layer Al wiring 108, second layer Al wiring 111, and lower Al light shielding film 115) is 50 nm or more, By setting the thickness to 125 nm or less, it is considered that vacancies existing in the lower Al light shielding film can be reduced, generation of metal voids in the lower Al light shielding film can be suppressed, and deterioration of the light shielding property can be avoided. . Further, for the same reason as described above for the film thickness of the upper Al light shielding film, it is more preferable that the film thickness of the lower Al light shielding film is 50 nm or more and 90 nm or less.
 〔まとめ〕
 本発明の態様1に係る固体撮像素子(100、200、300、400)は、基板(半導体基板120)に形成されたオプティカルブラック領域(B)を遮光する遮光部(170、270、370、470)を備えた固体撮像素子であって、前記遮光部は、前記基板に近い側から順に、下層遮光膜(第三層目アルミニウム配線10、第二層目Al配線111、第一層目Al配線108、下層Al遮光膜115)、介在膜(11)、上層遮光膜(上層アルミニウム遮光膜12)を含み、前記下層遮光膜および前記上層遮光膜は、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で形成されており、前記上層遮光膜の膜厚は、50nm以上であって、125nm以下である。
[Summary]
The solid-state imaging device (100, 200, 300, 400) according to the first aspect of the present invention has a light shielding portion (170, 270, 370, 470) that shields the optical black region (B) formed on the substrate (semiconductor substrate 120). ), Wherein the light-shielding portion is formed of a lower-layer light-shielding film (a third-layer aluminum wiring 10, a second-layer Al wiring 111, and a first-layer Al wiring in order from the side closer to the substrate). 108, a lower Al light shielding film 115), an intervening film (11), and an upper light shielding film (upper aluminum shielding film 12). The lower light shielding film and the upper light shielding film are made of aluminum or an aluminum alloy containing aluminum as a main component. The upper light-shielding film is formed with a thickness of 50 nm or more and 125 nm or less.
 ここで、前記上層遮光膜に発生するメタルボイドの一因は、前記上層遮光膜中に存在する空孔であると考えられる。上記の構成によれば、前記固体撮像素子は、前記上層遮光膜の膜厚を薄くする、具体的には、上層アルミニウム遮光膜12の膜厚を、50nm以上であって、125nm以下にすることにより、前記上層遮光膜中に存在する空孔を減少させている。したがって、前記固体撮像素子は、前記上層遮光膜におけるメタルボイドの発生を抑制して遮光性の低下を回避することができる。 Here, it is considered that one cause of the metal voids generated in the upper light shielding film is a vacancy existing in the upper light shielding film. According to said structure, the said solid-state image sensor makes the film thickness of the said upper layer light shielding film thin, specifically, the film thickness of the upper layer aluminum light shielding film 12 shall be 50 nm or more and 125 nm or less. Thus, the vacancies existing in the upper light shielding film are reduced. Therefore, the solid-state imaging device can suppress the generation of metal voids in the upper light-shielding film and avoid a reduction in light-shielding performance.
 また、前記固体撮像素子は、前記上層遮光膜の膜厚を前記介在膜の膜厚よりも薄くすることにより、前記遮光部全体の厚みを抑えることができる。 In the solid-state imaging device, the thickness of the entire light-shielding portion can be suppressed by making the thickness of the upper light-shielding film thinner than the thickness of the intervening film.
 したがって、前記固体撮像素子は、オプティカルブラック領域を遮光する前記遮光部の厚みを抑制しつつ、前記遮光部の遮光性の低下を回避することができる。 Therefore, the solid-state imaging device can avoid a reduction in the light shielding property of the light shielding part while suppressing the thickness of the light shielding part that shields the optical black region.
 本発明の態様2に係る固体撮像素子は、上記態様1において、前記介在膜の引張応力は、5.0E8Pa以上であって、7.0E8Pa以下であってもよい。 In the solid-state imaging device according to aspect 2 of the present invention, in the above aspect 1, the interstitial film may have a tensile stress of 5.0E8 Pa or more and 7.0E8 Pa or less.
 上記の構成によれば、前記固体撮像素子において、前記介在膜の引張応力は、5.0E8Pa以上であって、7.0E8Pa以下であり、前記介在膜と前記上層遮光膜との熱膨張係数の差は小さい。 According to said structure, in the said solid-state image sensor, the tensile stress of the said interposition film is 5.0E8Pa or more and 7.0E8Pa or less, and the thermal expansion coefficient of the said interposition film and the said upper layer light shielding film is The difference is small.
