WO2016103398A1 - Exhaust sensor management device and management method - Google Patents
Exhaust sensor management device and management method Download PDFInfo
- Publication number
- WO2016103398A1 WO2016103398A1 PCT/JP2014/084323 JP2014084323W WO2016103398A1 WO 2016103398 A1 WO2016103398 A1 WO 2016103398A1 JP 2014084323 W JP2014084323 W JP 2014084323W WO 2016103398 A1 WO2016103398 A1 WO 2016103398A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust sensor
- control unit
- exhaust
- state quantity
- sensor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D45/00—Electrical control not provided for in groups F02D41/00 - F02D43/00
Definitions
- the present invention relates to an exhaust sensor management apparatus and management method.
- the exhaust sensor is exposed to exhaust gas, for example, the deterioration level slowly proceeds due to exhaust heat, poisoning due to impurities, and the like.
- the conventional technology cannot grasp the deterioration level of the exhaust sensor, if the deterioration level of the exhaust sensor progresses to some extent, the detection accuracy decreases, and it becomes difficult to maintain the harmful substances in the exhaust below the reference level. End up.
- an object of the present invention is to provide an exhaust sensor management device and a management method capable of grasping the deterioration level of the exhaust sensor.
- a control unit capable of reading the output of an exhaust sensor that detects one state quantity of the engine exhaust property estimates and detects one state quantity of the engine exhaust property based on the operating state of the engine.
- the deterioration level of the exhaust sensor is diagnosed based on a comparison between the state quantity and the estimated state quantity.
- the deterioration level of the exhaust sensor can be grasped.
- FIG. 1 shows an example of an engine system mounted on a vehicle such as a truck.
- an air cleaner 130 In the intake pipe 120 connected to the intake manifold 110 of the diesel engine 100, an air cleaner 130, a compressor 142 of the turbocharger 140, an intercooler 150, and an intake throttle 160 are arranged in this order along the intake air circulation direction. .
- the air cleaner 130 removes dust and the like in the air with an air element (not shown) built in the casing.
- the turbocharger 140 supercharges the intake air that has passed through the air cleaner 130 with a compressor 142 that rotationally drives using exhaust energy.
- the intercooler 150 cools the intake air that has passed through the compressor 142 of the turbocharger 140 using, for example, traveling wind and cooling water.
- the intake throttle 160 reduces vibration generated when the diesel engine 100 is stopped, for example, by restricting intake air when the diesel engine 100 is stopped.
- a turbine 144 of the turbocharger 140 In the exhaust pipe 180 connected to the exhaust manifold 170 of the diesel engine 100, a turbine 144 of the turbocharger 140, a continuously regenerating diesel particulate filter (DieselicParticulate Filter, hereinafter referred to as “DPF”) is arranged along the exhaust flow direction.
- DPF diesel particulate filter
- the apparatus 190, the SCR (Selective Catalytic Reduction) converter 200, and the oxidation catalytic converter 210 are arranged in this order.
- the continuous regeneration type DPF device 190 collects and removes a DOC (Diesel Oxidation Catalyst) converter 192 that oxidizes at least NO (nitrogen monoxide) into NO 2 (nitrogen dioxide) and PM (Particulate Matter) in the exhaust gas.
- DPF 194 to be included.
- a CSF Catalyzed Soot Filter
- the SCR converter 200 uses Fe (iron) or Ce (cerium) as an active species and receives, for example, supply of ammonia functioning as a reducing agent, and selectively reduces and purifies NOx in the exhaust gas.
- the oxidation catalytic converter 210 oxidizes the reducing agent that has passed through the SCR converter 200.
- An injection nozzle 220 for injecting and supplying a urea aqueous solution as an example of a liquid reducing agent precursor is attached to the exhaust pipe 180 positioned between the continuous regeneration type DPF device 190 and the SCR converter 200.
- the urea aqueous solution stored in the reducing agent tank 230 is supplied to the injection nozzle 220 via the reducing agent adding device 240 having at least a pump and a flow rate control valve built therein.
- the reducing agent adding device 240 may be divided into two parts: a pump module having at least a pump and a dosing module having at least a flow rate control valve.
- the diesel engine 100 is equipped with an EGR (Exhaust Gas Recirculation) system 250 that reduces NOx by lowering the combustion temperature by introducing a part of the exhaust gas into the intake system and recirculating it.
- the EGR system 250 includes an EGR pipe 252 for introducing a part of the exhaust gas flowing through the exhaust pipe 180 into the intake pipe 120, an EGR cooler 254 for cooling the exhaust gas (EGR gas) flowing through the EGR pipe 252, and the intake pipe 120.
- an EGR control valve 256 for controlling the EGR rate of the EGR gas to be introduced.
- the EGR control valve 256 is disposed downstream of the EGR cooler 254, that is, at a location where the EGR gas that has passed through the EGR cooler 254 is introduced into the intake pipe 120.
- the diesel engine 100 is connected to both ends of a cooling water pipe 270 provided with a radiator 260 so as to communicate, for example, a cooling water inlet and a cooling water outlet formed in the cylinder head.
- An exhaust pipe 180 positioned between the continuous regeneration type DPF device 190 and the injection nozzle 220 includes a temperature sensor 280 for detecting the temperature (exhaust temperature) Te of the exhaust, and a first NOx sensor for detecting the NOx concentration C in the exhaust. 290, respectively. Further, a second NOx sensor 300 for detecting the NOx concentration C in the exhaust is attached to the exhaust pipe 180 located downstream of the oxidation catalytic converter 210. Furthermore, a rotational speed sensor 310 that detects the rotational speed Ne of the diesel engine 100, a load sensor 320 that detects the load Q of the diesel engine 100, and an intake air humidity (intake humidity) H are detected at predetermined locations of the vehicle. A humidity sensor 330 is attached to each.
- the load Q of the diesel engine 100 for example, a state quantity closely related to the torque, such as a fuel injection amount, an accelerator opening degree, an intake air flow rate, and a supercharging pressure can be used.
- a state quantity closely related to the torque such as a fuel injection amount, an accelerator opening degree, an intake air flow rate, and a supercharging pressure.
- the NOx sensor 290 includes a sensor body 292 having a concentration detection unit 292A built in the tip, a controller 294 that controls the operation of the concentration detection unit 292A and converts the output voltage into a concentration signal. And a connector 296 for connecting to a control system of the vehicle.
- the sensor body 292 and the controller 294, and the controller 294 and the connector 296 are connected by a cable 298 including a power supply line, a signal line, and the like, respectively.
- the sensor body 292 includes a density detector 292A and a metal cover 292B that covers the periphery of the density detector 292A.
- the concentration detection unit 292A outputs a voltage signal that is substantially proportional to the NOx concentration in the exhaust gas by using, for example, oxygen ion conductivity of zirconia (ZrO 2 ).
- the peripheral wall of the cover 292B is formed with a plurality of exhaust outlets 292C for introducing exhaust into the internal space and leading out the exhaust from the internal space.
- the concentration detection unit 292A includes a laminated structure of zirconia solid electrolyte, and has two internal spaces, three oxygen pumps, and a heater.
- a pair of electrodes functioning as a first oxygen pump is disposed in the first space, and by applying a predetermined voltage between the electrodes, oxygen is removed from the first space and a combustible gas (HC, CO) is obtained. , H 2 ) to make the oxygen concentration level of several ppm in the first space.
- HC, CO combustible gas
- a second oxygen pump and a measurement pump are arranged in the second space arranged at the back of the first space, and after removing oxygen from the second space by the second oxygen pump, NO is converted into O 2 and N
- the oxygen partial pressure proportional to the NOx concentration in the exhaust gas is measured with a measuring pump.
- the heater of the concentration detector 292A maintains the zirconia solid electrolyte at a predetermined activation temperature or higher.
- a plurality of Peltier elements 292D are attached to the outer periphery of the concentration detector 292A and extend outward from the concentration detector 292A so as to come into contact with the inner peripheral surface of the cover 292B.
- Each Peltier element 292D is connected to the driver of the controller 294 via a pair of wiring patterns 292E printed on the density detection unit 292A. For this reason, the concentration detector 292A can be cooled or the concentration detector 292A can be heated by changing the polarity of the voltage applied to the Peltier element 292D by the controller 294.
- the cover 292B not only protects the concentration detection unit 292A but also serves as a heat sink for heat dissipation, for example. It can also function.
- the Peltier element 292D is an example of a thermoelectric conversion element.
- the NOx sensor 290 has a built-in or attached temperature sensor (not shown) for detecting the temperature (sensor temperature) Ts of the concentration detection unit 292A.
- the output signal of this temperature sensor is output together with the NOx concentration C.
- the output signals of the temperature sensor 280, the first NOx sensor 290, the second NOx sensor 300, the rotation speed sensor 310, the load sensor 320 and the humidity sensor 330 are input to a control unit 340 incorporating a microcomputer.
- the control unit 340 includes a processor A such as a CPU (Central Processing Unit), a nonvolatile memory B such as a flash ROM (Read Only Memory), and a volatile memory such as a RAM (Random Access Memory).
- a processor A such as a CPU (Central Processing Unit)
- a nonvolatile memory B such as a flash ROM (Read Only Memory)
- a volatile memory such as a RAM (Random Access Memory).
- C an input / output circuit D serving as an interface with an external device, and a bus E that connects these to each other so as to communicate with each other.
- the control unit 340 obtains an EGR amount corresponding to the rotational speed Ne and the load Q, and outputs an operation amount corresponding to the EGR amount to the EGR control valve 256, thereby electronically controlling the EGR system 250. Further, the control unit 340 obtains the urea aqueous solution addition amount according to the exhaust temperature Te, the rotational speed Ne, and the load Q, and outputs an operation amount according to the addition amount to the reducing agent addition device 240, thereby enabling the diesel engine 100 exhaust emission control devices are electronically controlled.
- control unit 340 obtains the NOx purification rate based on the NOx concentration C upstream of the SCR converter 200 and the NOx concentration C downstream of the oxidation catalyst converter 210, and the amount of urea aqueous solution added is determined according to the NOx purification rate. It can be corrected.
- control unit 340 diagnoses the deterioration levels of the first NOx sensor 290 and the second NOx sensor 300, and electronically controls the alarm device 350 and the monitor 360, respectively, and delays the progress of the deterioration level according to the diagnosis results. Perform as necessary.
- the alarm 350 for example, a buzzer, a warning light, or the like can be used.
- the monitor 360 for example, a monitor of a navigation system, a multi-information display, or the like can be used.
- the exhaust of the diesel engine 100 is introduced into the DOC converter 192 of the continuous regeneration type DPF device 190 through the exhaust manifold 170 and the turbine 144 of the turbocharger 140.
- the exhaust gas introduced into the DOC converter 192 flows to the DPF 194 while NO is oxidized to NO 2 .
- NO is oxidized to NO 2 .
- PM in the exhaust gas is removed, and PM is continuously oxidized (incinerated) using NO 2 generated by the DOC converter 192.
- the urea aqueous solution supplied (added) from the injection nozzle 220 according to the engine operating state is hydrolyzed using exhaust heat and water vapor in the exhaust, and converted into ammonia that functions as a reducing agent. It is known that this ammonia is selectively reduced with NOx in the exhaust gas in the SCR converter 200 and purified to harmless H 2 O (water) and N 2 (nitrogen). At this time, NO is oxidized to NO 2 by the DOC converter 192, and the ratio of NO to NO 2 in the exhaust gas is improved to be suitable for the selective reduction reaction, so that the NOx purification rate in the SCR converter 200 is improved. be able to.
- the ammonia that has passed through the SCR converter 200 is oxidized by the oxidation catalytic converter 210 disposed downstream of the exhaust gas, so that the ammonia can be prevented from being released into the atmosphere as it is.
