WO2016103702A1 - Regenerative air conditioner - Google Patents

Regenerative air conditioner Download PDF

Info

Publication number
WO2016103702A1
WO2016103702A1 PCT/JP2015/006434 JP2015006434W WO2016103702A1 WO 2016103702 A1 WO2016103702 A1 WO 2016103702A1 JP 2015006434 W JP2015006434 W JP 2015006434W WO 2016103702 A1 WO2016103702 A1 WO 2016103702A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
heat storage
heat
outdoor
Prior art date
Application number
PCT/JP2015/006434
Other languages
French (fr)
Japanese (ja)
Inventor
修二 藤本
安尾 晃一
柯壁 陳
拓哉 中尾
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2016103702A1 publication Critical patent/WO2016103702A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

In order to prevent generation of flash-gas and reduce power consumption, during utilization refrigeration operation, a heat-storage unit (50) includes a heat storage-side supercooling heat exchanger (29) capable of cooling refrigerant that has passed through a heat exchanger (37) for heat storage. An outdoor-side circuit (11a), an intermediate circuit (11c) for the heat-storage unit (50), and an indoor-side circuit (11b) are connected in series and a utilization refrigeration operation is performed in which an outdoor heat exchanger (22) and the heat exchanger (37) for heat storage serve as condensers and an indoor heat exchanger (27) serves as an evaporator. During this operation, refrigerant that has passed through the heat exchanger (37) for heat storage is further cooled in the heat storage-side supercooling heat exchanger (29), and then decompressed by an indoor expansion valve (26).

