WO2016102842A1 - Procédé de fabrication d'une pièce en matériau composite - Google Patents
Procédé de fabrication d'une pièce en matériau composite Download PDFInfo
- Publication number
- WO2016102842A1 WO2016102842A1 PCT/FR2015/053626 FR2015053626W WO2016102842A1 WO 2016102842 A1 WO2016102842 A1 WO 2016102842A1 FR 2015053626 W FR2015053626 W FR 2015053626W WO 2016102842 A1 WO2016102842 A1 WO 2016102842A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- texture
- slip
- fibrous
- piece
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000002131 composite material Substances 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000002245 particle Substances 0.000 claims abstract description 134
- 238000005470 impregnation Methods 0.000 claims abstract description 36
- 239000007791 liquid phase Substances 0.000 claims abstract description 36
- 239000011159 matrix material Substances 0.000 claims abstract description 26
- 239000002002 slurry Substances 0.000 claims abstract description 20
- 238000005245 sintering Methods 0.000 claims abstract description 14
- 239000011148 porous material Substances 0.000 claims description 32
- 238000005056 compaction Methods 0.000 claims description 31
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 24
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 23
- 239000012530 fluid Substances 0.000 claims description 22
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 19
- 230000006835 compression Effects 0.000 claims description 19
- 238000007906 compression Methods 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 19
- 239000012528 membrane Substances 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 14
- 239000000835 fiber Substances 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 12
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 9
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 9
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 8
- 229910052863 mullite Inorganic materials 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 230000008030 elimination Effects 0.000 claims description 7
- 238000003379 elimination reaction Methods 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 230000000717 retained effect Effects 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 4
- -1 borosilicate Chemical compound 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000002347 injection Methods 0.000 description 15
- 239000007924 injection Substances 0.000 description 15
- 239000007788 liquid Substances 0.000 description 15
- 238000009941 weaving Methods 0.000 description 11
- 239000011153 ceramic matrix composite Substances 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- 238000005086 pumping Methods 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000002787 reinforcement Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 238000004062 sedimentation Methods 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000011184 SiC–SiC matrix composite Substances 0.000 description 2
- 229910033181 TiB2 Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 238000009958 sewing Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- YPIMMVOHCVOXKT-UHFFFAOYSA-N Multisatin Natural products O=C1C(C)C2C=CC(=O)C2(C)C(OC(=O)C(C)=CC)C2C(=C)C(=O)OC21 YPIMMVOHCVOXKT-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B3/00—Producing shaped articles from the material by using presses; Presses specially adapted therefor
- B28B3/006—Pressing by atmospheric pressure, as a result of vacuum generation or by gas or liquid pressure acting directly upon the material, e.g. jets of compressed air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/30—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
- C04B35/117—Composites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
- C04B35/117—Composites
- C04B35/119—Composites with zirconium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/14—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/18—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/18—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
- C04B35/185—Mullite 3Al2O3-2SiO2
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
- C04B35/488—Composites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62844—Coating fibres
- C04B35/62847—Coating fibres with oxide ceramics
- C04B35/62849—Silica or silicates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62844—Coating fibres
- C04B35/62847—Coating fibres with oxide ceramics
- C04B35/62852—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62844—Coating fibres
- C04B35/62847—Coating fibres with oxide ceramics
- C04B35/62855—Refractory metal oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62844—Coating fibres
- C04B35/62857—Coating fibres with non-oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62844—Coating fibres
- C04B35/62857—Coating fibres with non-oxide ceramics
- C04B35/6286—Carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62844—Coating fibres
- C04B35/62857—Coating fibres with non-oxide ceramics
- C04B35/62865—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62892—Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62894—Coating the powders or the macroscopic reinforcing agents with more than one coating layer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C04B35/803—
-
- C04B35/806—
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/83—Carbon fibres in a carbon matrix
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/4505—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
- C04B41/4535—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
- C04B41/4539—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension as a emulsion, dispersion or suspension
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
- C04B41/526—Multiple coating or impregnation with materials having the same composition but different characteristics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/32—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
- D06M11/36—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
- D06M11/45—Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic Table; Aluminates
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/58—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/68—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof
- D06M11/70—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with phosphorus or compounds thereof, e.g. with chlorophosphonic acid or salts thereof with oxides of phosphorus; with hypophosphorous, phosphorous or phosphoric acids or their salts
- D06M11/71—Salts of phosphoric acids
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/73—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/77—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
- D06M11/79—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/80—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with boron or compounds thereof, e.g. borides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/282—Selecting composite materials, e.g. blades with reinforcing filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/107—Ceramic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3463—Alumino-silicates other than clay, e.g. mullite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3804—Borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/447—Phosphates or phosphites, e.g. orthophosphate or hypophosphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/522—Oxidic
- C04B2235/5224—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/522—Oxidic
- C04B2235/5228—Silica and alumina, including aluminosilicates, e.g. mullite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/522—Oxidic
- C04B2235/5232—Silica or silicates other than aluminosilicates, e.g. quartz
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5244—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5248—Carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/616—Liquid infiltration of green bodies or pre-forms
Definitions
- the present invention relates to a method for manufacturing a part made of thermostructural composite material, in particular of the oxide / oxide or ceramic matrix (CMC) type, that is to say having a fibrous reinforcement formed with from fibers of refractory material densified by a matrix also of refractory material.
