WO2016103890A1 - Power transmission device and lock-up device for torque converter - Google Patents

Power transmission device and lock-up device for torque converter Download PDF

Info

Publication number
WO2016103890A1
WO2016103890A1 PCT/JP2015/080070 JP2015080070W WO2016103890A1 WO 2016103890 A1 WO2016103890 A1 WO 2016103890A1 JP 2015080070 W JP2015080070 W JP 2015080070W WO 2016103890 A1 WO2016103890 A1 WO 2016103890A1
Authority
WO
WIPO (PCT)
Prior art keywords
float member
float
power transmission
transmission device
outer peripheral
Prior art date
Application number
PCT/JP2015/080070
Other languages
French (fr)
Japanese (ja)
Inventor
祥行 萩原
Original Assignee
株式会社エクセディ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクセディ filed Critical 株式会社エクセディ
Priority to DE112015005106.6T priority Critical patent/DE112015005106T5/en
Publication of WO2016103890A1 publication Critical patent/WO2016103890A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/12353Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
    • F16F15/1236Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates
    • F16F15/12366Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates acting on multiple sets of springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/145Masses mounted with play with respect to driving means thus enabling free movement over a limited range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0205Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type two chamber system, i.e. without a separated, closed chamber specially adapted for actuating a lock-up clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • F16H2045/0231Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0263Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means the damper comprising a pendulum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0278Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch comprising only two co-acting friction surfaces

