WO2016125382A1 - Dynamic vibration-absorbing device for automobile - Google Patents

Dynamic vibration-absorbing device for automobile Download PDF

Info

Publication number
WO2016125382A1
WO2016125382A1 PCT/JP2015/084125 JP2015084125W WO2016125382A1 WO 2016125382 A1 WO2016125382 A1 WO 2016125382A1 JP 2015084125 W JP2015084125 W JP 2015084125W WO 2016125382 A1 WO2016125382 A1 WO 2016125382A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
rotating
center
dynamic vibration
vibration absorber
Prior art date
Application number
PCT/JP2015/084125
Other languages
French (fr)
Japanese (ja)
Inventor
祥行 萩原
Original Assignee
株式会社エクセディ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクセディ filed Critical 株式会社エクセディ
Priority to DE112015005848.6T priority Critical patent/DE112015005848T5/en
Publication of WO2016125382A1 publication Critical patent/WO2016125382A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/134Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/1464Masses connected to driveline by a kinematic mechanism or gear system
    • F16F15/1471Masses connected to driveline by a kinematic mechanism or gear system with a kinematic mechanism, i.e. linkages, levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0205Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type two chamber system, i.e. without a separated, closed chamber specially adapted for actuating a lock-up clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • F16H2045/0231Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0263Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means the damper comprising a pendulum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0278Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch comprising only two co-acting friction surfaces

