WO2016103355A1 - Electromagnetic actuator - Google Patents
Electromagnetic actuator Download PDFInfo
- Publication number
- WO2016103355A1 WO2016103355A1 PCT/JP2014/084099 JP2014084099W WO2016103355A1 WO 2016103355 A1 WO2016103355 A1 WO 2016103355A1 JP 2014084099 W JP2014084099 W JP 2014084099W WO 2016103355 A1 WO2016103355 A1 WO 2016103355A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shaft
- electromagnetic actuator
- groove
- groove portion
- elastic body
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L13/00—Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/121—Guiding or setting position of armatures, e.g. retaining armatures in their end position
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
Definitions
- the present invention relates to an electromagnetic actuator used in a cam switching mechanism for an engine valve.
- the plunger is linearly moved by electromagnetic force generated by applying a voltage to the coil, and the tip of the shaft that linearly moves integrally with the plunger is pushed out from the actuator body. Moreover, the conventional electromagnetic actuator returns the plunger and the shaft to the original position by the elastic force of the return spring built in the actuator body by stopping the voltage application to the coil.
- Patent Document 1 discloses an electromagnetic spool valve device that controls the pressure of a fluid using an electromagnetic actuator.
- the electromagnetic spool valve device of Patent Document 1 includes an intermediate position holding mechanism that holds a spool that switches a communication state between the ports of the valve mechanism at an intermediate position.
- the electromagnetic spool valve device of Patent Literature 1 uses the intermediate position holding mechanism to position and hold the spool at the stroke intermediate position reliably and with high accuracy.
- a cam that operates an engine valve when the rotational speed of the internal combustion engine is high (so-called “high cam”) and a cam that operates the engine valve when the rotational speed is low (so-called “low cam”)
- Electromagnetic actuators are also used for switching to).
- the cam switching mechanism for switching between the high cam and the low cam has a mechanism (hereinafter referred to as “return mechanism”) that forcibly pushes back the tip of the shaft that is pushed out by the electromagnetic actuator.
- a latch-type electromagnetic actuator has been developed in which the shaft is made of a magnetic material and a magnet is provided at the protruding position of the shaft.
- the latch type electromagnetic actuator applies a voltage to the coil only when pushing out the shaft, and thereafter maintains the protruding state by the magnetic force of the magnet.
- power consumption is reduced, and the load of the electromagnetic actuator is reduced by suppressing overcurrent from flowing through the coil in order to resist the force with which the return mechanism of the cam switching mechanism pushes back the shaft.
- the latch-type electromagnetic actuator has a problem that the magnetic force of the magnet changes according to the temperature and the responsiveness of the shaft changes greatly. Further, since rare earth is used for the magnet, there is a problem that costs increase.
- the present invention has been made in order to solve the above-described problems, and can realize a cam switching mechanism that reduces the load of the electromagnetic actuator while reducing power consumption, and the response of the shaft to temperature.
- An object of the present invention is to provide an inexpensive electromagnetic actuator that can stabilize the performance.
- An electromagnetic actuator is an electromagnetic actuator that reciprocates a shaft passed through a hollow portion of a housing between a first position and a second position in an axial direction, and is formed in a lateral hole opening that penetrates the shaft in a radial direction.
- the electromagnetic actuator according to the present invention maintains the axial position of the shaft when the ball disposed in the opening portion of the lateral hole of the shaft enters the first groove portion and the second groove portion in a state where no voltage is applied to the coil.
- a cam switching mechanism that reduces the load of the electromagnetic actuator while reducing power consumption can be realized.
- the holding force is not generated by the magnet, the responsiveness of the operation of the shaft with respect to the temperature change can be stabilized and can be configured at low cost.
- FIG. 1 (a) is a block diagram of the principal part at the time of high cam use of the cam switching mechanism which concerns on Embodiment 1 of this invention.
- FIG. 1B is a cross-sectional view taken along the line A-A ′ shown in FIG.
- FIG. 2A is a configuration diagram of a main part when the low cam is used in the cam switching mechanism according to Embodiment 1 of the present invention.
- FIG. 2B is a cross-sectional view taken along line B-B ′ shown in FIG. It is explanatory drawing which shows the operation
- FIG. 6A is a cross-sectional view of the main part in a state where the shaft of the electromagnetic actuator according to Embodiment 1 of the present invention is in the OFF position.
- FIG. 6B is an enlarged view of a region surrounded by an ellipse I shown in FIG.
- FIG. 7A is a cross-sectional view of the main part in a state where the shaft of the electromagnetic actuator according to Embodiment 1 of the present invention is between the OFF position and the ON position.
- FIG. 6A is a cross-sectional view of the main part in a state where the shaft of the electromagnetic actuator according to Embodiment 1 of the present invention is between the OFF position and the ON position.
- FIG. 7B is an enlarged view of a region surrounded by an ellipse I shown in FIG. Fig.8 (a) is sectional drawing of the principal part in the state which has the shaft of the electromagnetic actuator which concerns on Embodiment 1 of this invention in an ON position.
- FIG. 8B is an enlarged view of a region surrounded by an ellipse I shown in FIG. Fig.9 (a) is sectional drawing of the principal part in the state which has the shaft of the electromagnetic actuator which concerns on Embodiment 2 of this invention in an OFF position.
- FIG. 9B is an enlarged view of a region surrounded by an ellipse I shown in FIG. FIG.
- FIG. 10A is a cross-sectional view of the main part in a state where the shaft of the electromagnetic actuator according to Embodiment 2 of the present invention is between the OFF position and the ON position.
- FIG. 10B is an enlarged view of a region surrounded by an ellipse I shown in FIG. Fig.11 (a) is sectional drawing of the principal part in the state which has the shaft of the electromagnetic actuator which concerns on Embodiment 2 of this invention in an ON position.
- FIG. 11B is an enlarged view of a region surrounded by an ellipse I shown in FIG.
- FIG. 12A is a cross-sectional view of the main part in a state where the shaft of the electromagnetic actuator according to Embodiment 3 of the present invention is in the OFF position.
- FIG. 12B is an enlarged view of a region surrounded by an ellipse I shown in FIG.
- FIG. 13A is a cross-sectional view of the main part in a state where the shaft of the electromagnetic actuator according to Embodiment 3 of the present invention is between the OFF position and the ON position.
- FIG. 13B is an enlarged view of a region surrounded by an ellipse I shown in FIG.
- FIG. 14A is a cross-sectional view of the main part in a state where the shaft of the electromagnetic actuator according to Embodiment 3 of the present invention is in the ON position.
- FIG. 14B is an enlarged view of a region surrounded by an ellipse I shown in FIG. It is sectional drawing of the housing which concerns on Embodiment 3 of this invention, a 1st ring, a 2nd ring, and a 3rd ring.
- FIG. 1 and 2 show a cam switching mechanism for an engine valve.
- Fig.1 (a) has shown the principal part of the cam switching mechanism at the time of high cam use.
- FIG. 1B is a cross-sectional view taken along line AA ′ in FIG.
- FIG. 2A shows a main part of the cam switching mechanism when the low cam is used.
- FIG. 2B is a cross-sectional view taken along the line BB ′ in FIG.
- a cam switching mechanism 100 using electromagnetic actuators 1a and 1b according to the first embodiment will be described with reference to FIGS.
- the electromagnetic actuators 1a and 1b push out one end portion 141 of the shaft 14 from the housing 13 by supplying power from the connector 12 to the coil accommodated in the case 11.
- the position in the axial direction of the shaft 14 at which the projection length L of the one end 141 from the housing 13 is the longest is referred to as an “ON position”.
- the axial position of the shaft 14 at which the protrusion length L is the shortest is referred to as an “OFF position”.
- FIG. 1A and FIG. 2A show a state in which the shafts 14 of the two electromagnetic actuators 1a and 1b are both in the OFF position.
- Two cylindrical cam pieces 2a and 2b are arranged facing one end portion 141 of the shaft 14 of the electromagnetic actuators 1a and 1b.
- Spiral grooves 3a and 3b are provided on the side peripheral portions of the cam pieces 2a and 2b.
- the spiral groove 3a of one cam piece 2a and the spiral groove 3b of the other cam piece 2b are opposite to each other.
- the taper surface which rises gently is formed in the terminal part inside the two spiral grooves 3a and 3b, respectively.
- the return mechanism of the cam switching mechanism 100 is configured by the tapered surfaces of the spiral grooves 3a and 3b.
- the distance between the electromagnetic actuators 1a, 1b and the cam pieces 2a, 2b is such that the one end 141 enters the spiral grooves 3a, 3b when the shaft 14 is in the ON position and the one end 141 when the shaft 14 is in the OFF position. Is set to an interval from the spiral grooves 3a and 3b.
- a cam shaft 4 is inserted along the axis of the cam pieces 2a, 2b.
- High cams 5a and 5b and low cams 6a and 6b are provided between the cam pieces 2a and 2b.
- the high cams 5a and 5b and the low cams 6a and 6b are arranged close to each other.
- a convex portion 51 is formed on the outer peripheral portion of the high cam 5b.
- a convex portion 61 is formed on the outer peripheral portion of the low cam 6b.
- the convex part 51 is formed in the outer peripheral part of the high cam 5a
- the convex part 61 is formed in the outer peripheral part of the low cam 6a.
- the convex portions 51 of the high cams 5a and 5b are higher in height than the convex portions 61 of the low cams 6a and 6b.
- the cam part 7 is comprised by the cam pieces 2a and 2b, the high cams 5a and 5b, and the low cams 6a and 6b.
- the cam portion 7 is spline-coupled to the camshaft 4, for example, and rotates integrally with the camshaft 4 around the camshaft 4.
- the cam portion 7 is supported so as to be linearly movable with respect to the camshaft 4 along the axial direction of the camshaft 4.
- Valves 8 a and 8 b are arranged around the cam portion 7.
- Rocker rollers 10a and 10b are provided on the rocker arms 9a and 9b that support the valves 8a and 8b.
- the valves 8a and 8b are pressed toward the camshaft 4 by a coil spring or the like (not shown), and the rocker rollers 10a and 10b are placed on one of the high cams 5a and 5b and the low cams 6a and 6b according to the linear movement position of the cam portion 7. It comes to contact.
- the cam portion 7 rotates with the high cams 5a and 5b in contact with the rocker rollers 10a and 10b.
- convex portions 51 are formed on the outer peripheral portions of the high cams 5a and 5b, and the rocker arms 9a and 9b rotate around the one end portion C by pressing the rocker rollers 10a and 10b according to the rotational position of the convex portion 51.
- the valves 8a and 8b move linearly in the radial direction of the high cams 5a and 5b (direction substantially along the y-axis in the figure).
- the cam portion 7 rotates with the low cams 6a and 6b in contact with the rocker rollers 10a and 10b.
- convex portions 61 are formed on the outer peripheral portions of the low cams 6a and 6b, and the rocker arms 9a and 9b rotate around the one end portion C by pushing the rocker rollers 10a and 10b according to the rotational position of the convex portion 61.
- the valves 8a and 8b move linearly in the radial direction of the low cams 6a and 6b (direction substantially along the y axis in the figure).
- the cam portion 7 rotates in a state where the one end portion 141 of the shaft 14 enters the spiral groove 3b, the cam portion 7 moves in a certain direction along the axis of the camshaft 4 (the positive direction of the x axis in the figure).
- the spiral groove 3b is provided so that the movement width of the cam portion 7 is substantially equal to the distance Lc between the center portions of the high cams 5a and 5b and the low cams 6a and 6b.
- the cams for operating the valves 8a and 8b are switched from the high cams 5a and 5b to the low cams 6a and 6b.
- the electromagnetic actuator 1a moves the shaft 14 from the OFF position to the ON position at the timing when the spiral groove 3a of the cam piece 2a comes directly below.
- the one end portion 141 is pushed out and inserted into the spiral groove 3a.
- FIG. 5 is a cross-sectional view of the main part of the electromagnetic actuator 1a in a state where the shaft 14 is in the OFF position.
- a detailed configuration of the electromagnetic actuator 1a will be described with reference to FIG. Since the electromagnetic actuator 1b is configured in the same manner as the electromagnetic actuator 1a, illustration and description thereof are omitted.
- a coil 16 is wound around the outer periphery of the cylindrical bobbin 15.
- a terminal 17 electrically connected to the coil 16 is provided at one end of the bobbin 15.
- the terminal 17 is accommodated in the connector 12 made of resin.
- the side peripheral portions of the bobbin 15 and the coil 16 are covered with a cylindrical cover 18 integrated with the connector 12.
- a cylindrical core 19 is inserted into and fixed to the inner periphery of the bobbin 15.
- the openings at one end of the bobbin 15, the cover 18, and the core 19 are covered with a disk-shaped lid 20 integrated with the core 19.
- An O-ring 21 is provided between the bobbin 15 and the cover 18 and the core 19 and the lid 20.
- a housing 13 is provided on the other end side of the bobbin 15 and the cover 18.
- the housing 13 has a cylindrical main body 131 and a flange 132 formed at one end of the main body 131, and the flange 132 is opposed to the bobbin 15 and the opening of the cover 18.
- An O-ring 22 is provided between the bobbin 15 and the cover 18 and the flange portion 132. Further, an O-ring 23 is provided in the groove portion on the outer peripheral portion of the main body 131.
- the outer periphery of the cover 18 is covered with the case 11, and the upper and lower opening ends of the case 11 are caulked so that the lid portion 20 and the flange portion 132 are held by the case 11.
- a bracket 24 having a mounting hole 241 is provided on the outer peripheral portion of the case 11 so that it can be freely attached to an arbitrary place such as a casing of an internal combustion engine.
- a cylindrical plunger 25 is inserted into the hollow portion of the core 19.
- the plunger 25 is directly movable with respect to the core 19.
- the other end portion 142 of the shaft 14 is fitted to the distal end portion of the plunger 25 so that the shaft 14 and the plunger 25 move linearly integrally.
- the shaft 14 is inserted into the hollow portion of the housing 13, and one end portion 141 projects from the main body portion 131 of the housing 13.
