JP2016125716A - Storage air conditioner - Google Patents

Storage air conditioner Download PDF

Info

Publication number
JP2016125716A
JP2016125716A JP2014265381A JP2014265381A JP2016125716A JP 2016125716 A JP2016125716 A JP 2016125716A JP 2014265381 A JP2014265381 A JP 2014265381A JP 2014265381 A JP2014265381 A JP 2014265381A JP 2016125716 A JP2016125716 A JP 2016125716A
Authority
JP
Japan
Prior art keywords
heat storage
heat exchanger
refrigerant
heat
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014265381A
Other languages
Japanese (ja)
Inventor
修二 藤本
Shuji Fujimoto
修二 藤本
安尾 晃一
Koichi Yasuo
晃一 安尾
柯壁 陳
Kebi Chen
柯壁 陳
拓哉 中尾
Takuya Nakao
拓哉 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2014265381A priority Critical patent/JP2016125716A/en
Publication of JP2016125716A publication Critical patent/JP2016125716A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PROBLEM TO BE SOLVED: To ensure a stable cold storage operation after a heating operation.SOLUTION: When a heat storage medium is cooled to generate clathrate hydrates in a regenerative heat exchanger (37), a storage air conditioner (10) performs a heating operation for delivering refrigerant flowing out of an outdoor heat exchanger (22) to the regenerative heat exchanger (37) and heating the heat storage medium. After end of this heating operation, the storage air conditioner (10) performs a discharge operation for discharging liquid refrigerant accumulated in the regenerative heat exchanger (37) as a result of the heating operation by delivering the refrigerant that has been decompressed by an outdoor expansion valve (23) to the regenerative heat exchanger (37).SELECTED DRAWING: Figure 9

Description

本発明は、蓄熱回路と冷媒回路とを備えた蓄熱式空気調和機に関するものである。   The present invention relates to a heat storage type air conditioner including a heat storage circuit and a refrigerant circuit.

空気調和機には、特許文献1に示すように、蓄熱回路と冷媒回路とで構成され、蓄熱媒体を冷熱源として利用して室内の空調を行う蓄熱式空気調和機が知られている。蓄熱回路は、主として、蓄熱媒体を貯留する蓄熱タンク、蓄熱媒体を冷媒等の熱媒体と熱交換する蓄熱用熱交換器、及び循環ポンプ等によって構成される。冷媒回路は、主として、蓄熱用熱交換器及び室内熱交換器等によって構成される。室内熱交換器は、蓄熱用熱交換器にて蓄熱媒体から取り出された冷熱を用いて室内空気を冷却する。   As an air conditioner, as shown in Patent Document 1, a heat storage type air conditioner that includes a heat storage circuit and a refrigerant circuit and performs indoor air conditioning using a heat storage medium as a cold source is known. The heat storage circuit mainly includes a heat storage tank that stores a heat storage medium, a heat storage heat exchanger that exchanges heat between the heat storage medium and a heat medium such as a refrigerant, and a circulation pump. The refrigerant circuit is mainly configured by a heat storage heat exchanger, an indoor heat exchanger, and the like. The indoor heat exchanger cools the indoor air using the cold heat extracted from the heat storage medium by the heat storage heat exchanger.

上記特許文献1では、冷却によって包接水和物が生成される蓄熱材(例えば臭化テトラnブチルアンモニウム水溶液)が蓄熱媒体として利用されている。特許文献1では、蓄熱タンク内に冷熱を蓄えるために、蓄熱用熱交換器で冷却された蓄熱媒体を蓄熱タンクに貯留する蓄冷運転が行われる。   In Patent Document 1, a heat storage material (for example, an aqueous solution of tetra n-butylammonium bromide) in which clathrate hydrate is generated by cooling is used as a heat storage medium. In patent document 1, in order to store cold in a heat storage tank, the cold storage operation which stores the heat storage medium cooled with the heat exchanger for heat storage in a heat storage tank is performed.

特開2013−083439号公報JP2013-083439A

蓄冷運転では、蓄熱用熱交換器における蓄熱媒体の通路(蓄熱側通路)が包接水和物によって閉塞され、蓄熱用熱交換器の熱交換能力が低下する虞がある。そのため、蓄冷運転がある程度行われた際には、蓄熱側通路を熱媒体によって加熱する加熱運転を行うことが好ましい。蓄熱側通路が加熱されることで、蓄熱側通路を閉塞している包接水和物が蓄熱側通路から剥離され、蓄熱側通路の閉塞状態が解消されるからである。剥離された包接水和物は蓄熱タンクに流入される。   In the cold storage operation, the passage of the heat storage medium (heat storage side passage) in the heat storage heat exchanger is blocked by the clathrate hydrate, which may reduce the heat exchange capability of the heat storage heat exchanger. Therefore, when the cold storage operation is performed to some extent, it is preferable to perform a heating operation in which the heat storage side passage is heated by a heat medium. This is because the clathrate hydrate blocking the heat storage side passage is peeled from the heat storage side passage by heating the heat storage side passage, and the closed state of the heat storage side passage is eliminated. The peeled clathrate hydrate flows into the heat storage tank.

この加熱運転の際、蓄熱用熱交換器には高圧冷媒が供給され、この高圧冷媒の温熱が蓄熱媒体の加熱に用いられる。蓄熱用熱交換器では、冷媒は、蓄熱媒体を加熱する一方で凝縮し、液冷媒となる。故に、加熱運転により、蓄熱用熱交換器内には液冷媒が溜められる。   During this heating operation, a high-pressure refrigerant is supplied to the heat storage heat exchanger, and the heat of the high-pressure refrigerant is used to heat the heat storage medium. In the heat storage heat exchanger, the refrigerant condenses and becomes a liquid refrigerant while heating the heat storage medium. Therefore, liquid refrigerant is stored in the heat storage heat exchanger by the heating operation.

しかし、蓄熱用熱交換器内に液冷媒が溜められた状態で、蓄熱式空気調和機の運転種類が加熱運転から蓄冷運転に切り換えられると、ガス冷媒の室外熱交換器への流入量が不足する。すると、凝縮器として機能する室外熱交換器内の出口側の過冷却度が目標過冷却度に達することが難しくなり、ひいては蓄熱用熱交換器における蓄熱媒体の冷却能力の低下が惹き起こされ、従って、安定した蓄冷運転が実現できなくなるおそれがある。   However, when liquid refrigerant is stored in the heat storage heat exchanger and the operation type of the heat storage air conditioner is switched from heating operation to cold storage operation, the amount of gas refrigerant flowing into the outdoor heat exchanger is insufficient. To do. Then, it becomes difficult for the degree of supercooling on the outlet side in the outdoor heat exchanger functioning as a condenser to reach the target degree of supercooling, and as a result, the cooling capacity of the heat storage medium in the heat storage heat exchanger is lowered. Therefore, there is a possibility that a stable cold storage operation cannot be realized.

本発明は、かかる点に鑑みてなされたものであり、その目的は、蓄熱回路と冷媒回路とを有する蓄熱式空気調和機において、蓄熱用熱交換器で蓄熱媒体が冷却されて包接水和物が生成されると該包接水和物を冷媒の温熱で加熱するために行う加熱運転の後、安定して蓄冷運転が行われるようにすることである。   The present invention has been made in view of the above points, and an object of the present invention is to provide a heat storage air conditioner having a heat storage circuit and a refrigerant circuit, in which the heat storage medium is cooled by a heat storage heat exchanger and clathrate hydration. When the product is generated, the cold storage operation is stably performed after the heating operation for heating the clathrate hydrate with the heat of the refrigerant.

第1の発明は、冷却によって包接水和物が生成される蓄熱媒体を貯留する蓄熱タンク(62)と、蓄熱媒体の冷却と加熱とが可能な蓄熱用熱交換器(37)と、上記蓄熱タンク(62)と上記蓄熱用熱交換器(37)との間で蓄熱媒体を循環させるポンプ(63)と、を有する蓄熱回路(61)と、圧縮機(21)と、室外熱交換器(22)と、室外膨張弁(23)と、冷媒と蓄熱媒体とを熱交換させる上記蓄熱用熱交換器(37)と、室内熱交換器(27)とを有する冷媒回路(11)と、上記蓄熱用熱交換器(37)において蓄熱媒体が冷却されて包接水和物が生成されると、上記室外熱交換器(22)から流出した冷媒を上記蓄熱用熱交換器(37)へ送って蓄熱媒体を加熱する加熱運転、を実行させる運転制御部(100)とを備え、上記運転制御部(100)は、上記加熱運転の終了後、上記室外膨張弁(23)にて減圧された後の冷媒を上記蓄熱用熱交換器(37)へ送ることで、上記加熱運転によって上記蓄熱用熱交換器(37)に溜まった液冷媒を排出する排出運転、を実行させることを特徴とする蓄熱式空気調和機である。   The first invention includes a heat storage tank (62) for storing a heat storage medium in which clathrate hydrate is generated by cooling, a heat storage heat exchanger (37) capable of cooling and heating the heat storage medium, and the above A heat storage circuit (61) having a pump (63) for circulating a heat storage medium between the heat storage tank (62) and the heat storage heat exchanger (37), a compressor (21), and an outdoor heat exchanger (22), the outdoor expansion valve (23), the refrigerant circuit (11) having the heat storage heat exchanger (37) for exchanging heat between the refrigerant and the heat storage medium, and the indoor heat exchanger (27), When the heat storage medium is cooled and the clathrate hydrate is generated in the heat storage heat exchanger (37), the refrigerant flowing out of the outdoor heat exchanger (22) is transferred to the heat storage heat exchanger (37). An operation control unit (100) for performing a heating operation for sending and heating the heat storage medium, and the operation control unit (100) ends the heating operation The refrigerant that has been decompressed by the outdoor expansion valve (23) is sent to the heat storage heat exchanger (37), so that the liquid refrigerant accumulated in the heat storage heat exchanger (37) by the heating operation can be reduced. A heat storage type air conditioner that performs a discharge operation for discharging.

ここでは、室外熱交換器(22)から流出した冷媒を用いて蓄熱用熱交換器(37)にて蓄熱媒体を加熱する加熱運転の終了後、室外膨張弁(23)にて減圧された後の冷媒を蓄熱用熱交換器(37)に送る排出運転が行われる。この排出運転では、蓄熱用熱交換器(37)には、気液二相状態の冷媒が流入し、この気液二相状態の冷媒は、加熱運転によって蓄熱用熱交換器(37)内に溜められた液状態の冷媒を該蓄熱用熱交換器(37)から流出させる。これにより、蓄熱用熱交換器(37)に液状態の冷媒が溜められた状態は解消する。従って、ガス冷媒の室外熱交換器(22)への流入量不足は解消するため、排出運転後に蓄冷運転が行われても、蓄熱用熱交換器(37)は蓄熱媒体を十分に冷却することができ、安定した蓄冷運転が実現される。   Here, after the heating operation of heating the heat storage medium in the heat storage heat exchanger (37) using the refrigerant flowing out of the outdoor heat exchanger (22) is completed, the pressure is reduced in the outdoor expansion valve (23). The refrigerant is discharged to the heat storage heat exchanger (37). In this discharge operation, the gas-liquid two-phase refrigerant flows into the heat storage heat exchanger (37), and the gas-liquid two-phase refrigerant flows into the heat storage heat exchanger (37) by the heating operation. The stored refrigerant in the liquid state is caused to flow out of the heat storage heat exchanger (37). As a result, the state where the liquid state refrigerant is stored in the heat storage heat exchanger (37) is eliminated. Therefore, insufficiency of the amount of gas refrigerant flowing into the outdoor heat exchanger (22) is resolved, so that the heat storage heat exchanger (37) sufficiently cools the heat storage medium even if the cold storage operation is performed after the discharge operation. And a stable cold storage operation is realized.

第2の発明は、第1の発明において、上記運転制御部(100)は、上記排出運転中に上記室外熱交換器(22)の出口における冷媒の過冷却度が所定値に達した場合、上記排出運転を終了することを特徴とする蓄熱式空気調和機である。   In a second aspect based on the first aspect, the operation control unit (100), when the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger (22) reaches a predetermined value during the discharge operation, The heat storage air conditioner is characterized in that the discharge operation is terminated.

室外熱交換器(22)の出口における冷媒の過冷却度が所定値に達した場合とは、蓄熱用熱交換器(37)内に液状態の冷媒が溜められている状態が解消していることに相当する。ここでは、蓄熱用熱交換器(37)内に液状態の冷媒が溜められている状態を確実に解消させることができた時に、排出運転が終了するため、排出運転後、蓄熱用熱交換器(37)は、蓄熱媒体を十分に冷却することができる状態となっている。   When the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger (22) reaches a predetermined value, the state in which liquid refrigerant is stored in the heat storage heat exchanger (37) has been eliminated. It corresponds to that. Here, when the state in which the liquid refrigerant is stored in the heat storage heat exchanger (37) can be reliably eliminated, the discharge operation ends, so after the discharge operation, the heat storage heat exchanger (37) is in a state where the heat storage medium can be sufficiently cooled.

第3の発明は、第1の発明または第2の発明において、上記冷媒回路(11)は、上記室外膨張弁(23)と上記蓄熱用熱交換器(37)との間に接続された予熱用熱交換器(36)を更に有し、上記排出運転時、上記室外膨張弁(23)にて減圧された後の冷媒は、上記予熱用熱交換器(36)を介して上記蓄熱用熱交換器(37)に送られることを特徴とする蓄熱式空気調和機である。   In a third aspect based on the first aspect or the second aspect, the refrigerant circuit (11) is preheated between the outdoor expansion valve (23) and the heat storage heat exchanger (37). And the refrigerant after having been depressurized by the outdoor expansion valve (23) during the discharge operation, the refrigerant for heat storage through the preheating heat exchanger (36). A regenerative air conditioner that is sent to the exchanger (37).

ここでは、排出運転時、室外膨張弁(23)にて減圧された後の冷媒が予熱用熱交換器(36)に流入される。予熱用熱交換器(36)から流出する二相冷媒は、予熱用熱交換器(36)に流入する場合に比して、ガス冷媒の割合が多くなっており、当該冷媒が蓄熱用熱交換器(37)に流入される。これにより、加熱運転によって蓄熱用熱交換器(37)内に溜められた液冷媒は、比較的ガス冷媒の割合が多い二相冷媒によって蓄熱用熱交換器(37)から押し出される。   Here, during the discharge operation, the refrigerant after being decompressed by the outdoor expansion valve (23) flows into the preheating heat exchanger (36). The two-phase refrigerant flowing out of the preheating heat exchanger (36) has a higher proportion of gas refrigerant than when flowing into the preheating heat exchanger (36), and the refrigerant exchanges heat for heat storage. Into the vessel (37). Thereby, the liquid refrigerant stored in the heat storage heat exchanger (37) by the heating operation is pushed out of the heat storage heat exchanger (37) by the two-phase refrigerant having a relatively large proportion of the gas refrigerant.

第1の発明によれば、排出運転後に蓄冷運転が行われても、蓄熱用熱交換器(37)は蓄熱媒体を十分に冷却することができ、安定した蓄冷運転が実現される。   According to the first invention, even when the cold storage operation is performed after the discharge operation, the heat storage heat exchanger (37) can sufficiently cool the heat storage medium, and a stable cold storage operation is realized.

第2の発明によれば、排出運転後、蓄熱用熱交換器(37)は、蓄熱媒体を十分に冷却することができる状態となっている。   According to the second invention, after the discharge operation, the heat storage heat exchanger (37) can sufficiently cool the heat storage medium.

第3の発明によれば、加熱運転によって蓄熱用熱交換器(37)内に溜められた液冷媒は、比較的ガス冷媒の割合が多い二相冷媒によって蓄熱用熱交換器(37)から押し出される。   According to the third invention, the liquid refrigerant stored in the heat storage heat exchanger (37) by the heating operation is pushed out of the heat storage heat exchanger (37) by the two-phase refrigerant having a relatively high proportion of the gas refrigerant. It is.