- FIG. 5 shows an example of sensor management processing for the first NOx sensor 290 and the second NOx sensor 300, which is repeatedly executed by the processor A of the control unit 340 when the control unit 340 is activated.
- the processor A of the control unit 340 executes sensor management processing for each of the first NOx sensor 290 and the second NOx sensor 300 in accordance with, for example, a control program stored in the nonvolatile memory B.
- step 1 the processor A of the control unit 340 executes a subroutine (FIG. 6) for diagnosing the deterioration level of the NOx sensor 290.
- the subroutine for diagnosing the deterioration level of the NOx sensor 290 calculates, for example, a deterioration level that represents the deterioration from the unused state as a numerical value in order to express the deterioration level objectively.
- step 2 the processor A of the control unit 340 determines whether or not the deterioration level of the NOx sensor 290 has reached the predetermined level Ld, that is, whether or not the deterioration level has become higher than the predetermined level Ld.
- the predetermined level Ld is a threshold value for determining that the deterioration level of the NOx sensor 290 has progressed and the replacement time of the NOx sensor 290 is approaching. For example, the design level of the NOx sensor 290 is considered. Can be determined. If the processor A of the control unit 340 determines that the deterioration level has reached the predetermined level Ld (Yes), the process proceeds to step 3. On the other hand, if the processor A of the control unit 340 determines that the deterioration level has not reached the predetermined level Ld (No), the processor A ends the processing.
- step 3 the processor A of the control unit 340 activates the notification device 350 to notify that the deterioration level of the NOx sensor 290 has progressed to some extent, that is, that the replacement time of the NOx sensor 290 is approaching. Further, the processor A of the control unit 340 estimates the distance that the NOx sensor 290 can travel before reaching the end of its life based on the deterioration level, and causes the display device 360 to display the estimated distance. The distance that the NOx sensor 290 can travel before reaching the end of its life can be obtained by creating a map in which the degradation level and the distance that can be traveled are associated with each other by, for example, experiments or simulations.
- the vehicle driver or the like can recognize that the replacement timing of the NOx sensor 290 is approaching, and perform planned maintenance before the end of the service life, for example, according to the distance that can be traveled. Can do. Then, by performing planned maintenance or the like, the NOx sensor 290 is prevented from suddenly failing, and the operating rate of the vehicle can be improved.
- step 4 the processor A of the control unit 340 pauses the NOx sensor 290.
- the built-in heater is also paused in order to suppress the progress of the deterioration level during the pause.
- the processor A of the control unit 340 refers to, for example, a map in which the NOx concentration according to the rotational speed and the load of the diesel engine 100 is set, and estimates the NOx concentration according to the rotational speed Ne and the load Q. .
- the processor A of the control unit 340 executes various controls based on the estimated NOx concentration instead of the output value of the NOx sensor 290.
- the processor A of the control unit 340 outputs, for example, the estimated NOx concentration to the engine control unit that electronically controls the diesel engine 100. You can also.
- step 6 the processor A of the control unit 340 determines whether or not the temperature of the concentration detector 292A of the NOx sensor 290, that is, the sensor temperature Ts is higher than a predetermined temperature Tc.
- the predetermined temperature Tc is used to determine whether or not the NOx sensor 290 receives heat from the exhaust and the temperature of the concentration detection unit 292A rises and the deterioration level may progress.
- the threshold value can be determined in consideration of the heat resistance performance of the NOx sensor 290, for example. If the processor A of the control unit 340 determines that the sensor temperature Ts is higher than the predetermined temperature Tc (Yes), the process proceeds to step 7. On the other hand, if the processor A of the control unit 340 determines that the sensor temperature Ts is equal to or lower than the predetermined temperature Tc (No), the process proceeds to step 8.
- step 7 the processor A of the control unit 340 operates the Peltier element 292D to cool the concentration detection unit 292A of the NOx sensor 290. At this time, if the processor A of the control unit 340 operates the Peltier element 292D so that the sensor temperature Ts becomes lower than the exhaust temperature T, the thermal degradation can be effectively delayed. Further, since the Peltier element 292D operates when the sensor temperature Ts is higher than the predetermined temperature Tc, the power consumed by the Peltier element 292D can be suppressed.
- Step 8 it is determined whether or not the processor A of the control unit 340 has stopped the NOx sensor 290 for a predetermined time.
- the predetermined time defines the time during which the NOx sensor 290 is paused, and can be changed according to the deterioration level of the NOx sensor 290, for example. Specifically, the predetermined time can take a value that gradually increases as the deterioration level of the NOx sensor 290 progresses. If the processor A of the control unit 340 determines that the NOx sensor 290 is paused for a predetermined time (Yes), the process proceeds to step 9. On the other hand, if the processor A of the control unit 340 determines that the NOx sensor 290 is not paused for a predetermined time (No), the process returns to step 5.
- step 9 the processor A of the control unit 340 operates the NOx sensor 290. Since the NOx sensor 290 requires a certain amount of time until the concentration detection unit 292A is activated, the processor A of the control unit 340 uses or outputs the estimated NOx concentration until the concentration detection unit 292A is activated. You may do it.
- FIG. 6 shows an example of a subroutine for diagnosing the deterioration level of the NOx sensor 290.
- the processor A of the control unit 340 reads the NOx concentration from the NOx sensor 290.
- the processor A of the control unit 340 refers to, for example, a map in which the NOx concentration according to the rotational speed and load of the diesel engine 100 is set, and estimates the NOx concentration according to the rotational speed Ne and the load Q.
- the NOx concentration set in the map can be a value in a state where the NOx sensor 290 has not deteriorated at all in order to represent standard data.
- step 13 the processor A of the control unit 340 compares the NOx concentration read in step 11 with the NOx concentration estimated in step 12, specifically, obtains a deviation between the two NOx concentrations.
- the NOx concentration estimated in step 12 is standard data, the deviation between the two NOx concentrations objectively represents the deterioration level with a number.
- the processor A of the control unit 340 determines the deterioration level of the NOx sensor 290 based on the comparison between the NOx concentration detected by the NOx sensor 290 and the NOx concentration estimated based on the engine operating state. Diagnose.
- the NOx concentration estimated based on the engine operating state is a standard NOx concentration based on the NOx sensor 290 in which no deterioration has occurred. Therefore, this and the NOx concentration detected by the NOx sensor 290 The deviation of is an objective representation of the deterioration level numerically. For this reason, before the NOx sensor 290 reaches the end of its life, the deterioration level of the concentration detection unit 292A can be grasped.
- the deterioration level of the NOx sensor 290 can be diagnosed by comparing the output signal of the first NOx sensor 290 and the output signal of the second NOx sensor 300, for example.
- the difference in the output signals of the sensors is small and it is difficult to diagnose the deterioration level. Therefore, if the estimated value of NOx concentration is compared with the actual measurement value, the deterioration level can be diagnosed independently for each NOx sensor 290. At this time, since the estimated value of the NOx concentration is an estimated value in the standard state, it varies according to the intake humidity.
- the estimated value of the NOx concentration can be corrected based on the intake humidity H detected by the humidity sensor 330.
- the correction value for correcting the estimated value of the NOx concentration can be obtained through experiments, simulations, and the like, for example.
- the processor A of the control unit 340 operates the alarm 350 and the replacement timing of the NOx sensor 290 is approaching the driver of the vehicle. Is notified. For this reason, the driver of the vehicle can recognize that the replacement time of the NOx sensor 290 is approaching. At this time, in addition to the NOx sensor 290, the driver of the vehicle can also check whether there is an abnormality in other parts. This is because it may be diagnosed that the replacement time of the NOx sensor 290 is approaching due to an abnormality of other parts.
- the processor A of the control unit 340 estimates the distance that the NOx sensor 290 can travel before reaching the end of its life based on the deterioration level of the NOx sensor 290, and displays this on the monitor 360. For this reason, the driver of a vehicle etc. can perform planned maintenance before the NOx sensor 290 reaches the end of its life, for example, based on the distance displayed on the monitor 360.
- the processor A of the control unit 340 pauses the NOx sensor 290 for a predetermined time in order to suppress thermal deterioration of the NOx sensor 290.
- the concentration detector 292A is not heated by the heater, so that the time integral of the sensor temperature is reduced and the progress of thermal degradation of the NOx sensor 290 can be delayed. That is, the detection accuracy of the NOx sensor 290 gradually decreases as the elapsed time increases as shown in FIG. However, by stopping the NOx sensor 290, as shown in FIG. 8, the decrease in detection accuracy during the pause is moderated, and the deterioration level after a predetermined time has elapsed from A to B (A> B). The life of the NOx sensor 290 can be extended.
- the processor A of the control unit 340 estimates the NOx concentration based on the engine operating state, and executes various controls using the estimated NOx concentration. Therefore, even if the NOx sensor 290 is suspended, the influence on various controls can be suppressed. Note that the estimated value of the NOx concentration can be corrected based on the intake air humidity H.
- the estimated value of the NOx concentration is obtained from a standard model in a steady state, for example, there is a characteristic that the estimation accuracy in a transient state such as during acceleration is not good.
- the detection accuracy of the NOx sensor 290 gradually decreases due to deterioration or the like, it cannot follow the change in the transient state and cannot be omitted.
- the predetermined time during which the NOx sensor 290 is paused can be changed according to the progress of thermal deterioration of the NOx sensor 290. That is, the deterioration level of the NOx sensor 290 is closely related to the time until the life of the NOx sensor 290. Therefore, by gradually increasing the predetermined time as the deterioration level progresses, the time until the NOx sensor 290 reaches the life is reached. The time can be extended.
- the processor A of the control unit 340 operates the Peltier element 292D to cool the concentration detection unit 292D.
- the thermal deterioration of the concentration detection unit 292A has a correlation with the time integral value of the sensor temperature. For this reason, it is possible to further suppress thermal degradation by cooling the concentration detector 292A, and as shown in FIG. 9, the degradation level after a predetermined time elapses decreases from B to C (B> C), and the NOx sensor 290 It is possible to further extend the time until the end of the service life. At this time, the processor A of the control unit 340 can effectively extend the life of the NOx sensor 290 by making the sensor temperature lower than the exhaust temperature T.
- the processor A of the control unit 340 restarts the operation of the NOx sensor 290.
- the processor A of the control unit 340 promotes activation of the concentration detection unit 292A of the NOx sensor 290 by changing the polarity of the voltage applied to the Peltier element 292D when the sensor temperature Ts has not reached the activation temperature. be able to.
- the concentration detector 292A of the NOx sensor 290 is heated by exhaust heat through the cover 292B and the Peltier element 292D in addition to the heating by the heater, so that it can be activated in a short time to detect the NOx concentration. .
- the processor A of the control unit 340 maintains the concentration detection unit 292A of the NOx sensor 290 in a predetermined temperature range by appropriately changing the polarity of the voltage applied to the Peltier element 292D according to the sensor temperature Ts, for example. Can do. In this way, the output signal of the NOx sensor 290 having temperature dependency can be stabilized, and the detection accuracy can be improved.
- the DPF 194 of the continuous regeneration type DPF device 190 is continuously regenerated using the NO 2 generated by the DOC converter 192.
- the exhaust temperature T is relatively low for a long time, the regeneration process of the DPF 194 is not sufficiently performed, the amount of accumulated PM increases, and clogging occurs. For example, fuel consumption decreases due to an increase in back pressure. End up.
- a forced regeneration process is executed in which the exhaust gas temperature is raised by a known means to forcibly incinerate the PM deposited on the DPF 194.
