WO2016101984A1 - Spectromètre à grille présentant une résolution améliorée - Google Patents

Spectromètre à grille présentant une résolution améliorée Download PDF

Info

Publication number
WO2016101984A1
WO2016101984A1 PCT/EP2014/079056 EP2014079056W WO2016101984A1 WO 2016101984 A1 WO2016101984 A1 WO 2016101984A1 EP 2014079056 W EP2014079056 W EP 2014079056W WO 2016101984 A1 WO2016101984 A1 WO 2016101984A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffraction
arrangement
angle
diffracted
wavelength
Prior art date
Application number
PCT/EP2014/079056
Other languages
German (de)
English (en)
Inventor
Wolfram Bohle
Original Assignee
Spectro Analytical Instruments Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spectro Analytical Instruments Gmbh filed Critical Spectro Analytical Instruments Gmbh
Priority to DE112014007078.5T priority Critical patent/DE112014007078B4/de
Priority to PCT/EP2014/079056 priority patent/WO2016101984A1/fr
Publication of WO2016101984A1 publication Critical patent/WO2016101984A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0291Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/20Rowland circle spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors

Definitions

  • the present invention relates to an arrangement for the spectral decomposition of light according to the preamble of claim 1 and an optical
  • Optical emission spectrometry uses grating spectrometers to determine elemental contents in a sample by analyzing the radiation emission of excited atoms. Large spectral ranges have to be measured simultaneously - starting from the deep UV to the near IR.
  • a diffraction grating causes a dispersion of the spectrum according to the
  • the angular dispersion ⁇ / ⁇ (equation 2) gives the difference of the diffraction angle ⁇ for two wavelengths which differ by the small amount ⁇ .
  • the spectral resolution of the spectrometer is essentially determined by the angular dispersion of the diffraction grating.
  • the cut-off wavelength A G denotes the wavelength for which the
  • Diffraction angle 90 ° reached (equation 3). Larger wavelengths than A G are no longer diffracted at this grid. The cut-off wavelength must therefore be above the longest wavelength of the spectrum to be displayed.
  • Eq. 3 states that, for the diffraction of long wavelengths, the spacing of the grating grooves d must be large and the diffraction order N must be low. For a high angular dispersion, however, exactly the reverse procedure is necessary. According to Eq. 2, a high angular dispersion is due to a small angle
  • the largest wavelength to be measured determines the groove spacing of the grid and thus also defines the angular dispersion.
  • the demands for high spectral coverage and high angular dispersion can therefore not be realized simultaneously.
  • Angle dispersion lower, here it depends mainly on the large extent of the simultaneously detected spectral range.
  • the first way is to use different diffraction orders of a diffraction grating simultaneously. Parts of the spectrum with higher requirements for the angular dispersion are in higher
  • the second approach is to combine several spectrometer units simultaneously in one device, with the respective diffraction gratings having different groove spacings. In this way, parts of the spectrum can be displayed with a higher angular dispersion than that
  • spectrometer units in one device have disadvantages. All units must be optically in the same way to the radiation source
  • Diffraction element normal is directed back to the diffraction element, in such a way that the angle differences ⁇ ⁇ and ⁇ have different signs.
  • the dispersion can be increased for a certain part of the spectrum by adding the dispersion effects from both diffraction processes.
  • the limitation of the angular dispersion by the largest wavelength to be measured, which determines the groove spacing of the grating, can thus be avoided.
  • the feedback arrangement comprises an even number of reflective components which, by their successive reflections, cause the angle differences ⁇ ⁇ and ⁇ to have different signs.
  • the return arrangement preferably has exactly two reflective components.
  • the distance of the reflective components is adjustable.
  • Angle of incidence ⁇ ⁇ are chosen so that a desired diffraction angle ⁇ 'is established during the second diffraction at the grating.
  • the diffraction element is a reflective grating.
  • the return arrangement has at least one wavelength-dispersive elements, so that in addition to the
  • Feedback arrangement filters out wavelength sub-ranges within the interval ⁇ to ⁇ + ⁇ , which are not attributed to the diffraction element.
  • the feedback arrangement has at least one curved surface optical element, thereby correcting for divergence of the incident beam and the diffracted beam. From this point of view, it may also be preferable to
  • the diffraction order N is equal to 1 or 2.
  • an optical spectrometer comprising an entrance slit from which incident light into the spectrometer falls on a previously-mentioned spectral decomposition arrangement of light and detectors for detecting the light diffracted by the diffraction grating.
  • the arrangement for the spectral decomposition of light has the previous one
  • the diffraction grating is concave and the detectors are arranged on a Rowland circle.
  • Fig. 1 a schematic representation of a spectrometer with a
  • Fig. 5 a schematic representation of a return arrangement with three
  • Fig. 6 a schematic representation of an inventive
  • Fig. 7 a schematic representation of another erfindungsg
  • Fig. L shows a dispersion arrangement with a reflective
  • the beam 2 is incident on the diffraction grating 1 at the angle ⁇ to the normal.
  • the beam 2 contains the two
  • a return assembly 5 directs the beam 3 as a beam 6 of wavelength ⁇ at the new angle of incidence ⁇ ⁇ back to the grid.
  • the return assembly 5 simultaneously directs the beam 4 as
  • a desired diffraction angle .beta..sub. ⁇ can be set by selecting the appropriate angle of incidence .alpha..sub. ⁇ in the second diffraction process.
  • the multiplier e in Eq. 5 describes the development of the
  • the return assembly 5 in FIG. l accomplishes the repatriation of the
  • Beam 6 is.
  • the condition ⁇ ⁇ - ⁇ applies.
  • the multiplier e of Eq. 5 is about 2, and the angular dispersion is about twice as large.
  • the return arrangement 5 can also contain optical elements, which in turn themselves
  • Angular dispersion is thus already raised in the course of the beam return by means of the return assembly 5.
  • the feedback assembly 5 may include optical filters whereby individual wavelengths or a portion from the wavelength interval ⁇ to ⁇ + ⁇ can be removed and these are no longer directed back to the grid.
  • Diffraction pass about three times higher than the single-diffracted spectrum, about four times higher after the fourth pass, etc.
  • FIG. 3 shows by way of example the second mirror 11 with a curved surface.
  • the divergent beams 3, 4 arriving from the grating are transferred by the device 5 into the convergent beams 6, 7, which are directed back to the center of the grating.
  • the same effect could also be achieved with a lens in the beam path of the device.
  • a return arrangement 5 ' has a single mirror 10'.
  • Figures 6 and 7 show two examples of an inventive
  • FIGS. 6 and 7 show by way of example that the arrangement of the mirrors 18, 19 allows the angle of incidence ⁇ ⁇ to be selected so that a desired diffraction angle ⁇ 'is established at the second diffraction at the grating.
  • a filter 20a is set on the line sensor 20, which filters out the original spectrum at this point.
  • the inventive arrangement for the spectral decomposition of light makes it possible to split a broad, extended wavelength range, wherein a portion of the spectrum has an angular dispersion which is higher than the angular dispersion in the remaining wavelength range.
  • the arrangement is through the use of a single dispersive element and the mapping of the spectrum to a single detector array, the more
  • Detector elements z. B. line sensors 17, 20 can contain, inexpensive and compact.