- a cylindrical ring 26 is installed in a space in which the inner peripheral portion of the housing 13 is expanded.
- the shaft 14 passes through the inner periphery of the ring 26.
- An annular protrusion 261 is formed on the inner peripheral portion of the ring 26.
- the ring 26 is manufactured, for example, by scraping the inner peripheral portion from both end portions of a thick cylindrical metal member toward the central portion.
- An annular second groove 27 is formed by the gap between the protrusion 261 and the stepped surface 133 of the inner peripheral portion of the housing 13.
- a cylindrical boss 28 is installed on the inner peripheral portion of the housing 13 and the bobbin 15 adjacent to the ring 26.
- the shaft 14 passes through the inner periphery of the boss 28.
- An annular protrusion 281 is formed on the inner peripheral portion of the boss 28.
- the boss 28 is manufactured, for example, by scraping the inner peripheral portion from both end portions of a thick cylindrical metal member toward the central portion.
- An annular first groove 29 is formed by the gap between the protrusion 281 of the boss 28 and the protrusion 261 of the ring 26.
- the step surface 133 of the housing 13 is suspended from the inner periphery of the housing 13, the protrusion 261 is suspended from the inner periphery of the ring 26, and the protrusion 281 is suspended from the inner periphery of the boss 28.
- the first groove portion 29 and the second groove portion 27 are groove portions having a U-shaped cross section in which the wall portion is provided substantially perpendicular to the bottom portion of the groove.
- a convex stopper 143 is formed on the side periphery of the shaft 14.
- the stopper 143 is disposed between the protrusion 281 of the boss 28 and the protrusion 261 of the ring 26, and abuts against the protrusion 281 of the boss 28 when the shaft 14 is in the OFF position, so that the shaft 14 is excessively pressed. It has come to regulate the straight movement.
- the plunger 25 abuts on the protrusion 281 of the boss 28 to restrict excessive linear movement of the shaft 14.
- a horizontal hole 144 that penetrates the shaft 14 in the radial direction is formed at a position facing the ring 26 of the shaft 14.
- Balls 30 and 31 are arranged in the openings of the horizontal holes 144, respectively.
- An elastic body 32 is provided between the two balls 30 and 31. The balls 30 and 31 are pressed toward the outer ring 26 by the elastic force of the elastic body 32.
- FIG. 5 shows an example in which the balls 30 and 31 are both spherical and the elastic body 32 is formed of a coil spring.
- the balls 30 and 31 are pressed by the elastic body 32 so as to enter the first groove portion 29. Further, when the shaft 14 is in the ON position, the balls 30 and 31 are pressed by the elastic body 32 and enter the second groove portion 27.
- FIG. 6A is a cross-sectional view of the main part of the electromagnetic actuator 1a in a state where the shaft 14 is in the OFF position.
- FIG. 7A is a cross-sectional view of the electromagnetic actuator 1a in a state where the shaft 14 is between the OFF position and the ON position
- FIG. 8A is an electromagnetic actuator 1a in a state where the shaft 14 is in the ON position.
- FIGS. 6B, 7B, and 8B are enlarged views of regions surrounded by an ellipse I shown in FIGS. 6A, 7A, and 8A, respectively. is there.
- the shaft 14 is moved by the force (the positive force in the y-axis in the figure) that the return mechanism of the cam switching mechanism 100 shown in FIGS. 1 to 4 pushes back the shaft 14.
- the balls 30 and 31 are pushed back into the lateral hole 144 against the force of the elastic body 32 along the convex shape of the protrusion 261 from the second groove 27, and the balls 30 and 31 are moved in the first direction. 2 disengages from the groove 27.
- the shaft 14 linearly moves from the ON position shown in FIG. 8 toward the OFF position, and the electromagnetic actuator 1a returns to the state shown in FIG. 6 through the state shown in FIG.
- the electromagnetic actuator 1 a holds the shaft 14 in the OFF position by pressing the balls 30 and 31 in the first groove 29 with the elastic body 32 and enters the second groove 27.
- the balls 14 are pressed by the elastic body 32 to hold the shaft 14 in the ON position.
- the electromagnetic actuator 1a is used for the cam switching mechanism 100, the coil 16 is energized only during the period in which the shaft 14 is moved from the OFF position to the ON position, and power consumption can be reduced. Further, since it is not necessary to energize the coil 16 when the shaft 14 is in the ON position, the load on the electromagnetic actuator 1a can be reduced.
- the electromagnetic actuator 1a is provided between the balls 30 and 31 and the plurality of balls 30 and 31 disposed in the opening of the lateral hole 144 that penetrates the shaft 14 in the radial direction.
- An elastic body 32 that presses the balls 30 and 31 outward and an inner wall side of the hollow portion of the housing 13, and the balls 30 and 31 are pressed by the elastic body 32 when the shaft 14 is in the OFF position (first position).
- the coil 16 is energized only during the period in which the shaft 14 is moved from the OFF position to the ON position, and power consumption can be reduced. Further, since it is not necessary to energize the coil 16 when the shaft 14 is in the ON position, the load on the electromagnetic actuator 1a can be reduced. Furthermore, the magnet for holding the position of the shaft 14 required for the latch type electromagnetic actuator is not required, the response of the shaft 14 to temperature can be stabilized, and the electromagnetic actuator 1a can be configured at low cost.
- annular ring 26 is provided between the shaft 14 and the inner wall of the hollow portion of the housing 13, and a first groove portion 29 and a second groove portion 27 are formed by unevenness provided on the inner side of the ring 26.
- the ring 26 in which the protrusion 261 is formed on the inner peripheral portion is manufactured as a separate member from the housing 13, and the ring 26 is expanded in the space where the inner periphery of the housing 13 is expanded.
- the groove part is formed by installing. Thereby, the 1st groove part 29 and the 2nd groove part 27 can be formed more easily, and the manufacturing cost of the electromagnetic actuator 1a can be reduced.
- the shapes of the balls 30 and 31 are not limited to spheres. It may be a non-spherical shape such as a spheroid.
- the elastic body 32 is not limited to a coil spring. It may be an elastomer, an air spring or a liquid spring. However, it is preferable to use a coil spring from the viewpoint of stabilizing the response of the shaft 14 to temperature.
- the balls 30 and 31 are only required to be arranged at the openings of the horizontal holes 144, and are not limited to two.
- a plus sign-like hole in which two horizontal holes intersect each other may be provided in the shaft 14, and balls may be disposed in four openings.
- the mechanism using the electromagnetic actuator 1a is not limited to the cam switching mechanism 100 for the engine valve. Similar to the cam switching mechanism 100, any mechanism may be used as long as it has a return mechanism that pushes the shaft 14 in the ON position back to the OFF position.
- FIG. 9A is a cross-sectional view of the main part of the electromagnetic actuator 1a in a state where the shaft 14 is in the OFF position.
- FIG. 10A is a cross-sectional view of the electromagnetic actuator 1a in a state where the shaft 14 is between the OFF position and the ON position
- FIG. 11A is an electromagnetic actuator 1a in a state where the shaft 14 is in the ON position.
- FIGS. 9B, 10B, and 11B are enlarged views of a region surrounded by an ellipse I shown in FIGS.
- the first chamfered portion 262 and the second chamfered portion 263 are formed by chamfering the corner portion on the first groove portion 29 side and the corner portion on the second groove portion 27 side of the protrusion 261 provided on the ring 26.
- the first chamfered portion 262 and the second chamfered portion 263 are so-called “C surfaces”.
- the shape of the 1st chamfer part 262 and the 2nd chamfer part 263 is not limited to C surface. Any shape that can generate a force capable of fixing the shaft 14 to the OFF position side may be used. For example, an R shape may be used.
- the electromagnetic actuator 1a configured as described above will be described.
- the electromagnetic actuator 1a vibrates greatly during operation of the internal combustion engine. Therefore, it is desirable that the holding force for holding the shaft 14 in the OFF position and the ON position is strong enough to prevent unnecessary linear movement of the shaft 14 due to vibration of the electromagnetic actuator 1a.
- the shaft 14 when the shaft 14 is in the OFF position (first position), the balls 30 and 31 pressed toward the first groove 29 by the elastic body 32 are the first.
- the shaft 14 is held in the OFF position (first position) by contacting the first chamfered portion 262 chamfered at one corner of the protrusion 261 between the groove portion 29 and the second groove portion 27, and the shaft 14 is in the ON position.
- the balls 30 and 31 pressed toward the second groove 27 by the elastic body 32 come into contact with the second chamfered portion 263 chamfered at the other corner of the protrusion 261.
- the shaft 14 is held at the ON position (second position).
- the axial force Fy1, Fy2 is applied to the shaft 14 by the forces F1, F2 that the elastic body 32 presses the balls 30, 31 against the first chamfered portion 262 or the second chamfered portion 263.
- the holding force for holding the axial position of the shaft 14 is strengthened, and unnecessary linear movement of the shaft 14 due to vibration of the electromagnetic actuator 1a can be suppressed. Further, the positional accuracy of the shaft 14 can be increased.
- FIG. 12A is a cross-sectional view of the main part of the electromagnetic actuator 1a in a state where the shaft 14 is in the OFF position.
- FIG. 13A is a cross-sectional view of the electromagnetic actuator 1a in a state where the shaft 14 is between the OFF position and the ON position
- FIG. 14A is an electromagnetic actuator 1a in a state where the shaft 14 is in the ON position.
- FIGS. 12B, 13B, and 14B are enlarged views of a region surrounded by an ellipse I shown in FIGS. 12A, 13A, and 14A, respectively. is there.
- FIG. 15 is a cross-sectional view of the housing, the first ring, the second ring, and the third ring. 12 to 15, the same components as those of the electromagnetic actuator 1a according to the second embodiment shown in FIGS. 9 to 11 are denoted by the same reference numerals, and the description thereof is omitted.
- the electromagnetic actuator 1b shown in FIGS. 1 to 4 is configured in the same manner as the electromagnetic actuator 1a, and therefore illustration and description thereof are omitted.
- the first ring 40, the second ring 41, and the third ring 42 are installed in a space in which the inner peripheral portion of the housing 13 is expanded.
- the first ring 40 is formed with a first tapered surface 401 by chamfering an inner peripheral portion of an end portion in contact with the second ring 41.
- the second ring 41 has second tapered surfaces 411 and 412 formed by chamfering inner peripheral portions at both ends.
- the third ring 42 is formed with a third tapered surface 421 by chamfering the inner peripheral portion of the end portion that contacts the second ring 41.
- the first groove 29 is constituted by the gap between the first tapered surface 401 and the second tapered surface 411.
- the gap between the second taper surface 412 and the third taper surface 421 constitutes the second groove portion 27. That is, the first groove portion 29 and the second groove portion 27 have a shape in which the wall portion is inclined so as to expand from the bottom of the groove toward the opening.
- a protrusion 413 is formed on the inner peripheral portion of the second ring 41 by two second tapered surfaces 411 and 412.
- the holding force for holding the axial position of the shaft 14 is increased by the forces Fy1 and Fy2 similar to those of the second embodiment, and the shaft 14 due to the vibration of the electromagnetic actuator 1a is increased. Unnecessary linear motion can be suppressed. Further, the positional accuracy of the shaft 14 can be increased.
- the first groove portion 29 and the second groove portion 27 may be formed by using one ring 26 as in the first and second embodiments, or may be implemented. It may be formed using a plurality of first rings 40, second rings 41, and third rings 42 as in the third embodiment.
- the first groove portion 29 and the second groove portion 27 have a shape in which a wall portion is suspended from the bottom of the groove as in the first and second embodiments. Alternatively, the wall portion may be inclined so as to expand from the bottom of the groove toward the opening.
- the elastic body 32 has a strong elastic force when the balls 30 and 31 are in the first groove 29 and the second groove 27, and the balls 30 and 31 are in the first groove. It is more preferable that the elastic force is weakened in a state where it is disengaged from 29 and the second groove 27.
- the electromagnetic actuator 1a moves the shaft 14 from the OFF position while suppressing unnecessary linear movement of the shaft 14 due to vibration. Power consumption can be further reduced by reducing the force required to push out to the ON position, and the force required when the return mechanism of the cam switching mechanism 100 pushes the shaft 14 back from the OFF position to the ON position. By reducing the load, the load on the return mechanism side can be reduced.
- the elastic body 32 may be constituted by, for example, an air spring.
- the air pressure of the air spring is increased when the balls 30 and 31 are in the first groove portion 29 and the second groove portion 27, and the balls 30 and 31 are detached from the first groove portion 29 and the second groove portion 27.
- a pressure control device that lowers the air pressure of the air spring is added to the electromagnetic actuator 1a.
- the elastic body 32 may be constituted by a liquid spring, and a pressure control device that similarly controls the pressure of the liquid may be added.
- the mechanism since the ball arranged in the opening of the side hole of the shaft enters the first groove portion and the second groove portion to maintain the axial position of the shaft, the mechanism has a return mechanism in particular. When used, power consumption can be reduced and the load on the electromagnetic actuator can be reduced. Therefore, it is suitable for use in a cam switching mechanism for an engine valve.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Valve Device For Special Equipments (AREA)
Abstract
An electromagnetic actuator 1a is provided with: a plurality of balls 30 and 31, which are disposed in an opening of a horizontal hole 144 penetrating a shaft 14 in the diameter direction; an elastic body 32, which is provided between the balls 30 and 31, and presses the balls 30 and 31 outward; a first groove section 29, which is formed on the inner wall side of a hollow section of a housing 13, and which the balls 30 and 31 enter by receiving the pressing of the elastic body 32 when the shaft 14 is at an OFF position (first position); and a second groove section 27, which is formed on the inner wall side of the hollow section of the housing 13 at an interval in the axis direction from the first groove section 29, and which the balls 30 and 31 enter by receiving the pressing of the elastic body 32 when the shaft 14 is at an ON position (second position).
Description
本発明は、エンジンバルブ用のカム切替機構などに用いられる電磁アクチュエータに関するものである。
The present invention relates to an electromagnetic actuator used in a cam switching mechanism for an engine valve.