Description

蓄熱式空気調和機Thermal storage air conditioner
 本発明は、蓄熱媒体を冷熱源として利用して室内の冷房を行う蓄熱式空気調和機に関するものである。 The present invention relates to a regenerative air conditioner that cools a room using a heat storage medium as a cold heat source.
 特許文献1に示すように、蓄熱媒体を冷熱源として利用して室内の冷房を行う(以下、利用冷房運転と言う)蓄熱式空気調和機が知られている。特許文献1では、蓄熱媒体を貯留する蓄熱タンクの中に、冷媒が通過する流路を有する蓄熱用熱交換器が配置されており、蓄熱媒体は、冷媒によって冷却される。 As shown in Patent Document 1, a heat storage type air conditioner that performs indoor cooling using a heat storage medium as a cooling source (hereinafter referred to as “utilizing cooling operation”) is known. In Patent Document 1, a heat storage heat exchanger having a flow path through which a refrigerant passes is disposed in a heat storage tank that stores the heat storage medium, and the heat storage medium is cooled by the refrigerant.
特許第4407582号公報Japanese Patent No. 4407582
 特許文献1の空気調和機では、室外熱交換器、蓄熱用熱交換器及び室内熱交換器が配管により接続されることで冷媒回路が構成されている。室外熱交換器、蓄熱用熱交換器、室内熱交換器は、それぞれ、室外ユニット、蓄熱ユニット、室内ユニットに含まれる。 In the air conditioner of Patent Document 1, an outdoor heat exchanger, a heat storage heat exchanger, and an indoor heat exchanger are connected by piping to form a refrigerant circuit. The outdoor heat exchanger, the heat storage heat exchanger, and the indoor heat exchanger are included in the outdoor unit, the heat storage unit, and the indoor unit, respectively.
 しかしながら、空気調和機の設置環境によっては、蓄熱用熱交換器と室内熱交換器とを繋ぐ配管が長くなったり、蓄熱ユニットと室内ユニットとの高低差が許容高低差近くまで大きくなったりすることがあり、これに応じた圧力損失及び冷媒の揚程が生じる。圧力損失及び冷媒の揚程が大きい程、利用冷房運転時に蓄熱ユニットから流出して室内ユニットに流入した液冷媒の圧力は低下する。すると、室内膨張弁の入口付近ではフラッシュガスが発生し、室内ユニットに供給される冷媒量が少なくなって冷房能力が低下してしまう。 However, depending on the installation environment of the air conditioner, the piping connecting the heat storage heat exchanger and the indoor heat exchanger may be long, or the height difference between the heat storage unit and the indoor unit may increase to near the allowable height difference. There is a pressure loss and refrigerant head corresponding to this. The greater the pressure loss and the refrigerant head, the lower the pressure of the liquid refrigerant flowing out of the heat storage unit and flowing into the indoor unit during use cooling operation. Then, flash gas is generated in the vicinity of the inlet of the indoor expansion valve, the amount of refrigerant supplied to the indoor unit is reduced, and the cooling capacity is reduced.
 これに対し、室外ユニット内且つ室外熱交換器の冷媒出口側にて、冷媒を更に冷却することが考えられる。しかしこの場合、利用冷房運転時に蓄熱用熱交換器にて冷媒が蓄熱媒体から得る冷熱量は小さくなる。そのため、利用冷房運転の本来の目的とは反し、蓄熱式空気調和機の消費電力量の低減化は図れない。 On the other hand, it is conceivable to further cool the refrigerant in the outdoor unit and on the refrigerant outlet side of the outdoor heat exchanger. However, in this case, the amount of cold that the refrigerant obtains from the heat storage medium in the heat storage heat exchanger during the cooling operation is reduced. Therefore, contrary to the original purpose of the cooling operation, the power consumption of the heat storage type air conditioner cannot be reduced.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、利用冷房運転時、フラッシュガスの発生を防止すると共に蓄熱式空気調和機の消費電力量を低減することである。 The present invention has been made in view of such a point, and an object thereof is to prevent generation of flash gas during use cooling operation and to reduce power consumption of a heat storage type air conditioner.
 本開示の第1の態様は、冷媒を圧縮する圧縮機(21)及び冷媒と空気とを熱交換させる室外熱交換器(22)が接続された室外側回路(11a)を有する室外ユニット(20a)と、冷媒を減圧する室内膨張弁(26)及び冷媒と空気とを熱交換させる室内熱交換器(27)が接続された室内側回路(11b)を有する室内ユニット(20b)と、冷媒と蓄熱媒体とを熱交換させる蓄熱用熱交換器(37)及び上記蓄熱用熱交換器(37)を通過後の冷媒を冷却可能な第1熱交換器(29)が接続された中間回路(11c)を有する蓄熱ユニット(50)とを備え、上記室外側回路(11a)、上記中間回路(11c)及び上記室内側回路(11b)が直列に接続された冷媒回路(11)では、上記室外熱交換器(22)及び上記蓄熱用熱交換器(37)が凝縮器として機能し上記室内熱交換器(27)が蒸発器として機能するように冷媒を循環させる利用冷房サイクルが行われ、上記利用冷房サイクルでは、上記蓄熱用熱交換器(37)を通過後の冷媒が上記第1熱交換器(29)にて更に冷却され、該第1熱交換器(29)にて更に冷却された冷媒が上記室内膨張弁(26)にて減圧されることを特徴とする蓄熱式空気調和機である。 The first aspect of the present disclosure includes an outdoor unit (20a) having an outdoor circuit (11a) to which a compressor (21) that compresses a refrigerant and an outdoor heat exchanger (22) that exchanges heat between the refrigerant and air are connected. ), An indoor expansion valve (26) for depressurizing the refrigerant, and an indoor unit (20b) to which an indoor heat exchanger (27) for exchanging heat between the refrigerant and the air is connected, and the refrigerant, An intermediate circuit (11c) to which a heat storage heat exchanger (37) for exchanging heat with the heat storage medium and a first heat exchanger (29) capable of cooling the refrigerant after passing through the heat storage heat exchanger (37) are connected. In the refrigerant circuit (11) in which the outdoor circuit (11a), the intermediate circuit (11c), and the indoor circuit (11b) are connected in series. The exchanger (22) and the heat storage heat exchanger (37) function as a condenser, and the indoor heat exchanger (27) A cooling cycle is performed to circulate the refrigerant so as to function as a cooler. In the cooling cycle, the refrigerant that has passed through the heat storage heat exchanger (37) is further passed through the first heat exchanger (29). The regenerative air conditioner is characterized in that the refrigerant cooled and further cooled by the first heat exchanger (29) is decompressed by the indoor expansion valve (26).
 ここでは、蓄熱ユニット(50)内且つ蓄熱用熱交換器(37)の冷媒出口側に、第1熱交換器(29)が設けられている。利用冷房サイクル時、冷媒は、室外ユニット(20a)の室外熱交換器(22)及び蓄熱ユニット(50)の蓄熱用熱交換器(37)にて凝縮される。当該冷媒は、その後蓄熱ユニット(50)の第1熱交換器(29)にて更に冷却されてから、蓄熱ユニット(50)と室内ユニット(20b)とを繋ぐ配管を介して、室内ユニット(20b)の室内膨張弁(26)に流入して減圧される。つまり、室内膨張弁(26)には、第1熱交換器(29)が設けられていない場合よりも冷却された冷媒が流入する。これにより、圧力の低下した液冷媒が室内膨張弁(26)に流入しても、室内膨張弁(26)におけるフラッシュガスの発生を防ぐことができる。 Here, the first heat exchanger (29) is provided in the heat storage unit (50) and on the refrigerant outlet side of the heat storage heat exchanger (37). During the use cooling cycle, the refrigerant is condensed in the outdoor heat exchanger (22) of the outdoor unit (20a) and the heat storage heat exchanger (37) of the heat storage unit (50). The refrigerant is then further cooled by the first heat exchanger (29) of the heat storage unit (50), and then is connected to the indoor unit (20b) via a pipe connecting the heat storage unit (50) and the indoor unit (20b). ) And the pressure is reduced. That is, the cooled refrigerant flows into the indoor expansion valve (26) more than when the first heat exchanger (29) is not provided. Thereby, even if the liquid refrigerant whose pressure has decreased flows into the indoor expansion valve (26), generation of flash gas in the indoor expansion valve (26) can be prevented.
 更に、利用冷房運転時、蓄熱用熱交換器(37)には、室外熱交換器(22)で凝縮されてはいるが、第1熱交換器(29)にて冷却される前の冷媒が流入する。そのため、蓄熱用熱交換器(37)に流入する冷媒は、蓄熱媒体によって更に冷却される余地が十分にあり、よって蓄熱用熱交換器(37)にて蓄熱媒体から冷熱を十分に得ることができる。 Further, during the cooling operation, the heat storage heat exchanger (37) is condensed in the outdoor heat exchanger (22), but the refrigerant before being cooled in the first heat exchanger (29) Inflow. Therefore, the refrigerant flowing into the heat storage heat exchanger (37) has sufficient room to be further cooled by the heat storage medium, so that sufficient heat can be obtained from the heat storage medium in the heat storage heat exchanger (37). it can.
 従って、利用冷房運転時、室内膨張弁(26)におけるフラッシュガスの発生を防ぐと共に、蓄熱媒体の冷熱を十分に利用できるため蓄熱式空気調和機(10)の消費電力量を低減することができる。 Therefore, during use cooling operation, generation of flash gas in the indoor expansion valve (26) can be prevented, and the cold energy of the heat storage medium can be fully utilized, so the power consumption of the heat storage type air conditioner (10) can be reduced. .
 本開示の第2の態様は、第1の態様において、上記利用冷房サイクルにおいては、上記第1熱交換器(29)は、該第1熱交換器(29)の入口付近における冷媒の過冷却度が目標過冷却度に達しない場合に、冷媒を更に冷却することを特徴とする蓄熱式空気調和機である。 According to a second aspect of the present disclosure, in the first aspect, in the use cooling cycle, the first heat exchanger (29) is configured to supercool the refrigerant in the vicinity of the inlet of the first heat exchanger (29). The regenerative air conditioner further cools the refrigerant when the degree does not reach the target degree of supercooling.
 ここでは、利用冷房サイクル時であっても、冷媒が十分に冷却されておらず室内膨張弁(26)にてフラッシュガスが発生する可能性がある場合に、第1熱交換器(29)が利用される。このため、室内膨張弁(26)にてフラッシュガスが発生することを確実に防止することができる。 Here, even during the use cooling cycle, when the refrigerant is not sufficiently cooled and there is a possibility that flash gas is generated in the indoor expansion valve (26), the first heat exchanger (29) Used. For this reason, it is possible to reliably prevent the flash gas from being generated in the indoor expansion valve (26).
 本開示の第3の態様は、第1の態様または第2の態様において、上記室外側回路(11a)には、上記室外熱交換器(22)を通過後の冷媒を冷却可能な第2熱交換器(24)が更に接続されており、上記冷媒回路(11)は、上記蓄熱用熱交換器(37)をバイパス可能なバイパス回路(18)を更に有し、上記冷媒回路(11)において、凝縮器として機能する上記室外熱交換器(22)から蒸発器として機能する上記室内熱交換器(27)へと上記バイパス回路(18)を介して冷媒が循環する単純冷房サイクルが行われている間、上記第1熱交換器(29)は、冷媒の冷却を行わず、上記第2熱交換器(24)は、冷媒の冷却を行うことを特徴とする蓄熱式空気調和機である。 According to a third aspect of the present disclosure, in the first aspect or the second aspect, the outdoor circuit (11a) includes a second heat that can cool the refrigerant that has passed through the outdoor heat exchanger (22). An exchanger (24) is further connected, and the refrigerant circuit (11) further includes a bypass circuit (18) capable of bypassing the heat storage heat exchanger (37), and the refrigerant circuit (11) A simple cooling cycle in which the refrigerant circulates through the bypass circuit (18) from the outdoor heat exchanger (22) functioning as a condenser to the indoor heat exchanger (27) functioning as an evaporator is performed. During this time, the first heat exchanger (29) does not cool the refrigerant, and the second heat exchanger (24) is a regenerative air conditioner that cools the refrigerant.
 ここでは、第1及び第2熱交換器(24,29)のうち、単純冷房サイクルにおいては室外ユニット(20a)における第2熱交換器(24)が利用され、利用冷房サイクルにおいては蓄熱ユニット(50)における第1熱交換器(29)が利用される。 Here, of the first and second heat exchangers (24, 29), the second heat exchanger (24) in the outdoor unit (20a) is used in the simple cooling cycle, and the heat storage unit ( The first heat exchanger (29) in 50) is used.
 本開示の第4の態様は、第1の態様から第3の態様のいずれか1つにおいて、上記蓄熱媒体は、冷却によって包接水和物が生成される蓄熱材であって、上記室外側回路(11a)には、上記室外熱交換器(22)を通過後の冷媒を冷却可能な第2熱交換器(24)が更に接続されており、上記中間回路(11c)には、上記蓄熱用熱交換器(37)を通過前の冷媒を上記蓄熱媒体と熱交換させる予熱用熱交換器(36)が更に接続されており、上記蓄熱ユニット(50)は、上記蓄熱用熱交換器(37)、上記予熱用熱交換器(36)、及び該予熱用熱交換器(36)から該蓄熱用熱交換器(37)へと上記蓄熱媒体を循環させるポンプ(63)が接続された蓄熱回路(61)、を更に有し、上記冷媒回路(11)では上記室外熱交換器(22)で凝縮された冷媒が上記室内熱交換器(27)で蒸発するように冷媒が循環しながら、上記蓄熱回路(61)では上記予熱用熱交換器(36)にて冷媒により加熱された上記蓄熱媒体が上記蓄熱用熱交換器(37)にて冷媒により冷却される冷房蓄冷運転、が行われる際、上記第2熱交換器(24)は、冷媒の冷却を行わず、上記第1熱交換器(29)は、冷媒の冷却を行うことを特徴とする蓄熱式空気調和機である。 According to a fourth aspect of the present disclosure, in any one of the first aspect to the third aspect, the heat storage medium is a heat storage material in which a clathrate hydrate is generated by cooling, and the outdoor side The circuit (11a) is further connected with a second heat exchanger (24) capable of cooling the refrigerant after passing through the outdoor heat exchanger (22), and the intermediate circuit (11c) is connected with the heat storage. A preheating heat exchanger (36) for exchanging heat between the refrigerant before passing through the heat exchanger (37) and the heat storage medium is further connected, and the heat storage unit (50) is connected to the heat storage heat exchanger ( 37), a heat storage device to which the preheating heat exchanger (36) and a pump (63) for circulating the heat storage medium from the preheating heat exchanger (36) to the heat storage heat exchanger (37) are connected. A circuit (61), and in the refrigerant circuit (11), the refrigerant condensed in the outdoor heat exchanger (22) is converted into the indoor heat exchanger (27). In the heat storage circuit (61), the heat storage medium heated by the refrigerant in the heat exchanger for preheating (36) is transferred in the heat exchanger for heat storage (37). When the cooling and accumulating operation cooled by the refrigerant is performed, the second heat exchanger (24) does not cool the refrigerant, and the first heat exchanger (29) cools the refrigerant. It is a heat storage air conditioner.
 ここでは、冷房蓄冷運転の際、室外熱交換器(22)で凝縮された冷媒は、第2熱交換器(24)では冷却されないまま予熱用熱交換器(36)に流入し、予熱用熱交換器(36)にて蓄熱媒体を加熱する。これにより、予熱用熱交換器(36)には、第2熱交換器(24)で冷却されるよりも温度の高い冷媒が流入する。そのため、予熱用熱交換器(36)は、冷媒によって蓄熱媒体を温め、蓄熱媒体に含まれる包接水和物を融解させることができる。従って、少なくとも予熱用熱交換器(36)から蓄熱用熱交換器(37)までをつなぐ配管内が包接水和物によって閉塞されてしまうことを防ぐことができる。そして、冷房蓄冷運転時、第2熱交換器(24)では冷媒が冷却されないが、第1熱交換器(29)では冷媒が冷却される。そのため、室内膨張弁(26)にてフラッシュガスが発生することも確実に防止することができる。 Here, during the cooling and regenerating operation, the refrigerant condensed in the outdoor heat exchanger (22) flows into the preheating heat exchanger (36) without being cooled in the second heat exchanger (24), and the preheating heat The heat storage medium is heated by the exchanger (36). Thereby, a refrigerant having a higher temperature flows into the preheating heat exchanger (36) than that cooled by the second heat exchanger (24). Therefore, the preheating heat exchanger (36) can warm the heat storage medium with the refrigerant and melt the clathrate hydrate contained in the heat storage medium. Therefore, it is possible to prevent the inside of the pipe connecting at least the preheating heat exchanger (36) to the heat storage heat exchanger (37) from being blocked by clathrate hydrate. During the cooling / storage operation, the second heat exchanger (24) does not cool the refrigerant, but the first heat exchanger (29) cools the refrigerant. Therefore, generation of flash gas in the indoor expansion valve (26) can be reliably prevented.
 第1の態様によれば、利用冷房運転時、室内膨張弁(26)におけるフラッシュガスの発生を防ぐと共に、蓄熱媒体の冷熱を十分に利用できるため蓄熱式空気調和機(10)の消費電力量を低減することができる。 According to the first aspect, during the cooling operation, the generation of flash gas in the indoor expansion valve (26) is prevented, and the cold energy of the heat storage medium can be fully utilized, so that the power consumption of the heat storage air conditioner (10) Can be reduced.
 第2の態様によれば、冷媒が十分に冷却されていない場合、第1熱交換器(29)を用いて冷媒が冷却されるため、室内膨張弁(26)にてフラッシュガスが発生することを確実に防止することができる。 According to the second aspect, when the refrigerant is not sufficiently cooled, the refrigerant is cooled using the first heat exchanger (29), so that flash gas is generated in the indoor expansion valve (26). Can be reliably prevented.
 第3の態様によれば、第1及び第2熱交換器(24,29)のうち、単純冷房サイクルにおいては室外ユニット(20a)における第2熱交換器(24)が利用され、利用冷房サイクルにおいては蓄熱ユニット(50)における第1熱交換器(29)が利用される。 According to the third aspect, of the first and second heat exchangers (24, 29), the second heat exchanger (24) in the outdoor unit (20a) is used in the simple cooling cycle, and the cooling cycle used. 1 uses the first heat exchanger (29) in the heat storage unit (50).
 第4の態様によれば、少なくとも予熱用熱交換器(36)から蓄熱用熱交換器(37)までをつなぐ配管内が包接水和物によって閉塞されてしまうことを防ぐことができると共に、室内膨張弁(26)にてフラッシュガスが発生することも確実に防止することができる。 According to the fourth aspect, it is possible to prevent the inside of the pipe connecting at least the preheating heat exchanger (36) to the heat storage heat exchanger (37) from being blocked by clathrate hydrate, It is also possible to reliably prevent flash gas from being generated in the indoor expansion valve (26).
図1は、蓄熱式空気調和機の構成図である。FIG. 1 is a configuration diagram of a heat storage type air conditioner. 図2は、単純冷房運転時の冷媒の流れを表す図である。FIG. 2 is a diagram illustrating the refrigerant flow during the simple cooling operation. 図3は、単純暖房運転時の冷媒の流れを表す図である。FIG. 3 is a diagram illustrating the flow of the refrigerant during the simple heating operation. 図4は、蓄冷運転時の冷媒及び蓄熱媒体の各流れを表す図である。FIG. 4 is a diagram illustrating the flow of the refrigerant and the heat storage medium during the cold storage operation. 図5は、利用冷房運転時の冷媒及び蓄熱媒体の各流れを表す図である。FIG. 5 is a diagram illustrating each flow of the refrigerant and the heat storage medium during the use cooling operation. 図6は、冷房蓄冷運転時の冷媒及び蓄熱媒体の各流れを表す図である。FIG. 6 is a diagram illustrating the flow of the refrigerant and the heat storage medium during the cooling and storing operation.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
 ≪実施形態≫
 <概要>
 本実施形態に係る蓄熱式空気調和機(10)は、後述する蓄熱タンク(62)に冷熱を蓄えたり、蓄えた冷熱を利用して室内を冷房したりすることができるシステムである。更に、蓄熱式空気調和機(10)は、蓄熱タンク(62)に冷熱を蓄えながらも室内の冷房を行うことができる。
<Embodiment>
<Overview>
The heat storage type air conditioner (10) according to the present embodiment is a system that can store cold energy in a heat storage tank (62) described later, and can cool the room using the stored cold energy. Furthermore, the heat storage type air conditioner (10) can cool the room while storing cold heat in the heat storage tank (62).
 図1に示すように、蓄熱式空気調和機(10)は、室外ユニット(20a)と、室内ユニット(20b)と、蓄熱ユニット(50)と、コントローラ(100)(運転制御部に相当)とで構成されており、冷媒回路(11)及び蓄熱回路(61)を有する。 As shown in FIG. 1, the regenerative air conditioner (10) includes an outdoor unit (20a), an indoor unit (20b), a heat storage unit (50), a controller (100) (corresponding to an operation control unit), It has a refrigerant circuit (11) and a heat storage circuit (61).
 コントローラ(100)は、蓄熱式空気調和機(10)の運転を制御するためのものである。コントローラ(100)は、冷媒回路(11)の圧縮機(21)や蓄熱回路(61)の循環ポンプ(63)の駆動制御、複数の開閉弁(25,39,40,41)の開閉制御等を行う。 The controller (100) is for controlling the operation of the regenerative air conditioner (10). The controller (100) controls the drive of the compressor (21) of the refrigerant circuit (11) and the circulation pump (63) of the heat storage circuit (61), and controls the opening and closing of a plurality of on-off valves (25, 39, 40, 41). I do.
 <冷媒回路の構成>
 冷媒回路(11)には冷媒が充填されており、冷媒が循環することによって冷凍サイクルが行われる。図1に示すように、冷媒回路(11)は、室外ユニット(20a)に含まれる室外側回路(11a)、蓄熱ユニット(50)に含まれる中間回路(11c)、及び室内ユニット(20b)に含まれる室内側回路(11b)が直列に接続されることで構成されている。室外側回路(11a)においては、少なくとも圧縮機(21)、室内熱交換器(22)及び室外側過冷却熱交換器(24)(第2熱交換器に相当)が各種配管で接続されている。室内側回路(11b)においては、室内膨張弁(26)及び室内熱交換器(27)が各種配管で接続されている。中間回路(11c)においては、予熱用熱交換器(36)、蓄熱用膨張弁(38)、蓄熱用熱交換器(37)、第4開閉弁(41)及び蓄熱側過冷却熱交換器(29)(第1熱交換器に相当)が接続されている。
<Configuration of refrigerant circuit>
The refrigerant circuit (11) is filled with a refrigerant, and a refrigeration cycle is performed by circulating the refrigerant. As shown in FIG. 1, the refrigerant circuit (11) is connected to the outdoor circuit (11a) included in the outdoor unit (20a), the intermediate circuit (11c) included in the heat storage unit (50), and the indoor unit (20b). The indoor side circuit (11b) included is connected in series. In the outdoor circuit (11a), at least the compressor (21), the indoor heat exchanger (22), and the outdoor supercooling heat exchanger (24) (corresponding to the second heat exchanger) are connected by various pipes. Yes. In the indoor circuit (11b), the indoor expansion valve (26) and the indoor heat exchanger (27) are connected by various pipes. In the intermediate circuit (11c), a preheating heat exchanger (36), a heat storage expansion valve (38), a heat storage heat exchanger (37), a fourth on-off valve (41), and a heat storage side subcooling heat exchanger ( 29) (corresponding to the first heat exchanger) is connected.
 具体的に、冷媒回路(11)は、主として、圧縮機(21)、室外熱交換器(22)、室外膨張弁(23)、室外側過冷却熱交換器(24)(第2熱交換器に相当)、第1開閉弁(25)、蓄熱側過冷却熱交換器(29)(第1熱交換器に相当)、室内膨張弁(26)、室内熱交換器(27)及び四方切換弁(28)により構成されている。このうち、圧縮機(21)、室外熱交換器(22)、室外膨張弁(23)、室外側過冷却熱交換器(24)及び四方切換弁(28)は、室外ユニット(20a)に設けられ、室内膨張弁(26)及び室内熱交換器(27)は、室内ユニット(20b)に設けられている。第1開閉弁(25)及び蓄熱側過冷却熱交換器(29)は、蓄熱ユニット(50)に設けられている。 Specifically, the refrigerant circuit (11) mainly includes a compressor (21), an outdoor heat exchanger (22), an outdoor expansion valve (23), an outdoor supercooling heat exchanger (24) (second heat exchanger). 1) on-off valve (25), heat storage side subcooling heat exchanger (29) (corresponding to the first heat exchanger), indoor expansion valve (26), indoor heat exchanger (27), and four-way switching valve (28). Among them, the compressor (21), outdoor heat exchanger (22), outdoor expansion valve (23), outdoor subcooling heat exchanger (24) and four-way switching valve (28) are provided in the outdoor unit (20a). The indoor expansion valve (26) and the indoor heat exchanger (27) are provided in the indoor unit (20b). The first on-off valve (25) and the heat storage side subcooling heat exchanger (29) are provided in the heat storage unit (50).