Abstract

L'invention concerne un agencement servant à la décomposition spectrale de lumière, comportant un élément de diffraction (1, 16), un faisceau lumineux (2) qui atteint l'élément de diffraction (1, 16) à un angle d'incidence α par rapport aux normales de l'élément de diffraction et qui contient les longueurs d'onde de l'intervalle allant de λ à λ+Δλ, un premier faisceau lumineux (3) de longueur d'onde λ diffracté à l'angle β par rapport aux normales de l'élément de diffraction dans l'ordre de diffraction n, et un deuxième faisceau lumineux (4) de longueur d'onde λ+Δλ diffracté à l'angle β+Δβ par rapport aux normales de l'élément de diffraction dans l'ordre de diffraction n. L'agencement présente un système de retour (5) qui dévie le premier faisceau lumineux diffracté (3) et le retourne sur l'élément de diffraction (1) à un angle d'incidence α' par rapport aux normales de l'élément de diffraction sous la forme d'un premier faisceau lumineux retourné (6), et qui dévie simultanément le deuxième faisceau lumineux diffracté (4) et le retourne sur l'élément de diffraction (1) à un angle d'incidence α'+Δα' par rapport aux normales de l'élément de diffraction sous la forme d'un deuxième faisceau lumineux retourné (7), de telle manière que les différences angulaires Δα' et Δβ présentent des signes différents.
PCT/EP2014/079056 2014-12-22 2014-12-22 Spectromètre à grille présentant une résolution améliorée WO2016101984A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112014007078.5T DE112014007078B4 (de) 2014-12-22 2014-12-22 Gitterspektrometer mit verbesserter auflösung
PCT/EP2014/079056 WO2016101984A1 (fr) 2014-12-22 2014-12-22 Spectromètre à grille présentant une résolution améliorée

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2014/079056 WO2016101984A1 (fr) 2014-12-22 2014-12-22 Spectromètre à grille présentant une résolution améliorée

Publications (1)

Publication Number Publication Date
WO2016101984A1 true WO2016101984A1 (fr) 2016-06-30