図1は、蓄熱式空気調和機の構成図である。FIG. 1 is a configuration diagram of a heat storage type air conditioner. 図2は、単純冷房運転時の冷媒の流れを表す図である。FIG. 2 is a diagram illustrating the refrigerant flow during the simple cooling operation. 図3は、単純暖房運転時の冷媒の流れを示す図である。FIG. 3 is a diagram illustrating the flow of the refrigerant during the simple heating operation. 図4は、蓄冷運転時の冷媒及び蓄熱媒体の各流れを表す図である。FIG. 4 is a diagram illustrating the flow of the refrigerant and the heat storage medium during the cold storage operation. 図5は、利用冷房運転時の冷媒及び蓄熱媒体の各流れを表す図である。FIG. 5 is a diagram illustrating each flow of the refrigerant and the heat storage medium during the use cooling operation. 図6は、冷房蓄冷運転時の冷媒及び蓄熱媒体の各流れを表す図である。FIG. 6 is a diagram illustrating the flow of the refrigerant and the heat storage medium during the cooling and storing operation. 図7は、蓄冷運転から加熱運転へと切り換えられた場合の冷媒及び蓄熱媒体の流れの例を表す。FIG. 7 shows an example of the flow of the refrigerant and the heat storage medium when switching from the cold storage operation to the heating operation. 図8は、冷房蓄冷運転から加熱運転へと切り換えられた場合の冷媒及び蓄熱媒体の流れの例を示す。FIG. 8 shows an example of the flow of the refrigerant and the heat storage medium when the cooling / storage operation is switched to the heating operation. 図9は、本実施形態に係る加熱運転時の冷媒及び蓄熱媒体の各流れを示す図である。FIG. 9 is a diagram illustrating flows of the refrigerant and the heat storage medium during the heating operation according to the present embodiment.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.

≪実施形態≫
<概要>
本実施形態に係る蓄熱式空気調和機(10)は、後述する蓄熱タンク(62)に冷熱を蓄えたり、蓄えた冷熱を利用して室内を冷房したりすることができるシステムである。更に、蓄熱式空気調和機(10)は、蓄熱タンク(62)に冷熱を蓄えながらも室内の冷房を行うことができる。
<Embodiment>
<Overview>
The heat storage type air conditioner (10) according to the present embodiment is a system that can store cold energy in a heat storage tank (62) described later, and can cool the room using the stored cold energy. Furthermore, the heat storage type air conditioner (10) can cool the room while storing cold heat in the heat storage tank (62).

図1に示すように、蓄熱式空気調和機(10)は、室外ユニット(20a)と、室内ユニット(20b)と、蓄熱ユニット(50)と、コントローラ(100)(運転制御部に相当)とで構成されており、冷媒回路(11)及び蓄熱回路(61)を有する。   As shown in FIG. 1, the regenerative air conditioner (10) includes an outdoor unit (20a), an indoor unit (20b), a heat storage unit (50), a controller (100) (corresponding to an operation control unit), It has a refrigerant circuit (11) and a heat storage circuit (61).

コントローラ(100)は、蓄熱式空気調和機(10)の運転を制御するためのものである。コントローラ(100)は、冷媒回路(11)の圧縮機(21)や蓄熱回路(61)の循環ポンプ(63)の駆動制御、複数の開閉弁(25,39,40,41)の開閉制御、室内ファン(27a)の運転制御、各種膨張弁(23,24c,26,29c,38,43)の開度制御等を行う。   The controller (100) is for controlling the operation of the heat storage type air conditioner (10). The controller (100) controls the drive of the compressor (21) of the refrigerant circuit (11) and the circulation pump (63) of the heat storage circuit (61), and controls the opening and closing of the plurality of on-off valves (25, 39, 40, 41). Operation control of the indoor fan (27a), opening control of various expansion valves (23, 24c, 26, 29c, 38, 43), and the like are performed.

<冷媒回路の構成>
冷媒回路(11)には冷媒が充填されており、冷媒が循環することによって冷凍サイクルが行われる。図1に示すように、冷媒回路(11)は、主として、圧縮機(21)、室外熱交換器(22)、室外膨張弁(23)、室外側過冷却熱交換器(24)、第1開閉弁(25)、蓄熱側過冷却熱交換器(29)、室内膨張弁(26)、室内熱交換器(27)及び四方切換弁(28)により構成されている。このうち、圧縮機(21)、室外熱交換器(22)、室外膨張弁(23)、室外側過冷却熱交換器(24)及び四方切換弁(28)は、室外ユニット(20a)に設けられ、室内膨張弁(26)及び室内熱交換器(27)は、室内ユニット(20b)に設けられている。第1開閉弁(25)及び蓄熱側過冷却熱交換器(29)は、蓄熱ユニット(50)に設けられている。
<Configuration of refrigerant circuit>
The refrigerant circuit (11) is filled with a refrigerant, and a refrigeration cycle is performed by circulating the refrigerant. As shown in FIG. 1, the refrigerant circuit (11) mainly includes a compressor (21), an outdoor heat exchanger (22), an outdoor expansion valve (23), an outdoor subcooling heat exchanger (24), a first The on-off valve (25), the heat storage side subcooling heat exchanger (29), the indoor expansion valve (26), the indoor heat exchanger (27), and the four-way switching valve (28) are configured. Among them, the compressor (21), outdoor heat exchanger (22), outdoor expansion valve (23), outdoor subcooling heat exchanger (24) and four-way switching valve (28) are provided in the outdoor unit (20a). The indoor expansion valve (26) and the indoor heat exchanger (27) are provided in the indoor unit (20b). The first on-off valve (25) and the heat storage side subcooling heat exchanger (29) are provided in the heat storage unit (50).

圧縮機(21)は冷媒を圧縮して吐出する。圧縮機(21)は、容量可変式であって、図示しないインバータ回路によって回転数(運転周波数)が変更される。   The compressor (21) compresses and discharges the refrigerant. The compressor (21) is a variable capacity type, and the rotation speed (operation frequency) is changed by an inverter circuit (not shown).

室外熱交換器(22)は、配管(12)を介して四方切換弁(28)と接続されている。室外熱交換器(22)は、例えばクロスフィンアンドチューブ式であって、室外ユニット(20a)に設けられた室外ファン(22a)によって室外空気が供給されると、当該室外空気と冷媒との熱交換を行う。   The outdoor heat exchanger (22) is connected to the four-way switching valve (28) via the pipe (12). The outdoor heat exchanger (22) is, for example, a cross fin and tube type, and when outdoor air is supplied by an outdoor fan (22a) provided in the outdoor unit (20a), heat of the outdoor air and the refrigerant is generated. Exchange.

室外膨張弁(23)は、配管(13)を介して室外熱交換器(22)と接続され、配管(14a)を介して室外側過冷却熱交換器(24)と接続されている。室外膨張弁(23)は、例えば電子膨張弁で構成されており、開度を変更することで冷媒の流量を調整する。   The outdoor expansion valve (23) is connected to the outdoor heat exchanger (22) via the pipe (13), and is connected to the outdoor subcooling heat exchanger (24) via the pipe (14a). The outdoor expansion valve (23) is composed of, for example, an electronic expansion valve, and adjusts the flow rate of the refrigerant by changing the opening degree.

室外側過冷却熱交換器(24)は、配管(14a)を介して室外膨張弁(23)と接続された高圧側通路(24a)と、高圧側通路(24a)の入口側及び圧縮機(21)の吸入側に接続された低圧側通路(24b)とを有する。室外側過冷却熱交換器(24)は、高圧側通路(24a)及び低圧側通路(24b)それぞれを流れる冷媒同士が熱交換を行うことで高圧側通路(24a)を流れる冷媒が過冷却されるように構成されている。低圧側通路(24b)に流れる冷媒の流量は、膨張弁(24c)によって調節される。   The outdoor supercooling heat exchanger (24) includes a high-pressure side passage (24a) connected to the outdoor expansion valve (23) via a pipe (14a), an inlet side of the high-pressure side passage (24a), and a compressor ( 21) and a low-pressure side passage (24b) connected to the suction side. In the outdoor supercooling heat exchanger (24), the refrigerant flowing through the high pressure side passage (24a) is supercooled by heat exchange between the refrigerants flowing through the high pressure side passage (24a) and the low pressure side passage (24b). It is comprised so that. The flow rate of the refrigerant flowing through the low-pressure side passage (24b) is adjusted by the expansion valve (24c).

第1開閉弁(25)は、配管(14b)を介して室外側過冷却熱交換器(24)の高圧側通路(24a)に接続され、配管(14c)を介して蓄熱側過冷却熱交換器(29)と接続されている。第1開閉弁(25)は、例えば電磁弁で構成されており、配管(14b,14c)の間の冷媒の流れを許容または停止させるものである。第1開閉弁(25)に並列に、逆止弁(25a)が接続されている。逆止弁(25a)は、後述する単純暖房運転時に、蓄熱側過冷却熱交換器(29)側から室外側過冷却熱交換器(24)側に向けて冷媒が流れるように設けられている。   The first on-off valve (25) is connected to the high-pressure side passage (24a) of the outdoor subcooling heat exchanger (24) via the pipe (14b), and the heat storage side subcooling heat exchange via the pipe (14c). Connected to the vessel (29). The first on-off valve (25) is constituted by, for example, an electromagnetic valve, and allows or stops the flow of refrigerant between the pipes (14b, 14c). A check valve (25a) is connected in parallel with the first on-off valve (25). The check valve (25a) is provided so that the refrigerant flows from the heat storage side subcooling heat exchanger (29) side to the outdoor side subcooling heat exchanger (24) side during simple heating operation described later. .

蓄熱側過冷却熱交換器(29)は、高圧側通路(29a)と低圧側通路(29b)とを有する。高圧側通路(29a)の一端は配管(14c)に接続され、他端は配管(14d)を介して室内膨張弁(26)に接続されている。低圧側通路(29b)の一端は配管(17)を介して高圧側通路(29a)の入口側に接続され、他端は配管(16)(圧縮機(21)の吸入側)に接続されている。蓄熱側過冷却熱交換器(29)は、高圧側通路(29a)及び低圧側通路(29b)それぞれを流れる冷媒同士が熱交換を行うことで高圧側通路(29a)を流れる冷媒が過冷却されるように構成されている。低圧側通路(29b)に流れる冷媒の流量は、配管(17)上に設けられている膨張弁(29c)によって調節される。   The heat storage side subcooling heat exchanger (29) has a high pressure side passage (29a) and a low pressure side passage (29b). One end of the high-pressure side passage (29a) is connected to the pipe (14c), and the other end is connected to the indoor expansion valve (26) via the pipe (14d). One end of the low pressure side passage (29b) is connected to the inlet side of the high pressure side passage (29a) via the pipe (17), and the other end is connected to the pipe (16) (the suction side of the compressor (21)). Yes. In the heat storage side subcooling heat exchanger (29), the refrigerant flowing through the high pressure side passage (29a) is supercooled by heat exchange between the refrigerants flowing through the high pressure side passage (29a) and the low pressure side passage (29b). It is comprised so that. The flow rate of the refrigerant flowing through the low-pressure side passage (29b) is adjusted by the expansion valve (29c) provided on the pipe (17).

室内膨張弁(26)は、配管(15)を介して室内熱交換器(27)と接続されている。室内膨張弁(26)は、例えば電子膨張弁で構成されており、開度を変更することで冷媒の循環量を調整する。   The indoor expansion valve (26) is connected to the indoor heat exchanger (27) via the pipe (15). The indoor expansion valve (26) is constituted by an electronic expansion valve, for example, and adjusts the circulation amount of the refrigerant by changing the opening degree.

室内熱交換器(27)は、配管(16)を介して四方切換弁(28)と接続されている。室内熱交換器(27)は、例えばクロスフィンアンドチューブ式であって、室内ユニット(20b)に設けられた室内ファン(27a)によって室内空気が供給されると、当該空気と冷媒との熱交換を行う。室内熱交換器(27)によって熱交換された後の空気は、室内ファン(27a)によって再び室内に供給される。   The indoor heat exchanger (27) is connected to the four-way switching valve (28) via the pipe (16). The indoor heat exchanger (27) is, for example, a cross fin and tube type, and when indoor air is supplied by an indoor fan (27a) provided in the indoor unit (20b), heat exchange between the air and the refrigerant is performed. I do. The air after the heat exchange by the indoor heat exchanger (27) is again supplied indoors by the indoor fan (27a).

四方切換弁(28)は、4つのポートを有する。具体的に、四方切換弁(28)の第1ポートは、圧縮機(21)の吐出側に接続され、四方切換弁(28)の第2ポートは、図示しないアキュムレータを介して圧縮機(21)の吸入側に接続されている。四方切換弁(28)の第3ポートは、配管(12)を介して室外熱交換器(22)に接続され、四方切換弁(28)の第4ポートは、配管(16)を介して室内熱交換器(27)に接続されている。四方切換弁(28)は、蓄熱式空気調和機(10)の運転種類に応じて、各ポートの接続状態を第1状態(図1の実線で示す状態)または第2状態(図1の破線で示す状態)に切り換える。   The four-way switching valve (28) has four ports. Specifically, the first port of the four-way switching valve (28) is connected to the discharge side of the compressor (21), and the second port of the four-way switching valve (28) is connected to the compressor (21 via an accumulator (not shown). ) Is connected to the suction side. The third port of the four-way switching valve (28) is connected to the outdoor heat exchanger (22) via the pipe (12), and the fourth port of the four-way switching valve (28) is connected to the indoor via the pipe (16). Connected to heat exchanger (27). The four-way switching valve (28) has a connection state of each port in a first state (state shown by a solid line in FIG. 1) or a second state (dashed line in FIG. 1) depending on the operation type of the heat storage air conditioner (10). Switch to the state indicated by.

<バイパス流路の構成>
図1に示すように、冷媒回路(11)は、バイパス流路(31)を含む。バイパス流路(31)は、室内熱交換器(27)に並列に接続されており、内部を冷媒が通過する。具体的に、バイパス流路(31)の一端は、室外側過冷却熱交換器(24)と第1開閉弁(25)との間の配管(14b)に接続されている。バイパス流路(31)の他端は、室内熱交換器(27)と四方切換弁(28)の第4ポートとの間の配管(16)に接続されている。バイパス流路(31)は、主として、予熱用熱交換器(36)及び蓄熱用熱交換器(37)、蓄熱用膨張弁(38)、及び第2〜第3開閉弁(39,40)を有する。
<Configuration of bypass flow path>
As shown in FIG. 1, the refrigerant circuit (11) includes a bypass flow path (31). The bypass channel (31) is connected in parallel to the indoor heat exchanger (27), and the refrigerant passes through the inside. Specifically, one end of the bypass channel (31) is connected to a pipe (14b) between the outdoor supercooling heat exchanger (24) and the first on-off valve (25). The other end of the bypass channel (31) is connected to a pipe (16) between the indoor heat exchanger (27) and the fourth port of the four-way switching valve (28). The bypass channel (31) mainly includes a preheating heat exchanger (36) and a heat storage heat exchanger (37), a heat storage expansion valve (38), and second to third on-off valves (39, 40). Have.

予熱用熱交換器(36)は、冷媒側通路(36a)と蓄熱側通路(36b)とを有する。冷媒側通路(36a)は、配管(32)上、つまりはバイパス流路(31)の一端と蓄熱用膨張弁(38)との間に位置し、内部には冷媒が流れる。蓄熱側通路(36b)は、蓄熱回路(61)に直列に接続され、内部には蓄熱媒体(後述)が流れる。予熱用熱交換器(36)は、冷媒と蓄熱媒体との熱交換を行う。つまり、予熱用熱交換器(36)は、蓄熱用熱交換器(37)にて熱交換する前の冷媒を、蓄熱媒体と熱交換させる。   The preheating heat exchanger (36) includes a refrigerant side passage (36a) and a heat storage side passage (36b). The refrigerant side passage (36a) is located on the pipe (32), that is, between one end of the bypass flow path (31) and the heat storage expansion valve (38), and the refrigerant flows therein. The heat storage side passage (36b) is connected in series to the heat storage circuit (61), and a heat storage medium (described later) flows inside. The preheating heat exchanger (36) performs heat exchange between the refrigerant and the heat storage medium. That is, the preheating heat exchanger (36) exchanges heat between the refrigerant before heat exchange with the heat storage heat exchanger (37) and the heat storage medium.