 圧縮機(21)は冷媒を圧縮して吐出する。圧縮機(21)は、容量可変式であって、図示しないインバータ回路によって回転数(運転周波数)が変更される。 Compressor (21) compresses and discharges refrigerant. The compressor (21) is a variable capacity type, and the rotation speed (operation frequency) is changed by an inverter circuit (not shown).
 室外熱交換器(22)は、配管(12)を介して四方切換弁(28)と接続されている。室外熱交換器(22)は、例えばクロスフィンアンドチューブ式であって、室外ユニット(20a)に設けられた室外ファン(22a)によって室外空気が供給されると、当該室外空気と冷媒との熱交換を行う。 The outdoor heat exchanger (22) is connected to the four-way switching valve (28) through the pipe (12). The outdoor heat exchanger (22) is, for example, a cross fin and tube type, and when outdoor air is supplied by an outdoor fan (22a) provided in the outdoor unit (20a), heat of the outdoor air and the refrigerant is generated. Exchange.
 室外膨張弁(23)は、配管(13)を介して室外熱交換器(22)と接続され、配管(14a)を介して室外側過冷却熱交換器(24)と接続されている。室外膨張弁(23)は、例えば電子膨張弁で構成されており、開度を変更することで冷媒の流量を調整する。 The outdoor expansion valve (23) is connected to the outdoor heat exchanger (22) via the pipe (13), and is connected to the outdoor subcooling heat exchanger (24) via the pipe (14a). The outdoor expansion valve (23) is composed of, for example, an electronic expansion valve, and adjusts the flow rate of the refrigerant by changing the opening degree.
 室外側過冷却熱交換器(24)は、配管(14a)を介して室外膨張弁(23)と接続された高圧側通路(24a)と、高圧側通路(24a)の入口側及び圧縮機(21)の吸入側に接続された低圧側通路(24b)とを有する。室外側過冷却熱交換器(24)は、高圧側通路(24a)及び低圧側通路(24b)それぞれを流れる冷媒同士が熱交換を行うことで高圧側通路(24a)を流れる冷媒が過冷却されるように構成されている。即ち、室外側過冷却熱交換器(24)は、室外熱交換器(22)を通過後の冷媒を冷却することが可能となっている。低圧側通路(24b)に流れる冷媒の流量は、膨張弁(24c)によって調節される。 The outdoor supercooling heat exchanger (24) includes a high-pressure side passage (24a) connected to the outdoor expansion valve (23) via a pipe (14a), an inlet side of the high-pressure side passage (24a), and a compressor ( 21) and a low-pressure side passage (24b) connected to the suction side. In the outdoor supercooling heat exchanger (24), the refrigerant flowing through the high pressure side passage (24a) is supercooled by heat exchange between the refrigerants flowing through the high pressure side passage (24a) and the low pressure side passage (24b). It is comprised so that. That is, the outdoor supercooling heat exchanger (24) can cool the refrigerant after passing through the outdoor heat exchanger (22). The flow rate of the refrigerant flowing through the low-pressure side passage (24b) is adjusted by the expansion valve (24c).
 第1開閉弁(25)は、配管(14b)を介して室外側過冷却熱交換器(24)の高圧側通路(24a)に接続され、配管(14c)を介して蓄熱側過冷却熱交換器(29)と接続されている。第1開閉弁(25)は、例えば電磁弁で構成されており、配管(14b,14c)の間の冷媒の流れを許容または停止させるものである。第1開閉弁(25)に並列に、逆止弁(25a)が接続されている。逆止弁(25a)は、後述する単純暖房運転時に、蓄熱側過冷却熱交換器(29)側から室外側過冷却熱交換器(24)側に向けて冷媒が流れるように設けられている。 The first on-off valve (25) is connected to the high-pressure side passage (24a) of the outdoor subcooling heat exchanger (24) via the pipe (14b), and the heat storage side subcooling heat exchange via the pipe (14c). Connected to the vessel (29). The first on-off valve (25) is constituted by, for example, an electromagnetic valve, and allows or stops the flow of refrigerant between the pipes (14b, 14c). A check valve (25a) is connected in parallel with the first on-off valve (25). The check valve (25a) is provided so that the refrigerant flows from the heat storage side subcooling heat exchanger (29) side to the outdoor side subcooling heat exchanger (24) side during simple heating operation described later. .
 本実施形態では、説明の便宜上、配管(14b)におけるバイパス流路(31)(後述)への分岐点から第1開閉弁(25)を介して配管(14c)における第1分岐流路(35)(後述)との合流点までの部分を、バイパス回路(18)と言う。バイパス回路(18)は、冷媒回路(11)に含まれており、中間回路(11c)のうち予熱用熱交換器(36)から蓄熱用熱交換器(37)までの部分をバイパスするための回路である。 In the present embodiment, for convenience of explanation, the first branch flow path (35 in the pipe (14c) from the branch point to the bypass flow path (31) (described later) in the pipe (14b) through the first on-off valve (25). ) (To be described later) The part up to the junction is called the bypass circuit (18). The bypass circuit (18) is included in the refrigerant circuit (11), and bypasses a portion of the intermediate circuit (11c) from the preheating heat exchanger (36) to the heat storage heat exchanger (37). Circuit.
 蓄熱側過冷却熱交換器(29)は、高圧側通路(29a)と低圧側通路(29b)とを有する。高圧側通路(29a)の一端は配管(14c)に接続され、他端は配管(14d)を介して室内膨張弁(26)に接続されている。低圧側通路(29b)の一端は配管(17)を介して高圧側通路(29a)の入口側に接続され、他端は配管(16)(圧縮機(21)の吸入側)に接続されている。蓄熱側過冷却熱交換器(29)は、高圧側通路(29a)及び低圧側通路(29b)それぞれを流れる冷媒同士が熱交換を行うことで高圧側通路(29a)を流れる冷媒が過冷却されるように構成されている。低圧側通路(29b)に流れる冷媒の流量は、配管(17)上に設けられている膨張弁(29c)によって調節される。このような蓄熱側過冷却熱交換器(29)は、利用冷房運転時、蓄熱用熱交換器(37)通過後の冷媒を冷却することが可能となっている。 The heat storage side subcooling heat exchanger (29) has a high pressure side passage (29a) and a low pressure side passage (29b). One end of the high-pressure side passage (29a) is connected to the pipe (14c), and the other end is connected to the indoor expansion valve (26) via the pipe (14d). One end of the low pressure side passage (29b) is connected to the inlet side of the high pressure side passage (29a) via the pipe (17), and the other end is connected to the pipe (16) (the suction side of the compressor (21)). Yes. In the heat storage side subcooling heat exchanger (29), the refrigerant flowing through the high pressure side passage (29a) is supercooled by heat exchange between the refrigerants flowing through the high pressure side passage (29a) and the low pressure side passage (29b). It is comprised so that. The flow rate of the refrigerant flowing through the low-pressure side passage (29b) is adjusted by the expansion valve (29c) provided on the pipe (17). Such a heat storage side subcooling heat exchanger (29) can cool the refrigerant after passing through the heat storage heat exchanger (37) during the cooling operation.
 室内膨張弁(26)は、配管(15)を介して室内熱交換器(27)と接続されている。室内膨張弁(26)は、例えば電子膨張弁で構成されており、開度を変更することで冷媒の循環量を調整したり、冷媒を減圧したりする。 The indoor expansion valve (26) is connected to the indoor heat exchanger (27) via the pipe (15). The indoor expansion valve (26) is composed of, for example, an electronic expansion valve, and adjusts the circulation amount of the refrigerant by changing the opening degree, or depressurizes the refrigerant.
 室内熱交換器(27)は、配管(16)を介して四方切換弁(28)と接続されている。室内熱交換器(27)は、例えばクロスフィンアンドチューブ式であって、室内ユニット(20b)に設けられた室内ファン(27a)によって室内空気が供給されると、当該空気と冷媒との熱交換を行う。室内熱交換器(27)によって熱交換された後の空気は、再び室内に供給される。 The indoor heat exchanger (27) is connected to the four-way switching valve (28) via the pipe (16). The indoor heat exchanger (27) is, for example, a cross fin and tube type, and when indoor air is supplied by an indoor fan (27a) provided in the indoor unit (20b), heat exchange between the air and the refrigerant is performed. I do. The air after the heat exchange by the indoor heat exchanger (27) is supplied to the room again.
 四方切換弁(28)は、4つのポートを有する。具体的に、四方切換弁(28)の第1ポートは、圧縮機(21)の吐出側に接続され、四方切換弁(28)の第2ポートは、図示しないアキュムレータを介して圧縮機(21)の吸入側に接続されている。四方切換弁(28)の第3ポートは、配管(12)を介して室外熱交換器(22)に接続され、四方切換弁(28)の第4ポートは、配管(16)を介して室内熱交換器(27)に接続されている。四方切換弁(28)は、蓄熱式空気調和機(10)の運転種類に応じて、各ポートの接続状態を第1状態(図1の実線で示す状態)または第2状態(図1の破線で示す状態)に切り換える。 The four-way switching valve (28) has four ports. Specifically, the first port of the four-way switching valve (28) is connected to the discharge side of the compressor (21), and the second port of the four-way switching valve (28) is connected to the compressor (21 via an accumulator (not shown). ) Is connected to the suction side. The third port of the four-way switching valve (28) is connected to the outdoor heat exchanger (22) via the pipe (12), and the fourth port of the four-way switching valve (28) is connected to the indoor via the pipe (16). Connected to heat exchanger (27). The four-way switching valve (28) has a connection state of each port in a first state (state shown by a solid line in FIG. 1) or a second state (dashed line in FIG. 1) depending on the operation type of the heat storage air conditioner (10). Switch to the state indicated by.
 <バイパス流路の構成>
 図1に示すように、冷媒回路(11)は、バイパス流路(31)を含む。バイパス流路(31)は、室内熱交換器(27)に並列に接続されており、内部を冷媒が通過する。具体的に、バイパス流路(31)の一端は、室外側過冷却熱交換器(24)と第1開閉弁(25)との間の配管(14b)に接続されている。バイパス流路(31)の他端は、室内熱交換器(27)と四方切換弁(28)の第4ポートとの間の配管(16)に接続されている。バイパス流路(31)は、主として、予熱用熱交換器(36)及び蓄熱用熱交換器(37)、蓄熱用膨張弁(38)、及び第2~第3開閉弁(39,40)を有する。バイパス流路(31)の予熱用熱交換器(36)から蓄熱用熱交換器(37)までの部分は、中間回路(11c)の一部分である。
<Configuration of bypass flow path>
As shown in FIG. 1, the refrigerant circuit (11) includes a bypass flow path (31). The bypass channel (31) is connected in parallel to the indoor heat exchanger (27), and the refrigerant passes through the inside. Specifically, one end of the bypass channel (31) is connected to a pipe (14b) between the outdoor supercooling heat exchanger (24) and the first on-off valve (25). The other end of the bypass channel (31) is connected to a pipe (16) between the indoor heat exchanger (27) and the fourth port of the four-way switching valve (28). The bypass channel (31) mainly includes a preheating heat exchanger (36) and a heat storage heat exchanger (37), a heat storage expansion valve (38), and second to third on-off valves (39, 40). Have. The portion from the heat exchanger (36) for preheating to the heat exchanger (37) for heat storage in the bypass channel (31) is a part of the intermediate circuit (11c).
 予熱用熱交換器(36)は、冷媒側通路(36a)と蓄熱側通路(36b)とを有する。冷媒側通路(36a)は、配管(32)上、つまりはバイパス流路(31)の一端と蓄熱用膨張弁(38)との間に位置し、内部には冷媒が流れる。蓄熱側通路(36b)は、蓄熱回路(61)に直列に接続され、内部には蓄熱媒体(後述)が流れる。予熱用熱交換器(36)は、冷媒と蓄熱媒体との熱交換を行う。つまり、予熱用熱交換器(36)は、蓄熱用熱交換器(37)にて熱交換する前の冷媒を、蓄熱媒体と熱交換させる。 The preheating heat exchanger (36) has a refrigerant side passage (36a) and a heat storage side passage (36b). The refrigerant side passage (36a) is located on the pipe (32), that is, between one end of the bypass flow path (31) and the heat storage expansion valve (38), and the refrigerant flows therein. The heat storage side passage (36b) is connected in series to the heat storage circuit (61), and a heat storage medium (described later) flows inside. The preheating heat exchanger (36) performs heat exchange between the refrigerant and the heat storage medium. That is, the preheating heat exchanger (36) exchanges heat between the refrigerant before heat exchange with the heat storage heat exchanger (37) and the heat storage medium.
 蓄熱用熱交換器(37)は、冷媒側通路(37a)と蓄熱側通路(37b)とを有する。冷媒側通路(37a)は、配管(33)上において蓄熱用膨張弁(38)と第3開閉弁(40)との間に位置し、内部には冷媒が流れる。蓄熱側通路(37b)は、蓄熱回路(61)に直列に接続され、内部には蓄熱媒体が流れる。蓄熱用熱交換器(37)は、冷媒と蓄熱媒体との熱交換を行うことで、蓄熱媒体を冷却等することができる。つまり、蓄熱用熱交換器(37)は、予熱用熱交換器(36)にて熱交換した後の冷媒を、蓄熱媒体と熱交換させる。 The heat storage heat exchanger (37) has a refrigerant side passage (37a) and a heat storage side passage (37b). The refrigerant side passage (37a) is located between the heat storage expansion valve (38) and the third on-off valve (40) on the pipe (33), and the refrigerant flows inside. The heat storage side passage (37b) is connected in series to the heat storage circuit (61), and the heat storage medium flows inside. The heat storage heat exchanger (37) can cool the heat storage medium by exchanging heat between the refrigerant and the heat storage medium. That is, the heat storage heat exchanger (37) heat-exchanges the refrigerant after heat exchange with the preheating heat exchanger (36) with the heat storage medium.
 蓄熱用膨張弁(38)は、予熱用熱交換器(36)の冷媒側通路(36a)と蓄熱用熱交換器(37)の冷媒側通路(37a)との間に接続されている。蓄熱用膨張弁(38)は、例えば電子膨張弁で構成されており、開度を変更することで冷媒の圧力及び循環量を調整する。 The heat storage expansion valve (38) is connected between the refrigerant side passage (36a) of the preheating heat exchanger (36) and the refrigerant side passage (37a) of the heat storage heat exchanger (37). The heat storage expansion valve (38) is composed of, for example, an electronic expansion valve, and adjusts the pressure and the circulation amount of the refrigerant by changing the opening degree.
 第2開閉弁(39)は、逆止弁(39a)と直列に接続されている。互いに直列接続された第2開閉弁(39)及び逆止弁(39a)は、蓄熱用膨張弁(38)に対し並列に接続されている。逆止弁(39a)は、予熱用熱交換器(36)側から蓄熱用熱交換器(37)側への冷媒の流れのみを許容する。第3開閉弁(40)は、配管(34)上に設けられている。なお、配管(34)の一端は、配管(33)に接続され、配管(34)の他端は、配管(16)に接続されている。 The second on-off valve (39) is connected in series with the check valve (39a). The second on-off valve (39) and the check valve (39a) connected in series to each other are connected in parallel to the heat storage expansion valve (38). The check valve (39a) allows only the flow of the refrigerant from the preheating heat exchanger (36) side to the heat storage heat exchanger (37) side. The third on-off valve (40) is provided on the pipe (34). One end of the pipe (34) is connected to the pipe (33), and the other end of the pipe (34) is connected to the pipe (16).
 なお、蓄熱用膨張弁(38)に並列に、圧力逃がし弁(44)が設けられている。圧力逃がし弁(44)は、例えば蓄熱式空気調和機(10)の運転停止時、蓄熱用熱交換器(37)側の圧力が許容値を超えた場合に、当該圧力を放出させるための弁である。 In addition, a pressure relief valve (44) is provided in parallel with the heat storage expansion valve (38). The pressure relief valve (44) is a valve for releasing the pressure when the pressure on the heat storage heat exchanger (37) side exceeds the allowable value, for example, when the heat storage air conditioner (10) is stopped. It is.
 <第1分岐流路>
 図1に示すように、冷媒回路(11)は、第1分岐流路(35)を更に含む。第1分岐流路(35)の一端は、バイパス流路(31)における配管(33,34)の接続ポイントに接続され、第1分岐流路(35)の他端は、配管(14c)に接続されている。第1分岐流路(35)は、主として、第4開閉弁(41)及び逆止弁(41a)を有しており、中間回路(11c)の一部分である。第4開閉弁(41)及び逆止弁(41a)は、互いに直列に接続されている。逆止弁(41a)は、配管(33)側から配管(14c)側への冷媒の流れのみを許容する。
<First branch flow path>
As shown in FIG. 1, the refrigerant circuit (11) further includes a first branch channel (35). One end of the first branch channel (35) is connected to the connection point of the pipes (33, 34) in the bypass channel (31), and the other end of the first branch channel (35) is connected to the pipe (14c). It is connected. The first branch channel (35) mainly has a fourth on-off valve (41) and a check valve (41a), and is a part of the intermediate circuit (11c). The fourth on-off valve (41) and the check valve (41a) are connected in series with each other. The check valve (41a) allows only the refrigerant flow from the pipe (33) side to the pipe (14c) side.
 <第2分岐流路>
 図1に示すように、冷媒回路(11)は、第2分岐流路(42)を更に含む。第2分岐流路(42)の一端は、バイパス流路(31)における配管(33,34)の接続ポイント、つまりはバイパス流路(31)と第1分岐流路(35)との接続ポイントに接続されている。第2分岐流路(42)の他端は、配管(16)に接続されている。第2分岐流路(42)は、主として、蒸発圧力調整弁(43)を有する。蒸発圧力調整弁(43)は、蓄熱用熱交換器(37)における冷媒の蒸発圧力を調整するための弁であって、例えば膨張弁で構成されている。
<Second branch flow path>
As shown in FIG. 1, the refrigerant circuit (11) further includes a second branch channel (42). One end of the second branch channel (42) is a connection point of the pipes (33, 34) in the bypass channel (31), that is, a connection point between the bypass channel (31) and the first branch channel (35). It is connected to the. The other end of the second branch channel (42) is connected to the pipe (16). The second branch channel (42) mainly has an evaporation pressure adjusting valve (43). The evaporation pressure adjusting valve (43) is a valve for adjusting the evaporation pressure of the refrigerant in the heat storage heat exchanger (37), and is constituted by, for example, an expansion valve.
 なお、蒸発圧力調整弁(43)は、基本的には全閉状態を保っている。 Note that the evaporation pressure adjustment valve (43) is basically kept in a fully closed state.
 <蓄熱回路の構成>
 蓄熱回路(61)には蓄熱媒体が充填されており、蓄熱媒体を循環させて冷熱を蓄熱する蓄冷サイクル等が行われる。蓄熱回路(61)は、主として、蓄熱タンク(62)及び循環ポンプ(63)の他に、上述した予熱用熱交換器(36)及び蓄熱用熱交換器(37)の各蓄熱側通路(36b,37b)によって構成されている。
<Configuration of heat storage circuit>
The heat storage circuit (61) is filled with a heat storage medium, and a cold storage cycle is performed in which the heat storage medium is circulated to store cold heat. The heat storage circuit (61) mainly includes, in addition to the heat storage tank (62) and the circulation pump (63), each heat storage side passage (36b) of the heat exchanger for preheating (36) and the heat exchanger for heat storage (37) described above. 37b).
 ここで、蓄熱媒体について説明する。蓄熱媒体には、冷却によって包接水和物が生成される蓄熱材、即ち流動性を有する蓄熱材が採用される。この蓄熱媒体は、例えば、冷却によって0℃より高く20℃より低い温度にて固体成分が生成されるものであることができる。固体成分とは、その融点において液体から相転移(潜熱変化)し、発熱した状態にある成分を言う。蓄熱媒体の具体例としては、臭化テトラnブチルアンモニウムを含有する臭化テトラnブチルアンモニウム(TBAB:Tetra Butyl Ammonium Bromide)水溶液、トリメチロールエタン(TME:Trimethylolethane)水溶液、パラフィン系スラリーなどが挙げられる。例えば、臭化テトラnブチルアンモニウム水溶液は、安定的に冷却されて当該水溶液の温度が水和物生成温度よりも低くなった過冷却状態でもその水溶液の状態を維持するが、この過冷却状態にて何らかのきっかけが与えられると、過冷却の溶液が包接水和物を含んだ溶液(即ちスラリー)へと遷移する。即ち、臭化テトラnブチルアンモニウム水溶液は、過冷却状態を解消して、臭化テトラnブチルアンモニウムと水分子とからなる包接水和物(水和物結晶)が生成されて粘性の比較的高いスラリー状となる。ここで、過冷却状態とは、蓄熱媒体が水和物生成温度以下の温度となっても包接水和物が生成されずに溶液の状態を保っている状態を言う。逆に、スラリー状となっている臭化テトラnブチルアンモニウム水溶液は、加熱により当該水溶液の温度が水和物生成温度よりも高くなると、包接水和物が融解して流動性の比較的高い液状態(溶液)となる。 Here, the heat storage medium will be described. As the heat storage medium, a heat storage material in which clathrate hydrate is generated by cooling, that is, a fluid heat storage material is employed. For example, the heat storage medium may be one in which a solid component is generated at a temperature higher than 0 ° C. and lower than 20 ° C. by cooling. The solid component refers to a component that has undergone phase transition (latent heat change) from a liquid at its melting point and is in an exothermic state. Specific examples of the heat storage medium include tetra nbutylammonium bromide (TBAB) aqueous solution, tetramethylolethane (TME) aqueous solution, paraffinic slurry, etc. containing tetra nbutylammonium bromide. . For example, an aqueous solution of tetra-n-butylammonium bromide maintains the state of the aqueous solution even in a supercooled state in which the temperature of the aqueous solution is lower than the hydrate formation temperature after being stably cooled. When given a trigger, the supercooled solution transitions to a solution containing clathrate hydrate (ie, slurry). That is, the aqueous solution of tetra-n-butylammonium bromide eliminates the supercooled state, and clathrate hydrate (hydrate crystal) composed of tetra-n-butylammonium bromide and water molecules is generated, and the viscosity is relatively low. It becomes a high slurry state. Here, the supercooled state refers to a state where the clathrate hydrate is not generated and the state of the solution is maintained even when the heat storage medium becomes a temperature lower than the hydrate generation temperature. Conversely, when the aqueous solution of tetra-n-butylammonium bromide in a slurry state is heated, the temperature of the aqueous solution becomes higher than the hydrate formation temperature, the clathrate hydrate melts and the fluidity is relatively high. It becomes a liquid state (solution).
 本実施形態では、上記蓄熱媒体として、臭化テトラnブチルアンモニウムを含有する臭化テトラnブチルアンモニウム水溶液を採用している。特に、上記蓄熱媒体は、調和濃度の近傍の濃度を有する媒体であることが好ましい。本実施形態では、調和濃度を約40%とする。この場合の臭化テトラnブチルアンモニウム水溶液の水和物生成温度は、約12℃である。 In the present embodiment, a tetra nbutylammonium bromide aqueous solution containing tetra nbutylammonium bromide is employed as the heat storage medium. In particular, the heat storage medium is preferably a medium having a concentration near the harmonic concentration. In this embodiment, the harmonic concentration is about 40%. In this case, the hydrate formation temperature of the aqueous solution of tetra-n-butylammonium bromide is about 12 ° C.
 なお、蓄熱媒体の濃度に応じて、臭化テトラnブチルアンモニウム水溶液の水和物生成温度は変化する。例えば、蓄熱媒体の濃度が約20%である場合、水和物生成温度は約8.5℃となる。調和濃度とは、包接水和物が生成される前後において、水溶液の濃度が変化しない濃度を意味する。 Note that the hydrate formation temperature of the aqueous solution of tetra-n-butylammonium bromide varies depending on the concentration of the heat storage medium. For example, when the concentration of the heat storage medium is about 20%, the hydrate formation temperature is about 8.5 ° C. The harmonic concentration means a concentration at which the concentration of the aqueous solution does not change before and after the clathrate hydrate is formed.