- whether or not clogging has occurred in the DPF 194 can be determined, for example, based on whether or not the differential pressure between the upstream side and the downstream side of the DPF 194 has become a predetermined value or more.
- the DOC converter 192 needs to carry many platinum group metals such as Pt (platinum) and Pd (palladium). . Therefore, it is conceivable to use an SCR converter 200 using Cu (copper) as an active species, which has an excellent NOx purification rate in a low temperature range.
- the SCR converter 200 using Cu as the active species has a lower NOx purification rate in the high temperature range than the SCR converter 200 using Fe or Ce as the active species. Therefore, it is necessary to increase the EGR rate of the diesel engine 100 to reduce the NOx emission amount.
- the PM emission amount increases, the progress of clogging of the DPF 194 is accelerated.
- the ratio of the inflow area and the outflow area is asymmetric, specifically, the inflow area is larger than the outflow area.
- silicon carbide (SiC) -based or aluminum titanate (Al 2 TiO 5 ) -based counteracts clogging progress.
- the engine system is not limited to the diesel engine 100, and a gasoline engine or the like can also be used.
- the exhaust sensor is not limited to the NOx sensor 290, but may be a sensor that detects one state quantity of the exhaust property of the engine, such as an O 2 sensor or an air-fuel ratio sensor.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
An exhaust sensor management device includes an exhaust sensor for detecting one state quantity of engine exhaust characteristics, and a control unit incorporating a microcomputer. The control unit estimates the one state quantity of the engine exhaust characteristics on the basis of an engine operation state. The control unit also diagnoses a degradation level of the exhaust sensor on the basis of a comparison between the detected state quantity and the estimated state quantity.
Description
本発明は、排気センサの管理装置及び管理方法に関する。
The present invention relates to an exhaust sensor management apparatus and management method.
自動車などの車両では、排気中の有害物質を基準レベル以下に抑制するため、例えば、排気中の窒素酸化物(NOx)濃度、酸素(O2)濃度、空燃比(A/F)などを検出する排気センサの出力信号に基づいて、エンジンの燃料噴射量などが電子制御されている。この場合、排気センサに異常が発生すると、排気中の有害物質が基準レベルを越えてしまうおそれがあるので、特開2010―180843号公報(特許文献1)に記載されるように、排気センサの異常の有無を診断する技術が提案されている。
In vehicles such as automobiles, for example, nitrogen oxide (NOx) concentration, oxygen (O 2 ) concentration, air-fuel ratio (A / F), etc. in exhaust gas are detected in order to suppress harmful substances in exhaust gas to below the reference level. The fuel injection amount of the engine is electronically controlled based on the output signal of the exhaust sensor. In this case, if an abnormality occurs in the exhaust sensor, harmful substances in the exhaust may exceed the reference level. Therefore, as described in JP 2010-180843 A (Patent Document 1), Techniques for diagnosing the presence or absence of abnormalities have been proposed.
ところで、排気センサは、排気に晒されるため、例えば、排気熱、不純物による被毒などによって、ゆっくりと劣化レベルが進行する。しかし、従来の技術では、排気センサの劣化レベルを把握できないため、排気センサの劣化レベルがある程度進行すると検出精度が低下し、排気中の有害物質を基準レベル以下に維持することが困難となってしまう。
By the way, since the exhaust sensor is exposed to exhaust gas, for example, the deterioration level slowly proceeds due to exhaust heat, poisoning due to impurities, and the like. However, since the conventional technology cannot grasp the deterioration level of the exhaust sensor, if the deterioration level of the exhaust sensor progresses to some extent, the detection accuracy decreases, and it becomes difficult to maintain the harmful substances in the exhaust below the reference level. End up.
そこで、本発明は、排気センサの劣化レベルを把握できるようにした、排気センサの管理装置及び管理方法を提供することを目的とする。
Therefore, an object of the present invention is to provide an exhaust sensor management device and a management method capable of grasping the deterioration level of the exhaust sensor.
このため、エンジンの排気性状の1つの状態量を検出する排気センサの出力を読み込み可能なコントロールユニットが、エンジンの運転状態に基づいて、エンジンの排気性状の1つの状態量を推定し、検出された状態量と推定された状態量との比較に基づいて、排気センサの劣化レベルを診断する。
For this reason, a control unit capable of reading the output of an exhaust sensor that detects one state quantity of the engine exhaust property estimates and detects one state quantity of the engine exhaust property based on the operating state of the engine. The deterioration level of the exhaust sensor is diagnosed based on a comparison between the state quantity and the estimated state quantity.
本発明によれば、排気センサの劣化レベルを把握することができる。
According to the present invention, the deterioration level of the exhaust sensor can be grasped.
以下、添付された図面を参照し、本発明を実施するための実施形態について詳述する。
図1は、トラックなどの車両に搭載されたエンジンシステムの一例を示す。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an example of an engine system mounted on a vehicle such as a truck.
図1は、トラックなどの車両に搭載されたエンジンシステムの一例を示す。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an example of an engine system mounted on a vehicle such as a truck.
ディーゼルエンジン100の吸気マニフォールド110に接続された吸気管120には、吸気流通方向に沿って、エアクリーナ130、ターボチャージャ140のコンプレッサ142、インタークーラ150及び吸気スロットル160がこの順番で配設されている。
In the intake pipe 120 connected to the intake manifold 110 of the diesel engine 100, an air cleaner 130, a compressor 142 of the turbocharger 140, an intercooler 150, and an intake throttle 160 are arranged in this order along the intake air circulation direction. .
エアクリーナ130は、ケーシングに内蔵されたエアエレメント(図示せず)により空気中の埃などを除去する。ターボチャージャ140は、エアクリーナ130を通過した吸気を、排気エネルギーを利用して回転駆動するコンプレッサ142で過給する。インタークーラ150は、ターボチャージャ140のコンプレッサ142を通過した吸気を、例えば、走行風、冷却水を使用して冷却する。吸気スロットル160は、例えば、ディーゼルエンジン100の停止時に吸気を絞ることで、ディーゼルエンジン100の停止時に発生する振動を低減する。
The air cleaner 130 removes dust and the like in the air with an air element (not shown) built in the casing. The turbocharger 140 supercharges the intake air that has passed through the air cleaner 130 with a compressor 142 that rotationally drives using exhaust energy. The intercooler 150 cools the intake air that has passed through the compressor 142 of the turbocharger 140 using, for example, traveling wind and cooling water. The intake throttle 160 reduces vibration generated when the diesel engine 100 is stopped, for example, by restricting intake air when the diesel engine 100 is stopped.
ディーゼルエンジン100の排気マニフォールド170に接続された排気管180には、排気流通方向に沿って、ターボチャージャ140のタービン144、連続再生式ディーゼルパティキュレートフィルタ(Diesel Particulate Filter、以下「DPF」という。)装置190、SCR(Selective Catalytic Reduction)コンバータ200及び酸化触媒コンバータ210がこの順番で配設されている。
In the exhaust pipe 180 connected to the exhaust manifold 170 of the diesel engine 100, a turbine 144 of the turbocharger 140, a continuously regenerating diesel particulate filter (DieselicParticulate Filter, hereinafter referred to as “DPF”) is arranged along the exhaust flow direction. The apparatus 190, the SCR (Selective Catalytic Reduction) converter 200, and the oxidation catalytic converter 210 are arranged in this order.
連続再生式DPF装置190は、少なくともNO(一酸化窒素)をNO2(二酸化窒素)へと酸化させるDOC(Diesel Oxidation Catalyst)コンバータ192と、排気中のPM(Particulate Matter)を捕集して除去するDPF194と、を含む。ここで、DPF194としては、その表面に触媒(活性成分及び添加成分)を担持させたCSF(Catalyzed Soot Filter)を使用することもできる。SCRコンバータ200は、Fe(鉄)又はCe(セリウム)を活性種とし、例えば、還元剤として機能するアンモニアの供給を受けて、排気中のNOxを選択還元浄化する。酸化触媒コンバータ210は、SCRコンバータ200を通過した還元剤を酸化させる。
The continuous regeneration type DPF device 190 collects and removes a DOC (Diesel Oxidation Catalyst) converter 192 that oxidizes at least NO (nitrogen monoxide) into NO 2 (nitrogen dioxide) and PM (Particulate Matter) in the exhaust gas. DPF 194 to be included. Here, as the DPF 194, a CSF (Catalyzed Soot Filter) in which a catalyst (active component and additive component) is supported on the surface thereof can also be used. The SCR converter 200 uses Fe (iron) or Ce (cerium) as an active species and receives, for example, supply of ammonia functioning as a reducing agent, and selectively reduces and purifies NOx in the exhaust gas. The oxidation catalytic converter 210 oxidizes the reducing agent that has passed through the SCR converter 200.
連続再生式DPF装置190とSCRコンバータ200との間に位置する排気管180には、液体還元剤前駆体の一例としての尿素水溶液を噴射供給する噴射ノズル220が取り付けられている。還元剤タンク230に貯蔵された尿素水溶液は、少なくともポンプ及び流量制御弁が内蔵された還元剤添加装置240を介して、噴射ノズル220に供給される。ここで、還元剤添加装置240としては、少なくともポンプが内蔵されたポンプモジュールと、少なくとも流量制御弁が内蔵されたドージングモジュールと、に二分割されていてもよい。
An injection nozzle 220 for injecting and supplying a urea aqueous solution as an example of a liquid reducing agent precursor is attached to the exhaust pipe 180 positioned between the continuous regeneration type DPF device 190 and the SCR converter 200. The urea aqueous solution stored in the reducing agent tank 230 is supplied to the injection nozzle 220 via the reducing agent adding device 240 having at least a pump and a flow rate control valve built therein. Here, the reducing agent adding device 240 may be divided into two parts: a pump module having at least a pump and a dosing module having at least a flow rate control valve.
また、ディーゼルエンジン100には、排気の一部を吸気系に導入して再循環させることで、燃焼温度の低下によってNOxを低減する、EGR(Exhaust Gas Recirculation)システム250が取り付けられている。EGRシステム250は、排気管180を流れる排気の一部を吸気管120へと導入するためのEGR管252と、EGR管252を流れる排気(EGRガス)を冷却するEGRクーラ254と、吸気管120へと導入するEGRガスのEGR率を制御するEGR制御弁256と、を含む。ここで、EGR制御弁256は、EGRクーラ254の下流、即ち、EGRクーラ254を通過したEGRガスを吸気管120に導入する箇所に配設されている。
Also, the diesel engine 100 is equipped with an EGR (Exhaust Gas Recirculation) system 250 that reduces NOx by lowering the combustion temperature by introducing a part of the exhaust gas into the intake system and recirculating it. The EGR system 250 includes an EGR pipe 252 for introducing a part of the exhaust gas flowing through the exhaust pipe 180 into the intake pipe 120, an EGR cooler 254 for cooling the exhaust gas (EGR gas) flowing through the EGR pipe 252, and the intake pipe 120. And an EGR control valve 256 for controlling the EGR rate of the EGR gas to be introduced. Here, the EGR control valve 256 is disposed downstream of the EGR cooler 254, that is, at a location where the EGR gas that has passed through the EGR cooler 254 is introduced into the intake pipe 120.
さらに、ディーゼルエンジン100には、例えば、シリンダヘッドに形成された冷却水入口と冷却水出口とを連通するように、ラジエータ260が配設された冷却水配管270の両端部が接続されている。
Furthermore, the diesel engine 100 is connected to both ends of a cooling water pipe 270 provided with a radiator 260 so as to communicate, for example, a cooling water inlet and a cooling water outlet formed in the cylinder head.