蓄熱用熱交換器(37)は、冷媒側通路(37a)と蓄熱側通路(37b)とを有する。冷媒側通路(37a)は、配管(33)上において蓄熱用膨張弁(38)と第3開閉弁(40)との間に位置し、内部には冷媒が流れる。蓄熱側通路(37b)は、蓄熱回路(61)に直列に接続され、内部には蓄熱媒体が流れる。蓄熱用熱交換器(37)は、冷媒と蓄熱媒体との熱交換を行うことで、蓄熱媒体を冷却等することができる。つまり、蓄熱用熱交換器(37)は、予熱用熱交換器(36)にて熱交換した後の冷媒を、蓄熱媒体と熱交換させる。   The heat storage heat exchanger (37) includes a refrigerant side passage (37a) and a heat storage side passage (37b). The refrigerant side passage (37a) is located between the heat storage expansion valve (38) and the third on-off valve (40) on the pipe (33), and the refrigerant flows inside. The heat storage side passage (37b) is connected in series to the heat storage circuit (61), and the heat storage medium flows inside. The heat storage heat exchanger (37) can cool the heat storage medium by exchanging heat between the refrigerant and the heat storage medium. That is, the heat storage heat exchanger (37) heat-exchanges the refrigerant after heat exchange with the preheating heat exchanger (36) with the heat storage medium.

蓄熱用膨張弁(38)は、予熱用熱交換器(36)の冷媒側通路(36a)と蓄熱用熱交換器(37)の冷媒側通路(37a)との間に接続されている。蓄熱用膨張弁(38)は、例えば電子膨張弁で構成されており、開度を変更することで冷媒の圧力及び循環量を調整する。   The heat storage expansion valve (38) is connected between the refrigerant side passage (36a) of the preheating heat exchanger (36) and the refrigerant side passage (37a) of the heat storage heat exchanger (37). The heat storage expansion valve (38) is composed of, for example, an electronic expansion valve, and adjusts the pressure and the circulation amount of the refrigerant by changing the opening degree.

第2開閉弁(39)は、逆止弁(39a)と直列に接続されている。互いに直列接続された第2開閉弁(39)及び逆止弁(39a)は、蓄熱用膨張弁(38)に対し並列に接続されている。逆止弁(39a)は、予熱用熱交換器(36)側から蓄熱用熱交換器(37)側への冷媒の流れのみを許容する。第3開閉弁(40)は、配管(34)上に設けられている。なお、配管(34)の一端は、配管(33)に接続され、配管(34)の他端は、配管(16)に接続されている。   The second on-off valve (39) is connected in series with the check valve (39a). The second on-off valve (39) and the check valve (39a) connected in series to each other are connected in parallel to the heat storage expansion valve (38). The check valve (39a) allows only the flow of the refrigerant from the preheating heat exchanger (36) side to the heat storage heat exchanger (37) side. The third on-off valve (40) is provided on the pipe (34). One end of the pipe (34) is connected to the pipe (33), and the other end of the pipe (34) is connected to the pipe (16).

なお、蓄熱用膨張弁(38)に並列に、圧力逃がし弁(44)が設けられている。圧力逃がし弁(44)は、例えば蓄熱式空気調和機(10)の運転停止時、蓄熱用熱交換器(37)側の圧力が許容値を超えた場合に、当該圧力を放出させるための弁である。   A pressure relief valve (44) is provided in parallel with the heat storage expansion valve (38). The pressure relief valve (44) is a valve for releasing the pressure when the pressure on the heat storage heat exchanger (37) side exceeds the allowable value, for example, when the heat storage air conditioner (10) is stopped. It is.

<第1分岐流路>
図1に示すように、冷媒回路(11)は、第1分岐流路(35)を更に含む。第1分岐流路(35)の一端は、バイパス流路(31)における配管(33,34)の接続ポイントに接続され、第1分岐流路(35)の他端は、配管(14c)に接続されている。第1分岐流路(35)は、主として、第4開閉弁(41)及び逆止弁(41a)を有する。第4開閉弁(41)及び逆止弁(41a)は、互いに直列に接続されている。逆止弁(41a)は、配管(33)側から配管(14c)側への冷媒の流れのみを許容する。
<First branch flow path>
As shown in FIG. 1, the refrigerant circuit (11) further includes a first branch channel (35). One end of the first branch channel (35) is connected to the connection point of the pipes (33, 34) in the bypass channel (31), and the other end of the first branch channel (35) is connected to the pipe (14c). It is connected. The first branch channel (35) mainly includes a fourth on-off valve (41) and a check valve (41a). The fourth on-off valve (41) and the check valve (41a) are connected in series with each other. The check valve (41a) allows only the refrigerant flow from the pipe (33) side to the pipe (14c) side.

<第2分岐流路>
図1に示すように、冷媒回路(11)は、第2分岐流路(42)を更に含む。第2分岐流路(42)の一端は、バイパス流路(31)における配管(33,34)の接続ポイント、つまりはバイパス流路(31)と第1分岐流路(35)との接続ポイントに接続されている。第2分岐流路(42)の他端は、配管(16)に接続されている。第2分岐流路(42)は、主として、蒸発圧力調整弁(43)を有する。蒸発圧力調整弁(43)は、蓄熱用熱交換器(37)における冷媒の蒸発圧力を調整するための弁であって、例えば膨張弁で構成されている。
<Second branch flow path>
As shown in FIG. 1, the refrigerant circuit (11) further includes a second branch channel (42). One end of the second branch channel (42) is a connection point of the pipes (33, 34) in the bypass channel (31), that is, a connection point between the bypass channel (31) and the first branch channel (35). It is connected to the. The other end of the second branch channel (42) is connected to the pipe (16). The second branch channel (42) mainly has an evaporation pressure adjusting valve (43). The evaporation pressure adjusting valve (43) is a valve for adjusting the evaporation pressure of the refrigerant in the heat storage heat exchanger (37), and is constituted by, for example, an expansion valve.

なお、蒸発圧力調整弁(43)は、基本的には全閉状態を保っている。   Note that the evaporation pressure adjusting valve (43) is basically kept in a fully closed state.

<蓄熱回路の構成>
蓄熱回路(61)には蓄熱媒体が充填されており、蓄熱媒体を循環させて冷熱を蓄熱する蓄冷サイクル等が行われる。蓄熱回路(61)は、主として、蓄熱タンク(62)及び循環ポンプ(63)の他に、上述した予熱用熱交換器(36)及び蓄熱用熱交換器(37)の各蓄熱側通路(36b,37b)によって構成されている。
<Configuration of heat storage circuit>
The heat storage circuit (61) is filled with a heat storage medium, and a cold storage cycle is performed in which the heat storage medium is circulated to store cold heat. The heat storage circuit (61) mainly includes, in addition to the heat storage tank (62) and the circulation pump (63), each heat storage side passage (36b) of the heat exchanger for preheating (36) and the heat exchanger for heat storage (37) described above. 37b).

ここで、蓄熱媒体について説明する。蓄熱媒体には、冷却によって包接水和物が生成される蓄熱材、即ち流動性を有する蓄熱材が採用される。蓄熱媒体の具体例としては、臭化テトラnブチルアンモニウムを含有する臭化テトラnブチルアンモニウム(TBAB:Tetra Butyl Ammonium Bromide)水溶液、トリメチロールエタン(TME:Trimethylolethane)水溶液、パラフィン系スラリーなどが挙げられる。例えば、臭化テトラnブチルアンモニウム水溶液は、安定的に冷却されて当該水溶液の温度が水和物生成温度よりも低くなった過冷却状態でもその水溶液の状態を維持するが、この過冷却状態にて何らかのきっかけが与えられると、過冷却の溶液が包接水和物を含んだ溶液(即ちスラリー)へと遷移する。即ち、臭化テトラnブチルアンモニウム水溶液は、過冷却状態を解消して、臭化テトラnブチルアンモニウムと水分子とからなる包接水和物(水和物結晶)が生成されて粘性の比較的高いスラリー状となる。ここで、過冷却状態とは、蓄熱媒体が水和物生成温度以下の温度となっても包接水和物が生成されずに溶液の状態を保っている状態を言う。逆に、スラリー状となっている臭化テトラnブチルアンモニウム水溶液は、加熱により当該水溶液の温度が水和物生成温度よりも高くなると、包接水和物が融解して流動性の比較的高い液状態(溶液)となる。   Here, the heat storage medium will be described. As the heat storage medium, a heat storage material in which clathrate hydrate is generated by cooling, that is, a fluid heat storage material is employed. Specific examples of the heat storage medium include tetra nbutylammonium bromide (TBAB) aqueous solution, tetramethylolethane (TME) aqueous solution, paraffinic slurry and the like containing tetra nbutylammonium bromide. . For example, an aqueous solution of tetra-n-butylammonium bromide maintains the state of the aqueous solution even in a supercooled state in which the temperature of the aqueous solution is lower than the hydrate formation temperature after being stably cooled. When given a trigger, the supercooled solution transitions to a solution containing clathrate hydrate (ie, slurry). That is, the aqueous solution of tetra-n-butylammonium bromide eliminates the supercooled state, and clathrate hydrate (hydrate crystal) composed of tetra-n-butylammonium bromide and water molecules is generated, and the viscosity is relatively low. It becomes a high slurry state. Here, the supercooled state refers to a state where the clathrate hydrate is not generated and the state of the solution is maintained even when the heat storage medium becomes a temperature lower than the hydrate generation temperature. Conversely, when the aqueous solution of tetra-n-butylammonium bromide in a slurry state is heated, the temperature of the aqueous solution becomes higher than the hydrate formation temperature, the clathrate hydrate melts and the fluidity is relatively high. It becomes a liquid state (solution).

本実施形態では、上記蓄熱媒体として、臭化テトラnブチルアンモニウムを含有する臭化テトラnブチルアンモニウム水溶液を採用している。特に、上記蓄熱媒体は、調和濃度の近傍の濃度を有する媒体であることが好ましい。本実施形態では、調和濃度を約40%とする。この場合の臭化テトラnブチルアンモニウム水溶液の水和物生成温度は、約12℃である。   In the present embodiment, an aqueous solution of tetra nbutylammonium bromide containing tetra nbutylammonium bromide is employed as the heat storage medium. In particular, the heat storage medium is preferably a medium having a concentration near the harmonic concentration. In this embodiment, the harmonic concentration is about 40%. In this case, the hydrate formation temperature of the aqueous solution of tetra-n-butylammonium bromide is about 12 ° C.

なお、蓄熱媒体の濃度に応じて、臭化テトラnブチルアンモニウム水溶液の水和物生成温度は変化する。例えば、蓄熱媒体の濃度が約20%である場合、水和物生成温度は約8.5℃となる。調和濃度とは、包接水和物が生成される前後において、水溶液の濃度が変化しない濃度を意味する。   Note that the hydrate formation temperature of the aqueous solution of tetra-n-butylammonium bromide varies depending on the concentration of the heat storage medium. For example, when the concentration of the heat storage medium is about 20%, the hydrate formation temperature is about 8.5 ° C. The harmonic concentration means a concentration at which the concentration of the aqueous solution does not change before and after the clathrate hydrate is formed.

蓄熱タンク(62)は、中空の容器であって、蓄熱媒体を貯留する。例えば、蓄熱タンク(62)は、両端が閉塞された円筒状に形成され、その軸方向が上下方向となるように配置されている。蓄熱タンク(62)には、流出口と流入口とが形成されており、流出口は、例えば流入口よりも上方に位置している。   The heat storage tank (62) is a hollow container and stores a heat storage medium. For example, the heat storage tank (62) is formed in a cylindrical shape closed at both ends, and is arranged so that its axial direction is the vertical direction. An outlet and an inlet are formed in the heat storage tank (62), and the outlet is located, for example, above the inlet.

循環ポンプ(63)は、蓄熱回路(61)において、蓄熱タンク(62)、予熱用熱交換器(36)及び蓄熱用熱交換器(37)の間で蓄熱媒体を循環させる。蓄熱媒体の循環方向は、蓄熱タンク(62)から流出した蓄熱媒体が予熱用熱交換器(36)の蓄熱側通路(36b)を通過し、更にその後に循環ポンプ(63)を介して蓄熱用熱交換器(37)の蓄熱側通路(37b)を通過して、蓄熱タンク(62)に流入する方向となっている。循環ポンプ(63)の運転のオン及びオフや蓄熱媒体の流量は、コントローラ(100)によって制御される。   The circulation pump (63) circulates the heat storage medium between the heat storage tank (62), the preheating heat exchanger (36), and the heat storage heat exchanger (37) in the heat storage circuit (61). The direction of circulation of the heat storage medium is that the heat storage medium flowing out of the heat storage tank (62) passes through the heat storage side passage (36b) of the heat exchanger for preheating (36) and then passes through the circulation pump (63) for heat storage. It passes through the heat storage side passage (37b) of the heat exchanger (37) and flows into the heat storage tank (62). The on / off operation of the circulation pump (63) and the flow rate of the heat storage medium are controlled by the controller (100).

以上の構成により、蓄熱回路(61)は、閉回路となっている。   With the above configuration, the heat storage circuit (61) is a closed circuit.

<蓄熱式空気調和機の運転動作>
蓄熱式空気調和機(10)の運転種類としては、単純冷房運転、単純暖房運転、蓄冷運転、利用冷房運転、及び冷房蓄冷運転が挙げられる。コントローラ(100)は、これらの各運転が行われるように、冷媒回路(11)及び蓄熱回路(61)における各種機器を制御する。
<Operation of regenerative air conditioner>
Examples of the operation type of the heat storage type air conditioner (10) include simple cooling operation, simple heating operation, cold storage operation, utilization cooling operation, and cooling storage operation. The controller (100) controls various devices in the refrigerant circuit (11) and the heat storage circuit (61) so that these operations are performed.

単純冷房運転とは、冷媒回路(11)の冷房サイクルによって得られる冷熱のみを用いて室内の冷房を行う運転である。単純暖房運転とは、冷媒回路(11)の暖房サイクルによって得られる温熱のみを用いて室内の暖房を行う運転である。蓄冷運転とは、蓄熱回路(61)の蓄冷サイクルによって得られる冷熱を蓄熱タンク(62)に蓄える運転である。利用冷房運転とは、蓄熱タンク(62)内の蓄熱媒体を冷熱源として用いて室内の冷房を行う運転である。冷房蓄冷運転は、蓄熱回路(61)においては蓄冷サイクルで得られる冷熱を蓄熱タンク(62)に貯留しながら、冷媒回路(11)においては冷房サイクルで得られる冷熱のみを用いて室内の冷房を行う運転である。即ち、冷房蓄冷運転では、蓄冷と冷房とが同時に行われる。   The simple cooling operation is an operation for cooling the room using only the cooling heat obtained by the cooling cycle of the refrigerant circuit (11). The simple heating operation is an operation for heating the room using only the heat obtained by the heating cycle of the refrigerant circuit (11). The cold storage operation is an operation in which cold heat obtained by the cold storage cycle of the heat storage circuit (61) is stored in the heat storage tank (62). The use cooling operation is an operation for cooling the room using the heat storage medium in the heat storage tank (62) as a cooling heat source. In the cooling storage operation, in the heat storage circuit (61), the cold energy obtained in the cold storage cycle is stored in the heat storage tank (62), while the refrigerant circuit (11) uses only the cold energy obtained in the cooling cycle to cool the room. It is a driving to be performed. That is, cold storage and cooling are performed simultaneously in the cooling storage operation.