- CMC ceramic matrix
- the oxide / oxide composite material parts are generally produced by draping in a mold of a plurality of fibrous layers made from refractory oxide fibers, the layers being each impregnated beforehand with a slip loaded with refractory oxide particles. All of the layers thus disposed is then compacted using a counter-mold or a vacuum cover and an autoclave. The filled preform thus obtained is then subjected to sintering in order to form a refractory oxide matrix in the preform and obtain a piece of oxide / oxide composite material. This technique can also be used to produce ceramic matrix composite (CMC) parts.
- CMC ceramic matrix composite
- the fibrous layers are made from silicon carbide (SiC) or carbon fibers and are impregnated with a slurry loaded with carbide particles (eg SiC), boride (eg TiB2) or nitride particles. (eg S13N4).
- SiC silicon carbide
- boride eg TiB2
- nitride particles eg S13N4
- the object of the present invention is to overcome the aforementioned drawbacks and to propose a solution that makes it possible to control the manufacture of composite material parts, in particular of the oxide / oxide or CMC type, in order to optimize the volume content of the matrix present in the material. and / or impart to it characteristics that vary in the direction of the thickness of the piece.
- the invention proposes a method for manufacturing a composite material part comprising the following steps:
- the first particles have an average size greater than the average size of the second particles. It is thus possible to fill the interstices present between the first particles with the second particles so as to obtain in the final part a high volume of matrix.
- the first particles may be of the same chemical nature as the second particles or of a chemical nature different from that of the second particles.
- first and second particles having a different chemical nature it is possible to confer particular properties on the matrix obtained.
- it further comprises, after the step of removing the liquid phase from the second slip and before the sintering step, the following steps:
- the third particles may have an average size similar to the average size of the first particles, the first and third particles having a mean size less than the average size of the second particles.
- each step of impregnating the fibrous texture comprises:
- the method of the invention makes it possible to eliminate the liquid phase of the slips introduced into the fibrous texture without removing the refractory solid particles also present in the texture.
- the elimination of the liquid phase of the slurry by drainage also makes it possible not to disturb the distribution of the refractory particles within the fibrous texture and thus to control the structure of the matrix in the final piece.
- the piece of porous material may be rigid and have a shape corresponding to the shape of the piece of composite material to be produced.
- the piece of porous material may be deformable, the bottom of the mold having a shape corresponding to the shape of the piece of composite material to be produced; in this case, the piece of porous material adapts to the shape of the bottom of the mold.
- the yarns of the preform may be fiber yarns made of one or more of the following materials: alumina, mullite, silica, aluminosilicate, borosilicate, silicon carbide, and carbon.
- the refractory particles may be of a material chosen from: alumina, mullite, silica, an aluminosilicate, an aluminophosphate, zirconia, a carbide, a boride and a nitride.
- the piece of composite material obtained may constitute a turbomachine blade.
- FIG. 1 is a schematic exploded sectional view of a tool according to an embodiment of the invention
- FIG. 2 is a diagrammatic sectional view showing the tool of FIG. 1 closed with a fibrous texture positioned therein,
- FIGS. 3 to 6 are diagrammatic sectional views showing two successive stages of impregnation of a fibrous texture with slips loaded with particles of different size in the tool of FIG. 2 in accordance with one embodiment of the method of the invention
- FIGS. 7 to 12 are schematic sectional views showing three stages of successive impregnation of a fibrous texture with slips loaded particles of different size in accordance with another embodiment of the method of the invention.
- thermostructural composite material in particular of the oxide / oxide or CMC type, according to the present invention starts with the production of a fibrous texture intended to form the reinforcement of the part.
- the fibrous texture used may be of various natures and forms such as, in particular:
- UD Unidirectional web
- nD multidirectional webs
- two-dimensional weaving is meant here a conventional weaving mode whereby each weft yarn passes from one side to another son of a single chain layer or vice versa.
- three-dimensional weaving or “3D weaving” or “multilayer weaving” is meant here a weaving mode whereby at least some of the weft yarns bind warp yarns on several layers of warp yarns or conversely following a weave corresponding to a weave weave which can be chosen in particular from one of the following armor: interlock, multi-fabric, multi-satin and multi-twill.
- the yarns used to weave the fibrous texture intended to form the fibrous reinforcement of the piece made of oxide / oxide or CMC composite material may in particular be formed of fibers consisting of one of the following materials: alumina, mullite, silica, a aluminosilicate, a borosilicate, silicon carbide, carbon or a mixture of several of these materials.
- the fibrous texture is achieved, it is impregnated successively with at least two different slip according to the invention.
- first type of particles having an average size greater than that of particles of the second type namely a first type of particles having an average size greater than that of particles of the second type.
- first and second refractory oxide particles may be of the same chemical nature or of a different chemical nature.
- the introduction of second zirconia particles makes it possible to lower the sintering temperature of the first alumina particles.