 ここで、本願発明者は、前記メタルボイドの発生には、前記介在膜の膜ストレスが関係していると考えた。したがって、前記介在膜と前記上層遮光膜との熱膨張係数(熱膨張率)の差を小さくすることにより、膜ストレスから生じる応力による前記メタルボイドの発生を抑制することができると考えた。そして、本願発明者は、前記介在膜の引張応力を、5.0E8Pa以上であって、7.0E8Pa以下にすることにより、前記メタルボイドの発生を抑制することができることを確認した。したがって、前記固体撮像素子は、前記メタルボイドの発生を抑制することができる。 Here, the inventor of the present application considered that the occurrence of the metal void is related to the film stress of the intervening film. Therefore, it was considered that the generation of the metal voids due to the stress caused by the film stress can be suppressed by reducing the difference in thermal expansion coefficient (thermal expansion coefficient) between the intervening film and the upper light shielding film. And this inventor confirmed that generation | occurrence | production of the said metal void can be suppressed by making tensile stress of the said intervening film into 5.0E8Pa or more and 7.0E8Pa or less. Therefore, the solid-state imaging device can suppress the generation of the metal voids.
 本発明の態様3に係る固体撮像素子(100、200、300、400)の製造方法は、基板(半導体基板120)に形成されたオプティカルブラック領域(B)を遮光する遮光部(170、270、370、470)を備えた固体撮像素子の製造方法であって、前記遮光部は、前記基板に近い側から順に、下層遮光膜(第三層目アルミニウム配線10、第二層目Al配線111、第一層目Al配線108、下層Al遮光膜115)、介在膜(11)、上層遮光膜(上層アルミニウム遮光膜12)を含み、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で、前記下層遮光膜を形成する下層遮光膜形成ステップと、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で、膜厚が50nm以上であって、125nm以下となるように制御して前記上層遮光膜を形成する上層遮光膜形成ステップ(S200)と、を含む。 In the method for manufacturing the solid-state imaging device (100, 200, 300, 400) according to the third aspect of the present invention, the light shielding portions (170, 270, 370, 470), wherein the light-shielding portion is formed of a lower-layer light-shielding film (third-layer aluminum wiring 10, second-layer Al wiring 111, in order from the side closer to the substrate). The first layer Al wiring 108, the lower layer Al light shielding film 115), the intervening film (11), the upper layer light shielding film (upper layer aluminum light shielding film 12), and the lower layer light shielding film is made of aluminum or an aluminum alloy mainly composed of aluminum. A lower-layer light-shielding film forming step of forming aluminum, and aluminum or an aluminum alloy containing aluminum as a main component, and having a film thickness of 50 nm or more, nm was controlled to become less including, an upper light shielding film formed step (S200) of forming the upper light shielding film.
 上記の製造方法によれば、態様1と同様の効果を奏する。 According to the above manufacturing method, the same effects as those of the first aspect are obtained.
 本発明の態様4に係る固体撮像素子の製造方法は、上記態様3において、前記下層遮光膜形成ステップの後、前記上層遮光膜形成ステップよりも前に、前記介在膜の引張応力が、5.0E8Pa以上であって、7.0E8Pa以下となるよう制御して、前記介在膜を形成する介在膜形成ステップ(S100)をさらに含んでもよい。 In the solid-state imaging device manufacturing method according to aspect 4 of the present invention, in the aspect 3, the interstitial film has a tensile stress of 5 after the lower light-shielding film forming step and before the upper light-shielding film forming step. An intervening film forming step (S100) for forming the intervening film by controlling the pressure to be 0E8Pa or higher and 7.0E8Pa or lower may be further included.
 上記の製造方法によれば、態様2と同様の効果を奏する。 According to the above manufacturing method, the same effects as those of the second aspect are obtained.
 本発明の態様5に係る固体撮像素子の製造方法は、上記態様3または4において、前記遮光部を形成した後、400℃以上であって、450℃以下の水素シンター温度で水素シンター処理を行う水素シンター処理実行ステップ(S300)をさらに含んでもよい。 The method for manufacturing a solid-state imaging device according to Aspect 5 of the present invention is the method of Aspect 3 or 4, wherein after the light shielding portion is formed, the hydrogen sintering process is performed at a hydrogen sintering temperature of 400 ° C. or higher and 450 ° C. or lower. A hydrogen sintering process execution step (S300) may be further included.