−単純冷房運転−
図2に示されるように、単純冷房運転では、冷媒回路(11)は、室外熱交換器(22)が凝縮器となり室内熱交換器(27)が蒸発器となる冷房サイクルを行う。バイパス流路(31)及び第1分岐流路(35)には冷媒は流入せず、蓄熱回路(61)は蓄熱媒体を循環させない。具体的に、バイパス流路(31)では、蓄熱用膨張弁(38)の開度は全閉状態に設定され、バイパス流路(31)及び第1分岐流路(35)の開閉弁(39,41)は閉状態に設定される。但し、バイパス流路(31)の開閉弁(40)は、蓄熱用熱交換器(37)の冷媒側通路(37a)に冷媒が溜まることを防ぐため、開状態に設定される。蓄熱回路(61)では、循環ポンプ(63)は停止する。
-Simple cooling operation-
As shown in FIG. 2, in the simple cooling operation, the refrigerant circuit (11) performs a cooling cycle in which the outdoor heat exchanger (22) serves as a condenser and the indoor heat exchanger (27) serves as an evaporator. The refrigerant does not flow into the bypass channel (31) and the first branch channel (35), and the heat storage circuit (61) does not circulate the heat storage medium. Specifically, in the bypass channel (31), the opening degree of the heat storage expansion valve (38) is set to a fully closed state, and the on-off valve (39 of the bypass channel (31) and the first branch channel (35)). 41) is set to the closed state. However, the on-off valve (40) of the bypass channel (31) is set to an open state in order to prevent refrigerant from accumulating in the refrigerant side passage (37a) of the heat storage heat exchanger (37). In the heat storage circuit (61), the circulation pump (63) is stopped.

冷媒回路(11)では、四方切換弁(28)が第1状態に設定され、第1開閉弁(25)は開状態に設定される。室外膨張弁(23)の開度は全開状態に設定され、蓄熱側過冷却熱交換器(29)の膨張弁(29c)は全閉状態、室内膨張弁(26)の開度は所定の開度(室内熱交換器(27)の出口における冷媒の過熱度が目標過熱度となる開度)に設定される。圧縮機(21)、室外ファン(22a)及び室内ファン(27a)は作動する。   In the refrigerant circuit (11), the four-way switching valve (28) is set to the first state, and the first on-off valve (25) is set to the open state. The opening degree of the outdoor expansion valve (23) is set to a fully opened state, the expansion valve (29c) of the heat storage side subcooling heat exchanger (29) is fully closed, and the opening degree of the indoor expansion valve (26) is a predetermined opening degree. (The opening degree at which the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger (27) becomes the target degree of superheat). The compressor (21), the outdoor fan (22a), and the indoor fan (27a) operate.

圧縮機(21)から吐出された冷媒は、配管(12)を介して室外熱交換器(22)に流入し、室外熱交換器(22)を通過する間に室外空気に放熱して凝縮する。室外熱交換器(22)にて凝縮された冷媒は、配管(13)及び室外膨張弁(23)を介して室外側過冷却熱交換器(24)に流入し、更に冷却される。更に冷却された冷媒は、配管(14b,14c,14d)、第1開閉弁(25)及び蓄熱側過冷却熱交換器(29)の高圧側通路(29a)を介して室内膨張弁(26)に流入し、室内膨張弁(26)にて減圧される。室内膨張弁(26)にて減圧された冷媒は、配管(15)を介して室内熱交換器(27)に流入し、室内熱交換器(27)を通過する間に室内空気から吸熱して蒸発する。これにより、室内空気が冷却される。室内熱交換器(27)にて蒸発した冷媒は、配管(16)を介して圧縮機(21)に吸入されて再び圧縮される。   The refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (22) through the pipe (12), and dissipates heat to the outdoor air and condenses while passing through the outdoor heat exchanger (22). . The refrigerant condensed in the outdoor heat exchanger (22) flows into the outdoor subcooling heat exchanger (24) through the pipe (13) and the outdoor expansion valve (23), and is further cooled. Further, the cooled refrigerant passes through the piping (14b, 14c, 14d), the first on-off valve (25), and the indoor expansion valve (26) via the high pressure side passage (29a) of the heat storage side subcooling heat exchanger (29). The pressure is reduced by the indoor expansion valve (26). The refrigerant decompressed by the indoor expansion valve (26) flows into the indoor heat exchanger (27) through the pipe (15) and absorbs heat from the indoor air while passing through the indoor heat exchanger (27). Evaporate. Thereby, indoor air is cooled. The refrigerant evaporated in the indoor heat exchanger (27) is sucked into the compressor (21) through the pipe (16) and compressed again.

−単純暖房運転−
図3に示されるように、単純暖房運転では、冷媒回路(11)は、室内熱交換器(27)が凝縮器となり室外熱交換器(22)が蒸発器となる暖房サイクルを行う。単純冷房運転と同様、バイパス流路(31)及び第1分岐流路(35)には冷媒は流入せず、蓄熱回路(61)は蓄熱媒体を循環させない。
-Simple heating operation-
As shown in FIG. 3, in the simple heating operation, the refrigerant circuit (11) performs a heating cycle in which the indoor heat exchanger (27) serves as a condenser and the outdoor heat exchanger (22) serves as an evaporator. Similar to the simple cooling operation, the refrigerant does not flow into the bypass flow path (31) and the first branch flow path (35), and the heat storage circuit (61) does not circulate the heat storage medium.

冷媒回路(11)では、四方切換弁(28)が第2状態に設定される。室内膨張弁(26)の開度は、所定の開度(室内熱交換器(27)の出口における冷媒の過冷却度が目標過冷却度となる開度)に設定される。各過冷却熱交換器(29,24)の膨張弁(29c,24c)は全閉状態、第1開閉弁(25)は閉状態、室外膨張弁(23)の開度は所定の開度(室外熱交換器(22)の出口における冷媒の過熱度が目標過熱度となる開度)に設定される。圧縮機(21)、室外ファン(22a)及び室内ファン(27a)は作動する。   In the refrigerant circuit (11), the four-way selector valve (28) is set to the second state. The opening degree of the indoor expansion valve (26) is set to a predetermined opening degree (an opening degree at which the degree of refrigerant subcooling at the outlet of the indoor heat exchanger (27) becomes the target degree of subcooling). The expansion valve (29c, 24c) of each subcooling heat exchanger (29, 24) is fully closed, the first on-off valve (25) is closed, and the opening of the outdoor expansion valve (23) is a predetermined opening ( The degree of superheat of the refrigerant at the outlet of the outdoor heat exchanger (22) is set to the target degree of superheat). The compressor (21), the outdoor fan (22a), and the indoor fan (27a) operate.

圧縮機(21)から吐出された冷媒は、配管(16)を介して室内熱交換器(27)に流入し、室内熱交換器(27)を通過する間に室内空気に放熱して凝縮する。この時、室内空気は温められる。室内熱交換器(27)にて凝縮された冷媒は、各種配管(15,14d~14a)、室内膨張弁(26)、各過冷却熱交換器(29,24)の高圧側通路(29a,24a)、及び逆止弁(25a)を介して室外膨張弁(23)に流入し、室外膨張弁(23)にて減圧される。減圧後の冷媒は、配管(13)を介して室外熱交換器(22)に流入し、室外熱交換器(22)を通過する間に室外空気から吸熱して蒸発する。蒸発後の冷媒は、配管(12)を介して圧縮機(21)に吸入されて再び圧縮される。   The refrigerant discharged from the compressor (21) flows into the indoor heat exchanger (27) through the pipe (16), and dissipates heat to the indoor air while passing through the indoor heat exchanger (27) to condense. . At this time, the room air is warmed. The refrigerant condensed in the indoor heat exchanger (27) is divided into various pipes (15, 14d to 14a), indoor expansion valves (26), high pressure side passages (29a, 24a) and the check valve (25a) to the outdoor expansion valve (23), and the pressure is reduced by the outdoor expansion valve (23). The decompressed refrigerant flows into the outdoor heat exchanger (22) through the pipe (13), and evaporates by absorbing heat from the outdoor air while passing through the outdoor heat exchanger (22). The evaporated refrigerant is sucked into the compressor (21) through the pipe (12) and compressed again.

−蓄冷運転−
図4に示すように、蓄冷運転では、室外熱交換器(22)及び予熱用熱交換器(36)の冷媒側通路(36a)にて凝縮及び冷却された冷媒が、蓄熱用熱交換器(37)の冷媒側通路(37a)にて蒸発することで、蓄熱側通路(37b)内の蓄熱媒体が冷却されて蓄熱タンク(62)に貯留される。冷媒回路(11)では、室外熱交換器(22)にて凝縮及び冷却された冷媒がバイパス流路(31)に流れるが、第1分岐流路(35)及び室内熱交換器(27)には流れない。即ち、冷媒回路(11)では、凝縮器となる室外熱交換器(22)側から蒸発器となる蓄熱用熱交換器(37)側へと冷媒が循環する。蓄熱回路(61)は、蓄熱用熱交換器(37)にて冷媒により冷却された蓄熱媒体が蓄熱タンク(62)に貯留するように蓄熱媒体を循環する蓄冷サイクルを行う。
-Cold storage operation-
As shown in FIG. 4, in the cold storage operation, the refrigerant condensed and cooled in the refrigerant side passage (36a) of the outdoor heat exchanger (22) and the preheating heat exchanger (36) is converted into a heat storage heat exchanger ( By evaporating in the refrigerant side passage (37a) of 37), the heat storage medium in the heat storage side passage (37b) is cooled and stored in the heat storage tank (62). In the refrigerant circuit (11), the refrigerant condensed and cooled in the outdoor heat exchanger (22) flows to the bypass flow path (31), but flows into the first branch flow path (35) and the indoor heat exchanger (27). Does not flow. That is, in the refrigerant circuit (11), the refrigerant circulates from the outdoor heat exchanger (22) side serving as a condenser to the heat storage heat exchanger (37) side serving as an evaporator. The heat storage circuit (61) performs a cold storage cycle in which the heat storage medium is circulated so that the heat storage medium cooled by the refrigerant in the heat storage heat exchanger (37) is stored in the heat storage tank (62).

具体的に、四方切換弁(28)は第1状態、第3開閉弁(40)は開状態に設定され、第2開閉弁(39)及び第4開閉弁(41))は閉状態に設定される。なお、第1開閉弁(25)は、開状態に設定される。第1開閉弁(25)が開状態となることにより、バイパス流路(31)への分岐点から室内膨張弁(26)までの配管(液管)に液冷媒が溜まり込み、この配管内の冷媒が単純冷房運転時と同じ状態になり、余剰冷媒の発生が防止されるためである。また、室外膨張弁(23)の開度は全開状態、各過冷却熱交換器(24,29)の膨張弁(24c,29c)は全閉状態、室内膨張弁(26)の開度は全閉状態、蓄熱用膨張弁(38)の開度は所定の開度(蓄熱用熱交換器(37)の冷媒側通路(37a)の出口における冷媒の蒸発温度が目標蒸発温度となる開度)にそれぞれ設定される。圧縮機(21)は概ね一定の回転数で作動する。室外ファン(22a)は作動し、室内ファン(27a)は停止する。   Specifically, the four-way switching valve (28) is set to the first state, the third on-off valve (40) is set to the open state, and the second on-off valve (39) and the fourth on-off valve (41) are set to the closed state. Is done. The first on-off valve (25) is set in the open state. When the first on-off valve (25) is opened, liquid refrigerant accumulates in the pipe (liquid pipe) from the branch point to the bypass flow path (31) to the indoor expansion valve (26). This is because the refrigerant is in the same state as in the simple cooling operation, and generation of excess refrigerant is prevented. The opening of the outdoor expansion valve (23) is fully open, the expansion valve (24c, 29c) of each subcooling heat exchanger (24, 29) is fully closed, and the opening of the indoor expansion valve (26) is fully open. In the closed state, the opening degree of the heat storage expansion valve (38) is a predetermined opening degree (an opening degree at which the refrigerant evaporation temperature at the outlet of the refrigerant side passage (37a) of the heat storage heat exchanger (37) becomes the target evaporation temperature). Respectively. The compressor (21) operates at a substantially constant rotational speed. The outdoor fan (22a) is activated and the indoor fan (27a) is stopped.

圧縮機(21)から吐出された冷媒は、配管(12)を介して室外熱交換器(22)に流入し、室外熱交換器(22)にて室外空気に放熱して凝縮する。凝縮された冷媒は、配管(13,14a)、室外膨張弁(23)及び室外側過冷却熱交換器(24)の高圧側通路(24a)を介して配管(14b)に流れる。第1開閉弁(25)が開状態であるため、当該冷媒は、配管(14b)におけるバイパス流路(31)への分岐点から室内膨張弁(26)に至るまでの配管に溜まり込むとともに、バイパス流路(31)側へも流入し、予熱用熱交換器(36)の冷媒側通路(36a)にて更に冷却される。予熱用熱交換器(36)から流出された冷媒は、蓄熱用膨張弁(38)にて減圧され、その後蓄熱用熱交換器(37)の冷媒側通路(37a)にて蓄熱媒体から吸熱して蒸発する。蒸発した冷媒は、第3開閉弁(40)及び配管(34)を介してバイパス流路(31)から流出し、配管(16)に流入する。その後、冷媒は、四方切換弁(28)を介して圧縮機(21)に吸入され、再び圧縮される。   The refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (22) through the pipe (12), dissipates heat to the outdoor air and condenses in the outdoor heat exchanger (22). The condensed refrigerant flows into the pipe (14b) through the pipe (13, 14a), the outdoor expansion valve (23), and the high pressure side passage (24a) of the outdoor subcooling heat exchanger (24). Since the first on-off valve (25) is in the open state, the refrigerant accumulates in the pipe from the branch point to the bypass flow path (31) in the pipe (14b) to the indoor expansion valve (26). It also flows into the bypass channel (31) side, and is further cooled in the refrigerant side passage (36a) of the preheating heat exchanger (36). The refrigerant flowing out of the preheating heat exchanger (36) is decompressed by the heat storage expansion valve (38), and then absorbs heat from the heat storage medium in the refrigerant side passage (37a) of the heat storage heat exchanger (37). Evaporate. The evaporated refrigerant flows out of the bypass flow path (31) through the third on-off valve (40) and the pipe (34), and flows into the pipe (16). Thereafter, the refrigerant is sucked into the compressor (21) through the four-way switching valve (28) and compressed again.

蓄熱回路(61)では、循環ポンプ(63)が作動する。蓄熱タンク(62)内の蓄熱媒体は、該タンク(62)から流出して予熱用熱交換器(36)の蓄熱側通路(36b)に流入する。蓄熱側通路(36b)を通過する間に、蓄熱媒体は、冷媒側通路(36a)を流れる冷媒によって加熱される。加熱された蓄熱媒体は、循環ポンプ(63)を介して蓄熱用熱交換器(37)の蓄熱側通路(37b)に流入する。蓄熱側通路(37b)を通過する間に、蓄熱媒体は、冷媒側通路(37a)を流れる冷媒によって冷却される。冷却された蓄熱媒体は、蓄熱タンク(62)内に流入する。このようにして、蓄熱タンク(62)には冷熱が蓄えられる。   In the heat storage circuit (61), the circulation pump (63) operates. The heat storage medium in the heat storage tank (62) flows out of the tank (62) and flows into the heat storage side passage (36b) of the preheating heat exchanger (36). While passing through the heat storage side passage (36b), the heat storage medium is heated by the refrigerant flowing through the refrigerant side passage (36a). The heated heat storage medium flows into the heat storage side passage (37b) of the heat storage heat exchanger (37) through the circulation pump (63). While passing through the heat storage side passage (37b), the heat storage medium is cooled by the refrigerant flowing through the refrigerant side passage (37a). The cooled heat storage medium flows into the heat storage tank (62). In this way, cold heat is stored in the heat storage tank (62).

−利用冷房運転−
図5に示すように、利用冷房運転では、蓄熱タンク(62)に蓄えられた冷熱と冷媒回路(11)の冷凍サイクルによって得られる冷熱とを用いて室内の冷房が行われる。つまり、室外熱交換器(22)にて凝縮及び冷却された冷媒が、更に予熱用熱交換器(36)及び蓄熱用熱交換器(37)にて蓄熱媒体から冷熱を得た後に室内熱交換器(27)にて蒸発することで、室内空気が冷却される。蓄熱回路(61)は、蓄熱タンク(62)から流出した蓄熱媒体が予熱用熱交換器(36)及び蓄熱用熱交換器(37)を順に通過して蓄熱タンク(62)に再度流入するように蓄熱媒体を循環させる。
-Use cooling operation-
As shown in FIG. 5, in the use cooling operation, the room is cooled using the cold heat stored in the heat storage tank (62) and the cold heat obtained by the refrigeration cycle of the refrigerant circuit (11). That is, the refrigerant condensed and cooled in the outdoor heat exchanger (22) is further subjected to indoor heat exchange after obtaining cold energy from the heat storage medium in the preheating heat exchanger (36) and the heat storage heat exchanger (37). The room air is cooled by evaporating in the vessel (27). The heat storage circuit (61) causes the heat storage medium flowing out from the heat storage tank (62) to pass through the preheating heat exchanger (36) and the heat storage heat exchanger (37) in order, and to flow into the heat storage tank (62) again. Circulate the heat storage medium.