Definitions

  • the present invention relates to a dynamic vibration absorber for automobiles.
  • a conventional torque converter including a damper device and a dynamic vibration absorber has been disclosed (see Patent Document 1).
  • the damper device reduces torque fluctuations over a wide range of rotation speeds
  • the dynamic vibration absorber reduces torque fluctuations due to resonance or the like at specific rotation speeds.
  • the rotation of the engine includes a rotating member (10) and an inertial mass portion (9) that is swingably disposed on the rotating member via a rolling roller (27).
  • FIG. 1 and FIG. 4 of Patent Document 1 In this dynamic vibration absorber, when the rotation of the engine is transmitted to the rotating member, centrifugal force acts on the inertial mass portion, and the inertial mass portion swings relative to the rotating member. The fluctuation of torque is reduced by the oscillation of the inertial mass portion.
  • the inertial mass portion swings in a circular orbit with respect to the rotating member via the rolling roller.
  • the centrifugal force acting on the inertial mass portion becomes smaller than the gravity acting on the inertial mass portion, and the inertial mass portion falls downward. Then, a collision noise between the inertial mass portion and the rolling roller, a collision noise between the rotating member and the rolling roller, or the like may occur.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a dynamic vibration absorber capable of operating a mass part stably.
  • a dynamic vibration absorber for an automobile is for attenuating vibration transmitted from an engine to a transmission.
  • the dynamic vibration absorber includes a rotating part, a plurality of mass parts, a connecting part, and a guide mechanism.
  • Rotating part can rotate around the center of rotation.
  • Each of the plurality of mass parts can attenuate the vibration of the rotating part by moving relative to the rotating part when the rotating part rotates.
  • a connection part connects a rotation part and a mass part.
  • the guide mechanism guides the mass portion in the radial direction when the rotating portion rotates.
  • each of the plurality of mass parts connected to the rotating part by the connecting part is guided in the radial direction by the guide mechanism. Thereby, each of the plurality of mass parts moves relative to the rotating part and attenuates the vibration of the rotating part.
  • each mass part is connected by the connecting part, and the movement of each mass part is restricted in the radial direction by the guide mechanism. That is, each mass part moves in a direction (radial direction) different from the rotation direction of the rotating part while being supported by the rotating part by the connecting part.
  • the dynamic vibration absorber can stably operate the mass portion.
  • the automobile dynamic vibration damping device is preferably configured as follows. One end of the connecting portion is swingably attached to the rotating portion. The other end of the connecting portion is swingably attached to the mass portion.
  • the connecting portion is swung by the rotation of the rotating portion, and the mass portion is moved in the radial direction by the guide mechanism in conjunction with the swinging of the connecting portion.
  • the rotational motion of the rotating portion can be changed to the linear motion of the mass portion by the connecting portion and the guide mechanism.
  • the dynamic vibration absorber for automobiles is preferably configured as follows.
  • Each of the plurality of mass parts is arranged around the rotation center.
  • the angle formed by the line segment connecting the center of gravity of the adjacent mass portion and the rotation center around the rotation center is the same.
  • the automobile dynamic vibration damping device is preferably configured as follows.
  • the guide mechanism includes a main body portion that can rotate relative to the rotation portion, and a guide portion that guides the mass portion in the radial direction.
  • the main body portion of the guide mechanism operates as a float body with respect to the rotating portion, and the guide portion of the guide mechanism guides the mass portion in the radial direction.
  • the guide portion of the guide mechanism guides the mass portion in the radial direction.
  • the automobile dynamic vibration damping device is preferably configured as follows.
  • the guide part has a long hole part and a shaft member.
  • the long hole portion is provided in one of the mass portion and the main body portion, and extends in a direction along a straight line passing through the center of gravity and the rotation center of the mass portion.
  • the shaft member is disposed in the long hole portion and is fixed to either the mass portion or the guide portion.
  • the automobile dynamic vibration damping device is preferably configured as follows.
  • the mass portion is positioned by the connecting portion at a position where the center of gravity of the mass portion is farthest from the rotation center.
  • the mass part is positioned by the guide mechanism at a position where the center of gravity of the mass part is closest to the center of rotation.
  • the moving range in which the mass portion moves in the radial direction is determined by the connecting portion and the guide mechanism.
  • the movement range of a mass part can be restrict
  • the automobile dynamic vibration damping device is preferably configured as follows. One end of the connecting portion is swingably attached to the rotating portion. The other end of the connecting portion is swingably attached to the mass portion. The mass portion is positioned at a position where the center of gravity of the mass portion is farthest from the rotation center by the length from the swing center of one end portion of the connecting portion to the swing center of the other end portion of the connecting portion.
  • the position at which the mass portion is farthest from the rotation center can be set. That is, this position can be easily changed. That is, the moving range of the mass part can be easily adjusted.
  • the automobile dynamic vibration damping device is preferably configured as follows.
  • the guide mechanism has a main body portion and a positioning portion.
  • the main body is rotatable relative to the rotating part.
  • the positioning part is provided in the main body part.
  • the positioning unit positions the mass unit at a position where the center of gravity of the mass unit is closest to the rotation center.
  • the position where the mass portion is closest to the rotation center can be set. That is, this position can be easily changed. That is, the moving range of the mass part can be easily adjusted.
  • the automobile dynamic vibration damping device is preferably configured as follows.
  • the guide mechanism has a main body portion and a storage portion.
  • the main body is rotatable relative to the rotating part.
  • the storage portion is provided in the main body portion and stores the connecting portion.
  • the dynamic vibration absorber can be downsized in the axial direction by storing the connecting portion in the storage portion of the guide mechanism.
  • the mass part can be operated stably.
  • FIG. 1 is a cross-sectional view of a torque converter according to an embodiment of the present invention.
  • the expanded sectional view of the part corresponding to a dynamic vibration damper in FIG. The front view of a dynamic vibration damper (when a link member is in a neutral state).
  • the front view of a dynamic vibration damping device (when a link member swings).
  • FIG. 1 is a cross-sectional view of a torque converter 1 that employs a lock-up device as an embodiment of the present invention.
  • An engine (not shown) is arranged on the left side of FIG. 1, and a transmission (not shown) is arranged on the right side of the figure.
  • OO shown in FIG. 1 is a rotation center line of the torque converter and the lockup device.
  • circumferential direction (rotation direction) refers to a “first circumferential direction (first rotation direction)” that is a counterclockwise direction and a “first direction” that is a clockwise direction. 2 circumferential directions (second rotational direction) ".
  • first circumferential direction (first rotation direction) is denoted by reference numeral R1
  • second circumferential direction (second rotation direction) is denoted by reference numeral R2.
  • the torque converter 1 has a front cover 3, a torque converter body 5, a lockup device 7, and a dynamic vibration absorber 9.
  • the torque converter main body 5 has a torus-shaped fluid working chamber, and the fluid working chamber includes an impeller 11, a turbine 13, and a stator 17.
  • the front cover 3 is a substantially disk-shaped member.
  • the front cover 3 is connected to a crankshaft (not shown).
  • the impeller 11 includes an impeller shell 11a, a plurality of impeller blades 11b fixed to the inside thereof, and an impeller hub 11c fixed to the inner peripheral portion of the impeller shell 11a.
  • the outer peripheral edge of the impeller shell 11 a is welded to the outer peripheral portion of the front cover 3.
  • the inner peripheral edge of the impeller shell 11a is welded to the impeller hub 11c.
  • the turbine 13 is disposed so as to face the impeller 11 in the axial direction.
  • the turbine 13 includes a turbine shell 14, a plurality of turbine blades 15 fixed inside the turbine shell 14, and a turbine hub 16 fixed to the inner peripheral edge of the turbine shell 14.
  • An inner peripheral end portion of the turbine shell 14 is fixed to the turbine hub 16 by a rivet 20.
  • a spline 16 a that engages with an input shaft (not shown) of the transmission is formed on the inner peripheral surface of the turbine hub 16. Thereby, the turbine hub 16 rotates integrally with the input shaft.
  • the stator 17 is disposed between the inner periphery of the impeller 11 and the inner periphery of the turbine 13.
  • the stator 17 rectifies the flow of hydraulic oil that returns from the turbine 13 to the impeller 11.
  • the stator 17 has an annular stator shell 18 and a plurality of stator blades 19 provided on the outer peripheral surface of the stator shell 18.
  • the stator shell 18 is supported by a cylindrical fixed shaft (not shown) via a one-way clutch 21.
  • Thrust bearings 22 and 23 are arranged separately between the turbine hub 16 and the one-way clutch 21 and between the stator 17 and the impeller 11 in the axial direction.
  • the lock-up device 7 is for damping vibrations transmitted from the engine to the transmission. As shown in FIG. 1, the lock-up device 7 is disposed between the turbine 13 and the front cover 3 and is a mechanism for mechanically connecting the two.
  • the lockup device 7 includes a piston 31, a drive plate 33, an intermediate plate 34, a float member 37, a driven plate 39, and a plurality of torsion springs 40.
  • the piston 31 is a member for connecting and disconnecting the clutch.
  • the piston 31 is formed in a substantially disk shape having a hole.
  • an inner peripheral cylindrical portion 31 a extending toward the axial transmission side is formed on the inner peripheral portion of the piston 31.
  • the inner peripheral cylindrical portion 31a is supported by the outer peripheral surface of the turbine hub 16 on the engine side so as to be movable in the circumferential direction and the axial direction.
  • the piston 31 is in contact with the transmission-side surface of the turbine hub 16 so that the movement toward the axial transmission side is restricted.
  • a seal ring 31b is provided on the outer peripheral surface of the turbine hub 16 on the engine side so as to come into contact with the inner peripheral surface of the inner peripheral side tubular portion 31a of the piston 31. Thereby, the inner peripheral edge of the piston 31 is sealed.
  • an annular friction coupling portion 31 c is formed on the outer peripheral side of the piston 31.
  • An annular friction facing 32 is fixed on the engine side of the friction coupling portion 31c.
  • the drive plate 33 is a substantially annular and disk-shaped member.
  • the drive plate 33 can rotate around the rotation center O.
  • the drive plate 33 has a fixed portion 33a on the inner peripheral portion, and has a plurality of engaging portions 33b on the outer peripheral side of the fixed portion 33a.
  • the fixing portion 33 a is fixed to the piston 31 by the rivet 12.
  • Each of the plurality of engaging portions 33b is formed on the outer peripheral portion of the drive plate 33 at a predetermined interval in the circumferential direction.
  • An outer peripheral torsion spring 40a (described later) is disposed between the engaging portions 33b adjacent in the circumferential direction. The engaging portion 33b can contact the end portion of the outer peripheral side torsion spring 40a.
  • the intermediate plate 34 connects an outer periphery side torsion spring 40a and an inner periphery side torsion spring 40b (described later) in series.
  • the intermediate plate 34 is a substantially annular and disk-shaped plate member. The intermediate plate 34 can rotate relative to the drive plate 33.
  • the intermediate plate 34 has a first intermediate plate 34a and a second intermediate plate 34b.
  • the first intermediate plate 34a is disposed on the axial direction engine side.
  • the second intermediate plate 34b is disposed on the axial transmission side.
  • the first intermediate plate 34a and the second intermediate plate 34b are arranged at a predetermined interval in the axial direction.
  • a driven plate 39 is disposed between the first intermediate plate 34a and the second intermediate plate 34b.
  • the first intermediate plate 34a and the second intermediate plate 34b are connected to each other by a plurality of fixing members such as a plurality of rivets (not shown) so that they cannot rotate relative to each other and cannot move in the axial direction.
  • Window portions 44a and 45a are formed in the first intermediate plate 34a and the second intermediate plate 34b, respectively. Between the axial direction of the window part 44a and the window part 45a, the torsion spring 40b of the inner peripheral side is arrange
  • the wall portions 44b and 45b facing each other in the circumferential direction in the window portions 44a and 45a are formed so as to be able to contact both end portions of the inner peripheral side torsion spring 40b. Cut and raised portions cut and raised in the axial direction are formed on the inner and outer peripheral portions of the window portions 44a and 45a.
  • the second intermediate plate 34b has a plurality of engaging portions 45c that can be engaged with the torsion spring 40a on the outer peripheral side.
  • Each of the plurality of engaging portions 45c is formed on the outer peripheral portion of the second intermediate plate 34b at a predetermined interval in the circumferential direction.
  • an outer peripheral torsion spring 40a is disposed between the engaging portions 45c adjacent to each other in the circumferential direction. The engaging portion 45c can be in contact with a circumferential end of the outer torsion spring 40a.
  • the float member 37 is a member for operating adjacent torsion springs 40a on the outer peripheral side in series.
  • the float member 37 is formed in a substantially annular shape.
  • the float member 37 is supported by the drive plate 33 so as to be rotatable relative to the intermediate plate 34 (second intermediate plate 34 b) and the drive plate 33.
  • the float member 37 holds the outer side in the radial direction of the outer peripheral side torsion spring 40a.
  • connecting portions 47a are formed at intervals in the circumferential direction.
  • the connecting portion 47a is disposed between two adjacent outer peripheral torsion springs 40a, and is in contact with the end of the outer peripheral torsion spring 40a. Thereby, the two adjacent torsion springs 40a on the outer peripheral side operate in series.
  • the driven plate 39 is a substantially annular and disk-shaped member.
  • the driven plate 39 can rotate around the rotation center O.
  • the driven plate 39 is a substantially annular and disk-shaped member.
  • the driven plate 39 has a fixed portion 39a on the inner peripheral portion, and has a plurality of openings 39b on the outer peripheral side of the fixed portion 39a.
  • the fixed portion 39 a is fixed to the turbine hub 16.
  • the inner peripheral portion of the fixed portion 39a is fixed to the turbine hub 16 by a fixing member such as a bolt 39d.
  • the opening 39b is a hole penetrating in the axial direction.
  • An inner periphery side torsion spring 40b is disposed in the opening 39b.
  • Wall portions 39f facing each other in the circumferential direction in the opening portion 39b are formed so as to be able to contact both end portions of the inner peripheral side torsion spring 40b.
  • the plurality of torsion springs 40 are composed of a plurality (for example, eight) of outer peripheral side torsion springs 40a and a plurality (for example, eight) of inner peripheral side torsion springs 40b.
  • Each of the plurality of torsion springs 40a on the outer peripheral side is supported in the circumferential direction by the drive plate 33, the float member 37, and the intermediate plate 34.
  • each of the plurality of torsion springs 40a on the outer peripheral side is arranged in the circumferential direction by an engaging portion 33b of the drive plate 33, a connecting portion 47a of the float member 37, and an engaging portion 45c of the second intermediate plate 34b. It is supported by. In this state, the plurality of outer peripheral torsion springs 40a can be compressed by the drive plate 33 and the intermediate plate 34 (second intermediate plate 34b).
  • Each of the plurality of torsion springs 40b on the inner peripheral side is supported in the circumferential direction by an intermediate plate 34 and a driven plate 39.
  • each of the plurality of inner peripheral torsion springs 40b is circumferentially formed by the window portion 44a of the first intermediate plate 34a, the window portion 45a of the second intermediate plate 34b, and the opening portion 39b of the driven plate 39. It is supported by. In this state, the plurality of torsion springs 40 b on the inner peripheral side can be compressed by the wall portions 44 b and 45 b of the window portions 44 a and 45 a of the intermediate plate 34 and the wall portion 39 f of the opening 39 b of the driven plate 39.
  • the dynamic vibration absorber 9 is for attenuating vibration transmitted from the engine to the transmission. As shown in FIGS. 1 and 2, the dynamic vibration absorber 9 is fixed to the turbine hub 16. Specifically, the dynamic vibration absorber 9 is fixed to the turbine hub 16 together with the turbine shell 14 by a fixing member such as a rivet 20.
  • the dynamic vibration absorber 9 includes a rotating part 41, a plurality of inertia members 71 (an example of a mass body), a guide mechanism 81, and a link member 91 (an example of a connecting part).
  • the rotating part 41 can rotate around the rotation center O.
  • the rotating unit 41 includes a first rotating member 51 and a second rotating member 61.
  • the first rotating member 51 and the second rotating member 61 are arranged to face each other in the axial direction.
  • the first rotating member 51 is formed substantially in an annular shape.
  • the first rotating member 51 includes a first main body portion 53, a first fixing portion 55, and a first connection portion 57.
  • the first main body 53 is formed in a substantially annular shape.
  • the first fixing portion 55 is provided on the inner peripheral portion of the first main body portion 53.
  • the first fixing portion 55 is fixed to the turbine shell 14.
  • the first fixing portion 55 has a first fixing hole portion 55a.
  • the first fixing portion 55 is fixed to the turbine shell 14 by a fixing member such as the rivet 20 through the first fixing hole portion 55a.
  • the first connection portion 57 is provided on the outer peripheral portion of the first main body portion 53.
  • a link member 91 is swingably attached to the first connection portion 57.
  • the first connection portion 57 is provided with a first connection hole portion 57a penetrating in the axial direction. More specifically, a link member 91 is swingably attached to the first connection hole 57a via a connection member such as a rivet 58 and a collar member 59.
  • the second rotating member 61 is substantially annular.
  • the second rotating member 61 has a second main body portion 63, a second fixing portion 65, and a second connection portion 67.
  • the second main body 63 has an annular portion 63a on the inner peripheral side, an axially extending portion 63b, and an annular portion 63c on the outer peripheral side.
  • the annular portion 63a on the inner peripheral side is substantially annular.
  • the axially extending portion 63b is integrally formed with the inner peripheral annular portion 63a so as to extend in the axial direction from the outer peripheral portion of the inner peripheral annular portion 63a.
  • the axially extending portion 63b is formed in a substantially cylindrical shape.
  • the annular portion 63c on the outer peripheral side is substantially annular.
  • the outer peripheral side annular portion 63c is formed integrally with the axially extending portion 63b so as to extend radially outward from the axially extending portion 63b.
  • the second fixing portion 65 is provided in an inner peripheral portion of the second main body portion 63, for example, an annular portion 63a on the inner peripheral side.
  • the second fixing portion 65 is disposed between the first fixing portion 55 of the first rotating member 51 and the turbine shell 14.
  • the second fixing portion 65 is fixed to the turbine shell 14.
  • the second fixing portion 65 has a second fixing hole portion 65a.
  • the second fixing portion 65 is fixed to the turbine shell 14 together with the first fixing portion 55 of the first rotating member 51 by the fixing member, for example, the rivet 20, through the second fixing hole portion 65a.
  • the second connection part 67 is provided in the outer peripheral part of the second main body part 63, for example, the annular part 63c on the outer peripheral side.
  • the second connection portion 67 is disposed to face the first connection portion 57.
  • a link member 91 is swingably attached to the second connection portion 67.
  • the second connection portion 67 is provided with a second connection hole portion 67a penetrating in the axial direction. More specifically, a link member 91 is swingably attached to the second connection hole 67a via a connection member such as a rivet 58 and a collar member 59.
  • the connecting member for example, the collar member 59 is disposed between the first connecting portion 57 and the second connecting portion 67. Specifically, the collar member 59 is disposed between the first connection portion 57 and the second connection portion 67 outside the axially extending portion 63b.
  • the collar member 59 is formed in a substantially cylindrical shape.
  • the collar member 59 has a small diameter cylindrical portion 59a and a large diameter cylindrical portion 59b.
  • the small diameter cylindrical portion 59a engages with the link member 91 in a swingable manner.
  • the large diameter cylindrical portion 59b is formed to have a larger diameter than the small diameter cylindrical portion 59a.
  • the large diameter cylindrical portion 59b is disposed between the first rotating member 51 and the link member 91 in the axial direction.
  • the link member 91 can swing with respect to the large-diameter cylindrical portion 59b.
  • the connecting member for example, the rivet 58 is disposed on the inner peripheral portion of the collar member 59.
  • the shaft portion of the rivet 58 is disposed on the inner peripheral portion of the collar member 59 (small diameter cylindrical portion 59a and large diameter cylindrical portion 59b), and the first connection hole portion 57a and the second connection hole portion 67a. Is done.
  • the flange portions of the rivet 58 are provided at both end portions of the shaft portion, and engage with the lock-up device 7 side of the first connection portion 57 and the turbine 13 side of the second connection portion 67. As a result, the rivet 58 is attached to the first connecting portion 57 and the second connecting portion 67 so as not to move in the axial direction.
  • the plurality of inertia members 71 can be moved relative to the rotating portion 41 when the rotating portion 41 rotates.
  • the plurality of inertia members 71 move relative to the rotating unit 41 to attenuate the vibration of the rotating unit 41.
  • a plurality of sets of inertia members 71 for example, two sets of inertia members 71 can be moved relative to the rotating portion 41.
  • the two sets of inertia members 71 can move relative to a fourth main body portion 83 (described later) of the guide mechanism 81.
  • One set of inertia members 71 (a pair of inertia members 71) is composed of two inertia members 71.
  • the pair of inertia members 71 are arranged radially outward of the rotating portion 41 with the rotation center O as a reference.
  • each inertia member 71 is arranged so that the center of gravity G of the pair of inertia members 71 is located at a position spaced apart from the rotation center O in the radial direction.
  • the pair of inertia members 71 are arranged around the rotation center O.
  • the angles formed by the line segment A1 connecting the center of gravity G of each inertia member 71 adjacent around the rotation center O and the rotation center O are all the same. Further, this angle is the same in all systems in which the fourth main body 83 of the guide mechanism 81 is stationary.
  • this angle is, for example, 180 degrees.
  • the pair of inertia members 71 are arranged to face each other in the axial direction. Between the axial directions of the pair of inertia members 71, a fourth main body portion 83 of the guide mechanism 81 is disposed. As shown in FIGS. 3 and 4, the pair of inertia members 71 (two inertia members 71) are arranged in a certain radial direction (sliding direction SL), with the rotating portion 41 and the fourth main body portion 83 of the guide mechanism 81. Relative movement is possible.
  • a certain radial direction indicates a direction along the first straight line C1 passing through the center of gravity G and the rotation center O of the inertia member 71.
  • one certain radial direction corresponds to a direction along the first straight line C ⁇ b> 1 that passes through the center of gravity G and the rotation center O of each pair of inertia members 71.
  • sliding direction SL in order to distinguish one radial direction from a radial direction extending radially from the rotation center O, it is referred to as a “sliding direction SL”.
  • Each inertia member 71 has a third main body portion 73, a third connection portion 75, and a shaft support portion 77.
  • the 3rd main-body part 73 is formed in the circular arc plate shape substantially.
  • the third connection part 75 is provided in the third main body part 73.
  • a link member 91 is swingably attached to the third connection portion 75.
  • the third connection portion 75 is provided with a third connection hole 75 a penetrating in the axial direction.
  • the third connection hole portions 75a of the respective third connection portions 75 are disposed to face each other.
  • the pair of third connection holes 75 a are formed on a first straight line C ⁇ b> 1 that passes through the center of gravity G and the rotation center O of each inertia member 71.
  • a link member 91 is swingably attached to the pair of third connection holes 75a via a connection member, for example, a rivet 58.
  • the shaft support portion 77 is provided in the third main body portion 73.
  • the shaft support portions 77 are arranged to face each other.
  • a plurality of (for example, four) shaft support portions 77 are provided in the third main body portion 73. 3 and 4, only one shaft support portion 77 is denoted by a reference numeral.
  • a shaft member 85b (described later) of the guide mechanism 81 is attached to each shaft support portion 77.
  • each shaft support portion 77 is provided with a shaft hole 77a penetrating in the axial direction.
  • the shaft hole portions 77 a of the shaft support portions 77 are disposed to face each other.
  • the two left shaft hole portions 77a in FIGS. 3 and 4 and the two right shaft hole portions 77a in FIGS. 3 and 4 have a center of gravity G and a rotation center O of each inertia member 71.
  • the shaft member 85b of the guide mechanism 81 is attached to the pair of shaft holes 77a.
  • the guide mechanism 81 guides the inertia member 71 so that the inertia member 71 can be moved relative to the rotation unit 41 when the rotation unit 41 rotates. Specifically, the guide mechanism 81 guides the inertia member 71 in the slide direction SL when the rotating unit 41 rotates. More specifically, the guide mechanism 81 guides the inertia member 71 along the first straight line C ⁇ b> 1 that passes through the center of gravity G and the rotation center O of each pair of inertia members 71 when the rotating portion 41 rotates.
  • the guide mechanism 81 is an inertia member in a direction approaching the second straight line C2 orthogonal to the first straight line C1 and passing through the rotation center O and a direction away from the second straight line C2 when the rotating unit 41 rotates.
  • Guide 71 is an inertia member in a direction approaching the second straight line C2 orthogonal to the first straight line C1 and passing through the rotation center O and a direction away from the second straight line C2 when the rotating unit 41 rotates.
  • the guide mechanism 81 includes a fourth main body portion 83 (an example of a main body portion), a guide portion 85, and a protruding portion 87 (an example of a positioning portion).
  • the fourth main body 83 is formed in a substantially annular shape.
  • the fourth main body 83 is rotatable relative to the rotating portion 41 (the first rotating member 51 and the second rotating member 61).
  • the fourth main body portion 83 engages with the inertia member 71 through the long hole portion 85a and the shaft member 85b.
  • the fourth body portion 83 is disposed adjacent to the inertia member 71 and the rotating portion 41 in the axial direction.
  • the outer peripheral portion of the fourth main body portion 83 is disposed between the pair of inertia members 71 (two inertia members 71) in the axial direction.
  • An inner peripheral portion of the fourth main body portion 83 is disposed between the first rotating member 51 and the second rotating member 61 in the axial direction.
  • the axially extending portion 63b and the second fixing portion 65 of the second rotating member 61 are disposed on the inner peripheral side of the fourth main body portion 83.
  • the inner peripheral part of the fourth main body part 83 is rotatable relative to the outer peripheral surface of the axially extending part 63 b of the second rotating member 61.
  • the fourth body 83 is provided with a storage hole 89 (an example of a storage).
  • the storage hole 89 is a hole for storing the link member 91.
  • a plurality of (for example, two) storage hole portions 89 are provided in the fourth main body portion 83.
  • Each storage hole 89 is substantially formed in a triangular shape. The shape of the storage hole 89 is formed so as not to contact the link member 91 when the link member 91 swings.
  • the storage holes 89 are arranged at a predetermined interval in the circumferential direction.
  • each storage hole 89 is disposed at a position spaced apart from the circumferential direction by a predetermined angle.
  • this angle is, for example, 180 degrees.
  • Each storage hole 89 is arranged between a plurality of protrusions 87, for example, two sets of protrusions 87 in the circumferential direction.
  • each storage hole 89 and each protrusion 87 are arranged at intervals of 90 degrees in the circumferential direction.
  • the guide portion 85 has a long hole portion 85a and a shaft member 85b.
  • the long hole portion 85 a is provided in the fourth main body portion 83.
  • a plurality of (for example, four) long hole portions 85 a are provided in the fourth main body portion 83.
  • Each elongated hole portion 85a extends in a direction along the first straight line C1 that passes through the center of gravity G and the rotation center O of the inertia member 71.
  • the two long hole portions 85a on the left side in FIGS. 3 and 4 and the two long hole portions 85a on the right side in FIGS. 3 and 4 have a center of gravity G and a rotation center O of each inertia member 71.
  • the first straight line C1 passing therethrough is used as a reference and is arranged line-symmetrically.
  • a shaft member 85b of the guide mechanism 81 is disposed in each long hole portion 85a.
  • a plurality of (for example, four) shaft members 85b are arranged in the respective long hole portions 85a and attached to the inertia member 71. Specifically, the shaft portion of each shaft member 85 b is disposed in each long hole portion 85 a, and both end portions of each shaft member 85 b are attached to the pair of inertia members 71. As each shaft member 85b moves along each long hole portion 85a, the pair of inertia members 71 move in the slide direction SL.
  • the projecting portion 87 is for positioning the inertia member 71. Specifically, the protrusion 87 positions the inertia member 71 at a position where the center of gravity G of the inertia member 71 is closest to the rotation center O.
  • a plurality of protruding portions 87 are provided in the fourth main body portion 83.
  • Each protrusion 87 is provided so as to protrude in the axial direction from the fourth main body 83.
  • the plurality of protrusions 87 constitute a plurality of sets of protrusions 87, for example, two sets of protrusions 87.
  • the one set of protrusions 87 includes two protrusions 87.
  • the inertia member 71 comes into contact with the protruding portion 87.
  • the circumferential end of the inertia member 71 abuts on the protrusion 87.
  • Each protrusion part 87 is arrange
  • each protrusion 87 is disposed at a position spaced apart from the circumferential direction by a predetermined angle.
  • this angle is, for example, 180 degrees.
  • Each protrusion 87 has a shaft part 87a and an elastic part 87b.
  • the shaft portion 87 a is formed integrally with the fourth main body portion 83.
  • the elastic portion 87b is for alleviating the collision with the inertia member 71, and is provided on the outer periphery of the shaft portion 87a.
  • the link member 91 is connected to the rotating portion 41 and the inertia member 71.
  • the link member 91 is swingable with respect to the rotating part 41 and the inertia member 71.
  • the link member 91 is disposed in the storage hole 89 of the fourth main body portion of the guide mechanism 81, and can swing with respect to the rotating portion 41 and the inertia member 71 inside the storage hole 89.
  • the axial thickness of the link member 91 is thinner than the axial thickness of the fourth main body portion 83 of the guide mechanism 81.
  • the link member 91 is formed in a plate shape that is long in one direction.
  • An inner peripheral side end portion 92 (an example of one end portion of the connecting portion) of the link member 91 is swingably attached to the rotating portion 41 (the first rotating member 51 and the second rotating member 61).
  • the inner peripheral end 92 of the link member 91 is disposed between the first connecting portion 57 of the first rotating member 51 and the second connecting portion 67 of the second rotating member 61 in the axial direction.
  • a large-diameter cylindrical portion 59 b of the collar member 59 is arranged between the inner peripheral side end portion 92 of the link member 91 and the first connection portion 57 of the first rotating member 51. Is done. Furthermore, a fourth connection hole 92 a is provided at the inner peripheral side end 92 of the link member 91. The fourth connection hole 92 a engages with a connection member, for example, a collar member 59. The fourth connection hole 92 a is rotatable with respect to the collar member 59.
  • the small diameter cylindrical portion 59a of the collar member 59 is disposed in the fourth connection hole 92a, and the fourth connection hole 92a is rotatable with respect to the outer peripheral portion of the small diameter cylindrical portion 59a of the collar member 59. .
  • a connecting member for example, a shaft portion of a rivet 58 is disposed on the inner peripheral portion of the collar member 59 (small diameter cylindrical portion 59a and large diameter cylindrical portion 59b).
  • the flange portion of the rivet 58 is engaged with the lockup device 7 side of the first connection portion 57 of the first rotation member 51 and the turbine 13 side of the second connection portion 67 of the second rotation member 61.
  • the link member 91 is in the inner peripheral side end portion 92 of the link member 91 with respect to the first rotating member 51 (first connecting portion 57) and the second rotating member 61 (second connecting portion 67). , Swingably mounted.
  • the outer peripheral side end portion 93 (an example of the other end portion of the connecting portion) of the link member 91 is swingably attached to the inertia member 71 (a pair of inertia members 71). Specifically, the outer peripheral side end portion 93 of the link member 91 is disposed between the axial directions of the pair of inertia members 71.
  • the outer peripheral side end portion 93 of the link member 91 is provided with a fifth connection hole portion 93 a.
  • the fifth connection hole 93 a engages with a connection member, for example, the collar member 60.
  • the fifth connection hole 93 a is rotatable with respect to the collar member 60.
  • a connecting member, for example, a shaft portion of the rivet 58 is disposed on the inner peripheral portion of the collar member 60.
  • the flange portion of the rivet 58 is engaged with the lock-up device 7 side of one inertia member 71 and the turbine 13 side of the other inertia member 71. In this way, the link member 91 is swingably attached to the pair of inertia members 71 (the pair of third connection portions 75) at the outer peripheral side end portion 93 of the link member 91.
  • the link member 91 positions the inertia member 71. Specifically, the link member 91 positions the inertia member 71 at a position where the center of gravity G of the inertia member 71 is farthest from the rotation center O.
  • the center of gravity G of the inertia member 71 is separated from the rotation center O. It is arranged at the most distant position.
  • the third straight line C3 passing through the center of the fourth connection hole 92a and the center of the fifth connection hole 93a in the link member 91 passes through the center of gravity G and the rotation center O of the inertia member 71.
  • the center of gravity G of the inertia member 71 is arranged at a position farthest from the rotation center O.
  • the inertia member 71 is positioned at a position farthest from the rotation center O.
  • the position where the center of gravity G of the inertia member 71 is farthest from the rotation center O is from the swing center of the inner peripheral side end portion 92 of the link member 91 to the swing center of the outer peripheral side end portion 93 of the link member 91. It is determined by the length L.
  • the inertia member 71 when the center of gravity G of the inertia member 71 is closest to the rotation center O, the inertia member 71 is in contact with the protruding portion 87.
  • the position where the center of gravity G of the inertia member 71 is closest to the rotation center O corresponds to the position where the swing center of the outer peripheral side end portion 93 of the link member 91 is closest to the rotation center O.
  • the torque transmitted to the outer periphery side torsion spring 40 a is transmitted to the inner periphery side torsion spring 40 b via the intermediate plate 34.
  • the torque output from the inner peripheral side torsion spring 40 b is transmitted to the turbine hub 16 via the driven plate 39.
  • the two torsion springs 40 a on the outer peripheral side are connected by a float member 37. For this reason, these outer peripheral side torsion springs 40 a are operated in series by the float member 37.
  • the front cover 3 is mechanically connected to the turbine hub 16 by the operation of the lockup device 7. That is, the torque of the front cover 3 is directly output to the input shaft of the transmission via the turbine hub 16.
  • the vibration is absorbed by the expansion and contraction of the torsion spring 40 (the outer peripheral side torsion spring 40a and the inner peripheral side torsion spring 40b) and the hysteresis torque of each part. In this way, the torque fluctuation is attenuated by the lockup device 7.
  • the dynamic vibration absorber 9 is attached to the turbine hub 16. For this reason, when torque fluctuation is transmitted from the driven plate 39 of the lockup device 7 to the turbine hub 16, the dynamic vibration absorber 9 is activated by this torque fluctuation.
  • the position where the two mass bodies stop moving is the position where the center of gravity G of the inertia member 71 is closest to the rotation center O.
  • centrifugal force acts on the two sets of inertia members 71.
  • the rotational force which is a component of centrifugal force
  • the rotational force is a force that resists the rotational force of the rotating part 41 due to torque fluctuation.
  • the rotational force which is a component of centrifugal force
  • the rotating part 41 rotates in the second rotational direction R2.
  • the inner peripheral end 92 of the link member 91 moves in the second rotation direction R2.
  • the outer peripheral side end 93 of the link member 91 moves along the first straight line C1 in a direction away from the second straight line C2.
  • two sets of inertia members 71 are guided by the guide mechanism 81, and the second straight line C2 Move away from.
  • the center of gravity G of the inertia member 71 is arranged at a position farthest from the rotation center O.
  • this position is a position where the two inertia members 71 are farthest from the rotation center O.
  • the two sets of inertia members 71 reciprocate with respect to the rotating portion 41. Further, when this reciprocating motion is performed, centrifugal force acts on the two sets of inertia members 71.
  • the centrifugal force acting on the two sets of inertia members 71 causes the rotation unit 41 to rotate in the second rotation direction R2 (or when the rotation unit 41 rotates in the first rotation direction R1 (or the second rotation direction R2). It acts as a force for rotating in the first rotation direction R1).
  • the rotational fluctuation of the rotating part 41 that is, the torque fluctuation of the turbine 13 hub is attenuated.
  • the dynamic vibration absorber 9 is for attenuating vibration transmitted from the engine to the transmission.
  • the dynamic vibration absorber 9 includes a rotating portion 41, a pair of inertia members 71, a link member 91, and a guide mechanism 81.
  • the rotating part 41 can rotate around the rotation center O.
  • Each of the pair of inertia members 71 can attenuate the vibration of the rotating portion 41 by moving relative to the rotating portion 41 when the rotating portion 41 rotates.
  • the link member 91 connects the rotating part 41 and the inertia member 71.
  • the guide mechanism 81 guides the inertia member 71 in the radial direction when the rotating unit 41 rotates.
  • the inertia member 71 connected to the rotating portion 41 by the link member 91 is guided in the radial direction by the guide mechanism 81.
  • the inertia member 71 moves relative to the rotating portion 41 and attenuates the vibration of the rotating portion 41.
  • each inertia member 71 moves in a direction different from the rotation direction of the rotation unit 41, for example, in the slide direction SL while being supported by the rotation unit 41 by the link member 91.
  • the pair of inertia members 71 are arranged at target positions with respect to the second straight line C2 passing through the rotation center O.
  • one center of gravity of the pair of inertia members 71 is located above the second straight line C2
  • the other center of gravity of the pair of inertia members 71 is located below the second straight line C2.
  • each inertia member 71 moves downward (drops) due to gravity.
  • the dynamic vibration absorber 9 can operate the inertia member 71 stably.
  • the dynamic vibration absorber 9 is preferably configured as follows. An inner peripheral end 92 of the link member 91 is swingably attached to the rotating part 41. The outer peripheral side end portion 93 of the link member 91 is swingably attached to the inertia member 71.
  • the link member 91 is swung by the rotation of the rotating portion 41, and the inertia member 71 is moved in the radial direction by the guide mechanism 81 in conjunction with the swing of the link member 91.
  • the rotational motion of the rotating portion 41 can be changed to the linear motion of the inertia member 71 by the link member 91 and the guide mechanism 81.
  • the dynamic vibration absorber 9 is preferably configured as follows. There are a plurality of inertia members 71. Each of the plurality of inertia members 71 is arranged around the rotation center O. The angle formed by the line segment A1 connecting the center of gravity G of the inertia member 71 adjacent to the rotation center O and the rotation center O is the same.
  • the dynamic vibration absorber 9 is preferably configured as follows.
  • the guide mechanism 81 includes a fourth main body portion 83 that can rotate relative to the rotating portion 41 and a guide portion 85 that guides the inertia member 71 in the radial direction.
  • the fourth main body portion 83 of the guide mechanism 81 operates as a float body with respect to the rotating portion 41, and the guide portion 85 of the guide mechanism 81 guides the inertia member 71 in the radial direction.
  • the inertia member 71 can be guided in the radial direction by the guide unit 85 even if the rotation unit 41 rotates. .
  • the dynamic vibration absorber 9 is preferably configured as follows.
  • the guide portion 85 has a long hole portion 85a and a shaft member 85b.
  • the long hole portion 85a is provided in the fourth main body portion 83 of the guide mechanism 81 and extends in a direction along the first straight line C1 that passes through the center of gravity G and the rotation center O of the inertia member 71.
  • the shaft member 85 b is disposed in the long hole portion 85 a and is fixed to the inertia member 71.
  • the inertia member 71 moves in the radial direction via the link member 91 by the shaft member 85b and the long hole portion 85a.
  • the inertia member 71 can be linearly operated by the link member 91 and the guide mechanism 81.
  • the inertia member 71 can be operated stably.
  • the dynamic vibration absorber 9 is preferably configured as follows.
  • the inertia member 71 is positioned by the link member 91 at a position where the center of gravity G of the inertia member 71 is farthest from the rotation center O.
  • the inertia member 71 is positioned by the guide mechanism 81 at a position where the center of gravity G of the inertia member 71 is closest to the rotation center O.
  • the moving range in which the inertia member 71 moves in the radial direction is determined by the link member 91 and the guide mechanism 81. Thereby, the movement range of the inertia member 71 can be restrict
  • the dynamic vibration absorber 9 is preferably configured as follows. An inner peripheral end 92 of the link member 91 is swingably attached to the rotating part 41. The outer peripheral side end portion 93 of the link member 91 is swingably attached to the inertia member 71. Depending on the length from the swing center of the inner peripheral end 92 of the link member 91 to the swing center of the outer peripheral end 93 of the link member 91, the inertia member 71 has the center of gravity G of the inertia member 71 at the rotation center O. Is positioned at a position farthest from the center.
  • the position where the inertia member 71 is farthest from the rotation center O can be set by adjusting the length of the link member 91. That is, this position can be easily changed. That is, the movement range of the inertia member 71 can be easily adjusted.
  • the dynamic vibration absorber 9 is preferably configured as follows.
  • the guide mechanism 81 has a fourth main body portion 83 and a protruding portion 87.
  • the fourth main body portion 83 can rotate relative to the rotating portion 41.
  • the protruding portion 87 is provided on the fourth main body portion 83.
  • the protrusion 87 positions the inertia member 71 at a position where the center of gravity G of the inertia member 71 is closest to the rotation center O.
  • the position where the inertia member 71 is closest to the rotation center O can be set by adjusting the position and size of the protrusion 87. That is, this position can be easily changed. That is, the movement range of the inertia member 71 can be easily adjusted.
  • the dynamic vibration absorber 9 is preferably configured as follows.
  • the guide mechanism 81 has a fourth main body 83 and a storage hole 89.
  • the fourth main body portion 83 can rotate relative to the rotating portion 41.
  • the storage hole 89 is provided in the fourth main body 83 and stores the link member 91.
  • the dynamic vibration absorber 9 can be downsized in the axial direction.
  • the inertia member 71 may be positioned by the end portion of the long hole portion 85a close to the second straight line C2.
  • the first straight line C1 is a first straight line C1 that passes through the center of gravity G and the rotation center O of the inertia member 71.
  • the second straight line C2 is a straight line that is orthogonal to the first straight line C1 and passes through the rotation center O.
  • each protrusion 87 protrudes from the fourth main body 83 to the turbine 13 side is shown, but each protrusion 87 is locked up from the fourth main body 83. You may protrude to the apparatus 7 side. Further, the number of the protrusions 87 may be any number as long as it is at least one.
  • the number of the long hole portions 85a may be at least one or more. Any number is acceptable. Further, the number of shaft holes 77a and the number of shaft members 85b engaged with the long holes 85a may be any number as long as the number of the long holes 85a is the same.