- the impregnation of the fibrous texture is here carried out with a tool according to the invention which is particularly well adapted to allow the introduction of the slips loaded with solid particles into 2D fibrous textures of considerable thickness (stacking of layers or 2D woven folds) or 3D textures with complex geometries.
- a fibrous texture 10 is placed in a tool 100.
- the fibrous texture 10 is produced according to one of the techniques defined above (for example stacking of 2D layers or 3D weaving) with Nextel alumina threads. 610 TM.
- the fibrous texture 10 is here intended to form the fibrous reinforcement of a blade of oxide / oxide composite material.
- the tooling 100 comprises a mold 110 whose bottom 111 is provided with a vent 112.
- the mold 110 also comprises a side wall 113 having an injection port 114 equipped with a valve 1140.
- a piece of porous material 120 is placed on the inner surface 111a of the bottom 111.
- the piece of porous material 120 has a lower face 120b in contact with the inner surface 111a of the bottom 111 and an upper face 120a for receiving the fibrous texture 10.
- the piece 120 is made of a deformable material while the inner surface 111A of the bottom 111 of the mold 110 has a shape or profile corresponding to the shape of the final part to be manufactured, here an aeronautical engine blade.
- the piece 120 being deformable, it conforms to the profile of the inner surface 111a of the bottom 111 and has on its upper face 120a a shape similar to that of the surface 111a.
- the piece 120 may for example be made of microporous polytetrafluoroethylene (PTFE) such as "microporous PTFE” products sold by the company Porex®.
- PTFE microporous polytetrafluoroethylene
- the piece of porous material is rigid and has on its upper surface a geometry corresponding to the shape of the final piece to be manufactured.
- the part may in particular be made by thermoforming.
- the piece of porous material may have a thickness of several millimeters and an average porosity of about 30%.
- the average pore size (D50) of the piece of porous material may for example be between 1 ⁇ and 2 ⁇ m.
- the tooling 100 further comprises a cover 130 comprising an injection port 131 equipped with a valve 1310 and a deformable membrane 140 which, once the tool has been closed (FIG. 2), separates an impregnation chamber 101 in which is present the fibrous texture 10 of a compaction chamber 102 located above the membrane 140.
- the membrane 140 may be made for example of silicone.
- the mold 110 After placing the texture 10 on the upper face 120a of the piece of porous material 120a, the mold 110 is closed with the cover 130 ( Figure 2).
- a first slip 150 is then injected into the impregnation chamber 101 via the injection port 114, the valve 1140 of which is open (FIG. 3).
- the slurry 150 is in this example intended to allow the formation of a portion of the refractory oxide matrix in the texture.
- the slurry 150 corresponds to a powder of alumina particles 151 suspended in a liquid phase 152, the particles having a mean size or average particle size of between 0.1 ⁇ m and 10 ⁇ m.
- the liquid phase 152 of the slip may consist in particular of water (acidic pH), ethanol or any other liquid in which it is possible to suspend the desired powder.
- An organic binder can also be added (PVA for example, soluble in water). This binder ensures the holding of the raw material after drying and before sintering.
- the refractory oxide particles may also be made of a material chosen from mullite, silica, zirconia, an aluminosilicate and an aluminophosphate. Depending on their base composition, the refractory oxide particles may be further mixed with particles of alumina, zirconia, aluminosilicate, rare earth oxides, rare earth dissilicates (used for example in environmental or thermal barriers) or any other load that makes it possible to add specific functions to the final material (carbon black, graphite, silicon carbide, etc.).
- the amount of slurry 150 injected into the impregnation chamber 101 is determined as a function of the volume of the fibrous texture to be impregnated. It is the quantity of powder initially introduced which will control the thickness of setting and thus the volume ratio of fibers (Tvf) and matrix (Tvm).
- the compaction operation is carried out by injecting a compression fluid 170, for example oil, into the compaction chamber 102 through the injection port 131. whose valve 1310 is open, the valve 1140 of the injection port 114 having been previously closed ( Figure 4).
- the compression fluid 170 applies a pressure on the slip 150 through the membrane 140 which forces the slip 150 to penetrate the fibrous texture 10.
- the fluid 170 imposes a hydrostatic pressure on the entire membrane 140 and consequently on the whole of the slip present above the texture 10.
- the pressure applied by the membrane 140 on the slip and on the fibrous texture is preferably less than 15 bar, for example 7 bar, so as to penetrate the slip in the texture and sufficiently compact the texture to allow the liquid phase of the slip to be drained by the piece of porous material without degrading the resulting preform.
- the piece of porous material 120 which is located on the side of the face 10b of the fibrous texture opposite to the face 10a from which the slip penetrates the texture performs several functions (Figure 3).
- the part 120 allows the liquid of the slip to be drained outside the fibrous texture, the liquid thus drained being evacuated here by the vent 112 (FIG. 4). Drainage is performed both during and after the compaction operation. When there is no more liquid flowing through the vent 112, drainage is complete.
- a pumping P for example by means of a primary vacuum pump (not shown in Figures 1 to 4), can be achieved at of the vent 112. This pumping is optional. Heating can suffice. However, the combination of both speeds up drying.