 蓄熱タンク(62)は、中空の容器であって、蓄熱媒体を貯留する。例えば、蓄熱タンク(62)は、両端が閉塞された円筒状に形成され、その軸方向が上下方向となるように配置されている。蓄熱タンク(62)には、流出口と流入口とが形成されており、流出口は、例えば流入口よりも上方に位置している。 The heat storage tank (62) is a hollow container and stores a heat storage medium. For example, the heat storage tank (62) is formed in a cylindrical shape closed at both ends, and is arranged so that its axial direction is the vertical direction. An outlet and an inlet are formed in the heat storage tank (62), and the outlet is located, for example, above the inlet.
 循環ポンプ(63)は、蓄熱回路(61)において、蓄熱タンク(62)、予熱用熱交換器(36)及び蓄熱用熱交換器(37)の間で蓄熱媒体を循環させる。蓄熱媒体の循環方向は、蓄熱タンク(62)から流出した蓄熱媒体が予熱用熱交換器(36)の蓄熱側通路(36b)を通過し、更にその後に循環ポンプ(63)を介して蓄熱用熱交換器(37)の蓄熱側通路(37b)を通過して、蓄熱タンク(62)に流入する方向となっている。循環ポンプ(63)の運転のオン及びオフや蓄熱媒体の流量は、コントローラ(100)によって制御される。 The circulation pump (63) circulates the heat storage medium between the heat storage tank (62), the preheating heat exchanger (36), and the heat storage heat exchanger (37) in the heat storage circuit (61). The direction of circulation of the heat storage medium is that the heat storage medium flowing out of the heat storage tank (62) passes through the heat storage side passage (36b) of the heat exchanger for preheating (36) and then passes through the circulation pump (63) for heat storage. It passes through the heat storage side passage (37b) of the heat exchanger (37) and flows into the heat storage tank (62). The on / off operation of the circulation pump (63) and the flow rate of the heat storage medium are controlled by the controller (100).
 以上の構成により、蓄熱回路(61)は、閉回路となっている。 With the above configuration, the heat storage circuit (61) is a closed circuit.
 <蓄熱式空気調和機の運転動作>
 蓄熱式空気調和機(10)の運転種類としては、単純冷房運転、単純暖房運転、蓄冷運転、利用冷房運転、及び冷房蓄冷運転が挙げられる。コントローラ(100)は、これらの各運転が行われるように、冷媒回路(11)及び蓄熱回路(61)における各種機器を制御する。
<Operation of regenerative air conditioner>
Examples of the operation type of the heat storage type air conditioner (10) include simple cooling operation, simple heating operation, cold storage operation, utilization cooling operation, and cooling storage operation. The controller (100) controls various devices in the refrigerant circuit (11) and the heat storage circuit (61) so that these operations are performed.
 単純冷房運転とは、冷媒回路(11)の冷房サイクルによって得られる冷熱のみを用いて室内の冷房を行う運転である。単純暖房運転とは、冷媒回路(11)の暖房サイクルによって得られる温熱のみを用いて室内の暖房を行う運転である。蓄冷運転とは、蓄熱回路(61)の蓄冷サイクルによって得られる冷熱を蓄熱タンク(62)に蓄える運転である。利用冷房運転とは、蓄熱タンク(62)内の蓄熱媒体を冷熱源として用いて室内の冷房を行う運転である。冷房蓄冷運転は、蓄熱回路(61)においては蓄冷サイクルで得られる冷熱を蓄熱タンク(62)に貯留しながら、冷媒回路(11)においては冷房サイクルで得られる冷熱のみを用いて室内の冷房を行う運転である。即ち、冷房蓄冷運転では、蓄冷と冷房とが同時に行われる。 The simple cooling operation is an operation for cooling the room using only the cooling heat obtained by the cooling cycle of the refrigerant circuit (11). The simple heating operation is an operation for heating the room using only the heat obtained by the heating cycle of the refrigerant circuit (11). The cold storage operation is an operation in which cold heat obtained by the cold storage cycle of the heat storage circuit (61) is stored in the heat storage tank (62). The use cooling operation is an operation for cooling the room using the heat storage medium in the heat storage tank (62) as a cooling heat source. In the cooling storage operation, in the heat storage circuit (61), the cold energy obtained in the cold storage cycle is stored in the heat storage tank (62), while the refrigerant circuit (11) uses only the cold energy obtained in the cooling cycle to cool the room. It is a driving to be performed. That is, cold storage and cooling are performed simultaneously in the cooling storage operation.
 -単純冷房運転-
 図2に示されるように、単純冷房運転では、冷媒回路(11)は、室外熱交換器(22)が凝縮器となり室内熱交換器(27)が蒸発器となる冷房サイクルを行う。特に、単純冷房運転時、冷媒は、凝縮器として機能する室外熱交換器(22)から蒸発器として機能する室内熱交換器(27)へと、バイパス回路(18)を介して冷媒回路(11)内を循環する。この冷媒の循環動作を、単純冷房サイクルと言う。
-Simple cooling operation-
As shown in FIG. 2, in the simple cooling operation, the refrigerant circuit (11) performs a cooling cycle in which the outdoor heat exchanger (22) serves as a condenser and the indoor heat exchanger (27) serves as an evaporator. In particular, during the simple cooling operation, the refrigerant flows from the outdoor heat exchanger (22) functioning as a condenser to the indoor heat exchanger (27) functioning as an evaporator through a bypass circuit (18) through a refrigerant circuit (11 ) Circulate inside. This refrigerant circulation operation is called a simple cooling cycle.
 この時、バイパス流路(31)及び第1分岐流路(35)には冷媒は流入せず、蓄熱回路(61)は蓄熱媒体を循環させない。具体的に、バイパス流路(31)では、蓄熱用膨張弁(38)の開度は全閉状態に設定され、バイパス流路(31)及び第1分岐流路(35)の開閉弁(39、41)は閉状態に設定される。但し、バイパス流路(31)の開閉弁(40)は、蓄熱用熱交換器(37)の冷媒側通路(37a)に冷媒が溜まることを防ぐため、開状態に設定される。蓄熱回路(61)では、循環ポンプ(63)は停止する。 At this time, the refrigerant does not flow into the bypass channel (31) and the first branch channel (35), and the heat storage circuit (61) does not circulate the heat storage medium. Specifically, in the bypass channel (31), the opening degree of the heat storage expansion valve (38) is set to a fully closed state, and the on-off valve (39 of the bypass channel (31) and the first branch channel (35)). 41) is set to the closed state. However, the on-off valve (40) of the bypass channel (31) is set to an open state in order to prevent refrigerant from accumulating in the refrigerant side passage (37a) of the heat storage heat exchanger (37). In the heat storage circuit (61), the circulation pump (63) is stopped.
 冷媒回路(11)では、四方切換弁(28)が第1状態に設定され、第1開閉弁(25)は開状態に設定される。室外膨張弁(23)の開度は全開状態に設定され、蓄熱側過冷却熱交換器(29)の膨張弁(29c)は全閉状態、室内膨張弁(26)の開度は所定の開度(室内熱交換器(27)の出口における冷媒の過熱度が目標過熱度となる開度)に設定される。圧縮機(21)、室外ファン(22a)及び室内ファン(27a)は作動する。 In the refrigerant circuit (11), the four-way switching valve (28) is set to the first state, and the first on-off valve (25) is set to the open state. The opening degree of the outdoor expansion valve (23) is set to a fully opened state, the expansion valve (29c) of the heat storage side subcooling heat exchanger (29) is fully closed, and the opening degree of the indoor expansion valve (26) is a predetermined opening degree. (The opening degree at which the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger (27) becomes the target degree of superheat). The compressor (21), the outdoor fan (22a), and the indoor fan (27a) operate.
 圧縮機(21)から吐出された冷媒は、配管(12)を介して室外熱交換器(22)に流入し、室外熱交換器(22)を通過する間に室外空気に放熱して凝縮する。室外熱交換器(22)にて凝縮された冷媒は、配管(13)及び室外膨張弁(23)を介して室外側過冷却熱交換器(24)に流入し、更に冷却される。更に冷却された冷媒は、配管(14b,14c,14d)、第1開閉弁(25)及び蓄熱側過冷却熱交換器(29)の高圧側通路(29a)を介して室内膨張弁(26)に流入し、室内膨張弁(26)にて減圧される。室内膨張弁(26)にて減圧された冷媒は、配管(15)を介して室内熱交換器(27)に流入し、室内熱交換器(27)を通過する間に室内空気から吸熱して蒸発する。これにより、室内空気が冷却される。室内熱交換器(27)にて蒸発した冷媒は、配管(16)を介して圧縮機(21)に吸入されて再び圧縮される。 The refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (22) through the pipe (12), and dissipates heat to the outdoor air and condenses while passing through the outdoor heat exchanger (22). . The refrigerant condensed in the outdoor heat exchanger (22) flows into the outdoor subcooling heat exchanger (24) through the pipe (13) and the outdoor expansion valve (23), and is further cooled. Further, the cooled refrigerant passes through the piping (14b, 14c, 14d), the first on-off valve (25), and the indoor expansion valve (26) via the high pressure side passage (29a) of the heat storage side subcooling heat exchanger (29). The pressure is reduced by the indoor expansion valve (26). The refrigerant decompressed by the indoor expansion valve (26) flows into the indoor heat exchanger (27) through the pipe (15) and absorbs heat from the indoor air while passing through the indoor heat exchanger (27). Evaporate. Thereby, indoor air is cooled. The refrigerant evaporated in the indoor heat exchanger (27) is sucked into the compressor (21) through the pipe (16) and compressed again.
 -単純暖房運転-
 図3に示されるように、単純暖房運転では、冷媒回路(11)は、室内熱交換器(27)が凝縮器となり室外熱交換器(22)が蒸発器となる暖房サイクルを行う。単純冷房運転と同様、バイパス流路(31)及び第1分岐流路(35)には冷媒は流入せず、蓄熱回路(61)は蓄熱媒体を循環させない。
-Simple heating operation-
As shown in FIG. 3, in the simple heating operation, the refrigerant circuit (11) performs a heating cycle in which the indoor heat exchanger (27) serves as a condenser and the outdoor heat exchanger (22) serves as an evaporator. Similar to the simple cooling operation, the refrigerant does not flow into the bypass flow path (31) and the first branch flow path (35), and the heat storage circuit (61) does not circulate the heat storage medium.
 冷媒回路(11)では、四方切換弁(28)が第2状態に設定される。室内膨張弁(26)の開度は、所定の開度(室内熱交換器(27)の出口における冷媒の過冷却度が目標過冷却度となる開度)に設定される。各過冷却熱交換器(29,24)の膨張弁(29c,24c)は全閉状態、第1開閉弁(25)は閉状態、室外膨張弁(23)の開度は所定の開度(室外熱交換器(22)の出口における冷媒の過熱度が目標過熱度となる開度)に設定される。圧縮機(21)、室外ファン(22a)及び室内ファン(27a)は作動する。 In the refrigerant circuit (11), the four-way selector valve (28) is set to the second state. The opening degree of the indoor expansion valve (26) is set to a predetermined opening degree (an opening degree at which the degree of refrigerant subcooling at the outlet of the indoor heat exchanger (27) becomes the target degree of subcooling). The expansion valve (29c, 24c) of each subcooling heat exchanger (29, 24) is fully closed, the first on-off valve (25) is closed, and the opening of the outdoor expansion valve (23) is a predetermined opening ( The degree of superheat of the refrigerant at the outlet of the outdoor heat exchanger (22) is set to the target degree of superheat). The compressor (21), the outdoor fan (22a), and the indoor fan (27a) operate.
 圧縮機(21)から吐出された冷媒は、配管(16)を介して室内熱交換器(27)に流入し、室内熱交換器(27)を通過する間に室内空気に放熱して凝縮する。この時、室内空気は温められる。室内熱交換器(27)にて凝縮された冷媒は、各種配管(15,14d~14a)、室内膨張弁(26)、各過冷却熱交換器(29,24)の高圧側通路(29a,24a)、及び逆止弁(25a)を介して室外膨張弁(23)に流入し、室外膨張弁(23)にて減圧される。減圧後の冷媒は、配管(13)を介して室外熱交換器(22)に流入し、室外熱交換器(22)を通過する間に室外空気から吸熱して蒸発する。蒸発後の冷媒は、配管(12)を介して圧縮機(21)に吸入されて再び圧縮される。 The refrigerant discharged from the compressor (21) flows into the indoor heat exchanger (27) through the pipe (16), and dissipates heat to the indoor air while passing through the indoor heat exchanger (27) to condense. . At this time, the room air is warmed. The refrigerant condensed in the indoor heat exchanger (27) is divided into various pipes (15, 14d to 14a), indoor expansion valves (26), high pressure side passages (29a, 24a) and the check valve (25a) to the outdoor expansion valve (23), and the pressure is reduced by the outdoor expansion valve (23). The decompressed refrigerant flows into the outdoor heat exchanger (22) through the pipe (13), and evaporates by absorbing heat from the outdoor air while passing through the outdoor heat exchanger (22). The evaporated refrigerant is sucked into the compressor (21) through the pipe (12) and compressed again.
 -蓄冷運転-
 図4に示すように、蓄冷運転では、室外熱交換器(22)及び予熱用熱交換器(36)の冷媒側通路(36a)にて凝縮及び冷却された冷媒が、蓄熱用熱交換器(37)の冷媒側通路(37a)にて蒸発することで、蓄熱側通路(37b)内の蓄熱媒体が冷却されて蓄熱タンク(62)に貯留される。冷媒回路(11)では、冷媒がバイパス流路(31)に流れるが、第1分岐流路(35)には流れない。蓄熱回路(61)は、蓄熱用熱交換器(37)にて冷却された蓄熱媒体が蓄熱タンク(62)に貯留するように蓄熱媒体を循環する蓄冷サイクルを行う。
-Cold storage operation-
As shown in FIG. 4, in the cold storage operation, the refrigerant condensed and cooled in the refrigerant side passage (36a) of the outdoor heat exchanger (22) and the preheating heat exchanger (36) is converted into a heat storage heat exchanger ( By evaporating in the refrigerant side passage (37a) of 37), the heat storage medium in the heat storage side passage (37b) is cooled and stored in the heat storage tank (62). In the refrigerant circuit (11), the refrigerant flows through the bypass channel (31) but does not flow through the first branch channel (35). The heat storage circuit (61) performs a cold storage cycle in which the heat storage medium is circulated so that the heat storage medium cooled in the heat storage heat exchanger (37) is stored in the heat storage tank (62).
 具体的に、四方切換弁(28)は第1状態、第3開閉弁(40)は開状態に設定され、第2開閉弁(39)及び第4開閉弁(41)は閉状態に設定される。なお、第1開閉弁(25)は、開状態に設定される。第1開閉弁(25)が開状態となることにより、バイパス流路(31)への分岐点から室内膨張弁(26)までの配管(液管)に液冷媒が溜まり込み、この配管内の冷媒が単純冷房運転時と同じ状態になり、余剰冷媒の発生が防止されるためである。また、室外膨張弁(23)の開度は全開状態、各過冷却熱交換器(24,29)の膨張弁(24c,29c)は全閉状態、室内膨張弁(26)の開度は全閉状態、蓄熱用膨張弁(38)の開度は所定の開度(蓄熱用熱交換器(37)の冷媒側通路(37a)の出口における冷媒の蒸発温度が目標蒸発温度となる開度)にそれぞれ設定される。圧縮機(21)は概ね一定の回転数で作動する。室外ファン(22a)は作動し、室内ファン(27a)は停止する。 Specifically, the four-way switching valve (28) is set to the first state, the third on-off valve (40) is set to the open state, and the second on-off valve (39) and the fourth on-off valve (41) are set to the closed state. The The first on-off valve (25) is set in the open state. When the first on-off valve (25) is opened, liquid refrigerant accumulates in the pipe (liquid pipe) from the branch point to the bypass flow path (31) to the indoor expansion valve (26). This is because the refrigerant is in the same state as in the simple cooling operation, and generation of excess refrigerant is prevented. The opening of the outdoor expansion valve (23) is fully open, the expansion valve (24c, 29c) of each subcooling heat exchanger (24, 29) is fully closed, and the opening of the indoor expansion valve (26) is fully open. In the closed state, the opening degree of the heat storage expansion valve (38) is a predetermined opening degree (an opening degree at which the refrigerant evaporation temperature at the outlet of the refrigerant side passage (37a) of the heat storage heat exchanger (37) becomes the target evaporation temperature). Respectively. The compressor (21) operates at a substantially constant rotational speed. The outdoor fan (22a) is activated and the indoor fan (27a) is stopped.
 圧縮機(21)から吐出された冷媒は、配管(12)を介して室外熱交換器(22)に流入し、室外熱交換器(22)にて室外空気に放熱して凝縮する。凝縮された冷媒は、配管(13,14a)、室外膨張弁(23)及び室外側過冷却熱交換器(24)の高圧側通路(24a)を介して配管(14b)に流れる。第1開閉弁(25)が開状態であるため、当該冷媒は、配管(14b)におけるバイパス流路(31)への分岐点から室内膨張弁(26)に至るまでの配管に溜まり込むとともに、バイパス流路(31)側へも流入し、予熱用熱交換器(36)の冷媒側通路(36a)にて更に冷却される。予熱用熱交換器(36)から流出された冷媒は、蓄熱用膨張弁(38)にて減圧され、その後蓄熱用熱交換器(37)の冷媒側通路(37a)にて蓄熱媒体から吸熱して蒸発する。蒸発した冷媒は、第3開閉弁(40)及び配管(34)を介してバイパス流路(31)から流出し、配管(16)に流入する。その後、冷媒は、四方切換弁(28)を介して圧縮機(21)に吸入され、再び圧縮される。 The refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (22) through the pipe (12), and dissipates heat to the outdoor air and condenses in the outdoor heat exchanger (22). The condensed refrigerant flows into the pipe (14b) through the pipe (13, 14a), the outdoor expansion valve (23), and the high pressure side passage (24a) of the outdoor subcooling heat exchanger (24). Since the first on-off valve (25) is in the open state, the refrigerant accumulates in the pipe from the branch point to the bypass flow path (31) in the pipe (14b) to the indoor expansion valve (26). It also flows into the bypass channel (31) side, and is further cooled in the refrigerant side passage (36a) of the preheating heat exchanger (36). The refrigerant flowing out of the preheating heat exchanger (36) is decompressed by the heat storage expansion valve (38), and then absorbs heat from the heat storage medium in the refrigerant side passage (37a) of the heat storage heat exchanger (37). Evaporate. The evaporated refrigerant flows out of the bypass flow path (31) through the third on-off valve (40) and the pipe (34), and flows into the pipe (16). Thereafter, the refrigerant is sucked into the compressor (21) through the four-way switching valve (28) and compressed again.
 蓄熱回路(61)では、循環ポンプ(63)が作動する。蓄熱タンク(62)内の蓄熱媒体は、該タンク(62)から流出して予熱用熱交換器(36)の蓄熱側通路(36b)に流入する。蓄熱側通路(36b)を通過する間に、蓄熱媒体は、冷媒側通路(36a)を流れる冷媒によって加熱される。加熱された蓄熱媒体は、循環ポンプ(63)を介して蓄熱用熱交換器(37)の蓄熱側通路(37b)に流入する。蓄熱側通路(37b)を通過する間に、蓄熱媒体は、冷媒側通路(37a)を流れる冷媒によって冷却される。冷却された蓄熱媒体は、蓄熱タンク(62)内に流入する。このようにして、蓄熱タンク(62)には冷熱が蓄えられる。 In the heat storage circuit (61), the circulation pump (63) operates. The heat storage medium in the heat storage tank (62) flows out of the tank (62) and flows into the heat storage side passage (36b) of the preheating heat exchanger (36). While passing through the heat storage side passage (36b), the heat storage medium is heated by the refrigerant flowing through the refrigerant side passage (36a). The heated heat storage medium flows into the heat storage side passage (37b) of the heat storage heat exchanger (37) through the circulation pump (63). While passing through the heat storage side passage (37b), the heat storage medium is cooled by the refrigerant flowing through the refrigerant side passage (37a). The cooled heat storage medium flows into the heat storage tank (62). In this way, cold heat is stored in the heat storage tank (62).
 -利用冷房運転-
 図5に示すように、利用冷房運転では、蓄熱タンク(62)に蓄えられた冷熱と冷媒回路(11)の冷凍サイクルによって得られる冷熱とを用いて室内の冷房が行われる。つまり、室外熱交換器(22)にて凝縮及び冷却された冷媒が、更に予熱用熱交換器(36)及び蓄熱用熱交換器(37)にて蓄熱媒体から冷熱を得た後に室内熱交換器(27)にて蒸発することで、室内空気が冷却される。このような冷媒の循環動作を、利用冷房サイクルと言う。蓄熱回路(61)は、蓄熱タンク(62)から流出した蓄熱媒体が予熱用熱交換器(36)及び蓄熱用熱交換器(37)を順に通過して蓄熱タンク(62)に再度流入するように蓄熱媒体を循環させる。
-Use cooling operation-
As shown in FIG. 5, in the use cooling operation, the room is cooled using the cold heat stored in the heat storage tank (62) and the cold heat obtained by the refrigeration cycle of the refrigerant circuit (11). That is, the refrigerant condensed and cooled in the outdoor heat exchanger (22) is further subjected to indoor heat exchange after obtaining cold energy from the heat storage medium in the preheating heat exchanger (36) and the heat storage heat exchanger (37). The room air is cooled by evaporating in the vessel (27). Such a circulation operation of the refrigerant is referred to as a utilization cooling cycle. The heat storage circuit (61) causes the heat storage medium flowing out from the heat storage tank (62) to pass through the preheating heat exchanger (36) and the heat storage heat exchanger (37) in order, and to flow into the heat storage tank (62) again. Circulate the heat storage medium.
 利用冷房サイクル時、冷媒回路(11)側においては、室外熱交換器(22)が凝縮器、室内熱交換器(27)が蒸発器となる。特に、バイパス流路(31)においては、予熱用熱交換器(36)及び蓄熱用熱交換器(37)が共に過冷却器(凝縮器)となり、冷媒は、バイパス流路(31)の途中で第1分岐流路(35)へと流れる。 During the use cooling cycle, on the refrigerant circuit (11) side, the outdoor heat exchanger (22) is a condenser and the indoor heat exchanger (27) is an evaporator. In particular, in the bypass flow path (31), both the preheating heat exchanger (36) and the heat storage heat exchanger (37) serve as a supercooler (condenser), and the refrigerant passes through the bypass flow path (31). Flows to the first branch channel (35).
 具体的には、四方切換弁(28)は第1状態、第1開閉弁(25)及び第3開閉弁(40)は閉状態、第2開閉弁(39)及び第4開閉弁(41)は開状態にそれぞれ設定される。室外膨張弁(23)及び蓄熱用膨張弁(38)の開度は全開状態、室外側過冷却熱交換器(24)の膨張弁(24c)は全閉状態、室内膨張弁(26)の開度は所定の開度(室内熱交換器(27)の出口における冷媒の過熱度が目標過熱度となる開度)にそれぞれ設定される。圧縮機(21)、室外ファン(22a)及び室内ファン(27a)は作動する。 Specifically, the four-way switching valve (28) is in the first state, the first on-off valve (25) and the third on-off valve (40) are in the closed state, the second on-off valve (39) and the fourth on-off valve (41). Are set to the open state. The degree of opening of the outdoor expansion valve (23) and the heat storage expansion valve (38) is fully open, the expansion valve (24c) of the outdoor subcooling heat exchanger (24) is fully closed, and the indoor expansion valve (26) is open. The degree is set to a predetermined opening degree (an opening degree at which the superheat degree of the refrigerant at the outlet of the indoor heat exchanger (27) becomes the target superheat degree). The compressor (21), the outdoor fan (22a), and the indoor fan (27a) operate.