Abstract

Provided is a dynamic vibration-absorbing device capable of stably operating a mass part. The present dynamic vibration-absorbing device (9) is for attenuating vibrations transmitted from an engine to a transmission. Said dynamic vibration-absorbing device (9) is provided with a rotating section (41), an inertial member (71), a linking member (91), and a guiding mechanism (81). The rotating section (41) is capable of rotating around a rotation center (O). The inertial member (71) is capable of attenuating vibrations of the rotating section (41) by moving relative to the rotating section (41) when the rotating section (41) is rotating. The linking member (91) connects the rotating section (41) to the inertial member (71). The guiding mechanism (81) guides the inertial member (71) in the radial direction during rotation of the rotating section (41).

Description

自動車用の動吸振装置Dynamic vibration absorber for automobile
 本発明は、自動車用の動吸振装置に関する。 The present invention relates to a dynamic vibration absorber for automobiles.
 従来のトルクコンバータとして、ダンパ装置と動吸振装置とを備えたものが、開示されている(特許文献1を参照)。このトルクコンバータでは、ダンパ装置が広範囲の回転数においてトルク変動を低減し、動吸振装置が特定の回転数において共振等によるトルク変動を低減する。例えば、従来の動吸振装置(5)では、エンジンの回転が回転部材(10)と、転動ローラ(27)を介して回転部材に揺動自在に配置された慣性質量部(9)とを、有している(特許文献1の図1及び図4を参照)。この動吸振装置では、エンジンの回転が回転部材に伝達されると、慣性質量部に遠心力が作用し、慣性質量部が回転部材に対して揺動する。この慣性質量部の揺動によって、トルク変動が低減される。 A conventional torque converter including a damper device and a dynamic vibration absorber has been disclosed (see Patent Document 1). In this torque converter, the damper device reduces torque fluctuations over a wide range of rotation speeds, and the dynamic vibration absorber reduces torque fluctuations due to resonance or the like at specific rotation speeds. For example, in the conventional dynamic vibration absorber (5), the rotation of the engine includes a rotating member (10) and an inertial mass portion (9) that is swingably disposed on the rotating member via a rolling roller (27). (Refer to FIG. 1 and FIG. 4 of Patent Document 1). In this dynamic vibration absorber, when the rotation of the engine is transmitted to the rotating member, centrifugal force acts on the inertial mass portion, and the inertial mass portion swings relative to the rotating member. The fluctuation of torque is reduced by the oscillation of the inertial mass portion.
特表2011-504986号公報Special table 2011-504986 gazette
 従来の動吸振装置では、エンジンが回転し慣性質量部に遠心力が作用すると、慣性質量部が転動ローラを介して回転部材に対して円弧軌道で揺動する。ここで、エンジンが停止し回転部材の回転が徐々に低下していくと、慣性質量部に作用する遠心力が、慣性質量部に作用する重力より小さくなり、慣性質量部が下方に落下する。すると、慣性質量部及び転動ローラの衝突音や、回転部材及び転動ローラの衝突音等が、発生するおそれがある。 In the conventional dynamic vibration absorber, when the engine rotates and a centrifugal force acts on the inertial mass portion, the inertial mass portion swings in a circular orbit with respect to the rotating member via the rolling roller. Here, when the engine is stopped and the rotation of the rotating member gradually decreases, the centrifugal force acting on the inertial mass portion becomes smaller than the gravity acting on the inertial mass portion, and the inertial mass portion falls downward. Then, a collision noise between the inertial mass portion and the rolling roller, a collision noise between the rotating member and the rolling roller, or the like may occur.
 また、回転部材の回転が低下する過程においては、複数の慣性質量部すべてが、同じ状態で揺動するのではなく、複数の慣性質量部の中の一部だけが下方に落下して揺動するおそれもある。この慣性質量部のアンバランスな揺動によって、設計者が予期せぬ振動が、発生するおそれがある。 In the process of rotating the rotating member, not all of the plurality of inertia mass parts swing in the same state, but only a part of the plurality of inertia mass parts falls downward and swings. There is also a risk. Due to the unbalanced oscillation of the inertial mass portion, there is a possibility that a vibration unexpected by the designer may occur.
 本発明は、上記の問題に鑑みてなされたものであって、本発明の目的は、質量部を安定的に動作させることができる動吸振装置を、提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a dynamic vibration absorber capable of operating a mass part stably.
 (1)本発明の一側面に係る自動車用の動吸振装置は、エンジンからトランスミッションに伝達される振動を、減衰するためのものである。本動吸振装置は、回転部と、複数の質量部と、連結部と、案内機構とを、備えている。 (1) A dynamic vibration absorber for an automobile according to one aspect of the present invention is for attenuating vibration transmitted from an engine to a transmission. The dynamic vibration absorber includes a rotating part, a plurality of mass parts, a connecting part, and a guide mechanism.
 回転部は、回転中心まわりに回転可能である。複数の質量部ぞれぞれは、回転部の回転時に回転部に対して相対移動することによって、回転部の振動を減衰可能である。連結部は、回転部及び質量部を連結する。案内機構は、回転部の回転時に質量部を半径方向に案内する。 Rotating part can rotate around the center of rotation. Each of the plurality of mass parts can attenuate the vibration of the rotating part by moving relative to the rotating part when the rotating part rotates. A connection part connects a rotation part and a mass part. The guide mechanism guides the mass portion in the radial direction when the rotating portion rotates.
 本動吸振装置では、回転部が回転中心まわりに回転すると、連結部によって回転部に連結された複数の質量部それぞれが、案内機構によって半径方向に案内される。これにより、複数の質量部それぞれは、回転部に対して相対移動し、回転部の振動を減衰する。 In this dynamic vibration absorber, when the rotating part rotates around the rotation center, each of the plurality of mass parts connected to the rotating part by the connecting part is guided in the radial direction by the guide mechanism. Thereby, each of the plurality of mass parts moves relative to the rotating part and attenuates the vibration of the rotating part.
 このように、本動吸振装置では、回転部及び各質量部が連結部によって連結され、且つ各質量部の移動が案内機構によって半径方向に制限されている。すなわち、各質量部は、連結部によって回転部に支持された状態で、回転部の回転方向とは異なる方向(半径方向)に移動する。 Thus, in this dynamic vibration absorber, the rotating part and each mass part are connected by the connecting part, and the movement of each mass part is restricted in the radial direction by the guide mechanism. That is, each mass part moves in a direction (radial direction) different from the rotation direction of the rotating part while being supported by the rotating part by the connecting part.
 例えば、複数の質量部が、一対の質量部である場合を例として考えると、一対の質量部の一方の重心が回転中心より上方に位置し、一対の質量部の他方の重心が回転中心より下方に位置した状態で、回転部の回転が低回転になった場合、各質量部は重力によって下方に移動する(落下する)。 For example, when the case where a plurality of mass parts is a pair of mass parts is taken as an example, one center of gravity of the pair of mass parts is located above the center of rotation, and the other center of gravity of the pair of mass parts is from the center of rotation. When the rotation of the rotating part becomes low in the state of being positioned below, each mass part moves downward (drops) due to gravity.
 このとき、各質量部が各連結部によって回転部に連結された状態で、一方の質量部が落下しようとすると、回転部は、第1回転方向及び第2回転方向(第1回転方向とは反対の回転方向)のいずれか一方に、回転しようとする。一方で、他方の質量部が落下しようとすると、回転部は、第1回転方向及び第2回転方向のいずれか他方に、回転しようとする。すなわち、一対の質量部の両方が下方に落下しようとするときには、回転部41の回転が打ち消される。 At this time, when one mass part is about to fall in a state where each mass part is connected to the rotating part by each connecting part, the rotating part is in the first rotating direction and the second rotating direction (what is the first rotating direction? Try to rotate in either one of the opposite rotation directions). On the other hand, when the other mass portion is about to fall, the rotating portion tends to rotate in either one of the first rotation direction and the second rotation direction. That is, when both of the pair of mass parts are about to fall downward, the rotation of the rotating part 41 is canceled.
 このため、回転部の回転が低回転になったとしても(遠心力が不足したとしても)、質量部は、重力方向に落下しにくく、且つ回転部の回転の影響を受けにくい。このように、回転部材に対して質量部が自由に動作可能な従来技術と比較して、本動吸振装置では、質量部を安定的に動作させることができる。 For this reason, even if the rotation of the rotating part becomes low (even if the centrifugal force is insufficient), the mass part is difficult to fall in the direction of gravity and is not easily affected by the rotation of the rotating part. Thus, compared with the prior art in which the mass portion can freely operate with respect to the rotating member, the dynamic vibration absorber can stably operate the mass portion.
 (2)本発明の別の側面に係る自動車用の動吸振装置は、次のように構成することが好ましい。連結部の一端部は、回転部に揺動自在に装着される。連結部の他端部は、質量部に揺動自在に装着される。 (2) The automobile dynamic vibration damping device according to another aspect of the present invention is preferably configured as follows. One end of the connecting portion is swingably attached to the rotating portion. The other end of the connecting portion is swingably attached to the mass portion.
 この場合、回転部の回転によって連結部が揺動し、連結部の揺動に連動して質量部が案内機構によって半径方向に移動する。このように、連結部及び案内機構によって、回転部の回転運動を、質量部の直線運動に変更することができる。これにより、回転部材に対して質量部が自由に動作可能な従来技術と比較して、本動吸振装置では、質量部を安定的に動作させることができる。 In this case, the connecting portion is swung by the rotation of the rotating portion, and the mass portion is moved in the radial direction by the guide mechanism in conjunction with the swinging of the connecting portion. Thus, the rotational motion of the rotating portion can be changed to the linear motion of the mass portion by the connecting portion and the guide mechanism. Thereby, compared with the prior art in which a mass part can operate | move freely with respect to a rotating member, in this dynamic vibration absorber, a mass part can be operated stably.
 (3)本発明の別の側面に係る自動車用の動吸振装置は、次のように構成することが好ましい。複数の質量部それぞれは、回転中心のまわりに配置される。回転中心まわりにおいて隣接する質量部の重心と回転中心とを結ぶ線分がなす角度は、同じである。 (3) The dynamic vibration absorber for automobiles according to another aspect of the present invention is preferably configured as follows. Each of the plurality of mass parts is arranged around the rotation center. The angle formed by the line segment connecting the center of gravity of the adjacent mass portion and the rotation center around the rotation center is the same.
 この場合、複数の質量部が、回転中心まわりに均等に配置されるので、質量部の移動時のバランスを適切に保つことができる。 In this case, since the plurality of mass parts are evenly arranged around the center of rotation, the balance when the mass parts are moved can be appropriately maintained.
 (4)本発明の別の側面に係る自動車用の動吸振装置は、次のように構成することが好ましい。案内機構は、回転部に対して相対回転可能な本体部と、質量部を半径方向に案内する案内部とを、有している。 (4) The automobile dynamic vibration damping device according to another aspect of the present invention is preferably configured as follows. The guide mechanism includes a main body portion that can rotate relative to the rotation portion, and a guide portion that guides the mass portion in the radial direction.
 この場合、案内機構の本体部は、回転部に対してフロート体として動作し、案内機構の案内部は、質量部を半径方向に案内する。このように、本体部を回転部の回転とは独立して動作させることによって、回転部が回転したとしても、質量部を案内部によって半径方向に案内することができる。 In this case, the main body portion of the guide mechanism operates as a float body with respect to the rotating portion, and the guide portion of the guide mechanism guides the mass portion in the radial direction. Thus, by operating the main body part independently of the rotation of the rotating part, even if the rotating part rotates, the mass part can be guided in the radial direction by the guide part.
 (5)本発明の別の側面に係る自動車用の動吸振装置は、次のように構成することが好ましい。案内部は、長孔部と、軸部材とを、有している。長孔部は、質量部及び本体部のいずれか一方に設けられ、且つ質量部の重心と回転中心とを通過する直線に沿う方向に伸びる。軸部材は、長孔部に配置され、且つ質量部及び案内部のいずれか他方に固定される。 (5) The automobile dynamic vibration damping device according to another aspect of the present invention is preferably configured as follows. The guide part has a long hole part and a shaft member. The long hole portion is provided in one of the mass portion and the main body portion, and extends in a direction along a straight line passing through the center of gravity and the rotation center of the mass portion. The shaft member is disposed in the long hole portion and is fixed to either the mass portion or the guide portion.
 この場合、回転部の回転時には、連結部を介して、質量部が、案内機構の軸部材及び長孔部によって、半径方向に移動する。このように、回転部が回転したとしても、連結部及び案内機構によって、質量部を直線的に動作させることができる。これにより、回転部材に対して質量部が自由に動作可能な従来技術と比較して、本動吸振装置では、質量部を安定的に動作させることができる。 In this case, when the rotating portion rotates, the mass portion moves in the radial direction via the connecting portion by the shaft member and the long hole portion of the guide mechanism. Thus, even if the rotating part rotates, the mass part can be operated linearly by the connecting part and the guide mechanism. Thereby, compared with the prior art in which a mass part can operate | move freely with respect to a rotating member, in this dynamic vibration absorber, a mass part can be operated stably.
 (6)本発明の別の側面に係る自動車用の動吸振装置は、次のように構成することが好ましい。質量部は、質量部の重心が回転中心から最も離れた位置で、連結部によって位置決めされる。質量部は、質量部の重心が回転中心に最も近づいた位置で、案内機構によって位置決めされる。 (6) The automobile dynamic vibration damping device according to another aspect of the present invention is preferably configured as follows. The mass portion is positioned by the connecting portion at a position where the center of gravity of the mass portion is farthest from the rotation center. The mass part is positioned by the guide mechanism at a position where the center of gravity of the mass part is closest to the center of rotation.
 この場合、質量部が半径方向に移動する移動範囲が、連結部及び案内機構によって、決定される。これにより、特別な部材を用意することなく、質量部の移動範囲を制限することができる。 In this case, the moving range in which the mass portion moves in the radial direction is determined by the connecting portion and the guide mechanism. Thereby, the movement range of a mass part can be restrict | limited without preparing a special member.
 (7)本発明の別の側面に係る自動車用の動吸振装置は、次のように構成することが好ましい。連結部の一端部は、回転部に揺動自在に装着される。連結部の他端部は、質量部に揺動自在に装着される。連結部における一端部の揺動中心から、連結部における他端部の揺動中心までの長さによって、質量部は、質量部の重心が回転中心から最も離れた位置で、位置決めされる。 (7) The automobile dynamic vibration damping device according to another aspect of the present invention is preferably configured as follows. One end of the connecting portion is swingably attached to the rotating portion. The other end of the connecting portion is swingably attached to the mass portion. The mass portion is positioned at a position where the center of gravity of the mass portion is farthest from the rotation center by the length from the swing center of one end portion of the connecting portion to the swing center of the other end portion of the connecting portion.
 この場合、連結部の長さを調整することによって、質量部が回転中心から最も離れる位置を、設定することができる。すなわち、この位置を容易に変更することができる。すなわち、質量部の移動範囲を容易に調整することができる。 In this case, by adjusting the length of the connecting portion, the position at which the mass portion is farthest from the rotation center can be set. That is, this position can be easily changed. That is, the moving range of the mass part can be easily adjusted.
 (8)本発明の別の側面に係る自動車用の動吸振装置は、次のように構成することが好ましい。案内機構は、本体部と、位置決め部を、有する。本体部は、回転部に対して相対回転可能である。位置決め部は、本体部に設けられる。位置決め部は、質量部の重心が回転中心に最も近づいた位置で質量部を位置決めする。 (8) The automobile dynamic vibration damping device according to another aspect of the present invention is preferably configured as follows. The guide mechanism has a main body portion and a positioning portion. The main body is rotatable relative to the rotating part. The positioning part is provided in the main body part. The positioning unit positions the mass unit at a position where the center of gravity of the mass unit is closest to the rotation center.
 この場合、位置決め部の位置や大きさを調整することによって、質量部が回転中心に最も近づく位置を、設定することができる。すなわち、この位置を容易に変更することができる。すなわち、質量部の移動範囲を容易に調整することができる。 In this case, by adjusting the position and size of the positioning portion, the position where the mass portion is closest to the rotation center can be set. That is, this position can be easily changed. That is, the moving range of the mass part can be easily adjusted.
 (9)本発明の別の側面に係る自動車用の動吸振装置は、次のように構成することが好ましい。案内機構は、本体部と、収納部とを、有している。本体部は、回転部に対して相対回転可能である。収納部は、本体部に設けられ、連結部を収納する。 (9) The automobile dynamic vibration damping device according to another aspect of the present invention is preferably configured as follows. The guide mechanism has a main body portion and a storage portion. The main body is rotatable relative to the rotating part. The storage portion is provided in the main body portion and stores the connecting portion.
 この場合、案内機構の収納部に連結部を収納することによって、動吸振装置を軸方向に小型化することができる。 In this case, the dynamic vibration absorber can be downsized in the axial direction by storing the connecting portion in the storage portion of the guide mechanism.
 本発明の自動車用の動吸振装置では、質量部を安定的に動作させることができる。 In the dynamic vibration absorber for automobiles of the present invention, the mass part can be operated stably.
本発明の一実施形態によるトルクコンバータの断面図。1 is a cross-sectional view of a torque converter according to an embodiment of the present invention. 図1において動吸振装置に対応する部分の拡大断面図。The expanded sectional view of the part corresponding to a dynamic vibration damper in FIG. 動吸振装置の正面図(リンク部材が中立状態である場合)。The front view of a dynamic vibration damper (when a link member is in a neutral state). 動吸振装置の正面図(リンク部材が揺動した場合)。The front view of a dynamic vibration damping device (when a link member swings).
 [トルクコンバータの全体構成]
 図1は、本発明の一実施形態としてのロックアップ装置が採用されたトルクコンバータ1の断面図である。図1の左側にはエンジン(図示せず)が配置され、図の右側にトランスミッション(図示せず)が配置されている。図1に示すO-Oは、トルクコンバータ及びロックアップ装置の回転中心線である。
[Overall configuration of torque converter]
FIG. 1 is a cross-sectional view of a torque converter 1 that employs a lock-up device as an embodiment of the present invention. An engine (not shown) is arranged on the left side of FIG. 1, and a transmission (not shown) is arranged on the right side of the figure. OO shown in FIG. 1 is a rotation center line of the torque converter and the lockup device.
 また、本実施形態で用いる「円周方向(回転方向)」という文言は、反時計回りの方向である「第1円周方向(第1回転方向)」、及び時計回りの方向である「第2円周方向(第2回転方向)」を、含む。なお、図3及び図4に示すように、第1円周方向(第1回転方向)は符号R1で示し、第2円周方向(第2回転方向)は符号R2で示す。 Further, the term “circumferential direction (rotation direction)” used in the present embodiment refers to a “first circumferential direction (first rotation direction)” that is a counterclockwise direction and a “first direction” that is a clockwise direction. 2 circumferential directions (second rotational direction) ". As shown in FIGS. 3 and 4, the first circumferential direction (first rotation direction) is denoted by reference numeral R1, and the second circumferential direction (second rotation direction) is denoted by reference numeral R2.
 トルクコンバータ1は、フロントカバー3と、トルクコンバータ本体5と、ロックアップ装置7と、動吸振装置9とを、有している。トルクコンバータ本体5は、トーラス形状の流体作動室を有しており、流体作動室は、インペラ11と、タービン13と、ステータ17と、から構成されている。 The torque converter 1 has a front cover 3, a torque converter body 5, a lockup device 7, and a dynamic vibration absorber 9. The torque converter main body 5 has a torus-shaped fluid working chamber, and the fluid working chamber includes an impeller 11, a turbine 13, and a stator 17.
 フロントカバー3は、実質的に円板状の部材である。フロントカバー3には、クランクシャフト(図示せず)に連結されている。 The front cover 3 is a substantially disk-shaped member. The front cover 3 is connected to a crankshaft (not shown).
 インペラ11は、インペラシェル11aと、その内側に固定された複数のインペラブレード11bと、インペラシェル11aの内周部に固定されたインペラハブ11cと、を有している。インペラシェル11aの外周縁は、フロントカバー3の外周部に溶接されている。インペラシェル11aの内周縁は、インペラハブ11cに溶接されている。 The impeller 11 includes an impeller shell 11a, a plurality of impeller blades 11b fixed to the inside thereof, and an impeller hub 11c fixed to the inner peripheral portion of the impeller shell 11a. The outer peripheral edge of the impeller shell 11 a is welded to the outer peripheral portion of the front cover 3. The inner peripheral edge of the impeller shell 11a is welded to the impeller hub 11c.
 タービン13は、インペラ11に対して軸方向に対向して配置されている。タービン13は、タービンシェル14と、その内側に固定された複数のタービンブレード15と、タービンシェル14の内周縁に固定されたタービンハブ16と、を有している。タービンシェル14の内周端部が、リベット20によって、タービンハブ16に固定されている。また、タービンハブ16の内周面には、トランスミッションの入力シャフト(図示せず)に係合するスプライン16aが形成されている。これによりタービンハブ16は入力シャフトと一体回転するようになっている。 The turbine 13 is disposed so as to face the impeller 11 in the axial direction. The turbine 13 includes a turbine shell 14, a plurality of turbine blades 15 fixed inside the turbine shell 14, and a turbine hub 16 fixed to the inner peripheral edge of the turbine shell 14. An inner peripheral end portion of the turbine shell 14 is fixed to the turbine hub 16 by a rivet 20. A spline 16 a that engages with an input shaft (not shown) of the transmission is formed on the inner peripheral surface of the turbine hub 16. Thereby, the turbine hub 16 rotates integrally with the input shaft.
 ステータ17は、インペラ11の内周部とタービン13の内周部と間に、配置されている。ステータ17は、タービン13からインペラ11に戻る作動油の流れを、整流する。ステータ17は、環状のステータシェル18と、ステータシェル18の外周面に設けられた複数のステータブレード19と、を有している。ステータシェル18は、ワンウェイクラッチ21を介して、筒状の固定シャフト(図示せず)に支持されている。 The stator 17 is disposed between the inner periphery of the impeller 11 and the inner periphery of the turbine 13. The stator 17 rectifies the flow of hydraulic oil that returns from the turbine 13 to the impeller 11. The stator 17 has an annular stator shell 18 and a plurality of stator blades 19 provided on the outer peripheral surface of the stator shell 18. The stator shell 18 is supported by a cylindrical fixed shaft (not shown) via a one-way clutch 21.
 タービンハブ16とワンウェイクラッチ21との間、及びステータ17とインペラ11との軸方向間には、スラストベアリング22,23が、各別に配置されている。 Thrust bearings 22 and 23 are arranged separately between the turbine hub 16 and the one-way clutch 21 and between the stator 17 and the impeller 11 in the axial direction.
 [ロックアップ装置7の構造]
 ロックアップ装置7は、エンジンからトランスミッションに伝達される振動を、減衰するためのものである。図1に示すように、ロックアップ装置7は、タービン13とフロントカバー3との間に配置されており、両者を機械的に連結するための機構である。ロックアップ装置7は、ピストン31と、ドライブプレート33と、中間プレート34と、フロート部材37と、ドリブンプレート39と、複数のトーションスプリング40とを、有している。
[Structure of lock-up device 7]
The lock-up device 7 is for damping vibrations transmitted from the engine to the transmission. As shown in FIG. 1, the lock-up device 7 is disposed between the turbine 13 and the front cover 3 and is a mechanism for mechanically connecting the two. The lockup device 7 includes a piston 31, a drive plate 33, an intermediate plate 34, a float member 37, a driven plate 39, and a plurality of torsion springs 40.
  <ピストン>
 ピストン31は、クラッチの連結及び遮断を行うための部材である。ピストン31は、孔部が形成された実質的に円板状に形成されている。図1に示すように、ピストン31の内周部には、軸方向トランスミッション側に延びる内周側筒状部31aが形成されている。内周側筒状部31aはタービンハブ16のエンジン側の外周面によって円周方向及び軸方向に移動可能に支持されている。なお、ピストン31は、タービンハブ16のトランスミッション側の面に当接することで、軸方向トランスミッション側への移動が規制されている。
<Piston>
The piston 31 is a member for connecting and disconnecting the clutch. The piston 31 is formed in a substantially disk shape having a hole. As shown in FIG. 1, an inner peripheral cylindrical portion 31 a extending toward the axial transmission side is formed on the inner peripheral portion of the piston 31. The inner peripheral cylindrical portion 31a is supported by the outer peripheral surface of the turbine hub 16 on the engine side so as to be movable in the circumferential direction and the axial direction. The piston 31 is in contact with the transmission-side surface of the turbine hub 16 so that the movement toward the axial transmission side is restricted.