- the tool may be provided with heating means, such as resistive elements integrated into the walls of the tool, in order to increase the temperature in the compaction chamber and facilitate evacuation of the liquid from the slip by evaporation.
- the temperature in the compaction chamber can be raised to a temperature between 80 ° C and 105 ° C.
- the piece of porous material 120 also makes it possible to retain the solid particles of refractory oxide present in the slip, the refractory oxide particles thus settling progressively by sedimentation in the fibrous texture.
- the piece 120 also makes it possible to maintain the fibrous texture in shape during the compaction operation because it resumes on its upper face 120a the shape of the bottom 111 of the mold 100 corresponding to the shape of the final piece to be manufactured.
- the intermediate fibrous preform 20 is impregnated with a second slip 160 which is injected through the injection port 114, the valve 1140 of which is open (FIG. 5).
- the slip 160 is intended to complete the formation of the refractory oxide matrix in the preform.
- the slip 160 corresponds to a powder of alumina particles 161 suspended in a liquid phase 162.
- the alumina particles 161 have a mean size or average particle size less than that of the particles 151 which can be between 0.1 ⁇ m. and 1 ⁇ (factor 10 between the large particles and the finest).
- the liquid phase 162 of the slip may consist in particular of water (acidic pH), ethanol or any other liquid in which it is possible to put the desired powder in suspension.
- An organic binder can also be added (PVA for example, soluble in water). This binder ensures the holding of the raw material after drying and before sintering.
- the liquid phase 162 is preferably of the same nature as the liquid phase 152.
- the amount of slip 160 injected into the impregnation chamber 101 is determined as a function of the volume of the intermediate fibrous preform 20 to be impregnated.
- the compaction operation is carried out by injecting again the compression fluid 170 into the compaction chamber 102 via the injection port 131 whose valve 1310 is open. , the valve 1140 of the injection port 114 having been previously closed ( Figure 6).
- the compression fluid 170 applies a pressure on the slip 160 through the membrane 140 which forces the slip 160 to enter the intermediate fibrous preform 20.
- the pressure applied by the membrane 140 on the slip and on the preform is preferably less than 15 bar, for example 7 bar, so as to penetrate the slip in the texture and sufficiently compact the texture to allow the liquid phase of the slip is drained by the piece of porous material without degrading the preform.
- a pumping P for example by means of a primary vacuum pump (not shown in Figures 1 to 4), can be achieved at of the vent 112. This pumping is optional. Heating can suffice. However, the combination of both speeds up drying.
- the temperature in the compaction chamber can be raised in order to facilitate evacuation of the liquid from the slip by evaporation, for example at a temperature between 80 ° C and 105 ° C.
- the particles of alumina 161 are retained in the preform by the piece of porous material 120.
- the particles 161 having a mean size smaller than that of the particles 151, they are deposited by sedimentation in the interstices remaining between the particles 151 deposited previously.
- a fibrous preform loaded with the alumina particles 151 and 161 is thus obtained (FIG. 6).
- the preform is then released from the compaction pressure by emptying the compression fluid of the compaction chamber 102.
- the preform is then extracted from the tooling and subjected to an air sinter heat treatment at a temperature of between 1000 ° C. and 1200 ° C. in order to sinter the refractory oxide particles together and thus form a refractory oxide matrix in the preform.
- the 161 may also be of a material selected from mullite, silica, zirconia, aluminosilicate and aluminophosphate.
- the refractory oxide particles may be further mixed with particles of alumina, zirconia, aluminosilicate, rare earth oxides, rare earth dissilicates (used for example in environmental or thermal barriers) or any other load that makes it possible to add specific functions to the final material (carbon black, graphite, silicon carbide, etc.).
- a piece of CMC composite material can be obtained in the same way by producing the fibrous texture with silicon carbide or carbon fibers and using a slurry loaded with carbide carbide particles (eg SiC), boride (ex. TiB2) or nitride (eg Si3N4).
- carbide carbide particles eg SiC
- boride e. TiB2
- nitride eg Si3N4
- the impregnation of the fibrous texture is here carried out with a tool 200 similar to the tooling 100 described above in relation to FIGS. 1 to 6 and therefore comprises the same elements, namely:
- a mold 210 comprising a bottom 211 provided with a vent 212 and a side wall 213 comprising an injection port 214 equipped with a valve 2140 (FIG. 7),
- a cover 230 comprising an injection port 231 equipped with a valve 2310 and a deformable membrane 240, for example made of silicone, which, once the tool has been closed (FIG. 7), separates an impregnation chamber 201 in which is present a fibrous texture 40 of a compaction chamber 202 located above the membrane 240, a piece of porous material 220 placed on the inner surface 211a of the bottom 211 and having a lower face 220b in contact with the inner surface 211a of the bottom 211 and an upper face 220a intended to receive the fibrous texture 40.
- the piece of porous material 220 is made of a rigid material and the upper face 220a of the piece of porous material 220 has a geometry corresponding to the shape of the final piece to be produced, here a motor vane aeronautics.