この場合、冷媒回路(11)側においては、室外熱交換器(22)が凝縮器、室内熱交換器(27)が蒸発器となる。特に、バイパス流路(31)においては、予熱用熱交換器(36)及び蓄熱用熱交換器(37)が共に過冷却器(即ち放熱器)となり、冷媒は、バイパス流路(31)の途中で第1分岐流路(35)へと流れる。   In this case, on the refrigerant circuit (11) side, the outdoor heat exchanger (22) is a condenser and the indoor heat exchanger (27) is an evaporator. In particular, in the bypass channel (31), both the preheating heat exchanger (36) and the heat storage heat exchanger (37) serve as a supercooler (that is, a radiator), and the refrigerant flows in the bypass channel (31). On the way, it flows to the first branch channel (35).

具体的には、四方切換弁(28)は第1状態、第1開閉弁(25)及び第3開閉弁(40)は閉状態、第2開閉弁(39)及び第4開閉弁(41)は開状態にそれぞれ設定される。室外膨張弁(23)及び蓄熱用膨張弁(38)の開度は全開状態、室外側過冷却熱交換器(24)の膨張弁(24c)は全閉状態、室内膨張弁(26)の開度は所定の開度(室内熱交換器(27)の出口における冷媒の過熱度が目標過熱度となる開度)にそれぞれ設定される。圧縮機(21)、室外ファン(22a)及び室内ファン(27a)は作動する。   Specifically, the four-way switching valve (28) is in the first state, the first on-off valve (25) and the third on-off valve (40) are in the closed state, the second on-off valve (39) and the fourth on-off valve (41). Are set to the open state. The degree of opening of the outdoor expansion valve (23) and the heat storage expansion valve (38) is fully open, the expansion valve (24c) of the outdoor subcooling heat exchanger (24) is fully closed, and the indoor expansion valve (26) is open. The degree is set to a predetermined opening degree (an opening degree at which the superheat degree of the refrigerant at the outlet of the indoor heat exchanger (27) becomes the target superheat degree). The compressor (21), the outdoor fan (22a), and the indoor fan (27a) operate.

圧縮機(21)から吐出された冷媒は、配管(12)を介して室外熱交換器(22)に流入し、室外熱交換器(22)にて室外空気に放熱して凝縮する。凝縮された冷媒は、全開である室外膨張弁(23)及び室外側過冷却熱交換器(24)の高圧側通路(24a)を介して配管(14b)に流れる。第1開閉弁(25)が閉状態であるため、当該冷媒は、配管(14b)の途中でバイパス流路(31)内へと流入する。バイパス流路(31)に流入した冷媒は、予熱用熱交換器(36)の冷媒側通路(36a)を通過する間に蓄熱側通路(36b)を流れる蓄熱媒体によって更に冷却され、その後は全開である蓄熱用膨張弁(38)または第2開閉弁(39)を介して蓄熱用熱交換器(37)に流入する。蓄熱用熱交換器(37)に流入した冷媒は、冷媒側通路(37a)を通過する間に、蓄熱側通路(37b)を流れる蓄熱媒体によって更に冷却される。この冷媒は、第1分岐流路(35)を介して配管(14c)に流入する。その後、冷媒は、蓄熱側過冷却熱交換器(29)に流入し、更に冷却される。更に冷却された冷媒は、配管(14d)を介して室内膨張弁(26)に流入する。室内膨張弁(26)にて減圧された後、室内熱交換器(27)にて室内空気から吸熱して蒸発する。これにより、室内空気が冷却される。蒸発した冷媒は、配管(16)及び四方切換弁(28)を介して圧縮機(21)に吸入されて再び圧縮される。   The refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (22) through the pipe (12), dissipates heat to the outdoor air and condenses in the outdoor heat exchanger (22). The condensed refrigerant flows into the pipe (14b) through the fully expanded outdoor expansion valve (23) and the high pressure side passage (24a) of the outdoor subcooling heat exchanger (24). Since the first on-off valve (25) is in the closed state, the refrigerant flows into the bypass channel (31) in the middle of the pipe (14b). The refrigerant flowing into the bypass channel (31) is further cooled by the heat storage medium flowing through the heat storage side passage (36b) while passing through the refrigerant side passage (36a) of the preheating heat exchanger (36), and then fully opened. Into the heat storage heat exchanger (37) through the heat storage expansion valve (38) or the second on-off valve (39). The refrigerant flowing into the heat storage heat exchanger (37) is further cooled by the heat storage medium flowing through the heat storage side passage (37b) while passing through the refrigerant side passage (37a). This refrigerant flows into the pipe (14c) through the first branch flow path (35). Thereafter, the refrigerant flows into the heat storage side subcooling heat exchanger (29) and is further cooled. Further, the cooled refrigerant flows into the indoor expansion valve (26) through the pipe (14d). After being depressurized by the indoor expansion valve (26), the indoor heat exchanger (27) absorbs heat from the indoor air and evaporates. Thereby, indoor air is cooled. The evaporated refrigerant is sucked into the compressor (21) through the pipe (16) and the four-way switching valve (28) and is compressed again.

蓄熱回路(61)では、循環ポンプ(63)が作動する。蓄熱タンク(62)内の蓄熱媒体は、該タンク(62)から流出して予熱用熱交換器(36)の蓄熱側通路(36b)に流入する。蓄熱側通路(36b)を通過する間に、蓄熱媒体は、冷媒側通路(36a)を流れる冷媒から吸熱する。吸熱した蓄熱媒体は、循環ポンプ(63)を介して蓄熱用熱交換器(37)の蓄熱側通路(37b)に流入する。蓄熱側通路(37b)を通過する間に、蓄熱媒体は、冷媒側通路(37a)を流れる冷媒から更に吸熱する。更に吸熱した蓄熱媒体は、蓄熱タンク(62)内に流入される。このようにして、蓄熱媒体から冷媒へ冷熱が付与される。   In the heat storage circuit (61), the circulation pump (63) operates. The heat storage medium in the heat storage tank (62) flows out of the tank (62) and flows into the heat storage side passage (36b) of the preheating heat exchanger (36). While passing through the heat storage side passage (36b), the heat storage medium absorbs heat from the refrigerant flowing through the refrigerant side passage (36a). The heat storage medium that has absorbed heat flows into the heat storage side passageway (37b) of the heat storage heat exchanger (37) through the circulation pump (63). While passing through the heat storage side passage (37b), the heat storage medium further absorbs heat from the refrigerant flowing through the refrigerant side passage (37a). Further, the heat storage medium that has absorbed heat flows into the heat storage tank (62). In this way, cold heat is applied from the heat storage medium to the refrigerant.

−冷房蓄冷運転−
図6に示すように、冷房蓄冷運転では、冷媒回路(11)においては室外熱交換器(22)で凝縮された冷媒がバイパス流路(31)を介さずに室内熱交換器(27)に流入し、室内熱交換器(27)で蒸発するように冷媒が循環する冷房サイクルが行われる。更に、冷媒回路(11)では、冷媒がバイパス流路(31)を介して蓄熱用熱交換器(37)に流入する循環も行われる。そして、冷房蓄冷運転では、蓄熱回路(61)においては蓄熱媒体が蓄熱用熱交換器(37)にて冷媒により冷却され蓄熱タンク(62)に貯留される蓄冷サイクルが行われる。つまり、冷房サイクルと蓄冷サイクルとが同時に行われる。
-Cooling and regenerating operation-
As shown in FIG. 6, in the cooling and accumulating operation, the refrigerant condensed in the outdoor heat exchanger (22) in the refrigerant circuit (11) enters the indoor heat exchanger (27) without passing through the bypass flow path (31). A cooling cycle in which the refrigerant circulates so as to flow in and evaporate in the indoor heat exchanger (27) is performed. Further, in the refrigerant circuit (11), the refrigerant is also circulated through the heat storage heat exchanger (37) via the bypass flow path (31). In the cooling and regenerating operation, in the heat storage circuit (61), a cold storage cycle is performed in which the heat storage medium is cooled by the refrigerant in the heat storage heat exchanger (37) and stored in the heat storage tank (62). That is, the cooling cycle and the cold storage cycle are performed simultaneously.

この場合、冷媒回路(11)側においては、室外熱交換器(22)が凝縮器、室内熱交換器(27)が蒸発器となる。特に、バイパス流路(31)においては、予熱用熱交換器(36)は過冷却器(即ち放熱器)、蓄熱用熱交換器(37)は蒸発器となる。なお、冷媒は、第1分岐流路(35)には流れない。   In this case, on the refrigerant circuit (11) side, the outdoor heat exchanger (22) is a condenser and the indoor heat exchanger (27) is an evaporator. In particular, in the bypass channel (31), the preheating heat exchanger (36) is a supercooler (that is, a radiator), and the heat storage heat exchanger (37) is an evaporator. In addition, a refrigerant | coolant does not flow into a 1st branch flow path (35).

具体的には、四方切換弁(28)は第1状態、第1開閉弁(25)及び第3開閉弁(40)は開状態、第2開閉弁(39)及び第4開閉弁(41)は閉状態にそれぞれ設定される。室外膨張弁(23)の開度は全開状態、室外側過冷却熱交換器(24)の膨張弁(24c)は全閉状態、蓄熱用膨張弁(38)及び室内膨張弁(26)の開度は、コントローラ(100)によって冷媒流量調節のための開度制御が行われる。圧縮機(21)、室外ファン(22a)及び室内ファン(27a)は作動する。   Specifically, the four-way switching valve (28) is in the first state, the first on-off valve (25) and the third on-off valve (40) are in the open state, the second on-off valve (39) and the fourth on-off valve (41). Are each set to the closed state. The opening degree of the outdoor expansion valve (23) is fully open, the expansion valve (24c) of the outdoor supercooling heat exchanger (24) is fully closed, and the heat storage expansion valve (38) and the indoor expansion valve (26) are open. The degree of opening is controlled by the controller (100) for adjusting the refrigerant flow rate. The compressor (21), the outdoor fan (22a), and the indoor fan (27a) operate.

圧縮機(21)から吐出された冷媒は、配管(12)を介して室外熱交換器(22)に流入し、室外熱交換器(22)にて室外空気に放熱して凝縮する。凝縮された冷媒は、全開である室外膨張弁(23)及び室外側過冷却熱交換器(24)の高圧側通路(24a)を通過する。第1開閉弁(25)は開状態であって、且つ蓄熱用膨張弁(38)は全閉状態ではないため、室外側過冷却熱交換器(24)から流出した冷媒は、配管(14b)の途中にて、第1開閉弁(25)側とバイパス流路(31)側とに分岐して流れる。   The refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (22) through the pipe (12), dissipates heat to the outdoor air and condenses in the outdoor heat exchanger (22). The condensed refrigerant passes through the outdoor expansion valve (23) that is fully open and the high-pressure side passage (24a) of the outdoor supercooling heat exchanger (24). Since the first on-off valve (25) is in the open state and the heat storage expansion valve (38) is not in the fully closed state, the refrigerant flowing out of the outdoor supercooling heat exchanger (24) In the middle of the flow, it branches and flows into the first on-off valve (25) side and the bypass flow path (31) side.

第1開閉弁(25)側に流れた冷媒は、配管(14c)を介して蓄熱側過冷却熱交換器(29)の高圧側通路(29a)に流入し、更に冷却される。更に冷却された冷媒は、配管(14d)を介して室内膨張弁(26)に流入し、室内膨張弁(26)にて減圧される。室内膨張弁(26)にて減圧された冷媒は、室内熱交換器(27)にて室内空気から吸熱して蒸発する。これにより、室内空気が冷却される。   The refrigerant flowing to the first on-off valve (25) side flows into the high pressure side passage (29a) of the heat storage side subcooling heat exchanger (29) via the pipe (14c) and is further cooled. Further, the cooled refrigerant flows into the indoor expansion valve (26) through the pipe (14d) and is decompressed by the indoor expansion valve (26). The refrigerant decompressed by the indoor expansion valve (26) absorbs heat from the indoor air and evaporates by the indoor heat exchanger (27). Thereby, indoor air is cooled.

一方、バイパス流路(31)側に流れた冷媒は、配管(32)を介して予熱用熱交換器(36)の冷媒側通路(36a)に流入し、当該冷媒側通路(36a)を通過する間に蓄熱側通路(36b)を流れる蓄熱媒体を加熱する。これにより、蓄熱タンク(62)から流出する蓄熱媒体に含まれる包接水和物は融解する。従って、予熱用熱交換器(36)を通過後の蓄熱媒体が通過する配管(蓄熱用熱交換器(37)の蓄熱側通路(37b)を含む)にて、蓄熱媒体の包接水和物が大量に生成されて蓄熱回路(61)が閉塞することを防ぐことができる。   On the other hand, the refrigerant flowing to the bypass channel (31) side flows into the refrigerant side passage (36a) of the preheating heat exchanger (36) through the pipe (32) and passes through the refrigerant side passage (36a). During this time, the heat storage medium flowing through the heat storage side passage (36b) is heated. Thereby, the clathrate hydrate contained in the heat storage medium flowing out from the heat storage tank (62) is melted. Therefore, the clathrate hydrate of the heat storage medium in the pipe (including the heat storage side passage (37b) of the heat storage heat exchanger (37)) through which the heat storage medium passes through the preheat heat exchanger (36). Can be prevented from being produced in large quantities and blocking the heat storage circuit (61).

特に、冷房蓄冷運転では、室外側過冷却熱交換器(24)での冷媒の冷却が行われていない。仮に室外側過冷却熱交換器(24)で冷媒が冷却されると、予熱用熱交換器(36)にて冷媒が蓄熱媒体を加熱する効果が薄れてしまい、包接水和物による蓄熱回路(61)の閉塞が生じ易くなるためである。   In particular, in the cooling storage operation, the refrigerant is not cooled in the outdoor supercooling heat exchanger (24). If the refrigerant is cooled in the outdoor supercooling heat exchanger (24), the effect of the refrigerant heating the heat storage medium in the preheating heat exchanger (36) is reduced, and the heat storage circuit by clathrate hydrate This is because (61) is likely to be blocked.

そして、予熱用熱交換器(36)にて蓄熱媒体を加熱した冷媒は、冷やされた状態で予熱用熱交換器(36)から流出し、蓄熱用膨張弁(38)にて減圧される。その後、冷媒は、蓄熱用熱交換器(37)において、冷媒側通路(37a)を通過する間に、蓄熱側通路(37b)を流れる蓄熱媒体から吸熱して蒸発する。蒸発した冷媒は、第3開閉弁(40)及び配管(34)を流れ、室内熱交換器(27)を通過した冷媒と配管(16)にて合流する。合流した冷媒は、四方切換弁(28)を介して圧縮機(21)に吸入されて再び圧縮される。   And the refrigerant | coolant which heated the thermal storage medium in the heat exchanger for preheating (36) flows out from the heat exchanger for preheating (36) in the cooled state, and is pressure-reduced by the expansion valve for thermal storage (38). Thereafter, in the heat storage heat exchanger (37), the refrigerant absorbs heat from the heat storage medium flowing through the heat storage side passage (37b) and evaporates while passing through the refrigerant side passage (37a). The evaporated refrigerant flows through the third on-off valve (40) and the pipe (34), and merges with the refrigerant that has passed through the indoor heat exchanger (27) in the pipe (16). The merged refrigerant is sucked into the compressor (21) through the four-way switching valve (28) and compressed again.