連続再生式DPF装置190と噴射ノズル220との間に位置する排気管180には、排気の温度(排気温度)Teを検出する温度センサ280と、排気中のNOx濃度Cを検出する第1NOxセンサ290と、が夫々取り付けられている。また、酸化触媒コンバータ210の下流に位置する排気管180には、排気中のNOx濃度Cを検出する第2NOxセンサ300が取り付けられている。さらに、車両の所定箇所には、ディーゼルエンジン100の回転速度Neを検出する回転速度センサ310と、ディーゼルエンジン100の負荷Qを検出する負荷センサ320と、吸気の湿度(吸気湿度)Hを検出する湿度センサ330と、が夫々取り付けられている。ここで、ディーゼルエンジン100の負荷Qとしては、例えば、燃料噴射量、アクセル開度、吸気流量、過給圧力など、トルクと密接に関連する状態量を使用することができる。また、以下の説明においては、第1NOxセンサ290と第2NOxセンサ300とを区別する必要がない場合、これらを代表としてNOxセンサ290と表すこととする。
An exhaust pipe 180 positioned between the continuous regeneration type DPF device 190 and the injection nozzle 220 includes a temperature sensor 280 for detecting the temperature (exhaust temperature) Te of the exhaust, and a first NOx sensor for detecting the NOx concentration C in the exhaust. 290, respectively. Further, a second NOx sensor 300 for detecting the NOx concentration C in the exhaust is attached to the exhaust pipe 180 located downstream of the oxidation catalytic converter 210. Furthermore, a rotational speed sensor 310 that detects the rotational speed Ne of the diesel engine 100, a load sensor 320 that detects the load Q of the diesel engine 100, and an intake air humidity (intake humidity) H are detected at predetermined locations of the vehicle. A humidity sensor 330 is attached to each. Here, as the load Q of the diesel engine 100, for example, a state quantity closely related to the torque, such as a fuel injection amount, an accelerator opening degree, an intake air flow rate, and a supercharging pressure can be used. Moreover, in the following description, when it is not necessary to distinguish between the first NOx sensor 290 and the second NOx sensor 300, these are represented as the NOx sensor 290 as a representative.
NOxセンサ290は、図2に示すように、先端部に濃度検出部292Aが内蔵されたセンサボディ292と、濃度検出部292Aの作動を制御すると共にその出力電圧を濃度信号に変換するコントローラ294と、車両の制御系と接続するためのコネクタ296と、を含む。センサボディ292とコントローラ294、並びに、コントローラ294とコネクタ296とは、夫々、電源線、信号線などが内包されたケーブル298で接続されている。
As shown in FIG. 2, the NOx sensor 290 includes a sensor body 292 having a concentration detection unit 292A built in the tip, a controller 294 that controls the operation of the concentration detection unit 292A and converts the output voltage into a concentration signal. And a connector 296 for connecting to a control system of the vehicle. The sensor body 292 and the controller 294, and the controller 294 and the connector 296 are connected by a cable 298 including a power supply line, a signal line, and the like, respectively.
センサボディ292は、図3に示すように、濃度検出部292Aと、濃度検出部292Aの周囲を覆う金属製のカバー292Bと、を含む。濃度検出部292Aは、例えば、ジルコニア(ZrO2)の酸素イオン伝導性を利用して、排気中のNOx濃度に略比例した電圧信号を出力する。一方、カバー292Bの周壁には、その内部空間に排気を導入し、また、その内部空間から排気を導出するための排気出入口292Cが複数形成されている。
As shown in FIG. 3, the sensor body 292 includes a density detector 292A and a metal cover 292B that covers the periphery of the density detector 292A. The concentration detection unit 292A outputs a voltage signal that is substantially proportional to the NOx concentration in the exhaust gas by using, for example, oxygen ion conductivity of zirconia (ZrO 2 ). On the other hand, the peripheral wall of the cover 292B is formed with a plurality of exhaust outlets 292C for introducing exhaust into the internal space and leading out the exhaust from the internal space.
濃度検出部292Aは、具体的には、ジルコニア固体電解質の積層構造体からなり、2つの内部空間、3つの酸素ポンプ及びヒータを有する。第1空間には、第1酸素ポンプとして機能する一対の電極が配置されており、この電極間に所定電圧を印加することで、第1空間から酸素を除去して可燃性ガス(HC,CO,H2)を燃焼させ、第1空間内を数ppmの酸素濃度レベルにする。第1空間の奥に配置された第2空間には、第2酸素ポンプ及び測定ポンプが配置されており、第2酸素ポンプで第2空間から酸素を除去した上で、NOをO2とN2とに分解して、測定ポンプで排気中のNOx濃度に比例する酸素分圧を測定する。なお、濃度検出部292Aのヒータは、ジルコニア固体電解質を所定の活性温度以上に維持する。
Specifically, the concentration detection unit 292A includes a laminated structure of zirconia solid electrolyte, and has two internal spaces, three oxygen pumps, and a heater. A pair of electrodes functioning as a first oxygen pump is disposed in the first space, and by applying a predetermined voltage between the electrodes, oxygen is removed from the first space and a combustible gas (HC, CO) is obtained. , H 2 ) to make the oxygen concentration level of several ppm in the first space. A second oxygen pump and a measurement pump are arranged in the second space arranged at the back of the first space, and after removing oxygen from the second space by the second oxygen pump, NO is converted into O 2 and N The oxygen partial pressure proportional to the NOx concentration in the exhaust gas is measured with a measuring pump. The heater of the concentration detector 292A maintains the zirconia solid electrolyte at a predetermined activation temperature or higher.
濃度検出部292Aの外周には、ここから外方へと向かって延びてカバー292Bの内周面に接触する、複数のペルチェ素子292Dが取り付けられている。各ペルチェ素子292Dは、濃度検出部292Aにプリントされた一対の配線パターン292Eを介して、コントローラ294のドライバに接続されている。このため、コントローラ294がペルチェ素子292Dに印加する電圧の極性を変えることで、濃度検出部292Aを冷却したり、濃度検出部292Aを加熱したりすることができる。ここで、濃度検出部292Aとカバー292Bとは、ペルチェ素子292Dを介して熱的に接続されているので、カバー292Bは、濃度検出部292Aを保護するだけでなく、例えば、放熱用のヒートシンクとして機能させることもできる。なお、ペルチェ素子292Dが、熱電変換素子の一例として挙げられる。
A plurality of Peltier elements 292D are attached to the outer periphery of the concentration detector 292A and extend outward from the concentration detector 292A so as to come into contact with the inner peripheral surface of the cover 292B. Each Peltier element 292D is connected to the driver of the controller 294 via a pair of wiring patterns 292E printed on the density detection unit 292A. For this reason, the concentration detector 292A can be cooled or the concentration detector 292A can be heated by changing the polarity of the voltage applied to the Peltier element 292D by the controller 294. Here, since the concentration detection unit 292A and the cover 292B are thermally connected via the Peltier element 292D, the cover 292B not only protects the concentration detection unit 292A but also serves as a heat sink for heat dissipation, for example. It can also function. Note that the Peltier element 292D is an example of a thermoelectric conversion element.
また、NOxセンサ290には、濃度検出部292Aの温度(センサ温度)Tsを検出する、図示しない温度センサが内蔵又は付設されている。この温度センサの出力信号は、NOx濃度Cと共に出力されている。
Further, the NOx sensor 290 has a built-in or attached temperature sensor (not shown) for detecting the temperature (sensor temperature) Ts of the concentration detection unit 292A. The output signal of this temperature sensor is output together with the NOx concentration C.
温度センサ280、第1NOxセンサ290、第2NOxセンサ300、回転速度センサ310、負荷センサ320及び湿度センサ330の各出力信号は、マイクロコンピュータを内蔵したコントロールユニット340に入力されている。コントロールユニット340は、図4に示すように、CPU(Central Processing Unit)などのプロセッサAと、フラッシュROM(Read Only Memory)などの不揮発性メモリBと、RAM(Random Access Memory)などの揮発性メモリCと、外部機器とのインターフェースとなる入出力回路Dと、これらを相互に通信可能に接続するバスEと、を有する。
The output signals of the temperature sensor 280, the first NOx sensor 290, the second NOx sensor 300, the rotation speed sensor 310, the load sensor 320 and the humidity sensor 330 are input to a control unit 340 incorporating a microcomputer. As shown in FIG. 4, the control unit 340 includes a processor A such as a CPU (Central Processing Unit), a nonvolatile memory B such as a flash ROM (Read Only Memory), and a volatile memory such as a RAM (Random Access Memory). C, an input / output circuit D serving as an interface with an external device, and a bus E that connects these to each other so as to communicate with each other.
そして、コントロールユニット340は、回転速度Ne及び負荷Qに応じたEGR量を求め、このEGR量に応じた操作量をEGR制御弁256に出力することで、EGRシステム250を電子制御する。また、コントロールユニット340は、排気温度Te、回転速度Ne及び負荷Qに応じた尿素水溶液の添加量を求め、この添加量に応じた操作量を還元剤添加装置240に出力することで、ディーゼルエンジン100の排気浄化装置を電子制御する。このとき、コントロールユニット340は、SCRコンバータ200の上流のNOx濃度C及び酸化触媒コンバータ210の下流のNOx濃度Cに基づいてNOx浄化率を求め、このNOx浄化率に応じて尿素水溶液の添加量を補正することができる。
The control unit 340 obtains an EGR amount corresponding to the rotational speed Ne and the load Q, and outputs an operation amount corresponding to the EGR amount to the EGR control valve 256, thereby electronically controlling the EGR system 250. Further, the control unit 340 obtains the urea aqueous solution addition amount according to the exhaust temperature Te, the rotational speed Ne, and the load Q, and outputs an operation amount according to the addition amount to the reducing agent addition device 240, thereby enabling the diesel engine 100 exhaust emission control devices are electronically controlled. At this time, the control unit 340 obtains the NOx purification rate based on the NOx concentration C upstream of the SCR converter 200 and the NOx concentration C downstream of the oxidation catalyst converter 210, and the amount of urea aqueous solution added is determined according to the NOx purification rate. It can be corrected.
さらに、コントロールユニット340は、第1NOxセンサ290及び第2NOxセンサ300の劣化レベルを診断し、その診断結果に応じて、報知器350及びモニタ360を夫々電子制御すると共に、劣化レベルの進行を遅らせる処理を必要に応じて実行する。ここで、報知器350としては、例えば、ブザー、警告灯などを使用することができる。また、モニタ360としては、例えば、ナビゲーションシステムのモニタ、マルチインフォメーションディスプレイなどを使用することができる。
Further, the control unit 340 diagnoses the deterioration levels of the first NOx sensor 290 and the second NOx sensor 300, and electronically controls the alarm device 350 and the monitor 360, respectively, and delays the progress of the deterioration level according to the diagnosis results. Perform as necessary. Here, as the alarm 350, for example, a buzzer, a warning light, or the like can be used. As the monitor 360, for example, a monitor of a navigation system, a multi-information display, or the like can be used.
かかるエンジンシステムにおいて、ディーゼルエンジン100の排気は、排気マニフォールド170、ターボチャージャ140のタービン144を経て、連続再生式DPF装置190のDOCコンバータ192へと導入される。DOCコンバータ192へと導入された排気は、NOがNO2へと酸化されつつDPF194へと流れる。DPF194では、排気中のPMが除去されると共に、DOCコンバータ192により生成されたNO2を使用してPMが連続的に酸化(焼却)される。
In such an engine system, the exhaust of the diesel engine 100 is introduced into the DOC converter 192 of the continuous regeneration type DPF device 190 through the exhaust manifold 170 and the turbine 144 of the turbocharger 140. The exhaust gas introduced into the DOC converter 192 flows to the DPF 194 while NO is oxidized to NO 2 . In the DPF 194, PM in the exhaust gas is removed, and PM is continuously oxidized (incinerated) using NO 2 generated by the DOC converter 192.