- the fibrous texture 40 is made according to one of the techniques described above with silicon carbide son.
- the fibrous texture 40 is here intended to form the fibrous reinforcement of a blade of SiC / SiC composite material, that is to say a CMC material comprising a SiC fiber reinforcement densified by an SiC matrix.
- a first slip 250 is injected into the impregnation chamber 201 through the injection port 214, the valve 2140 is open ( Figure 7).
- the slurry 250 is intended to allow the formation of the matrix portion present at the lower face 40b of the texture 40, which portion contributes to the surface state of the lower face of the final piece.
- Slurry 250 corresponds to a powder of SiC251 particles suspended in a liquid phase 252, the particles having a mean size or average particle size of between 0.1 ⁇ m and 5 ⁇ m.
- the liquid phase 252 of the slip may in particular consist of water (acidic pH), ethanol or any other liquid in which it is possible to suspend the desired powder.
- An organic binder can also be added (PVA for example, soluble in water). This binder ensures the holding of the raw material after drying and before sintering.
- the amount of slip 250 injected into the impregnation chamber 201 is determined as a function of the thickness of the layer of particles 251 that is desired to form from the underside of the texture.
- the compaction operation is carried out by injecting a compression fluid 280, for example oil, in the compaction chamber 202 through the injection port 231 whose valve 2310 is open, the valve 2140 of the injection port 214 having been previously closed (FIG. 8) .
- the compression fluid 280 applies a pressure on the slip 250 through the membrane 240 which forces the slip 250 to penetrate into the fibrous texture 40.
- the particles 251 retained by the piece of porous material 220 are deposited by sedimentation from the lower face 40b of the texture 40 while the liquid phase 252 of the slip is drained outside the texture 40 by the workpiece 220.
- a pumping P for example by means of a primary vacuum pump (not shown in Figures 1 to 4), can be achieved at of the vent 112. This pumping is optional. Heating can suffice. However, the combination of both speeds up drying.
- an intermediate fibrous preform 50 is obtained which has a layer 2510 of SiC 251 particles at its lower face 50b.
- the intermediate preform 50 is then released from the compaction pressure by emptying the compression fluid of the compaction chamber 202.
- the intermediate fibrous preform 50 is impregnated with a second slip 260 which is injected through the injection port 214, the valve 2140 of which is open (FIG. 9).
- the slip 260 is intended to allow the formation of the refractory matrix core of the preform 50, that is to say in the thickness of the preform 50 between the lower faces 50b and 50a upper.
- the slip 260 corresponds to a powder of SiC 261 particles suspended in a liquid phase 262.
- the SiC 261 particles have a mean size or average particle size greater than that of the particles 251 which can be between 0.1 ⁇ and 5 ⁇ l. pm.
- the liquid phase 162 of the slip may consist in particular of water (acidic pH), ethanol or any other liquid in which it is possible to put the desired powder in suspension.
- An organic binder can also be added (PVA for example, soluble in water). This binder ensures the holding of the raw material after drying and before sintering.
- the liquid phase 262 is preferably of the same kind as the liquid phase 252.
- the amount of slip 260 injected into the impregnation chamber 201 is determined as a function of the thickness of the intermediate fibrous preform 40 to be impregnated.
- the compaction operation is performed by injecting again the compression fluid 280 as already described above.
- the particles 261 retained by the piece of porous material 220 are deposited by sedimentation in the preform while the liquid 262 of the slip 260 is drained from the preform by the part 220 ( Figure 10).
- An intermediate fibrous preform 60 having a layer 2510 of SiC particles 251 at its lower face 60b and a layer 2610 of SiC particles 260 extending over the thickness of the preform are thus obtained.
- the intermediate preform 60 is then released from the compaction pressure by emptying the compression fluid of the compaction chamber 202.
- the intermediate fibrous preform 60 is impregnated with a third slip 270 which is injected through the injection port 214 whose valve 2140 is open (FIG. 11).
- the slip 270 is intended, on the one hand, to complete the formation of the SiC matrix at the heart of the preform 60, that is to say in the thickness of the preform 40 located between the lower faces 40b and upper 40a , and, secondly, to allow the formation of the matrix portion present at the upper face 60a of the preform 60, which portion contributes to the surface state of the upper face of the final piece.
- the slip 270 corresponds to a powder of particles of SiC 271 suspended in a liquid phase 272, the particles 271 having a mean size or mean particle size of between 0.1 ⁇ and 5 ⁇ m.
- the liquid phase 272 of the slip can be constituted in particular by one of the liquids described above and is preferably of the same kind as the liquid phases 252 and 262.
- the particles 271 may have the same size as the particles 251. have a size different from that of 251 particles if it is desired to have different surface conditions between the lower face and the upper face of the final piece.
- the quantity of slip 270 injected into the impregnation chamber 201 is determined as a function of both the thickness of the layer of particles 271 that it is desired to form from the upper face of the texture and the volume of the interstices present between the particles 261 to be filled by particles 271.
- the compaction operation is carried out by injecting again the compression fluid 280 as already described above.