従来の電磁アクチュエータは、コイルに電圧を印加することで発生する電磁力によりプランジャを直動させて、プランジャと一体に直動するシャフトの先端部をアクチュエータ本体から押し出している。また、従来の電磁アクチュエータは、コイルへの電圧印加を停止することで、アクチュエータ本体に内蔵されたリターンスプリングの弾性力によりプランジャ及びシャフトを元の位置に戻している。
In the conventional electromagnetic actuator, the plunger is linearly moved by electromagnetic force generated by applying a voltage to the coil, and the tip of the shaft that linearly moves integrally with the plunger is pushed out from the actuator body. Moreover, the conventional electromagnetic actuator returns the plunger and the shaft to the original position by the elastic force of the return spring built in the actuator body by stopping the voltage application to the coil.
特許文献1には、電磁アクチュエータを用いて流体の圧力を制御する電磁スプール弁装置が開示されている。特許文献1の電磁スプール弁装置は、弁機構の各ポート間の連通状態を切替えるスプールを中間位置に保持する中間位置保持機構を備えている。特許文献1の電磁スプール弁装置は、この中間位置保持機構により、スプールをストローク中間位置に確実かつ高精度に位置決めして保持している。
Patent Document 1 discloses an electromagnetic spool valve device that controls the pressure of a fluid using an electromagnetic actuator. The electromagnetic spool valve device of Patent Document 1 includes an intermediate position holding mechanism that holds a spool that switches a communication state between the ports of the valve mechanism at an intermediate position. The electromagnetic spool valve device of Patent Literature 1 uses the intermediate position holding mechanism to position and hold the spool at the stroke intermediate position reliably and with high accuracy.
自動車などの内燃機関の気筒休止機構において、内燃機関の回転数が高いときにエンジンバルブを動作させるカム(いわゆる「ハイカム」)と回転数が低いときにエンジンバルブを動作させるカム(いわゆる「ローカム」)との切り替えにも電磁アクチュエータが用いられている。ハイカムとローカムとを切替えるカム切替機構は、電磁アクチュエータが押し出したシャフトの先端部を強制的に押し戻す機構(以下「戻り機構」という)を有している。
In a cylinder deactivation mechanism of an internal combustion engine such as an automobile, a cam that operates an engine valve when the rotational speed of the internal combustion engine is high (so-called “high cam”) and a cam that operates the engine valve when the rotational speed is low (so-called “low cam”) Electromagnetic actuators are also used for switching to). The cam switching mechanism for switching between the high cam and the low cam has a mechanism (hereinafter referred to as “return mechanism”) that forcibly pushes back the tip of the shaft that is pushed out by the electromagnetic actuator.
従来の電磁アクチュエータをカム切替機構に用いて、リターンスプリングに代えて上記戻り機構により戻り動作を行うものとした場合、シャフトの突出状態を維持するためにコイルに電圧を印加し続けるため、消費電力が多い課題があった。また、コイルへの電圧印加を停止するタイミングと、カム切替機構の戻り機構がシャフトの先端部を押し戻すタイミングとがずれた場合、電磁アクチュエータが電磁力によりシャフトを押し出す力に対して戻り機構がシャフトを押し戻す力が抵抗し、電磁アクチュエータに負荷がかかる課題があった。
When a conventional electromagnetic actuator is used for the cam switching mechanism and the return mechanism performs the return operation instead of the return spring, the voltage is continuously applied to the coil in order to maintain the protruding state of the shaft. There were many problems. In addition, when the timing at which the voltage application to the coil is stopped and the timing at which the return mechanism of the cam switching mechanism pushes back the tip of the shaft deviates, the return mechanism is driven against the force by which the electromagnetic actuator pushes the shaft by electromagnetic force. There was a problem that the force to push back resists and a load is applied to the electromagnetic actuator.
なお、特許文献1の電磁アクチュエータは、シャフトの位置保持のためにコイルに常に電圧を印加している。このため、特許文献1の電磁アクチュエータをカム切替機構に適用した場合、従来の電磁アクチュエータを用いた場合と同様に消費電力が多く、電磁アクチュエータに負荷がかかる課題があった。
Note that the electromagnetic actuator of Patent Document 1 always applies a voltage to the coil to maintain the position of the shaft. For this reason, when the electromagnetic actuator of patent document 1 is applied to a cam switching mechanism, there is a problem that power consumption is large and a load is applied to the electromagnetic actuator, as in the case of using a conventional electromagnetic actuator.
これに対し、シャフトを磁性体で構成するとともに、シャフトの突出位置にマグネットを設けたラッチ型の電磁アクチュエータが開発されている。ラッチ型の電磁アクチュエータは、シャフトを押し出すときにのみコイルに電圧を印加して、その後はマグネットの磁力によって突出状態を維持する。これにより、消費電力を低減するとともに、カム切替機構の戻り機構がシャフトを押し戻す力に抵抗するためにコイルに過電流が流れるのを抑制して、電磁アクチュエータの負荷を低減している。
In contrast, a latch-type electromagnetic actuator has been developed in which the shaft is made of a magnetic material and a magnet is provided at the protruding position of the shaft. The latch type electromagnetic actuator applies a voltage to the coil only when pushing out the shaft, and thereafter maintains the protruding state by the magnetic force of the magnet. As a result, power consumption is reduced, and the load of the electromagnetic actuator is reduced by suppressing overcurrent from flowing through the coil in order to resist the force with which the return mechanism of the cam switching mechanism pushes back the shaft.
しかしながら、ラッチ型の電磁アクチュエータは、温度に応じてマグネットの磁力が変化し、シャフトの応答性が大きく変化する課題があった。また、マグネットに希土類を用いるため、コストが高くなる課題があった。
However, the latch-type electromagnetic actuator has a problem that the magnetic force of the magnet changes according to the temperature and the responsiveness of the shaft changes greatly. Further, since rare earth is used for the magnet, there is a problem that costs increase.
本発明は、上記のような課題を解決するためになされたものであり、消費電力を低減しつつ電磁アクチュエータの負荷を低減したカム切替機構を実現することができ、かつ、温度に対するシャフトの応答性を安定させることができる安価な電磁アクチュエータを提供することを目的とする。
The present invention has been made in order to solve the above-described problems, and can realize a cam switching mechanism that reduces the load of the electromagnetic actuator while reducing power consumption, and the response of the shaft to temperature. An object of the present invention is to provide an inexpensive electromagnetic actuator that can stabilize the performance.
本発明の電磁アクチュエータは、ハウジングの中空部に通したシャフトを、軸方向の第1位置と第2位置の間で往復させる電磁アクチュエータであって、シャフトを径方向に貫通した横穴の開口部に配置された複数個のボールと、ボール間に設けられ、ボールを外側に押圧する弾性体と、中空部の内壁側に形成され、シャフトが第1位置にあるときにボールが弾性体の押圧を受けて入る第1溝部と、第1溝部との間に軸方向に間隔を設けて中空部の内壁側に形成され、シャフトが第2位置にあるときにボールが弾性体の押圧を受けて入る第2溝部と、を備えるものである。
An electromagnetic actuator according to the present invention is an electromagnetic actuator that reciprocates a shaft passed through a hollow portion of a housing between a first position and a second position in an axial direction, and is formed in a lateral hole opening that penetrates the shaft in a radial direction. A plurality of disposed balls, an elastic body provided between the balls and pressing the balls outward; formed on the inner wall side of the hollow portion; and when the shaft is in the first position, the balls press the elastic body. It is formed on the inner wall side of the hollow portion with an axial space between the first groove portion and the first groove portion, and when the shaft is in the second position, the ball receives the elastic body when pressed. And a second groove portion.
本発明の電磁アクチュエータは、コイルに電圧が印加されていない状態で、シャフトの横穴の開口部に配置したボールが第1溝部及び第2溝部に入ることによりシャフトの軸方向の位置を保持するので、消費電力を低減しつつ電磁アクチュエータの負荷を低減したカム切替機構を実現することができる。また、マグネットにより保持力を発生させるものではないため、温度変化に対するシャフトの動作の応答性を安定させることができ、かつ安価に構成することができる。
The electromagnetic actuator according to the present invention maintains the axial position of the shaft when the ball disposed in the opening portion of the lateral hole of the shaft enters the first groove portion and the second groove portion in a state where no voltage is applied to the coil. Thus, a cam switching mechanism that reduces the load of the electromagnetic actuator while reducing power consumption can be realized. Further, since the holding force is not generated by the magnet, the responsiveness of the operation of the shaft with respect to the temperature change can be stabilized and can be configured at low cost.
以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1及び図2は、エンジンバルブ用のカム切替機構を示している。図1(a)は、ハイカム使用時のカム切替機構の要部を示している。図1(b)は、図1(a)のA-A’線に沿う断面図である。図2(a)は、ローカム使用時のカム切替機構の要部を示している。図2(b)は、図2(a)のB-B’線に沿う断面図である。
図1及び図2を参照して、実施の形態1の電磁アクチュエータ1a,1bを用いたカム切替機構100について説明する。 Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
1 and 2 show a cam switching mechanism for an engine valve. Fig.1 (a) has shown the principal part of the cam switching mechanism at the time of high cam use. FIG. 1B is a cross-sectional view taken along line AA ′ in FIG. FIG. 2A shows a main part of the cam switching mechanism when the low cam is used. FIG. 2B is a cross-sectional view taken along the line BB ′ in FIG.
Acam switching mechanism 100 using electromagnetic actuators 1a and 1b according to the first embodiment will be described with reference to FIGS.
実施の形態1.
図1及び図2は、エンジンバルブ用のカム切替機構を示している。図1(a)は、ハイカム使用時のカム切替機構の要部を示している。図1(b)は、図1(a)のA-A’線に沿う断面図である。図2(a)は、ローカム使用時のカム切替機構の要部を示している。図2(b)は、図2(a)のB-B’線に沿う断面図である。
図1及び図2を参照して、実施の形態1の電磁アクチュエータ1a,1bを用いたカム切替機構100について説明する。 Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
1 and 2 show a cam switching mechanism for an engine valve. Fig.1 (a) has shown the principal part of the cam switching mechanism at the time of high cam use. FIG. 1B is a cross-sectional view taken along line AA ′ in FIG. FIG. 2A shows a main part of the cam switching mechanism when the low cam is used. FIG. 2B is a cross-sectional view taken along the line BB ′ in FIG.
A
電磁アクチュエータ1a,1bは、ケース11に収容されたコイルにコネクタ12から給電することで、ハウジング13からシャフト14の一端部141を押し出すものである。以下、本発明の電磁アクチュエータ1a,1bにおいて、ハウジング13からの一端部141の突出長Lが最長となるシャフト14の軸方向の位置を「ON位置」という。また、突出長Lが最短となるシャフト14の軸方向の位置を「OFF位置」という。図1(a)及び図2(a)は、2個の電磁アクチュエータ1a,1bのシャフト14がいずれもOFF位置にある状態を示している。
The electromagnetic actuators 1a and 1b push out one end portion 141 of the shaft 14 from the housing 13 by supplying power from the connector 12 to the coil accommodated in the case 11. Hereinafter, in the electromagnetic actuators 1a and 1b of the present invention, the position in the axial direction of the shaft 14 at which the projection length L of the one end 141 from the housing 13 is the longest is referred to as an “ON position”. Further, the axial position of the shaft 14 at which the protrusion length L is the shortest is referred to as an “OFF position”. FIG. 1A and FIG. 2A show a state in which the shafts 14 of the two electromagnetic actuators 1a and 1b are both in the OFF position.
電磁アクチュエータ1a,1bのシャフト14の一端部141に対向して、2個の円柱状のカムピース2a,2bが配置されている。カムピース2a,2bの側周部には螺旋溝3a,3bが設けられている。一方のカムピース2aの螺旋溝3aと他方のカムピース2bの螺旋溝3bとは、螺旋の向きが互いに逆向きになっている。
Two cylindrical cam pieces 2a and 2b are arranged facing one end portion 141 of the shaft 14 of the electromagnetic actuators 1a and 1b. Spiral grooves 3a and 3b are provided on the side peripheral portions of the cam pieces 2a and 2b. The spiral groove 3a of one cam piece 2a and the spiral groove 3b of the other cam piece 2b are opposite to each other.
また、2個の螺旋溝3a,3bの内側の終端部には、ゆるやかに盛り上がるテーパ面がそれぞれ形成されている。螺旋溝3a,3bのテーパ面により、カム切替機構100の戻り機構が構成されている。
Moreover, the taper surface which rises gently is formed in the terminal part inside the two spiral grooves 3a and 3b, respectively. The return mechanism of the cam switching mechanism 100 is configured by the tapered surfaces of the spiral grooves 3a and 3b.
電磁アクチュエータ1a,1bとカムピース2a,2b間の間隔は、シャフト14がON位置にあるときに一端部141が螺旋溝3a,3bに入り、かつ、シャフト14がOFF位置にあるときに一端部141が螺旋溝3a,3bから出る間隔に設定されている。カムピース2a,2bの軸心に沿って、カムシャフト4が挿通されている。
The distance between the electromagnetic actuators 1a, 1b and the cam pieces 2a, 2b is such that the one end 141 enters the spiral grooves 3a, 3b when the shaft 14 is in the ON position and the one end 141 when the shaft 14 is in the OFF position. Is set to an interval from the spiral grooves 3a and 3b. A cam shaft 4 is inserted along the axis of the cam pieces 2a, 2b.
カムピース2a,2b間にハイカム5a,5bとローカム6a,6bが設けられている。ハイカム5a,5bとローカム6a,6bは近接して配置されている。図1(b)に示す如く、ハイカム5bの外周部には凸部51が形成されている。図2(b)に示す如く、ローカム6bの外周部には凸部61が形成されている。同様に、ハイカム5aの外周部に凸部51が、ローカム6aの外周部に凸部61が形成されている。ハイカム5a,5bの凸部51は、ローカム6a,6bの凸部61よりも高さが高くなっている。
High cams 5a and 5b and low cams 6a and 6b are provided between the cam pieces 2a and 2b. The high cams 5a and 5b and the low cams 6a and 6b are arranged close to each other. As shown in FIG. 1B, a convex portion 51 is formed on the outer peripheral portion of the high cam 5b. As shown in FIG. 2B, a convex portion 61 is formed on the outer peripheral portion of the low cam 6b. Similarly, the convex part 51 is formed in the outer peripheral part of the high cam 5a, and the convex part 61 is formed in the outer peripheral part of the low cam 6a. The convex portions 51 of the high cams 5a and 5b are higher in height than the convex portions 61 of the low cams 6a and 6b.