Definitions

  • the present invention relates to a power transmission device, and more particularly to a power transmission device for transmitting power from an engine to a transmission. Further, the present invention is a lock-up device, particularly, disposed between a front cover connected to a member on the engine side and a torque converter main body, for directly transmitting power from the front cover to the turbine of the torque converter main body. The present invention relates to a lockup device.
  • the torque converter is equipped with a lock-up device to reduce fuel consumption.
  • the lockup device is disposed between the front cover and the turbine, and mechanically connects the front cover and the turbine to directly transmit torque therebetween.
  • the lock-up device has a piston and a damper mechanism as disclosed in Patent Document 1, for example.
  • the piston has a friction member, is pressed against the front cover by the action of hydraulic pressure, and torque is transmitted from the front cover.
  • Each of the damper mechanisms includes a plurality of outer peripheral torsion springs and inner peripheral torsion springs, and intermediate members that connect the outer peripheral torsion springs and the inner peripheral torsion springs.
  • the piston and the output side member connected to the turbine are elastically connected by a plurality of torsion springs.
  • Patent Document 2 there is also provided a lockup device in which a dynamic vibration absorber is provided between two dampers so as to suppress the rotational speed fluctuation transmitted to the output side.
  • a dynamic vibration absorber is disposed between two dampers.
  • rotation speed fluctuation amplification or resonance may occur. is there.
  • An object of the present invention is to more effectively suppress fluctuations in rotational speed transmitted to a transmission in a power transmission device such as a lockup device of a torque converter.
  • a power transmission device is a device for transmitting power from an engine to a transmission.
  • the power transmission device includes an input-side rotating member to which power from an engine is input, an output-side rotating member that outputs power to the transmission, a first elastic member, a float member, a rotational speed adaptive dynamic vibration absorber, It is equipped with.
  • the first elastic member connects the input side rotating member and the output side rotating member so as to be relatively rotatable.
  • the float member is rotatable relative to the input side rotation member, the output side rotation member, and the first elastic member, and slides relative to the first elastic member during rotation.
  • the dynamic vibration absorber has a mass body that is connected to the float member and moves relative to the float member when the float member rotates.
  • the power input to the input side rotating member is transmitted to the output side rotating member via the first elastic member.
  • the rotational speed fluctuation transmitted to the transmission side by the operation of the first elastic member is suppressed.
  • the mass body of the dynamic vibration absorber acts in a direction to suppress the rotation fluctuation by centrifugal force, and the rotation speed fluctuation is further suppressed.
  • a dynamic vibration absorber having a mass body is attached to a float member that freely rotates with respect to the first elastic member. That is, the float member is not engaged with the first elastic member. For this reason, the resonance of the damper device which has occurred in the conventional device does not occur, and the rotational speed fluctuation in the low rotational speed range can be further suppressed.
  • the first elastic member and the float member can be rotated relative to each other, the hysteresis torque is reduced as compared with the conventional device, and the damper function is more effectively exhibited.
  • the mass body of the dynamic vibration absorber is a plurality of pendulum members.
  • the first elastic member is a coil spring extending in the rotation direction.
  • the float member can come into contact with the outer peripheral portion of the coil spring and regulates the movement of the coil spring in the radial direction. Thereby, a frictional force is generated between the coil spring and the float member, and the damper device can be effectively operated.
  • the coil spring is an arc spring that extends in an arc shape in the rotational direction in a free state.
  • the second and / or third elastic member disposed in series with the first elastic member on at least one of the input side and the output side of the first elastic member. Is further provided. Thereby, the rotation speed range which can reduce vibration can be shifted to the low rotation side.
  • the power transmission device is disposed between at least one of the float member and the input-side rotating member and between the float member and the output-side rotating member, and friction is generated between the two.
  • a friction generating mechanism for generating resistance is further provided. Thereby, a dynamic vibration absorber can be made to act effectively.
  • the power transmission device further includes a stopper mechanism for restricting the movement of the float member in the rotational direction to a predetermined range. Thereby, the imbalance of an output member can be suppressed.
  • a torque converter lock-up device is disposed between a front cover coupled to a member on an engine side and a torque converter main body, and power from the front cover is transmitted to a turbine of the torque converter main body. It is a device for transmitting directly to.
  • the lockup device includes a clutch portion, an output flange, a plurality of elastic members, a float member, and a rotational speed adaptive dynamic vibration absorber.
  • the clutch part transmits power from the front cover.
  • the output flange is connected to the turbine.
  • the plurality of elastic members transmit power from the clutch portion to the output flange.
  • the float member is rotatable relative to the clutch portion, the output flange, and the plurality of elastic members, slides with the plurality of elastic members at the time of rotation, and restricts radial movement of the plurality of elastic members.
  • the dynamic vibration absorber is connected to the float member and has a mass body that moves relative to the float member when the float member rotates.
  • the rotational speed fluctuation transmitted to the transmission can be more effectively suppressed by providing the float member with the rotational speed adaptive dynamic vibration absorber.
  • FIG. 3 is a characteristic diagram of engine speed and rotational speed fluctuation.
  • FIG. 1 is a partial sectional view of a torque converter 1 having a lockup device according to a first embodiment of the present invention.
  • An engine (not shown) is arranged on the left side of FIG. 1, and a transmission (not shown) is arranged on the right side of the figure.
  • the torque converter 1 is a device for transmitting torque from an engine-side crankshaft (not shown) to an input shaft of a transmission, and includes a front cover 2 fixed to an input-side member and three types of impellers ( A torque converter main body 6 including an impeller 3, a turbine 4, and a stator 5) and a lockup device 7 are included.
  • the front cover 2 is a disk-shaped member, and an outer peripheral cylindrical portion 10 that protrudes toward the transmission side is formed on the outer peripheral portion thereof.
  • the impeller 3 includes an impeller shell 12 fixed to the outer peripheral cylindrical portion 10 of the front cover 2 by welding, a plurality of impeller blades 13 fixed to the inside thereof, and a cylindrical shape provided on the inner peripheral side of the impeller shell 12.
  • the turbine 4 is disposed opposite to the impeller 3 in the fluid chamber.
  • the turbine 4 includes a turbine shell 15, a plurality of turbine blades 16 fixed to the turbine shell 15, and a turbine hub 17 fixed to the inner peripheral side of the turbine shell 15.
  • the turbine hub 17 has a disk portion 17a, a flange portion 17b, and a cylindrical portion 17c.
  • the flange portion 17b is formed to extend further to the outer peripheral side from the end portion of the disc portion 17a on the turbine 4 side.
  • the inner peripheral portion of the turbine shell 15 is fixed to the flange portion 17 b by a plurality of rivets 18.
  • the cylindrical portion 17c is formed to extend from the inner peripheral end of the disc portion 17a to the front cover 2 side.
  • An input shaft of a transmission (not shown) can be spline-engaged with the inner peripheral portion of the cylindrical portion 17c.
  • the stator 5 is a mechanism for rectifying the hydraulic oil that is disposed between the impeller 3 and the inner peripheral portion of the turbine 4 and returns from the turbine 4 to the impeller 3.
  • the stator 5 mainly includes a stator carrier 20 and a plurality of stator blades 21 provided on the outer peripheral surface thereof.
  • the stator carrier 20 is supported by a fixed shaft (not shown) via a one-way clutch 22.
  • FIG. 2 shows the lock-up device 7 extracted from FIG.
  • the lockup device 7 is disposed in a space between the front cover 2 and the turbine 4.
  • the lock-up device 7 includes a piston 24, a drive plate 25, an outer peripheral side torsion spring (first elastic member) 26, a float member 27, an intermediate member 28, an inner peripheral side torsion spring 29, and an output side rotating member.
  • the piston 24 and the drive plate 25 constitute an input side rotating member.
  • the piston 24 is a disk-shaped plate and is disposed on the transmission side of the front cover 2.
  • a cylindrical portion 24 a extending toward the turbine 4 is formed at the inner peripheral end of the piston 24.
  • the tubular portion 24a is supported on the outer peripheral surface of the tubular portion 17c of the turbine hub 17 so as to be axially movable and relatively rotatable.
  • a flat portion 24 b is formed on the outer peripheral portion of the piston 24.
  • An annular friction material 33 is fixed to the surface of the flat portion 24b on the front cover 2 side. When the friction material 33 is pressed against the front cover 2, torque is transmitted from the front cover 2 to the piston 24. That is, the piston 24 and the friction material 33 constitute a clutch portion.
  • a seal member 35 is attached to the outer peripheral surface of the cylindrical portion 17 c of the turbine hub 17, thereby sealing between the inner peripheral surface of the piston 24 and the turbine hub 17. Further, the axial movement of the piston 24 toward the turbine 4 is restricted by the tip of the cylindrical portion 24 a coming into contact with the side surface of the disc portion 17 a of the turbine hub 17.
  • the drive plate 25 is fixed to the side surface on the turbine 4 side in the outer peripheral portion of the piston 24. Specifically, the drive plate 25 is formed in a disk shape, and the inner peripheral portion 25 a is fixed to the transmission side surface of the piston 24 by a rivet 37. A plurality of engaging portions 25 b are formed on the outer peripheral portion of the drive plate 25. The engaging portion 25b is formed by bending the outer peripheral end portion of the drive plate 25 to the transmission side. The engaging portion 25 b is engaged with both ends of the outer peripheral side torsion spring 26 in the circumferential direction.
  • a plurality of spring support portions 25c projecting toward the transmission side are formed at the radial intermediate portion of the drive plate 25.
  • the plurality of spring support portions 25c are formed at predetermined intervals in the circumferential direction.
  • Each spring support portion 25 c supports the inner peripheral side of the outer peripheral side torsion spring 26.
  • outer peripheral side torsion spring 26 and float member 27 The plurality of outer peripheral torsion springs 26 are arc springs formed in an arc shape that swells to the outer peripheral side in a free state, that is, in a single state before being assembled to the lockup device 7.
  • the float member 27 is an annular plate member as shown in an enlarged view in FIG.
  • the outer peripheral portion of the float member 27 is bent toward the front cover 2 to form a cylindrical portion 27a.
  • the tubular portion 27a is formed with a plurality of spring accommodating portions 27b at predetermined intervals in the circumferential direction.
  • the spring accommodating portion 27b is formed by bending the front end portion of the cylindrical portion 27a on the front cover 2 side toward the inner peripheral side.
  • the outer periphery side torsion spring 26 is accommodated in the spring accommodating portion 27b.
  • the float member 27 is freely rotatable with respect to other members, that is, the drive plate 25, the intermediate member 28, and the hub flange 30. Further, since the spring accommodating portion 27 b and the outer peripheral side torsion spring 26 are not engaged with each other, the float member 27 does not rotate in synchronization with the outer peripheral side torsion spring 26.
  • the intermediate member 28 is a member that connects both the outer peripheral side torsion spring 26 and the inner peripheral side torsion spring 29 so as to act in series.
  • the intermediate member 28 also has a function of holding the inner peripheral side torsion spring 29.
  • the intermediate member 28 includes a first plate 41 and a second plate 42, and is rotatable relative to the drive plate 25 and the hub flange 30.
  • the first and second plates 41 and 42 are annular and disk-shaped members disposed between the piston 24 and the turbine shell 15.
  • the first plate 41 and the second plate 42 are arranged with a space in the axial direction.
  • the first plate 41 is disposed on the front cover 2 side, and the second plate 42 is disposed on the turbine 4 side.
  • the outer peripheral portion of the first plate 41 and the radial intermediate portion of the second plate 42 are fixed to each other by a plurality of stop pins 43. Therefore, the 1st plate 41 and the 2nd plate 42 are connected so that relative rotation is impossible and it cannot move in the direction of an axis. Note that both end surfaces of the body portion of the stop pin 43 abut against the mutually opposing side surfaces of each play 41, 42, thereby setting a predetermined distance between the first plate 41 and the second plate 42. .
  • the outer peripheral portion of the second plate 42 has a plurality of protruding portions 42 a that protrude further to the outer peripheral side than the outer peripheral portion of the first plate 41.
  • the plurality of protrusions 42a are formed at predetermined intervals in the circumferential direction.
  • the front end (outer peripheral end) of the protruding portion 42 a is bent toward the front cover 2, and a plurality of locking portions 42 b that contact the end surface of the outer peripheral torsion spring 26 are formed.
  • One outer torsion spring 26 is arranged between the two locking portions 42b.
  • a stopper claw 25d formed at the tip of the spring support portion 25c of the drive plate 25 is disposed between two adjacent protruding portions 42a. Therefore, the drive plate 25 and the intermediate member 28 (second plate 42) can be rotated relative to each other within a range in which the stopper claw 25d can move in the rotational direction between two adjacent protruding portions 42a. In other words, relative rotation between the drive plate 25 and the intermediate member 28 is prohibited by the stopper claw 25d coming into contact with the protruding portion 42a.
  • first plate 41 and the second plate 42 are respectively formed with windows 41c and 42c penetrating in the axial direction.
  • the window portions 41c and 42c are formed to extend in the circumferential direction, and a cut-and-raised portion that is cut and raised in the axial direction is formed on the inner peripheral portion and the outer peripheral portion.
  • An inner peripheral side torsion spring 29 is arranged in the window portions 41c and 42c of both the plates 41 and 42.
  • the inner circumferential side torsion spring 29 is supported at both ends in the circumferential direction and both sides in the radial direction by the windows 41c and 42c. Further, the inner periphery side torsion spring 29 is restricted from projecting in the radial direction and the axial direction by the cut and raised portions of the window portions 41c and 42c.
  • the hub flange 30 is an annular and disk-shaped member, and an inner peripheral portion thereof is fixed to the flange portion 17 b of the turbine hub 17 by a rivet 18 together with the turbine shell 15.
  • the hub flange 30 is disposed between the first plate 41 and the second plate 42 so as to be rotatable relative to the plates 41 and 42 between the first plate 41 and the second plate 42.
  • a window hole 30 a is formed in the outer peripheral portion of the hub flange 30 corresponding to the window portions 41 c and 42 c of the first and second plates 41 and 42.
  • the window hole 30a is a hole penetrating in the axial direction, and an inner peripheral torsion spring 29 is disposed in the window hole 30a.
  • a plurality of notches 30 b are formed on the outer peripheral portion of the hub flange 30.
  • a stop pin 43 passes through the notch 30b in the axial direction. Therefore, the intermediate member 28 and the hub flange 30 can rotate relative to each other within a range in which the stop pin 43 can move in the rotation direction in the notch 30b. In other words, relative rotation between the intermediate member 28 and the hub flange 30 is prohibited by the stop pin 43 coming into contact with the end face of the notch 30b.
  • a regulating portion 30 c that extends linearly from the portion fixed to the turbine shell 15 to the outer circumferential side is formed on the inner circumferential portion of the hub flange 30.
  • a support member 45 that supports the float member 27 is provided between the inner peripheral portion of the hub flange 30 and the turbine shell 15. The support member 45 is fixed to the turbine shell 15 by the rivet 18 together with the hub flange 30.
  • the support member 45 is an annular and disk-shaped member, and has a radial support portion 45a and an axial support portion 45b on the outer peripheral portion.
  • the radial support portion 45a is formed in a cylindrical shape extending in the axial direction.
  • the axial support portion 45b is formed to extend from the end portion of the radial support portion 45a to the outer peripheral side.
  • the float member 27 is positioned in the radial direction by the radial support portion 45a of the support member 45, and is sandwiched between the restriction portion 30c of the hub flange 30 and the axial support portion 45b of the support member 45. Is positioned in the axial direction.
  • the dynamic vibration absorber 31 attenuates vibrations by moving relative to the float member 27 when the float member 27 rotates. As shown in FIGS. 2, 3, and 5, the dynamic vibration absorber 31 includes a plurality of pendulums 50, a holding plate 51, and a plurality of pins 52.
  • the pendulum 50 has a fan shape formed so that the outer peripheral surface swells to the outer peripheral side.
  • the pendulum 50 is formed with two grooves 50a arranged in the circumferential direction.
  • the two grooves 50a are formed in line symmetry. Further, the two grooves 50a are formed in a substantially arc shape whose central portion is recessed toward the inner peripheral side.
  • the holding plate 51 is an annular and disk-shaped member, and a radially intermediate portion and an inner peripheral portion are fixed to the float member 27 by a plurality of rivets 55 and 56, respectively.
  • the outer rivet 55 is disposed between the adjacent pendulums 50 in the circumferential direction.
  • a collar 58 made of an elastic member is attached to the outer peripheral surface of the rivet 55 on the outer peripheral side.
  • the float member 27 and the holding plate 51 are formed with a plurality of grooves 27c and 51c arranged in the circumferential direction.
  • FIG. 5 only the groove 27c of the float member 27 is shown, and the groove 51c of the holding plate 51 does not appear. However, since these grooves 27c and 51c have exactly the same shape, the groove 27c of the float member 27 will be described here.
  • the groove 27c is formed at a position corresponding to the position of the groove 50a of the pendulum 50 when the pendulum 50 is located at the neutral position.
  • the two grooves 27c formed corresponding to each pendulum 50 are formed in line symmetry.
  • channel 27c is formed in the substantially circular arc shape where a center part swells to the outer peripheral side contrary to the groove
  • the pin 52 has a large diameter part 52a and two small diameter parts 52b provided at both ends of the large diameter part 52a.
  • the large diameter portion 52a of the pin 52 is inserted into the groove 50a of the pendulum 50 so as to be movable along the groove 50a.
  • the small diameter portion 52b is inserted into the groove 27c of the float member 27 and the groove 51c of the holding plate 51 so as to be movable along the grooves 27c and 51c.
  • the axial distance between the float member 27 and the holding plate 51 is set by the axial length of the large diameter portion 52a of the pin 52.
  • the axial length of the large diameter portion 52a is set slightly larger than the thickness (axial length) of the pendulum 50.
  • the pendulum 50 can swing in the rotational direction with respect to the float member 27 and the holding plate 51.
  • the lockup device 7 transmits torque and absorbs and attenuates fluctuations in rotational speed input from the front cover 2. Specifically, when torsional vibration occurs in the lockup device 7, the outer peripheral side torsion spring 26 and the inner peripheral side torsion spring 29 are compressed in series between the drive plate 25 and the hub flange 30. The rotation speed fluctuation is attenuated by the operation of these torsion springs 26 and 29 and the frictional resistance (hysteresis torque) of each part.
  • the pendulum 50 swings with respect to the float member 27 when the rotational speed fluctuates. At this time, since centrifugal force is acting on the pendulum 50, a force for returning to the center position in the circumferential direction acts on the pendulum 50. The action of the pendulum 50 can further suppress vibration.
  • FIG. 6 shows the effects of the above dynamic vibration absorber 31 in comparison with the conventional apparatus.
  • the horizontal axis represents the engine speed
  • the vertical axis represents the rotational speed fluctuation on the output side.
  • the characteristic C1 has shown the characteristic in the apparatus (for example, patent document 2) which attached the dynamic vibration absorber 31 to the intermediate member of the lockup apparatus
  • the characteristic C2 has shown the characteristic of this embodiment. Note that both are characteristics when an irregular order appears on the input side.
  • FIG. 7 shows a schematic diagram of the second embodiment of the present invention.
  • a float member 61 that supports the inner peripheral torsion spring 29 is provided, and the dynamic vibration absorber 31 is coupled to the float member 61.
  • the other configurations of the dynamic vibration absorber 31 and the second embodiment are basically the same as those of the first embodiment.
  • FIG. 8 shows a schematic diagram of the third embodiment of the present invention.
  • the outer peripheral side torsion spring 26 and the inner peripheral side torsion spring 29 are provided, but in the third embodiment, only one of the torsion springs 64 is provided.
  • one type of torsion spring 64 is provided between the piston 24 and the turbine 4 (specifically, the turbine hub 17).
  • the torsion spring 64 is provided with a float member 65 having the same configuration as that of the first embodiment. Although the float member 65 is not engaged with the torsion spring 64, the float member 65 can be rotated with respect to the torsion spring 64 within a predetermined range by the frictional resistance between them as in the first embodiment.
  • the dynamic vibration absorber 31 is mounted on the float member 65, and the configuration thereof is the same as that of the first embodiment.
  • FIG. 9 shows a schematic diagram of the fourth embodiment.
  • an intermediate torsion spring 67 is provided in addition to the outer periphery side torsion spring 26 and the inner periphery side torsion spring 29.
  • the float member 68 is provided so as to accommodate the intermediate torsion spring 67.
  • the float member 68 is not engaged with the intermediate torsion spring 67 but can be rotated with respect to the intermediate torsion spring 67 within a predetermined range by the frictional resistance between them.
  • the dynamic vibration absorber 31 is mounted on the float member 68, and the configuration thereof is the same as in the other embodiments.
  • FIG. 10 shows a schematic diagram of the fifth embodiment.
  • a hysteresis torque generating mechanism 70 is further provided between the float member 65 and the output-side rotating member.
  • hysteresis torque is generated by the hysteresis torque generating mechanism 70 when the float member 65 is rotated around the torsion spring 64.
  • the hysteresis torque generating mechanism may be provided between the float member 65 and the input side member instead of between the float member 65 and the output side rotation member.
  • FIG. 11 shows a schematic diagram of the sixth embodiment.
  • a stopper mechanism 72 is further provided between the float member 65 and the rotating member on the output side. The stopper mechanism 72 restricts the movement of the float member 65 in the rotation direction within a predetermined range.
  • stopper mechanism may be provided between the float member 65 and the input side rotating member.
  • the present invention is applied to the lock-up device of the torque converter, but can be similarly applied to other power transmission devices.
  • the configuration of the dynamic vibration absorber is not limited to the above-described embodiments, and various modifications are possible.
  • another mass body may be provided instead of the plurality of pendulums.
  • the rotational speed fluctuation transmitted to the transmission can be more effectively suppressed by providing the float member with a rotational speed adaptive dynamic vibration absorber.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