蓄熱回路(61)では、循環ポンプ(63)が作動する。蓄熱タンク(62)内の蓄熱媒体は、該タンク(62)から流出して予熱用熱交換器(36)の蓄熱側通路(36b)に流入する。この蓄熱側通路(36b)を通過する間に、蓄熱媒体は、冷媒側通路(36a)を流れる冷媒から吸熱することで加熱される。これにより、蓄熱媒体に含まれる包接水和物は融かされる。吸熱した蓄熱媒体は、循環ポンプ(63)を介して蓄熱用熱交換器(37)の蓄熱側通路(37b)に流入する。蓄熱側通路(37b)を通過する間に、蓄熱媒体は、冷媒側通路(37a)を流れる冷媒によって冷却される。冷却された蓄熱媒体は、蓄熱タンク(62)内に流入する。このようにして、蓄熱タンク(62)には冷熱が蓄えられる。   In the heat storage circuit (61), the circulation pump (63) operates. The heat storage medium in the heat storage tank (62) flows out of the tank (62) and flows into the heat storage side passage (36b) of the preheating heat exchanger (36). While passing through the heat storage side passage (36b), the heat storage medium is heated by absorbing heat from the refrigerant flowing through the refrigerant side passage (36a). Thereby, the clathrate hydrate contained in the heat storage medium is melted. The heat storage medium that has absorbed heat flows into the heat storage side passageway (37b) of the heat storage heat exchanger (37) through the circulation pump (63). While passing through the heat storage side passage (37b), the heat storage medium is cooled by the refrigerant flowing through the refrigerant side passage (37a). The cooled heat storage medium flows into the heat storage tank (62). In this way, cold heat is stored in the heat storage tank (62).

なお、以上の説明では、冷房蓄冷運転において、蒸発圧力調整弁(43)の開度が全閉状態に設定され、第3開閉弁(40)が開状態に設定される場合を例に挙げているが、冷房蓄冷運転において、第3開閉弁(40)を閉状態に設定し、蒸発圧力調整弁(43)の開度を所定の開度に調節してよい。この場合、蓄熱用熱交換器(37)から流出した冷媒は、蒸発圧力調整弁(43)において減圧され、配管(16)と四方切換弁(28)とを順に通過して圧縮機(21)に吸入されることになる。このように制御することにより、蓄熱用熱交換器(37)における冷媒の蒸発圧力を圧縮機(21)の吸入圧力よりも高くすることができ、蓄熱用熱交換器(37)における冷媒の蒸発温度が低くなり過ぎることを防止することができる。これにより、蓄熱用熱交換器(37)において蓄熱媒体が冷却され過ぎて、包接水和物が大量に生成されて蓄熱媒体の循環効率が低下することを防止することができる。   In the above description, in the cooling and regenerating operation, an example in which the opening degree of the evaporating pressure adjusting valve (43) is set to the fully closed state and the third on-off valve (40) is set to the open state is taken as an example. However, in the cooling and regenerating operation, the third on-off valve (40) may be set in a closed state, and the opening degree of the evaporation pressure adjusting valve (43) may be adjusted to a predetermined opening degree. In this case, the refrigerant flowing out of the heat storage heat exchanger (37) is depressurized in the evaporation pressure regulating valve (43), and sequentially passes through the pipe (16) and the four-way switching valve (28), so that the compressor (21) Will be inhaled. By controlling in this way, the refrigerant evaporation pressure in the heat storage heat exchanger (37) can be made higher than the suction pressure of the compressor (21), and the refrigerant evaporation in the heat storage heat exchanger (37) can be achieved. It is possible to prevent the temperature from becoming too low. Thereby, it can be prevented that the heat storage medium is excessively cooled in the heat storage heat exchanger (37), so that a large amount of clathrate hydrate is generated and the circulation efficiency of the heat storage medium is lowered.

<加熱運転>
更に、蓄熱式空気調和機(10)は、加熱運転を行うことができる。上述した蓄冷運転または冷房蓄冷運転の際に蓄熱用熱交換器(37)にて包接水和物が生成されるが、加熱運転とは、当該包接水和物によって蓄熱用熱交換器(37)の蓄熱側通路(37b)が閉塞されることまたはそのおそれを解消する運転である。加熱運転では、凝縮器として機能する室外熱交換器(22)から流出した冷媒が蓄熱用熱交換器(37)に送られ、当該冷媒が蓄熱用熱交換器(37)にて蓄熱媒体を加熱する。
<Heating operation>
Furthermore, the heat storage type air conditioner (10) can perform a heating operation. The clathrate hydrate is generated in the heat storage heat exchanger (37) during the above-described cold storage operation or cooling / cold storage operation. The heating operation refers to the heat storage heat exchanger ( 37) The heat storage side passageway (37b) of 37) is closed or is an operation for eliminating the fear. In the heating operation, the refrigerant flowing out of the outdoor heat exchanger (22) functioning as a condenser is sent to the heat storage heat exchanger (37), and the refrigerant heats the heat storage medium in the heat storage heat exchanger (37). To do.

図7は、蓄冷運転によって、蓄熱用熱交換器(37)にて包接水和物による閉塞またはそのおそれが生じたために、蓄熱式空気調和機(10)の運転種類が蓄冷運転から上記加熱運転に切り換えられた直後を示す一例である。図8は、冷房蓄冷運転によって、蓄熱用熱交換器(37)にて包接水和物による閉塞またはそのおそれが生じたために、蓄熱式空気調和機(10)の運転種類が冷房蓄冷運転から上記加熱運転に切り換えられた直後を示す一例である。図7及び図8に示すように、蓄冷運転または冷房蓄冷運転を行っている状態から上記加熱運転に切り換えられると、切換直前に行っていた運転動作は維持されたままで、第2開閉弁(39)が開状態に設定される。   FIG. 7 shows that the operation type of the regenerative air conditioner (10) is changed from the regenerative operation to the above-mentioned heating because the heat storage heat exchanger (37) is clogged or clasped with clathrate hydrate by the cold storage operation. It is an example which shows immediately after switching to driving | operation. FIG. 8 shows that the operation type of the regenerative air conditioner (10) is changed from the refrigerating / cooling operation because the refrigerating operation (37) caused the blockage of the clathrate hydrate or the possibility of the clogging. It is an example which shows immediately after switching to the said heating operation. As shown in FIGS. 7 and 8, when switching from the state in which the cold storage operation or the cooling storage operation is performed to the heating operation, the operation operation performed immediately before the switching is maintained and the second on-off valve (39 ) Is set to the open state.

図7及び図8のいずれの場合においても、蓄冷運転または冷房蓄冷運転の動作に加えて第2開閉弁(39)が開状態設定されることで、室外熱交換器(22)にて凝縮されバイパス流路(31)に流入した高圧冷媒は、予熱用熱交換器(36)にて蓄熱媒体に放熱し、自身は更に凝縮される。そして、予熱用熱交換器(36)を流出した高圧冷媒は、第2開閉弁(39)及び逆止弁(39a)を介して蓄熱用熱交換器(37)の冷媒側通路(37a)に流入し、蓄熱用熱交換器(37)にて更に蓄熱媒体に放熱する。これにより、蓄熱用熱交換器(37)の蓄熱側通路(37b)では、冷媒からの温熱によって包接水和物は融解し、蓄熱側通路(37b)の閉塞またはそのおそれは解消する。   In both cases of FIGS. 7 and 8, the second on-off valve (39) is set in the open state in addition to the operation of the cold storage operation or the cooling and cold storage operation, so that it is condensed in the outdoor heat exchanger (22). The high-pressure refrigerant flowing into the bypass channel (31) dissipates heat to the heat storage medium in the preheating heat exchanger (36), and is further condensed. The high-pressure refrigerant that has flowed out of the preheating heat exchanger (36) passes through the second on-off valve (39) and the check valve (39a) into the refrigerant side passage (37a) of the heat storage heat exchanger (37). It flows in and further dissipates heat to the heat storage medium in the heat storage heat exchanger (37). Thereby, in the heat storage side passage (37b) of the heat storage heat exchanger (37), the clathrate hydrate is melted by the heat from the refrigerant, and the blockage of the heat storage side passage (37b) or the possibility thereof is eliminated.

しかしながら、蓄熱媒体に放熱した冷媒は、凝縮して液状態となる(液冷媒)。この液冷媒は、バイパス流路(31)を流出した後、配管(16)を介して圧縮機(21)に吸入されてしまう。圧縮機(21)が液冷媒を吸入して液圧縮を行うと、圧縮機(21)は損傷する。   However, the refrigerant that has dissipated heat to the heat storage medium condenses into a liquid state (liquid refrigerant). This liquid refrigerant flows out of the bypass channel (31) and then is sucked into the compressor (21) through the pipe (16). When the compressor (21) sucks the liquid refrigerant and performs liquid compression, the compressor (21) is damaged.

―加熱運転の動作―
そこで、本実施形態では、図9に示す加熱運転が行われる。以下、図9を用いて加熱運転の動作について説明する。
-Operation of heating operation-
Therefore, in this embodiment, the heating operation shown in FIG. 9 is performed. Hereinafter, the heating operation will be described with reference to FIG.

図9の加熱運転は、蓄熱用熱交換器(37)において蓄熱媒体が冷却されて包接水和物が生成されると行われる。図9に示すように、本実施形態に係る加熱運転では、冷媒回路(11)における室外熱交換器(22)で凝縮された高圧冷媒は、その全てがバイパス流路(31)に送られ、少なくとも蓄熱用熱交換器(37)にて蓄熱媒体を加熱する。そして、蓄熱用熱交換器(37)から流出した高圧冷媒、即ち蓄熱媒体加熱後の冷媒は、第1分岐流路(35)を介して室内膨張弁(26)で減圧されると、室内熱交換器(27)にて蒸発し、蒸発後に圧縮機(21)に戻される。   The heating operation of FIG. 9 is performed when the heat storage medium is cooled in the heat storage heat exchanger (37) and clathrate hydrate is generated. As shown in FIG. 9, in the heating operation according to the present embodiment, all of the high-pressure refrigerant condensed in the outdoor heat exchanger (22) in the refrigerant circuit (11) is sent to the bypass channel (31), The heat storage medium is heated at least by the heat storage heat exchanger (37). When the high-pressure refrigerant flowing out of the heat storage heat exchanger (37), that is, the refrigerant after heating the heat storage medium, is reduced in pressure by the indoor expansion valve (26) through the first branch flow path (35), It evaporates in the exchanger (27) and is returned to the compressor (21) after evaporation.

この場合、冷媒回路(11)側においては、室外熱交換器(22)が凝縮器、室内熱交換器(27)が蒸発器となる。特に、バイパス流路(31)においては、予熱用熱交換器(36)及び蓄熱用熱交換器(37)は、ともに過冷却器(即ち放熱器)となる。なお、冷媒は、配管(34)側には流れない。   In this case, on the refrigerant circuit (11) side, the outdoor heat exchanger (22) is a condenser and the indoor heat exchanger (27) is an evaporator. In particular, in the bypass channel (31), the preheating heat exchanger (36) and the heat storage heat exchanger (37) are both supercoolers (ie, radiators). Note that the refrigerant does not flow to the pipe (34) side.

具体的には、四方切換弁(28)は第1状態、第1開閉弁(25)及び第3開閉弁(40)は閉状態、第2開閉弁(39)及び第4開閉弁(41)は開状態にそれぞれ設定される。室外膨張弁(23)の開度は全開状態、各過冷却熱交換器(24,29)の膨張弁(24c,29c)の各開度は全閉状態、室内膨張弁(26)の開度は所定の開度(室内熱交換器(27)の出口における冷媒の過熱度が目標過熱度となる開度)にそれぞれ設定される。圧縮機(21)及び室外ファン(22a)は作動する。室内ファン(27a)の動作については後述する。   Specifically, the four-way switching valve (28) is in the first state, the first on-off valve (25) and the third on-off valve (40) are in the closed state, the second on-off valve (39) and the fourth on-off valve (41). Are set to the open state. Opening degree of outdoor expansion valve (23) is fully open, opening degree of expansion valve (24c, 29c) of each supercooling heat exchanger (24,29) is fully closed, opening degree of indoor expansion valve (26) Are each set to a predetermined opening (an opening at which the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger (27) becomes the target degree of superheat). The compressor (21) and the outdoor fan (22a) operate. The operation of the indoor fan (27a) will be described later.

圧縮機(21)から吐出された冷媒は、配管(12)を介して室外熱交換器(22)に流入し、室外熱交換器(22)にて室外空気に放熱して凝縮し、高圧冷媒となる。室外熱交換器(22)から流出した高圧冷媒は、全開である室外膨張弁(23)及び室外側過冷却熱交換器(24)の高圧側通路(24a)を介して配管(14b)に流れる。第1開閉弁(25)が閉状態であるため、当該冷媒は、配管(14b)の途中でバイパス流路(31)内へと流入する。   The refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (22) via the pipe (12), dissipates heat to the outdoor air and condenses in the outdoor heat exchanger (22), and is a high-pressure refrigerant. It becomes. The high-pressure refrigerant that has flowed out of the outdoor heat exchanger (22) flows into the pipe (14b) via the outdoor expansion valve (23) that is fully open and the high-pressure side passage (24a) of the outdoor subcooling heat exchanger (24). . Since the first on-off valve (25) is in the closed state, the refrigerant flows into the bypass channel (31) in the middle of the pipe (14b).

バイパス流路(31)に流入した冷媒は、予熱用熱交換器(36)の冷媒側通路(36a)を通過する間に蓄熱側通路(36b)を流れる蓄熱媒体に放熱し、自身は更に冷却される。予熱用熱交換器(36)から流出した高圧冷媒は、第2開閉弁(39)及び逆止弁(39a)を介して蓄熱用熱交換器(37)に流入する。蓄熱用熱交換器(37)に流入した高圧冷媒は、冷媒側通路(37a)を通過する間に、蓄熱側通路(37b)を流れる蓄熱媒体に放熱することで蓄熱媒体を加熱し、自身は更に冷却される。これにより、予熱用熱交換器(36)及び蓄熱用熱交換器(37)の蓄熱媒体に含まれる包接水和物は融解する。従って、包接水和物により蓄熱回路(61)が閉塞することを防ぐことができる。   The refrigerant flowing into the bypass channel (31) dissipates heat to the heat storage medium flowing through the heat storage side passage (36b) while passing through the refrigerant side passage (36a) of the preheating heat exchanger (36), and further cools itself. Is done. The high-pressure refrigerant that has flowed out of the preheating heat exchanger (36) flows into the heat storage heat exchanger (37) through the second on-off valve (39) and the check valve (39a). The high-pressure refrigerant flowing into the heat storage heat exchanger (37) heats the heat storage medium by radiating heat to the heat storage medium flowing through the heat storage side passage (37b) while passing through the refrigerant side passage (37a). It is further cooled. Thereby, the clathrate hydrate contained in the heat storage medium of the preheating heat exchanger (36) and the heat storage heat exchanger (37) is melted. Therefore, it is possible to prevent the heat storage circuit (61) from being blocked by the clathrate hydrate.

なお、図9の加熱運転では、室外側過冷却熱交換器(24)での冷媒の冷却は行われていない。そのため、予熱用熱交換器(36)及び蓄熱用熱交換器(37)において冷媒が蓄熱媒体を加熱する効果は、室外側過冷却熱交換器(24)が冷媒を冷却する場合に比して高いと言える。   In the heating operation of FIG. 9, the cooling of the refrigerant is not performed in the outdoor supercooling heat exchanger (24). Therefore, the effect that the refrigerant heats the heat storage medium in the preheating heat exchanger (36) and the heat storage heat exchanger (37) is more effective than the case where the outdoor supercooling heat exchanger (24) cools the refrigerant. It can be said that it is expensive.