カムピース2a,2b、ハイカム5a,5b及びローカム6a,6bにより、カム部7が構成されている。カム部7は、カムシャフト4に例えばスプライン結合されており、カムシャフト4を中心にカムシャフト4と一体に回転するようになっている。また、カム部7は、カムシャフト4の軸方向に沿ってカムシャフト4に対して直動自在に支持されている。
The cam part 7 is comprised by the cam pieces 2a and 2b, the high cams 5a and 5b, and the low cams 6a and 6b. The cam portion 7 is spline-coupled to the camshaft 4, for example, and rotates integrally with the camshaft 4 around the camshaft 4. The cam portion 7 is supported so as to be linearly movable with respect to the camshaft 4 along the axial direction of the camshaft 4.
カム部7の周囲にバルブ8a,8bが配置されている。バルブ8a,8bを支持するロッカアーム9a,9bには、ロッカローラ10a,10bが設けられている。バルブ8a,8bは図示しないコイルバネ等によりカムシャフト4側に押圧されており、ロッカローラ10a,10bはカム部7の直動位置に応じてハイカム5a,5bとローカム6a,6bとのいずれか一方に当接するようになっている。
Valves 8 a and 8 b are arranged around the cam portion 7. Rocker rollers 10a and 10b are provided on the rocker arms 9a and 9b that support the valves 8a and 8b. The valves 8a and 8b are pressed toward the camshaft 4 by a coil spring or the like (not shown), and the rocker rollers 10a and 10b are placed on one of the high cams 5a and 5b and the low cams 6a and 6b according to the linear movement position of the cam portion 7. It comes to contact.
次に、図1及び図2を参照して、このように構成されたカム切替機構100によるバルブ8a,8bの開閉動作について説明する。
図1に示す如く、ハイカム5a,5bがロッカローラ10a,10bに当接した状態でカム部7が回転する。このとき、ハイカム5a,5bの外周部に凸部51が形成されており、凸部51の回転位置に応じてロッカローラ10a,10bを押すことで、ロッカアーム9a,9bが一端部Cを中心に回動する。ロッカアーム9a,9bの回動に応じて、バルブ8a,8bがハイカム5a,5bの径方向(図中y軸に略沿う方向)に直動する。 Next, the opening / closing operation of the valves 8a and 8b by the cam switching mechanism 100 configured as described above will be described with reference to FIGS.
As shown in FIG. 1, thecam portion 7 rotates with the high cams 5a and 5b in contact with the rocker rollers 10a and 10b. At this time, convex portions 51 are formed on the outer peripheral portions of the high cams 5a and 5b, and the rocker arms 9a and 9b rotate around the one end portion C by pressing the rocker rollers 10a and 10b according to the rotational position of the convex portion 51. Move. In response to the rotation of the rocker arms 9a and 9b, the valves 8a and 8b move linearly in the radial direction of the high cams 5a and 5b (direction substantially along the y-axis in the figure).
図1に示す如く、ハイカム5a,5bがロッカローラ10a,10bに当接した状態でカム部7が回転する。このとき、ハイカム5a,5bの外周部に凸部51が形成されており、凸部51の回転位置に応じてロッカローラ10a,10bを押すことで、ロッカアーム9a,9bが一端部Cを中心に回動する。ロッカアーム9a,9bの回動に応じて、バルブ8a,8bがハイカム5a,5bの径方向(図中y軸に略沿う方向)に直動する。 Next, the opening / closing operation of the
As shown in FIG. 1, the
あるいは、図2に示す如く、ローカム6a,6bがロッカローラ10a,10bに当接した状態でカム部7が回転する。このとき、ローカム6a,6bの外周部に凸部61が形成されており、凸部61の回転位置に応じてロッカローラ10a,10bを押すことで、ロッカアーム9a,9bが一端部Cを中心に回動する。ロッカアーム9a,9bの回動に応じて、バルブ8a,8bがローカム6a,6bの径方向(図中y軸に略沿う方向)に直動する。
Alternatively, as shown in FIG. 2, the cam portion 7 rotates with the low cams 6a and 6b in contact with the rocker rollers 10a and 10b. At this time, convex portions 61 are formed on the outer peripheral portions of the low cams 6a and 6b, and the rocker arms 9a and 9b rotate around the one end portion C by pushing the rocker rollers 10a and 10b according to the rotational position of the convex portion 61. Move. In response to the rotation of the rocker arms 9a and 9b, the valves 8a and 8b move linearly in the radial direction of the low cams 6a and 6b (direction substantially along the y axis in the figure).
このとき、ハイカム5a,5bの凸部51はローカム6a,6bの凸部61よりも高さが高いため、図1(a)に示すハイカム5a,5b使用時のバルブ8a,8bの直動幅Lhは、図2(a)に示すローカム6a,6b使用時のバルブ8a,8bの直動幅Llよりも大きくなる。
At this time, since the convex portions 51 of the high cams 5a and 5b are higher than the convex portions 61 of the low cams 6a and 6b, the linear motion widths of the valves 8a and 8b when the high cams 5a and 5b shown in FIG. Lh is larger than the linear motion width Ll of the valves 8a and 8b when the low cams 6a and 6b shown in FIG.
次に、図1~図4を参照して、カム切替機構100によるハイカム5a,5bとローカム6a,6bとの切替動作について説明する。
図3に示す如く、ハイカム5a,5bがロッカローラ10a,10bに当接した状態において、カムピース2bの螺旋溝3bが直下に来たタイミングで電磁アクチュエータ1bがシャフト14をOFF位置からON位置に切替えることで、一端部141を押し出して螺旋溝3bに入れる。 Next, the switching operation between the high cams 5a and 5b and the low cams 6a and 6b by the cam switching mechanism 100 will be described with reference to FIGS.
As shown in FIG. 3, when the high cams 5a and 5b are in contact with the rocker rollers 10a and 10b, the electromagnetic actuator 1b switches the shaft 14 from the OFF position to the ON position at the timing when the spiral groove 3b of the cam piece 2b comes directly below. Then, the one end portion 141 is pushed out and put into the spiral groove 3b.
図3に示す如く、ハイカム5a,5bがロッカローラ10a,10bに当接した状態において、カムピース2bの螺旋溝3bが直下に来たタイミングで電磁アクチュエータ1bがシャフト14をOFF位置からON位置に切替えることで、一端部141を押し出して螺旋溝3bに入れる。 Next, the switching operation between the
As shown in FIG. 3, when the
シャフト14の一端部141が螺旋溝3bに入った状態でカム部7が回転することで、カム部7がカムシャフト4の軸に沿う一定方向(図中x軸の正方向)に移動する。ここで、螺旋溝3bは、カム部7の移動幅がハイカム5a,5bとローカム6a,6bの中心部間の間隔Lcと略等しくなるように設けられている。これにより、バルブ8a,8bの動作用のカムがハイカム5a,5bからローカム6a,6bに切替わる。
When the cam portion 7 rotates in a state where the one end portion 141 of the shaft 14 enters the spiral groove 3b, the cam portion 7 moves in a certain direction along the axis of the camshaft 4 (the positive direction of the x axis in the figure). Here, the spiral groove 3b is provided so that the movement width of the cam portion 7 is substantially equal to the distance Lc between the center portions of the high cams 5a and 5b and the low cams 6a and 6b. As a result, the cams for operating the valves 8a and 8b are switched from the high cams 5a and 5b to the low cams 6a and 6b.
また、螺旋溝3bの終端部にはゆるやかに盛り上がるテーパ面が形成されており、カム部7の回転によりシャフト14の一端部141を電磁アクチュエータ1b側へ押し戻すようになっている。この戻り機構により、電磁アクチュエータ1bのシャフト14がOFF位置に戻り、カム切替機構100は図2(a)に示す状態になる。
Further, a taper surface that rises gently is formed at the end of the spiral groove 3b, and the one end 141 of the shaft 14 is pushed back to the electromagnetic actuator 1b side by the rotation of the cam portion 7. With this return mechanism, the shaft 14 of the electromagnetic actuator 1b returns to the OFF position, and the cam switching mechanism 100 is in the state shown in FIG.
同様に、図4に示す如く、ローカム6a,6bがロッカローラ10a,10bに当接した状態において、カムピース2aの螺旋溝3aが直下に来たタイミングで電磁アクチュエータ1aがシャフト14をOFF位置からON位置に切替えることで、一端部141を押し出して螺旋溝3aに入れる。
Similarly, as shown in FIG. 4, when the low cams 6a and 6b are in contact with the rocker rollers 10a and 10b, the electromagnetic actuator 1a moves the shaft 14 from the OFF position to the ON position at the timing when the spiral groove 3a of the cam piece 2a comes directly below. By switching to, the one end portion 141 is pushed out and inserted into the spiral groove 3a.
シャフト14の一端部141が螺旋溝3aに入った状態でカム部7が回転することで、カム部7がカムシャフト4の軸に沿う一定方向(図中x軸の負方向)に移動する。ここで、螺旋溝3aは螺旋の向きが螺旋溝3bと逆向きであるため、カム部7は図3に示す状態と逆方向に移動する。これにより、バルブ8a,8bの動作に用いるカムがローカム6a,6bからハイカム5a,5bに切替わる。
When the cam portion 7 rotates in a state where the one end portion 141 of the shaft 14 enters the spiral groove 3a, the cam portion 7 moves in a certain direction along the axis of the camshaft 4 (the negative direction of the x axis in the figure). Here, since the spiral direction of the spiral groove 3a is opposite to that of the spiral groove 3b, the cam portion 7 moves in the opposite direction to the state shown in FIG. Thereby, the cam used for operation | movement of valve | bulb 8a, 8b switches from low cam 6a, 6b to high cam 5a, 5b.
また、螺旋溝3aの終端部には螺旋溝3bと同様にゆるやかに盛り上がるテーパ面が形成されており、カム部7の回転によりシャフト14の一端部141を電磁アクチュエータ1a側へ押し戻すようになっている。この戻り機構により、電磁アクチュエータ1aのシャフト14がOFF位置に戻り、カム切替機構100は図1(a)に示す状態になる。
Further, a tapered surface that gently rises is formed at the end portion of the spiral groove 3a similarly to the spiral groove 3b, and the one end portion 141 of the shaft 14 is pushed back to the electromagnetic actuator 1a side by the rotation of the cam portion 7. Yes. By this return mechanism, the shaft 14 of the electromagnetic actuator 1a returns to the OFF position, and the cam switching mechanism 100 is in the state shown in FIG.
図5は、シャフト14がOFF位置にある状態における電磁アクチュエータ1aの要部の断面図である。図5を参照して、電磁アクチュエータ1aの詳細な構成について説明する。なお、電磁アクチュエータ1bについては、電磁アクチュエータ1aと同様に構成されているため図示及び説明を省略する。
FIG. 5 is a cross-sectional view of the main part of the electromagnetic actuator 1a in a state where the shaft 14 is in the OFF position. A detailed configuration of the electromagnetic actuator 1a will be described with reference to FIG. Since the electromagnetic actuator 1b is configured in the same manner as the electromagnetic actuator 1a, illustration and description thereof are omitted.
円筒状のボビン15の外周部にコイル16が巻回されている。ボビン15の一端部にはコイル16と電気的に接続されたターミナル17が設けられている。ターミナル17は樹脂製のコネクタ12に収容されている。ボビン15及びコイル16の側周部は、コネクタ12と一体の円筒状のカバー18により覆われている。
A coil 16 is wound around the outer periphery of the cylindrical bobbin 15. A terminal 17 electrically connected to the coil 16 is provided at one end of the bobbin 15. The terminal 17 is accommodated in the connector 12 made of resin. The side peripheral portions of the bobbin 15 and the coil 16 are covered with a cylindrical cover 18 integrated with the connector 12.
ボビン15の内周部に円筒状のコア19が挿通され固定されている。ボビン15、カバー18及びコア19の一端部の開口部は、コア19と一体の円盤状の蓋部20により覆われている。ボビン15及びカバー18とコア19及び蓋部20との間には、Oリング21が設けられている。
A cylindrical core 19 is inserted into and fixed to the inner periphery of the bobbin 15. The openings at one end of the bobbin 15, the cover 18, and the core 19 are covered with a disk-shaped lid 20 integrated with the core 19. An O-ring 21 is provided between the bobbin 15 and the cover 18 and the core 19 and the lid 20.
ボビン15及びカバー18の他端側には、ハウジング13が設けられている。ハウジング13は、円筒状の本体部131と、本体部131の一端部に形成された鍔部132とを有しており、この鍔部132がボビン15及びカバー18の開口部に対向している。ボビン15及びカバー18と鍔部132との間には、Oリング22が設けられている。また、本体部131の外周部の溝部には、Oリング23が設けられている。
A housing 13 is provided on the other end side of the bobbin 15 and the cover 18. The housing 13 has a cylindrical main body 131 and a flange 132 formed at one end of the main body 131, and the flange 132 is opposed to the bobbin 15 and the opening of the cover 18. . An O-ring 22 is provided between the bobbin 15 and the cover 18 and the flange portion 132. Further, an O-ring 23 is provided in the groove portion on the outer peripheral portion of the main body 131.
カバー18の外周はケース11で覆われ、ケース11の上下開口端がかしめられたことにより、蓋部20及び鍔部132がケース11に保持された状態になる。ケース11の外周部には、取付穴241を有するブラケット24が設けられており、内燃機関の筐体などの任意の場所に取り付け自在になっている。
The outer periphery of the cover 18 is covered with the case 11, and the upper and lower opening ends of the case 11 are caulked so that the lid portion 20 and the flange portion 132 are held by the case 11. A bracket 24 having a mounting hole 241 is provided on the outer peripheral portion of the case 11 so that it can be freely attached to an arbitrary place such as a casing of an internal combustion engine.