Family

ID=52144716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/079056 WO2016101984A1 (fr) 2014-12-22 2014-12-22 Spectromètre à grille présentant une résolution améliorée

Country Status (2)

Country Link
DE (1) DE112014007078B4 (fr)
WO (1) WO2016101984A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB765441A (en) * 1953-03-24 1957-01-09 William George Fastie Spectroscopic device
US2868063A (en) * 1957-05-16 1959-01-13 Leeds & Northrup Co Adjustable mirror support in successive dispersion monochromator
US6061129A (en) * 1999-01-22 2000-05-09 Cymer, Inc. Compact high resolution grating spectrometer
US6166805A (en) * 1998-07-13 2000-12-26 Ando Electric Co., Ltd. Double pass monochromator
US20020135879A1 (en) * 2001-02-20 2002-09-26 Valdimir Pogrebinsky Super high resolution optical resonator
WO2015018790A1 (fr) * 2013-08-06 2015-02-12 Commissariat à l'énergie atomique et aux énergies alternatives Spectrometre a plusieurs reseaux de diffraction.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2922331A (en) 1953-03-24 1960-01-26 Walter G Finch Spectroscopic device
EP1031825B1 (fr) 1999-02-26 2006-06-14 Yokogawa Electric Corporation Monochromateur à passage double

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB765441A (en) * 1953-03-24 1957-01-09 William George Fastie Spectroscopic device
US2868063A (en) * 1957-05-16 1959-01-13 Leeds & Northrup Co Adjustable mirror support in successive dispersion monochromator
US6166805A (en) * 1998-07-13 2000-12-26 Ando Electric Co., Ltd. Double pass monochromator
US6061129A (en) * 1999-01-22 2000-05-09 Cymer, Inc. Compact high resolution grating spectrometer
US20020135879A1 (en) * 2001-02-20 2002-09-26 Valdimir Pogrebinsky Super high resolution optical resonator
WO2015018790A1 (fr) * 2013-08-06 2015-02-12 Commissariat à l'énergie atomique et aux énergies alternatives Spectrometre a plusieurs reseaux de diffraction.

Also Published As

Publication number Publication date
DE112014007078A5 (de) 2017-08-17
DE112014007078B4 (de) 2022-01-20

Similar Documents

Publication Publication Date Title
EP1783468B1 (fr) Procédé d'analyse de spectres d'échelles
EP1754032B1 (fr) Spectrometre-echelle a mise en valeur amelioree du detecteur par l'utilisation de deux ensembles spectrometres
DE102009003413B4 (de) Echelle-Spektrometeranordnung mit interner Vordispersion
EP2516975B1 (fr) Appareil spectrometrique
DE10205142B4 (de) Anordnung und Verfahren zur Wellenlängenkalibration bei einem Echelle-Spektrometer
DE102015100395A1 (de) Spektrometer und Fluid-Analysesystem
EP0442596B1 (fr) Polychromateur échelle
EP2158460B1 (fr) Système de spectromètre
DE3614639A1 (de) Abbildendes spektrometer
DE102017130772A1 (de) Spektrometeranordnung, Verfahren zur Erzeugung eines zweidimensionalen Spektrums mittels einer solchen
DE19961908A1 (de) Hochauflösendes Littrow-Spektrometer und Verfahren zur quasi-simultanen Bestimmung einer Wellenlänge und eines Linienprofils
DE102015108818B4 (de) Anordnung zur Spektroskopie und Verfahren zur Herstellung der Anordnung
WO2016101984A1 (fr) Spectromètre à grille présentant une résolution améliorée
DE19523140A1 (de) Mehrkanal-Spektrometer mit Zeilensensor
DE102019113478A1 (de) Spektrometeranordnung
DE102015109340A1 (de) Spektrometer und Analysevorrichtung
DE102022110651B4 (de) Kompaktes optisches Spektrometer
DE102014108138B4 (de) Spektralsensor zur spektralen Analyse einfallenden Lichts
DE102019211665B4 (de) Verfahren zur Ermittlung eines Gesamtspektrums einer Probe und Verfahren zur Aufnahme eines Gesamtspektrums einer Probe mittels eines Fourier-Transform-Spektrometers
DE112014007080B4 (de) Gitterspektrometer mit umschaltbarem Lichtweg
DE102015107942A1 (de) Spektrometer und Gasanalysator
DE102014211240A1 (de) Spektrometrisches Messinstrument und Verfahren zur Kopplung spektrometrischer Messinstrumente
DE102008054733A1 (de) Spektrometer mit mehreren Gittern
DE2555559A1 (de) Verfahren zur erzeugung optischer abbildungen
DD148254A1 (de) Optische anordnung fuer gekreuzte dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14816304

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014007078

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112014007078

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14816304

Country of ref document: EP

Kind code of ref document: A1