 また、タービンハブ16のエンジン側の外周面には、ピストン31の内周側筒状部31aの内周面に当接するシールリング31bが、設けられている。これにより、ピストン31の内周縁はシールされている。さらに、ピストン31の外周側には、環状の摩擦連結部31cが形成されている。摩擦連結部31cの軸方向エンジン側には、環状の摩擦フェーシング32が固定されている。 Further, a seal ring 31b is provided on the outer peripheral surface of the turbine hub 16 on the engine side so as to come into contact with the inner peripheral surface of the inner peripheral side tubular portion 31a of the piston 31. Thereby, the inner peripheral edge of the piston 31 is sealed. Further, an annular friction coupling portion 31 c is formed on the outer peripheral side of the piston 31. An annular friction facing 32 is fixed on the engine side of the friction coupling portion 31c.
  <ドライブプレート>
 ドライブプレート33は、実質的に環状かつ円板状の部材である。ドライブプレート33は、回転中心Oを中心に回転可能である。ドライブプレート33は、内周部に固定部33aを有し、固定部33aの外周側に複数の係合部33bを有している。固定部33aは、リベット12によってピストン31に固定されている。複数の係合部33bそれぞれは、円周方向において所定の間隔を隔てて、ドライブプレート33の外周部に形成されている。円周方向に隣接する係合部33bの間には、外周側のトーションスプリング40a(後述する)が配置される。係合部33bは、外周側のトーションスプリング40aの端部に当接可能である。
<Drive plate>
The drive plate 33 is a substantially annular and disk-shaped member. The drive plate 33 can rotate around the rotation center O. The drive plate 33 has a fixed portion 33a on the inner peripheral portion, and has a plurality of engaging portions 33b on the outer peripheral side of the fixed portion 33a. The fixing portion 33 a is fixed to the piston 31 by the rivet 12. Each of the plurality of engaging portions 33b is formed on the outer peripheral portion of the drive plate 33 at a predetermined interval in the circumferential direction. An outer peripheral torsion spring 40a (described later) is disposed between the engaging portions 33b adjacent in the circumferential direction. The engaging portion 33b can contact the end portion of the outer peripheral side torsion spring 40a.
  <中間プレート>
 中間プレート34は、外周側のトーションスプリング40aと、内周側のトーションスプリング40b(後述する)とを、直列に連結している。中間プレート34は、実質的に環状かつ円板状のプレート部材である。中間プレート34は、ドライブプレート33に対して相対回転可能である。
<Intermediate plate>
The intermediate plate 34 connects an outer periphery side torsion spring 40a and an inner periphery side torsion spring 40b (described later) in series. The intermediate plate 34 is a substantially annular and disk-shaped plate member. The intermediate plate 34 can rotate relative to the drive plate 33.
 図1に示すように、中間プレート34は、第1中間プレート34aと、第2中間プレート34bとを、有している。第1中間プレート34aは、軸方向エンジン側に配置されている。第2中間プレート34bは、軸方向トランスミッション側に配置されている。第1中間プレート34aと第2中間プレート34bとは、軸方向に所定の間隔を隔てて配置されている。第1中間プレート34aと第2中間プレート34bとの間には、ドリブンプレート39が配置されている。第1中間プレート34aと第2中間プレート34bとは、複数の固定部材例えば複数のリベット(図示しない)によって、互いに相対回転不能且つ軸方向に移動不能に連結されている。 As shown in FIG. 1, the intermediate plate 34 has a first intermediate plate 34a and a second intermediate plate 34b. The first intermediate plate 34a is disposed on the axial direction engine side. The second intermediate plate 34b is disposed on the axial transmission side. The first intermediate plate 34a and the second intermediate plate 34b are arranged at a predetermined interval in the axial direction. A driven plate 39 is disposed between the first intermediate plate 34a and the second intermediate plate 34b. The first intermediate plate 34a and the second intermediate plate 34b are connected to each other by a plurality of fixing members such as a plurality of rivets (not shown) so that they cannot rotate relative to each other and cannot move in the axial direction.
 第1中間プレート34a及び第2中間プレート34bそれぞれには、窓部44a,45aが、形成されている。窓部44aと窓部45aとの軸方向間には、内周側のトーションスプリング40bが配置される。窓部44a,45aにおいて円周方向に互いに対向する壁部44b,45bは、内周側のトーションスプリング40bの両端部に当接可能に形成されている。窓部44a,45aの内周部及び外周部には、軸方向に切り起こされた切り起こし部が、形成されている。 Window portions 44a and 45a are formed in the first intermediate plate 34a and the second intermediate plate 34b, respectively. Between the axial direction of the window part 44a and the window part 45a, the torsion spring 40b of the inner peripheral side is arrange | positioned. The wall portions 44b and 45b facing each other in the circumferential direction in the window portions 44a and 45a are formed so as to be able to contact both end portions of the inner peripheral side torsion spring 40b. Cut and raised portions cut and raised in the axial direction are formed on the inner and outer peripheral portions of the window portions 44a and 45a.
 第2中間プレート34bは、外周側のトーションスプリング40aに係合可能な複数の係合部45cを、有している。複数の係合部45cそれぞれは、円周方向において互いに所定の間隔を隔てて、第2中間プレート34bの外周部に形成されている。円周方向において互いに隣接する係合部45cの間には、外周側のトーションスプリング40aが配置される。係合部45cは、外周側のトーションスプリング40aにおける円周方向の端部に当接可能である。 The second intermediate plate 34b has a plurality of engaging portions 45c that can be engaged with the torsion spring 40a on the outer peripheral side. Each of the plurality of engaging portions 45c is formed on the outer peripheral portion of the second intermediate plate 34b at a predetermined interval in the circumferential direction. Between the engaging portions 45c adjacent to each other in the circumferential direction, an outer peripheral torsion spring 40a is disposed. The engaging portion 45c can be in contact with a circumferential end of the outer torsion spring 40a.
  <フロート部材>
 フロート部材37は、隣接する外周側のトーションスプリング40aを直列に作動させるための部材である。フロート部材37は、実質的に環状に形成されている。フロート部材37は、中間プレート34(第2中間プレート34b)及びドライブプレート33に対して相対回転可能に、ドライブプレート33に支持されている。
<Float member>
The float member 37 is a member for operating adjacent torsion springs 40a on the outer peripheral side in series. The float member 37 is formed in a substantially annular shape. The float member 37 is supported by the drive plate 33 so as to be rotatable relative to the intermediate plate 34 (second intermediate plate 34 b) and the drive plate 33.
 図1に示すように、フロート部材37は、外周側のトーションスプリング40aの半径方向外側を保持する。フロート部材37には、連結部47aが円周方向に間隔を隔てて形成されている。連結部47aは、隣接する2個の外周側のトーションスプリング40aの間に配置され、外周側のトーションスプリング40aの端部に当接している。これにより、隣接する2個の外周側のトーションスプリング40aは、直列に作動する。 As shown in FIG. 1, the float member 37 holds the outer side in the radial direction of the outer peripheral side torsion spring 40a. In the float member 37, connecting portions 47a are formed at intervals in the circumferential direction. The connecting portion 47a is disposed between two adjacent outer peripheral torsion springs 40a, and is in contact with the end of the outer peripheral torsion spring 40a. Thereby, the two adjacent torsion springs 40a on the outer peripheral side operate in series.
  <ドリブンプレート>
 ドリブンプレート39は、実質的に環状かつ円板状の部材である。ドリブンプレート39は、回転中心Oを中心に回転可能である。ドリブンプレート39は、実質的に環状かつ円板状の部材である。ドリブンプレート39は、内周部に固定部39aを有し、固定部39aの外周側に複数の開口部39bを有している。固定部39aは、タービンハブ16に固定されている。固定部39a内周部は、固定部材例えばボルト39dによって、タービンハブ16に固定されている。
<Driven plate>
The driven plate 39 is a substantially annular and disk-shaped member. The driven plate 39 can rotate around the rotation center O. The driven plate 39 is a substantially annular and disk-shaped member. The driven plate 39 has a fixed portion 39a on the inner peripheral portion, and has a plurality of openings 39b on the outer peripheral side of the fixed portion 39a. The fixed portion 39 a is fixed to the turbine hub 16. The inner peripheral portion of the fixed portion 39a is fixed to the turbine hub 16 by a fixing member such as a bolt 39d.
 開口部39bは、軸方向に貫通する孔部である。開口部39bには、内周側のトーションスプリング40bが配置される。開口部39bにおいて円周方向に互いに対向する壁部39fは、内周側のトーションスプリング40bの両端部に当接可能に、形成されている。 The opening 39b is a hole penetrating in the axial direction. An inner periphery side torsion spring 40b is disposed in the opening 39b. Wall portions 39f facing each other in the circumferential direction in the opening portion 39b are formed so as to be able to contact both end portions of the inner peripheral side torsion spring 40b.
  <トーションスプリング>
 複数のトーションスプリング40は、複数(例えば8個)の外周側のトーションスプリング40aと、複数(例えば8個)の内周側のトーションスプリング40bとから、構成されている。
<Torsion spring>
The plurality of torsion springs 40 are composed of a plurality (for example, eight) of outer peripheral side torsion springs 40a and a plurality (for example, eight) of inner peripheral side torsion springs 40b.
 複数の外周側のトーションスプリング40aそれぞれは、ドライブプレート33と、フロート部材37と、中間プレート34とによって、円周方向に支持されている。 Each of the plurality of torsion springs 40a on the outer peripheral side is supported in the circumferential direction by the drive plate 33, the float member 37, and the intermediate plate 34.
 詳細には、複数の外周側のトーションスプリング40aそれぞれは、ドライブプレート33の係合部33bと、フロート部材37の連結部47aと、第2中間プレート34bの係合部45cとによって、円周方向に支持されている。この状態において、複数の外周側のトーションスプリング40aは、ドライブプレート33及び中間プレート34(第2中間プレート34b)によって、圧縮可能である。 Specifically, each of the plurality of torsion springs 40a on the outer peripheral side is arranged in the circumferential direction by an engaging portion 33b of the drive plate 33, a connecting portion 47a of the float member 37, and an engaging portion 45c of the second intermediate plate 34b. It is supported by. In this state, the plurality of outer peripheral torsion springs 40a can be compressed by the drive plate 33 and the intermediate plate 34 (second intermediate plate 34b).
 複数の内周側のトーションスプリング40bそれぞれは、中間プレート34と、ドリブンプレート39とによって、円周方向に支持されている。 Each of the plurality of torsion springs 40b on the inner peripheral side is supported in the circumferential direction by an intermediate plate 34 and a driven plate 39.
 詳細には、複数の内周側のトーションスプリング40bそれぞれは、第1中間プレート34aの窓部44a及び第2中間プレート34bの窓部45aと、ドリブンプレート39の開口部39bとによって、円周方向に支持されている。この状態において、複数の内周側のトーションスプリング40bは、中間プレート34の窓部44a,45aの壁部44b,45b、及びドリブンプレート39の開口部39bの壁部39fによって、圧縮可能である。 Specifically, each of the plurality of inner peripheral torsion springs 40b is circumferentially formed by the window portion 44a of the first intermediate plate 34a, the window portion 45a of the second intermediate plate 34b, and the opening portion 39b of the driven plate 39. It is supported by. In this state, the plurality of torsion springs 40 b on the inner peripheral side can be compressed by the wall portions 44 b and 45 b of the window portions 44 a and 45 a of the intermediate plate 34 and the wall portion 39 f of the opening 39 b of the driven plate 39.
  <動吸振装置>
 動吸振装置9は、エンジンからトランスミッションに伝達される振動を、減衰するためのものである。図1及び図2に示すように、動吸振装置9は、タービンハブ16に固定されている。詳細には、動吸振装置9は、固定部材例えばリベット20によって、タービンシェル14とともに、タービンハブ16に固定されている。
<Dynamic vibration absorber>
The dynamic vibration absorber 9 is for attenuating vibration transmitted from the engine to the transmission. As shown in FIGS. 1 and 2, the dynamic vibration absorber 9 is fixed to the turbine hub 16. Specifically, the dynamic vibration absorber 9 is fixed to the turbine hub 16 together with the turbine shell 14 by a fixing member such as a rivet 20.
 動吸振装置9は、回転部41と、複数のイナーシャ部材71(質量体の一例)と、案内機構81と、リンク部材91(連結部の一例)とを、備えている。 The dynamic vibration absorber 9 includes a rotating part 41, a plurality of inertia members 71 (an example of a mass body), a guide mechanism 81, and a link member 91 (an example of a connecting part).
 回転部41は、回転中心Oまわりに回転可能である。図2に示すように、回転部41は、第1回転部材51と、第2回転部材61とを、有している。第1回転部材51と第2回転部材61とは、軸方向に互いに対向して配置される。 The rotating part 41 can rotate around the rotation center O. As illustrated in FIG. 2, the rotating unit 41 includes a first rotating member 51 and a second rotating member 61. The first rotating member 51 and the second rotating member 61 are arranged to face each other in the axial direction.
 第1回転部材51は、実質的に環状に形成されている。第1回転部材51は、第1本体部53と、第1固定部55と、第1接続部57とを、有している。 The first rotating member 51 is formed substantially in an annular shape. The first rotating member 51 includes a first main body portion 53, a first fixing portion 55, and a first connection portion 57.
 第1本体部53は、実質的に環状に形成されている。第1固定部55は、第1本体部53の内周部に設けられている。第1固定部55は、タービンシェル14に固定される。詳細には、第1固定部55は、第1固定孔部55aを有している。この第1固定孔部55aを介して、第1固定部55は、固定部材例えばリベット20によって、タービンシェル14に固定される。 The first main body 53 is formed in a substantially annular shape. The first fixing portion 55 is provided on the inner peripheral portion of the first main body portion 53. The first fixing portion 55 is fixed to the turbine shell 14. Specifically, the first fixing portion 55 has a first fixing hole portion 55a. The first fixing portion 55 is fixed to the turbine shell 14 by a fixing member such as the rivet 20 through the first fixing hole portion 55a.
 第1接続部57は、第1本体部53の外周部に設けられている。第1接続部57には、リンク部材91が揺動自在に装着される。具体的には、第1接続部57には、軸方向に貫通する第1接続孔部57aが設けられている。より具体的には、第1接続孔部57aには、接続部材例えばリベット58及びカラー部材59を介して、リンク部材91が揺動自在に装着される。 The first connection portion 57 is provided on the outer peripheral portion of the first main body portion 53. A link member 91 is swingably attached to the first connection portion 57. Specifically, the first connection portion 57 is provided with a first connection hole portion 57a penetrating in the axial direction. More specifically, a link member 91 is swingably attached to the first connection hole 57a via a connection member such as a rivet 58 and a collar member 59.
 第2回転部材61は、実質的に環状に形成されている。第2回転部材61は、第2本体部63と、第2固定部65と、第2接続部67とを、有している。 The second rotating member 61 is substantially annular. The second rotating member 61 has a second main body portion 63, a second fixing portion 65, and a second connection portion 67.
 第2本体部63は、内周側の環状部63aと、軸方向延出部63bと、外周側の環状部63cとを、有している。内周側の環状部63aは、実質的に環状に形成されている。軸方向延出部63bは、内周側の環状部63aの外周部から軸方向に延びるように、内周側の環状部63aに一体に形成されている。具体的には、軸方向延出部63bは、実質的に円筒状に形成されている。外周側の環状部63cは、実質的に環状に形成されている。外周側の環状部63cは、軸方向延出部63bから径方向外方に延びるように、軸方向延出部63bに一体に形成されている。 The second main body 63 has an annular portion 63a on the inner peripheral side, an axially extending portion 63b, and an annular portion 63c on the outer peripheral side. The annular portion 63a on the inner peripheral side is substantially annular. The axially extending portion 63b is integrally formed with the inner peripheral annular portion 63a so as to extend in the axial direction from the outer peripheral portion of the inner peripheral annular portion 63a. Specifically, the axially extending portion 63b is formed in a substantially cylindrical shape. The annular portion 63c on the outer peripheral side is substantially annular. The outer peripheral side annular portion 63c is formed integrally with the axially extending portion 63b so as to extend radially outward from the axially extending portion 63b.
 第2固定部65は、第2本体部63の内周部、例えば内周側の環状部63aに、設けられている。第2固定部65は、第1回転部材51の第1固定部55とタービンシェル14との間に配置される。第2固定部65は、タービンシェル14に固定される。詳細には、第2固定部65は、第2固定孔部65aを有している。この第2固定孔部65aを介して、第2固定部65は、固定部材例えばリベット20によって、第1回転部材51の第1固定部55とともに、タービンシェル14に固定される。 The second fixing portion 65 is provided in an inner peripheral portion of the second main body portion 63, for example, an annular portion 63a on the inner peripheral side. The second fixing portion 65 is disposed between the first fixing portion 55 of the first rotating member 51 and the turbine shell 14. The second fixing portion 65 is fixed to the turbine shell 14. Specifically, the second fixing portion 65 has a second fixing hole portion 65a. The second fixing portion 65 is fixed to the turbine shell 14 together with the first fixing portion 55 of the first rotating member 51 by the fixing member, for example, the rivet 20, through the second fixing hole portion 65a.
 第2接続部67は、第2本体部63の外周部、例えば外周側の環状部63cに、設けられている。第2接続部67は、第1接続部57と対向して配置される。第2接続部67には、リンク部材91が揺動自在に装着される。具体的には、第2接続部67には、軸方向に貫通する第2接続孔部67aが、設けられている。より具体的には、第2接続孔部67aには、接続部材例えばリベット58及びカラー部材59を介して、リンク部材91が揺動自在に装着される。 The second connection part 67 is provided in the outer peripheral part of the second main body part 63, for example, the annular part 63c on the outer peripheral side. The second connection portion 67 is disposed to face the first connection portion 57. A link member 91 is swingably attached to the second connection portion 67. Specifically, the second connection portion 67 is provided with a second connection hole portion 67a penetrating in the axial direction. More specifically, a link member 91 is swingably attached to the second connection hole 67a via a connection member such as a rivet 58 and a collar member 59.
 接続部材例えばカラー部材59は、第1接続部57及び第2接続部67の間に配置される。詳細には、カラー部材59は、軸方向延出部63bの外方において、第1接続部57及び第2接続部67の間に配置される。カラー部材59は、実質的に円筒状に形成されている。カラー部材59は、小径筒部59aと、大径筒部59bとを、有する。小径筒部59aは、リンク部材91に対して揺動自在に係合する。大径筒部59bは、小径筒部59aより大径に形成されている。大径筒部59bは、軸方向において、第1回転部材51とリンク部材91との間に配置される。大径筒部59bに対して、リンク部材91は揺動自在である。 The connecting member, for example, the collar member 59 is disposed between the first connecting portion 57 and the second connecting portion 67. Specifically, the collar member 59 is disposed between the first connection portion 57 and the second connection portion 67 outside the axially extending portion 63b. The collar member 59 is formed in a substantially cylindrical shape. The collar member 59 has a small diameter cylindrical portion 59a and a large diameter cylindrical portion 59b. The small diameter cylindrical portion 59a engages with the link member 91 in a swingable manner. The large diameter cylindrical portion 59b is formed to have a larger diameter than the small diameter cylindrical portion 59a. The large diameter cylindrical portion 59b is disposed between the first rotating member 51 and the link member 91 in the axial direction. The link member 91 can swing with respect to the large-diameter cylindrical portion 59b.
 接続部材例えばリベット58は、カラー部材59の内周部に配置される。具体的には、リベット58の軸部は、カラー部材59(小径筒部59a及び大径筒部59b)の内周部と、第1接続孔部57a及び第2接続孔部67aとに、配置される。リベット58の鍔部は、軸部の両端部に設けられ、第1接続部57のロックアップ装置7側及び第2接続部67のタービン13側に、係合する。これにより、リベット58は、第1接続部57及び第2接続部67に対して、軸方向に移動不能に装着される。 The connecting member, for example, the rivet 58 is disposed on the inner peripheral portion of the collar member 59. Specifically, the shaft portion of the rivet 58 is disposed on the inner peripheral portion of the collar member 59 (small diameter cylindrical portion 59a and large diameter cylindrical portion 59b), and the first connection hole portion 57a and the second connection hole portion 67a. Is done. The flange portions of the rivet 58 are provided at both end portions of the shaft portion, and engage with the lock-up device 7 side of the first connection portion 57 and the turbine 13 side of the second connection portion 67. As a result, the rivet 58 is attached to the first connecting portion 57 and the second connecting portion 67 so as not to move in the axial direction.
 複数のイナーシャ部材71は、回転部41の回転時に、回転部41に対して相対移動可能である。複数のイナーシャ部材71が、回転部41に対して相対移動することによって、回転部41の振動を減衰する。 The plurality of inertia members 71 can be moved relative to the rotating portion 41 when the rotating portion 41 rotates. The plurality of inertia members 71 move relative to the rotating unit 41 to attenuate the vibration of the rotating unit 41.
 ここでは、複数組のイナーシャ部材71、例えば2組のイナーシャ部材71が、回転部41に対して相対移動可能である。また、2組のイナーシャ部材71は、案内機構81の第4本体部83(後述する)に対して相対移動可能である。なお、1組のイナーシャ部材71(一対のイナーシャ部材71)は、2個のイナーシャ部材71から構成される。 Here, a plurality of sets of inertia members 71, for example, two sets of inertia members 71 can be moved relative to the rotating portion 41. In addition, the two sets of inertia members 71 can move relative to a fourth main body portion 83 (described later) of the guide mechanism 81. One set of inertia members 71 (a pair of inertia members 71) is composed of two inertia members 71.
 詳細には、図2から図4に示すように、一対のイナーシャ部材71は、回転中心Oを基準として、回転部41の半径方向外方に、配置される。ここでは、一対のイナーシャ部材71の重心Gが半径方向において回転中心Oから所定の間隔を隔てた位置に位置するように、各イナーシャ部材71は配置される。 Specifically, as shown in FIGS. 2 to 4, the pair of inertia members 71 are arranged radially outward of the rotating portion 41 with the rotation center O as a reference. Here, each inertia member 71 is arranged so that the center of gravity G of the pair of inertia members 71 is located at a position spaced apart from the rotation center O in the radial direction.
 一対のイナーシャ部材71(2個のイナーシャ部材71)は、回転中心Oのまわりに配置される。ここでは、回転中心Oまわりにおいて隣接する各イナーシャ部材71の重心Gと、回転中心Oとを結ぶ線分A1がなす角度は、全て同じである。また、この角度は、案内機構81の第4本体部83が静止した系において、全て同じである。ここでは、この角度は、例えば180度である。 The pair of inertia members 71 (two inertia members 71) are arranged around the rotation center O. Here, the angles formed by the line segment A1 connecting the center of gravity G of each inertia member 71 adjacent around the rotation center O and the rotation center O are all the same. Further, this angle is the same in all systems in which the fourth main body 83 of the guide mechanism 81 is stationary. Here, this angle is, for example, 180 degrees.
 図2に示すように、一対のイナーシャ部材71は、軸方向に互いに対向して配置される。一対のイナーシャ部材71の軸方向間には、案内機構81の第4本体部83が配置される。図3及び図4に示すように、一対のイナーシャ部材71(2個のイナーシャ部材71)は、ある1つの半径方向(スライド方向SL)において、回転部41及び案内機構81の第4本体部83に対して相対移動可能である。 As shown in FIG. 2, the pair of inertia members 71 are arranged to face each other in the axial direction. Between the axial directions of the pair of inertia members 71, a fourth main body portion 83 of the guide mechanism 81 is disposed. As shown in FIGS. 3 and 4, the pair of inertia members 71 (two inertia members 71) are arranged in a certain radial direction (sliding direction SL), with the rotating portion 41 and the fourth main body portion 83 of the guide mechanism 81. Relative movement is possible.
 ここで、ある1つの半径方向(スライド方向SL)とは、イナーシャ部材71の重心Gと回転中心Oとを通過する第1直線C1に沿う方向を、示している。ここでは、ある1つの半径方向(スライド方向SL)が、各対のイナーシャ部材71の重心Gと回転中心Oとを通過する第1直線C1に沿う方向に対応している。以下では、ある1つの半径方向を、回転中心Oから放射状に延びる半径方向と区別するために、「スライド方向SL」と記す。 Here, a certain radial direction (sliding direction SL) indicates a direction along the first straight line C1 passing through the center of gravity G and the rotation center O of the inertia member 71. Here, one certain radial direction (sliding direction SL) corresponds to a direction along the first straight line C <b> 1 that passes through the center of gravity G and the rotation center O of each pair of inertia members 71. Hereinafter, in order to distinguish one radial direction from a radial direction extending radially from the rotation center O, it is referred to as a “sliding direction SL”.
 各イナーシャ部材71は、第3本体部73と、第3接続部75と、軸支持部77とを、有している。第3本体部73は、実質的に円弧板状に形成されている。第3接続部75は、第3本体部73に設けられている。第3接続部75には、リンク部材91が揺動自在に装着される。 Each inertia member 71 has a third main body portion 73, a third connection portion 75, and a shaft support portion 77. The 3rd main-body part 73 is formed in the circular arc plate shape substantially. The third connection part 75 is provided in the third main body part 73. A link member 91 is swingably attached to the third connection portion 75.