また、エンジン運転状態に応じて噴射ノズル220から噴射供給(添加)された尿素水溶液は、排気熱及び排気中の水蒸気を使用して加水分解され、還元剤として機能するアンモニアへと転化される。このアンモニアは、SCRコンバータ200において排気中のNOxと選択還元反応し、無害なH2O(水)及びN2(窒素)へと浄化することは知られたことである。このとき、DOCコンバータ192によりNOがNO2へと酸化され、排気中のNOとNO2との比率が選択還元反応に適したものに改善されるため、SCRコンバータ200におけるNOx浄化率を向上させることができる。一方、SCRコンバータ200を通過したアンモニアは、その排気下流に配設された酸化触媒コンバータ210により酸化されるので、アンモニアがそのまま大気中に放出されることを抑制できる。
Further, the urea aqueous solution supplied (added) from the injection nozzle 220 according to the engine operating state is hydrolyzed using exhaust heat and water vapor in the exhaust, and converted into ammonia that functions as a reducing agent. It is known that this ammonia is selectively reduced with NOx in the exhaust gas in the SCR converter 200 and purified to harmless H 2 O (water) and N 2 (nitrogen). At this time, NO is oxidized to NO 2 by the DOC converter 192, and the ratio of NO to NO 2 in the exhaust gas is improved to be suitable for the selective reduction reaction, so that the NOx purification rate in the SCR converter 200 is improved. be able to. On the other hand, the ammonia that has passed through the SCR converter 200 is oxidized by the oxidation catalytic converter 210 disposed downstream of the exhaust gas, so that the ammonia can be prevented from being released into the atmosphere as it is.
図5は、コントロールユニット340が起動されたことを契機として、コントロールユニット340のプロセッサAが繰り返し実行する、第1NOxセンサ290及び第2NOxセンサ300に対するセンサ管理処理の一例を示す。なお、コントロールユニット340のプロセッサAは、例えば、不揮発性メモリBに格納された制御プログラムに従って、第1NOxセンサ290及び第2NOxセンサ300のそれぞれに対してセンサ管理処理を実行する。
FIG. 5 shows an example of sensor management processing for the first NOx sensor 290 and the second NOx sensor 300, which is repeatedly executed by the processor A of the control unit 340 when the control unit 340 is activated. The processor A of the control unit 340 executes sensor management processing for each of the first NOx sensor 290 and the second NOx sensor 300 in accordance with, for example, a control program stored in the nonvolatile memory B.
ステップ1(図では「S1」と略記する。以下同様。)では、コントロールユニット340のプロセッサAが、NOxセンサ290の劣化レベルを診断するサブルーチン(図6)を実行する。ここで、NOxセンサ290の劣化レベルを診断するサブルーチンは、劣化レベルを客観的に表現すべく、例えば、未使用状態からの劣化を数値で表した劣化レベルを算出する。
In step 1 (abbreviated as “S1” in the figure, the same applies hereinafter), the processor A of the control unit 340 executes a subroutine (FIG. 6) for diagnosing the deterioration level of the NOx sensor 290. Here, the subroutine for diagnosing the deterioration level of the NOx sensor 290 calculates, for example, a deterioration level that represents the deterioration from the unused state as a numerical value in order to express the deterioration level objectively.
ステップ2では、コントロールユニット340のプロセッサAが、NOxセンサ290の劣化レベルが所定レベルLdに達したか否か、即ち、劣化レベルが所定レベルLdより大きくなったか否かを判定する。ここで、所定レベルLdは、NOxセンサ290の劣化レベルが進行し、NOxセンサ290の交換時期が近づいたことを判定するための閾値であって、例えば、NOxセンサ290の設計寿命などを考慮して定めることができる。そして、コントロールユニット340のプロセッサAは、劣化レベルが所定レベルLdに達したと判定すれば(Yes)、処理をステップ3へと進める。一方、コントロールユニット340のプロセッサAは、劣化レベルが所定レベルLdに達していないと判定すれば(No)、処理を終了させる。
In step 2, the processor A of the control unit 340 determines whether or not the deterioration level of the NOx sensor 290 has reached the predetermined level Ld, that is, whether or not the deterioration level has become higher than the predetermined level Ld. Here, the predetermined level Ld is a threshold value for determining that the deterioration level of the NOx sensor 290 has progressed and the replacement time of the NOx sensor 290 is approaching. For example, the design level of the NOx sensor 290 is considered. Can be determined. If the processor A of the control unit 340 determines that the deterioration level has reached the predetermined level Ld (Yes), the process proceeds to step 3. On the other hand, if the processor A of the control unit 340 determines that the deterioration level has not reached the predetermined level Ld (No), the processor A ends the processing.
ステップ3では、コントロールユニット340のプロセッサAが、NOxセンサ290の劣化レベルがある程度進行、要するに、NOxセンサ290の交換時期が近づいたことを報知すべく、報知器350を作動させる。また、コントロールユニット340のプロセッサAは、劣化レベルに基づいて、NOxセンサ290が寿命に至るまでに走行可能な距離を推定し、推定した距離を表示装置360に表示させる。NOxセンサ290が寿命に至るまでに走行可能な距離は、例えば、実験、シミュレーションなどによって、劣化レベルと走行可能な距離とを関連付けたマップを作成し、このマップを参照して求めることができる。このようにすれば、車両の運転者などは、NOxセンサ290の交換時期が近づいたことを認識でき、走行可能な距離に応じて、例えば、寿命に至る前に計画的な整備などを行うことができる。そして、計画的な整備などを行うことで、NOxセンサ290が突然故障することが減り、車両の稼働率を向上させることができる。
In step 3, the processor A of the control unit 340 activates the notification device 350 to notify that the deterioration level of the NOx sensor 290 has progressed to some extent, that is, that the replacement time of the NOx sensor 290 is approaching. Further, the processor A of the control unit 340 estimates the distance that the NOx sensor 290 can travel before reaching the end of its life based on the deterioration level, and causes the display device 360 to display the estimated distance. The distance that the NOx sensor 290 can travel before reaching the end of its life can be obtained by creating a map in which the degradation level and the distance that can be traveled are associated with each other by, for example, experiments or simulations. In this way, the vehicle driver or the like can recognize that the replacement timing of the NOx sensor 290 is approaching, and perform planned maintenance before the end of the service life, for example, according to the distance that can be traveled. Can do. Then, by performing planned maintenance or the like, the NOx sensor 290 is prevented from suddenly failing, and the operating rate of the vehicle can be improved.
ステップ4では、コントロールユニット340のプロセッサAが、NOxセンサ290を休止させる。ここで、NOxセンサ290を休止させる場合には、休止中の劣化レベルの進行を抑制すべく、内蔵されたヒータも併せて休止させる。
In step 4, the processor A of the control unit 340 pauses the NOx sensor 290. Here, when the NOx sensor 290 is paused, the built-in heater is also paused in order to suppress the progress of the deterioration level during the pause.
ステップ5では、コントロールユニット340のプロセッサAが、例えば、ディーゼルエンジン100の回転速度及び負荷に応じたNOx濃度が設定されたマップを参照し、回転速度Ne及び負荷Qに応じたNOx濃度を推定する。そして、コントロールユニット340のプロセッサAは、NOxセンサ290の出力値に代えて、推定したNOx濃度に基づいて各種の制御を実行する。なお、コントロールユニット340がNOxセンサ290の管理のみを行う場合には、コントロールユニット340のプロセッサAは、例えば、ディーゼルエンジン100を電子制御するエンジンコントロールユニットに対して、推定したNOx濃度を出力することもできる。
In step 5, the processor A of the control unit 340 refers to, for example, a map in which the NOx concentration according to the rotational speed and the load of the diesel engine 100 is set, and estimates the NOx concentration according to the rotational speed Ne and the load Q. . The processor A of the control unit 340 executes various controls based on the estimated NOx concentration instead of the output value of the NOx sensor 290. When the control unit 340 only manages the NOx sensor 290, the processor A of the control unit 340 outputs, for example, the estimated NOx concentration to the engine control unit that electronically controls the diesel engine 100. You can also.
ステップ6では、コントロールユニット340のプロセッサAが、NOxセンサ290の濃度検出部292Aの温度、即ち、センサ温度Tsが所定温度Tcより高いか否かを判定する。ここで、所定温度Tcは、NOxセンサ290を休止させたときに、排気から受熱して濃度検出部292Aの温度が上昇し、その劣化レベルが進行するおそれがあるか否かを判定するための閾値であって、例えば、NOxセンサ290の耐熱性能などを考慮して定めることができる。そして、コントロールユニット340のプロセッサAは、センサ温度Tsが所定温度Tcより高いと判定すれば(Yes)、処理をステップ7へと進める。一方、コントロールユニット340のプロセッサAは、センサ温度Tsが所定温度Tc以下であると判定すれば(No)、処理をステップ8へと進める。
In step 6, the processor A of the control unit 340 determines whether or not the temperature of the concentration detector 292A of the NOx sensor 290, that is, the sensor temperature Ts is higher than a predetermined temperature Tc. Here, the predetermined temperature Tc is used to determine whether or not the NOx sensor 290 receives heat from the exhaust and the temperature of the concentration detection unit 292A rises and the deterioration level may progress. The threshold value can be determined in consideration of the heat resistance performance of the NOx sensor 290, for example. If the processor A of the control unit 340 determines that the sensor temperature Ts is higher than the predetermined temperature Tc (Yes), the process proceeds to step 7. On the other hand, if the processor A of the control unit 340 determines that the sensor temperature Ts is equal to or lower than the predetermined temperature Tc (No), the process proceeds to step 8.
ステップ7では、コントロールユニット340のプロセッサAが、ペルチェ素子292Dを作動させて、NOxセンサ290の濃度検出部292Aを冷却する。このとき、コントロールユニット340のプロセッサAは、排気温度Tよりセンサ温度Tsが低くなるように、ペルチェ素子292Dを作動させると、熱劣化を効果的に遅らせることができる。また、ペルチェ素子292Dはセンサ温度Tsが所定温度Tcより高いときに作動するので、ペルチェ素子292Dで消費される電力を抑制することができる。
In step 7, the processor A of the control unit 340 operates the Peltier element 292D to cool the concentration detection unit 292A of the NOx sensor 290. At this time, if the processor A of the control unit 340 operates the Peltier element 292D so that the sensor temperature Ts becomes lower than the exhaust temperature T, the thermal degradation can be effectively delayed. Further, since the Peltier element 292D operates when the sensor temperature Ts is higher than the predetermined temperature Tc, the power consumed by the Peltier element 292D can be suppressed.
ステップ8では、コントロールユニット340のプロセッサAが、NOxセンサ290を所定時間休止させたか否かを判定する。ここで、所定時間は、NOxセンサ290を休止させる時間を規定し、例えば、NOxセンサ290の劣化レベルに応じて変更することができる。具体的には、所定時間は、NOxセンサ290の劣化レベルが進行するにつれて漸増する値をとることができる。そして、コントロールユニット340のプロセッサAは、NOxセンサ290を所定時間休止させたと判定すれば(Yes)、処理をステップ9へと進める。一方、コントロールユニット340のプロセッサAは、NOxセンサ290を所定時間休止させていないと判定すれば(No)、処理をステップ5へと戻す。
In Step 8, it is determined whether or not the processor A of the control unit 340 has stopped the NOx sensor 290 for a predetermined time. Here, the predetermined time defines the time during which the NOx sensor 290 is paused, and can be changed according to the deterioration level of the NOx sensor 290, for example. Specifically, the predetermined time can take a value that gradually increases as the deterioration level of the NOx sensor 290 progresses. If the processor A of the control unit 340 determines that the NOx sensor 290 is paused for a predetermined time (Yes), the process proceeds to step 9. On the other hand, if the processor A of the control unit 340 determines that the NOx sensor 290 is not paused for a predetermined time (No), the process returns to step 5.