- the particles 271 settle by sedimentation firstly in the interstices present between the particles 261 and then at the upper face 60a of the preform 60 while the liquid 272 of the slip 270 is drained from the the preform by the piece 220.
- a pumping P for example by means of a primary vacuum pump (not shown in Figures 1 to 4 ), can be performed at the level of the vent 112. This pumping is optional. Heating can suffice. However, the combination of both speeds up drying.
- a final fiber preform 70 having a layer 2510 of SiC particles 251 at its lower face 70b, a layer 2610 of SiC particles 261 extending over the thickness of the preform with particles 271 in the interstices is obtained. and a layer 2710 of SiC particles 271 at its upper face 70a.
- the final preform 70 is then demolded by emptying the compression fluid of the compaction chamber 202.
- the preform 70 is extracted from the tooling and subjected to an air sinter heat treatment at a temperature between 1800 ° C and 2000 ° C to sinter the refractory SiC particles together and thereby form an SiC matrix in the preform.
- a piece of oxide / oxide composite material can be obtained in the same way by producing the fiber texture with refractory oxide fibers (eg alumina) and using a slurry loaded with refractory oxide particles (eg alumina, mullite , silica, etc.).
- the stages of impregnation of a fibrous structure with several slips and the stages of elimination of the liquid phase of each slurry can also be carried out with techniques other than that described above and implemented in the tooling. or 200.
- the infusion-type techniques, injection molding known as "RTM” or submicron powder aspiration called “APS” may also be used to implement the steps of impregnating a texture or preform with fibrous slips and the steps of removing the liquid phase from each slip.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Dispersion Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/538,762 US10427983B2 (en) | 2014-12-23 | 2015-12-18 | Method for manufacturing part made of composite material |
CN201580074464.XA CN107207354B (zh) | 2014-12-23 | 2015-12-18 | 由复合材料制造部件的方法 |
BR112017013415-2A BR112017013415B1 (pt) | 2014-12-23 | 2015-12-18 | Método para fabricação de uma peça feita de material compósito |
JP2017534233A JP6760943B2 (ja) | 2014-12-23 | 2015-12-18 | 複合材料製部品の製造方法 |
EP15823676.0A EP3237359B1 (fr) | 2014-12-23 | 2015-12-18 | Procédé de fabrication d'une pièce en matériau composite |
RU2017126108A RU2722790C2 (ru) | 2014-12-23 | 2015-12-18 | Способ изготовления детали из композиционного материала |
CA2972172A CA2972172C (fr) | 2014-12-23 | 2015-12-18 | Procede de fabrication d'une piece en materiau composite |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1463284A FR3030503B1 (fr) | 2014-12-23 | 2014-12-23 | Procede de fabrication d'une piece en materiau composite |
FR1463284 | 2014-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016102842A1 true WO2016102842A1 (fr) | 2016-06-30 |
Family
ID=53269574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2015/053626 WO2016102842A1 (fr) | 2014-12-23 | 2015-12-18 | Procédé de fabrication d'une pièce en matériau composite |
Country Status (9)
Country | Link |
---|---|
US (1) | US10427983B2 (fr) |
EP (1) | EP3237359B1 (fr) |
JP (1) | JP6760943B2 (fr) |
CN (1) | CN107207354B (fr) |
BR (1) | BR112017013415B1 (fr) |
CA (1) | CA2972172C (fr) |
FR (1) | FR3030503B1 (fr) |
RU (1) | RU2722790C2 (fr) |
WO (1) | WO2016102842A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3052164A1 (fr) * | 2016-06-03 | 2017-12-08 | Snecma | Fabrication d'une piece en cmc avec retouche des indications |
JP2019081340A (ja) * | 2017-10-31 | 2019-05-30 | 三菱重工業株式会社 | セラミック基複合材料部材の製造方法、及びセラミック基複合材料部材製造用金型装置 |
WO2019197757A1 (fr) | 2018-04-13 | 2019-10-17 | Safran Ceramics | Procede de fabrication d'une piece en materiau composite par injection d'une barbotine ceramique chargee dans une texture fibreuse |
US20210323295A1 (en) * | 2018-07-17 | 2021-10-21 | Safran Ceramics | Method for manufacturing an acoustic panel |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITUB20160498A1 (it) * | 2016-01-27 | 2017-07-27 | Consiglio Nazionale Ricerche | Materiali compositi a base di fibre C/SiC con matrice ultrarefrattaria ad alta tenacità e resistenza all’ablazione |
FR3072672B1 (fr) | 2017-10-24 | 2019-11-08 | Safran Ceramics | Installation pour le depot d'une meche chargee mise en forme |
CN108558422B (zh) * | 2018-01-12 | 2021-11-30 | 哈尔滨工业大学 | 具有高断裂功的三维碳纤维增韧超高温陶瓷基复合材料的制备方法 |