コア19の中空部に、円筒状のプランジャ25が挿通されている。プランジャ25はコア19に対して直動自在になっている。プランジャ25の先端部には、シャフト14の他端部142が嵌合しており、シャフト14とプランジャ25が一体に直動するようになっている。シャフト14はハウジング13の中空部に挿通されており、一端部141がハウジング13の本体部131から突出している。
A cylindrical plunger 25 is inserted into the hollow portion of the core 19. The plunger 25 is directly movable with respect to the core 19. The other end portion 142 of the shaft 14 is fitted to the distal end portion of the plunger 25 so that the shaft 14 and the plunger 25 move linearly integrally. The shaft 14 is inserted into the hollow portion of the housing 13, and one end portion 141 projects from the main body portion 131 of the housing 13.
ここで、ハウジング13の内周部を拡径した空間に円筒状のリング26が設置されている。リング26の内周部をシャフト14が通る。リング26の内周部には、円環状の突条261が形成されている。リング26は、例えば、肉厚の円筒状の金属部材の両端部から中央部に向かって内周部を削り取ることで製造されたものである。突条261と、ハウジング13の内周部の段差面133との間の間隙により、円環状の第2溝部27が構成されている。
Here, a cylindrical ring 26 is installed in a space in which the inner peripheral portion of the housing 13 is expanded. The shaft 14 passes through the inner periphery of the ring 26. An annular protrusion 261 is formed on the inner peripheral portion of the ring 26. The ring 26 is manufactured, for example, by scraping the inner peripheral portion from both end portions of a thick cylindrical metal member toward the central portion. An annular second groove 27 is formed by the gap between the protrusion 261 and the stepped surface 133 of the inner peripheral portion of the housing 13.
また、リング26に隣接して、ハウジング13及びボビン15の内周部に円筒状のボス28が設置されている。ボス28の内周部をシャフト14が通る。ボス28の内周部には、円環状の突条281が形成されている。ボス28は、例えば、肉厚の円筒状の金属部材の両端部から中央部に向かって内周部を削り取ることで製造されたものである。ボス28の突条281と、リング26の突条261との間の間隙により、円環状の第1溝部29が構成されている。
Further, a cylindrical boss 28 is installed on the inner peripheral portion of the housing 13 and the bobbin 15 adjacent to the ring 26. The shaft 14 passes through the inner periphery of the boss 28. An annular protrusion 281 is formed on the inner peripheral portion of the boss 28. The boss 28 is manufactured, for example, by scraping the inner peripheral portion from both end portions of a thick cylindrical metal member toward the central portion. An annular first groove 29 is formed by the gap between the protrusion 281 of the boss 28 and the protrusion 261 of the ring 26.
ハウジング13の段差面133はハウジング13の内周部に垂設されており、突条261はリング26の内周部に垂設されており、突条281はボス28の内周部に垂設されている。これにより、第1溝部29及び第2溝部27は、溝の底部に対して壁部が略垂直に設けられた断面U字状の溝部になっている。
The step surface 133 of the housing 13 is suspended from the inner periphery of the housing 13, the protrusion 261 is suspended from the inner periphery of the ring 26, and the protrusion 281 is suspended from the inner periphery of the boss 28. Has been. Accordingly, the first groove portion 29 and the second groove portion 27 are groove portions having a U-shaped cross section in which the wall portion is provided substantially perpendicular to the bottom portion of the groove.
シャフト14の側周部に、凸状のストッパ143が形成されている。ストッパ143は、ボス28の突条281とリング26の突条261との間に配置されており、シャフト14がOFF位置にあるときにボス28の突条281に当接して、シャフト14の過度な直動を規制するようになっている。なお、シャフト14がON位置にあるときは、プランジャ25がボス28の突条281に当接して、シャフト14の過度な直動を規制するようになっている。
A convex stopper 143 is formed on the side periphery of the shaft 14. The stopper 143 is disposed between the protrusion 281 of the boss 28 and the protrusion 261 of the ring 26, and abuts against the protrusion 281 of the boss 28 when the shaft 14 is in the OFF position, so that the shaft 14 is excessively pressed. It has come to regulate the straight movement. When the shaft 14 is in the ON position, the plunger 25 abuts on the protrusion 281 of the boss 28 to restrict excessive linear movement of the shaft 14.
シャフト14のリング26に対向した位置に、シャフト14を径方向に貫通した横穴144が穿たれている。横穴144の開口部に、ボール30,31がそれぞれ配置されている。2個のボール30,31間には弾性体32が設けられている。ボール30,31は、弾性体32の弾性力により外側のリング26に向けて押圧されている。なお、図5は、ボール30,31の形状がいずれも球体であり、弾性体32をコイルスプリングで構成した例を示している。
A horizontal hole 144 that penetrates the shaft 14 in the radial direction is formed at a position facing the ring 26 of the shaft 14. Balls 30 and 31 are arranged in the openings of the horizontal holes 144, respectively. An elastic body 32 is provided between the two balls 30 and 31. The balls 30 and 31 are pressed toward the outer ring 26 by the elastic force of the elastic body 32. FIG. 5 shows an example in which the balls 30 and 31 are both spherical and the elastic body 32 is formed of a coil spring.
ここで、シャフト14がOFF位置にあるとき、ボール30,31は弾性体32により押圧されて第1溝部29に入るようになっている。また、シャフト14がON位置にあるとき、ボール30,31は弾性体32により押圧されて第2溝部27に入るようになっている。
Here, when the shaft 14 is in the OFF position, the balls 30 and 31 are pressed by the elastic body 32 so as to enter the first groove portion 29. Further, when the shaft 14 is in the ON position, the balls 30 and 31 are pressed by the elastic body 32 and enter the second groove portion 27.
次に、図6~図8を参照して、このように構成された電磁アクチュエータ1aの動作について説明する。なお、電磁アクチュエータ1bについては、電磁アクチュエータ1aと同様に動作するため図示及び説明を省略する。
図6(a)は、シャフト14がOFF位置にある状態における電磁アクチュエータ1aの要部の断面図である。同様に、図7(a)はシャフト14がOFF位置とON位置の間にある状態の電磁アクチュエータ1aの断面図であり、図8(a)はシャフト14がON位置にある状態の電磁アクチュエータ1aの断面図である。図6(b)、図7(b)及び図8(b)は、図6(a)、図7(a)及び図8(a)にそれぞれ示す楕円Iで囲まれた領域の拡大図である。 Next, the operation of theelectromagnetic actuator 1a configured as described above will be described with reference to FIGS. Since the electromagnetic actuator 1b operates in the same manner as the electromagnetic actuator 1a, its illustration and description are omitted.
FIG. 6A is a cross-sectional view of the main part of theelectromagnetic actuator 1a in a state where the shaft 14 is in the OFF position. Similarly, FIG. 7A is a cross-sectional view of the electromagnetic actuator 1a in a state where the shaft 14 is between the OFF position and the ON position, and FIG. 8A is an electromagnetic actuator 1a in a state where the shaft 14 is in the ON position. FIG. FIGS. 6B, 7B, and 8B are enlarged views of regions surrounded by an ellipse I shown in FIGS. 6A, 7A, and 8A, respectively. is there.
図6(a)は、シャフト14がOFF位置にある状態における電磁アクチュエータ1aの要部の断面図である。同様に、図7(a)はシャフト14がOFF位置とON位置の間にある状態の電磁アクチュエータ1aの断面図であり、図8(a)はシャフト14がON位置にある状態の電磁アクチュエータ1aの断面図である。図6(b)、図7(b)及び図8(b)は、図6(a)、図7(a)及び図8(a)にそれぞれ示す楕円Iで囲まれた領域の拡大図である。 Next, the operation of the
FIG. 6A is a cross-sectional view of the main part of the
図6に示す如く、シャフト14がOFF位置にあるときは、ボール30,31が弾性体32に押圧されて第1溝部29に入り、さらに弾性力の作用により第1溝部29に入った状態に保持される。これにより、ターミナル17からコイル16に通電することなく、シャフト14がOFF位置に保持される。
As shown in FIG. 6, when the shaft 14 is in the OFF position, the balls 30 and 31 are pressed by the elastic body 32 and enter the first groove 29, and further enter the first groove 29 by the action of elastic force. Retained. As a result, the shaft 14 is held in the OFF position without energizing the coil 16 from the terminal 17.
図6に示す状態において、外部電源がターミナル17からコイル16への通電を開始すると、電磁力によってプランジャ25にシャフト14を押し出す向きの力(図中y軸の負方向の力)が加わり、プランジャ25がシャフト14と一体に動く。プランジャ25と一体にシャフト14が動くにつれ、第1溝部29から突条261の凸形状に沿って、ボール30,31が弾性体32の力に抗して横穴144内へ押し戻されていき、ボール30,31が第1溝部29から外れる。これにより、図7に示す如く、シャフト14がOFF位置からON位置に向けて直動する。シャフト14がON位置に達すると、外部電源はコイル16への通電を停止するようになっている。
In the state shown in FIG. 6, when the external power supply starts energization from the terminal 17 to the coil 16, a force in the direction of pushing the shaft 14 to the plunger 25 by electromagnetic force (force in the negative direction of the y axis in the figure) is applied. 25 moves together with the shaft 14. As the shaft 14 moves integrally with the plunger 25, the balls 30, 31 are pushed back into the lateral hole 144 against the force of the elastic body 32 along the convex shape of the protrusion 261 from the first groove portion 29. 30 and 31 are disengaged from the first groove 29. Thereby, as shown in FIG. 7, the shaft 14 linearly moves from the OFF position toward the ON position. When the shaft 14 reaches the ON position, the external power supply stops energizing the coil 16.
図8に示す如く、シャフト14がON位置あるときは、ボール30,31が弾性体32に押圧されて第2溝部27に入り、さらに弾性力の作用により第2溝部27に入った状態に保持される。これにより、ターミナル17からコイル16に継続的に通電することなく、シャフト14がON位置に保持される。
As shown in FIG. 8, when the shaft 14 is in the ON position, the balls 30 and 31 are pressed by the elastic body 32 and enter the second groove 27, and are further held in the second groove 27 by the action of elastic force. Is done. As a result, the shaft 14 is held in the ON position without continuously energizing the coil 16 from the terminal 17.
その後、図1~図4に示すカム切替機構100の戻り機構がシャフト14を押し戻す力(図中y軸の正方向の力)によって、シャフト14が動く。シャフト14が動くにつれ、第2溝部27から突条261の凸形状に沿って、ボール30,31が弾性体32の力に抗して横穴144内へ押し戻されていき、ボール30,31が第2溝部27から外れる。シャフト14は図8に示すON位置からOFF位置に向けて直動し、電磁アクチュエータ1aは図7に示す状態を経て図6に示す状態に戻る。
Thereafter, the shaft 14 is moved by the force (the positive force in the y-axis in the figure) that the return mechanism of the cam switching mechanism 100 shown in FIGS. 1 to 4 pushes back the shaft 14. As the shaft 14 moves, the balls 30 and 31 are pushed back into the lateral hole 144 against the force of the elastic body 32 along the convex shape of the protrusion 261 from the second groove 27, and the balls 30 and 31 are moved in the first direction. 2 disengages from the groove 27. The shaft 14 linearly moves from the ON position shown in FIG. 8 toward the OFF position, and the electromagnetic actuator 1a returns to the state shown in FIG. 6 through the state shown in FIG.
このように、実施の形態1の電磁アクチュエータ1aは、第1溝部29に入ったボール30,31を弾性体32により押圧することでシャフト14をOFF位置に保持するとともに、第2溝部27に入ったボール30,31を弾性体32により押圧することでシャフト14をON位置に保持する。
このため、電磁アクチュエータ1aをカム切替機構100に用いた場合、コイル16に通電するのはシャフト14をOFF位置からON位置に移動させる期間のみでよく、消費電力を低減することができる。また、シャフト14がON位置にあるときにコイル16に通電しなくとも良いため、電磁アクチュエータ1aの負荷を低減することができる。 As described above, theelectromagnetic actuator 1 a according to the first embodiment holds the shaft 14 in the OFF position by pressing the balls 30 and 31 in the first groove 29 with the elastic body 32 and enters the second groove 27. The balls 14 are pressed by the elastic body 32 to hold the shaft 14 in the ON position.
For this reason, when theelectromagnetic actuator 1a is used for the cam switching mechanism 100, the coil 16 is energized only during the period in which the shaft 14 is moved from the OFF position to the ON position, and power consumption can be reduced. Further, since it is not necessary to energize the coil 16 when the shaft 14 is in the ON position, the load on the electromagnetic actuator 1a can be reduced.
このため、電磁アクチュエータ1aをカム切替機構100に用いた場合、コイル16に通電するのはシャフト14をOFF位置からON位置に移動させる期間のみでよく、消費電力を低減することができる。また、シャフト14がON位置にあるときにコイル16に通電しなくとも良いため、電磁アクチュエータ1aの負荷を低減することができる。 As described above, the
For this reason, when the
以上のように、実施の形態1の電磁アクチュエータ1aは、シャフト14を径方向に貫通した横穴144の開口部に配置された複数個のボール30,31と、ボール30,31間に設けられ、ボール30,31を外側に押圧する弾性体32と、ハウジング13の中空部の内壁側に形成され、シャフト14がOFF位置(第1位置)にあるときにボール30,31が弾性体32の押圧を受けて入る第1溝部29と、第1溝部29との間に軸方向に間隔を設けてハウジング13の中空部の内壁側に形成され、シャフト14がON位置(第2位置)にあるときにボール30,31が弾性体32の押圧を受けて入る第2溝部27とを備える。
電磁アクチュエータ1aをカム切替機構100に用いた場合、コイル16に通電するのはシャフト14をOFF位置からON位置に移動させる期間のみでよく、消費電力を低減することができる。また、シャフト14がON位置にあるときにコイル16に通電しなくとも良いため、電磁アクチュエータ1aの負荷を低減することができる。
さらに、ラッチ型の電磁アクチュエータで必要としていたシャフト14の位置保持用のマグネットを不要として、温度に対するシャフト14の応答性を安定させることができ、かつ電磁アクチュエータ1aを安価に構成することができる。 As described above, theelectromagnetic actuator 1a according to the first embodiment is provided between the balls 30 and 31 and the plurality of balls 30 and 31 disposed in the opening of the lateral hole 144 that penetrates the shaft 14 in the radial direction. An elastic body 32 that presses the balls 30 and 31 outward and an inner wall side of the hollow portion of the housing 13, and the balls 30 and 31 are pressed by the elastic body 32 when the shaft 14 is in the OFF position (first position). Is formed on the inner wall side of the hollow portion of the housing 13 with an axial space between the first groove portion 29 and the first groove portion 29, and the shaft 14 is in the ON position (second position). And the second groove portion 27 into which the balls 30 and 31 enter upon receiving the pressing force of the elastic body 32.