ステップ9では、コントロールユニット340のプロセッサAが、NOxセンサ290を作動させる。なお、NOxセンサ290は、濃度検出部292Aが活性化するまである程度の時間を要するので、コントロールユニット340のプロセッサAは、濃度検出部292Aが活性化するまでは推定したNOx濃度を使用又は出力するようにしてもよい。
In step 9, the processor A of the control unit 340 operates the NOx sensor 290. Since the NOx sensor 290 requires a certain amount of time until the concentration detection unit 292A is activated, the processor A of the control unit 340 uses or outputs the estimated NOx concentration until the concentration detection unit 292A is activated. You may do it.
図6は、NOxセンサ290の劣化レベルを診断するサブルーチンの一例を示す。
ステップ11では、コントロールユニット340のプロセッサAが、NOxセンサ290からNOx濃度を読み込む。 FIG. 6 shows an example of a subroutine for diagnosing the deterioration level of theNOx sensor 290.
In step 11, the processor A of thecontrol unit 340 reads the NOx concentration from the NOx sensor 290.
ステップ11では、コントロールユニット340のプロセッサAが、NOxセンサ290からNOx濃度を読み込む。 FIG. 6 shows an example of a subroutine for diagnosing the deterioration level of the
In step 11, the processor A of the
ステップ12では、コントロールユニット340のプロセッサAが、例えば、ディーゼルエンジン100の回転速度及び負荷に応じたNOx濃度が設定されたマップを参照し、回転速度Ne及び負荷Qに応じたNOx濃度を推定する。ここで、マップに設定されたNOx濃度は、標準データを表すべく、NOxセンサ290に劣化がまったく発生していない状態での値とすることができる。
In step 12, the processor A of the control unit 340 refers to, for example, a map in which the NOx concentration according to the rotational speed and load of the diesel engine 100 is set, and estimates the NOx concentration according to the rotational speed Ne and the load Q. . Here, the NOx concentration set in the map can be a value in a state where the NOx sensor 290 has not deteriorated at all in order to represent standard data.
ステップ13では、コントロールユニット340のプロセッサAが、ステップ11で読み込んだNOx濃度とステップ12で推定したNOx濃度とを比較、具体的には、2つのNOx濃度の偏差を求める。ここで、ステップ12で推定したNOx濃度は標準データであるため、2つのNOx濃度の偏差は、劣化レベルを数字で客観的に表している。
In step 13, the processor A of the control unit 340 compares the NOx concentration read in step 11 with the NOx concentration estimated in step 12, specifically, obtains a deviation between the two NOx concentrations. Here, since the NOx concentration estimated in step 12 is standard data, the deviation between the two NOx concentrations objectively represents the deterioration level with a number.
かかるセンサ管理処理によれば、コントロールユニット340のプロセッサAは、NOxセンサ290により検出されたNOx濃度とエンジン運転状態に基づいて推定されたNOx濃度との比較に基づいて、NOxセンサ290の劣化レベルを診断する。ここで、エンジン運転状態に基づいて推定されたNOx濃度は、劣化が発生していないNOxセンサ290を前提とした標準状態のNOx濃度であるため、これとNOxセンサ290により検出されたNOx濃度との偏差は、劣化レベルを数字で客観的に表している。このため、NOxセンサ290が寿命に至る前に、濃度検出部292Aの劣化レベルを把握することができる。
According to the sensor management process, the processor A of the control unit 340 determines the deterioration level of the NOx sensor 290 based on the comparison between the NOx concentration detected by the NOx sensor 290 and the NOx concentration estimated based on the engine operating state. Diagnose. Here, the NOx concentration estimated based on the engine operating state is a standard NOx concentration based on the NOx sensor 290 in which no deterioration has occurred. Therefore, this and the NOx concentration detected by the NOx sensor 290 The deviation of is an objective representation of the deterioration level numerically. For this reason, before the NOx sensor 290 reaches the end of its life, the deterioration level of the concentration detection unit 292A can be grasped.
NOxセンサ290の劣化レベルは、例えば、第1NOxセンサ290の出力信号と第2NOxセンサ300の出力信号とを比較することで診断できる。しかし、第1NOxセンサ290及び第2NOxセンサ300の劣化レベルが同時に進行した場合、各センサの出力信号の差異が小さく、劣化レベルを診断することが困難である。そこで、NOx濃度の推測値と実測値とを比較すれば、各NOxセンサ290について独立して劣化レベルを診断できる。このとき、NOx濃度の推定値は、標準状態における推定値であるため、吸気湿度に応じて変化する。このため、NOx濃度の推定精度を向上させるため、湿度センサ330により検出された吸気湿度Hに基づいて、NOx濃度の推定値を補正することができる。なお、NOx濃度の推定値を補正する補正値は、例えば、実験、シミュレーションなどを通して求めることができる。
The deterioration level of the NOx sensor 290 can be diagnosed by comparing the output signal of the first NOx sensor 290 and the output signal of the second NOx sensor 300, for example. However, when the deterioration levels of the first NOx sensor 290 and the second NOx sensor 300 progress simultaneously, the difference in the output signals of the sensors is small and it is difficult to diagnose the deterioration level. Therefore, if the estimated value of NOx concentration is compared with the actual measurement value, the deterioration level can be diagnosed independently for each NOx sensor 290. At this time, since the estimated value of the NOx concentration is an estimated value in the standard state, it varies according to the intake humidity. Therefore, in order to improve the estimation accuracy of the NOx concentration, the estimated value of the NOx concentration can be corrected based on the intake humidity H detected by the humidity sensor 330. The correction value for correcting the estimated value of the NOx concentration can be obtained through experiments, simulations, and the like, for example.
そして、NOxセンサ290の劣化レベルが所定レベルLdに達したならば、コントロールユニット340のプロセッサAは、報知器350を作動させて、車両の運転者などにNOxセンサ290の交換時期が近づいたことを報知する。このため、車両の運転者などは、NOxセンサ290の交換時期が近づいたことを認識できる。このとき、車両の運転者などは、NOxセンサ290に加え、他の部品に異常があるか否かを調べることもできる。これは、他の部品の異常によって、NOxセンサ290の交換時期が近づいたと診断される可能性があるためである。
If the deterioration level of the NOx sensor 290 reaches the predetermined level Ld, the processor A of the control unit 340 operates the alarm 350 and the replacement timing of the NOx sensor 290 is approaching the driver of the vehicle. Is notified. For this reason, the driver of the vehicle can recognize that the replacement time of the NOx sensor 290 is approaching. At this time, in addition to the NOx sensor 290, the driver of the vehicle can also check whether there is an abnormality in other parts. This is because it may be diagnosed that the replacement time of the NOx sensor 290 is approaching due to an abnormality of other parts.
コントロールユニット340のプロセッサAは、NOxセンサ290の劣化レベルに基づいて、NOxセンサ290が寿命に至るまでに走行可能な距離を推定し、これをモニタ360に表示させる。このため、車両の運転者などは、モニタ360に表示された距離に基づいて、例えば、NOxセンサ290が寿命となる前に計画的な整備などを行うことができる。
The processor A of the control unit 340 estimates the distance that the NOx sensor 290 can travel before reaching the end of its life based on the deterioration level of the NOx sensor 290, and displays this on the monitor 360. For this reason, the driver of a vehicle etc. can perform planned maintenance before the NOx sensor 290 reaches the end of its life, for example, based on the distance displayed on the monitor 360.
また、NOxセンサ290の劣化レベルが所定レベルLdに達したとき、コントロールユニット340のプロセッサAは、NOxセンサ290の熱劣化を抑制すべく、NOxセンサ290を所定時間休止させる。NOxセンサ290を休止させると、ヒータによる濃度検出部292Aの加熱が行われないため、センサ温度の時間積分が小さくなり、NOxセンサ290の熱劣化の進行を遅らせることができる。即ち、NOxセンサ290の検出精度は、図7に示すように、経過時間の増加につれて漸減する。しかし、NOxセンサ290を休止させることで、図8に示すように、休止中の検出精度の低下が緩やかになり、所定時間経過後の劣化レベルがAからBへと小さくなり(A>B)、NOxセンサ290の寿命を延長させることができる。
Further, when the deterioration level of the NOx sensor 290 reaches the predetermined level Ld, the processor A of the control unit 340 pauses the NOx sensor 290 for a predetermined time in order to suppress thermal deterioration of the NOx sensor 290. When the NOx sensor 290 is paused, the concentration detector 292A is not heated by the heater, so that the time integral of the sensor temperature is reduced and the progress of thermal degradation of the NOx sensor 290 can be delayed. That is, the detection accuracy of the NOx sensor 290 gradually decreases as the elapsed time increases as shown in FIG. However, by stopping the NOx sensor 290, as shown in FIG. 8, the decrease in detection accuracy during the pause is moderated, and the deterioration level after a predetermined time has elapsed from A to B (A> B). The life of the NOx sensor 290 can be extended.
このようにすれば、車両の運転者などにNOxセンサ290の交換時期が近づいたことを報知する際に、NOxセンサ290の劣化レベルの進行を遅らせる処理が実行される。このため、NOxセンサ290が保証期間内に寿命となることが抑制され、例えば、車両ユーザに予期せぬ修理費用などを支出させることが回避できる。
In this way, when notifying the driver of the vehicle that the replacement timing of the NOx sensor 290 is approaching, processing for delaying the progress of the deterioration level of the NOx sensor 290 is executed. For this reason, it is suppressed that NOx sensor 290 becomes a lifetime within a guarantee period, for example, it can avoid making a vehicle user spend an unexpected repair expense.
このとき、NOxセンサ290がNOx濃度を検出できなくなるので、コントロールユニット340のプロセッサAは、エンジン運転状態に基づいてNOx濃度を推定し、推定したNOx濃度を使用して各種の制御を実行する。従って、NOxセンサ290を休止させても、各種の制御への影響を抑制することができる。なお、NOx濃度の推定値は、吸気湿度Hに基づいて補正することもできる。
At this time, since the NOx sensor 290 cannot detect the NOx concentration, the processor A of the control unit 340 estimates the NOx concentration based on the engine operating state, and executes various controls using the estimated NOx concentration. Therefore, even if the NOx sensor 290 is suspended, the influence on various controls can be suppressed. Note that the estimated value of the NOx concentration can be corrected based on the intake air humidity H.
ここで、NOx濃度の推定値は、定常状態における標準モデルから求められるため、例えば、加速時などの過渡状態での推定精度が良好でないという特性がある。一方、NOxセンサ290は、劣化などによって検出精度がゆっくりと低下するが、過渡状態での変化に追従できるため、これを省くことができない。
Here, since the estimated value of the NOx concentration is obtained from a standard model in a steady state, for example, there is a characteristic that the estimation accuracy in a transient state such as during acceleration is not good. On the other hand, although the detection accuracy of the NOx sensor 290 gradually decreases due to deterioration or the like, it cannot follow the change in the transient state and cannot be omitted.
NOxセンサ290を休止させる所定時間は、NOxセンサ290の熱劣化の進行に応じて変更することができる。即ち、NOxセンサ290の劣化レベルは、NOxセンサ290の寿命までの時間と密接に関連しているので、劣化レベルが進行するにつれて所定時間を漸増させることで、NOxセンサ290が寿命に至るまでの時間を延長させることができる。
The predetermined time during which the NOx sensor 290 is paused can be changed according to the progress of thermal deterioration of the NOx sensor 290. That is, the deterioration level of the NOx sensor 290 is closely related to the time until the life of the NOx sensor 290. Therefore, by gradually increasing the predetermined time as the deterioration level progresses, the time until the NOx sensor 290 reaches the life is reached. The time can be extended.