 具体的には、図2に示すように、第3接続部75には、軸方向に貫通する第3接続孔部75aが設けられている。一対の第3本体部73において、各第3接続部75の第3接続孔部75aは、互いに対向して配置される。図3及び図4に示すように、一対の第3接続孔部75aは、各イナーシャ部材71の重心Gと回転中心Oとを通過する第1直線C1上に、形成されている。一対の第3接続孔部75aには、接続部材例えばリベット58を介して、リンク部材91が揺動自在に装着される。 Specifically, as shown in FIG. 2, the third connection portion 75 is provided with a third connection hole 75 a penetrating in the axial direction. In the pair of third main body portions 73, the third connection hole portions 75a of the respective third connection portions 75 are disposed to face each other. As shown in FIGS. 3 and 4, the pair of third connection holes 75 a are formed on a first straight line C <b> 1 that passes through the center of gravity G and the rotation center O of each inertia member 71. A link member 91 is swingably attached to the pair of third connection holes 75a via a connection member, for example, a rivet 58.
 図3及び図4に示すように、軸支持部77は、第3本体部73に設けられている。一対の第3本体部73において、各軸支持部77は互いに対向して配置される。ここでは、複数(例えば4個)の軸支持部77が、第3本体部73に設けられている。図3及び図4では、1個の軸支持部77にのみ符号を付している。 As shown in FIGS. 3 and 4, the shaft support portion 77 is provided in the third main body portion 73. In the pair of third main body portions 73, the shaft support portions 77 are arranged to face each other. Here, a plurality of (for example, four) shaft support portions 77 are provided in the third main body portion 73. 3 and 4, only one shaft support portion 77 is denoted by a reference numeral.
 各軸支持部77には、案内機構81の軸部材85b(後述する)が装着される。具体的には、各軸支持部77には、軸方向に貫通する軸用孔部77aが設けられている。一対の第3本体部73において、各軸支持部77の軸用孔部77aは、互いに対向して配置される。また、図3及び図4の左側の2個の軸用孔部77aと、図3及び図4の右側の2個の軸用孔部77aとは、各イナーシャ部材71の重心Gと回転中心Oとを通過する第1直線C1を基準として、線対称に配置されている。一対の軸用孔部77aには、案内機構81の軸部材85bが装着される。 A shaft member 85b (described later) of the guide mechanism 81 is attached to each shaft support portion 77. Specifically, each shaft support portion 77 is provided with a shaft hole 77a penetrating in the axial direction. In the pair of third main body portions 73, the shaft hole portions 77 a of the shaft support portions 77 are disposed to face each other. Further, the two left shaft hole portions 77a in FIGS. 3 and 4 and the two right shaft hole portions 77a in FIGS. 3 and 4 have a center of gravity G and a rotation center O of each inertia member 71. Are arranged symmetrically with respect to the first straight line C1 passing through The shaft member 85b of the guide mechanism 81 is attached to the pair of shaft holes 77a.
 図3及び図4に示すように、案内機構81は、回転部41の回転時に、イナーシャ部材71を回転部41に対して相対移動可能なように、イナーシャ部材71を案内する。具体的には、案内機構81は、回転部41の回転時に、イナーシャ部材71をスライド方向SLに案内する。より具体的には、案内機構81は、回転部41の回転時に、各対のイナーシャ部材71の重心Gと回転中心Oとを通過する第1直線C1に沿って、イナーシャ部材71を案内する。言い換えると、案内機構81は、回転部41の回転時に、第1直線C1に直交し且つ回転中心Oを通過する第2直線C2に近づく方向と、第2直線C2から離れる方向とに、イナーシャ部材71を案内する。 3 and 4, the guide mechanism 81 guides the inertia member 71 so that the inertia member 71 can be moved relative to the rotation unit 41 when the rotation unit 41 rotates. Specifically, the guide mechanism 81 guides the inertia member 71 in the slide direction SL when the rotating unit 41 rotates. More specifically, the guide mechanism 81 guides the inertia member 71 along the first straight line C <b> 1 that passes through the center of gravity G and the rotation center O of each pair of inertia members 71 when the rotating portion 41 rotates. In other words, the guide mechanism 81 is an inertia member in a direction approaching the second straight line C2 orthogonal to the first straight line C1 and passing through the rotation center O and a direction away from the second straight line C2 when the rotating unit 41 rotates. Guide 71.
 案内機構81は、第4本体部83(本体部の一例)と、案内部85と、突出部87(位置決め部の一例)とを、有している。第4本体部83は、実質的に環状に形成されている。第4本体部83は、回転部41(第1回転部材51及び第2回転部材61)に対して、相対回転可能である。第4本体部83は、長孔部85a及び軸部材85bを介して、イナーシャ部材71に係合する。第4本体部83は、軸方向において、イナーシャ部材71及び回転部41それぞれに隣接して配置される。 The guide mechanism 81 includes a fourth main body portion 83 (an example of a main body portion), a guide portion 85, and a protruding portion 87 (an example of a positioning portion). The fourth main body 83 is formed in a substantially annular shape. The fourth main body 83 is rotatable relative to the rotating portion 41 (the first rotating member 51 and the second rotating member 61). The fourth main body portion 83 engages with the inertia member 71 through the long hole portion 85a and the shaft member 85b. The fourth body portion 83 is disposed adjacent to the inertia member 71 and the rotating portion 41 in the axial direction.
 図2に示すように、具体的には、第4本体部83の外周部は、軸方向において、一対のイナーシャ部材71(2個のイナーシャ部材71)の間に、配置される。第4本体部83の内周部は、軸方向において、第1回転部材51と第2回転部材61との間に配置される。第4本体部83の内周側には、第2回転部材61の軸方向延出部63b及び第2固定部65が、配置される。第4本体部83の内周部は、第2回転部材61の軸方向延出部63bの外周面に対して、相対回転可能である。 As shown in FIG. 2, specifically, the outer peripheral portion of the fourth main body portion 83 is disposed between the pair of inertia members 71 (two inertia members 71) in the axial direction. An inner peripheral portion of the fourth main body portion 83 is disposed between the first rotating member 51 and the second rotating member 61 in the axial direction. On the inner peripheral side of the fourth main body portion 83, the axially extending portion 63b and the second fixing portion 65 of the second rotating member 61 are disposed. The inner peripheral part of the fourth main body part 83 is rotatable relative to the outer peripheral surface of the axially extending part 63 b of the second rotating member 61.
 第4本体部83には、収納孔部89(収納部の一例)が設けられている。収納孔部89は、リンク部材91を収納するための孔部である。複数(例えば2個)の収納孔部89が、第4本体部83に設けられている。各収納孔部89は、実質的に三角形状に形成されている。収納孔部89の形状は、リンク部材91の揺動時にリンク部材91と当接しないように、形成されている。 The fourth body 83 is provided with a storage hole 89 (an example of a storage). The storage hole 89 is a hole for storing the link member 91. A plurality of (for example, two) storage hole portions 89 are provided in the fourth main body portion 83. Each storage hole 89 is substantially formed in a triangular shape. The shape of the storage hole 89 is formed so as not to contact the link member 91 when the link member 91 swings.
 各収納孔部89は、円周方向に所定の間隔を隔てて、配置されている。言い換えると、各収納孔部89は、円周方向に所定の角度を隔てた位置に、配置されている。ここでは、この角度は、例えば180度である。また、各収納孔部89は、円周方向において、複数の突出部87例えば2組の突出部87の間に、配置されている。具体的には、各収納孔部89と各突出部87(1組の突出部87)とは、円周方向において、互いに90度の間隔で、配置されている。 The storage holes 89 are arranged at a predetermined interval in the circumferential direction. In other words, each storage hole 89 is disposed at a position spaced apart from the circumferential direction by a predetermined angle. Here, this angle is, for example, 180 degrees. Each storage hole 89 is arranged between a plurality of protrusions 87, for example, two sets of protrusions 87 in the circumferential direction. Specifically, each storage hole 89 and each protrusion 87 (one set of protrusions 87) are arranged at intervals of 90 degrees in the circumferential direction.
 案内部85は、長孔部85aと、軸部材85bとを、有している。長孔部85aは、第4本体部83に設けられている。ここでは、複数(例えば4個)の長孔部85aが、第4本体部83に設けられる。各長孔部85aは、イナーシャ部材71の重心Gと回転中心Oとを通過する第1直線C1に沿う方向に、伸びている。また、図3及び図4の左側の2個の長孔部85aと、図3及び図4の右側の2個の長孔部85aとは、各イナーシャ部材71の重心Gと回転中心Oとを通過する第1直線C1を基準として、線対称に配置されている。各長孔部85aには、案内機構81の軸部材85bが配置される。 The guide portion 85 has a long hole portion 85a and a shaft member 85b. The long hole portion 85 a is provided in the fourth main body portion 83. Here, a plurality of (for example, four) long hole portions 85 a are provided in the fourth main body portion 83. Each elongated hole portion 85a extends in a direction along the first straight line C1 that passes through the center of gravity G and the rotation center O of the inertia member 71. Also, the two long hole portions 85a on the left side in FIGS. 3 and 4 and the two long hole portions 85a on the right side in FIGS. 3 and 4 have a center of gravity G and a rotation center O of each inertia member 71. The first straight line C1 passing therethrough is used as a reference and is arranged line-symmetrically. A shaft member 85b of the guide mechanism 81 is disposed in each long hole portion 85a.
 複数(例えば4個)の軸部材85bそれぞれが、各長孔部85aに配置され、イナーシャ部材71に装着される。具体的には、各軸部材85bの軸部が各長孔部85aに配置され、各軸部材85bの両端部が一対のイナーシャ部材71に装着される。各軸部材85bが各長孔部85aに沿って移動することによって、一対のイナーシャ部材71がスライド方向SLに移動する。 A plurality of (for example, four) shaft members 85b are arranged in the respective long hole portions 85a and attached to the inertia member 71. Specifically, the shaft portion of each shaft member 85 b is disposed in each long hole portion 85 a, and both end portions of each shaft member 85 b are attached to the pair of inertia members 71. As each shaft member 85b moves along each long hole portion 85a, the pair of inertia members 71 move in the slide direction SL.
 突出部87は、イナーシャ部材71を位置決めするためのものである。詳細には、突出部87は、イナーシャ部材71の重心Gが回転中心Oに最も近づいた位置で、イナーシャ部材71を位置決めする。 The projecting portion 87 is for positioning the inertia member 71. Specifically, the protrusion 87 positions the inertia member 71 at a position where the center of gravity G of the inertia member 71 is closest to the rotation center O.
 ここでは、複数の突出部87が、第4本体部83に設けられている。各突出部87は、第4本体部83から軸方向に突出して設けられている。詳細には、複数の突出部87は、複数組の突出部87、例えば2組の突出部87を、構成している。ここで、1組の突出部87は、2個の突出部87から構成される。 Here, a plurality of protruding portions 87 are provided in the fourth main body portion 83. Each protrusion 87 is provided so as to protrude in the axial direction from the fourth main body 83. Specifically, the plurality of protrusions 87 constitute a plurality of sets of protrusions 87, for example, two sets of protrusions 87. Here, the one set of protrusions 87 includes two protrusions 87.
 突出部87には、イナーシャ部材71が当接する。例えば、突出部87には、イナーシャ部材71の円周方向端部が、当接する。各突出部87は、円周方向に所定の間隔を隔てて、配置されている。言い換えると、各突出部87は、円周方向に所定の角度を隔てた位置に、配置されている。ここでは、この角度は、例えば180度である。 The inertia member 71 comes into contact with the protruding portion 87. For example, the circumferential end of the inertia member 71 abuts on the protrusion 87. Each protrusion part 87 is arrange | positioned at predetermined intervals in the circumferential direction. In other words, each protrusion 87 is disposed at a position spaced apart from the circumferential direction by a predetermined angle. Here, this angle is, for example, 180 degrees.
 各突出部87は、軸部87aと、弾性部87bとを、有している。軸部87aは、第4本体部83に一体に形成されている。弾性部87bは、イナーシャ部材71との衝突を緩和するためのものであり、軸部87aの外周に設けられている。 Each protrusion 87 has a shaft part 87a and an elastic part 87b. The shaft portion 87 a is formed integrally with the fourth main body portion 83. The elastic portion 87b is for alleviating the collision with the inertia member 71, and is provided on the outer periphery of the shaft portion 87a.
 図3及び図4に示すように、リンク部材91は、回転部41及びイナーシャ部材71に連結される。リンク部材91は、回転部41及びイナーシャ部材71に対して、揺動自在である。詳細には、リンク部材91は、案内機構81の第4本体部の収納孔部89に配置され、収納孔部89の内部において回転部41及びイナーシャ部材71に対して揺動自在である。また、リンク部材91の軸方向厚みは、案内機構81の第4本体部83の軸方向厚さより薄い。 As shown in FIGS. 3 and 4, the link member 91 is connected to the rotating portion 41 and the inertia member 71. The link member 91 is swingable with respect to the rotating part 41 and the inertia member 71. Specifically, the link member 91 is disposed in the storage hole 89 of the fourth main body portion of the guide mechanism 81, and can swing with respect to the rotating portion 41 and the inertia member 71 inside the storage hole 89. In addition, the axial thickness of the link member 91 is thinner than the axial thickness of the fourth main body portion 83 of the guide mechanism 81.
 リンク部材91は、一方向に長い板状に形成されている。リンク部材91の内周側端部92(連結部の一端部の一例)は、回転部41(第1回転部材51及び第2回転部材61)に、揺動自在に装着される。詳細には、リンク部材91の内周側端部92は、第1回転部材51の第1接続部57及び第2回転部材61の第2接続部67の軸方向間に配置される。 The link member 91 is formed in a plate shape that is long in one direction. An inner peripheral side end portion 92 (an example of one end portion of the connecting portion) of the link member 91 is swingably attached to the rotating portion 41 (the first rotating member 51 and the second rotating member 61). Specifically, the inner peripheral end 92 of the link member 91 is disposed between the first connecting portion 57 of the first rotating member 51 and the second connecting portion 67 of the second rotating member 61 in the axial direction.
 また、図2に示すように、リンク部材91の内周側端部92と第1回転部材51の第1接続部57との軸方向間には、カラー部材59の大径筒部59bが配置される。さらに、リンク部材91の内周側端部92には、第4接続孔部92aが設けられている。第4接続孔部92aは、接続部材例えばカラー部材59に係合する。第4接続孔部92aは、カラー部材59に対して回転自在である。具体的には、第4接続孔部92aにはカラー部材59の小径筒部59aが配置され、第4接続孔部92aはカラー部材59の小径筒部59aの外周部に対して回転自在である。 Further, as shown in FIG. 2, a large-diameter cylindrical portion 59 b of the collar member 59 is arranged between the inner peripheral side end portion 92 of the link member 91 and the first connection portion 57 of the first rotating member 51. Is done. Furthermore, a fourth connection hole 92 a is provided at the inner peripheral side end 92 of the link member 91. The fourth connection hole 92 a engages with a connection member, for example, a collar member 59. The fourth connection hole 92 a is rotatable with respect to the collar member 59. Specifically, the small diameter cylindrical portion 59a of the collar member 59 is disposed in the fourth connection hole 92a, and the fourth connection hole 92a is rotatable with respect to the outer peripheral portion of the small diameter cylindrical portion 59a of the collar member 59. .
 図2に示すように、カラー部材59(小径筒部59a及び大径筒部59b)の内周部には、接続部材例えばリベット58の軸部が、配置される。リベット58の鍔部は、第1回転部材51の第1接続部57のロックアップ装置7側、及び第2回転部材61の第2接続部67のタービン13側に、係合する。このようにして、リンク部材91は、リンク部材91の内周側端部92において、第1回転部材51(第1接続部57)及び第2回転部材61(第2接続部67)に対して、揺動自在に装着される。 As shown in FIG. 2, a connecting member, for example, a shaft portion of a rivet 58 is disposed on the inner peripheral portion of the collar member 59 (small diameter cylindrical portion 59a and large diameter cylindrical portion 59b). The flange portion of the rivet 58 is engaged with the lockup device 7 side of the first connection portion 57 of the first rotation member 51 and the turbine 13 side of the second connection portion 67 of the second rotation member 61. In this way, the link member 91 is in the inner peripheral side end portion 92 of the link member 91 with respect to the first rotating member 51 (first connecting portion 57) and the second rotating member 61 (second connecting portion 67). , Swingably mounted.
 図3及ぶ図4に示すように、リンク部材91の外周側端部93(連結部の他端部の一例)は、イナーシャ部材71(一対のイナーシャ部材71)に揺動自在に装着される。詳細には、リンク部材91の外周側端部93は、一対のイナーシャ部材71の軸方向間に配置される。 As shown in FIGS. 3 and 4, the outer peripheral side end portion 93 (an example of the other end portion of the connecting portion) of the link member 91 is swingably attached to the inertia member 71 (a pair of inertia members 71). Specifically, the outer peripheral side end portion 93 of the link member 91 is disposed between the axial directions of the pair of inertia members 71.
 図2に示すように、リンク部材91の外周側端部93には、第5接続孔部93aが設けられている。第5接続孔部93aは、接続部材例えばカラー部材60に係合する。第5接続孔部93aは、カラー部材60に対して回転自在である。カラー部材60の内周部には、接続部材例えばリベット58の軸部が、配置される。リベット58の鍔部は、一方のイナーシャ部材71のロックアップ装置7側、及び他方のイナーシャ部材71のタービン13側に、係合する。このようにして、リンク部材91は、リンク部材91の外周側端部93において、一対のイナーシャ部材71(一対の第3接続部75)に対して揺動自在に装着される。 As shown in FIG. 2, the outer peripheral side end portion 93 of the link member 91 is provided with a fifth connection hole portion 93 a. The fifth connection hole 93 a engages with a connection member, for example, the collar member 60. The fifth connection hole 93 a is rotatable with respect to the collar member 60. A connecting member, for example, a shaft portion of the rivet 58 is disposed on the inner peripheral portion of the collar member 60. The flange portion of the rivet 58 is engaged with the lock-up device 7 side of one inertia member 71 and the turbine 13 side of the other inertia member 71. In this way, the link member 91 is swingably attached to the pair of inertia members 71 (the pair of third connection portions 75) at the outer peripheral side end portion 93 of the link member 91.
 また、図3に示すように、リンク部材91は、イナーシャ部材71を位置決めする。詳細には、リンク部材91は、イナーシャ部材71の重心Gが回転中心Oから最も離れた位置に、イナーシャ部材71を位置決めする。リンク部材91の2個の揺動中心が、イナーシャ部材71の重心Gと回転中心Oとを通過する第1直線C1上に配置された場合に、イナーシャ部材71の重心Gが、回転中心Oから最も離れた位置に配置される。 Further, as shown in FIG. 3, the link member 91 positions the inertia member 71. Specifically, the link member 91 positions the inertia member 71 at a position where the center of gravity G of the inertia member 71 is farthest from the rotation center O. When the two swing centers of the link member 91 are arranged on the first straight line C1 passing through the center of gravity G and the rotation center O of the inertia member 71, the center of gravity G of the inertia member 71 is separated from the rotation center O. It is arranged at the most distant position.
 具体的には、リンク部材91において第4接続孔部92aの中心及び第5接続孔部93aの中心を通過する第3直線C3が、イナーシャ部材71の重心Gと回転中心Oとを通過する第1直線C1上に配置された場合に、イナーシャ部材71の重心Gは、回転中心Oから最も離れた位置に配置される。これにより、イナーシャ部材71が、回転中心Oから最も離れた位置に位置決めされる。 Specifically, the third straight line C3 passing through the center of the fourth connection hole 92a and the center of the fifth connection hole 93a in the link member 91 passes through the center of gravity G and the rotation center O of the inertia member 71. When arranged on one straight line C1, the center of gravity G of the inertia member 71 is arranged at a position farthest from the rotation center O. As a result, the inertia member 71 is positioned at a position farthest from the rotation center O.
 ここで、イナーシャ部材71の重心Gが回転中心Oから最も離れた位置は、リンク部材91の内周側端部92の揺動中心から、リンク部材91の外周側端部93の揺動中心までの長さLによって、決定される。 Here, the position where the center of gravity G of the inertia member 71 is farthest from the rotation center O is from the swing center of the inner peripheral side end portion 92 of the link member 91 to the swing center of the outer peripheral side end portion 93 of the link member 91. It is determined by the length L.
 なお、上述したように、イナーシャ部材71の重心Gが回転中心Oに最も近づいたときには、イナーシャ部材71が突出部87に当接している。また、イナーシャ部材71の重心Gが回転中心Oに最も近づく位置は、リンク部材91の外周側端部93の揺動中心が回転中心Oに最も近づく位置に対応している。 Note that, as described above, when the center of gravity G of the inertia member 71 is closest to the rotation center O, the inertia member 71 is in contact with the protruding portion 87. The position where the center of gravity G of the inertia member 71 is closest to the rotation center O corresponds to the position where the swing center of the outer peripheral side end portion 93 of the link member 91 is closest to the rotation center O.
 [動作]
  <トルクコンバータ本体及びロックアップ装置の動作>
 エンジン回転数が低回転数領域では、ピストン31の軸方向両側の作動油の圧力差によって、ピストン31はトランスミッション側に移動している。すなわち摩擦フェーシング32はフロントカバー3から離れ、ロックアップが解除されている。このロックアップ解除時には、フロントカバー3からのトルクはインペラ11から作動油を介してタービン13に伝達される。
[Operation]
<Operation of torque converter body and lock-up device>
In the low engine speed range, the piston 31 moves to the transmission side due to the pressure difference between the hydraulic oils on both sides of the piston 31 in the axial direction. That is, the friction facing 32 is separated from the front cover 3 and the lock-up is released. When the lockup is released, torque from the front cover 3 is transmitted from the impeller 11 to the turbine 13 via hydraulic oil.
 トルクコンバータ1の速度比が上がり、エンジン回転数が一定の回転数に達すると、ピストン31のエンジン側の作動油が排出される。この結果、ピストン31がフロントカバー3側に移動させられ、摩擦フェーシング32がフロントカバー3の摩擦面に押し付けられる。この結果、フロントカバー3のトルクは、ピストン31及びドライブプレート33を介して、外周側のトーションスプリング40aに伝達される。 When the speed ratio of the torque converter 1 increases and the engine speed reaches a certain speed, the hydraulic oil on the engine side of the piston 31 is discharged. As a result, the piston 31 is moved to the front cover 3 side, and the friction facing 32 is pressed against the friction surface of the front cover 3. As a result, the torque of the front cover 3 is transmitted to the outer peripheral torsion spring 40a via the piston 31 and the drive plate 33.
 また、外周側のトーションスプリング40aに伝達されたトルクは、中間プレート34を介して、内周側のトーションスプリング40bに伝達される。そして、内周側のトーションスプリング40bから出力されたトルクは、ドリブンプレート39を介して、タービンハブ16に伝達される。 Further, the torque transmitted to the outer periphery side torsion spring 40 a is transmitted to the inner periphery side torsion spring 40 b via the intermediate plate 34. The torque output from the inner peripheral side torsion spring 40 b is transmitted to the turbine hub 16 via the driven plate 39.
 なお、2個で1組の外周側のトーションスプリング40aは、フロート部材37によって連結されている。このため、これら外周側のトーションスプリング40aは、フロート部材37によって、直列に作動する。 The two torsion springs 40 a on the outer peripheral side are connected by a float member 37. For this reason, these outer peripheral side torsion springs 40 a are operated in series by the float member 37.
 このように、ロックアップ装置7が作動することによって、フロントカバー3が機械的にタービンハブ16に連結される。すなわち、フロントカバー3のトルクが、タービンハブ16を介して、直接トランスミッションの入力シャフトに出力される。 Thus, the front cover 3 is mechanically connected to the turbine hub 16 by the operation of the lockup device 7. That is, the torque of the front cover 3 is directly output to the input shaft of the transmission via the turbine hub 16.
 ここで、エンジントルクに変動が生じると、トーションスプリング40(外周側のトーションスプリング40a及び内周側のトーションスプリング40b)の伸縮、及び各部のヒステリシストルクによって、振動が吸収される。このようにして、ロックアップ装置7によって、トルク変動が減衰される。 Here, when the engine torque fluctuates, the vibration is absorbed by the expansion and contraction of the torsion spring 40 (the outer peripheral side torsion spring 40a and the inner peripheral side torsion spring 40b) and the hysteresis torque of each part. In this way, the torque fluctuation is attenuated by the lockup device 7.
  <動吸振装置の動作>
 動吸振装置9は、タービンハブ16に装着されている。このため、トルク変動が、ロックアップ装置7のドリブンプレート39からタービンハブ16に伝達されると、このトルク変動によって動吸振装置9が作動する。
<Operation of dynamic vibration absorber>
The dynamic vibration absorber 9 is attached to the turbine hub 16. For this reason, when torque fluctuation is transmitted from the driven plate 39 of the lockup device 7 to the turbine hub 16, the dynamic vibration absorber 9 is activated by this torque fluctuation.
 図3の状態において、トルク変動がタービンハブ16に発生すると、回転部41(第1回転部材51及び第2回転部材61)が回転する。すると、図4に示すように、回転部41に装着されたリンク部材91が、揺動する。 3, when torque fluctuation occurs in the turbine hub 16, the rotating part 41 (the first rotating member 51 and the second rotating member 61) rotates. Then, as shown in FIG. 4, the link member 91 attached to the rotating portion 41 swings.