The present invention more effectively suppresses rotation speed fluctuation that is transmitted by a transmission in a power transmission device for a lock-up device and the like of a torque converter. This power transmission device is provided with: a drive plate (25) into which power is input; a hub flange (30) that outputs power; an outer peripheral torsion spring (26); a float member (27); and a dynamic vibration absorber (31). The outer peripheral torsion spring (26) connects the drive plate (25) and the hub flange (30) so as to be rotatable relative to each other. The float member (27) is capable of rotation relative to the drive plate (25), the hub flange (30), and the outer peripheral torsion spring (26) and moves in a sliding manner relative to the outer peripheral torsion spring (26) during rotation. The dynamic vibration absorber (31) comprises a plurality of pendulums (50) that are connected to the float member (27) and that move relative to the float member (27) during rotation of the float member (27).

Description

動力伝達装置及びトルクコンバータのロックアップ装置Power transmission device and torque converter lockup device
 本発明は、動力伝達装置、特に、エンジンからトランスミッションに動力を伝達するための動力伝達装置に関する。また、本発明は、ロックアップ装置、特に、エンジン側の部材に連結されるフロントカバーとトルクコンバータ本体との間に配置され、フロントカバーからの動力をトルクコンバータ本体のタービンに直接伝達するためのロックアップ装置に関する。 The present invention relates to a power transmission device, and more particularly to a power transmission device for transmitting power from an engine to a transmission. Further, the present invention is a lock-up device, particularly, disposed between a front cover connected to a member on the engine side and a torque converter main body, for directly transmitting power from the front cover to the turbine of the torque converter main body. The present invention relates to a lockup device.
 トルクコンバータにおいては、燃費低減のためにロックアップ装置が設けられている。ロックアップ装置は、フロントカバーとタービンとの間に配置されており、フロントカバーとタービンとを機械的に連結して両者の間でトルクを直接伝達するものである。 The torque converter is equipped with a lock-up device to reduce fuel consumption. The lockup device is disposed between the front cover and the turbine, and mechanically connects the front cover and the turbine to directly transmit torque therebetween.
 ロックアップ装置は、例えば特許文献1に示されるように、ピストンとダンパ機構とを有している。ピストンは、摩擦部材を有しており、油圧の作用によってフロントカバーに押し付けられ、フロントカバーからトルクが伝達される。また、ダンパ機構は、それぞれ複数の外周側トーションスプリング及び内周側トーションスプリングと、外周側トーションスプリングと内周側トーションスプリングとを連結する中間部材と、を有している。そして、複数のトーションスプリングによって、ピストンとタービンに連結された出力側の部材とが弾性的に連結されている。 The lock-up device has a piston and a damper mechanism as disclosed in Patent Document 1, for example. The piston has a friction member, is pressed against the front cover by the action of hydraulic pressure, and torque is transmitted from the front cover. Each of the damper mechanisms includes a plurality of outer peripheral torsion springs and inner peripheral torsion springs, and intermediate members that connect the outer peripheral torsion springs and the inner peripheral torsion springs. The piston and the output side member connected to the turbine are elastically connected by a plurality of torsion springs.
 また、特許文献2に示されるように、2つのダンパの間に動吸振器を設け、出力側に伝達される回転速度変動を抑えるようにしたロックアップ装置も提供されている。 Also, as shown in Patent Document 2, there is also provided a lockup device in which a dynamic vibration absorber is provided between two dampers so as to suppress the rotational speed fluctuation transmitted to the output side.
特開2009-293671号公報JP 2009-293671 A 特表2011-504986号公報Special table 2011-504986 gazette
 特許文献2のロックアップ装置では、2つのダンパの間に動吸振器が配置されている。しかし、特許文献2の装置では、動吸振器の振れ角以上の回転速度変動が入力されたり、動吸振器のチューニングが適切でない場合に、回転速度変動の増幅や共振が発生したりする場合がある。 In the lockup device of Patent Document 2, a dynamic vibration absorber is disposed between two dampers. However, in the device of Patent Document 2, when rotational speed fluctuations greater than the swing angle of the dynamic vibration absorber are input, or when tuning of the dynamic vibration absorber is not appropriate, rotation speed fluctuation amplification or resonance may occur. is there.
 本発明の課題は、トルクコンバータのロックアップ装置等の動力伝達装置において、トランスミッションに伝達される回転速度変動をより効果的に抑えることにある。 An object of the present invention is to more effectively suppress fluctuations in rotational speed transmitted to a transmission in a power transmission device such as a lockup device of a torque converter.
 (1)本発明の一側面に係る動力伝達装置は、エンジンからトランスミッションに動力を伝達するための装置である。この動力伝達装置は、エンジンからの動力が入力される入力側回転部材と、トランスミッションに動力を出力する出力側回転部材と、第1弾性部材と、フロート部材と、回転数適合型動吸振器と、を備えている。第1弾性部材は、入力側回転部材と出力側回転部材とを相対回転自在に連結する。フロート部材は、入力側回転部材、出力側回転部材、及び第1弾性部材に対して相対回転可能であり、回転時に第1弾性部材に対して摺動する。動吸振器は、フロート部材に連結され、フロート部材の回転時にフロート部材に対して相対的に移動する質量体を有している。 (1) A power transmission device according to one aspect of the present invention is a device for transmitting power from an engine to a transmission. The power transmission device includes an input-side rotating member to which power from an engine is input, an output-side rotating member that outputs power to the transmission, a first elastic member, a float member, a rotational speed adaptive dynamic vibration absorber, It is equipped with. The first elastic member connects the input side rotating member and the output side rotating member so as to be relatively rotatable. The float member is rotatable relative to the input side rotation member, the output side rotation member, and the first elastic member, and slides relative to the first elastic member during rotation. The dynamic vibration absorber has a mass body that is connected to the float member and moves relative to the float member when the float member rotates.
 この装置では、入力側回転部材に入力された動力は、第1弾性部材を介して出力側回転部材に伝達される。このとき、第1弾性部材の作動によってトランスミッション側に伝達される回転速度変動が抑えられる。ここで、第1弾性部材が作動する際に、フロート部材は第1弾性部材と摺動する。したがって、フロート部材は第1弾性部材に連れ回ることになる。このフロート部材に動きに対して、遠心力によって動吸振器の質量体が回転変動を抑える方向に作用し、回転速度変動がより抑えられる。 In this apparatus, the power input to the input side rotating member is transmitted to the output side rotating member via the first elastic member. At this time, the rotational speed fluctuation transmitted to the transmission side by the operation of the first elastic member is suppressed. Here, when the first elastic member operates, the float member slides with the first elastic member. Accordingly, the float member is rotated around the first elastic member. With respect to the movement of the float member, the mass body of the dynamic vibration absorber acts in a direction to suppress the rotation fluctuation by centrifugal force, and the rotation speed fluctuation is further suppressed.
 ここでは、質量体を有する動吸振器が、第1弾性部材に対して自由に回転するフロート部材に装着されている。すなわち、フロート部材は第1弾性部材に係合されていない。このため、従来装置で発生していたダンパ装置の共振が発生せず、特に低回転数域での回転速度変動をより抑えることができる。 Here, a dynamic vibration absorber having a mass body is attached to a float member that freely rotates with respect to the first elastic member. That is, the float member is not engaged with the first elastic member. For this reason, the resonance of the damper device which has occurred in the conventional device does not occur, and the rotational speed fluctuation in the low rotational speed range can be further suppressed.
 また、第1弾性部材とフロート部材とは相対回転可能であるので、従来装置に比較してヒステリシストルクが小さくなり、ダンパ機能がより効果的に発揮される。 Also, since the first elastic member and the float member can be rotated relative to each other, the hysteresis torque is reduced as compared with the conventional device, and the damper function is more effectively exhibited.
 (2)本発明の別の側面に係る動力伝達装置では、動吸振器の質量体は複数の振り子部材である。 (2) In the power transmission device according to another aspect of the present invention, the mass body of the dynamic vibration absorber is a plurality of pendulum members.
 (3)本発明のさらに別の側面に係る動力伝達装置では、第1弾性部材は回転方向に延びるコイルスプリングである。フロート部材は、コイルスプリングの外周部に接触可能であり、コイルスプリングの径方向の移動を規制する。これにより、コイルスプリングとフロート部材との間に摩擦力が発生し、ダンパ装置を効果的に作用させることができる。 (3) In the power transmission device according to still another aspect of the present invention, the first elastic member is a coil spring extending in the rotation direction. The float member can come into contact with the outer peripheral portion of the coil spring and regulates the movement of the coil spring in the radial direction. Thereby, a frictional force is generated between the coil spring and the float member, and the damper device can be effectively operated.
 (4)本発明のさらに別の側面に係る動力伝達装置では、コイルスプリングは、自由状態で回転方向に円弧状に延びるアークスプリングである。これにより、コイルスプリングとフロート部材との間に適度な摩擦力が発生し、動吸振器を効果的に作用させることができる。 (4) In the power transmission device according to still another aspect of the present invention, the coil spring is an arc spring that extends in an arc shape in the rotational direction in a free state. Thereby, an appropriate frictional force is generated between the coil spring and the float member, and the dynamic vibration absorber can be effectively operated.
 (5)本発明のさらに別の側面に係る動力伝達装置では、第1弾性部材の入力側及び出力側の少なくとも一方に第1弾性部材と直列に配置された第2及び/又は第3弾性部材をさらに備えている。これにより、振動低減できる回転数域をより低回転側へシフトさせることができる。 (5) In the power transmission device according to still another aspect of the present invention, the second and / or third elastic member disposed in series with the first elastic member on at least one of the input side and the output side of the first elastic member. Is further provided. Thereby, the rotation speed range which can reduce vibration can be shifted to the low rotation side.
 (6)本発明のさらに別の側面に係る動力伝達装置では、フロート部材と入力側回転部材との間及びフロート部材と出力側回転部材との間の少なくとも一方に配置され、両者の間で摩擦抵抗を発生させる摩擦発生機構をさらに備えている。これにより、動吸振器を効果的に作用させることができる。 (6) In the power transmission device according to still another aspect of the present invention, the power transmission device is disposed between at least one of the float member and the input-side rotating member and between the float member and the output-side rotating member, and friction is generated between the two. A friction generating mechanism for generating resistance is further provided. Thereby, a dynamic vibration absorber can be made to act effectively.
 (7)本発明のさらに別の側面に係る動力伝達装置では、フロート部材の回転方向の移動を所定の範囲に規制するためのストッパ機構をさらに備えている。これにより、出力部材のアンバランスを抑えることができる。 (7) The power transmission device according to still another aspect of the present invention further includes a stopper mechanism for restricting the movement of the float member in the rotational direction to a predetermined range. Thereby, the imbalance of an output member can be suppressed.
 (8)本発明の一側面に係るトルクコンバータのロックアップ装置は、エンジン側の部材に連結されるフロントカバーとトルクコンバータ本体との間に配置され、フロントカバーからの動力をトルクコンバータ本体のタービンに直接伝達するための装置である。このロックアップ装置は、クラッチ部と、出力フランジと、複数の弾性部材と、フロート部材と、回転数適合型動吸振器と、を備えている。 (8) A torque converter lock-up device according to one aspect of the present invention is disposed between a front cover coupled to a member on an engine side and a torque converter main body, and power from the front cover is transmitted to a turbine of the torque converter main body. It is a device for transmitting directly to. The lockup device includes a clutch portion, an output flange, a plurality of elastic members, a float member, and a rotational speed adaptive dynamic vibration absorber.
 クラッチ部はフロントカバーからの動力を伝達する。出力フランジはタービンに連結されている。複数の弾性部材はクラッチ部からの動力を出力フランジに伝達する。フロート部材は、クラッチ部、出力フランジ、及び複数の弾性部材に対して相対回転可能であり、回転時に複数の弾性部材と摺動し、かつ複数の弾性部材の径方向の移動を規制する。動吸振器は、フロート部材に連結され、フロート部材の回転時にフロート部材に対して相対的に移動する質量体を有する。 The clutch part transmits power from the front cover. The output flange is connected to the turbine. The plurality of elastic members transmit power from the clutch portion to the output flange. The float member is rotatable relative to the clutch portion, the output flange, and the plurality of elastic members, slides with the plurality of elastic members at the time of rotation, and restricts radial movement of the plurality of elastic members. The dynamic vibration absorber is connected to the float member and has a mass body that moves relative to the float member when the float member rotates.
 以上のような本発明では、動力伝達装置において、フロート部材に回転数適合型動吸振器を設けることによって、トランスミッションに伝達される回転速度変動をより効果的に抑えることができる。 In the present invention as described above, in the power transmission device, the rotational speed fluctuation transmitted to the transmission can be more effectively suppressed by providing the float member with the rotational speed adaptive dynamic vibration absorber.