 圧縮機(21)から吐出された冷媒は、配管(12)を介して室外熱交換器(22)に流入し、室外熱交換器(22)にて室外空気に放熱して凝縮する。凝縮された冷媒は、全開である室外膨張弁(23)及び室外側過冷却熱交換器(24)の高圧側通路(24a)を介して配管(14b)に流れる。第1開閉弁(25)が閉状態であるため、当該冷媒は、バイパス回路(18)には流れずに、配管(14b)の途中でバイパス流路(31)内へと流入する。バイパス流路(31)に流入した冷媒は、予熱用熱交換器(36)の冷媒側通路(36a)を通過する間に蓄熱側通路(36b)を流れる蓄熱媒体によって更に冷却され、その後は全開である蓄熱用膨張弁(38)または第2開閉弁(39)を介して蓄熱用熱交換器(37)に流入する。蓄熱用熱交換器(37)に流入した冷媒は、冷媒側通路(37a)を通過する間に、蓄熱側通路(37b)を流れる蓄熱媒体によって更に冷却される。この冷媒は、第1分岐流路(35)を介して配管(14c)に流入する。その後、冷媒は、蓄熱側過冷却熱交換器(29)に流入し、更に冷却される。更に冷却された冷媒は、配管(14d)を介して室内膨張弁(26)に流入する。室内膨張弁(26)にて減圧された後、室内熱交換器(27)にて室内空気から吸熱して蒸発する。これにより、室内空気が冷却される。蒸発した冷媒は、配管(16)及び四方切換弁(28)を介して圧縮機(21)に吸入されて再び圧縮される。 The refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (22) through the pipe (12), and dissipates heat to the outdoor air and condenses in the outdoor heat exchanger (22). The condensed refrigerant flows into the pipe (14b) through the fully expanded outdoor expansion valve (23) and the high pressure side passage (24a) of the outdoor subcooling heat exchanger (24). Since the first on-off valve (25) is in the closed state, the refrigerant does not flow into the bypass circuit (18) but flows into the bypass channel (31) in the middle of the pipe (14b). The refrigerant flowing into the bypass channel (31) is further cooled by the heat storage medium flowing through the heat storage side passage (36b) while passing through the refrigerant side passage (36a) of the preheating heat exchanger (36), and then fully opened. Into the heat storage heat exchanger (37) through the heat storage expansion valve (38) or the second on-off valve (39). The refrigerant flowing into the heat storage heat exchanger (37) is further cooled by the heat storage medium flowing through the heat storage side passage (37b) while passing through the refrigerant side passage (37a). This refrigerant flows into the pipe (14c) through the first branch flow path (35). Thereafter, the refrigerant flows into the heat storage side subcooling heat exchanger (29) and is further cooled. Further, the cooled refrigerant flows into the indoor expansion valve (26) through the pipe (14d). After being depressurized by the indoor expansion valve (26), the indoor heat exchanger (27) absorbs heat from the indoor air and evaporates. Thereby, indoor air is cooled. The evaporated refrigerant is sucked into the compressor (21) through the pipe (16) and the four-way switching valve (28) and is compressed again.
 蓄熱回路(61)では、循環ポンプ(63)が作動する。蓄熱タンク(62)内の蓄熱媒体は、該タンク(62)から流出して予熱用熱交換器(36)の蓄熱側通路(36b)に流入する。蓄熱側通路(36b)を通過する間に、蓄熱媒体は、冷媒側通路(36a)を流れる冷媒から吸熱する。吸熱した蓄熱媒体は、循環ポンプ(63)を介して蓄熱用熱交換器(37)の蓄熱側通路(37b)に流入する。蓄熱側通路(37b)を通過する間に、蓄熱媒体は、冷媒側通路(37a)を流れる冷媒から更に吸熱する。更に吸熱した蓄熱媒体は、蓄熱タンク(62)内に流入される。このようにして、蓄熱媒体から冷媒へ冷熱が付与される。 In the heat storage circuit (61), the circulation pump (63) operates. The heat storage medium in the heat storage tank (62) flows out of the tank (62) and flows into the heat storage side passage (36b) of the preheating heat exchanger (36). While passing through the heat storage side passage (36b), the heat storage medium absorbs heat from the refrigerant flowing through the refrigerant side passage (36a). The heat storage medium that has absorbed heat flows into the heat storage side passageway (37b) of the heat storage heat exchanger (37) through the circulation pump (63). While passing through the heat storage side passage (37b), the heat storage medium further absorbs heat from the refrigerant flowing through the refrigerant side passage (37a). Further, the heat storage medium that has absorbed heat flows into the heat storage tank (62). In this way, cold heat is applied from the heat storage medium to the refrigerant.
 -冷房蓄冷運転-
 図6に示すように、冷房蓄冷運転では、冷媒回路(11)においては室外熱交換器(22)で凝縮された冷媒がバイパス回路(18)を介して室内熱交換器(27)で蒸発するように冷媒が循環する冷房サイクルが行われる。特に、冷媒回路(11)では、冷媒の一部がバイパス流路(31)へも流れる。そして、冷房蓄冷運転では、蓄熱回路(61)においては蓄熱媒体が蓄熱用熱交換器(37)にて冷媒により冷却され蓄熱タンク(62)に貯留される蓄冷サイクルが行われる。つまり、冷房サイクルと蓄冷サイクルとが同時に行われる。
-Cooling and regenerative operation-
As shown in FIG. 6, in the cooling and accumulating operation, in the refrigerant circuit (11), the refrigerant condensed in the outdoor heat exchanger (22) evaporates in the indoor heat exchanger (27) through the bypass circuit (18). Thus, a cooling cycle in which the refrigerant circulates is performed. In particular, in the refrigerant circuit (11), a part of the refrigerant also flows to the bypass channel (31). In the cooling and regenerating operation, in the heat storage circuit (61), a cold storage cycle is performed in which the heat storage medium is cooled by the refrigerant in the heat storage heat exchanger (37) and stored in the heat storage tank (62). That is, the cooling cycle and the cold storage cycle are performed simultaneously.
 この場合、冷媒回路(11)側においては、室外熱交換器(22)が凝縮器、室内熱交換器(27)が蒸発器となる。特に、バイパス流路(31)においては、予熱用熱交換器(36)は過冷却器(即ち放熱器)、蓄熱用熱交換器(37)は蒸発器となる。なお、冷媒は、第1分岐流路(35)には流れない。 In this case, on the refrigerant circuit (11) side, the outdoor heat exchanger (22) is a condenser and the indoor heat exchanger (27) is an evaporator. In particular, in the bypass channel (31), the preheating heat exchanger (36) is a supercooler (that is, a radiator), and the heat storage heat exchanger (37) is an evaporator. In addition, a refrigerant | coolant does not flow into a 1st branch flow path (35).
 具体的には、四方切換弁(28)は第1状態、第1開閉弁(25)及び第3開閉弁(40)は開状態、第2開閉弁(39)及び第4開閉弁(41)は閉状態にそれぞれ設定される。室外膨張弁(23)の開度は全開状態、室外側過冷却熱交換器(24)の膨張弁(24c)は全閉状態、蓄熱用膨張弁(38)及び室内膨張弁(26)の開度は、コントローラ(100)によって冷媒流量調節のための開度制御が行われる。圧縮機(21)、室外ファン(22a)及び室内ファン(27a)は作動する。 Specifically, the four-way switching valve (28) is in the first state, the first on-off valve (25) and the third on-off valve (40) are in the open state, the second on-off valve (39) and the fourth on-off valve (41). Are each set to the closed state. The opening degree of the outdoor expansion valve (23) is fully open, the expansion valve (24c) of the outdoor supercooling heat exchanger (24) is fully closed, and the heat storage expansion valve (38) and the indoor expansion valve (26) are open. The degree of opening is controlled by the controller (100) for adjusting the refrigerant flow rate. The compressor (21), the outdoor fan (22a), and the indoor fan (27a) operate.
 圧縮機(21)から吐出された冷媒は、配管(12)を介して室外熱交換器(22)に流入し、室外熱交換器(22)にて室外空気に放熱して凝縮する。凝縮された冷媒は、全開である室外膨張弁(23)及び室外側過冷却熱交換器(24)の高圧側通路(24a)を通過する。第1開閉弁(25)は開状態であって、且つ蓄熱用膨張弁(38)は全閉状態ではないため、室外側過冷却熱交換器(24)から流出した冷媒は、配管(14b)の途中にて、第1開閉弁(25)側とバイパス流路(31)側とに分岐して流れる。 The refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (22) through the pipe (12), and dissipates heat to the outdoor air and condenses in the outdoor heat exchanger (22). The condensed refrigerant passes through the outdoor expansion valve (23) that is fully open and the high-pressure side passage (24a) of the outdoor supercooling heat exchanger (24). Since the first on-off valve (25) is in the open state and the heat storage expansion valve (38) is not in the fully closed state, the refrigerant flowing out of the outdoor supercooling heat exchanger (24) In the middle of the flow, it branches and flows into the first on-off valve (25) side and the bypass flow path (31) side.
 第1開閉弁(25)側に流れた冷媒は、配管(14c)を介して蓄熱側過冷却熱交換器(29)の高圧側通路(29a)に流入し、更に冷却される。更に冷却された冷媒は、配管(14d)を介して室内膨張弁(26)に流入し、室内膨張弁(26)にて減圧される。室内膨張弁(26)にて減圧された冷媒は、室内熱交換器(27)にて室内空気から吸熱して蒸発する。これにより、室内空気が冷却される。 The refrigerant that has flowed to the first opening / closing valve (25) side flows into the high pressure side passage (29a) of the heat storage side subcooling heat exchanger (29) through the pipe (14c), and is further cooled. Further, the cooled refrigerant flows into the indoor expansion valve (26) through the pipe (14d) and is decompressed by the indoor expansion valve (26). The refrigerant decompressed by the indoor expansion valve (26) absorbs heat from the indoor air and evaporates by the indoor heat exchanger (27). Thereby, indoor air is cooled.
 一方、バイパス流路(31)側に流れた冷媒は、配管(32)を介して予熱用熱交換器(36)の冷媒側通路(36a)に流入し、当該冷媒側通路(36a)を通過する間に蓄熱側通路(36b)を流れる蓄熱媒体を加熱する。これにより、蓄熱タンク(62)から流出する蓄熱媒体に含まれる包接水和物は融解する。従って、予熱用熱交換器(36)を通過後の蓄熱媒体が通過する配管(蓄熱用熱交換器(37)の蓄熱側通路(37b)を含む)にて、蓄熱媒体の包接水和物が大量に生成されて蓄熱回路(61)が閉塞することを防ぐことができる。 On the other hand, the refrigerant flowing to the bypass channel (31) side flows into the refrigerant side passage (36a) of the preheating heat exchanger (36) through the pipe (32) and passes through the refrigerant side passage (36a). During this time, the heat storage medium flowing through the heat storage side passage (36b) is heated. Thereby, the clathrate hydrate contained in the heat storage medium flowing out from the heat storage tank (62) is melted. Therefore, the clathrate hydrate of the heat storage medium in the pipe (including the heat storage side passage (37b) of the heat storage heat exchanger (37)) through which the heat storage medium passes through the preheat heat exchanger (36). Can be prevented from being produced in large quantities and blocking the heat storage circuit (61).
 特に、冷房蓄冷運転では、室外側過冷却熱交換器(24)での冷媒の冷却が行われていない。仮に室外側過冷却熱交換器(24)で冷媒が冷却されると、予熱用熱交換器(36)にて冷媒が蓄熱媒体を加熱する効果が薄れてしまい、包接水和物による蓄熱回路(61)の閉塞が生じ易くなるためである。 Especially, in the cooling storage operation, the refrigerant is not cooled in the outdoor supercooling heat exchanger (24). If the refrigerant is cooled in the outdoor supercooling heat exchanger (24), the effect of the refrigerant heating the heat storage medium in the preheating heat exchanger (36) is reduced, and the heat storage circuit by clathrate hydrate This is because (61) is likely to be blocked.
 そして、予熱用熱交換器(36)にて蓄熱媒体を加熱した冷媒は、冷やされた状態で予熱用熱交換器(36)から流出し、蓄熱用膨張弁(38)にて減圧される。その後、冷媒は、蓄熱用熱交換器(37)において、冷媒側通路(37a)を通過する間に、蓄熱側通路(37b)を流れる蓄熱媒体から吸熱して蒸発する。蒸発した冷媒は、第3開閉弁(40)及び配管(34)を流れ、室内熱交換器(27)を通過した冷媒と配管(16)にて合流する。合流した冷媒は、四方切換弁(28)を介して圧縮機(21)に吸入されて再び圧縮される。 The refrigerant that has heated the heat storage medium in the preheating heat exchanger (36) flows out of the preheating heat exchanger (36) in a cooled state, and is depressurized by the heat storage expansion valve (38). Thereafter, in the heat storage heat exchanger (37), the refrigerant absorbs heat from the heat storage medium flowing through the heat storage side passage (37b) and evaporates while passing through the refrigerant side passage (37a). The evaporated refrigerant flows through the third on-off valve (40) and the pipe (34), and merges with the refrigerant that has passed through the indoor heat exchanger (27) in the pipe (16). The merged refrigerant is sucked into the compressor (21) through the four-way switching valve (28) and compressed again.
 蓄熱回路(61)では、循環ポンプ(63)が作動する。蓄熱タンク(62)内の蓄熱媒体は、該タンク(62)から流出して予熱用熱交換器(36)の蓄熱側通路(36b)に流入する。この蓄熱側通路(36b)を通過する間に、蓄熱媒体は、冷媒側通路(36a)を流れる冷媒から吸熱することで加熱される。これにより、蓄熱媒体に含まれる包接水和物は融かされる。吸熱した蓄熱媒体は、循環ポンプ(63)を介して蓄熱用熱交換器(37)の蓄熱側通路(37b)に流入する。蓄熱側通路(37b)を通過する間に、蓄熱媒体は、冷媒側通路(37a)を流れる冷媒によって冷却される。冷却された蓄熱媒体は、蓄熱タンク(62)内に流入する。このようにして、蓄熱タンク(62)には冷熱が蓄えられる。 In the heat storage circuit (61), the circulation pump (63) operates. The heat storage medium in the heat storage tank (62) flows out of the tank (62) and flows into the heat storage side passage (36b) of the preheating heat exchanger (36). While passing through the heat storage side passage (36b), the heat storage medium is heated by absorbing heat from the refrigerant flowing through the refrigerant side passage (36a). Thereby, the clathrate hydrate contained in the heat storage medium is melted. The heat storage medium that has absorbed heat flows into the heat storage side passageway (37b) of the heat storage heat exchanger (37) through the circulation pump (63). While passing through the heat storage side passage (37b), the heat storage medium is cooled by the refrigerant flowing through the refrigerant side passage (37a). The cooled heat storage medium flows into the heat storage tank (62). In this way, cold heat is stored in the heat storage tank (62).
 なお、以上の説明では、冷房蓄冷運転において、蒸発圧力調整弁(43)の開度が全閉状態に設定され、第3開閉弁(40)が開状態に設定される場合を例に挙げているが、冷房蓄冷運転において、第3開閉弁(40)を閉状態に設定し、蒸発圧力調整弁(43)の開度を所定の開度に調節してよい。この場合、蓄熱用熱交換器(37)から流出した冷媒は、蒸発圧力調整弁(43)において減圧され、配管(16)と四方切換弁(28)とを順に通過して圧縮機(21)に吸入されることになる。このように制御することにより、蓄熱用熱交換器(37)における冷媒の蒸発圧力を圧縮機(21)の吸入圧力よりも高くすることができ、蓄熱用熱交換器(37)における冷媒の蒸発温度が低くなり過ぎることを防止することができる。これにより、蓄熱用熱交換器(37)において蓄熱媒体が冷却され過ぎて、包接水和物が大量に生成されて蓄熱媒体の循環効率が低下することを防止することができる。 In the above description, in the cooling and regenerating operation, an example in which the opening degree of the evaporating pressure adjusting valve (43) is set to the fully closed state and the third on-off valve (40) is set to the open state is given. However, in the cooling and regenerating operation, the third on-off valve (40) may be set in a closed state, and the opening degree of the evaporation pressure adjusting valve (43) may be adjusted to a predetermined opening degree. In this case, the refrigerant flowing out of the heat storage heat exchanger (37) is depressurized in the evaporation pressure regulating valve (43), and sequentially passes through the pipe (16) and the four-way switching valve (28), so that the compressor (21) Will be inhaled. By controlling in this way, the refrigerant evaporation pressure in the heat storage heat exchanger (37) can be made higher than the suction pressure of the compressor (21), and the refrigerant evaporation in the heat storage heat exchanger (37) can be achieved. It is possible to prevent the temperature from becoming too low. Thereby, it can be prevented that the heat storage medium is excessively cooled in the heat storage heat exchanger (37), so that a large amount of clathrate hydrate is generated and the circulation efficiency of the heat storage medium is lowered.
 <室外側過冷却熱交換器及び蓄熱側過冷却熱交換器について>
 上述したように、本実施形態では、室外ユニット(20a)に室外側過冷却熱交換器(24)(第2熱交換器に相当)が設けられているのみならず、蓄熱ユニット(50)にも、蓄熱側過冷却熱交換器(29)(第1熱交換器に相当)が設けられている。蓄熱側過冷却熱交換器(29)は、室内膨張弁(26)にてフラッシュガスが発生することを防止するためだけではなく、蓄熱タンク(62)内の蓄熱媒体の冷熱を存分に利用して冷房を行うことで利用冷房運転時の蓄熱式空気調和機(10)の消費電力量を低減させるために、蓄熱ユニット(50)内に設けられている。
<About the outdoor subcooling heat exchanger and the heat storage side subcooling heat exchanger>
As described above, in this embodiment, not only the outdoor unit (20a) is provided with the outdoor supercooling heat exchanger (24) (corresponding to the second heat exchanger), but also the heat storage unit (50). Also, a heat storage side subcooling heat exchanger (29) (corresponding to the first heat exchanger) is provided. The heat storage side subcooling heat exchanger (29) not only prevents flash gas from being generated in the indoor expansion valve (26), but also fully utilizes the cold energy of the heat storage medium in the heat storage tank (62). In order to reduce the power consumption of the heat storage type air conditioner (10) during the use cooling operation by performing cooling, the heat storage unit (50) is provided.
 具体的に、室外ユニット(20a)及び蓄熱ユニット(50)は共に屋外に設置され、室内ユニット(20b)は室内に設置される。例えば、ビル及びマンション等の比較的大きな建物に蓄熱式空気調和機(10)が設置された場合、室外ユニット(20a)及び蓄熱ユニット(50)は、建物の屋上に設置され、室内ユニット(20b)は、屋上よりも下方且つ屋上から離れている各室内に設置される。故に、室外ユニット(20a)及び蓄熱ユニット(50)を繋ぐ配管よりも、蓄熱ユニット(50)及び室内ユニット(20b)を繋ぐ配管の方が、必然的に長くなる。すると、利用冷房運転時、蓄熱ユニット(50)及び室内ユニット(20b)の配管による圧力損失及び高低差により、蓄熱ユニット(50)から流出して室内ユニット(20b)へと流入した液冷媒の圧力は低下する。蓄熱側過冷却熱交換器(29)がなければ、室内膨張弁(26)の入口では液冷媒の一部が気化して液中に気泡(即ち、フラッシュガス)が発生する。フラッシュガスの発生は、室内ユニット(20b)に供給される冷媒量を少なくして冷房能力を著しく低下させてしまう。 Specifically, both the outdoor unit (20a) and the heat storage unit (50) are installed outdoors, and the indoor unit (20b) is installed indoors. For example, when a heat storage air conditioner (10) is installed in a relatively large building such as a building or an apartment, the outdoor unit (20a) and the heat storage unit (50) are installed on the roof of the building, and the indoor unit (20b ) Is installed in each room below the roof and away from the roof. Therefore, the pipe connecting the heat storage unit (50) and the indoor unit (20b) is necessarily longer than the pipe connecting the outdoor unit (20a) and the heat storage unit (50). Then, during use cooling operation, the pressure of the liquid refrigerant flowing out from the heat storage unit (50) and flowing into the indoor unit (20b) due to pressure loss and height difference due to the piping of the heat storage unit (50) and the indoor unit (20b) Will decline. Without the heat storage side subcooling heat exchanger (29), a part of the liquid refrigerant is vaporized at the inlet of the indoor expansion valve (26), and bubbles (that is, flash gas) are generated in the liquid. The generation of flash gas reduces the amount of refrigerant supplied to the indoor unit (20b) and significantly reduces the cooling capacity.
 また、利用冷房運転では、蓄熱媒体の冷熱をできるだけ利用して冷房を行うことで、消費電力量を低減することが目的となっている。利用冷房運転では、図5に示すように、冷媒は、室外熱交換器(22)にて凝縮され室外側過冷却熱交換器(24)の高圧側通路(24a)を通過した後に、予熱用熱交換器(36)及び蓄熱用熱交換器(37)にて蓄熱媒体から冷熱を付与される。仮に、蓄熱側過冷却熱交換器(29)を設けない代わりに室外側過冷却熱交換器(24)にて冷媒を過冷却させるとした場合、冷媒は十分に冷やされるため、上述した室内膨張弁(26)におけるフラッシュガスの発生は防止できる。しかしながら、冷媒は、蓄熱用熱交換器(37)に流入する前に室外側過冷却熱交換器(24)にてある程度冷やされるため、蓄熱用熱交換器(37)における冷媒と蓄熱媒体との温度差は、室外側過冷却熱交換器(24)が冷却を行わない場合よりも小さくなる。そのため、蓄熱用熱交換器(37)にて冷媒が蓄熱媒体から得る冷熱量は小さく、よって蓄熱媒体の冷熱をできる限り利用して冷房が行われているとは言い難い。従って、利用冷房運転の本来の目的である蓄熱式空気調和機(10)の消費電力量の低減が薄れてしまう。 Also, in the use cooling operation, the purpose is to reduce the amount of power consumption by performing cooling using the cooling heat of the heat storage medium as much as possible. In the use cooling operation, as shown in FIG. 5, the refrigerant is condensed in the outdoor heat exchanger (22), passes through the high pressure side passage (24a) of the outdoor subcooling heat exchanger (24), and then used for preheating. Cold heat is applied from the heat storage medium in the heat exchanger (36) and the heat storage heat exchanger (37). If the refrigerant is supercooled by the outdoor supercooling heat exchanger (24) instead of providing the heat storage side supercooling heat exchanger (29), the refrigerant is sufficiently cooled. Generation of flash gas in the valve (26) can be prevented. However, since the refrigerant is cooled to some extent by the outdoor subcooling heat exchanger (24) before flowing into the heat storage heat exchanger (37), the refrigerant and the heat storage medium in the heat storage heat exchanger (37) The temperature difference is smaller than when the outdoor supercooling heat exchanger (24) does not perform cooling. Therefore, the amount of cold that the refrigerant obtains from the heat storage medium in the heat storage heat exchanger (37) is small, and therefore it is difficult to say that cooling is performed using the cold heat of the heat storage medium as much as possible. Therefore, the reduction in power consumption of the regenerative air conditioner (10), which is the original purpose of the cooling operation, is diminished.
 また、利用冷房運転時、蓄熱側過冷却熱交換器(29)を設けない代わりに室外側過冷却熱交換器(24)にて冷媒を過冷却させる場合において、消費電力量の低減効果を確保するために、例えば室外側過冷却熱交換器(24)のサイズを小さくして当該熱交換器(24)による冷媒の過冷却度合を小さくすることで、予熱用熱交換器(36)及び蓄熱用熱交換器(37)にて冷媒が蓄熱媒体から得る冷熱量を少しでも多くする方法も考えられる。しかしながら、この方法では、仮に室内膨張弁(26)にてフラッシュガスが発生しない程度に冷媒を冷やすことができるとしても、予熱用熱交換器(36)及び蓄熱用熱交換器(37)の前段の室外側過冷却熱交換器(24)にて冷媒が更に冷却されていることから、やはり蓄熱媒体の冷熱を最大限利用できてはいない。そのため、蓄熱式空気調和機(10)の消費電力量の低減効果に関しては不十分と言える。 In addition, during cooling operation, when the refrigerant is supercooled by the outdoor supercooling heat exchanger (24) instead of installing the heat storage side supercooling heat exchanger (29), the effect of reducing power consumption is secured. For this purpose, for example, by reducing the size of the outdoor supercooling heat exchanger (24) and reducing the degree of refrigerant subcooling by the heat exchanger (24), the preheating heat exchanger (36) and the heat storage A method of increasing the amount of cold that the refrigerant obtains from the heat storage medium in the heat exchanger (37) for use is also conceivable. However, in this method, even if the refrigerant can be cooled to such an extent that no flash gas is generated in the indoor expansion valve (26), the pre-stage of the preheating heat exchanger (36) and the heat storage heat exchanger (37) Since the refrigerant is further cooled by the outdoor supercooling heat exchanger (24), the heat of the heat storage medium cannot be utilized to the maximum extent. Therefore, it can be said that the reduction effect of the power consumption of the heat storage type air conditioner (10) is insufficient.