さらに、NOxセンサ290を休止させたとき、その濃度検出部292Aのセンサ温度が所定温度Tcより高くなると、コントロールユニット340のプロセッサAは、ペルチェ素子292Dを作動させて濃度検出部292Dを冷却させる。濃度検出部292Aの熱劣化は、センサ温度の時間積分値と相関がある。このため、濃度検出部292Aを冷却することで熱劣化を更に抑制でき、図9に示すように、所定時間経過後の劣化レベルがBからCへと小さくなり(B>C)、NOxセンサ290が寿命に至るまでの時間を更に延長させることができる。このとき、コントロールユニット340のプロセッサAは、センサ温度が排気温度Tより低くなるようにすることで、NOxセンサ290の寿命延長を効果的になし得る。
Further, when the sensor temperature of the concentration detection unit 292A becomes higher than the predetermined temperature Tc when the NOx sensor 290 is paused, the processor A of the control unit 340 operates the Peltier element 292D to cool the concentration detection unit 292D. The thermal deterioration of the concentration detection unit 292A has a correlation with the time integral value of the sensor temperature. For this reason, it is possible to further suppress thermal degradation by cooling the concentration detector 292A, and as shown in FIG. 9, the degradation level after a predetermined time elapses decreases from B to C (B> C), and the NOx sensor 290 It is possible to further extend the time until the end of the service life. At this time, the processor A of the control unit 340 can effectively extend the life of the NOx sensor 290 by making the sensor temperature lower than the exhaust temperature T.
そして、NOxセンサ290を所定時間休止させたならば、コントロールユニット340のプロセッサAは、NOxセンサ290の作動を再開させる。
When the NOx sensor 290 is paused for a predetermined time, the processor A of the control unit 340 restarts the operation of the NOx sensor 290.
なお、コントロールユニット340のプロセッサAは、センサ温度Tsが活性温度に達していないとき、ペルチェ素子292Dに印加する電圧の極性を変えることで、NOxセンサ290の濃度検出部292Aの活性化を促進することができる。このとき、NOxセンサ290の濃度検出部292Aは、ヒータによる加熱に加え、カバー292B及びペルチェ素子292Dを介して排気熱により加熱されるので、短時間で活性化してNOx濃度を検出できるようになる。
The processor A of the control unit 340 promotes activation of the concentration detection unit 292A of the NOx sensor 290 by changing the polarity of the voltage applied to the Peltier element 292D when the sensor temperature Ts has not reached the activation temperature. be able to. At this time, the concentration detector 292A of the NOx sensor 290 is heated by exhaust heat through the cover 292B and the Peltier element 292D in addition to the heating by the heater, so that it can be activated in a short time to detect the NOx concentration. .
また、コントロールユニット340のプロセッサAは、例えば、センサ温度Tsに応じて、ペルチェ素子292Dに印加する電圧の極性を適宜変えることで、NOxセンサ290の濃度検出部292Aを所定温度範囲に維持することができる。このようにすれば、温度依存性があるNOxセンサ290の出力信号を安定化することができ、その検出精度を向上させることができる。
Further, the processor A of the control unit 340 maintains the concentration detection unit 292A of the NOx sensor 290 in a predetermined temperature range by appropriately changing the polarity of the voltage applied to the Peltier element 292D according to the sensor temperature Ts, for example. Can do. In this way, the output signal of the NOx sensor 290 having temperature dependency can be stabilized, and the detection accuracy can be improved.
ところで、連続再生式DPF装置190のDPF194は、DOCコンバータ192で生成されたNO2を使用して連続的に再生が行われる。しかし、排気温度Tが比較的低い状態が長時間持続すると、DPF194の再生処理が十分行われず、PMの堆積量が増加して目詰まりが発生し、例えば、背圧上昇によって燃費が低下してしまう。このため、DPF194に目詰まりが発生したときには、公知の手段によって排気温度を上昇させ、DPF194に堆積したPMを強制的に焼却する強制再生処理が実行される。ここで、DPF194に目詰まりが発生したか否かは、例えば、DPF194の上流と下流との差圧が所定値以上になったか否かを介して判断することができる。
By the way, the DPF 194 of the continuous regeneration type DPF device 190 is continuously regenerated using the NO 2 generated by the DOC converter 192. However, if the exhaust temperature T is relatively low for a long time, the regeneration process of the DPF 194 is not sufficiently performed, the amount of accumulated PM increases, and clogging occurs. For example, fuel consumption decreases due to an increase in back pressure. End up. For this reason, when clogging occurs in the DPF 194, a forced regeneration process is executed in which the exhaust gas temperature is raised by a known means to forcibly incinerate the PM deposited on the DPF 194. Here, whether or not clogging has occurred in the DPF 194 can be determined, for example, based on whether or not the differential pressure between the upstream side and the downstream side of the DPF 194 has become a predetermined value or more.
DPF194の強制再生処理の実行中には、PMが燃焼するため、第1NOxセンサ290及び第2NOxセンサ300に流入する排気温度が上昇して熱劣化が助長されてしまう。このため、強制再生処理の実行中には、第1NOx290及び第2NOxセンサ300を休止させ、その熱劣化を抑制することもできる。この場合、第1NOxセンサ290及び第2NOxセンサ300は、高温の排気に晒されるため、ペルチェ素子292Dを作動させて、その温度を低下させることもできる。このようにすれば、濃度検出部292Aの熱劣化の進行がゆっくりとなり、その寿命を延ばすことができる。
During execution of the forced regeneration process of the DPF 194, PM burns, so that the exhaust temperature flowing into the first NOx sensor 290 and the second NOx sensor 300 rises to promote thermal degradation. For this reason, during the execution of the forced regeneration process, the first NOx 290 and the second NOx sensor 300 can be paused to suppress thermal degradation. In this case, since the first NOx sensor 290 and the second NOx sensor 300 are exposed to high-temperature exhaust gas, the temperature can be lowered by operating the Peltier element 292D. In this way, the thermal deterioration of the concentration detection unit 292A progresses slowly, and its life can be extended.
SCRコンバータ200は、低温度域のNOx浄化率が低いFe又はCeを活性種としているため、DOCコンバータ192に多くの白金族金属であるPt(白金)やPd(パラジウム)を担持させる必要がある。そこで、低温度域のNOx浄化率に優れた、Cu(銅)を活性種としたSCRコンバータ200を使用することが考えられる。しかし、Cuを活性種としたSCRコンバータ200は、Fe又はCeを活性種としたSCRコンバータ200よりも高温度域でのNOx浄化率が低い。そこで、ディーゼルエンジン100のEGR率を上げてNOx排出量を低下させる必要があるが、PM排出量が増えるため、DPF194の目詰まり進行が早まってしまう。
Since the SCR converter 200 uses Fe or Ce having a low NOx purification rate in a low temperature range as an active species, the DOC converter 192 needs to carry many platinum group metals such as Pt (platinum) and Pd (palladium). . Therefore, it is conceivable to use an SCR converter 200 using Cu (copper) as an active species, which has an excellent NOx purification rate in a low temperature range. However, the SCR converter 200 using Cu as the active species has a lower NOx purification rate in the high temperature range than the SCR converter 200 using Fe or Ce as the active species. Therefore, it is necessary to increase the EGR rate of the diesel engine 100 to reduce the NOx emission amount. However, since the PM emission amount increases, the progress of clogging of the DPF 194 is accelerated.
このため、DPF194として、一般的なコージェライトベースのものに代えて、図10に示すように、流入面積と流出面積との比率が非対称、具体的には、流入面積が流出面積よりも大きい、炭化ケイ素(SiC)ベース又はチタン酸アルミニウム(Al2TiO5)ベースのものを使用することで、目詰まり進行に対処する。
Therefore, as a DPF 194, instead of a general cordierite base, as shown in FIG. 10, the ratio of the inflow area and the outflow area is asymmetric, specifically, the inflow area is larger than the outflow area. The use of silicon carbide (SiC) -based or aluminum titanate (Al 2 TiO 5 ) -based counteracts clogging progress.
エンジンシステムとしては、ディーゼルエンジン100に限らず、ガソリンエンジンなども使用することができる。また、排気センサとしては、NOxセンサ290に限らず、O2センサ、空燃比センサなど、エンジンの排気性状の1つの状態量を検出するセンサとすることができる。
The engine system is not limited to the diesel engine 100, and a gasoline engine or the like can also be used. Further, the exhaust sensor is not limited to the NOx sensor 290, but may be a sensor that detects one state quantity of the exhaust property of the engine, such as an O 2 sensor or an air-fuel ratio sensor.
100 ディーゼルエンジン(エンジン)
180 排気通路
194 DPF
290 第1NOxセンサ
292A 濃度検出部
292D ペルチェ素子
300 第2NOxセンサ
310 回転速度センサ
320 負荷センサ
330 湿度センサ
340 コントロールユニット
350 報知器
360 モニタ 100 diesel engine (engine)
180Exhaust passage 194 DPF
2901st NOx sensor 292A Concentration detector 292D Peltier element 300 2nd NOx sensor 310 Rotational speed sensor 320 Load sensor 330 Humidity sensor 340 Control unit 350 Alarm 360 Monitor
180 排気通路
194 DPF
290 第1NOxセンサ
292A 濃度検出部
292D ペルチェ素子
300 第2NOxセンサ
310 回転速度センサ
320 負荷センサ
330 湿度センサ
340 コントロールユニット
350 報知器
360 モニタ 100 diesel engine (engine)
180
290
Claims (15)
- エンジンの排気性状の1つの状態量を検出する排気センサと、
マイクロコンピュータを内蔵したコントロールユニットと、
を有し、
前記コントロールユニットが、前記エンジンの運転状態に基づいて、前記エンジンの排気性状の1つを推定し、前記検出された状態量と前記推定された状態量との比較に基づいて、前記排気センサの劣化レベルを診断する、
ことを特徴とする排気センサの管理装置。 An exhaust sensor for detecting one state quantity of engine exhaust properties;
A control unit with a built-in microcomputer;
Have
The control unit estimates one of the exhaust properties of the engine based on the operating state of the engine, and based on a comparison between the detected state quantity and the estimated state quantity, Diagnose the deterioration level,
An exhaust sensor management device. - 前記コントロールユニットが、吸気の湿度に基づいて、前記推定された状態量を補正する、
ことを特徴とする請求項1に記載の排気センサの管理装置。 The control unit corrects the estimated state quantity based on intake air humidity;
The exhaust sensor management device according to claim 1. - 前記コントロールユニットが、前記排気センサの劣化レベルが所定レベルに達したとき、その旨を報知する報知器を作動させる、
ことを特徴とする請求項1又は請求項2に記載の排気センサの管理装置。 When the deterioration level of the exhaust sensor reaches a predetermined level, the control unit activates a notification device that notifies that effect,
The exhaust sensor management device according to claim 1 or 2, - 前記コントロールユニットが、前記排気センサの劣化レベルが所定レベルに達したとき、前記排気センサが寿命に至るまでに走行可能な距離を推定し、前記推定した距離をモニタに表示する、
ことを特徴とする請求項1~請求項3のいずれか1つに記載の排気センサの管理装置。 When the deterioration level of the exhaust sensor reaches a predetermined level, the control unit estimates a distance that the exhaust sensor can travel before reaching the end of its life, and displays the estimated distance on a monitor.
