WO2016101416A1 - 光学梳状滤波器 - Google Patents

光学梳状滤波器 Download PDF

Info

Publication number
WO2016101416A1
WO2016101416A1 PCT/CN2015/074287 CN2015074287W WO2016101416A1 WO 2016101416 A1 WO2016101416 A1 WO 2016101416A1 CN 2015074287 W CN2015074287 W CN 2015074287W WO 2016101416 A1 WO2016101416 A1 WO 2016101416A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
transparent solid
solid block
film layer
comb filter
Prior art date
Application number
PCT/CN2015/074287
Other languages
English (en)
French (fr)
Inventor
黄曙亮
华一敏
李连城
Original Assignee
昂纳信息技术(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昂纳信息技术(深圳)有限公司 filed Critical 昂纳信息技术(深圳)有限公司
Priority to EP15871494.9A priority Critical patent/EP3153900A4/en
Priority to US15/303,524 priority patent/US10281650B2/en
Publication of WO2016101416A1 publication Critical patent/WO2016101416A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29358Multiple beam interferometer external to a light guide, e.g. Fabry-Pérot, etalon, VIPA plate, OTDL plate, continuous interferometer, parallel plate resonator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29335Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/288Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/421Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical component consisting of a short length of fibre, e.g. fibre stub
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • G01B9/02008Two or more frequencies or sources used for interferometric measurement by using a frequency comb
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/284Interference filters of etalon type comprising a resonant cavity other than a thin solid film, e.g. gas, air, solid plates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29349Michelson or Michelson/Gires-Tournois configuration, i.e. based on splitting and interferometrically combining relatively delayed signals at a single beamsplitter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/54Optical pulse train (comb) synthesizer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/56Frequency comb synthesizer