 そこで、本実施形態では、蓄熱ユニット(50)内且つ蓄熱用熱交換器(37)の冷媒流出側(即ち、利用冷房運転時の冷媒側通路(37a)の出口側)に、蓄熱側過冷却熱交換器(29)を設けている。図5に示すように、冷媒回路(11)にて利用冷房サイクルが行われる利用冷房運転時、室外側過冷却熱交換器(24)は過冷却器(凝縮器)として機能せず、蓄熱側過冷却熱交換器(29)は過冷却器として機能する。図5に示すように、蓄熱用熱交換器(37)を通過後の冷媒は、蓄熱側過冷却熱交換器(29)にて更に冷却され、更に冷却された冷媒は、蓄熱ユニット(50)から流出して室内ユニット(20b)における室内膨張弁(26)に流入し、該室内膨張弁(26)にて減圧される。即ち、利用冷房運転では、室外側過冷却熱交換器(24)を利用せず、室外熱交換器(22)にて凝縮した冷媒を、そのまま予熱用熱交換器(36)及び蓄熱用熱交換器(37)に流入させて、蓄熱媒体の冷熱を最大限冷媒に付与させている。そして、冷熱を最大限得た冷媒は、蓄熱側過冷却熱交換器(29)にて更に冷却されて室内膨張弁(26)に流入する。そのため、室内ユニット(20b)に流入した冷媒は、既に蓄熱媒体の冷熱を最大限得ており、しかも蓄熱側過冷却熱交換器(29)によって更に冷却もされており、十分に冷却された状態にある。従って、室内ユニット(20b)に流入した冷媒の圧力が、ユニット(50,20b)同士の接続配管による圧力損失等で低下していても、室内膨張弁(26)にてフラッシュガスが発生することはない。即ち、本実施形態に係る蓄熱式空気調和機(10)は、フラッシュガスの発生防止及び消費電力量の低減を兼ね備えていると言える。 Therefore, in the present embodiment, the heat storage side subcooling is provided in the heat storage unit (50) and on the refrigerant outflow side of the heat storage heat exchanger (37) (that is, on the outlet side of the refrigerant side passage (37a) during use cooling operation). A heat exchanger (29) is provided. As shown in FIG. 5, the outdoor supercooling heat exchanger (24) does not function as a supercooler (condenser) during the use cooling operation in which a refrigerant cooling cycle is performed in the refrigerant circuit (11). The supercooling heat exchanger (29) functions as a supercooler. As shown in FIG. 5, the refrigerant after passing through the heat storage heat exchanger (37) is further cooled by the heat storage side subcooling heat exchanger (29), and the further cooled refrigerant is the heat storage unit (50). And then flows into the indoor expansion valve (26) of the indoor unit (20b) and is decompressed by the indoor expansion valve (26). In other words, in the cooling operation, the outdoor subcooling heat exchanger (24) is not used, but the refrigerant condensed in the outdoor heat exchanger (22) is used as it is for the preheating heat exchanger (36) and the heat storage heat exchange. The refrigerant is allowed to flow into the vessel (37), and the cold energy of the heat storage medium is applied to the refrigerant to the maximum extent. And the refrigerant | coolant which obtained cold heat to the maximum is further cooled by the thermal storage side supercooling heat exchanger (29), and flows into an indoor expansion valve (26). Therefore, the refrigerant that has flowed into the indoor unit (20b) has already obtained the maximum amount of cold heat from the heat storage medium, and is further cooled by the heat storage side subcooling heat exchanger (29). It is in. Therefore, even if the pressure of the refrigerant flowing into the indoor unit (20b) decreases due to pressure loss due to the connecting pipe between the units (50, 20b), flash gas is generated in the indoor expansion valve (26). There is no. That is, it can be said that the regenerative air conditioner (10) according to the present embodiment has both prevention of generation of flash gas and reduction of power consumption.
 また、上記利用冷房運転が開始される際、蓄熱用過冷却熱交換器(29)の高圧側通路(29a)の入口付近における冷媒の過冷却度が既に目標過冷却度に達していれば、コントローラ(100)は、蓄熱側過冷却熱交換器(29)の膨張弁(29c)を全閉状態に設定し、蓄熱側過冷却熱交換器(29)による冷媒の冷却動作を停止した状態にする。しかし、上記利用冷房運転が開始される際、高圧側通路(29a)の入口付近における冷媒の過冷却度が目標過冷却度に達していない場合、コントローラ(100)は、蓄熱側過冷却熱交換器(29)の膨張弁(29c)を開いて、蓄熱側過冷却熱交換器(29)に冷媒の冷却動作を行わせる。 Further, when the use cooling operation is started, if the degree of supercooling of the refrigerant in the vicinity of the inlet of the high pressure side passage (29a) of the heat storage supercooling heat exchanger (29) has already reached the target supercooling degree, The controller (100) sets the expansion valve (29c) of the heat storage side subcooling heat exchanger (29) to the fully closed state and stops the refrigerant cooling operation by the heat storage side subcooling heat exchanger (29). To do. However, when the above-described cooling operation is started, if the degree of refrigerant subcooling near the inlet of the high-pressure side passage (29a) does not reach the target degree of subcooling, the controller (100) performs heat storage side subcooling heat exchange. The expansion valve (29c) of the container (29) is opened to cause the heat storage side supercooling heat exchanger (29) to perform the cooling operation of the refrigerant.
 ここで、目標過冷却度とは、室内膨張弁(26)においてフラッシュガスが発生しない程度に冷媒を冷やすことを目標とした場合の、過冷却度を言う。目標過冷却度は、蓄熱式空気調和機(10)の設置の際に、試運転によって把握される蓄熱ユニット(50)及び室内ユニット(20b)の間の圧力損失、及び、蓄熱ユニット(50)及び室内ユニット(20b)の高低差等に基づいて、コントローラ(100)が演算を行うことにより決定される。つまり、目標過冷却度は、蓄熱式空気調和機(10)の設置環境と運転条件に応じて適宜決定される。 Here, the target degree of supercooling refers to the degree of supercooling when the target is to cool the refrigerant to the extent that no flash gas is generated in the indoor expansion valve (26). The target supercooling degree is the pressure loss between the heat storage unit (50) and the indoor unit (20b), which is grasped by trial operation, and the heat storage unit (50) and It is determined by the controller (100) performing an operation based on the height difference of the indoor unit (20b). That is, the target supercooling degree is appropriately determined according to the installation environment and operating conditions of the regenerative air conditioner (10).
 このように、利用冷房運転時における蓄熱側過冷却熱交換器(29)の冷媒の冷却動作は、蓄熱タンク(62)内の蓄熱媒体の冷熱を最大限得ても、なおも室内膨張弁(26)においてフラッシュガスが発生する可能性がある(即ち、冷媒の冷却が不十分である)場合に行われる。そして、冷媒の冷却が不十分であれば、室内膨張弁(26)においてフラッシュガスが発生しない程度にまで、蓄熱側過冷却熱交換器(29)は、冷媒を冷却する。即ち、蓄熱側過冷却熱交換器(29)は、少なくとも当該熱交換器(29)に流入する直前の冷媒の過冷却度が目標過冷却度に達するまで、冷媒を冷却する。 As described above, the cooling operation of the refrigerant of the heat storage side subcooling heat exchanger (29) during the use cooling operation can be performed even if the maximum cooling heat of the heat storage medium in the heat storage tank (62) is obtained. This is performed when there is a possibility that a flash gas is generated in (26) (that is, cooling of the refrigerant is insufficient). And if cooling of a refrigerant | coolant is inadequate, a heat storage side supercooling heat exchanger (29) will cool a refrigerant | coolant to such an extent that flash gas is not generated in an indoor expansion valve (26). That is, the heat storage side subcooling heat exchanger (29) cools the refrigerant at least until the degree of subcooling of the refrigerant just before flowing into the heat exchanger (29) reaches the target degree of subcooling.
 また、本実施形態の蓄熱側過冷却熱交換器(29)は、利用冷房運転時のみならず、冷房蓄冷運転においても用いられる。図6に示すように、冷房蓄冷運転では、室外側過冷却熱交換器(24)は冷媒の過冷却動作を行わず、蓄熱側過冷却熱交換器(29)は冷媒の過冷却動作を行う。これは、以下の理由によるものである。 Further, the heat storage side subcooling heat exchanger (29) of the present embodiment is used not only during the cooling use operation but also during the cooling storage operation. As shown in FIG. 6, in the cooling and regenerating operation, the outdoor supercooling heat exchanger (24) does not perform the refrigerant subcooling operation, and the heat storage side subcooling heat exchanger (29) performs the refrigerant subcooling operation. . This is due to the following reason.
 図6の冷房蓄熱運転において、仮に、蓄熱側過冷却熱交換器(29)ではなく室外側過冷却熱交換器(24)にて冷媒を冷却する場合を考える。この場合、予熱用熱交換器(36)には、室外側過冷却熱交換器(24)が冷媒の過冷却動作を行わない場合よりも、より冷却された冷媒が予熱用熱交換器(36)に流入することになる。冷房蓄冷運転では、予熱用熱交換器(36)は、蓄熱タンク(62)から流出した蓄熱媒体を冷媒によって一旦加熱することで、包接水和物が解かされた概ね溶液状態の蓄熱媒体を蓄熱回路(61)内に流出する役割を担っている。そのため、冷房蓄冷運転時、より冷却された冷媒が予熱用熱交換器(36)に流入されると、予熱用熱交換器(36)では、冷媒と蓄熱媒体との温度差がさほどつかなくなり、予熱用熱交換器(36)は冷媒により蓄熱媒体を十分に加熱することができなくなる。このように、予熱用熱交換器(36)における蓄熱媒体の加熱効果が薄らぐと、融解されてない包接水和物を含む蓄熱媒体が蓄熱回路(61)を循環することになる。すると、このような蓄熱媒体では、蓄熱回路(61)内を予熱用熱交換器(36)から蓄熱用熱交換器(37)へと循環する間に包接水和物への遷移が進行し、少なくとも予熱用熱交換器(36)から蓄熱用熱交換器(37)をつなぐ配管内が包接水和物で閉塞されてしまうおそれがある。包接水和物により当該配管内が閉塞されると、蓄熱回路(61)内の蓄熱媒体の循環が滞り、蓄熱効率が低下してしまう。 Suppose that in the cooling heat storage operation of FIG. 6, the refrigerant is cooled not by the heat storage side subcooling heat exchanger (29) but by the outdoor side subcooling heat exchanger (24). In this case, in the preheating heat exchanger (36), the cooled refrigerant is more cooled than in the case where the outdoor supercooling heat exchanger (24) does not perform the refrigerant subcooling operation. ). In the cooling and regenerating operation, the preheating heat exchanger (36) heats the heat storage medium flowing out from the heat storage tank (62) once with the refrigerant, so that the heat storage medium in a substantially solution state in which the clathrate hydrate is dissolved is obtained. It plays a role of flowing out into the heat storage circuit (61). For this reason, when the cooled refrigerant flows into the preheating heat exchanger (36) during the cooling and regenerating operation, the preheating heat exchanger (36) does not have a significant temperature difference between the refrigerant and the heat storage medium, The preheating heat exchanger (36) cannot sufficiently heat the heat storage medium by the refrigerant. As described above, when the heating effect of the heat storage medium in the preheating heat exchanger (36) is weakened, the heat storage medium containing the clathrate hydrate that is not melted circulates in the heat storage circuit (61). In such a heat storage medium, the transition to the clathrate hydrate proceeds while circulating in the heat storage circuit (61) from the preheating heat exchanger (36) to the heat storage heat exchanger (37). In addition, there is a possibility that the inside of the pipe connecting at least the heat exchanger for preheating (36) and the heat exchanger for heat storage (37) will be clogged with clathrate hydrate. When the inside of the pipe is blocked by the clathrate hydrate, circulation of the heat storage medium in the heat storage circuit (61) is delayed, and heat storage efficiency is reduced.
 そこで、本実施形態では、図6に示すように、室外熱交換器(22)で凝縮された冷媒が室内熱交換器(27)で蒸発するように冷媒が循環しつつも、予熱用熱交換器(36)にて冷媒により加熱された蓄熱媒体が蓄熱用熱交換器(37)にて冷媒により冷却される冷房蓄冷運転が行われる際、室外側過冷却熱交換器(24)は利用せず、あえて蓄熱側過冷却熱交換器(29)が利用される。これにより、予熱用熱交換器(36)へは、室外熱交換器(22)にて凝縮された冷媒が流入するが、その冷媒の温度は、室外側過冷却熱交換器(24)が利用される場合に比して高い。それ故、予熱用熱交換器(36)は、冷媒により蓄熱媒体を加熱して、包接水和物が融解した蓄熱媒体を流出する。そのため、蓄熱回路(61)内は、包接水和物によって閉塞されることがなく、よって予熱用熱交換器(36)から流出した溶液状態の蓄熱媒体は、蓄熱用熱交換器(37)に流入して冷やされる。更に、冷媒は、蓄熱側過冷却熱交換器(29)にて冷やされるため、冷房蓄冷運転時においても、室内膨張弁(26)にてフラッシュガスが発生することはない。 Therefore, in the present embodiment, as shown in FIG. 6, while the refrigerant circulates so that the refrigerant condensed in the outdoor heat exchanger (22) evaporates in the indoor heat exchanger (27), heat exchange for preheating is performed. When the cooling storage operation is performed in which the heat storage medium heated by the refrigerant in the cooler (36) is cooled by the refrigerant in the heat storage heat exchanger (37), the outdoor supercooling heat exchanger (24) is not used. Instead, the heat storage side subcooling heat exchanger (29) is used. As a result, the refrigerant condensed in the outdoor heat exchanger (22) flows into the preheating heat exchanger (36), and the temperature of the refrigerant is used by the outdoor subcooling heat exchanger (24). Higher than if done. Therefore, the heat exchanger for preheating (36) heats the heat storage medium with the refrigerant and flows out the heat storage medium in which the clathrate hydrate is melted. Therefore, the heat storage circuit (61) is not clogged with clathrate hydrate, and therefore the solution state heat storage medium flowing out from the preheating heat exchanger (36) is the heat storage heat exchanger (37). It is cooled by flowing into. Furthermore, since the refrigerant is cooled in the heat storage side subcooling heat exchanger (29), flash gas is not generated in the indoor expansion valve (26) even during the cooling and cold storage operation.
 なお、単純冷房運転時は、図2に示すように、蓄熱側過冷却熱交換器(29)は利用されず、室外側過冷却熱交換器(24)が利用される。 In addition, at the time of simple cooling operation, as shown in FIG. 2, the heat storage side subcooling heat exchanger (29) is not used, but the outdoor side subcooling heat exchanger (24) is used.
  <効果>
 本実施形態では、蓄熱ユニット(50)内且つ蓄熱用熱交換器(37)の冷媒出口側に、蓄熱側過冷却熱交換器(29)が設けられている。利用冷房運転時、冷媒は、室外ユニット(20a)の室外熱交換器(22)及び蓄熱ユニット(50)の蓄熱用熱交換器(37)にて凝縮される。当該冷媒は、その後蓄熱ユニット(50)の蓄熱側過冷却熱交換器(29)にて更に冷却されてから、蓄熱ユニット(50)と室内ユニット(20b)とを繋ぐ配管を介して、室内ユニット(20b)の室内膨張弁(26)に流入して減圧される。つまり、室内膨張弁(26)には、蓄熱側過冷却熱交換器(29)が設けられていない場合よりも冷却された冷媒が流入する。これにより、圧力の低下した液冷媒が室内膨張弁(26)に流入しても、室内膨張弁(26)におけるフラッシュガスの発生を防ぐことができる。
<Effect>
In this embodiment, the heat storage side subcooling heat exchanger (29) is provided in the heat storage unit (50) and on the refrigerant outlet side of the heat storage heat exchanger (37). During the use cooling operation, the refrigerant is condensed in the outdoor heat exchanger (22) of the outdoor unit (20a) and the heat storage heat exchanger (37) of the heat storage unit (50). The refrigerant is then further cooled by the heat storage side subcooling heat exchanger (29) of the heat storage unit (50), and then connected to the indoor unit via a pipe connecting the heat storage unit (50) and the indoor unit (20b). The pressure is reduced by flowing into the indoor expansion valve (26b) of (20b). That is, the refrigerant that has been cooled flows more into the indoor expansion valve (26) than when the heat storage side subcooling heat exchanger (29) is not provided. Thereby, even if the liquid refrigerant whose pressure has decreased flows into the indoor expansion valve (26), generation of flash gas in the indoor expansion valve (26) can be prevented.
 更に、利用冷房運転時、蓄熱用熱交換器(37)には、室外熱交換器(22)で凝縮されてはいるが蓄熱側過冷却熱交換器(29)にて冷却される前の冷媒が流入する。そのため、蓄熱用熱交換器(37)に流入する冷媒は、蓄熱媒体によって更に冷却される余地が十分にあり、よって蓄熱用熱交換器(37)にて蓄熱媒体から冷熱を十分に得ることができる。 Further, during the use cooling operation, the heat storage heat exchanger (37) is condensed in the outdoor heat exchanger (22) but before being cooled in the heat storage side subcooling heat exchanger (29). Flows in. Therefore, the refrigerant flowing into the heat storage heat exchanger (37) has sufficient room to be further cooled by the heat storage medium, so that sufficient heat can be obtained from the heat storage medium in the heat storage heat exchanger (37). it can.
 従って、利用冷房運転時、室内膨張弁(26)におけるフラッシュガスの発生を防ぐと共に、蓄熱媒体の冷熱を十分に利用できるため蓄熱式空気調和機(10)の消費電力量を低減することができる。 Therefore, during use cooling operation, generation of flash gas in the indoor expansion valve (26) can be prevented, and the cold energy of the heat storage medium can be fully utilized, so the power consumption of the heat storage type air conditioner (10) can be reduced. .
 また、本実施形態では、利用冷房運転時、蓄熱側過冷却熱交換器(29)の入口付近における冷媒の過冷却度が目標過冷却度に達しない場合に、蓄熱側過冷却熱交換器(29)は冷媒を更に冷却する。つまり、利用冷房運転時であっても、冷媒が十分に冷却されておらず室内膨張弁(26)にてフラッシュガスが発生する可能性がある場合に、蓄熱側過冷却熱交換器(29)が利用される。このため、室内膨張弁(26)にてフラッシュガスが発生することを確実に防止することができる。 Further, in the present embodiment, during the cooling operation, when the refrigerant subcooling degree near the inlet of the heat storage side subcooling heat exchanger (29) does not reach the target subcooling degree, the heat storage side subcooling heat exchanger ( 29) further cools the refrigerant. That is, even during the cooling operation, when the refrigerant is not sufficiently cooled and flash gas may be generated in the indoor expansion valve (26), the heat storage side subcooling heat exchanger (29) Is used. For this reason, it is possible to reliably prevent the flash gas from being generated in the indoor expansion valve (26).
 また、本実施形態では、各過冷却熱交換器(24,29)のうち、単純冷房運転においては室外ユニット(20a)における室外側過冷却熱交換器(24)が利用され、利用冷房運転においては蓄熱ユニット(50)における蓄熱側過冷却熱交換器(29)が利用される。 In the present embodiment, among the subcooling heat exchangers (24, 29), in the simple cooling operation, the outdoor supercooling heat exchanger (24) in the outdoor unit (20a) is used, and in the use cooling operation. The heat storage side subcooling heat exchanger (29) in the heat storage unit (50) is used.
 また、本実施形態では、冷房蓄冷運転の際、室外熱交換器(22)で凝縮された冷媒は、室外側過冷却熱交換器(24)では冷却されないまま予熱用熱交換器(36)に流入し、予熱用熱交換器(36)にて蓄熱媒体を加熱する。これにより、予熱用熱交換器(36)には、第2熱交換器(24)で冷却されるよりも温度の高い冷媒が流入する。そのため、予熱用熱交換器(36)は、冷媒によって蓄熱媒体を温め、蓄熱媒体に含まれる包接水和物を融解させる。従って、少なくとも予熱用熱交換器(36)から蓄熱用熱交換器(37)までをつなぐ配管内が包接水和物によって閉塞されてしまうことを防ぐことができる。そして、冷房蓄冷運転時、室外側過冷却熱交換器(24)では冷媒が冷却されないが、蓄熱側過冷却熱交換器(29)では冷媒が冷却される。そのため、室内膨張弁(26)にてフラッシュガスが発生することも確実に防止することができる。 In the present embodiment, the refrigerant condensed in the outdoor heat exchanger (22) during the cooling and accumulating operation is not cooled in the outdoor subcooling heat exchanger (24) to the preheating heat exchanger (36). Then, the heat storage medium is heated by the preheating heat exchanger (36). Thereby, a refrigerant having a higher temperature flows into the preheating heat exchanger (36) than that cooled by the second heat exchanger (24). Therefore, the preheat heat exchanger (36) warms the heat storage medium with the refrigerant and melts the clathrate hydrate contained in the heat storage medium. Therefore, it is possible to prevent the inside of the pipe connecting at least the preheating heat exchanger (36) to the heat storage heat exchanger (37) from being blocked by clathrate hydrate. During the cooling and storing operation, the refrigerant is not cooled in the outdoor supercooling heat exchanger (24), but is cooled in the heat storage side supercooling heat exchanger (29). Therefore, generation of flash gas in the indoor expansion valve (26) can be reliably prevented.
 ≪その他の実施形態≫
 上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.
 蓄熱媒体は、冷却により包接水和物を生成する媒体であれば良く、臭化テトラnブチルアンモニウムを含有する臭化テトラnブチルアンモニウム水溶液以外の蓄熱材であっても良い。また、蓄熱媒体の濃度は、40%に限定されずとも良い。 The heat storage medium may be a medium that generates clathrate hydrates by cooling, and may be a heat storage material other than tetra nbutyl ammonium bromide aqueous solution containing tetra n butyl ammonium bromide. Further, the concentration of the heat storage medium may not be limited to 40%.
 例えば、蓄熱媒体は水であってもよい。蓄熱媒体が水である場合、蓄熱媒体を冷却する構成は、蓄熱回路(61)の構成に代えて、蓄熱タンクの中に蓄熱用熱交換器が配置された構成であってもよい。 For example, the heat storage medium may be water. When the heat storage medium is water, the structure for cooling the heat storage medium may be a structure in which a heat storage heat exchanger is arranged in the heat storage tank instead of the structure of the heat storage circuit (61).
 利用冷房運転時、常に蓄熱側過冷却熱交換器(29)による冷媒の冷却動作が行われても良い。 During the cooling operation, the refrigerant may be always cooled by the heat storage side subcooling heat exchanger (29).
 単純冷房運転時、室外側過冷却熱交換器(24)による冷媒の冷却動作では未だ十分に冷媒が冷却されない場合には、蓄熱側過冷却熱交換器(29)による冷媒の冷却動作が更に行われても良い。 During simple cooling operation, if the refrigerant is still not sufficiently cooled by the refrigerant cooling operation by the outdoor subcooling heat exchanger (24), the refrigerant cooling operation by the heat storage side subcooling heat exchanger (29) is further performed. It may be broken.
 蓄熱側過冷却熱交換器(29)が蓄熱タンク(50)に設けられていれば、室外側過冷却熱交換器(24)は必ずしも室外ユニット(20a)に設けられていなくても良い。 If the heat storage side subcooling heat exchanger (29) is provided in the heat storage tank (50), the outdoor subcooling heat exchanger (24) may not necessarily be provided in the outdoor unit (20a).
 以上説明したように、本発明は、蓄熱媒体を冷熱源として利用して室内の冷房を行う蓄熱式空気調和機について有用である。 As described above, the present invention is useful for a regenerative air conditioner that cools an indoor space using a heat storage medium as a cold heat source.
10 蓄熱式空気調和機
11 冷媒回路
11a 室外側回路
11b 室内側回路
11c 中間回路
18 バイパス回路
20a 室外ユニット
20b 室内ユニット
50 蓄熱ユニット
21 圧縮機
22 室外熱交換器
24 室外側過冷却熱交換器(第2熱交換器)
26 室内膨張弁
27 室内熱交換器
29 蓄熱側過冷却熱交換器(第1熱交換器)
37 蓄熱用熱交換器
100 コントローラ(運転制御部)
10 Thermal storage air conditioner
11 Refrigerant circuit
11a Outdoor circuit
11b Indoor circuit
11c Intermediate circuit
18 Bypass circuit
20a Outdoor unit
20b indoor unit
50 Thermal storage unit
21 Compressor
22 Outdoor heat exchanger
24 Outdoor supercooling heat exchanger (second heat exchanger)
26 Indoor expansion valve
27 Indoor heat exchanger
29 Heat storage side subcooling heat exchanger (first heat exchanger)
37 Heat exchanger for heat storage
100 Controller (Operation control unit)