 ここで、本願発明の発明者は、水素シンター処理温度を450℃よりも大きくした場合、水素シンター処理温度を450℃以下にした場合に比べて、メタルバブルの発生頻度(従来比)は、水素シンター処理温度の上昇に伴って、急激に上昇することを確認した。また、本願発明の発明者は、水素シンター処理温度を400℃未満にした場合、白傷、暗電流によって固体撮像素子のデバイス特性が悪化する原因となることを確認した。 Here, the inventor of the present invention shows that when the hydrogen sintering temperature is higher than 450 ° C., the frequency of occurrence of metal bubbles (compared to the prior art) is higher than that when the hydrogen sintering temperature is 450 ° C. or lower. It was confirmed that the temperature rapidly increased as the sintering temperature increased. Further, the inventors of the present invention have confirmed that when the hydrogen sintering temperature is less than 400 ° C., the device characteristics of the solid-state imaging device are deteriorated due to white scratches and dark current.
 したがって、上記の製造方法によれば、遮光性の低下の原因となるメタルバブルの発生頻度を抑制しつつ、良好なデバイス特性を備えた前記固体撮像素子を得ることができる。 Therefore, according to the above manufacturing method, it is possible to obtain the solid-state imaging device having good device characteristics while suppressing the frequency of occurrence of metal bubbles that cause a reduction in light shielding properties.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明に係る固体撮像素子は、カメラ付き携帯電話機、デジタルビデオカメラ、デジタルスチルカメラ、セキュリティカメラ(監視カメラ)、ドアホン、画像入力カメラ、スキャナ、ファクシミリ等の各種電子機器に適用することができる。 The solid-state imaging device according to the present invention can be applied to various electronic devices such as camera-equipped mobile phones, digital video cameras, digital still cameras, security cameras (surveillance cameras), door phones, image input cameras, scanners, and facsimiles.
   10 第三層目アルミニウム(Al)配線(下層遮光膜)
   11 介在膜
   12 上層アルミニウム(Al)遮光膜(上層遮光膜)
   13 層間絶縁膜
   14 パッシベーション膜
   15 カラーフィルタ
   16 保護膜
   17 マイクロレンズ
   18 レジスト
   19 レジスト
   20 従来型の遮光部
  20d 従来型の下層遮光膜
  20m 従来型の介在膜
  20u 従来型の上層遮光膜
  100 固体撮像素子
  101 受光部
  102 フローティングディフュージョン(FD)部
  103 素子分離部
  104 ゲート絶縁膜
 104B ゲート酸化膜
  105 電荷転送電極
  106 層間絶縁膜
  107 貫通孔(コンタクト)
  108 第一層目アルミニウム(Al)配線(下層遮光膜)
  109 層間絶縁膜
  110 貫通孔(ビア)
  111 第二層目アルミニウム(Al)配線(下層遮光膜)
  112 層間絶縁膜
  113 貫通孔(ビア)
  114 層間絶縁膜
 114B タングステン(W)遮光膜
  115 下層アルミニウム(Al)遮光膜(下層遮光膜)
 120 半導体基板(基板)
 170 遮光部
 200 固体撮像素子
 270 遮光部
 300 固体撮像素子
 370 遮光部
 400 固体撮像素子
 470 遮光部
1000 特許文献1に開示された固体撮像素子
    A 有効画素領域
    B OB画素領域
    C 周辺回路領域
10 Third layer aluminum (Al) wiring (underlying light shielding film)
11 Intervening film 12 Upper layer aluminum (Al) light shielding film (upper layer light shielding film)
DESCRIPTION OF SYMBOLS 13 Interlayer insulation film 14 Passivation film 15 Color filter 16 Protective film 17 Micro lens 18 Resist 19 Resist 20 Conventional light-shielding part 20d Conventional lower-layer light-shielding film 20m Conventional intervening film 20u Conventional upper-layer light-shielding film 100 Solid-state imaging device DESCRIPTION OF SYMBOLS 101 Light-receiving part 102 Floating diffusion (FD) part 103 Element isolation part 104 Gate insulating film 104B Gate oxide film 105 Charge transfer electrode 106 Interlayer insulating film 107 Through-hole (contact)
108 First layer aluminum (Al) wiring (underlying light shielding film)
109 Interlayer insulating film 110 Through hole (via)
111 Second layer aluminum (Al) wiring (lower light shielding film)
112 Interlayer insulating film 113 Through hole (via)
114 Interlayer insulating film 114B Tungsten (W) light shielding film 115 Lower aluminum (Al) light shielding film (lower light shielding film)
120 Semiconductor substrate (substrate)
170 light-shielding part 200 solid-state image sensor 270 light-shielding part 300 solid-state image sensor 370 light-shielding part 400 solid-state image sensor 470 light-shielding part 1000 solid-state image sensor disclosed in Patent Document 1 A effective pixel area B OB pixel area C peripheral circuit area