 例えば、図3状態において、回転部41が第1回転方向R1に回転すると、リンク部材91の内周側端部92が第1回転方向R1に移動する。すると、図4に示すように、リンク部材91の外周側端部93が、第1直線C1に沿って、第2直線C2に近づく方向に移動する。すると、このリンク部材91の外周側端部93の移動によって、2組のイナーシャ部材71(図3及び図4では1組のイナーシャ部材71のみ表示)が、案内機構81によって案内され、第2直線C2に近づく方向に移動する。 For example, in the state of FIG. 3, when the rotating part 41 rotates in the first rotation direction R1, the inner peripheral side end 92 of the link member 91 moves in the first rotation direction R1. Then, as shown in FIG. 4, the outer peripheral side end portion 93 of the link member 91 moves along the first straight line C1 in a direction approaching the second straight line C2. Then, by the movement of the outer peripheral side end portion 93 of the link member 91, two sets of inertia members 71 (only one set of inertia members 71 are shown in FIGS. 3 and 4) are guided by the guide mechanism 81, and the second straight line Move in a direction approaching C2.
 そして、図4に示すように、2組の質量体が2組の突出部87に当接すると、2組の質量体の移動は停止する。2組の質量体が移動を停止する位置は、イナーシャ部材71の重心Gが回転中心Oに最も近づいた位置である。 Then, as shown in FIG. 4, when the two sets of mass bodies come into contact with the two sets of protrusions 87, the movement of the two sets of mass bodies stops. The position where the two mass bodies stop moving is the position where the center of gravity G of the inertia member 71 is closest to the rotation center O.
 このように、回転部41が第1回転方向R1に回転し、2組のイナーシャ部材71が第2直線C2に向かって移動しているときには、2組のイナーシャ部材71には遠心力が作用している。ここで、遠心力の分力である回転力は、トルク変動による回転部41の回転力に抵抗する力になる。遠心力の分力である回転力が、トルク変動による回転部41の回転力より大きい場合は、回転部41が第2回転方向R2に回転する。 Thus, when the rotating part 41 rotates in the first rotation direction R1 and the two sets of inertia members 71 move toward the second straight line C2, centrifugal force acts on the two sets of inertia members 71. ing. Here, the rotational force, which is a component of centrifugal force, is a force that resists the rotational force of the rotating part 41 due to torque fluctuation. When the rotational force, which is a component of centrifugal force, is greater than the rotational force of the rotating part 41 due to torque fluctuation, the rotating part 41 rotates in the second rotational direction R2.
 この場合、リンク部材91の内周側端部92が第2回転方向R2に移動する。すると、リンク部材91の外周側端部93が、第1直線C1に沿って、第2直線C2から離れる方向に移動する。すると、このリンク部材91の外周側端部93の移動によって、2組のイナーシャ部材71(図3及び図4では一対のイナーシャ部材71のみ表示)が、案内機構81によって案内され、第2直線C2から離れる方向に移動する。 In this case, the inner peripheral end 92 of the link member 91 moves in the second rotation direction R2. Then, the outer peripheral side end 93 of the link member 91 moves along the first straight line C1 in a direction away from the second straight line C2. Then, by the movement of the outer peripheral side end portion 93 of the link member 91, two sets of inertia members 71 (only the pair of inertia members 71 are shown in FIGS. 3 and 4) are guided by the guide mechanism 81, and the second straight line C2 Move away from.
 ここで、リンク部材91の2個の揺動中心が第1直線C1上に配置されると、イナーシャ部材71の重心Gが回転中心Oから最も離れた位置に、配置される。言い換えると、この位置が、2組のイナーシャ部材71が回転中心Oから最も離れる位置である。 Here, when the two swing centers of the link member 91 are arranged on the first straight line C1, the center of gravity G of the inertia member 71 is arranged at a position farthest from the rotation center O. In other words, this position is a position where the two inertia members 71 are farthest from the rotation center O.
 なお、図3状態において、回転部41が第2回転方向R2に回転した場合は、リンク部材91の揺動方向は異なるものの、動吸振装置9の基本的な動作及び作用は、回転部41が第1回転方向R1に回転した場合と同じである。このため、ここでは、回転部41が第2回転方向R2に回転する場合の説明は、省略する。 In the state shown in FIG. 3, when the rotating part 41 rotates in the second rotating direction R2, the basic operation and action of the dynamic vibration absorber 9 is different from that of the dynamic vibration absorber 9 although the swinging direction of the link member 91 is different. This is the same as when rotating in the first rotation direction R1. For this reason, the description in the case where the rotating unit 41 rotates in the second rotation direction R2 is omitted here.
 上記のようにして、2組のイナーシャ部材71は、回転部41に対して往復移動を行う。また、この往復運動が行われているときには、2組のイナーシャ部材71には遠心力が作用している。この2組のイナーシャ部材71に作用する遠心力は、回転部41が第1回転方向R1(又は第2回転方向R2)に回転している場合は、回転部41を第2回転方向R2(又は第1回転方向R1)に回転させる力として、作用する。この遠心力の作用によって、回転部41の回転変動、すなわちタービン13ハブのトルク変動が、減衰される。 As described above, the two sets of inertia members 71 reciprocate with respect to the rotating portion 41. Further, when this reciprocating motion is performed, centrifugal force acts on the two sets of inertia members 71. The centrifugal force acting on the two sets of inertia members 71 causes the rotation unit 41 to rotate in the second rotation direction R2 (or when the rotation unit 41 rotates in the first rotation direction R1 (or the second rotation direction R2). It acts as a force for rotating in the first rotation direction R1). By the action of this centrifugal force, the rotational fluctuation of the rotating part 41, that is, the torque fluctuation of the turbine 13 hub is attenuated.
 [特徴]
 (1)本動吸振装置9は、エンジンからトランスミッションに伝達される振動を、減衰するためのものである。本動吸振装置9は、回転部41と、一対のイナーシャ部材71と、リンク部材91と、案内機構81とを、備えている。
[Characteristic]
(1) The dynamic vibration absorber 9 is for attenuating vibration transmitted from the engine to the transmission. The dynamic vibration absorber 9 includes a rotating portion 41, a pair of inertia members 71, a link member 91, and a guide mechanism 81.
 回転部41は、回転中心Oまわりに回転可能である。一対のイナーシャ部材71それぞれは、回転部41の回転時に回転部41に対して相対移動することによって、回転部41の振動を減衰可能である。リンク部材91は、回転部41及びイナーシャ部材71を連結する。案内機構81は、回転部41の回転時にイナーシャ部材71を半径方向に案内する。 The rotating part 41 can rotate around the rotation center O. Each of the pair of inertia members 71 can attenuate the vibration of the rotating portion 41 by moving relative to the rotating portion 41 when the rotating portion 41 rotates. The link member 91 connects the rotating part 41 and the inertia member 71. The guide mechanism 81 guides the inertia member 71 in the radial direction when the rotating unit 41 rotates.
 本動吸振装置9では、回転部41が回転中心Oまわりに回転すると、リンク部材91によって回転部41に連結されたイナーシャ部材71が、案内機構81によって半径方向に案内される。これにより、イナーシャ部材71は、回転部41に対して相対移動し、回転部41の振動を減衰する。 In the dynamic vibration absorber 9, when the rotating portion 41 rotates around the rotation center O, the inertia member 71 connected to the rotating portion 41 by the link member 91 is guided in the radial direction by the guide mechanism 81. As a result, the inertia member 71 moves relative to the rotating portion 41 and attenuates the vibration of the rotating portion 41.
 このように、本動吸振装置9では、回転部41及び各イナーシャ部材71がリンク部材91によって連結され、且つ各イナーシャ部材71の移動が案内機構81によって半径方向に制限されている。すなわち、各イナーシャ部材71は、リンク部材91によって回転部41に支持された状態で、回転部41の回転方向とは異なる方向、例えばスライド方向SLに、移動する。 Thus, in the dynamic vibration absorber 9, the rotating portion 41 and each inertia member 71 are connected by the link member 91, and the movement of each inertia member 71 is restricted in the radial direction by the guide mechanism 81. That is, each inertia member 71 moves in a direction different from the rotation direction of the rotation unit 41, for example, in the slide direction SL while being supported by the rotation unit 41 by the link member 91.
 具体的には、前記実施形態では、一対のイナーシャ部材71が、回転中心Oを通過する第2直線C2に対して、対象の位置に配置されている。ここでは、一対のイナーシャ部材71の一方の重心が、第2直線C2の上方に位置し、一対のイナーシャ部材71の他方の重心が、第2直線C2の下方に位置する場合を、考える。この状態で、回転部41の回転が低回転になった場合、各イナーシャ部材71は、重力によって下方に移動する(落下する)。 Specifically, in the above-described embodiment, the pair of inertia members 71 are arranged at target positions with respect to the second straight line C2 passing through the rotation center O. Here, consider a case where one center of gravity of the pair of inertia members 71 is located above the second straight line C2, and the other center of gravity of the pair of inertia members 71 is located below the second straight line C2. In this state, when the rotation of the rotating unit 41 becomes low, each inertia member 71 moves downward (drops) due to gravity.
 このとき、各イナーシャ部材71が各リンク部材91によって回転部41に連結された状態で、一方のイナーシャ部材71が落下しようと、回転部41が、第1回転方向R1及び第2回転方向R2のいずれか一方に、回転しようとする。一方で、他方のイナーシャ部材71が落下しようとすると、回転部41が、第1回転方向R1及び第2回転方向R2のいずれか他方に、回転しようとする。すなわち、一対のイナーシャ部材71の両方が落下しようとすると、回転部41の回転が打ち消される。 At this time, in a state where each inertia member 71 is connected to the rotation portion 41 by each link member 91, the rotation portion 41 is moved in the first rotation direction R1 and the second rotation direction R2 when one inertia member 71 is about to fall. Try to rotate to either one. On the other hand, when the other inertia member 71 is about to fall, the rotating portion 41 tries to rotate in either one of the first rotation direction R1 and the second rotation direction R2. That is, when both of the pair of inertia members 71 are about to fall, the rotation of the rotating portion 41 is canceled.
 このため、回転部41が低回転になったとしても(遠心力が不足したとしても)、イナーシャ部材71は、重力方向に落下しにくく、且つ回転部41の回転の影響を受けにくい。このように、回転部材に対してイナーシャ部材71が自由に動作可能な従来技術と比較して、本動吸振装置9では、イナーシャ部材71を安定的に動作させることができる。 For this reason, even if the rotation part 41 becomes a low rotation (even if the centrifugal force is insufficient), the inertia member 71 is not easily dropped in the direction of gravity and is not easily affected by the rotation of the rotation part 41. Thus, compared with the prior art in which the inertia member 71 can freely operate with respect to the rotating member, the dynamic vibration absorber 9 can operate the inertia member 71 stably.
 (2)本動吸振装置9は、次のように構成することが好ましい。リンク部材91の内周側端部92は、回転部41に揺動自在に装着される。リンク部材91の外周側端部93は、イナーシャ部材71に揺動自在に装着される。 (2) The dynamic vibration absorber 9 is preferably configured as follows. An inner peripheral end 92 of the link member 91 is swingably attached to the rotating part 41. The outer peripheral side end portion 93 of the link member 91 is swingably attached to the inertia member 71.
 この場合、回転部41の回転によってリンク部材91が揺動し、リンク部材91の揺動に連動してイナーシャ部材71が案内機構81によって半径方向に移動する。このように、リンク部材91及び案内機構81によって、回転部41の回転運動を、イナーシャ部材71の直線運動に変更することができる。これにより、回転部材に対してイナーシャ部材71が自由に動作可能な従来技術と比較して、本動吸振装置9では、イナーシャ部材71を安定的に動作させることができる。 In this case, the link member 91 is swung by the rotation of the rotating portion 41, and the inertia member 71 is moved in the radial direction by the guide mechanism 81 in conjunction with the swing of the link member 91. As described above, the rotational motion of the rotating portion 41 can be changed to the linear motion of the inertia member 71 by the link member 91 and the guide mechanism 81. Thereby, compared with the prior art in which the inertia member 71 can operate | move freely with respect to a rotation member, in this dynamic vibration absorber 9, the inertia member 71 can be operated stably.
 (3)本動吸振装置9は、次のように構成することが好ましい。イナーシャ部材71は、複数である。複数のイナーシャ部材71それぞれは、回転中心Oのまわりに配置される。回転中心Oまわりにおいて隣接するイナーシャ部材71の重心Gと回転中心Oとを結ぶ線分A1がなす角度は、同じである。 (3) The dynamic vibration absorber 9 is preferably configured as follows. There are a plurality of inertia members 71. Each of the plurality of inertia members 71 is arranged around the rotation center O. The angle formed by the line segment A1 connecting the center of gravity G of the inertia member 71 adjacent to the rotation center O and the rotation center O is the same.
 この場合、複数のイナーシャ部材71が、回転中心Oまわりに均等に配置されるので、イナーシャ部材71の移動時のバランスを適切に保つことができる。 In this case, since the plurality of inertia members 71 are evenly arranged around the rotation center O, the balance during the movement of the inertia member 71 can be appropriately maintained.
 (4)本動吸振装置9は、次のように構成することが好ましい。案内機構81は、回転部41に対して相対回転可能な第4本体部83と、イナーシャ部材71を半径方向に案内する案内部85とを、有している。 (4) The dynamic vibration absorber 9 is preferably configured as follows. The guide mechanism 81 includes a fourth main body portion 83 that can rotate relative to the rotating portion 41 and a guide portion 85 that guides the inertia member 71 in the radial direction.
 この場合、案内機構81の第4本体部83は、回転部41に対してフロート体として動作し、案内機構81の案内部85は、イナーシャ部材71を半径方向に案内する。このように、第4本体部83を回転部41の回転とは独立して動作させることによって、回転部41が回転したとしても、イナーシャ部材71を案内部85によって半径方向に案内することができる。 In this case, the fourth main body portion 83 of the guide mechanism 81 operates as a float body with respect to the rotating portion 41, and the guide portion 85 of the guide mechanism 81 guides the inertia member 71 in the radial direction. As described above, by operating the fourth main body 83 independently of the rotation of the rotation unit 41, the inertia member 71 can be guided in the radial direction by the guide unit 85 even if the rotation unit 41 rotates. .
 (5)本動吸振装置9は、次のように構成することが好ましい。案内部85は、長孔部85aと、軸部材85bとを、有している。長孔部85aは、案内機構81の第4本体部83に設けられ、且つイナーシャ部材71の重心Gと回転中心Oとを通過する第1直線C1に沿う方向に伸びる。軸部材85bは、長孔部85aに配置され、且つイナーシャ部材71に固定される。 (5) The dynamic vibration absorber 9 is preferably configured as follows. The guide portion 85 has a long hole portion 85a and a shaft member 85b. The long hole portion 85a is provided in the fourth main body portion 83 of the guide mechanism 81 and extends in a direction along the first straight line C1 that passes through the center of gravity G and the rotation center O of the inertia member 71. The shaft member 85 b is disposed in the long hole portion 85 a and is fixed to the inertia member 71.
 この場合、回転部41の回転時には、リンク部材91を介して、イナーシャ部材71が、軸部材85b及び長孔部85aによって、半径方向に移動する。このように、回転部41が回転したとしても、リンク部材91及び案内機構81によって、イナーシャ部材71を直線的に動作させることができる。これにより、回転部材に対してイナーシャ部材71が自由に動作可能な従来技術と比較して、本動吸振装置9では、イナーシャ部材71を安定的に動作させることができる。 In this case, when the rotating portion 41 rotates, the inertia member 71 moves in the radial direction via the link member 91 by the shaft member 85b and the long hole portion 85a. Thus, even if the rotating part 41 rotates, the inertia member 71 can be linearly operated by the link member 91 and the guide mechanism 81. Thereby, compared with the prior art in which the inertia member 71 can operate | move freely with respect to a rotation member, in this dynamic vibration absorber 9, the inertia member 71 can be operated stably.
 (6)本動吸振装置9は、次のように構成することが好ましい。イナーシャ部材71は、イナーシャ部材71の重心Gが回転中心Oから最も離れた位置で、リンク部材91によって位置決めされる。イナーシャ部材71は、イナーシャ部材71の重心Gが回転中心Oに最も近づいた位置で、案内機構81によって位置決めされる。 (6) The dynamic vibration absorber 9 is preferably configured as follows. The inertia member 71 is positioned by the link member 91 at a position where the center of gravity G of the inertia member 71 is farthest from the rotation center O. The inertia member 71 is positioned by the guide mechanism 81 at a position where the center of gravity G of the inertia member 71 is closest to the rotation center O.
 この場合、イナーシャ部材71が半径方向に移動する移動範囲が、リンク部材91及び案内機構81によって、決定される。これにより、特別な部材を用意することなく、イナーシャ部材71の移動範囲を制限することができる。 In this case, the moving range in which the inertia member 71 moves in the radial direction is determined by the link member 91 and the guide mechanism 81. Thereby, the movement range of the inertia member 71 can be restrict | limited without preparing a special member.
 (7)本動吸振装置9は、次のように構成することが好ましい。リンク部材91の内周側端部92は、回転部41に揺動自在に装着される。リンク部材91の外周側端部93は、イナーシャ部材71に揺動自在に装着される。リンク部材91の内周側端部92の揺動中心から、リンク部材91の外周側端部93の揺動中心までの長さによって、イナーシャ部材71は、イナーシャ部材71の重心Gが回転中心Oから最も離れた位置で、位置決めされる。 (7) The dynamic vibration absorber 9 is preferably configured as follows. An inner peripheral end 92 of the link member 91 is swingably attached to the rotating part 41. The outer peripheral side end portion 93 of the link member 91 is swingably attached to the inertia member 71. Depending on the length from the swing center of the inner peripheral end 92 of the link member 91 to the swing center of the outer peripheral end 93 of the link member 91, the inertia member 71 has the center of gravity G of the inertia member 71 at the rotation center O. Is positioned at a position farthest from the center.
 この場合、リンク部材91の長さを調整することによって、イナーシャ部材71が回転中心Oから最も離れる位置を、設定することができる。すなわち、この位置を容易に変更することができる。すなわち、イナーシャ部材71の移動範囲を容易に調整することができる。 In this case, the position where the inertia member 71 is farthest from the rotation center O can be set by adjusting the length of the link member 91. That is, this position can be easily changed. That is, the movement range of the inertia member 71 can be easily adjusted.
 (8)本動吸振装置9は、次のように構成することが好ましい。案内機構81は、第4本体部83と、突出部87を、有する。第4本体部83は、回転部41に対して相対回転可能である。突出部87は、第4本体部83に設けられる。突出部87は、イナーシャ部材71の重心Gが回転中心Oに最も近づいた位置でイナーシャ部材71を位置決めする。 (8) The dynamic vibration absorber 9 is preferably configured as follows. The guide mechanism 81 has a fourth main body portion 83 and a protruding portion 87. The fourth main body portion 83 can rotate relative to the rotating portion 41. The protruding portion 87 is provided on the fourth main body portion 83. The protrusion 87 positions the inertia member 71 at a position where the center of gravity G of the inertia member 71 is closest to the rotation center O.
 この場合、突出部87の位置や大きさを調整することによって、イナーシャ部材71が回転中心Oに最も近づく位置を、設定することができる。すなわち、この位置を容易に変更することができる。すなわち、イナーシャ部材71の移動範囲を容易に調整することができる。 In this case, the position where the inertia member 71 is closest to the rotation center O can be set by adjusting the position and size of the protrusion 87. That is, this position can be easily changed. That is, the movement range of the inertia member 71 can be easily adjusted.
 (9)本動吸振装置9は、次のように構成することが好ましい。案内機構81は、第4本体部83と、収納孔部89とを、有している。第4本体部83は、回転部41に対して相対回転可能である。収納孔部89は、第4本体部83に設けられ、リンク部材91を収納する。 (9) The dynamic vibration absorber 9 is preferably configured as follows. The guide mechanism 81 has a fourth main body 83 and a storage hole 89. The fourth main body portion 83 can rotate relative to the rotating portion 41. The storage hole 89 is provided in the fourth main body 83 and stores the link member 91.
 この場合、案内機構81の収納孔部89にリンク部材91を収納することによって、動吸振装置9を軸方向に小型化することができる。 In this case, by storing the link member 91 in the storage hole 89 of the guide mechanism 81, the dynamic vibration absorber 9 can be downsized in the axial direction.
 [他の実施形態]
 本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形又は修正が可能である。
[Other Embodiments]
The present invention is not limited to the above-described embodiments, and various changes or modifications can be made without departing from the scope of the present invention.
 (a)前記実施形態では、動吸振装置9がタービン13ハブに装着される場合の例を示したが、動吸振装置9は、中間プレート34及び/又はドリブンプレート39に装着してもよい。 (A) In the above-described embodiment, an example in which the dynamic vibration absorber 9 is mounted on the turbine 13 hub has been described. However, the dynamic vibration absorber 9 may be mounted on the intermediate plate 34 and / or the driven plate 39.
 (b)前記実施形態では、案内部85の長孔部85aが案内機構81の第4本体部83に形成され、案内部85の軸部材85bがイナーシャ部材71に装着される場合の例を示した。これに代えて、案内部85の長孔部85aをイナーシャ部材71に形成し、案内部85の軸部材85bを案内機構81の第4本体部83に装着してもよい。 (B) In the above embodiment, an example in which the long hole portion 85a of the guide portion 85 is formed in the fourth main body portion 83 of the guide mechanism 81 and the shaft member 85b of the guide portion 85 is attached to the inertia member 71 is shown. It was. Instead, the elongated hole portion 85 a of the guide portion 85 may be formed in the inertia member 71, and the shaft member 85 b of the guide portion 85 may be attached to the fourth main body portion 83 of the guide mechanism 81.
 (c)前記実施形態では、動吸振装置9が2組のイナーシャ部材71(一対のイナーシャ部材71×2組)を有する場合の例を示したが、イナーシャ部材71の組数は、2組以上であれば、何組でもよい。また、各組のイナーシャ部材71は、一対のイナーシャ部材71から構成される場合の例を示したが、1個のイナーシャ部材71で構成してもよい。 (C) In the said embodiment, although the example in case the dynamic vibration absorber 9 has two sets of inertia members 71 (a pair of inertia members 71x2 sets) was shown, the number of sets of the inertia members 71 is two or more sets. Any number of pairs is possible. Moreover, although the example in the case of comprising each pair of inertia members 71 from a pair of inertia members 71 was shown, you may comprise by one inertia member 71.
 (d)前記実施形態では、突出部87が、イナーシャ部材71の重心Gが回転中心Oに最も近づいた位置に、イナーシャ部材71を位置決めする場合の例を示した。これに代えて、第2直線C2に近い長孔部85aの端部によって、イナーシャ部材71を位置決めしてもよい。なお、第1直線C1は、イナーシャ部材71の重心Gと回転中心Oとを通過する第1直線C1である。また、第2直線C2は、第1直線C1に直交し且つ回転中心Oを通過する直線である。 (D) In the above embodiment, the example in which the protrusion 87 positions the inertia member 71 at the position where the center of gravity G of the inertia member 71 is closest to the rotation center O is shown. Instead of this, the inertia member 71 may be positioned by the end portion of the long hole portion 85a close to the second straight line C2. The first straight line C1 is a first straight line C1 that passes through the center of gravity G and the rotation center O of the inertia member 71. The second straight line C2 is a straight line that is orthogonal to the first straight line C1 and passes through the rotation center O.
 (e)前記実施形態では、各突出部87が、第4本体部83からタービン13側に突出している場合の例を示しているが、各突出部87は、第4本体部83からロックアップ装置7側に突出していてもよい。また、突出部87の数は、少なくとも1個以上であれば、何個でもよい。 (E) In the above embodiment, an example in which each protrusion 87 protrudes from the fourth main body 83 to the turbine 13 side is shown, but each protrusion 87 is locked up from the fourth main body 83. You may protrude to the apparatus 7 side. Further, the number of the protrusions 87 may be any number as long as it is at least one.
 (f)前記実施形態では、複数の長孔部85aが、案内機構81の第4本体部83に設けられる場合の例を示したが、長孔部85aの数は、少なくとも1個以上であれば、何個でもよい。また、軸用孔部77aの数、及び長孔部85aに係合する軸部材85bの数は、長孔部85aの数と同じであれば、何個でもよい。 (F) In the above-described embodiment, an example in which the plurality of long hole portions 85a are provided in the fourth main body portion 83 of the guide mechanism 81 has been described. However, the number of the long hole portions 85a may be at least one or more. Any number is acceptable. Further, the number of shaft holes 77a and the number of shaft members 85b engaged with the long holes 85a may be any number as long as the number of the long holes 85a is the same.
 9 動吸振装置
 51 回転部
 71 イナーシャ部材
 81 案内機構
 83 第4本体部
 85 案内部
 85a 長孔部
 85b 軸部材
 87 突出部
 89 収納孔部
 91 リンク部材
 92 リンク部材の内周側端部
 93 リンク部材の外周側端部
 C1 第1直線
 G イナーシャ部材の重心
 O 回転中心
DESCRIPTION OF SYMBOLS 9 Dynamic vibration absorber 51 Rotating part 71 Inertia member 81 Guide mechanism 83 4th main-body part 85 Guide part 85a Long hole part 85b Shaft member 87 Protrusion part 89 Storage hole part 91 Link member 92 Inner side edge part of link member 93 Link member C1 1st straight line G Center of gravity of inertia member O Center of rotation