蓄熱用熱交換器(37)から流出した冷媒、即ち蓄熱媒体を加熱後の冷媒は、概ね液冷媒となっており、第1分岐流路(35)を介して配管(14c)に流入すると、蓄熱側過冷却熱交換器(29)の高圧側通路(29a)及び配管(14d)を通過して室内膨張弁(26)に流入する。室内膨張弁(26)に流入した冷媒は、室内膨張弁(26)にて減圧された後、室内熱交換器(27)にて蒸発する。蒸発した冷媒は、配管(16)及び四方切換弁(28)を介して圧縮機(21)に吸入されて再び圧縮される。   The refrigerant that has flowed out of the heat storage heat exchanger (37), that is, the refrigerant after heating the heat storage medium is substantially liquid refrigerant, and flows into the pipe (14c) through the first branch flow path (35). It passes through the high pressure side passage (29a) and the pipe (14d) of the heat storage side subcooling heat exchanger (29) and flows into the indoor expansion valve (26). The refrigerant flowing into the indoor expansion valve (26) is depressurized by the indoor expansion valve (26) and then evaporated by the indoor heat exchanger (27). The evaporated refrigerant is sucked into the compressor (21) through the pipe (16) and the four-way switching valve (28) and is compressed again.

即ち、室内熱交換器(27)において、冷媒は液状態からガス状態へと変化する。ガス状態へと変化した冷媒(ガス冷媒)が、圧縮機(21)に吸入され、再び圧縮される。故に、図7及び図8の場合のように、圧縮機(21)に液冷媒が吸入されることを防ぐことができる。   That is, in the indoor heat exchanger (27), the refrigerant changes from the liquid state to the gas state. The refrigerant (gas refrigerant) changed to the gas state is sucked into the compressor (21) and compressed again. Therefore, it is possible to prevent the liquid refrigerant from being sucked into the compressor (21) as in the case of FIGS.

一方、蓄熱回路(61)では、循環ポンプ(63)が作動する。蓄熱タンク(62)内の蓄熱媒体は、該タンク(62)から流出して予熱用熱交換器(36)の蓄熱側通路(36b)に流入する。蓄熱側通路(36b)を通過する間に、蓄熱媒体は、冷媒側通路(36a)を流れる冷媒から吸熱することで加熱される。吸熱した蓄熱媒体は、循環ポンプ(63)を介して蓄熱用熱交換器(37)の蓄熱側通路(37b)に流入する。蓄熱側通路(37b)を通過する間に、蓄熱媒体は、冷媒側通路(37a)を流れる冷媒から更に吸熱することで更に加熱される。これにより、蓄熱媒体に含まれる包接水和物は融解される。更に吸熱した蓄熱媒体は、蓄熱タンク(62)内に流入される。   On the other hand, in the heat storage circuit (61), the circulation pump (63) operates. The heat storage medium in the heat storage tank (62) flows out of the tank (62) and flows into the heat storage side passage (36b) of the preheating heat exchanger (36). While passing through the heat storage side passage (36b), the heat storage medium is heated by absorbing heat from the refrigerant flowing through the refrigerant side passage (36a). The heat storage medium that has absorbed heat flows into the heat storage side passageway (37b) of the heat storage heat exchanger (37) through the circulation pump (63). While passing through the heat storage side passage (37b), the heat storage medium is further heated by further absorbing heat from the refrigerant flowing through the refrigerant side passage (37a). Thereby, the clathrate hydrate contained in the heat storage medium is melted. Further, the heat storage medium that has absorbed heat flows into the heat storage tank (62).

―室内ファンの動作―
ここで、図9で示した本実施形態に係る加熱運転時の、室内ファン(27a)の動作について説明する。本実施形態では、図9の加熱運転の直前に行われていた運転の種類に応じて、室内ファン(27a)の運転動作が異なっている。
―Operation of indoor fan―
Here, the operation of the indoor fan (27a) during the heating operation according to the present embodiment shown in FIG. 9 will be described. In the present embodiment, the operation of the indoor fan (27a) differs depending on the type of operation that was performed immediately before the heating operation of FIG.

具体的には、図9の加熱運転が冷房蓄冷運転から切り換えられて行われている間、室内ファン(27a)は運転を行う。これは、上述したように、冷房蓄冷運転では室内ファン(27a)が作動しているためである。冷房蓄冷運転の間、室内熱交換器(27)で冷媒との熱交換により冷却された空気は、室内ファン(27a)によって室内に供給される。すると、冷房蓄冷運転から加熱運転へと切り換えられた際に、仮に室内ファン(27a)が運転を停止している(作動しない)とすると、室内への冷却された空気の供給が運転の切換えとともに途絶えることとなり、室内に居る人は不快と感じる可能性がある。また、加熱運転時も冷房蓄冷運転時も、室内熱交換器(27)はともに蒸発器として機能しているため、室内熱交換器(27)は、冷媒によって空気を冷やすことが可能となっている。そのため、本実施形態のコントローラ(100)は、加熱運転が冷房蓄冷運転から切り換えられて行われる時は、室内ファン(27a)を冷房蓄冷運転から継続して運転させる。これにより、加熱運転中も、当該加熱運転が行われる前の冷房蓄冷運転中と同様、室内には冷却された空気が供給されるため、室内に居る人は不快と感じることもない。   Specifically, the indoor fan (27a) operates while the heating operation in FIG. 9 is switched from the cooling / storage operation. As described above, this is because the indoor fan (27a) is operating in the cooling and regenerating operation. During the cooling and accumulating operation, the air cooled by the heat exchange with the refrigerant in the indoor heat exchanger (27) is supplied indoors by the indoor fan (27a). Then, if the indoor fan (27a) stops operating (does not operate) when switching from the cooling / storage operation to the heating operation, the supply of cooled air into the room is changed along with the operation switching. People who are indoors may feel uncomfortable. In addition, since both the indoor heat exchanger (27) functions as an evaporator during heating operation and cooling storage operation, the indoor heat exchanger (27) can cool the air with the refrigerant. Yes. For this reason, the controller (100) of the present embodiment continuously operates the indoor fan (27a) from the cooling storage operation when the heating operation is switched from the cooling storage operation. Thereby, since the cooled air is supplied into the room during the heating operation as in the cooling and accumulating operation before the heating operation is performed, a person in the room does not feel uncomfortable.

一方、図9の加熱運転が蓄冷運転から切り換えられて行われている間、室内ファン(27a)は運転を停止した状態となっている。これは、以下の理由による。上述したように、蓄冷運転では、室内ファン(27a)は運転を停止しており、室内熱交換器(27)はそもそも冷媒と空気との熱交換を行っていない。そのため、蓄熱運転から加熱運転に切り換えられた際、室内熱交換器(27)付近の温度は、冷房蓄冷運転から加熱運転に切り換えられた場合よりも、室内空気等の影響を受けて高い温度となっており、ある程度の熱容量を有していると言える。それ故、蓄熱運転から加熱運転に切り換えられた際、室内ファン(27a)を運転させずとも、減圧後の冷媒は、室内熱交換器(27)が有する熱容量によって蒸発することができる。従って、加熱運転が蓄冷運転から切り換えられた際は、室内ファン(27a)をあえて運転させて室内熱交換器(27)に室内空気を供給せずとも良い。   On the other hand, while the heating operation shown in FIG. 9 is switched from the cold storage operation, the indoor fan (27a) is stopped. This is due to the following reason. As described above, in the cold storage operation, the indoor fan (27a) stops operating, and the indoor heat exchanger (27) does not perform heat exchange between the refrigerant and the air in the first place. Therefore, when switching from the heat storage operation to the heating operation, the temperature in the vicinity of the indoor heat exchanger (27) is higher due to the influence of indoor air and the like than when switching from the cooling storage operation to the heating operation. It can be said that it has a certain heat capacity. Therefore, when the heat storage operation is switched to the heating operation, the decompressed refrigerant can be evaporated by the heat capacity of the indoor heat exchanger (27) without operating the indoor fan (27a). Therefore, when the heating operation is switched from the cold storage operation, the indoor fan (27a) does not have to be operated and the indoor air may not be supplied to the indoor heat exchanger (27).

また、蓄冷運転から加熱運転へと切り換えられた際に、仮に室内ファン(27a)が運転する(作動する)とすると、運転の切換えとともに冷たい空気が突如として室内に供給されてしまうこととなり、室内に居る人は不快に感じる可能性がある。このことからも、コントローラ(100)は、加熱運転が蓄冷運転から切り換えられて行われる時は、室内ファン(27a)を蓄冷運転から継続して運転を停止させておくことが好ましい。これにより、室内に居る人は、運転の種類が勝手に切り換えられたことを察知しづらくなり、また運転の切換により突如として冷たい空気が供給されて不快と感じることもない。   In addition, if the indoor fan (27a) is operated (operated) when switching from the cold storage operation to the heating operation, cold air is suddenly supplied into the room as the operation is switched. People who are in can feel uncomfortable. Also from this, when the heating operation is switched from the cold storage operation, the controller (100) preferably continues the indoor fan (27a) from the cold storage operation and stops the operation. This makes it difficult for a person in the room to detect that the type of operation has been switched without permission, and suddenly cold air is suddenly supplied due to the switching of operation, and the person does not feel uncomfortable.

なお、本実施形態に係る図9に示した加熱運転は、所定時間の間行われる。所定時間は、蓄熱式空気調和機(10)の設置環境等に応じて適宜決定される。例えば、所定時間としては、1分が挙げられる。   In addition, the heating operation shown in FIG. 9 according to the present embodiment is performed for a predetermined time. The predetermined time is appropriately determined according to the installation environment of the heat storage type air conditioner (10). For example, the predetermined time may be 1 minute.

<排出運転>
更に、本実施形態に係る蓄熱式空気調和機(10)は、上記加熱運転の終了後に、排出運転を行う。排出運転とは、上記加熱運転によって蓄熱用熱交換器(37)の冷媒側通路(37a)内に溜まった液冷媒を該蓄熱用熱交換器(37)から排出する運転である。
<Discharge operation>
Furthermore, the regenerative air conditioner (10) according to the present embodiment performs the discharge operation after the heating operation is completed. The discharge operation is an operation for discharging the liquid refrigerant accumulated in the refrigerant side passage (37a) of the heat storage heat exchanger (37) from the heat storage heat exchanger (37) by the heating operation.

既に述べたように、加熱運転では、蓄熱用熱交換器(37)においては冷媒が凝縮されて液状態となるものの、この液冷媒は、室内熱交換器(27)にて蒸発するため、圧縮機(21)に液冷媒が吸入されることはない。ところが、加熱運転では、少なくとも蓄熱用熱交換器(37)の冷媒側通路(37a)には液冷媒が溜まってしまう。蓄熱式空気調和機(10)は、加熱運転によって蓄熱用熱交換器(37)における包接水和物の閉塞またはそのおそれが解消したからといって、加熱運転を終了して直ちに蓄冷運転または冷房蓄冷運転を行うと、冷媒側通路(37a)等には液冷媒が溜まった状態でこれらの運転を行うことになる。すると、圧縮機(21)が吐出するガス冷媒の室外熱交換器(22)への流入量が不足する。ガス冷媒の流入量の不足は、凝縮器として機能する室外熱交換器(22)内の出口側の過冷却度が目標過冷却度に達することを困難にさせ、ひいては蓄熱用熱交換器(37)における蓄熱媒体の冷却能力の低下を惹きおこす。   As described above, in the heating operation, the refrigerant is condensed in the heat storage heat exchanger (37) to be in a liquid state, but this liquid refrigerant is evaporated in the indoor heat exchanger (27). The liquid refrigerant is not drawn into the machine (21). However, in the heating operation, liquid refrigerant accumulates at least in the refrigerant side passage (37a) of the heat storage heat exchanger (37). The regenerative air conditioner (10) can be used for the regenerative operation immediately after the heating operation is completed, because the blockage of the clathrate hydrate in the heat storage heat exchanger (37) or the risk of it is resolved by the heating operation. When the cooling storage operation is performed, these operations are performed in a state where liquid refrigerant is accumulated in the refrigerant side passage (37a) and the like. Then, the amount of gas refrigerant discharged from the compressor (21) into the outdoor heat exchanger (22) becomes insufficient. The shortage of inflow of gas refrigerant makes it difficult for the degree of supercooling on the outlet side in the outdoor heat exchanger (22) functioning as a condenser to reach the target degree of supercooling, and as a result, the heat storage heat exchanger (37 ) Causes a decrease in the cooling capacity of the heat storage medium.

そこで、本実施形態に係る蓄熱式空気調和機(10)は、加熱運転終了後、これらの問題が生じることなく安定して蓄冷運転や冷房蓄冷運転が行われるように、加熱運転終了後には排出運転を行う。   Therefore, the regenerative air conditioner (10) according to the present embodiment is discharged after the heating operation is completed so that the cold storage operation and the cooling and accumulating operation are performed stably without causing these problems after the heating operation. Do the driving.

具体的に、コントローラ(100)は、排出運転においては、加熱運転では全開状態であった室外膨張弁(23)の開度を加熱運転時よりも小さくする。排出運転における室外膨張弁(23)以外の各種弁(24c〜26,28,29c,38〜41,43)の開度状態は、図9と同様である。   Specifically, in the discharge operation, the controller (100) makes the opening of the outdoor expansion valve (23), which is fully open in the heating operation, smaller than in the heating operation. The opening states of various valves (24c to 26, 28, 29c, 38 to 41, 43) other than the outdoor expansion valve (23) in the discharge operation are the same as those in FIG.

排出運転では、図9における室外膨張弁(23)の開度が加熱運転時よりも小さくなることにより、室外熱交換器(22)にて凝縮され該室外熱交換器(22)から流出した高圧冷媒は、室外膨張弁(23)にて減圧される。減圧された冷媒は、バイパス流路(31)に流入し、予熱用熱交換器(36)を介して蓄熱用熱交換器(37)に送られる。この時、予熱用熱交換器(36)及び蓄熱用熱交換器(37)は、蒸発器として機能する。そのため、予熱用熱交換器(36)の冷媒側通路(36a)から流出する冷媒(二相冷媒)は、二相冷媒中のガス冷媒の割合が、予熱用熱交換器(36)の冷媒側通路(36a)に流入する冷媒に比して高くなっている。予熱用熱交換器(36)の冷媒側通路(36a)から流出した冷媒は、第2開閉弁(39)及び逆止弁(39a)を介して蓄熱用熱交換器(37)の冷媒側通路(37a)に流入する。これにより、蓄熱用熱交換器(37)の冷媒側通路(37a)内に溜まっていた液冷媒は、ガス冷媒の割合の比較的多い二相冷媒により押し出され、蓄熱用熱交換器(37)の冷媒側通路(37a)から流出される。   In the discharge operation, when the opening of the outdoor expansion valve (23) in FIG. 9 is smaller than that in the heating operation, the high pressure that is condensed in the outdoor heat exchanger (22) and flows out of the outdoor heat exchanger (22). The refrigerant is depressurized by the outdoor expansion valve (23). The decompressed refrigerant flows into the bypass flow path (31) and is sent to the heat storage heat exchanger (37) via the preheating heat exchanger (36). At this time, the preheating heat exchanger (36) and the heat storage heat exchanger (37) function as an evaporator. Therefore, the refrigerant (two-phase refrigerant) flowing out from the refrigerant-side passage (36a) of the preheating heat exchanger (36) has a ratio of gas refrigerant in the two-phase refrigerant that is on the refrigerant side of the preheating heat exchanger (36). It is higher than the refrigerant flowing into the passage (36a). The refrigerant flowing out from the refrigerant side passage (36a) of the preheating heat exchanger (36) passes through the second on-off valve (39) and the check valve (39a), and then the refrigerant side passage of the heat storage heat exchanger (37). Flows into (37a). As a result, the liquid refrigerant accumulated in the refrigerant side passage (37a) of the heat storage heat exchanger (37) is pushed out by the two-phase refrigerant having a relatively high proportion of the gas refrigerant, and the heat storage heat exchanger (37) From the refrigerant side passage (37a).

蓄熱用熱交換器(37)から流出した液冷媒は、室内熱交換器(27)にて蒸発した後、圧縮機(21)に吸入される。   The liquid refrigerant flowing out of the heat storage heat exchanger (37) evaporates in the indoor heat exchanger (27) and then sucked into the compressor (21).

これにより、加熱運転によって生じた液冷媒の貯留現象は、排出運転により解消される。従って、ガス冷媒の室外熱交換器(22)への流入量不足は解消し、蓄冷運転や冷房蓄冷運転は安定して行われることになる。   Thereby, the storage phenomenon of the liquid refrigerant caused by the heating operation is eliminated by the discharge operation. Therefore, the shortage of the inflow amount of the gas refrigerant to the outdoor heat exchanger (22) is solved, and the cold storage operation and the cooling and storage operation are performed stably.