本発明の第1実施形態によるロックアップ装置を備えたトルクコンバータの断面構成図。The cross-sectional block diagram of the torque converter provided with the lockup apparatus by 1st Embodiment of this invention. 図1のロックアップ装置を抽出して示す図。The figure which extracts and shows the lockup apparatus of FIG. 図2の一部を抽出して示す図。The figure which extracts and shows a part of FIG. フロート部材の位置決め構造を示す拡大部分図。The enlarged partial view which shows the positioning structure of a float member. 動吸振器の振り子及びそれを支持するための構成を示す正面部分図。The front fragmentary figure which shows the pendulum of a dynamic vibration damper and the structure for supporting it. エンジン回転数と回転速度変動の特性図。FIG. 3 is a characteristic diagram of engine speed and rotational speed fluctuation. 本発明の第2実施形態の模式図。The schematic diagram of 2nd Embodiment of this invention. 本発明の第3実施形態の模式図。The schematic diagram of 3rd Embodiment of this invention. 本発明の第4実施形態の模式図。The schematic diagram of 4th Embodiment of this invention. 本発明の第5実施形態の模式図。The schematic diagram of 5th Embodiment of this invention. 本発明の第6実施形態の模式図。The schematic diagram of 6th Embodiment of this invention.
 -第1実施形態-
 図1は、本発明の第1実施形態によるロックアップ装置を有するトルクコンバータ1の断面部分図である。図1の左側にはエンジン(図示せず)が配置され、図の右側にトランスミッション(図示せず)が配置されている。
-First embodiment-
FIG. 1 is a partial sectional view of a torque converter 1 having a lockup device according to a first embodiment of the present invention. An engine (not shown) is arranged on the left side of FIG. 1, and a transmission (not shown) is arranged on the right side of the figure.
 [トルクコンバータ1の全体構成]
 トルクコンバータ1は、エンジン側のクランクシャフト(図示せず)からトランスミッションの入力シャフトにトルクを伝達するための装置であり、入力側の部材に固定されるフロントカバー2と、3種の羽根車(インペラ3、タービン4、ステータ5)からなるトルクコンバータ本体6と、ロックアップ装置7と、から構成されている。
[Overall Configuration of Torque Converter 1]
The torque converter 1 is a device for transmitting torque from an engine-side crankshaft (not shown) to an input shaft of a transmission, and includes a front cover 2 fixed to an input-side member and three types of impellers ( A torque converter main body 6 including an impeller 3, a turbine 4, and a stator 5) and a lockup device 7 are included.
 フロントカバー2は、円板状の部材であり、その外周部にはトランスミッション側に突出する外周筒状部10が形成されている。インペラ3は、フロントカバー2の外周筒状部10に溶接により固定されたインペラシェル12と、その内側に固定された複数のインペラブレード13と、インペラシェル12の内周側に設けられた筒状のインペラハブ14と、から構成されている。 The front cover 2 is a disk-shaped member, and an outer peripheral cylindrical portion 10 that protrudes toward the transmission side is formed on the outer peripheral portion thereof. The impeller 3 includes an impeller shell 12 fixed to the outer peripheral cylindrical portion 10 of the front cover 2 by welding, a plurality of impeller blades 13 fixed to the inside thereof, and a cylindrical shape provided on the inner peripheral side of the impeller shell 12. The impeller hub 14.
 タービン4は流体室内でインペラ3に対向して配置されている。タービン4は、タービンシェル15と、タービンシェル15に固定された複数のタービンブレード16と、タービンシェル15の内周側に固定されたタービンハブ17と、から構成されている。タービンハブ17は、円板部17aと、フランジ部17bと、筒状部17cと、を有している。フランジ部17bは、円板部17aのタービン4側の端部からさらに外周側に延びて形成されている。このフランジ部17bにタービンシェル15の内周部が複数のリベット18によって固定されている。筒状部17cは、円板部17aの内周端部からフロントカバー2側に延びて形成されている。筒状部17cの内周部には、図示しないトランスミッションの入力シャフトがスプライン係合可能である。 The turbine 4 is disposed opposite to the impeller 3 in the fluid chamber. The turbine 4 includes a turbine shell 15, a plurality of turbine blades 16 fixed to the turbine shell 15, and a turbine hub 17 fixed to the inner peripheral side of the turbine shell 15. The turbine hub 17 has a disk portion 17a, a flange portion 17b, and a cylindrical portion 17c. The flange portion 17b is formed to extend further to the outer peripheral side from the end portion of the disc portion 17a on the turbine 4 side. The inner peripheral portion of the turbine shell 15 is fixed to the flange portion 17 b by a plurality of rivets 18. The cylindrical portion 17c is formed to extend from the inner peripheral end of the disc portion 17a to the front cover 2 side. An input shaft of a transmission (not shown) can be spline-engaged with the inner peripheral portion of the cylindrical portion 17c.
 ステータ5は、インペラ3とタービン4の内周部間に配置され、タービン4からインペラ3へと戻る作動油を整流するための機構である。ステータ5は主に、ステータキャリア20と、その外周面に設けられた複数のステータブレード21と、から構成されている。ステータキャリア20は、ワンウエイクラッチ22を介して図示しない固定シャフトに支持されている。 The stator 5 is a mechanism for rectifying the hydraulic oil that is disposed between the impeller 3 and the inner peripheral portion of the turbine 4 and returns from the turbine 4 to the impeller 3. The stator 5 mainly includes a stator carrier 20 and a plurality of stator blades 21 provided on the outer peripheral surface thereof. The stator carrier 20 is supported by a fixed shaft (not shown) via a one-way clutch 22.
 [ロックアップ装置7の全体構成]
 図2に、図1のロックアップ装置7を抽出して示している。ロックアップ装置7は、フロントカバー2とタービン4との間の空間に配置されている。ロックアップ装置7は、ピストン24と、ドライブプレート25と、外周側トーションスプリング(第1弾性部材)26と、フロート部材27と、中間部材28と、内周側トーションスプリング29と、出力側回転部材としてのハブフランジ30と、動吸振器31と、を有している。なお、ピストン24及びドライブプレート25により入力側回転部材が構成されている。
[Overall Configuration of Lockup Device 7]
FIG. 2 shows the lock-up device 7 extracted from FIG. The lockup device 7 is disposed in a space between the front cover 2 and the turbine 4. The lock-up device 7 includes a piston 24, a drive plate 25, an outer peripheral side torsion spring (first elastic member) 26, a float member 27, an intermediate member 28, an inner peripheral side torsion spring 29, and an output side rotating member. As a hub flange 30 and a dynamic vibration absorber 31. The piston 24 and the drive plate 25 constitute an input side rotating member.
 [ピストン24]
 ピストン24は、円板状のプレートであり、フロントカバー2のトランスミッション側に配置されている。ピストン24の内周端には、タービン4側に延びる筒状部24aが形成されている。筒状部24aは、タービンハブ17の筒状部17cの外周面に軸方向移動自在及び相対回転自在に支持されている。また、ピストン24の外周部には平坦部24bが形成されている。平坦部24bのフロントカバー2側の面には、環状の摩擦材33が固定されている。この摩擦材33がフロントカバー2に押し付けられることによって、フロントカバー2からピストン24にトルクが伝達される。すなわち、ピストン24と摩擦材33によってクラッチ部が構成されている。
[Piston 24]
The piston 24 is a disk-shaped plate and is disposed on the transmission side of the front cover 2. A cylindrical portion 24 a extending toward the turbine 4 is formed at the inner peripheral end of the piston 24. The tubular portion 24a is supported on the outer peripheral surface of the tubular portion 17c of the turbine hub 17 so as to be axially movable and relatively rotatable. A flat portion 24 b is formed on the outer peripheral portion of the piston 24. An annular friction material 33 is fixed to the surface of the flat portion 24b on the front cover 2 side. When the friction material 33 is pressed against the front cover 2, torque is transmitted from the front cover 2 to the piston 24. That is, the piston 24 and the friction material 33 constitute a clutch portion.
 なお、タービンハブ17の筒状部17cの外周面にはシール部材35が装着されており、これによりピストン24の内周面とタービンハブ17との間がシールされている。また、ピストン24は、筒状部24aの先端がタービンハブ17の円板部17aの側面に当接することによって、タービン4側への軸方向移動が規制されている。 Note that a seal member 35 is attached to the outer peripheral surface of the cylindrical portion 17 c of the turbine hub 17, thereby sealing between the inner peripheral surface of the piston 24 and the turbine hub 17. Further, the axial movement of the piston 24 toward the turbine 4 is restricted by the tip of the cylindrical portion 24 a coming into contact with the side surface of the disc portion 17 a of the turbine hub 17.
 [ドライブプレート25]
 ドライブプレート25は、ピストン24の外周部において、タービン4側の側面に固定されている。具体的には、ドライブプレート25は、円板状に形成されており、内周部25aがピストン24のトランスミッション側の面にリベット37により固定されている。ドライブプレート25の外周部には複数の係合部25bが形成されている。係合部25bは、ドライブプレート25の外周端部をトランスミッション側に折り曲げて形成されている。係合部25bは外周側トーションスプリング26の円周方向の両端に係合している。
[Drive plate 25]
The drive plate 25 is fixed to the side surface on the turbine 4 side in the outer peripheral portion of the piston 24. Specifically, the drive plate 25 is formed in a disk shape, and the inner peripheral portion 25 a is fixed to the transmission side surface of the piston 24 by a rivet 37. A plurality of engaging portions 25 b are formed on the outer peripheral portion of the drive plate 25. The engaging portion 25b is formed by bending the outer peripheral end portion of the drive plate 25 to the transmission side. The engaging portion 25 b is engaged with both ends of the outer peripheral side torsion spring 26 in the circumferential direction.
 また、ドライブプレート25の径方向中間部には、トランスミッション側に突出する複数のスプリング支持部25cが形成されている。複数のスプリング支持部25cは、円周方向に所定の間隔で形成されている。各スプリング支持部25cは、外周側トーションスプリング26の内周側を支持している。 Further, a plurality of spring support portions 25c projecting toward the transmission side are formed at the radial intermediate portion of the drive plate 25. The plurality of spring support portions 25c are formed at predetermined intervals in the circumferential direction. Each spring support portion 25 c supports the inner peripheral side of the outer peripheral side torsion spring 26.
 [外周側トーションスプリング26及びフロート部材27]
 複数の外周側トーションスプリング26は、自由状態で、すなわちロックアップ装置7に組み付ける前の単独の状態で、外周側に膨らむ円弧状に形成されたアークスプリングである。
[Outer peripheral side torsion spring 26 and float member 27]
The plurality of outer peripheral torsion springs 26 are arc springs formed in an arc shape that swells to the outer peripheral side in a free state, that is, in a single state before being assembled to the lockup device 7.
 フロート部材27は、図3に拡大して示すように、環状のプレート部材である。フロート部材27の外周部は、フロントカバー2側に折り曲げられ、筒状部27aが形成されている。そして、この筒状部27aには、円周方向に所定の間隔で複数のスプリング収容部27bが形成されている。スプリング収容部27bは、筒状部27aのフロントカバー2側の先端部を、内周側に折り曲げて形成されている。スプリング収容部27bには、外周側トーションスプリング26が収容されている。 The float member 27 is an annular plate member as shown in an enlarged view in FIG. The outer peripheral portion of the float member 27 is bent toward the front cover 2 to form a cylindrical portion 27a. The tubular portion 27a is formed with a plurality of spring accommodating portions 27b at predetermined intervals in the circumferential direction. The spring accommodating portion 27b is formed by bending the front end portion of the cylindrical portion 27a on the front cover 2 side toward the inner peripheral side. The outer periphery side torsion spring 26 is accommodated in the spring accommodating portion 27b.
 フロート部材27は、他の部材、すなわちドライブプレート25や中間部材28及びハブフランジ30に対して自由に回転可能である。また、スプリング収容部27bと外周側トーションスプリング26とは係合していないので、フロート部材27は外周側トーションスプリング26に対しても同期して回転しない。 The float member 27 is freely rotatable with respect to other members, that is, the drive plate 25, the intermediate member 28, and the hub flange 30. Further, since the spring accommodating portion 27 b and the outer peripheral side torsion spring 26 are not engaged with each other, the float member 27 does not rotate in synchronization with the outer peripheral side torsion spring 26.
 一方、外周側トーションスプリング26が圧縮されて、また遠心力により外周側に膨らむように変形すると、外周側トーションスプリング26の外周部がスプリング収容部27bの内周壁と摺動する。この場合は、外周側トーションスプリング26とフロート部材27との間に摩擦抵抗が生じ、フロート部材27は外周側トーションスプリング26と連れ回ることになる。 On the other hand, when the outer peripheral side torsion spring 26 is compressed and deformed so as to expand to the outer peripheral side due to centrifugal force, the outer peripheral part of the outer peripheral side torsion spring 26 slides with the inner peripheral wall of the spring accommodating part 27b. In this case, frictional resistance is generated between the outer peripheral side torsion spring 26 and the float member 27, and the float member 27 is rotated with the outer peripheral side torsion spring 26.
 [中間部材28]
 図3に示すように、中間部材28は、外周側トーションスプリング26と内周側トーションスプリング29とを直列に作用させるために設けられた両者を連結する部材である。中間部材28は、内周側トーションスプリング29を保持する機能も有している。中間部材28は、第1プレート41と第2プレート42とから構成されており、ドライブプレート25及びハブフランジ30に対して相対回転自在である。
[Intermediate member 28]
As shown in FIG. 3, the intermediate member 28 is a member that connects both the outer peripheral side torsion spring 26 and the inner peripheral side torsion spring 29 so as to act in series. The intermediate member 28 also has a function of holding the inner peripheral side torsion spring 29. The intermediate member 28 includes a first plate 41 and a second plate 42, and is rotatable relative to the drive plate 25 and the hub flange 30.