Claims (5)

  1.  基板に形成されたオプティカルブラック領域を遮光する遮光部を備えた固体撮像素子であって、
     前記遮光部は、前記基板に近い側から順に、下層遮光膜、介在膜、上層遮光膜を含み、
     前記下層遮光膜および前記上層遮光膜は、アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で形成されており、
     前記上層遮光膜の膜厚は、50nm以上であって、125nm以下である
    ことを特徴とする固体撮像素子。
    A solid-state imaging device including a light-shielding portion that shields an optical black region formed on a substrate,
    The light-shielding portion includes, in order from the side close to the substrate, a lower-layer light-shielding film, an intervening film, and an upper-layer light-shielding film,
    The lower light-shielding film and the upper light-shielding film are formed of aluminum or an aluminum alloy containing aluminum as a main component,
    A film thickness of the upper light-shielding film is 50 nm or more and 125 nm or less.
  2.  前記介在膜の引張応力は、5.0E8Pa以上であって、7.0E8Pa以下である
    ことを特徴とする請求項1に記載の固体撮像素子。
    2. The solid-state imaging device according to claim 1, wherein the interstitial film has a tensile stress of 5.0E8 Pa or more and 7.0E8 Pa or less.
  3.  基板に形成されたオプティカルブラック領域を遮光する遮光部を備えた固体撮像素子の製造方法であって、
     前記遮光部は、前記基板に近い側から順に、下層遮光膜、介在膜、上層遮光膜を含み、
     アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で、前記下層遮光膜を形成する下層遮光膜形成ステップと、
     アルミニウムまたはアルミニウムを主成分とするアルミニウム合金で、膜厚が50nm以上であって、125nm以下である前記上層遮光膜を形成する上層遮光膜形成ステップと、を含む
    ことを特徴とする固体撮像素子の製造方法。
    A method for manufacturing a solid-state imaging device including a light-shielding portion that shields an optical black region formed on a substrate,
    The light-shielding portion includes, in order from the side close to the substrate, a lower-layer light-shielding film, an intervening film, and an upper-layer light-shielding film,
    A lower light-shielding film forming step for forming the lower light-shielding film with aluminum or an aluminum alloy containing aluminum as a main component;
    An upper light-shielding film forming step of forming the upper light-shielding film of aluminum or an aluminum alloy containing aluminum as a main component and having a film thickness of 50 nm or more and 125 nm or less. Production method.
  4.  前記下層遮光膜形成ステップの後、前記上層遮光膜形成ステップよりも前に、
     前記介在膜の引張応力が、5.0E8Pa以上であって、7.0E8Pa以下となるよう制御して、前記介在膜を形成する介在膜形成ステップをさらに含む
    ことを特徴とする請求項3に記載の固体撮像素子の製造方法。
    After the lower light shielding film forming step, before the upper light shielding film forming step,
    4. The method according to claim 3, further comprising an intervening film forming step of controlling the intervening film to have a tensile stress of 5.0E8 Pa or higher and 7.0 E8 Pa or lower to form the intervening film. Manufacturing method of the solid-state image sensor.
  5.  前記遮光部を形成した後、400℃以上であって、450℃以下の水素シンター温度で水素シンター処理を行う水素シンター処理実行ステップをさらに含む
    ことを特徴とする請求項3または4に記載の固体撮像素子の製造方法。
    5. The solid according to claim 3, further comprising: a hydrogen sintering process performing step of performing a hydrogen sintering process at a hydrogen sintering temperature of 400 ° C. or more and 450 ° C. or less after forming the light shielding part. Manufacturing method of imaging device.
PCT/JP2015/081624 2014-12-24 2015-11-10 Solid-state imaging element and method for manufacturing solid-state imaging element WO2016103936A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016566011A JP6301500B2 (en) 2014-12-24 2015-11-10 Solid-state imaging device and method for manufacturing solid-state imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014261346 2014-12-24
JP2014-261346 2014-12-24