When theelectromagnetic actuator 1a is used for the cam switching mechanism 100, the coil 16 is energized only during the period in which the shaft 14 is moved from the OFF position to the ON position, and power consumption can be reduced. Further, since it is not necessary to energize the coil 16 when the shaft 14 is in the ON position, the load on the electromagnetic actuator 1a can be reduced.
Furthermore, the magnet for holding the position of theshaft 14 required for the latch type electromagnetic actuator is not required, the response of the shaft 14 to temperature can be stabilized, and the electromagnetic actuator 1a can be configured at low cost.
電磁アクチュエータ1aをカム切替機構100に用いた場合、コイル16に通電するのはシャフト14をOFF位置からON位置に移動させる期間のみでよく、消費電力を低減することができる。また、シャフト14がON位置にあるときにコイル16に通電しなくとも良いため、電磁アクチュエータ1aの負荷を低減することができる。
さらに、ラッチ型の電磁アクチュエータで必要としていたシャフト14の位置保持用のマグネットを不要として、温度に対するシャフト14の応答性を安定させることができ、かつ電磁アクチュエータ1aを安価に構成することができる。 As described above, the
When the
Furthermore, the magnet for holding the position of the
また、シャフト14とハウジング13の中空部の内壁との間に円環状のリング26を設け、リング26の内側に設けた凹凸により第1溝部29及び第2溝部27が形成されている。
一般に、電磁アクチュエータ1aの製造時に、ハウジング13の中空部の内壁を加工して溝部を形成するのは困難である。これに対し、実施の形態1の電磁アクチュエータ1aは、内周部に突条261を形成したリング26をハウジング13と別部材で製造し、ハウジング13の内周を拡径した空間にこのリング26を設置することで溝部を形成している。これにより、第1溝部29及び第2溝部27をより容易に形成でき、電磁アクチュエータ1aの製造コストを低減することができる。 Further, anannular ring 26 is provided between the shaft 14 and the inner wall of the hollow portion of the housing 13, and a first groove portion 29 and a second groove portion 27 are formed by unevenness provided on the inner side of the ring 26.
Generally, when manufacturing theelectromagnetic actuator 1a, it is difficult to process the inner wall of the hollow portion of the housing 13 to form a groove. On the other hand, in the electromagnetic actuator 1a of the first embodiment, the ring 26 in which the protrusion 261 is formed on the inner peripheral portion is manufactured as a separate member from the housing 13, and the ring 26 is expanded in the space where the inner periphery of the housing 13 is expanded. The groove part is formed by installing. Thereby, the 1st groove part 29 and the 2nd groove part 27 can be formed more easily, and the manufacturing cost of the electromagnetic actuator 1a can be reduced.
一般に、電磁アクチュエータ1aの製造時に、ハウジング13の中空部の内壁を加工して溝部を形成するのは困難である。これに対し、実施の形態1の電磁アクチュエータ1aは、内周部に突条261を形成したリング26をハウジング13と別部材で製造し、ハウジング13の内周を拡径した空間にこのリング26を設置することで溝部を形成している。これにより、第1溝部29及び第2溝部27をより容易に形成でき、電磁アクチュエータ1aの製造コストを低減することができる。 Further, an
Generally, when manufacturing the
なお、ボール30,31の形状は、球体に限定されるものではない。回転楕円体など非球形の形状であっても良い。
Note that the shapes of the balls 30 and 31 are not limited to spheres. It may be a non-spherical shape such as a spheroid.
また、弾性体32はコイルスプリングに限定されるものではない。エラストマ、空気バネ又は液体バネであっても良い。しかしながら、特に温度に対するシャフト14の応答性を安定させる観点から、コイルスプリングを用いるのが好適である。
The elastic body 32 is not limited to a coil spring. It may be an elastomer, an air spring or a liquid spring. However, it is preferable to use a coil spring from the viewpoint of stabilizing the response of the shaft 14 to temperature.
また、ボール30,31は横穴144の開口部にそれぞれ配置されていればよく、2個に限定されるものではない。例えば、シャフト14に2本の横穴が交差したプラス記号状の穴を設け、4個の開口部にそれぞれボールを配置したものとしても良い。
Also, the balls 30 and 31 are only required to be arranged at the openings of the horizontal holes 144, and are not limited to two. For example, a plus sign-like hole in which two horizontal holes intersect each other may be provided in the shaft 14, and balls may be disposed in four openings.
また、電磁アクチュエータ1aを用いる機構は、エンジンバルブ用のカム切替機構100に限定されるものではない。カム切替機構100と同様に、ON位置にあるシャフト14をOFF位置に押し戻す戻り機構を有するものであれば、如何なる機構に用いても良い。
Further, the mechanism using the electromagnetic actuator 1a is not limited to the cam switching mechanism 100 for the engine valve. Similar to the cam switching mechanism 100, any mechanism may be used as long as it has a return mechanism that pushes the shaft 14 in the ON position back to the OFF position.
実施の形態2.
実施の形態2では、実施の形態1に比べて、シャフト14をON位置及びOFF位置に保持する力を強めた電磁アクチュエータ1aについて説明する。
図9(a)は、シャフト14がOFF位置にある状態における電磁アクチュエータ1aの要部の断面図である。同様に、図10(a)はシャフト14がOFF位置とON位置の間にある状態の電磁アクチュエータ1aの断面図であり、図11(a)はシャフト14がON位置にある状態の電磁アクチュエータ1aの断面図である。図9(b)、図10(b)及び図11(b)は、図9(a)、図10(a)及び図11(a)にそれぞれ示す楕円Iで囲まれた領域の拡大図である。
なお、図9~図11において、図5~図8に示す実施の形態1の電磁アクチュエータ1aと同様の構成部材には同一符号を付して説明を省略する。また、図1~図4に示す電磁アクチュエータ1bについては、電磁アクチュエータ1aと同様に構成されているため図示及び説明を省略する。 Embodiment 2. FIG.
In the second embodiment, anelectromagnetic actuator 1a in which the force for holding the shaft 14 at the ON position and the OFF position is increased as compared with the first embodiment will be described.
FIG. 9A is a cross-sectional view of the main part of theelectromagnetic actuator 1a in a state where the shaft 14 is in the OFF position. Similarly, FIG. 10A is a cross-sectional view of the electromagnetic actuator 1a in a state where the shaft 14 is between the OFF position and the ON position, and FIG. 11A is an electromagnetic actuator 1a in a state where the shaft 14 is in the ON position. FIG. FIGS. 9B, 10B, and 11B are enlarged views of a region surrounded by an ellipse I shown in FIGS. 9A, 10A, and 11A, respectively. is there.
9 to 11, the same components as those of theelectromagnetic actuator 1a according to the first embodiment shown in FIGS. 5 to 8 are denoted by the same reference numerals, and the description thereof is omitted. Further, the electromagnetic actuator 1b shown in FIGS. 1 to 4 is configured in the same manner as the electromagnetic actuator 1a, and therefore illustration and description thereof are omitted.
実施の形態2では、実施の形態1に比べて、シャフト14をON位置及びOFF位置に保持する力を強めた電磁アクチュエータ1aについて説明する。
図9(a)は、シャフト14がOFF位置にある状態における電磁アクチュエータ1aの要部の断面図である。同様に、図10(a)はシャフト14がOFF位置とON位置の間にある状態の電磁アクチュエータ1aの断面図であり、図11(a)はシャフト14がON位置にある状態の電磁アクチュエータ1aの断面図である。図9(b)、図10(b)及び図11(b)は、図9(a)、図10(a)及び図11(a)にそれぞれ示す楕円Iで囲まれた領域の拡大図である。
なお、図9~図11において、図5~図8に示す実施の形態1の電磁アクチュエータ1aと同様の構成部材には同一符号を付して説明を省略する。また、図1~図4に示す電磁アクチュエータ1bについては、電磁アクチュエータ1aと同様に構成されているため図示及び説明を省略する。 Embodiment 2. FIG.
In the second embodiment, an
FIG. 9A is a cross-sectional view of the main part of the
9 to 11, the same components as those of the
リング26に設けた突条261の第1溝部29側の角部と第2溝部27側の角部とをそれぞれ面取り加工することで、第1面取部262と第2面取部263が形成されている。第1面取部262及び第2面取部263は、いわゆる「C面」である。なお、第1面取部262及び第2面取部263の形状は、C面に限定されるものではない。シャフト14をOFF位置側へ固定可能な力を発生できる形状であれば良く、例えばR形状でもよい。
The first chamfered portion 262 and the second chamfered portion 263 are formed by chamfering the corner portion on the first groove portion 29 side and the corner portion on the second groove portion 27 side of the protrusion 261 provided on the ring 26. Has been. The first chamfered portion 262 and the second chamfered portion 263 are so-called “C surfaces”. In addition, the shape of the 1st chamfer part 262 and the 2nd chamfer part 263 is not limited to C surface. Any shape that can generate a force capable of fixing the shaft 14 to the OFF position side may be used. For example, an R shape may be used.
ここで、図9(b)に示す如く、シャフト14がOFF位置にあるとき、ボール30,31は、弾性体32により押圧されて第1溝部29に入り、第1面取部262に当接して止まるようになっており、第1溝部29の底部との間には隙間が生じている。これにより、弾性体32の力は、第1面取部262のみに作用する。
Here, as shown in FIG. 9B, when the shaft 14 is in the OFF position, the balls 30 and 31 are pressed by the elastic body 32 to enter the first groove 29 and abut against the first chamfer 262. Thus, a gap is formed between the first groove 29 and the bottom. Thereby, the force of the elastic body 32 acts only on the first chamfered portion 262.
同様に、図11(b)に示す如く、シャフト14がON位置にあるとき、ボール30,31は、弾性体32により押圧されて第2溝部27に入り、第2面取部263に当接して止まるようになっており、第2溝部27の底部との間には間隙が生じている。これにより、弾性体32の力は第2面取部263にのみ作用する。
Similarly, as shown in FIG. 11B, when the shaft 14 is in the ON position, the balls 30 and 31 are pressed by the elastic body 32 to enter the second groove 27 and abut against the second chamfer 263. A gap is formed between the bottom of the second groove 27 and the second groove 27. Thereby, the force of the elastic body 32 acts only on the second chamfered portion 263.
次に、このように構成された電磁アクチュエータ1aの動作について説明する。
一般に、電磁アクチュエータ1aをカム切替機構100に用いた場合、内燃機関の動作中などに電磁アクチュエータ1aは大きく振動する。したがって、シャフト14をOFF位置及びON位置に保持する保持力は、電磁アクチュエータ1aの振動よるシャフト14の不要な直動を防ぐ程度に強い力であることが望ましい。 Next, the operation of theelectromagnetic actuator 1a configured as described above will be described.
In general, when theelectromagnetic actuator 1a is used for the cam switching mechanism 100, the electromagnetic actuator 1a vibrates greatly during operation of the internal combustion engine. Therefore, it is desirable that the holding force for holding the shaft 14 in the OFF position and the ON position is strong enough to prevent unnecessary linear movement of the shaft 14 due to vibration of the electromagnetic actuator 1a.
一般に、電磁アクチュエータ1aをカム切替機構100に用いた場合、内燃機関の動作中などに電磁アクチュエータ1aは大きく振動する。したがって、シャフト14をOFF位置及びON位置に保持する保持力は、電磁アクチュエータ1aの振動よるシャフト14の不要な直動を防ぐ程度に強い力であることが望ましい。 Next, the operation of the
In general, when the
図9(b)に示す如く、シャフト14がOFF位置にあるとき、ボール30,31は弾性体32により押圧されて第1面取部262に当接した状態にある。このとき、弾性体32の弾性力により、ボール30,31が第1面取部262を押す力F1が生じる。力F1の反力F1’により、ボール30,31がシャフト14を図中y軸の正方向に押す力Fy1が生じる。この力Fy1により、シャフト14をOFF位置に保持する保持力が強まり、シャフト14がOFF位置にあるときに、電磁アクチュエータ1aの振動によりシャフト14が意図せずON位置に向けて直動するのを抑制することができる。
As shown in FIG. 9B, when the shaft 14 is in the OFF position, the balls 30 and 31 are pressed by the elastic body 32 and are in contact with the first chamfered portion 262. At this time, due to the elastic force of the elastic body 32, a force F1 in which the balls 30, 31 push the first chamfered portion 262 is generated. Due to the reaction force F1 'of the force F1, a force Fy1 is generated by which the balls 30 and 31 push the shaft 14 in the positive direction of the y-axis in the drawing. This force Fy1 strengthens the holding force for holding the shaft 14 in the OFF position. When the shaft 14 is in the OFF position, the shaft 14 moves unintentionally directly toward the ON position due to vibration of the electromagnetic actuator 1a. Can be suppressed.