 第1及び第2プレート41,42はピストン24とタービンシェル15との間に配置された環状かつ円板状の部材である。第1プレート41と第2プレート42とは、軸方向に間隔をあけて配置されている。第1プレート41がフロントカバー2側に配置され、第2プレート42がタービン4側に配置されている。 The first and second plates 41 and 42 are annular and disk-shaped members disposed between the piston 24 and the turbine shell 15. The first plate 41 and the second plate 42 are arranged with a space in the axial direction. The first plate 41 is disposed on the front cover 2 side, and the second plate 42 is disposed on the turbine 4 side.
 第1プレート41の外周部と第2プレート42の径方向中間部とは、複数のストップピン43によって互いに固定されている。したがって、第1プレート41と第2プレート42とは、相対回転不能でかつ軸方向に移動不能に連結されている。なお、ストップピン43の胴部の両端面が各プレーと41,42の互いに対向する側面に当接し、これにより第1プレート41と第2プレート42との間が所定の間隔に設定されている。 The outer peripheral portion of the first plate 41 and the radial intermediate portion of the second plate 42 are fixed to each other by a plurality of stop pins 43. Therefore, the 1st plate 41 and the 2nd plate 42 are connected so that relative rotation is impossible and it cannot move in the direction of an axis. Note that both end surfaces of the body portion of the stop pin 43 abut against the mutually opposing side surfaces of each play 41, 42, thereby setting a predetermined distance between the first plate 41 and the second plate 42. .
 第2プレート42の外周部は、第1プレート41の外周部よりもさらに外周側に突出する複数の突出部42aを有している。複数の突出部42aは円周方向に所定の間隔で形成されている。突出部42aの先端(外周端部)は、フロントカバー2側に折り曲げられ、外周側トーションスプリング26の端面に当接する複数の係止部42bが形成されている。そして、2つの係止部42bの間に、1つの外周側トーションスプリング26が配置されている。 The outer peripheral portion of the second plate 42 has a plurality of protruding portions 42 a that protrude further to the outer peripheral side than the outer peripheral portion of the first plate 41. The plurality of protrusions 42a are formed at predetermined intervals in the circumferential direction. The front end (outer peripheral end) of the protruding portion 42 a is bent toward the front cover 2, and a plurality of locking portions 42 b that contact the end surface of the outer peripheral torsion spring 26 are formed. One outer torsion spring 26 is arranged between the two locking portions 42b.
 なお、2つの隣接する突出部42aの間には、ドライブプレート25のスプリング支持部25cの先端に形成されたストッパ爪25dが配置されている。したがって、2つの隣接する突出部42aの間において、ストッパ爪25dが回転方向に移動し得る範囲で、ドライブプレート25と中間部材28(第2プレート42)とは相対回転が可能である。言い換えれば、ストッパ爪25dが突出部42aに当接することによって、ドライブプレート25と中間部材28との相対回転が禁止される。 A stopper claw 25d formed at the tip of the spring support portion 25c of the drive plate 25 is disposed between two adjacent protruding portions 42a. Therefore, the drive plate 25 and the intermediate member 28 (second plate 42) can be rotated relative to each other within a range in which the stopper claw 25d can move in the rotational direction between two adjacent protruding portions 42a. In other words, relative rotation between the drive plate 25 and the intermediate member 28 is prohibited by the stopper claw 25d coming into contact with the protruding portion 42a.
 また、第1プレート41及び第2プレート42には、それぞれ軸方向に貫通する窓部41c,42cが形成されている。窓部41c,42cは、円周方向に延びて形成されており、内周部と外周部には、軸方向に切り起こされた切り起こし部が形成されている。この両プレート41,42の窓部41c,42c内に内周側トーションスプリング29が配置されている。そして、内周側トーションスプリング29は窓部41c,42cによって円周方向両端及び径方向両側が支持されている。さらに、内周側トーションスプリング29は窓部41c,42cの切り起こし部によって径方向及び軸方向への飛び出しが規制されている。 Further, the first plate 41 and the second plate 42 are respectively formed with windows 41c and 42c penetrating in the axial direction. The window portions 41c and 42c are formed to extend in the circumferential direction, and a cut-and-raised portion that is cut and raised in the axial direction is formed on the inner peripheral portion and the outer peripheral portion. An inner peripheral side torsion spring 29 is arranged in the window portions 41c and 42c of both the plates 41 and 42. The inner circumferential side torsion spring 29 is supported at both ends in the circumferential direction and both sides in the radial direction by the windows 41c and 42c. Further, the inner periphery side torsion spring 29 is restricted from projecting in the radial direction and the axial direction by the cut and raised portions of the window portions 41c and 42c.
 [ハブフランジ30]
 図3等に示すように、ハブフランジ30は、環状かつ円板状の部材であり、内周部がタービンシェル15とともにリベット18によってタービンハブ17のフランジ部17bに固定されている。このハブフランジ30は、第1プレート41と第2プレート42との軸方向間に、両プレート41,42に対して相対回転可能に配置されている。そして、ハブフランジ30の外周部には、第1及び第2プレート41,42の窓部41c,42cに対応して、窓孔30aが形成されている。窓孔30aは軸方向に貫通する孔であり、この窓孔30aに内周側トーションスプリング29が配置されている。
[Hub flange 30]
As shown in FIG. 3 and the like, the hub flange 30 is an annular and disk-shaped member, and an inner peripheral portion thereof is fixed to the flange portion 17 b of the turbine hub 17 by a rivet 18 together with the turbine shell 15. The hub flange 30 is disposed between the first plate 41 and the second plate 42 so as to be rotatable relative to the plates 41 and 42 between the first plate 41 and the second plate 42. A window hole 30 a is formed in the outer peripheral portion of the hub flange 30 corresponding to the window portions 41 c and 42 c of the first and second plates 41 and 42. The window hole 30a is a hole penetrating in the axial direction, and an inner peripheral torsion spring 29 is disposed in the window hole 30a.
 ハブフランジ30の外周部には、複数の切欠き30bが形成されている。この切欠き30bを、ストップピン43が軸方向に貫通している。したがって、切欠き30b内において、ストップピン43が回転方向に移動し得る範囲で、中間部材28とハブフランジ30とは相対回転が可能である。言い換えれば、ストップピン43が切欠き30bの端面に当接することによって、中間部材28とハブフランジ30との相対回転が禁止される。 A plurality of notches 30 b are formed on the outer peripheral portion of the hub flange 30. A stop pin 43 passes through the notch 30b in the axial direction. Therefore, the intermediate member 28 and the hub flange 30 can rotate relative to each other within a range in which the stop pin 43 can move in the rotation direction in the notch 30b. In other words, relative rotation between the intermediate member 28 and the hub flange 30 is prohibited by the stop pin 43 coming into contact with the end face of the notch 30b.
 [フロート部材27の位置決め]
 図4に拡大して示すように、ハブフランジ30の内周部には、タービンシェル15に固定された部分から外周側に直線状に延びる規制部30cが形成されている。また、ハブフランジ30の内周部とタービンシェル15との間には、フロート部材27を支持する支持部材45が設けられている。支持部材45は、ハブフランジ30とともに、リベット18によってタービンシェル15に固定されている。支持部材45は、環状で円板状の部材であり、外周部に、径方向支持部45aと軸方向支持部45bとを有している。径方向支持部45aは軸方向に延びる筒状に形成されている。軸方向支持部45bは径方向支持部45aの端部から外周側に延びて形成されている。
[Positioning of Float Member 27]
As shown in an enlarged view in FIG. 4, a regulating portion 30 c that extends linearly from the portion fixed to the turbine shell 15 to the outer circumferential side is formed on the inner circumferential portion of the hub flange 30. A support member 45 that supports the float member 27 is provided between the inner peripheral portion of the hub flange 30 and the turbine shell 15. The support member 45 is fixed to the turbine shell 15 by the rivet 18 together with the hub flange 30. The support member 45 is an annular and disk-shaped member, and has a radial support portion 45a and an axial support portion 45b on the outer peripheral portion. The radial support portion 45a is formed in a cylindrical shape extending in the axial direction. The axial support portion 45b is formed to extend from the end portion of the radial support portion 45a to the outer peripheral side.
 このような構成により、フロート部材27は、支持部材45の径方向支持部45aにより径方向に位置決めされ、また、ハブフランジ30の規制部30cと支持部材45の軸方向支持部45bに挟まれることによって軸方向に位置決めされている。 With such a configuration, the float member 27 is positioned in the radial direction by the radial support portion 45a of the support member 45, and is sandwiched between the restriction portion 30c of the hub flange 30 and the axial support portion 45b of the support member 45. Is positioned in the axial direction.
 [動吸振器31]
 動吸振器31は、フロート部材27の回転時に、フロート部材27に対して相対的に移動することにより振動を減衰するものである。図2,図3及び図5に示すように、動吸振器31は、複数の振り子50と、保持プレート51と、複数のピン52と、を有している。
[Dynamic vibration absorber 31]
The dynamic vibration absorber 31 attenuates vibrations by moving relative to the float member 27 when the float member 27 rotates. As shown in FIGS. 2, 3, and 5, the dynamic vibration absorber 31 includes a plurality of pendulums 50, a holding plate 51, and a plurality of pins 52.
 振り子50は、図1のV-V線断面図である図5に示すように、外周面が外周側に膨らむように形成された扇形状である。振り子50には、円周方向に並べて2つの溝50aが形成されている。2つの溝50aは線対称に形成されている。また、2つの溝50aは、中央部が内周側に凹む概略円弧状に形成されている。 As shown in FIG. 5, which is a cross-sectional view taken along line VV of FIG. 1, the pendulum 50 has a fan shape formed so that the outer peripheral surface swells to the outer peripheral side. The pendulum 50 is formed with two grooves 50a arranged in the circumferential direction. The two grooves 50a are formed in line symmetry. Further, the two grooves 50a are formed in a substantially arc shape whose central portion is recessed toward the inner peripheral side.
 保持プレート51は、環状で円板状の部材であり、径方向の中間部及び内周部が、それぞれ複数のリベット55,56によってフロート部材27に固定されている。なお、外周側のリベット55は、隣接する振り子50の円周方向間に配置されている。そして、外周側のリベット55の外周面には弾性部材からなるカラー58が装着されている。このカラー58に振り子50の円周方向の端面50bが当接することによって、振り子50が作動した際の異音を抑えることができる。 The holding plate 51 is an annular and disk-shaped member, and a radially intermediate portion and an inner peripheral portion are fixed to the float member 27 by a plurality of rivets 55 and 56, respectively. The outer rivet 55 is disposed between the adjacent pendulums 50 in the circumferential direction. A collar 58 made of an elastic member is attached to the outer peripheral surface of the rivet 55 on the outer peripheral side. When the end face 50b in the circumferential direction of the pendulum 50 is in contact with the collar 58, abnormal noise when the pendulum 50 is activated can be suppressed.
 フロート部材27及び保持プレート51には、円周方向に並べて複数の溝27c,51cが形成されている。なお、図5では、フロート部材27の溝27cのみが示されており、保持プレート51の溝51cは表れていない。しかし、これらの溝27c,51cはまったく同じ形状であるので、ここではフロート部材27の溝27cについて説明する。 The float member 27 and the holding plate 51 are formed with a plurality of grooves 27c and 51c arranged in the circumferential direction. In FIG. 5, only the groove 27c of the float member 27 is shown, and the groove 51c of the holding plate 51 does not appear. However, since these grooves 27c and 51c have exactly the same shape, the groove 27c of the float member 27 will be described here.
 溝27cは、振り子50が中立位置に位置しているときの振り子50の溝50aの位置に対応する位置に形成されている。各振り子50に対応して形成された2つの溝27cは線対称に形成されている。また、各溝27cは、振り子50の溝50aとは逆に、中央部が外周側に膨らむ概略円弧状に形成されている。 The groove 27c is formed at a position corresponding to the position of the groove 50a of the pendulum 50 when the pendulum 50 is located at the neutral position. The two grooves 27c formed corresponding to each pendulum 50 are formed in line symmetry. Moreover, each groove | channel 27c is formed in the substantially circular arc shape where a center part swells to the outer peripheral side contrary to the groove | channel 50a of the pendulum 50. FIG.
 図5に示すように、複数のピン52は、各振り子50に2つずつ割り当てられている。ピン52は、大径部52aと、大径部52aの両端に設けられた2つの小径部52bと、を有している。ピン52の大径部52aは、振り子50の溝50aに、溝50aに沿って移動可能に挿入されている。また小径部52bは、フロート部材27の溝27c及び保持プレート51の溝51cに、各溝27c,51cに沿って移動可能に挿入されている。 As shown in FIG. 5, two pins 52 are assigned to each pendulum 50. The pin 52 has a large diameter part 52a and two small diameter parts 52b provided at both ends of the large diameter part 52a. The large diameter portion 52a of the pin 52 is inserted into the groove 50a of the pendulum 50 so as to be movable along the groove 50a. The small diameter portion 52b is inserted into the groove 27c of the float member 27 and the groove 51c of the holding plate 51 so as to be movable along the grooves 27c and 51c.
 また、ピン52の大径部52aの軸方向長さによってフロート部材27と保持プレート51との軸方向の間隔が設定されている。この大径部52aの軸方向長さは、振り子50の厚み(軸方向長さ)より若干大きく設定されている。 Further, the axial distance between the float member 27 and the holding plate 51 is set by the axial length of the large diameter portion 52a of the pin 52. The axial length of the large diameter portion 52a is set slightly larger than the thickness (axial length) of the pendulum 50.
 以上のような構成では、振り子50は、フロート部材27及び保持プレート51に対して、回転方向に搖動することが可能である。 With the above configuration, the pendulum 50 can swing in the rotational direction with respect to the float member 27 and the holding plate 51.
 [動作]
 まず、トルクコンバータ本体6の動作について簡単に説明する。フロントカバー2及びインペラ3が回転している状態では、インペラ3からタービン4へ作動油が流れ、作動油を介してインペラ3からタービン4へトルクが伝達される。タービン4に伝達されたトルクはタービンハブ17を介してトランスミッションの入力シャフト(図示せず)に伝達される。
[Operation]