LT3758923T (lt) * | 2018-02-26 | 2024-06-10 | Vitrulan Composites Oy | Susiūtoji daugiaašė armatūra ir jos gamybos būdas |
FR3087194B1 (fr) | 2018-10-12 | 2021-02-26 | Safran Aircraft Engines | Procede de fabrication d'une piece en materiau composite avec controle de conformite |
DE102020106043A1 (de) | 2020-03-05 | 2021-09-09 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Herstellung von (oxid-) keramischen Faserverbundwerkstoffen |
US12116903B2 (en) * | 2021-06-30 | 2024-10-15 | General Electric Company | Composite airfoils with frangible tips |
DE102021132136A1 (de) * | 2021-12-07 | 2023-06-07 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Verfahren und Vorrichtung zur Herstellung keramischer Faserkomposite mit variabler Geometrie |
FR3131862B1 (fr) | 2022-01-17 | 2024-01-19 | Safran Ceram | Procédé de fabrication d’une pièce en matériau composite avec compactage liquide |
FR3133334B1 (fr) | 2022-03-09 | 2024-03-15 | Safran | Rouleau pour le dépôt par placement automatique de fibres |
US20230312425A1 (en) * | 2022-04-01 | 2023-10-05 | Raytheon Technologies Corporation | Ceramic matrix composite component and method of making the same |
FR3138138B1 (fr) | 2022-07-22 | 2024-07-19 | Safran Ceram | Outillage de maintien pour le frittage de préformes |
FR3139748B1 (fr) | 2022-09-19 | 2024-09-13 | Safran | Membrane drainante pour la fabrication de matériaux composites |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0130105A1 (fr) * | 1983-06-20 | 1985-01-02 | AEROSPATIALE Société Nationale Industrielle | Matière réfractaire composite renforcée de fibres réfractaires et son procédé de fabrication |
US6497776B1 (en) * | 1998-12-18 | 2002-12-24 | Rolls-Royce Plc | Method of manufacturing a ceramic matrix composite |
US20040105969A1 (en) * | 2002-12-03 | 2004-06-03 | Dai Huang | Manufacture of carbon composites by hot pressing |
US20140161626A1 (en) * | 2012-12-10 | 2014-06-12 | Snecma | Method for manufacturing an oxide/oxide composite material turbomachine blade provided with internal channels |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1570900A1 (ru) * | 1988-04-04 | 1990-06-15 | Ю. Н. Крючков | Устройство дл лить полых керамических изделий |
US5525374A (en) * | 1992-09-17 | 1996-06-11 | Golden Technologies Company | Method for making ceramic-metal gradient composites |
JPH0791121B2 (ja) * | 1993-03-08 | 1995-10-04 | 工業技術院長 | 3次元繊維強化セラミックス基複合材料の製造法及びその装置 |
US5489408A (en) * | 1993-03-08 | 1996-02-06 | Agency Of Industrial Science & Technology | Method for producing ceramics reinforced with three-dimensional fibers |
JP2000283656A (ja) * | 1999-03-29 | 2000-10-13 | Nippon Steel Corp | 鋼片加熱炉の耐火ライニング |
US6533986B1 (en) * | 2000-02-16 | 2003-03-18 | Howmet Research Corporation | Method and apparatus for making ceramic cores and other articles |
RU2207949C2 (ru) * | 2001-09-13 | 2003-07-10 | Федеральное государственное унитарное предприятие "Обнинское научно-производственное предприятие "Технология" | Устройство для формования керамических изделий из водных шликеров |
US6725656B2 (en) * | 2001-12-07 | 2004-04-27 | Dan T. Moore Company | Insulated exhaust manifold |
CA2434447A1 (fr) * | 2003-06-27 | 2004-12-27 | Eduardo Ruiz | Fabrication des composites par un procede d'injection flexible au moyen d'un moule a double chambre ou a chambres multiples |
FR2933973B1 (fr) * | 2008-07-16 | 2011-09-09 | Messier Bugatti | Procede de fabrication d'une piece de friction en materiau composite carbone/carbone |
ES2384356T3 (es) * | 2008-10-31 | 2012-07-04 | Avio S.P.A. | Método para la producción de componentes hechos de material compuesto de matriz cerámica |
CN101792299B (zh) * | 2010-01-08 | 2012-05-23 | 中国人民解放军国防科学技术大学 | 耐高温氧化铝-氧化硅气凝胶隔热复合材料的制备方法 |
JPWO2011122593A1 (ja) * | 2010-03-29 | 2013-07-08 | 株式会社Ihi | 粉体材料含浸方法及び繊維強化複合材料の製造方法 |
FR2958933B1 (fr) * | 2010-04-20 | 2015-08-07 | Onera (Off Nat Aerospatiale) | Procede d'elaboration d'une piece composite a matrice ceramique |
CN102093062B (zh) * | 2010-12-09 | 2013-05-01 | 上海伊索热能技术有限公司 | 一种耐火隔热湿毡及其生产工艺 |
FR3017866B1 (fr) * | 2014-02-24 | 2016-04-08 | Herakles | Piece en materiau composite oxyde/oxyde a renfort 3d et son procede de fabrication |
-
2014
- 2014-12-23 FR FR1463284A patent/FR3030503B1/fr active Active
-
2015
- 2015-12-18 CN CN201580074464.XA patent/CN107207354B/zh active Active
- 2015-12-18 US US15/538,762 patent/US10427983B2/en active Active
- 2015-12-18 BR BR112017013415-2A patent/BR112017013415B1/pt active IP Right Grant
- 2015-12-18 JP JP2017534233A patent/JP6760943B2/ja active Active