同様に、図11(b)に示す如く、シャフト14がON位置にあるとき、ボール30,31は弾性体32により押圧されて第2面取部263に当接した状態にある。このとき、弾性体32の弾性力により、ボール30,31が第2面取部263を押す力F2が生じる。力F2の反力F2’により、ボール30,31がシャフト14を図中y軸の負方向に押す力Fy2が生じる。この力Fy2により、シャフト14をON位置に保持する保持力が強まり、シャフト14がON位置にあるときに、電磁アクチュエータ1aの振動によりシャフト14が意図せずOFF位置に向けて直動するのを抑制することができる。
Similarly, as shown in FIG. 11B, when the shaft 14 is in the ON position, the balls 30 and 31 are pressed by the elastic body 32 and are in contact with the second chamfered portion 263. At this time, due to the elastic force of the elastic body 32, a force F2 in which the balls 30 and 31 push the second chamfered portion 263 is generated. Due to the reaction force F2 'of the force F2, a force Fy2 is generated by which the balls 30 and 31 push the shaft 14 in the negative direction of the y-axis in the figure. This force Fy2 strengthens the holding force for holding the shaft 14 in the ON position. When the shaft 14 is in the ON position, the shaft 14 moves unintentionally directly toward the OFF position due to the vibration of the electromagnetic actuator 1a. Can be suppressed.
以上のように、実施の形態2の電磁アクチュエータ1aは、シャフト14がOFF位置(第1位置)にあるとき、弾性体32により第1溝部29側へ押圧されたボール30,31が、第1溝部29と第2溝部27の間の突条261の一方の角部を面取りした第1面取部262に当接してシャフト14をOFF位置(第1位置)に保持し、シャフト14がON位置(第2位置)にあるとき、弾性体32により第2溝部27側へ押圧されたボール30,31が、突条261のもう一方の角部を面取りした第2面取部263に当接してシャフト14をON位置(第2位置)に保持する。
弾性体32がボール30,31を第1面取部262又は第2面取部263に押し付ける力F1,F2により、シャフト14に軸方向の力Fy1,Fy2が加わる。この力Fy1,Fy2によって、シャフト14の軸方向位置を保持する保持力が強まり、電磁アクチュエータ1aの振動によるシャフト14の不要な直動を抑制することができる。また、シャフト14の位置精度を高めることができる。 As described above, in theelectromagnetic actuator 1a according to the second embodiment, when the shaft 14 is in the OFF position (first position), the balls 30 and 31 pressed toward the first groove 29 by the elastic body 32 are the first. The shaft 14 is held in the OFF position (first position) by contacting the first chamfered portion 262 chamfered at one corner of the protrusion 261 between the groove portion 29 and the second groove portion 27, and the shaft 14 is in the ON position. When in the (second position), the balls 30 and 31 pressed toward the second groove 27 by the elastic body 32 come into contact with the second chamfered portion 263 chamfered at the other corner of the protrusion 261. The shaft 14 is held at the ON position (second position).
The axial force Fy1, Fy2 is applied to theshaft 14 by the forces F1, F2 that the elastic body 32 presses the balls 30, 31 against the first chamfered portion 262 or the second chamfered portion 263. By these forces Fy1 and Fy2, the holding force for holding the axial position of the shaft 14 is strengthened, and unnecessary linear movement of the shaft 14 due to vibration of the electromagnetic actuator 1a can be suppressed. Further, the positional accuracy of the shaft 14 can be increased.
弾性体32がボール30,31を第1面取部262又は第2面取部263に押し付ける力F1,F2により、シャフト14に軸方向の力Fy1,Fy2が加わる。この力Fy1,Fy2によって、シャフト14の軸方向位置を保持する保持力が強まり、電磁アクチュエータ1aの振動によるシャフト14の不要な直動を抑制することができる。また、シャフト14の位置精度を高めることができる。 As described above, in the
The axial force Fy1, Fy2 is applied to the
実施の形態3.
実施の形態3では、複数個のリングを用いて、実施の形態1及び実施の形態2と異なる形状の第1溝部29及び第2溝部27を形成した電磁アクチュエータ1aについて説明する。
図12(a)は、シャフト14がOFF位置にある状態における電磁アクチュエータ1aの要部の断面図である。同様に、図13(a)はシャフト14がOFF位置とON位置の間にある状態の電磁アクチュエータ1aの断面図であり、図14(a)はシャフト14がON位置にある状態の電磁アクチュエータ1aの断面図である。図12(b)、図13(b)及び図14(b)は、図12(a)、図13(a)及び図14(a)にそれぞれ示す楕円Iで囲まれた領域の拡大図である。図15は、ハウジング、第1リング、第2リング及び第3リングの断面図である。
なお、図12~図15において、図9~図11に示す実施の形態2の電磁アクチュエータ1aと同様の構成部材には同一符号を付して説明を省略する。また、図1~図4に示す電磁アクチュエータ1bについては、電磁アクチュエータ1aと同様に構成されているため図示及び説明を省略する。 Embodiment 3 FIG.
In the third embodiment, anelectromagnetic actuator 1a in which a first groove portion 29 and a second groove portion 27 having different shapes from those of the first and second embodiments are formed using a plurality of rings will be described.
FIG. 12A is a cross-sectional view of the main part of theelectromagnetic actuator 1a in a state where the shaft 14 is in the OFF position. Similarly, FIG. 13A is a cross-sectional view of the electromagnetic actuator 1a in a state where the shaft 14 is between the OFF position and the ON position, and FIG. 14A is an electromagnetic actuator 1a in a state where the shaft 14 is in the ON position. FIG. FIGS. 12B, 13B, and 14B are enlarged views of a region surrounded by an ellipse I shown in FIGS. 12A, 13A, and 14A, respectively. is there. FIG. 15 is a cross-sectional view of the housing, the first ring, the second ring, and the third ring.
12 to 15, the same components as those of theelectromagnetic actuator 1a according to the second embodiment shown in FIGS. 9 to 11 are denoted by the same reference numerals, and the description thereof is omitted. Further, the electromagnetic actuator 1b shown in FIGS. 1 to 4 is configured in the same manner as the electromagnetic actuator 1a, and therefore illustration and description thereof are omitted.
実施の形態3では、複数個のリングを用いて、実施の形態1及び実施の形態2と異なる形状の第1溝部29及び第2溝部27を形成した電磁アクチュエータ1aについて説明する。
図12(a)は、シャフト14がOFF位置にある状態における電磁アクチュエータ1aの要部の断面図である。同様に、図13(a)はシャフト14がOFF位置とON位置の間にある状態の電磁アクチュエータ1aの断面図であり、図14(a)はシャフト14がON位置にある状態の電磁アクチュエータ1aの断面図である。図12(b)、図13(b)及び図14(b)は、図12(a)、図13(a)及び図14(a)にそれぞれ示す楕円Iで囲まれた領域の拡大図である。図15は、ハウジング、第1リング、第2リング及び第3リングの断面図である。
なお、図12~図15において、図9~図11に示す実施の形態2の電磁アクチュエータ1aと同様の構成部材には同一符号を付して説明を省略する。また、図1~図4に示す電磁アクチュエータ1bについては、電磁アクチュエータ1aと同様に構成されているため図示及び説明を省略する。 Embodiment 3 FIG.
In the third embodiment, an
FIG. 12A is a cross-sectional view of the main part of the
12 to 15, the same components as those of the
ハウジング13の内周部を拡径した空間に、第1リング40、第2リング41及び第3リング42が設置されている。
The first ring 40, the second ring 41, and the third ring 42 are installed in a space in which the inner peripheral portion of the housing 13 is expanded.
図15に示す如く、第1リング40は、第2リング41に当接する端部の内周部を面取り加工することで第1テーパ面401が形成されている。第2リング41は、両端部の内周部を面取り加工することで第2テーパ面411,412が形成されている。第3リング42は、第2リング41に当接する端部の内周部を面取り加工することで第3テーパ面421が形成されている。
As shown in FIG. 15, the first ring 40 is formed with a first tapered surface 401 by chamfering an inner peripheral portion of an end portion in contact with the second ring 41. The second ring 41 has second tapered surfaces 411 and 412 formed by chamfering inner peripheral portions at both ends. The third ring 42 is formed with a third tapered surface 421 by chamfering the inner peripheral portion of the end portion that contacts the second ring 41.
図12~図13に示す如く、第1テーパ面401と第2テーパ面411間の間隙により、第1溝部29が構成されている。第2テーパ面412と第3テーパ面421間の間隙により、第2溝部27が構成されている。すなわち、第1溝部29及び第2溝部27は、溝の底部から開口部に向かうにつれて広がるように壁部が傾斜した形状である。また、第2リング41の内周部には、2つの第2テーパ面411,412により突条413が形成されている。
As shown in FIGS. 12 to 13, the first groove 29 is constituted by the gap between the first tapered surface 401 and the second tapered surface 411. The gap between the second taper surface 412 and the third taper surface 421 constitutes the second groove portion 27. That is, the first groove portion 29 and the second groove portion 27 have a shape in which the wall portion is inclined so as to expand from the bottom of the groove toward the opening. A protrusion 413 is formed on the inner peripheral portion of the second ring 41 by two second tapered surfaces 411 and 412.
ここで、図12(b)に示す如く、シャフト14がOFF位置にあるとき、ボール30,31は、弾性体32により押圧されて第1溝部29に入り、第2テーパ面411に当接して止まるようになっており、第1テーパ面401との間には隙間が生じている。これにより、弾性体32の力は、第2テーパ面411のみに作用する。
Here, as shown in FIG. 12B, when the shaft 14 is in the OFF position, the balls 30 and 31 are pressed by the elastic body 32 and enter the first groove portion 29 to contact the second tapered surface 411. A gap is formed between the first tapered surface 401 and the first tapered surface 401. Thereby, the force of the elastic body 32 acts only on the second tapered surface 411.
同様に、図14(b)に示す如く、シャフト14がON位置にあるとき、ボール30,31は、弾性体32により押圧されて第2溝部27に入り、第2テーパ面412に当接して止まるようになっており、第3テーパ面421との間には間隙が生じている。これにより、弾性体32の力は第2テーパ面412にのみ作用する。
Similarly, as shown in FIG. 14B, when the shaft 14 is in the ON position, the balls 30 and 31 are pressed by the elastic body 32 and enter the second groove portion 27 to contact the second tapered surface 412. A gap is generated between the third tapered surface 421 and the third tapered surface 421. As a result, the force of the elastic body 32 acts only on the second tapered surface 412.
次に、このように構成された電磁アクチュエータ1aの動作について説明する。
図12(b)に示す如く、シャフト14がOFF位置にあるとき、ボール30,31は弾性体32により押圧されて第2テーパ面411に当接した状態にある。このとき、弾性体32の弾性力により、ボール30,31が第2テーパ面411を押す力F1が生じる。力F1の反力F1’により、ボール30,31がシャフト14を図中y軸の正方向に押す力Fy1が生じる。この力Fy1により、シャフト14をOFF位置に保持する保持力が強まり、シャフト14がOFF位置にあるときに、電磁アクチュエータ1aの振動によりシャフト14が意図せずON位置に向けて直動するのを抑制することができる。 Next, the operation of theelectromagnetic actuator 1a configured as described above will be described.
As shown in FIG. 12B, when theshaft 14 is in the OFF position, the balls 30 and 31 are pressed by the elastic body 32 and are in contact with the second tapered surface 411. At this time, due to the elastic force of the elastic body 32, a force F1 in which the balls 30 and 31 push the second tapered surface 411 is generated. Due to the reaction force F1 ′ of the force F1, a force Fy1 is generated by which the balls 30 and 31 push the shaft 14 in the positive direction of the y-axis in the drawing. This force Fy1 strengthens the holding force for holding the shaft 14 in the OFF position. When the shaft 14 is in the OFF position, the shaft 14 moves unintentionally directly toward the ON position due to vibration of the electromagnetic actuator 1a. Can be suppressed.
図12(b)に示す如く、シャフト14がOFF位置にあるとき、ボール30,31は弾性体32により押圧されて第2テーパ面411に当接した状態にある。このとき、弾性体32の弾性力により、ボール30,31が第2テーパ面411を押す力F1が生じる。力F1の反力F1’により、ボール30,31がシャフト14を図中y軸の正方向に押す力Fy1が生じる。この力Fy1により、シャフト14をOFF位置に保持する保持力が強まり、シャフト14がOFF位置にあるときに、電磁アクチュエータ1aの振動によりシャフト14が意図せずON位置に向けて直動するのを抑制することができる。 Next, the operation of the
As shown in FIG. 12B, when the
同様に、図14(b)に示す如く、シャフト14がON位置にあるとき、ボール30,31は弾性体32により押圧されて第2テーパ面412に当接した状態にある。このとき、弾性体32の弾性力により、ボール30,31が第2テーパ面412を押す力F2が生じる。力F2の反力F2’により、ボール30,31がシャフト14を図中y軸の負方向に押す力Fy2が生じる。この力Fy2により、シャフト14をON位置に保持する保持力が強まり、シャフト14がON位置にあるときに、電磁アクチュエータ1aの振動によりシャフト14が意図せずOFF位置に向けて直動するのを抑制することができる。
Similarly, as shown in FIG. 14B, when the shaft 14 is in the ON position, the balls 30 and 31 are pressed by the elastic body 32 and are in contact with the second tapered surface 412. At this time, due to the elastic force of the elastic body 32, a force F2 in which the balls 30 and 31 push the second tapered surface 412 is generated. Due to the reaction force F2 'of the force F2, a force Fy2 is generated by which the balls 30 and 31 push the shaft 14 in the negative direction of the y-axis in the figure. This force Fy2 strengthens the holding force for holding the shaft 14 in the ON position. When the shaft 14 is in the ON position, the shaft 14 moves unintentionally directly toward the OFF position due to the vibration of the electromagnetic actuator 1a. Can be suppressed.
以上のように、実施の形態3の電磁アクチュエータ1aは、実施の形態2と同様の力Fy1,Fy2によって、シャフト14の軸方向位置を保持する保持力が強まり、電磁アクチュエータ1aの振動によるシャフト14の不要な直動を抑制することができる。また、シャフト14の位置精度を高めることができる。
As described above, in the electromagnetic actuator 1a of the third embodiment, the holding force for holding the axial position of the shaft 14 is increased by the forces Fy1 and Fy2 similar to those of the second embodiment, and the shaft 14 due to the vibration of the electromagnetic actuator 1a is increased. Unnecessary linear motion can be suppressed. Further, the positional accuracy of the shaft 14 can be increased.