First, the operation of the torque converter body 6 will be briefly described. In a state where the front cover 2 and the impeller 3 are rotating, hydraulic oil flows from the impeller 3 to the turbine 4, and torque is transmitted from the impeller 3 to the turbine 4 through the hydraulic oil. Torque transmitted to the turbine 4 is transmitted to an input shaft (not shown) of the transmission via the turbine hub 17.
 トルクコンバータ1の速度比があがり、入力シャフトが一定の回転速度になると、フロントカバー2とピストン24との間の作動油がドレンされ、ピストン24のタービン4側に作動油が供給される。すると、ピストン24がフロントカバー2側に移動させられる。この結果、ピストン24に固定された摩擦材33がフロントカバー2に押圧され、ロックアップ装置7がオンになる。 When the speed ratio of the torque converter 1 is increased and the input shaft reaches a constant rotational speed, the hydraulic oil between the front cover 2 and the piston 24 is drained, and the hydraulic oil is supplied to the turbine 24 side of the piston 24. Then, the piston 24 is moved to the front cover 2 side. As a result, the friction material 33 fixed to the piston 24 is pressed against the front cover 2, and the lockup device 7 is turned on.
 以上のようなクラッチオン状態では、トルクは、フロントカバー2→ピストン24→ドライブプレート25→外周側トーションスプリング26→中間部材28→内周側トーションスプリング29→ハブフランジ30の経路で伝達され、タービンハブ17を介してトランスミッション側に出力される。 In the clutch-on state as described above, torque is transmitted through the path of the front cover 2 → piston 24 → drive plate 25 → outer side torsion spring 26 → intermediate member 28 → inner side torsion spring 29 → hub flange 30 and turbine It is output to the transmission side via the hub 17.
 ロックアップ装置7においては、トルクを伝達するとともに、フロントカバー2から入力される回転速度変動を吸収・減衰する。具体的には、ロックアップ装置7において捩り振動が発生すると、外周側トーションスプリング26と内周側トーションスプリング29とがドライブプレート25とハブフランジ30との間で直列に圧縮される。これらのトーションスプリング26,29の作動及び各部の摩擦抵抗(ヒステリシストルク)によって、回転速度変動が減衰される。 The lockup device 7 transmits torque and absorbs and attenuates fluctuations in rotational speed input from the front cover 2. Specifically, when torsional vibration occurs in the lockup device 7, the outer peripheral side torsion spring 26 and the inner peripheral side torsion spring 29 are compressed in series between the drive plate 25 and the hub flange 30. The rotation speed fluctuation is attenuated by the operation of these torsion springs 26 and 29 and the frictional resistance (hysteresis torque) of each part.
 [動吸振器31の動作]
 外周側トーションスプリング26が圧縮されると、円周方向の中央部分が径方向外方に膨らむように変形する。また、遠心力によって、外周側トーションスプリング26は径方向外方に移動しようとする。
[Operation of dynamic vibration absorber 31]
When the outer peripheral side torsion spring 26 is compressed, the circumferential central portion is deformed so as to expand radially outward. Further, the outer peripheral side torsion spring 26 tends to move radially outward due to the centrifugal force.
 以上のような状況では、外周側トーションスプリング26の外周部とフロート部材27の内周壁とが摺動し、両者の間に摩擦抵抗が生じる。このため、フロート部材27は、外周側トーションスプリング26の回転方向と同方向に、外周側トーションスプリング26の捩じり角度のほぼ1/2の回転角度だけ連れ回ることになる。 In the above situation, the outer peripheral portion of the outer peripheral side torsion spring 26 and the inner peripheral wall of the float member 27 slide, and a frictional resistance is generated between them. For this reason, the float member 27 is rotated in the same direction as the rotation direction of the outer periphery side torsion spring 26 by a rotation angle that is approximately ½ of the twist angle of the outer periphery side torsion spring 26.
 一方、フロート部材27には動吸振器31が装着されているので、回転速度変動が生じたときには、振り子50がフロート部材27に対して揺動することになる。このとき、振り子50には遠心力が作用しているので、振り子50には、円周方向の中心位置に戻ろうとする力が作用する。この振り子50の作用によって、さらに振動を抑えることができる。 On the other hand, since the dynamic vibration absorber 31 is attached to the float member 27, the pendulum 50 swings with respect to the float member 27 when the rotational speed fluctuates. At this time, since centrifugal force is acting on the pendulum 50, a force for returning to the center position in the circumferential direction acts on the pendulum 50. The action of the pendulum 50 can further suppress vibration.
 なお、振り子50の動作時に、回転速度変動が大きい場合は、振り子50の揺動範囲も大きくなる。この場合は、振り子50の円周方向の端面50bがカラー58に当接し、振り子50の揺動範囲が規制される。 Note that if the rotational speed fluctuation is large during the operation of the pendulum 50, the swing range of the pendulum 50 also becomes large. In this case, the end surface 50b in the circumferential direction of the pendulum 50 contacts the collar 58, and the swing range of the pendulum 50 is restricted.
 以上の動吸振器31による作用効果を従来装置と比較して図6に示している。図6において、横軸はエンジン回転数、縦軸は出力側の回転速度変動である。そして、特性C1はロックアップ装置の中間部材に動吸振器31を装着した装置(例えば特許文献2)場合の特性を、特性C2は本実施形態の特性を示している。なお、いずれも入力側に不規則な次数が現れた場合の特性である。 FIG. 6 shows the effects of the above dynamic vibration absorber 31 in comparison with the conventional apparatus. In FIG. 6, the horizontal axis represents the engine speed, and the vertical axis represents the rotational speed fluctuation on the output side. And the characteristic C1 has shown the characteristic in the apparatus (for example, patent document 2) which attached the dynamic vibration absorber 31 to the intermediate member of the lockup apparatus, and the characteristic C2 has shown the characteristic of this embodiment. Note that both are characteristics when an irregular order appears on the input side.
 図6から明らかなように、本実施形態では、特に低回転数域において、従来装置における変動を大きく抑えることができる。また、比較的高い回転数域においても、従来装置における変動を抑えることができる。これは、フロート部材27が外周側トーションスプリング26と係合されておらず、また他の部材と相対回転自在であって、フロート部材27の振動が振動系から除外されているからである。 As is clear from FIG. 6, in this embodiment, fluctuations in the conventional apparatus can be greatly suppressed, particularly in the low rotation speed range. Further, fluctuations in the conventional apparatus can be suppressed even in a relatively high rotational speed range. This is because the float member 27 is not engaged with the outer peripheral side torsion spring 26 and is rotatable relative to other members, and the vibration of the float member 27 is excluded from the vibration system.
 -第2実施形態-
 図7に本発明の第2実施形態の模式図を示している。この第2実施形態では、内周側トーションスプリング29を支持するフロート部材61を設け、このフロート部材61に動吸振器31を連結している。動吸振器31及び第2実施形態における他の構成は、基本的に第1実施形態と同様である。
-Second Embodiment-
FIG. 7 shows a schematic diagram of the second embodiment of the present invention. In the second embodiment, a float member 61 that supports the inner peripheral torsion spring 29 is provided, and the dynamic vibration absorber 31 is coupled to the float member 61. The other configurations of the dynamic vibration absorber 31 and the second embodiment are basically the same as those of the first embodiment.
 -第3実施形態-
 図8に本発明の第3実施形態の模式図を示している。第1実施形態では、外周側トーションスプリング26と内周側トーションスプリング29とを有していたが、この第3実施形態では、一方のみのトーションスプリング64が設けられている。
-Third embodiment-
FIG. 8 shows a schematic diagram of the third embodiment of the present invention. In the first embodiment, the outer peripheral side torsion spring 26 and the inner peripheral side torsion spring 29 are provided, but in the third embodiment, only one of the torsion springs 64 is provided.
 すなわち、第3実施形態では、ピストン24とタービン4(具体的にはタービンハブ17)との間には、1種類のトーションスプリング64が設けられている。そして、このトーションスプリング64に対して、第1実施形態と同様の構成のフロート部材65が設けられている。フロート部材65は、トーションスプリング64に係合していないが、第1実施形態と同様に、両者の間の摩擦抵抗によって所定の範囲でトーションスプリング64に対して連れ回りが可能である。 That is, in the third embodiment, one type of torsion spring 64 is provided between the piston 24 and the turbine 4 (specifically, the turbine hub 17). The torsion spring 64 is provided with a float member 65 having the same configuration as that of the first embodiment. Although the float member 65 is not engaged with the torsion spring 64, the float member 65 can be rotated with respect to the torsion spring 64 within a predetermined range by the frictional resistance between them as in the first embodiment.
 動吸振器31は、フロート部材65に装着されており、その構成は第1実施形態と同じである The dynamic vibration absorber 31 is mounted on the float member 65, and the configuration thereof is the same as that of the first embodiment.
 -第4実施形態-
 図9に第4実施形態の模式図を示している。第4実施形態では、外周側トーションスプリング26及び内周側トーションスプリング29に加えて、中間トーションスプリング67を有している。フロート部材68は、中間トーションスプリング67を収容するように設けられている。前記同様に、フロート部材68は、中間トーションスプリング67に係合していないが、両者の間の摩擦抵抗によって所定の範囲で中間トーションスプリング67に対して連れ回りが可能である。
-Fourth embodiment-
FIG. 9 shows a schematic diagram of the fourth embodiment. In the fourth embodiment, an intermediate torsion spring 67 is provided in addition to the outer periphery side torsion spring 26 and the inner periphery side torsion spring 29. The float member 68 is provided so as to accommodate the intermediate torsion spring 67. Similarly to the above, the float member 68 is not engaged with the intermediate torsion spring 67 but can be rotated with respect to the intermediate torsion spring 67 within a predetermined range by the frictional resistance between them.
 動吸振器31は、フロート部材68に装着されており、その構成は他の実施形態と同じである。 The dynamic vibration absorber 31 is mounted on the float member 68, and the configuration thereof is the same as in the other embodiments.
 -第5実施形態-
 図10に第5実施形態の模式図を示している。第5実施形態では、図8の第3実施形態に加えて、フロート部材65と出力側の回転部材との間にヒステリシストルク発生機構70をさらに備えている。ここでは、フロート部材65がトーションスプリング64に対して連れ回るときに、ヒステリシストルク発生機構70によってヒステリシストルクが発生する。
-Fifth embodiment-
FIG. 10 shows a schematic diagram of the fifth embodiment. In the fifth embodiment, in addition to the third embodiment of FIG. 8, a hysteresis torque generating mechanism 70 is further provided between the float member 65 and the output-side rotating member. Here, hysteresis torque is generated by the hysteresis torque generating mechanism 70 when the float member 65 is rotated around the torsion spring 64.
 なお、ヒステリシストルク発生機構は、フロート部材65と出力側の回転部材との間に代えて、フロート部材65と入力側の部材との間に設けてもよい。 The hysteresis torque generating mechanism may be provided between the float member 65 and the input side member instead of between the float member 65 and the output side rotation member.
 -第6実施形態-
 図11に第6実施形態の模式図を示している。第6実施形態では、図8の第3実施形態に加えて、フロート部材65と出力側の回転部材との間にストッパ機構72をさらに備えている。ストッパ機構72は、フロート部材65の回転方向の移動を所定の範囲に規制する。
-Sixth Embodiment-
FIG. 11 shows a schematic diagram of the sixth embodiment. In the sixth embodiment, in addition to the third embodiment of FIG. 8, a stopper mechanism 72 is further provided between the float member 65 and the rotating member on the output side. The stopper mechanism 72 restricts the movement of the float member 65 in the rotation direction within a predetermined range.
 なお、ストッパ機構は、フロート部材65と入力側の回転部材との間に設けても良い。 Note that the stopper mechanism may be provided between the float member 65 and the input side rotating member.
 [他の実施形態]
 本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形又は修正が可能である。
[Other Embodiments]
The present invention is not limited to the above-described embodiments, and various changes or modifications can be made without departing from the scope of the present invention.
 (a)前記各実施形態では、本発明をトルクコンバータのロックアップ装置に適用したが、他の動力伝達装置にも同様に適用することができる。 (A) In each of the embodiments described above, the present invention is applied to the lock-up device of the torque converter, but can be similarly applied to other power transmission devices.
 (b)動吸振器の構成は前記各実施形態に限定されるものではなく、種々の変形が可能である。例えば、複数の振り子に代えて、別の質量体を設けてもよい。 (B) The configuration of the dynamic vibration absorber is not limited to the above-described embodiments, and various modifications are possible. For example, another mass body may be provided instead of the plurality of pendulums.
産業上の利用分野Industrial application fields
 本発明の動力伝達装置では、フロート部材に回転数適合型動吸振器を設けることによって、トランスミッションに伝達される回転速度変動をより効果的に抑えることができる。 In the power transmission device of the present invention, the rotational speed fluctuation transmitted to the transmission can be more effectively suppressed by providing the float member with a rotational speed adaptive dynamic vibration absorber.
1 トルクコンバータ
2 フロントカバー
4 タービン
6 トルクコンバータ本体
7 ロックアップ装置
24 ピストン
25 ドライブプレート
26 外周側トーションスプリング
27,61,65,68 フロート部材
28 中間部材
29 内周側トーションスプリング
30 ハブフランジ
31 動吸振器
50 振り子
DESCRIPTION OF SYMBOLS 1 Torque converter 2 Front cover 4 Turbine 6 Torque converter main body 7 Lock-up device 24 Piston 25 Drive plate 26 Outer side torsion springs 27, 61, 65, 68 Float member 28 Intermediate member 29 Inner side torsion spring 30 Hub flange 31 Dynamic vibration absorption 50 pendulum