Publications (1)

Publication Number Publication Date
WO2016103936A1 true WO2016103936A1 (en) 2016-06-30

Family

ID=56149970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081624 WO2016103936A1 (en) 2014-12-24 2015-11-10 Solid-state imaging element and method for manufacturing solid-state imaging element

Country Status (2)

Country Link
JP (1) JP6301500B2 (en)
WO (1) WO2016103936A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113762A (en) * 2019-01-11 2020-07-27 三星電子株式会社Samsung Electronics Co.,Ltd. Image sensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730090A (en) * 1993-07-09 1995-01-31 Sony Corp Solid-state image sensing element
JPH10335621A (en) * 1997-05-27 1998-12-18 Sony Corp Solid-state image sensing device and manufacture thereof
JPH11154741A (en) * 1997-11-20 1999-06-08 Matsushita Electron Corp Solid-state image sensing element and its production
JP2004363375A (en) * 2003-06-05 2004-12-24 Renesas Technology Corp Solid-state image pickup element
JP2006261552A (en) * 2005-03-18 2006-09-28 Toyota Motor Corp Semiconductor device and its manufacturing method
JP2012104654A (en) * 2010-11-10 2012-05-31 Toshiba Corp Semiconductor imaging device
JP2013179224A (en) * 2012-02-29 2013-09-09 Sharp Corp Solid state image pickup element manufacturing method
WO2014007132A1 (en) * 2012-07-05 2014-01-09 ソニー株式会社 Solid-state imaging device, method for manufacturing same, and electronic device
JP2014067948A (en) * 2012-09-27 2014-04-17 Fujifilm Corp Solid-state imaging device and imaging apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151794A (en) * 1992-10-30 1994-05-31 Matsushita Electron Corp Solid-state image sensing element and manufacture thereof
JPH08306902A (en) * 1995-04-28 1996-11-22 Olympus Optical Co Ltd Solid-state image sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730090A (en) * 1993-07-09 1995-01-31 Sony Corp Solid-state image sensing element
JPH10335621A (en) * 1997-05-27 1998-12-18 Sony Corp Solid-state image sensing device and manufacture thereof
JPH11154741A (en) * 1997-11-20 1999-06-08 Matsushita Electron Corp Solid-state image sensing element and its production
JP2004363375A (en) * 2003-06-05 2004-12-24 Renesas Technology Corp Solid-state image pickup element
JP2006261552A (en) * 2005-03-18 2006-09-28 Toyota Motor Corp Semiconductor device and its manufacturing method
JP2012104654A (en) * 2010-11-10 2012-05-31 Toshiba Corp Semiconductor imaging device
JP2013179224A (en) * 2012-02-29 2013-09-09 Sharp Corp Solid state image pickup element manufacturing method
WO2014007132A1 (en) * 2012-07-05 2014-01-09 ソニー株式会社 Solid-state imaging device, method for manufacturing same, and electronic device
JP2014067948A (en) * 2012-09-27 2014-04-17 Fujifilm Corp Solid-state imaging device and imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020113762A (en) * 2019-01-11 2020-07-27 三星電子株式会社Samsung Electronics Co.,Ltd. Image sensor

Also Published As

Publication number Publication date
JPWO2016103936A1 (en) 2017-08-03
JP6301500B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
US10249663B2 (en) Solid-state imaging device, manufacturing method thereof, and camera with arranged pixel combinations alternatively
TWI648845B (en) Image pickup element and manufacturing method thereof, and electronic device
TWI399849B (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
US9281327B2 (en) Image sensor, imaging apparatus, and apparatus and method for manufacturing image sensor
US20200161357A1 (en) Image pickup device and method for manufacturing image pickup device
US8633559B2 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
JP2007242697A (en) Image pickup device and image pickup system
JP2009021415A (en) Solid-state imaging apparatus and manufacturing method thereof
JP2011216826A (en) Solid-state image pickup device, method of manufacturing the same, electronic equipment and camera module
JP2008091643A (en) Solid-state image pick-up device
JP2009099626A (en) Imaging device
JP2015095468A (en) Solid state imaging element, method for manufacturing solid state imaging element, and electronic apparatus
JP2011129723A (en) Method of manufacturing solid-state imaging device
JP5538807B2 (en) Photoelectric conversion device, method for manufacturing photoelectric conversion device, and imaging system
JP6301500B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
KR100806778B1 (en) Method for manufacturing of cmos image sensor
JP4878117B2 (en) Solid-state imaging device and imaging system
JP2013145917A (en) Solid-state image pickup device and imaging system
JP2013084747A (en) Solid state imaging device and manufacturing method thereof, and electronic information apparatus
JP6663887B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic device
JP2008177362A (en) Solid-state imaging apparatus and camera
JP2008041958A (en) Solid-state imaging apparatus, its manufacturing method and electronic information equipment
WO2013122015A1 (en) Solid-state image sensor element
JP5368070B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
JP6254829B2 (en) Solid-state imaging device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566011

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872505

Country of ref document: EP

Kind code of ref document: A1