本発明の電磁アクチュエータ1aにおいて、第1溝部29及び第2溝部27は、実施の形態1及び実施の形態2のように1個のリング26を用いて形成したものであっても良く、又は実施の形態3のように複数個の第1リング40、第2リング41及び第3リング42を用いて形成したものであっても良い。また、本発明の電磁アクチュエータ1aにおいて、第1溝部29及び第2溝部27は、実施の形態1及び実施の形態2のように溝の底部に対して壁部が垂設された形状であっても良く、又は溝の底部から開口部に向かうにつれて広がるように壁部が傾斜した形状であっても良い。
In the electromagnetic actuator 1a of the present invention, the first groove portion 29 and the second groove portion 27 may be formed by using one ring 26 as in the first and second embodiments, or may be implemented. It may be formed using a plurality of first rings 40, second rings 41, and third rings 42 as in the third embodiment. In the electromagnetic actuator 1a of the present invention, the first groove portion 29 and the second groove portion 27 have a shape in which a wall portion is suspended from the bottom of the groove as in the first and second embodiments. Alternatively, the wall portion may be inclined so as to expand from the bottom of the groove toward the opening.
なお、実施の形態1~3において、弾性体32は、ボール30,31が第1溝部29及び第2溝部27に入った状態では弾性力が強くなり、かつ、ボール30,31が第1溝部29及び第2溝部27から外れた状態では弾性力が弱くなる特性を有するものであるのがより好適である。
特に、実施の形態2又は実施の形態3の弾性体32にこのような特性を持たせることで、振動によるシャフト14の不要な直動を抑制しつつ、電磁アクチュエータ1aがシャフト14をOFF位置からON位置に押し出す際に必要な力を低減することで消費電力をより削減することができ、かつ、カム切替機構100の戻り機構がシャフト14をOFF位置からON位置に押し戻す際に必要な力を低減することで戻り機構側の負荷を低減することができる。 In the first to third embodiments, theelastic body 32 has a strong elastic force when the balls 30 and 31 are in the first groove 29 and the second groove 27, and the balls 30 and 31 are in the first groove. It is more preferable that the elastic force is weakened in a state where it is disengaged from 29 and the second groove 27.
In particular, by giving such characteristics to theelastic body 32 of the second or third embodiment, the electromagnetic actuator 1a moves the shaft 14 from the OFF position while suppressing unnecessary linear movement of the shaft 14 due to vibration. Power consumption can be further reduced by reducing the force required to push out to the ON position, and the force required when the return mechanism of the cam switching mechanism 100 pushes the shaft 14 back from the OFF position to the ON position. By reducing the load, the load on the return mechanism side can be reduced.
特に、実施の形態2又は実施の形態3の弾性体32にこのような特性を持たせることで、振動によるシャフト14の不要な直動を抑制しつつ、電磁アクチュエータ1aがシャフト14をOFF位置からON位置に押し出す際に必要な力を低減することで消費電力をより削減することができ、かつ、カム切替機構100の戻り機構がシャフト14をOFF位置からON位置に押し戻す際に必要な力を低減することで戻り機構側の負荷を低減することができる。 In the first to third embodiments, the
In particular, by giving such characteristics to the
上記のような特性を実現するために、弾性体32は、例えば空気バネにより構成したものとしても良い。この場合、ボール30,31が第1溝部29及び第2溝部27に入っているときに空気バネの空気圧を高め、かつ、ボール30,31が第1溝部29及び第2溝部27から外れているときに空気バネの空気圧を下げる圧力制御装置を電磁アクチュエータ1aに追加する。あるいは、弾性体32を液体バネで構成し、同様に液体の圧力を制御する圧力制御装置を追加したものであっても良い。
In order to realize the characteristics as described above, the elastic body 32 may be constituted by, for example, an air spring. In this case, the air pressure of the air spring is increased when the balls 30 and 31 are in the first groove portion 29 and the second groove portion 27, and the balls 30 and 31 are detached from the first groove portion 29 and the second groove portion 27. Sometimes a pressure control device that lowers the air pressure of the air spring is added to the electromagnetic actuator 1a. Alternatively, the elastic body 32 may be constituted by a liquid spring, and a pressure control device that similarly controls the pressure of the liquid may be added.
なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
In the present invention, within the scope of the invention, free combinations of the respective embodiments, modifications of arbitrary components of the respective embodiments, or omission of arbitrary components of the respective embodiments are possible. .
本発明の電磁アクチュエータは、シャフトの横穴の開口部に配置したボールが第1溝部及び第2溝部に入ることでシャフトの軸方向の位置を保持するようにしたので、特に戻り機構を有する機構に用いた場合に、消費電力を低減し、電磁アクチュエータの負荷を低減することができる。このため、エンジンバルブ用のカム切替機構などに用いるのに適している。
In the electromagnetic actuator according to the present invention, since the ball arranged in the opening of the side hole of the shaft enters the first groove portion and the second groove portion to maintain the axial position of the shaft, the mechanism has a return mechanism in particular. When used, power consumption can be reduced and the load on the electromagnetic actuator can be reduced. Therefore, it is suitable for use in a cam switching mechanism for an engine valve.
1a,1b 電磁アクチュエータ、2a,2b カムピース、3a,3b 螺旋溝、4 カムシャフト、5a,5b ハイカム、6a,6b ローカム、7 カム部、8a,8b バルブ、9a,9b ロッカアーム、10a,10b ロッカローラ、11 ケース、12 コネクタ、13 ハウジング、14 シャフト、15 ボビン、16 コイル、17 ターミナル、18 カバー、19 コア、20 蓋部、21,22,23 Oリング、24 ブラケット、25 プランジャ、26 リング、27 第2溝部、28 ボス、29 第1溝部、30,31 ボール、32 弾性体、40 第1リング、41 第2リング、42 第3リング、51 凸部、61 凸部、100 カム切替機構、131 本体部、132 鍔部、133 段差面、141 一端部、142 他端部、143 ストッパ、144 横穴、241 取付穴、261 突条、262 第1面取部、263 第2面取部、281 突条、401 第1テーパ面、411,412 第2テーパ面、413 突条、421 第3テーパ面。
1a, 1b electromagnetic actuator, 2a, 2b cam piece, 3a, 3b spiral groove, 4 cam shaft, 5a, 5b high cam, 6a, 6b low cam, 7 cam part, 8a, 8b valve, 9a, 9b rocker arm, 10a, 10b rocker roller, 11 Case, 12 Connector, 13 Housing, 14 Shaft, 15 Bobbin, 16 Coil, 17 Terminal, 18 Cover, 19 Core, 20 Lid, 21, 22, 23 O-ring, 24 Bracket, 25 Plunger, 26 Ring, 27th 2 groove part, 28 boss, 29 1st groove part, 30, 31 ball, 32 elastic body, 40 1st ring, 41 2nd ring, 42 3rd ring, 51 convex part, 61 convex part, 100 cam switching mechanism, 131 body , 132 鍔 部, 13 Stepped surface, 141 One end, 142 Other end, 143 Stopper, 144 Lateral hole, 241 Mounting hole, 261 Projection, 262 First chamfer, 263 Second chamfer, 281 Projection, 281 Projection, 401 First taper surface, 411, 412 2nd taper surface, 413 ridge, 421 3rd taper surface.
Claims (6)
- ハウジングの中空部に通したシャフトを、軸方向の第1位置と第2位置の間で往復させる電磁アクチュエータであって、
前記シャフトを径方向に貫通した横穴の開口部に配置された複数個のボールと、
前記ボール間に設けられ、前記ボールを外側に押圧する弾性体と、
前記中空部の内壁側に形成され、前記シャフトが前記第1位置にあるときに前記ボールが前記弾性体の押圧を受けて入る第1溝部と、
前記第1溝部との間に前記軸方向に間隔を設けて前記中空部の内壁側に形成され、前記シャフトが前記第2位置にあるときに前記ボールが前記弾性体の押圧を受けて入る第2溝部と、
を備えることを特徴とする電磁アクチュエータ。 An electromagnetic actuator that reciprocates a shaft passed through a hollow portion of a housing between a first position and a second position in an axial direction,
A plurality of balls disposed in an opening of a horizontal hole penetrating the shaft in the radial direction;
An elastic body provided between the balls and pressing the balls outward;
A first groove that is formed on the inner wall side of the hollow portion and into which the ball enters the elastic body when the shaft is in the first position;
The first groove portion is formed on the inner wall side of the hollow portion with a space in the axial direction, and the ball is received by the elastic body when the shaft is in the second position. Two grooves,
An electromagnetic actuator comprising: - 前記シャフトと前記中空部の内壁との間に円環状の部材を設け、該部材の内側に設けた凹凸により前記第1溝部及び前記第2溝部が形成されていることを特徴とする請求項1記載の電磁アクチュエータ。 2. An annular member is provided between the shaft and the inner wall of the hollow portion, and the first groove portion and the second groove portion are formed by unevenness provided inside the member. The electromagnetic actuator described.
- 前記第1溝部又は前記第2溝部は、溝の底部に対して壁部が垂設された形状であることを特徴とする請求項1記載の電磁アクチュエータ。 The electromagnetic actuator according to claim 1, wherein the first groove portion or the second groove portion has a shape in which a wall portion is suspended from a bottom portion of the groove.
- 前記第1溝部又は前記第2溝部は、溝の底部から開口部に向かうにつれて広がるように壁部が傾斜した形状であることを特徴とする請求項1記載の電磁アクチュエータ。 The electromagnetic actuator according to claim 1, wherein the first groove portion or the second groove portion has a shape in which a wall portion is inclined so as to expand from the bottom of the groove toward the opening.
- 前記弾性体は、前記ボールが前記第1溝部及び前記第2溝部から外れた状態の弾性力に比べて、前記ボールが前記第1溝部及び前記第2溝部に入った状態の弾性力が強くなることを特徴とする請求項1記載の電磁アクチュエータ。 The elastic body has a stronger elastic force in a state where the ball enters the first groove portion and the second groove portion than an elastic force in a state where the ball is detached from the first groove portion and the second groove portion. The electromagnetic actuator according to claim 1.
- 前記シャフトが前記第1位置にあるとき、前記弾性体により前記第1溝部側へ押圧された前記ボールは、前記第1溝部と前記第2溝部の間の突条の一方の角部を面取りした第1面取部に当接して前記シャフトを前記第1位置に保持し、
前記シャフトが前記第2位置にあるとき、前記弾性体により前記第2溝部側へ押圧された前記ボールは、前記突条のもう一方の角部を面取りした第2面取部に当接して前記シャフトを前記第2位置に保持する
ことを特徴とする請求項1記載の電磁アクチュエータ。 When the shaft is in the first position, the ball pressed by the elastic body toward the first groove portion chamfers one corner of the protrusion between the first groove portion and the second groove portion. Abutting the first chamfer and holding the shaft in the first position;
When the shaft is in the second position, the ball pressed toward the second groove by the elastic body comes into contact with a second chamfered portion chamfered at the other corner of the ridge. The electromagnetic actuator according to claim 1, wherein the shaft is held in the second position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/084099 WO2016103355A1 (en) | 2014-12-24 | 2014-12-24 | Electromagnetic actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/084099 WO2016103355A1 (en) | 2014-12-24 | 2014-12-24 | Electromagnetic actuator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016103355A1 true WO2016103355A1 (en) | 2016-06-30 |
Family
ID=56149454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/084099 WO2016103355A1 (en) | 2014-12-24 | 2014-12-24 | Electromagnetic actuator |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016103355A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020149456A1 (en) * | 2000-06-21 | 2002-10-17 | Erwin Krimmer | Actuator, in particular for valves, relays or similar |
JP2010019319A (en) * | 2008-07-09 | 2010-01-28 | Keihin Corp | Electromagnetic spool valve device |
-
2014
- 2014-12-24 WO PCT/JP2014/084099 patent/WO2016103355A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020149456A1 (en) * | 2000-06-21 | 2002-10-17 | Erwin Krimmer | Actuator, in particular for valves, relays or similar |
JP2010019319A (en) * | 2008-07-09 | 2010-01-28 | Keihin Corp | Electromagnetic spool valve device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100678611B1 (en) | Solenoid valve | |
US8186647B2 (en) | Solenoid valve | |
JP2007078048A (en) | Solenoid valve | |
US11398332B2 (en) | Electromagnetic actuator and hydraulic pressure adjustment mechanism | |
JP2006189160A (en) | Solenoid operated valve with magnetic flux director for reducing friction | |
EP3239995B1 (en) | Solenoid | |
JP2008089080A (en) | Electromagnetic driving device and solenoid valve using the same | |
WO2016103355A1 (en) | Electromagnetic actuator | |
JP2009108758A (en) | Fuel injection valve and manufacturing method thereof | |
JP4022855B2 (en) | Solenoid valve device | |
JP2012225429A (en) | Solenoid valve | |
JPH10299932A (en) | Solenoid valve | |
JP4437190B2 (en) | solenoid | |
JP2006183754A (en) | Solenoid valve | |
JP2011009381A (en) | Linear solenoid and valve device using the same | |
JP6736330B2 (en) | Solenoid valve cartridge assembly, solenoid valve solenoid and solenoid valve | |
JP2001280531A (en) | Solenoid valve device | |
JP7463356B2 (en) | Solenoid valve | |
US9349515B2 (en) | Linear solenoid | |
JPH035735Y2 (en) | ||
JPH1030746A (en) | Synthetic resin coil bobbin in solenoid valve | |
JP2007002957A (en) | Solenoid valve | |
JP2003007528A (en) | Electromagnetic device | |
JP2005076871A (en) | Electromagnetic actuator | |
JP2540784Y2 (en) | solenoid valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14908962 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14908962 Country of ref document: EP Kind code of ref document: A1 |