The exhaust sensor management device according to any one of claims 1 to 3, characterized in that: - 前記コントロールユニットが、前記排気センサの劣化レベルが所定レベルに達したとき、前記排気センサを休止させ、前記排気センサの出力値として、前記エンジンの運転状態に基づいて推定された状態量を使用する、
ことを特徴とする請求項1~請求項4のいずれか1つに記載の排気センサの管理装置。 When the deterioration level of the exhaust sensor reaches a predetermined level, the control unit pauses the exhaust sensor and uses a state quantity estimated based on an operating state of the engine as an output value of the exhaust sensor. ,
The exhaust sensor management device according to any one of claims 1 to 4, wherein - 前記コントロールユニットが、前記排気センサを所定時間休止させる、
ことを特徴とする請求項5に記載の排気センサの管理装置。 The control unit pauses the exhaust sensor for a predetermined time;
The exhaust sensor management device according to claim 5. - 前記コントロールユニットが、前記排気センサの劣化レベルに応じて前記所定時間を変更する、
ことを特徴とする請求項6に記載の排気センサの管理装置。 The control unit changes the predetermined time according to a deterioration level of the exhaust sensor;
The exhaust sensor management device according to claim 6. - 前記所定時間は、前記排気センサの劣化レベルが進行するにつれて漸増する、
ことを特徴とする請求項7に記載の排気センサの管理装置。 The predetermined time gradually increases as the deterioration level of the exhaust sensor advances.
The exhaust sensor management device according to claim 7. - 前記コントロールユニットが、前記排気センサを休止させたときに、前記排気センサの状態量の検出部に備えられた熱電変換素子を作動させて前記検出部を冷却する、
ことを特徴とする請求項5~請求項8のいずれか1つに記載の排気センサの管理装置。 When the control unit pauses the exhaust sensor, it activates a thermoelectric conversion element provided in a state quantity detection unit of the exhaust sensor to cool the detection unit.
The exhaust sensor management device according to any one of claims 5 to 8, wherein - 前記コントロールユニットが、前記検出部の温度が所定温度を越えているときに、前記熱電変換素子を作動させる、
ことを特徴とする請求項9に記載の排気センサの管理装置。 The control unit operates the thermoelectric conversion element when the temperature of the detection unit exceeds a predetermined temperature;
The exhaust sensor management apparatus according to claim 9. - 前記コントロールユニットが、前記検出部の温度が活性温度に達していないときに、前記熱電変換素子に印加する電圧の極性を変えて前記検出部を加熱する、
ことを特徴とする請求項9又は請求項10に記載の排気センサの管理装置。 The control unit heats the detection unit by changing the polarity of the voltage applied to the thermoelectric conversion element when the temperature of the detection unit does not reach the activation temperature.
11. The exhaust sensor management apparatus according to claim 9 or 10, - 前記コントロールユニットが、前記エンジンの排気通路に配設されたディーゼルパティキュレートフィルタが強制再生処理中のとき、前記排気センサを休止させる、
ことを特徴とする請求項1~請求項11のいずれか1つに記載の排気センサの管理装置。 The control unit pauses the exhaust sensor when the diesel particulate filter disposed in the exhaust passage of the engine is in the forced regeneration process;
The exhaust sensor management apparatus according to any one of claims 1 to 11, wherein the exhaust sensor management apparatus includes: - 前記コントロールユニットが、前記排気センサを休止させたときに、前記排気センサの状態量の検出部に備えられた熱電変換素子をさせて前記検出部を冷却する、
ことを特徴とする請求項12に記載の排気センサの管理装置。 When the control unit pauses the exhaust sensor, the detection unit is cooled by causing a thermoelectric conversion element provided in the detection unit of the state quantity of the exhaust sensor;
The exhaust sensor management device according to claim 12. - エンジンの排気性状の1つの状態量を検出する排気センサの出力信号を読み込み可能なコントロールユニットが、
前記エンジンの運転状態に基づいて、前記エンジンの排気性状の1つの状態量を推定し、
前記排気センサから読み込んだ状態量と前記推定した状態量との比較に基づいて、前記排気センサの劣化レベルを診断する、
ことを特徴とする排気センサの管理方法。 A control unit that can read the output signal of the exhaust sensor that detects one state quantity of engine exhaust properties,
Based on the operating state of the engine, one state quantity of the exhaust property of the engine is estimated,
Diagnosing the deterioration level of the exhaust sensor based on a comparison between the state quantity read from the exhaust sensor and the estimated state quantity;
A method for managing an exhaust sensor. - 前記コントロールユニットが、吸気の湿度に基づいて、前記推定した状態量を補正する、
ことを特徴とする請求項14に記載の排気センサの管理方法。
The control unit corrects the estimated state quantity based on intake air humidity.
The exhaust sensor management method according to claim 14.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/084323 WO2016103398A1 (en) | 2014-12-25 | 2014-12-25 | Exhaust sensor management device and management method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/084323 WO2016103398A1 (en) | 2014-12-25 | 2014-12-25 | Exhaust sensor management device and management method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016103398A1 true WO2016103398A1 (en) | 2016-06-30 |
Family
ID=56149493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/084323 WO2016103398A1 (en) | 2014-12-25 | 2014-12-25 | Exhaust sensor management device and management method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016103398A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019039365A1 (en) * | 2017-08-23 | 2019-02-28 | 株式会社ジャパンエンジンコーポレーション | Diesel engine for vessel |
WO2019233577A1 (en) * | 2018-06-06 | 2019-12-12 | Volvo Truck Corporation | A method for estimating the ageing of an exhaust gas sensor and an industrial vehicle for implementing this method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61200348A (en) * | 1985-02-28 | 1986-09-04 | Fuji Heavy Ind Ltd | Air-fuel ratio control system |
JPH0356849A (en) * | 1989-07-26 | 1991-03-12 | Toyota Motor Corp | Heater power supply controller for air fuel ratio sensor of internal combustion engine |
JPH07279785A (en) * | 1994-04-07 | 1995-10-27 | Nippondenso Co Ltd | Fuel temperature adjusting device |
JP2000045752A (en) * | 1998-07-29 | 2000-02-15 | Yanmar Diesel Engine Co Ltd | Cleaning method for nitrogen oxide storage reduction catalyst in internal combustion engine |
JP2001303937A (en) * | 2000-02-18 | 2001-10-31 | Toyota Motor Corp | Exhaust emission control device for internal combustion engine |
JP2004011646A (en) * | 2002-06-04 | 2004-01-15 | Ford Global Technologies Llc | Engine control system, engine control method, and computer program for engine control |
JP2004169555A (en) * | 2002-11-15 | 2004-06-17 | Nissan Diesel Motor Co Ltd | Maintenance alarm device and maintenance display device for automobile |
WO2009141918A1 (en) * | 2008-05-21 | 2009-11-26 | トヨタ自動車株式会社 | NOx SENSOR ABNORMALITY DIAGNOSING APPARATUS AND ABNORMALITY DIAGNOSING METHOD |
-
2014
- 2014-12-25 WO PCT/JP2014/084323 patent/WO2016103398A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61200348A (en) * | 1985-02-28 | 1986-09-04 | Fuji Heavy Ind Ltd | Air-fuel ratio control system |
JPH0356849A (en) * | 1989-07-26 | 1991-03-12 | Toyota Motor Corp | Heater power supply controller for air fuel ratio sensor of internal combustion engine |
JPH07279785A (en) * | 1994-04-07 | 1995-10-27 | Nippondenso Co Ltd | Fuel temperature adjusting device |
JP2000045752A (en) * | 1998-07-29 | 2000-02-15 | Yanmar Diesel Engine Co Ltd | Cleaning method for nitrogen oxide storage reduction catalyst in internal combustion engine |
JP2001303937A (en) * | 2000-02-18 | 2001-10-31 | Toyota Motor Corp | Exhaust emission control device for internal combustion engine |
JP2004011646A (en) * | 2002-06-04 | 2004-01-15 | Ford Global Technologies Llc | Engine control system, engine control method, and computer program for engine control |
JP2004169555A (en) * | 2002-11-15 | 2004-06-17 | Nissan Diesel Motor Co Ltd | Maintenance alarm device and maintenance display device for automobile |
WO2009141918A1 (en) * | 2008-05-21 | 2009-11-26 | トヨタ自動車株式会社 | NOx SENSOR ABNORMALITY DIAGNOSING APPARATUS AND ABNORMALITY DIAGNOSING METHOD |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019039365A1 (en) * | 2017-08-23 | 2019-02-28 | 株式会社ジャパンエンジンコーポレーション | Diesel engine for vessel |
JP2019039324A (en) * | 2017-08-23 | 2019-03-14 | 株式会社ジャパンエンジンコーポレーション | Diesel engine for vessel |
KR20200020933A (en) * | 2017-08-23 | 2020-02-26 | 가부시키가이샤 자판엔진코포레숀 | Marine diesel engines |
CN111033017A (en) * | 2017-08-23 | 2020-04-17 | 日本发动机股份有限公司 | Diesel engine for ship |
KR102230322B1 (en) * | 2017-08-23 | 2021-03-19 | 가부시키가이샤 자판엔진코포레숀 | Marine diesel engine |
CN111033017B (en) * | 2017-08-23 | 2022-07-08 | 日本发动机股份有限公司 | Diesel engine for ship |
JP7202063B2 (en) | 2017-08-23 | 2023-01-11 | 株式会社ジャパンエンジンコーポレーション | marine diesel engine |
WO2019233577A1 (en) * | 2018-06-06 | 2019-12-12 | Volvo Truck Corporation | A method for estimating the ageing of an exhaust gas sensor and an industrial vehicle for implementing this method |
US11333094B2 (en) | 2018-06-06 | 2022-05-17 | Volvo Truck Corporation | Method for estimating the ageing of an exhaust gas sensor and an industrial vehicle for implementing this method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4530081B2 (en) | Catalyst deterioration diagnosis apparatus and catalyst deterioration diagnosis method for internal combustion engine | |
JP4840703B2 (en) | Abnormality diagnosis device for exhaust purification system | |
US9702293B2 (en) | Diagnostic device | |
US8783019B2 (en) | Apparatus and method for onboard performance monitoring of oxidation catalyst | |
JP2011220232A (en) | Exhaust emission control device for engine | |
US8850799B2 (en) | Exhaust purification apparatus for engine | |
US20160237873A1 (en) | Diagnostic device | |
JP2013002283A (en) | Exhaust emission control device | |
JP5804544B2 (en) | Exhaust treatment device for internal combustion engine | |
US10443473B2 (en) | Exhaust gas purification apparatus for an internal combustion engine | |
CN107002538B (en) | Selective catalytic reduction system and temperature control method of reducing agent injection module | |
JP6163996B2 (en) | Diagnostic equipment | |
JP2012036857A (en) | Device for diagnosing catalyst degradation | |
US10190470B2 (en) | Catalytic device detection system | |
US10364727B2 (en) | Exhaust gas purification apparatus for an internal combustion engine | |
JP2012036858A (en) | Device for diagnosing catalyst degradation | |
WO2016103398A1 (en) | Exhaust sensor management device and management method | |
JP2012036835A (en) | Exhaust emission control device | |
EP3048276B1 (en) | Diagnostic device | |
JP2012036856A (en) | Device for diagnosing catalyst degradation | |
JP4895887B2 (en) | Engine exhaust purification system | |
JP2014222021A (en) | Abnormality diagnostic device for exhaust temperature sensor | |
JP4894569B2 (en) | Temperature sensor failure diagnosis device | |
JP6057787B2 (en) | Exhaust temperature estimation device | |
JP6191355B2 (en) | Diagnostic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14909005 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14909005 Country of ref document: EP Kind code of ref document: A1 |