Claims (9)

  1.  エンジンからトランスミッションに伝達される振動を、減衰するための自動車用の動吸振装置であって、
     回転中心まわりに回転可能な回転部と、
     前記回転部の回転時に前記回転部に対して相対移動することによって、前記回転部の振動を減衰可能な複数の質量部と、
     前記回転部及び前記質量部を連結する連結部と、
     前記回転部の回転時に前記質量部を半径方向に案内する案内機構と、
    を備える自動車用の動吸振装置。
    A vibration absorber for an automobile for attenuating vibration transmitted from an engine to a transmission,
    A rotating part rotatable around the center of rotation;
    A plurality of mass parts capable of attenuating vibration of the rotating part by moving relative to the rotating part during rotation of the rotating part;
    A connecting part for connecting the rotating part and the mass part;
    A guide mechanism for guiding the mass part in a radial direction when the rotary part rotates;
    A vibration absorber for automobiles comprising:
  2.  前記連結部の一端部は、前記回転部に揺動自在に装着され、前記連結部の他端部は、前記質量部に揺動自在に装着される、
    請求項1に記載の自動車用の動吸振装置。
    One end of the connecting portion is swingably attached to the rotating portion, and the other end of the connecting portion is swingably attached to the mass portion.
    The dynamic vibration absorber for automobiles according to claim 1.
  3.  複数の前記質量部それぞれは、前記回転中心のまわりに配置され、
     前記回転中心まわりにおいて隣接する前記質量部の重心と前記回転中心とを結ぶ線分がなす角度は、同じである、
    請求項1又は2に記載の自動車用の動吸振装置。
    Each of the plurality of mass parts is arranged around the rotation center,
    The angle formed by the line segment connecting the center of gravity of the mass part adjacent to the rotation center and the rotation center is the same.
    The dynamic vibration absorber for automobiles according to claim 1 or 2.
  4.  前記案内機構は、前記回転部に対して相対回転可能な本体部と、前記質量部を前記半径方向に案内する案内部とを、有している、
    請求項1から3のいずれか1項に記載の自動車用の動吸振装置。
    The guide mechanism includes a main body portion that is rotatable relative to the rotating portion, and a guide portion that guides the mass portion in the radial direction.
    The dynamic vibration absorber for automobiles according to any one of claims 1 to 3.
  5.  前記案内部は、前記質量部及び前記本体部のいずれか一方に設けられ且つ前記質量部の重心と前記回転中心とを通過する直線に沿う方向に伸びる長孔部と、前記長孔部に配置され且つ前記質量部及び前記案内部のいずれか他方に固定される軸部材とを、有している、
    請求項4に記載の自動車用の動吸振装置。
    The guide part is provided in one of the mass part and the main body part, and is disposed in the elongated hole part extending in a direction along a straight line passing through the center of gravity of the mass part and the rotation center. And a shaft member fixed to one of the mass part and the guide part.
    The dynamic vibration absorber for automobiles according to claim 4.
  6.  前記質量部は、前記質量部の重心が前記回転中心から最も離れた位置で、前記連結部によって位置決めされ、
     前記質量部は、前記質量部の重心が前記回転中心に最も近づいた位置で、前記案内機構によって位置決めされる。
    請求項1から5のいずれか1項に記載の自動車用の動吸振装置。
    The mass portion is positioned by the connecting portion at a position where the center of gravity of the mass portion is farthest from the rotation center,
    The mass portion is positioned by the guide mechanism at a position where the center of gravity of the mass portion is closest to the rotation center.
    The dynamic vibration absorber for automobiles according to any one of claims 1 to 5.
  7.  前記連結部の一端部が前記回転部に揺動自在に装着され、前記連結部の他端部が前記質量部に揺動自在に装着され、
     前記一端部の揺動中心から前記他端部の揺動中心までの長さによって、前記質量部は、前記質量部の重心が前記回転中心から最も離れた位置で、位置決めされる、
    請求項6に記載の自動車用の動吸振装置。
    One end of the connecting part is swingably attached to the rotating part, and the other end of the connecting part is swingably attached to the mass part.
    According to the length from the swing center of the one end to the swing center of the other end, the mass unit is positioned at a position where the center of gravity of the mass unit is farthest from the rotation center.
    The dynamic vibration absorber for automobiles according to claim 6.
  8.  前記案内機構は、前記回転部に対して相対回転可能な本体部と、前記本体部に設けられ且つ前記質量部の重心が前記回転中心に最も近づいた位置で前記質量部を位置決めする位置決め部とを、有する、
    請求項6又は7に記載の自動車用の動吸振装置。
    The guide mechanism includes a main body that is rotatable relative to the rotating unit, a positioning unit that is provided on the main body and that positions the mass unit at a position where the center of gravity of the mass unit is closest to the rotation center. Having
    The dynamic vibration absorber for automobiles according to claim 6 or 7.
  9.  前記案内機構は、前記回転部に対して相対回転可能な本体部と、前記本体部に設けられ且つ前記連結部を収納するための収納部とを、有している、
    請求項1から8のいずれか1項に記載の自動車用の動吸振装置。
    The guide mechanism includes a main body that is rotatable relative to the rotating part, and a storage part that is provided in the main body part and stores the coupling part.
    The dynamic vibration absorber for automobiles according to any one of claims 1 to 8.
PCT/JP2015/084125 2015-02-03 2015-12-04 Dynamic vibration-absorbing device for automobile WO2016125382A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015005848.6T DE112015005848T5 (en) 2015-02-03 2015-12-04 Dynamic vibration absorption device for a vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015019084A JP6425572B2 (en) 2015-02-03 2015-02-03 Dynamic vibration absorber for car
JP2015-019084 2015-02-03