- 2015-12-18 RU RU2017126108A patent/RU2722790C2/ru active
- 2015-12-18 EP EP15823676.0A patent/EP3237359B1/fr active Active
- 2015-12-18 CA CA2972172A patent/CA2972172C/fr active Active
- 2015-12-18 WO PCT/FR2015/053626 patent/WO2016102842A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0130105A1 (fr) * | 1983-06-20 | 1985-01-02 | AEROSPATIALE Société Nationale Industrielle | Matière réfractaire composite renforcée de fibres réfractaires et son procédé de fabrication |
US6497776B1 (en) * | 1998-12-18 | 2002-12-24 | Rolls-Royce Plc | Method of manufacturing a ceramic matrix composite |
US20040105969A1 (en) * | 2002-12-03 | 2004-06-03 | Dai Huang | Manufacture of carbon composites by hot pressing |
US20140161626A1 (en) * | 2012-12-10 | 2014-06-12 | Snecma | Method for manufacturing an oxide/oxide composite material turbomachine blade provided with internal channels |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3052164A1 (fr) * | 2016-06-03 | 2017-12-08 | Snecma | Fabrication d'une piece en cmc avec retouche des indications |
JP2019081340A (ja) * | 2017-10-31 | 2019-05-30 | 三菱重工業株式会社 | セラミック基複合材料部材の製造方法、及びセラミック基複合材料部材製造用金型装置 |
WO2019197757A1 (fr) | 2018-04-13 | 2019-10-17 | Safran Ceramics | Procede de fabrication d'une piece en materiau composite par injection d'une barbotine ceramique chargee dans une texture fibreuse |
US11045974B2 (en) | 2018-04-13 | 2021-06-29 | Safran Ceramics | Method for manufacturing a part made from a composite material by means of the injection of a laden ceramic slurry into a fibrous structure |
US20210323295A1 (en) * | 2018-07-17 | 2021-10-21 | Safran Ceramics | Method for manufacturing an acoustic panel |
Also Published As
Publication number | Publication date |
---|---|
EP3237359A1 (fr) | 2017-11-01 |
CN107207354A (zh) | 2017-09-26 |
CA2972172C (fr) | 2022-07-12 |
JP2018508443A (ja) | 2018-03-29 |
RU2017126108A (ru) | 2019-01-24 |
US20170334791A1 (en) | 2017-11-23 |
JP6760943B2 (ja) | 2020-09-23 |
BR112017013415B1 (pt) | 2022-05-03 |
BR112017013415A2 (pt) | 2018-03-06 |
US10427983B2 (en) | 2019-10-01 |
EP3237359B1 (fr) | 2019-05-22 |
FR3030503B1 (fr) | 2019-08-23 |
CN107207354B (zh) | 2020-10-13 |
RU2017126108A3 (fr) | 2019-07-17 |
RU2722790C2 (ru) | 2020-06-03 |
CA2972172A1 (fr) | 2016-06-30 |
FR3030503A1 (fr) | 2016-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3237359B1 (fr) | Procédé de fabrication d'une pièce en matériau composite | |
EP3237358B1 (fr) | Procédé de fabrication d'une pièce réfractaire en matériau composite | |
EP3448829B1 (fr) | Procédé de fabrication d'une pièce en matériau composite par injection d'une barbotine chargée dans une texture fibreuse | |
EP3237660B1 (fr) | Procédé de fabrication d'une préforme fibreuse chargée de particules céramiques réfractaires | |
EP3359506B1 (fr) | Procédé de fabrication d'une pièce en matériau composite céramique par injection sous pression d'une barbotine chargée dans un moule poreux | |
EP3768405B1 (fr) | Procédé de fabrication d'une pièce en matériau composite céramique par injection de poudre dans un renfort fibreux avec drainage par strate de filtration composite | |
FR3071245B1 (fr) | Procede d'injection d'une barbotine chargee dans une texture fibreuse | |
WO2018234669A1 (fr) | Procede de fabrication d'une piece en materiau composite presentant une ou plusieurs variations locales d'epaisseur | |
EP3996889B1 (fr) | Procede de fabrication d'une piece en materiau composite par injection d'une barbotine chargee dans une texture fibreuse | |
EP3863992B1 (fr) | Procédé de fabrication d'une pièce en matériau composite avec contrôle de conformité | |
FR3098433A1 (fr) | Procédé de fabrication d’une pièce en matériau composite par injection d’une barbotine chargée dans une texture fibreuse | |
EP4355542A1 (fr) | Procede d'injection de poudres ceramiques avec filtre cree in situ dans la preforme fibreuse | |
EP4225571A1 (fr) | Texture fibreuse non tissee avec embuvage | |
FR3098434A1 (fr) | Outillage pour l’injection d’une barbotine chargée |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15823676 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2972172 Country of ref document: CA Ref document number: 2017534233 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015823676 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017013415 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2017126108 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112017013415 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170621 |