Claims (8)

  1.  エンジンからトランスミッションに動力を伝達するための動力伝達装置であって、
     エンジンからの動力が入力される入力側回転部材と、
     前記トランスミッションに動力を出力する出力側回転部材と、
     前記入力側回転部材と前記出力側回転部材とを相対回転自在に連結する第1弾性部材と、
     前記入力側回転部材、前記出力側回転部材、及び前記第1弾性部材に対して相対回転可能であり、回転時に前記第1弾性部材に対して摺動するフロート部材と、
     前記フロート部材に連結され、前記フロート部材の回転時に前記フロート部材に対して相対的に移動する質量体を有する回転数適合型動吸振器と、
    を備えた動力伝達装置。
    A power transmission device for transmitting power from an engine to a transmission,
    An input-side rotating member to which power from the engine is input;
    An output-side rotating member that outputs power to the transmission;
    A first elastic member that connects the input side rotating member and the output side rotating member so as to be relatively rotatable;
    A float member that is rotatable relative to the input side rotation member, the output side rotation member, and the first elastic member, and that slides relative to the first elastic member during rotation;
    A rotational speed adaptive dynamic vibration absorber connected to the float member and having a mass body that moves relative to the float member when the float member rotates;
    Power transmission device with
  2.  前記動吸振器の質量体は複数の振り子部材である、請求項1に記載の動力伝達装置。 The power transmission device according to claim 1, wherein the mass body of the dynamic vibration absorber is a plurality of pendulum members.
  3.  前記第1弾性部材は回転方向に延びるコイルスプリングであり、
     前記フロート部材は、前記コイルスプリングの外周部に接触可能であり、前記コイルスプリングの径方向の移動を規制する、
    請求項1又は2に記載の動力伝達装置。
    The first elastic member is a coil spring extending in a rotation direction;
    The float member is capable of contacting an outer peripheral portion of the coil spring, and restricts radial movement of the coil spring;
    The power transmission device according to claim 1 or 2.
  4.  前記コイルスプリングは、自由状態で回転方向に円弧状に延びるアークスプリングである、請求項3に記載の動力伝達装置。 The power transmission device according to claim 3, wherein the coil spring is an arc spring that extends in an arc shape in a rotational direction in a free state.
  5.  前記第1弾性部材の入力側及び出力側の少なくとも一方に前記第1弾性部材と直列に配置された第2及び/又は第3弾性部材をさらに備えた、請求項1から4のいずれかに記載の動力伝達装置。 5. The apparatus according to claim 1, further comprising a second and / or third elastic member arranged in series with the first elastic member on at least one of the input side and the output side of the first elastic member. Power transmission device.
  6.  前記フロート部材と前記入力側回転部材との間及びフロート部材と前記出力側回転部材との間の少なくとも一方に配置され、両者の間で摩擦抵抗を発生させる摩擦発生機構をさらに備えた、請求項1から5のいずれかに記載の動力伝達装置。 The apparatus further comprises a friction generating mechanism that is disposed between at least one of the float member and the input side rotating member and between the float member and the output side rotating member and generates a frictional resistance therebetween. The power transmission device according to any one of 1 to 5.
  7.  前記フロート部材の回転方向の移動を所定の範囲に規制するためのストッパ機構をさらに備えた、請求項1から6のいずれかに記載の動力伝達装置。 The power transmission device according to any one of claims 1 to 6, further comprising a stopper mechanism for restricting movement of the float member in a rotation direction within a predetermined range.
  8.  エンジン側の部材に連結されるフロントカバーとトルクコンバータ本体との間に配置され、前記フロントカバーからの動力を前記トルクコンバータ本体のタービンに直接伝達するためのロックアップ装置であって、
     前記フロントカバーからの動力を伝達するクラッチ部と、
     前記タービンに連結された出力フランジと、
     前記クラッチ部からの動力を前記出力フランジに伝達する複数の弾性部材と、
     前記クラッチ部、前記出力フランジ、及び前記複数の弾性部材に対して相対回転可能であり、回転時に前記複数の弾性部材と摺動し、かつ前記複数の弾性部材の径方向の移動を規制するフロート部材と、
     前記フロート部材に連結され、前記フロート部材の回転時に前記フロート部材に対して相対的に移動する質量体を有する回転数適合型動吸振器と、
    を備えたトルクコンバータのロックアップ装置。
    A lockup device that is disposed between a front cover and a torque converter main body connected to a member on an engine side, and that directly transmits power from the front cover to a turbine of the torque converter main body,
    A clutch portion for transmitting power from the front cover;
    An output flange coupled to the turbine;
    A plurality of elastic members for transmitting power from the clutch portion to the output flange;
    A float that is rotatable relative to the clutch portion, the output flange, and the plurality of elastic members, that slides with the plurality of elastic members during rotation, and that restricts radial movement of the plurality of elastic members. Members,
    A rotational speed adaptive dynamic vibration absorber connected to the float member and having a mass body that moves relative to the float member when the float member rotates;
    Torque converter lockup device with
PCT/JP2015/080070 2014-12-26 2015-10-26 Power transmission device and lock-up device for torque converter WO2016103890A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015005106.6T DE112015005106T5 (en) 2014-12-26 2015-10-26 Power transmission device and lock-up device for a torque converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014264116A JP6541969B2 (en) 2014-12-26 2014-12-26 Power transmission device and lockup device for torque converter
JP2014-264116 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016103890A1 true WO2016103890A1 (en) 2016-06-30