Claims (4)

  1.  冷媒を圧縮する圧縮機(21)及び冷媒と空気とを熱交換させる室外熱交換器(22)が接続された室外側回路(11a)を有する室外ユニット(20a)と、
     冷媒を減圧する室内膨張弁(26)及び冷媒と空気とを熱交換させる室内熱交換器(27)が接続された室内側回路(11b)を有する室内ユニット(20b)と、
     冷媒と蓄熱媒体とを熱交換させる蓄熱用熱交換器(37)及び上記蓄熱用熱交換器(37)を通過後の冷媒を冷却可能な第1熱交換器(29)が接続された中間回路(11c)を有する蓄熱ユニット(50)と
    を備え、
     上記室外側回路(11a)、上記中間回路(11c)及び上記室内側回路(11b)が直列に接続された冷媒回路(11)では、上記室外熱交換器(22)及び上記蓄熱用熱交換器(37)が凝縮器として機能し上記室内熱交換器(27)が蒸発器として機能するように冷媒を循環させる利用冷房サイクルが行われ、
     上記利用冷房サイクルでは、上記蓄熱用熱交換器(37)を通過後の冷媒が上記第1熱交換器(29)にて更に冷却され、該第1熱交換器(29)にて更に冷却された冷媒が上記室内膨張弁(26)にて減圧される
    ことを特徴とする蓄熱式空気調和機。
    An outdoor unit (20a) having an outdoor circuit (11a) to which a compressor (21) for compressing refrigerant and an outdoor heat exchanger (22) for exchanging heat between the refrigerant and air are connected;
    An indoor unit (20b) having an indoor side circuit (11b) connected to an indoor expansion valve (26) for decompressing the refrigerant and an indoor heat exchanger (27) for exchanging heat between the refrigerant and the air;
    An intermediate circuit to which a heat storage heat exchanger (37) for exchanging heat between the refrigerant and the heat storage medium and a first heat exchanger (29) capable of cooling the refrigerant after passing through the heat storage heat exchanger (37) are connected. A heat storage unit (50) having (11c),
    In the refrigerant circuit (11) in which the outdoor circuit (11a), the intermediate circuit (11c), and the indoor circuit (11b) are connected in series, the outdoor heat exchanger (22) and the heat storage heat exchanger A utilization cooling cycle in which refrigerant is circulated so that (37) functions as a condenser and the indoor heat exchanger (27) functions as an evaporator,
    In the utilization cooling cycle, the refrigerant after passing through the heat storage heat exchanger (37) is further cooled by the first heat exchanger (29) and further cooled by the first heat exchanger (29). The regenerative air conditioner is characterized in that the refrigerant is decompressed by the indoor expansion valve (26).
  2.  請求項1において、
     上記利用冷房サイクルにおいては、
    上記第1熱交換器(29)は、該第1熱交換器(29)の入口付近における冷媒の過冷却度が目標過冷却度に達しない場合に、冷媒を更に冷却する
    ことを特徴とする蓄熱式空気調和機。
    In claim 1,
    In the above cooling cycle,
    The first heat exchanger (29) further cools the refrigerant when the subcooling degree of the refrigerant in the vicinity of the inlet of the first heat exchanger (29) does not reach the target subcooling degree. Thermal storage air conditioner.
  3.  請求項1または請求項2において、
     上記室外側回路(11a)には、上記室外熱交換器(22)を通過後の冷媒を冷却可能な第2熱交換器(24)が更に接続されており、
     上記冷媒回路(11)は、上記蓄熱用熱交換器(37)をバイパス可能なバイパス回路(18)を更に有し、
     上記冷媒回路(11)において、凝縮器として機能する上記室外熱交換器(22)から蒸発器として機能する上記室内熱交換器(27)へと上記バイパス回路(18)を介して冷媒が循環する単純冷房サイクルが行われている間、
    上記第1熱交換器(29)は、冷媒の冷却を行わず、
    上記第2熱交換器(24)は、冷媒の冷却を行う
    ことを特徴とする蓄熱式空気調和機。
    In claim 1 or claim 2,
    A second heat exchanger (24) capable of cooling the refrigerant after passing through the outdoor heat exchanger (22) is further connected to the outdoor circuit (11a),
    The refrigerant circuit (11) further includes a bypass circuit (18) capable of bypassing the heat storage heat exchanger (37),
    In the refrigerant circuit (11), the refrigerant circulates via the bypass circuit (18) from the outdoor heat exchanger (22) functioning as a condenser to the indoor heat exchanger (27) functioning as an evaporator. While a simple cooling cycle is taking place
    The first heat exchanger (29) does not cool the refrigerant,
    The heat storage air conditioner characterized in that the second heat exchanger (24) cools the refrigerant.
  4.  請求項1から請求項3のいずれか1つにおいて、
     上記蓄熱媒体は、冷却によって包接水和物が生成される蓄熱材であって、
     上記室外側回路(11a)には、上記室外熱交換器(22)を通過後の冷媒を冷却可能な第2熱交換器(24)が更に接続されており、
     上記中間回路(11c)には、上記蓄熱用熱交換器(37)を通過前の冷媒を上記蓄熱媒体と熱交換させる予熱用熱交換器(36)が更に接続されており、
     上記蓄熱ユニット(50)は、上記蓄熱用熱交換器(37)、上記予熱用熱交換器(36)、及び該予熱用熱交換器(36)から該蓄熱用熱交換器(37)へと上記蓄熱媒体を循環させるポンプ(63)が接続された蓄熱回路(61)、を更に有し、
     上記冷媒回路(11)では上記室外熱交換器(22)で凝縮された冷媒が上記室内熱交換器(27)で蒸発するように冷媒が循環しながら、上記蓄熱回路(61)では上記予熱用熱交換器(36)にて冷媒により加熱された上記蓄熱媒体が上記蓄熱用熱交換器(37)にて冷媒により冷却される冷房蓄冷運転、が行われる際、
    上記第2熱交換器(24)は、冷媒の冷却を行わず、
    上記第1熱交換器(29)は、冷媒の冷却を行う
    ことを特徴とする蓄熱式空気調和機。
    In any one of Claims 1-3,
    The heat storage medium is a heat storage material in which clathrate hydrate is generated by cooling,
    A second heat exchanger (24) capable of cooling the refrigerant after passing through the outdoor heat exchanger (22) is further connected to the outdoor circuit (11a),
    The intermediate circuit (11c) is further connected with a preheating heat exchanger (36) for exchanging heat between the refrigerant before passing through the heat storage heat exchanger (37) and the heat storage medium,
    The heat storage unit (50) includes the heat storage heat exchanger (37), the preheating heat exchanger (36), and the preheating heat exchanger (36) to the heat storage heat exchanger (37). A heat storage circuit (61) connected to a pump (63) for circulating the heat storage medium,
    In the refrigerant circuit (11), the refrigerant is circulated so that the refrigerant condensed in the outdoor heat exchanger (22) evaporates in the indoor heat exchanger (27). When the cooling storage operation in which the heat storage medium heated by the refrigerant in the heat exchanger (36) is cooled by the refrigerant in the heat storage heat exchanger (37) is performed,
    The second heat exchanger (24) does not cool the refrigerant,
    The first heat exchanger (29) is a heat storage type air conditioner that cools a refrigerant.
PCT/JP2015/006434 2014-12-26 2015-12-24 Regenerative air conditioner WO2016103702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-265380 2014-12-26
JP2014265380A JP6020548B2 (en) 2014-12-26 2014-12-26 Thermal storage air conditioner