ここで、上述した排出運転は、蓄熱用熱交換器(37)における液冷媒の貯留が解消するまで行われることが好ましい。そこで、本実施形態に係るコントローラ(100)は、室外熱交換器(22)の出口における冷媒の過冷却度が所定値に達するまで、排出運転を実行させる。排出運転中に、室外熱交換器(22)の出口における冷媒の過冷却度が所定値に達した場合、コントローラ(100)は、排出運転を終了する。   Here, the above-described discharge operation is preferably performed until the storage of the liquid refrigerant in the heat storage heat exchanger (37) is eliminated. Therefore, the controller (100) according to the present embodiment executes the discharge operation until the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger (22) reaches a predetermined value. If the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger (22) reaches a predetermined value during the discharge operation, the controller (100) ends the discharge operation.

室外熱交換器(22)の出口における冷媒の過冷却度が所定値に達していないということは、蓄熱用熱交換器(37)内に液冷媒が依然として溜められていることを意味する。それ故、本実施形態のコントローラ(100)は、室外熱交換器(22)の出口における冷媒の過冷却度が所定値に達したことで、蓄熱用熱交換器(37)から配管(14d)における液冷媒の貯留が解消したためにガス冷媒の室外熱交換器(22)への流入量が充足したと判断し、排出運転を終了する。   The fact that the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger (22) does not reach the predetermined value means that the liquid refrigerant is still stored in the heat storage heat exchanger (37). Therefore, the controller (100) of the present embodiment is configured so that the refrigerant subcooling degree at the outlet of the outdoor heat exchanger (22) has reached a predetermined value, so that the heat storage heat exchanger (37) is connected to the pipe (14d). It is determined that the amount of gas refrigerant flowing into the outdoor heat exchanger (22) has been satisfied because the storage of the liquid refrigerant has been eliminated, and the discharge operation is terminated.

蓄熱式空気調和機(10)は、排出運転の終了後、蓄冷運転や冷房蓄冷運転を直ちに行うことができる。   The heat storage type air conditioner (10) can immediately perform a cold storage operation or a cooling / storage operation after the end of the discharge operation.

<効果>
本実施形態では、室外熱交換器(22)から流出した冷媒を用いて蓄熱用熱交換器(37)にて蓄熱媒体を加熱する加熱運転の終了後、室外膨張弁(23)にて減圧された後の冷媒を蓄熱用熱交換器(37)に送る排出運転が行われる。この排出運転では、蓄熱用熱交換器(37)には、気液二相状態の冷媒が流入し、この気液二相状態の冷媒は、加熱運転によって蓄熱用熱交換器(37)内に溜められた液状態の冷媒を該蓄熱用熱交換器(37)から流出させる。これにより、蓄熱用熱交換器(37)に液状態の冷媒が溜められた状態は解消する。従って、ガス冷媒の室外熱交換器(22)への流入量不足は解消するため、排出運転後に蓄冷運転や冷房蓄冷運転が行われても、蓄熱用熱交換器(37)は蓄熱媒体を十分に冷却することができ、安定した蓄冷運転が実現される。
<Effect>
In this embodiment, after the heating operation of heating the heat storage medium in the heat storage heat exchanger (37) using the refrigerant flowing out of the outdoor heat exchanger (22), the pressure is reduced in the outdoor expansion valve (23). After that, a discharge operation is performed in which the refrigerant is sent to the heat storage heat exchanger (37). In this discharge operation, the gas-liquid two-phase refrigerant flows into the heat storage heat exchanger (37), and the gas-liquid two-phase refrigerant flows into the heat storage heat exchanger (37) by the heating operation. The stored refrigerant in the liquid state is caused to flow out of the heat storage heat exchanger (37). As a result, the state where the liquid state refrigerant is stored in the heat storage heat exchanger (37) is eliminated. Therefore, insufficiency of the amount of gas refrigerant flowing into the outdoor heat exchanger (22) is resolved, so the heat storage heat exchanger (37) has sufficient heat storage medium even if cold storage or cooling storage operation is performed after the discharge operation. It is possible to cool the battery, and a stable cold storage operation is realized.

また、本実施形態の排出運転は、該排出運転中に室外熱交換器(22)の出口における冷媒の過冷却度が所定値に達した場合に終了する。室外熱交換器(22)の出口における冷媒の過冷却度が所定値に達した場合とは、蓄熱用熱交換器(37)内に液状態の冷媒が溜められている状態が解消していることに相当する。つまり、本実施形態では、蓄熱用熱交換器(37)内に液状態の冷媒が溜められている状態を確実に解消させることができた時に、排出運転が終了する。従って、排出運転後、蓄熱用熱交換器(37)は、蓄熱媒体を十分に冷却することができる状態となっている。   Moreover, the discharge operation of this embodiment is complete | finished when the supercooling degree of the refrigerant | coolant in the exit of an outdoor heat exchanger (22) reaches a predetermined value during this discharge operation. When the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger (22) reaches a predetermined value, the state in which liquid refrigerant is stored in the heat storage heat exchanger (37) has been eliminated. It corresponds to that. In other words, in the present embodiment, the discharge operation ends when the state in which the liquid state refrigerant is stored in the heat storage heat exchanger (37) can be reliably eliminated. Therefore, after the discharge operation, the heat storage heat exchanger (37) is in a state in which the heat storage medium can be sufficiently cooled.

また、本実施形態では、排出運転時、室外膨張弁(23)にて減圧された後の冷媒が予熱用熱交換器(36)に流入される。予熱用熱交換器(36)から流出する二相冷媒は、予熱用熱交換器(36)に流入する状態に比して、ガス冷媒の割合が多くなっており、当該冷媒が蓄熱用熱交換器(37)に流入される。これにより、加熱運転によって蓄熱用熱交換器(37)内に溜められた液冷媒は、比較的ガス冷媒の割合が多い二相冷媒によって蓄熱用熱交換器(37)から押し出される。   In the present embodiment, the refrigerant after being decompressed by the outdoor expansion valve (23) flows into the preheating heat exchanger (36) during the discharge operation. The two-phase refrigerant flowing out of the preheating heat exchanger (36) has a larger proportion of gas refrigerant than the state of flowing into the preheating heat exchanger (36), and the refrigerant exchanges heat for heat storage. Into the vessel (37). Thereby, the liquid refrigerant stored in the heat storage heat exchanger (37) by the heating operation is pushed out of the heat storage heat exchanger (37) by the two-phase refrigerant having a relatively large proportion of the gas refrigerant.

≪その他の実施形態≫
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.

蓄熱媒体は、冷却により包接水和物を生成する媒体であれば良く、臭化テトラnブチルアンモニウムを含有する臭化テトラnブチルアンモニウム水溶液以外の蓄熱材であっても良い。   The heat storage medium may be a medium that generates clathrate hydrates by cooling, and may be a heat storage material other than tetra nbutyl ammonium bromide aqueous solution containing tetra n butyl ammonium bromide.

蓄熱媒体の濃度は、40%に限定されずとも良い。   The concentration of the heat storage medium may not be limited to 40%.

上記実施形態では、加熱運転が蓄冷運転から切り換えられた場合と冷房蓄冷運転から切り換えられた場合とで、室内ファン(27a)の運転動作を異ならせているが、これに限定されない。室内ファン(27a)の運転動作は、どのような種類の運転から加熱運転に切り換えられたかに関係なく常に同じであってもよい。また、冷房蓄冷運転から切り換えられた加熱運転の場合、室内ファン(27a)は運転を停止してもよいし、蓄冷運転から切り換えられた加熱運転の場合、室内ファン(27a)は運転させてもよい。   In the above embodiment, the operation of the indoor fan (27a) is different depending on whether the heating operation is switched from the cold storage operation or the cooling operation. However, the present invention is not limited to this. The operation of the indoor fan (27a) may always be the same regardless of what type of operation is switched to the heating operation. Moreover, in the heating operation switched from the cooling / storage operation, the indoor fan (27a) may stop the operation, or in the heating operation switched from the cold storage operation, the indoor fan (27a) may be operated. Good.

また、加熱運転は、上記実施形態にて説明した運転に限定されない。加熱運転は、四方切換弁(28)が第1状態を採る正サイクルにて冷媒が循環することにより行われる運転であればよい。   Further, the heating operation is not limited to the operation described in the above embodiment. The heating operation may be an operation performed by circulating the refrigerant in the forward cycle in which the four-way switching valve (28) takes the first state.

また、排出運転の終了条件は、室外熱交換器(22)の出口における冷媒の過冷却度が所定値に達した場合に限定されずとも良い。   Further, the end condition of the discharge operation may not be limited to a case where the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger (22) reaches a predetermined value.

また、排出運転時、室外膨張弁(23)にて減圧された後の冷媒は、予熱用熱交換器(36)を介さずに蓄熱用熱交換器(37)に送られてもよい。   Further, during the discharge operation, the refrigerant after being decompressed by the outdoor expansion valve (23) may be sent to the heat storage heat exchanger (37) without going through the preheating heat exchanger (36).

以上説明したように、本発明は、蓄熱回路と冷媒回路とを備えた蓄熱式空気調和機について有用である。   As described above, the present invention is useful for a heat storage type air conditioner including a heat storage circuit and a refrigerant circuit.

10 蓄熱式空気調和機
11 冷媒回路
21 圧縮機
22 室外熱交換器
23 室外膨張弁
27 室内膨張弁
27a 室内ファン
36 予熱用熱交換器
37 蓄熱用熱交換器
61 蓄熱回路
62 蓄熱タンク
63 循環ポンプ(ポンプ)
100 コントローラ(運転制御部)
10 Thermal storage air conditioner
11 Refrigerant circuit
21 Compressor
22 Outdoor heat exchanger
23 Outdoor expansion valve
27 Indoor expansion valve
27a Indoor fan
36 Heat exchanger for preheating
37 Heat exchanger for heat storage
61 Thermal storage circuit
62 Thermal storage tank
63 Circulation pump (pump)
100 Controller (Operation control unit)

Claims (3)

冷却によって包接水和物が生成される蓄熱媒体を貯留する蓄熱タンク(62)と、蓄熱媒体の冷却と加熱とが可能な蓄熱用熱交換器(37)と、上記蓄熱タンク(62)と上記蓄熱用熱交換器(37)との間で蓄熱媒体を循環させるポンプ(63)と、を有する蓄熱回路(61)と、
圧縮機(21)と、室外熱交換器(22)と、室外膨張弁(23)と、冷媒と蓄熱媒体とを熱交換させる上記蓄熱用熱交換器(37)と、室内熱交換器(27)とを有する冷媒回路(11)と、
上記蓄熱用熱交換器(37)において蓄熱媒体が冷却されて包接水和物が生成されると、上記室外熱交換器(22)から流出した冷媒を上記蓄熱用熱交換器(37)へ送って蓄熱媒体を加熱する加熱運転、を実行させる運転制御部(100)と
を備え、
上記運転制御部(100)は、上記加熱運転の終了後、上記室外膨張弁(23)にて減圧された後の冷媒を上記蓄熱用熱交換器(37)へ送ることで、上記加熱運転によって上記蓄熱用熱交換器(37)に溜まった液冷媒を排出する排出運転、を実行させる
ことを特徴とする蓄熱式空気調和機。
A heat storage tank (62) for storing a heat storage medium in which clathrate hydrate is generated by cooling, a heat storage heat exchanger (37) capable of cooling and heating the heat storage medium, and the heat storage tank (62) A heat storage circuit (61) having a pump (63) for circulating a heat storage medium between the heat storage heat exchanger (37), and
A compressor (21), an outdoor heat exchanger (22), an outdoor expansion valve (23), the heat storage heat exchanger (37) for exchanging heat between the refrigerant and the heat storage medium, and an indoor heat exchanger (27 A refrigerant circuit (11) having
When the heat storage medium is cooled and the clathrate hydrate is generated in the heat storage heat exchanger (37), the refrigerant flowing out of the outdoor heat exchanger (22) is transferred to the heat storage heat exchanger (37). An operation control unit (100) for executing a heating operation for sending and heating the heat storage medium,
After the heating operation is completed, the operation control unit (100) sends the refrigerant after being depressurized by the outdoor expansion valve (23) to the heat storage heat exchanger (37), thereby performing the heating operation. A heat storage type air conditioner that performs a discharge operation for discharging the liquid refrigerant accumulated in the heat storage heat exchanger (37).
請求項1において、
上記運転制御部(100)は、上記排出運転中に上記室外熱交換器(22)の出口における冷媒の過冷却度が所定値に達した場合、上記排出運転を終了する
ことを特徴とする蓄熱式空気調和機。
In claim 1,
The operation control unit (100) terminates the discharge operation when the degree of supercooling of the refrigerant at the outlet of the outdoor heat exchanger (22) reaches a predetermined value during the discharge operation. Type air conditioner.
請求項1または請求項2において、
上記冷媒回路(11)は、上記室外膨張弁(23)と上記蓄熱用熱交換器(37)との間に接続された予熱用熱交換器(36)を更に有し、
上記排出運転時、上記室外膨張弁(23)にて減圧された後の冷媒は、上記予熱用熱交換器(36)を介して上記蓄熱用熱交換器(37)に送られる
ことを特徴とする蓄熱式空気調和機。
In claim 1 or claim 2,
The refrigerant circuit (11) further includes a preheating heat exchanger (36) connected between the outdoor expansion valve (23) and the heat storage heat exchanger (37),
During the discharge operation, the refrigerant after being depressurized by the outdoor expansion valve (23) is sent to the heat storage heat exchanger (37) via the preheating heat exchanger (36). A regenerative air conditioner.
JP2014265381A 2014-12-26 2014-12-26 Storage air conditioner Pending JP2016125716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014265381A JP2016125716A (en) 2014-12-26 2014-12-26 Storage air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014265381A JP2016125716A (en) 2014-12-26 2014-12-26 Storage air conditioner

Publications (1)

Publication Number Publication Date
JP2016125716A true JP2016125716A (en) 2016-07-11

Family

ID=56359254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014265381A Pending JP2016125716A (en) 2014-12-26 2014-12-26 Storage air conditioner

Country Status (1)

Country Link
JP (1) JP2016125716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112944613A (en) * 2021-01-29 2021-06-11 青岛海尔空调器有限总公司 Control method and device for air conditioner and air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112944613A (en) * 2021-01-29 2021-06-11 青岛海尔空调器有限总公司 Control method and device for air conditioner and air conditioner
CN112944613B (en) * 2021-01-29 2022-11-15 青岛海尔空调器有限总公司 Control method and device for air conditioner and air conditioner

Similar Documents

Publication Publication Date Title
JP6052380B2 (en) Thermal storage air conditioner
JP5327308B2 (en) Hot water supply air conditioning system
JP6048566B2 (en) Thermal storage air conditioner
JP2010196950A (en) Heat pump system
EP2902726B1 (en) Combined air-conditioning and hot-water supply system
JP6020549B2 (en) Thermal storage air conditioner
JP2014126350A (en) Air conditioner
JP6020550B2 (en) Thermal storage air conditioner
JP2013083439A (en) Hot water supply air conditioning system
JP2013083439A5 (en)
JP2015068620A (en) Air conditioner
JP2016125725A (en) Heat storage type air conditioner
JP6020548B2 (en) Thermal storage air conditioner
JP2016125714A (en) Heat storage type air conditioner
JP2016125716A (en) Storage air conditioner
JP2016125717A (en) Storage air conditioner
JP2016125727A (en) Heat storage type air conditioner
WO2016103726A1 (en) Heat-storage-type air conditioner
JP2016125713A (en) Storage air conditioner
JP2016125719A (en) Heat storage type air conditioner
JP2015210025A (en) Cold storage system and air conditioning system
JP2015210029A (en) Heat storage system and air conditioning system
JP2016125729A (en) Heat storage type air conditioner
JP6052275B2 (en) Thermal storage air conditioner
JP2015210028A (en) Heat storage system and air conditioning system