Family

ID=56149927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080070 WO2016103890A1 (en) 2014-12-26 2015-10-26 Power transmission device and lock-up device for torque converter

Country Status (3)

Country Link
JP (1) JP6541969B2 (en)
DE (1) DE112015005106T5 (en)
WO (1) WO2016103890A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109154375A (en) * 2016-07-20 2019-01-04 株式会社艾科赛迪 Cogging inhibits device, fluid torque-converter and power transmission
US11015674B2 (en) 2017-02-17 2021-05-25 Exedy Corporation Torque fluctuation inhibiting device, torque converter and power transmission device
JP7455970B2 (en) 2019-11-05 2024-03-26 ヴァレオ、カペック、トルク、コンバーターズ、(ナンジン)、カンパニー、リミテッド Damping system for hydraulic coupling devices, hydraulic coupling devices and automobiles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031423A (en) * 2016-08-24 2018-03-01 株式会社エクセディ Vibration reduction device
JP2018031425A (en) * 2016-08-24 2018-03-01 株式会社エクセディ Vibration reduction device
JP7021890B2 (en) * 2017-09-27 2022-02-17 株式会社Subaru transmission
US11578779B2 (en) 2020-04-07 2023-02-14 Valeo Kapec Co., Ltd. Intermediate plate apparatus and related damper assemblies for use with vehicles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224007A (en) * 2007-03-15 2008-09-25 Aisin Aw Co Ltd Spring damper
US20140044523A1 (en) * 2011-04-21 2014-02-13 Schaeffler Technologies AG & Co. KG Torque converter
JP2014145441A (en) * 2013-01-30 2014-08-14 Toyota Motor Corp Centrifugal pendulum type dynamic damper
WO2014196340A1 (en) * 2013-06-04 2014-12-11 株式会社エクセディ Torque converter lockup device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5752153B2 (en) * 2010-03-11 2015-07-22 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフトSchaeffler Technologies AG & Co. KG Damper unit and force transmission device equipped with such a damper unit
JP5609820B2 (en) * 2011-08-23 2014-10-22 アイシン・エィ・ダブリュ株式会社 Damper device
DE102012212125A1 (en) * 2012-07-11 2014-01-16 Zf Friedrichshafen Ag torsional vibration damper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224007A (en) * 2007-03-15 2008-09-25 Aisin Aw Co Ltd Spring damper
US20140044523A1 (en) * 2011-04-21 2014-02-13 Schaeffler Technologies AG & Co. KG Torque converter
JP2014145441A (en) * 2013-01-30 2014-08-14 Toyota Motor Corp Centrifugal pendulum type dynamic damper
WO2014196340A1 (en) * 2013-06-04 2014-12-11 株式会社エクセディ Torque converter lockup device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109154375A (en) * 2016-07-20 2019-01-04 株式会社艾科赛迪 Cogging inhibits device, fluid torque-converter and power transmission
US11015674B2 (en) 2017-02-17 2021-05-25 Exedy Corporation Torque fluctuation inhibiting device, torque converter and power transmission device
JP7455970B2 (en) 2019-11-05 2024-03-26 ヴァレオ、カペック、トルク、コンバーターズ、(ナンジン)、カンパニー、リミテッド Damping system for hydraulic coupling devices, hydraulic coupling devices and automobiles

Also Published As

Publication number Publication date
DE112015005106T5 (en) 2017-07-27
JP2016125511A (en) 2016-07-11
JP6541969B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP6334284B2 (en) Power transmission device and torque converter lockup device
WO2016103890A1 (en) Power transmission device and lock-up device for torque converter
JP5852701B2 (en) Fluid power transmission device
JP5555784B1 (en) Dynamic damper device
JP6530604B2 (en) Power transmission
WO2012063586A1 (en) Lockup device for fluid coupling
JP6245871B2 (en) Torque converter lockup device
WO2011070888A1 (en) Lockup device for torque converter
JP2011122622A (en) Lock-up device for torque converter
US10883565B2 (en) Hydraulic power transmission device
JP6182434B2 (en) Torque converter lockup device
JP2011047442A (en) Lockup device for torque converter
JP4892630B1 (en) Lockup device for fluid coupling
US10260612B2 (en) Hydraulic power transmission device
JP6182433B2 (en) Dynamic damper device and torque converter lockup device
WO2016125382A1 (en) Dynamic vibration-absorbing device for automobile
JP6587715B2 (en) Power transmission device and torque converter lockup device
JP4522220B2 (en) Damper disk assembly
JP6587388B2 (en) Dynamic vibration absorber for automobile and lockup device for torque converter
JP6545972B2 (en) Damper disc assembly
JP2005113997A (en) Flexible flywheel
JP2007113745A (en) Fluid type torque transmission device and lock-up device used for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872459

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015005106

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872459

Country of ref document: EP

Kind code of ref document: A1