Publications (1)

Publication Number Publication Date
WO2016103702A1 true WO2016103702A1 (en) 2016-06-30

Family

ID=56149760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006434 WO2016103702A1 (en) 2014-12-26 2015-12-24 Regenerative air conditioner

Country Status (2)

Country Link
JP (1) JP6020548B2 (en)
WO (1) WO2016103702A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052275B2 (en) * 2014-12-26 2016-12-27 ダイキン工業株式会社 Thermal storage air conditioner
JP7052972B2 (en) 2018-08-27 2022-04-12 株式会社東海理化電機製作所 Semiconductor integrated circuit
JP7234713B2 (en) 2019-03-14 2023-03-08 富士電機株式会社 semiconductor equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410063A (en) * 1987-06-30 1989-01-13 Daikin Ind Ltd Heat accumulation type air conditioner
JPH09152195A (en) * 1995-11-28 1997-06-10 Sanyo Electric Co Ltd Refrigerating apparatus
JP2006023073A (en) * 2004-06-11 2006-01-26 Daikin Ind Ltd Air conditioner
JP2006029738A (en) * 2004-07-21 2006-02-02 Mitsubishi Electric Corp Heat storage type air conditioner
JP2006242506A (en) * 2005-03-04 2006-09-14 Chubu Electric Power Co Inc Thermal storage type air conditioner
US20090211283A1 (en) * 2005-04-21 2009-08-27 Lg Electronics Inc. Heat storage air conditioner
WO2009150761A1 (en) * 2008-06-13 2009-12-17 三菱電機株式会社 Refrigeration cycle device and control method therefor
JP2010112582A (en) * 2008-11-04 2010-05-20 Daikin Ind Ltd Refrigerating device
JP2013127332A (en) * 2011-12-19 2013-06-27 Panasonic Corp Hydronic heating device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410063A (en) * 1987-06-30 1989-01-13 Daikin Ind Ltd Heat accumulation type air conditioner
JPH09152195A (en) * 1995-11-28 1997-06-10 Sanyo Electric Co Ltd Refrigerating apparatus
JP2006023073A (en) * 2004-06-11 2006-01-26 Daikin Ind Ltd Air conditioner
JP2006029738A (en) * 2004-07-21 2006-02-02 Mitsubishi Electric Corp Heat storage type air conditioner
JP2006242506A (en) * 2005-03-04 2006-09-14 Chubu Electric Power Co Inc Thermal storage type air conditioner
US20090211283A1 (en) * 2005-04-21 2009-08-27 Lg Electronics Inc. Heat storage air conditioner
WO2009150761A1 (en) * 2008-06-13 2009-12-17 三菱電機株式会社 Refrigeration cycle device and control method therefor
JP2010112582A (en) * 2008-11-04 2010-05-20 Daikin Ind Ltd Refrigerating device
JP2013127332A (en) * 2011-12-19 2013-06-27 Panasonic Corp Hydronic heating device

Also Published As

Publication number Publication date
JP2016125715A (en) 2016-07-11
JP6020548B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6052380B2 (en) Thermal storage air conditioner
JP5327308B2 (en) Hot water supply air conditioning system
JP6048566B2 (en) Thermal storage air conditioner
JP5592508B2 (en) Cascade heat pump device
JP6020549B2 (en) Thermal storage air conditioner
JP2014126350A (en) Air conditioner
WO2016103702A1 (en) Regenerative air conditioner
JP2013083439A (en) Hot water supply air conditioning system
JP2013083439A5 (en)
WO2016103690A1 (en) Regenerative air conditioner
JP2016125714A (en) Heat storage type air conditioner
JP2016125725A (en) Heat storage type air conditioner
JP2015210025A (en) Cold storage system and air conditioning system
WO2016103726A1 (en) Heat-storage-type air conditioner
JP2015210029A (en) Heat storage system and air conditioning system
JP5867539B2 (en) Thermal storage tank unit and air conditioning system
JP2016125727A (en) Heat storage type air conditioner
JP2016125713A (en) Storage air conditioner
JP2016125719A (en) Heat storage type air conditioner
JP2016125716A (en) Storage air conditioner
JP2016125729A (en) Heat storage type air conditioner
JP6052275B2 (en) Thermal storage air conditioner
JP2016125717A (en) Storage air conditioner
JP2016125724A (en) Heat storage type air conditioner
JP2016217691A (en) Heat storage type air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872273

Country of ref document: EP

Kind code of ref document: A1