Publications (1)

Publication Number Publication Date
WO2016125382A1 true WO2016125382A1 (en) 2016-08-11

Family

ID=56563739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084125 WO2016125382A1 (en) 2015-02-03 2015-12-04 Dynamic vibration-absorbing device for automobile

Country Status (3)

Country Link
JP (1) JP6425572B2 (en)
DE (1) DE112015005848T5 (en)
WO (1) WO2016125382A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113728179A (en) * 2019-04-03 2021-11-30 法雷奥离合器公司 Pendulum damping device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164555A1 (en) * 2017-03-10 2018-09-13 Valeo Kapec Co., Ltd. Hydrokinetic torque coupling device with centered lock-up clutch
US10352423B2 (en) * 2017-05-16 2019-07-16 Valeo Embrayages Hydrokinetic torque coupling device with centered friction disc

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046116A (en) * 1998-07-11 2000-02-18 Carl Freudenberg:Fa Revolving speed adaptive vibration absorber
JP2011504986A (en) * 2007-11-29 2011-02-17 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト In particular, a power transmission device for transmitting power between a driving machine and a driven part.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046116A (en) * 1998-07-11 2000-02-18 Carl Freudenberg:Fa Revolving speed adaptive vibration absorber
JP2011504986A (en) * 2007-11-29 2011-02-17 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト In particular, a power transmission device for transmitting power between a driving machine and a driven part.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113728179A (en) * 2019-04-03 2021-11-30 法雷奥离合器公司 Pendulum damping device
CN113728179B (en) * 2019-04-03 2023-10-20 法雷奥离合器公司 Pendulum damping device

Also Published As

Publication number Publication date
JP2016142350A (en) 2016-08-08
JP6425572B2 (en) 2018-11-21
DE112015005848T5 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
US9140348B2 (en) Hydrodynamic coupling arrangement, in particular a torque converter
KR102520918B1 (en) Vibration reduction device
KR101925736B1 (en) Damper device
JP6559143B2 (en) Torque converter with parallel torsional vibration damper
JP6541969B2 (en) Power transmission device and lockup device for torque converter
WO2011152205A1 (en) Lock-up apparatus for torque converter
KR102470352B1 (en) Damper with integrated centrifugal pendulum-type vibration absorbing device
WO2016125382A1 (en) Dynamic vibration-absorbing device for automobile
JP6709687B2 (en) Dynamic vibration absorber
JP2016142350A5 (en)
JP2020148262A (en) Toque fluctuation inhibition device and torque converter
JP2017219139A5 (en)
WO2017014184A1 (en) Vibration-damping device
KR20160125100A (en) Vibration Reduction Apparatus for Motor Vehicle Torque Converter Using Insert Pendulum
JP6587388B2 (en) Dynamic vibration absorber for automobile and lockup device for torque converter
JP2014206244A (en) Lock-up device of torque converter
WO2016117214A1 (en) Dynamic vibration absorber for automobile
WO2015041029A1 (en) Pendulum-type damper device, and lock-up device of torque converter
WO2018037821A1 (en) Vibration reduction device
WO2018037826A1 (en) Vibration reduction device
JP2016200237A (en) Dynamic vibration reducer
JP6587715B2 (en) Power transmission device and torque converter lockup device
WO2016167025A1 (en) Dynamic vibration absorber
JP7232667B2 (en) Torque fluctuation suppressor
JP2001295912A (en) Lockup damper for torque converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881199

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015005848

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881199

Country of ref document: EP

Kind code of ref document: A1