Definitions

  • the present invention relates to the field of optical communication devices, and more particularly to improvements in GT cavity interference filters that filter optical signals.
  • Wavelength division multiplexing (WDM) technology is widely used in order to meet the demand for broadband communication in a short time and in a low-cost, high-quality system.
  • the existing optical comb filter divides one multi-wavelength optical signal into two paths, one path includes an odd-numbered path wavelength, and the other path includes an even-numbered path wavelength, and the channel interval is doubled.
  • the MGTI comb filter is widely used due to its low cost and mature process.
  • the MGTI type optical comb filter usually adopts a GT cavity structure to achieve flattening, but the channel bandwidth is small and the bandwidth utilization rate is low.
  • the invention provides an optical comb filter with a rectangular shape of insertion loss and high bandwidth utilization.
  • the present invention provides an optical comb filter including an input and output collimator And an output collimator, a beam splitter, a first GT resonant cavity, a second GT resonant cavity, and a third GT resonant cavity
  • the first GT resonant cavity comprises a transparent solid block coated with a reflective film layer and a spacer, wherein the transparent solid block a through hole is disposed, and the transparent solid block forms a cavity with the spacer
  • the second GT resonant cavity comprises a transparent solid block coated with a reflective film layer, a reflective film layer plated on the surface of the beam splitter, and a spacer, wherein the transparent solid block a through hole is disposed, and the transparent solid block, the beam splitter and the spacer form a cavity
  • the third GT resonant cavity comprises a transparent solid block coated with a reflective film layer, a reflective film layer plated on the other surface of the transparent solid block, and a space And a through hole is formed in the transparent
  • a preferred embodiment is that a film of 50:50 split ratio is plated on the spectroscope.
  • the reflective film layer of the first GT cavity is a high reflective layer
  • the reflective film layer is a partially reflective film layer
  • the film layers of the second GT chamber are both anti-reflection coating layers.
  • the film layer of the third GT cavity is a highly reflective film layer, and the film layer is a partially reflective film layer.
  • the input and output collimator is set as a fiber collimator.
  • the output collimator is set as a fiber collimator.
  • a preferred embodiment is that the optical path of the cavity included in the third GT cavity is the same as the optical path of the cavity included in the first GT cavity, and is twice the optical path length of the cavity included in the second GT cavity.
  • a preferred embodiment is: when the channel spacing is selected to be 100 GHz, the optical path of the cavity included in the third GT cavity and the cavity of the cavity included in the first GT cavity are 3 mm, and the cavity light included in the second GT cavity The process is 1.5mm.
  • the optical comb filter embodying the invention has the following beneficial effects: 1.
  • the transparent solid block and the transparent fixing block have the same material and thickness, and realize temperature compensation; 2. It is convenient to supplement and release gas through the through hole and the cavity. Quickly adjust the pressure in the resonant cavity to achieve the purpose of adjusting the optical path; 3.
  • the second GT resonant cavity and the third GT resonant cavity form a composite GT cavity structure, realize the rectangular shape of the insertion loss curve, and improve the bandwidth utilization.
  • Fig. 1 is a schematic view showing the overall structure of a comb filter of the present invention.
  • the present invention provides an optical filter, including
  • a beam splitter 10 the spectroscope 10 is made of quartz or other optical glass as a substrate, and a film of 50:50 split ratio is plated on the substrate;
  • the first GT resonator 20 includes transparent solid blocks 201, 202 and spacers 211 and 212 for separating the transparent solid blocks 201 and 202, wherein the transparent solid blocks 201, 202 and the spacers 211, 212 are formed empty Cavity 221.
  • the transparent solid block 202 is provided with a through hole 202a.
  • the through hole 202a communicates with the cavity 221, and the cavity 221 is supplemented or released by the through hole 202a to control the gas pressure of the cavity 221.
  • the opposite surfaces of the transparent solid blocks 201 and 202 are plated with film layers 201f and 202f, the film layer 201f is a partially reflective film layer, and the film layer 202f is a high reflective film layer.
  • the transparent solid blocks 201, 202 are, for example, glass blocks.
  • the first GT chamber 20 is placed on the side of the reflected light of the beam splitter 10.
  • the second GT resonator 30 includes a transparent solid block 301 and spacers 311 and 312 for partitioning the transparent solid block 301 and the beam splitter 10, wherein the transparent solid block 301 and the spacers 311, 312 form a cavity 321 . And the optical path of the cavity 321 is 1/2 of the optical path of the cavity 212.
  • the transparent solid block 301 is provided with a through hole 301a, and the through hole 301a communicates with the cavity 321, and the cavity 321 is supplemented or released by the through hole 301a to control the gas pressure of the cavity 321.
  • the surface of the optical splitter 10 and the transparent solid block 301 are coated with the film layers 100f and 301f, and the film layers 100f and 301f are both antireflection film layers.
  • the transparent solid block 301 is, for example, a glass block. And the material and thickness of the transparent solid block 301 and the transparent solid block 201 are the same.
  • the second GT chamber 30 is placed on one side of the transmitted light of the spectroscope 10.
  • the third GT resonator 40 includes transparent solid blocks 301, 402 and spacers 411 and 412 for separating the transparent solid blocks 301 and 402, wherein the transparent solid blocks 301, 402 and the spacers 411, 412 are formed empty Cavity 421.
  • the optical path of the cavity 421 is the same as the optical path of the cavity 212, that is, twice the optical path of the cavity 312.
  • the transparent solid block 402 is provided with a through hole 402a.
  • the through hole 402a communicates with the cavity 421, and the cavity 421 is supplemented or released by the through hole 402a to control the gas pressure of the cavity 421.
  • the opposite surfaces of the transparent solid blocks 301 and 402 are plated with film layers 401f and 402f, and the film layer 401f is a partially reflective film layer, and the film layer 402f is a highly reflective film layer.
  • the transparent solid block 301 and the transparent solid block 301 of the second GT cavity 30 are the same transparent solid block.
  • the transparent solid block 402 is, for example, a glass block.
  • the third GT chamber 40 is placed behind the second GT chamber 30.
  • the input/output collimator 50 is disposed on one side of the spectroscope 10, and collimates the optical signal of the input optical path, and then inputs the optical signal into the optical splitter 10, or the optical splitter
  • the reflected light signal is collimated to output an optical signal of an odd-numbered wavelength, and the input-output collimator 50 employs a fiber collimator.
  • the input/output collimator 60 is disposed on the other side of the spectroscope 10, and after collimating the optical signal of the output optical path, outputting an optical signal of an even-numbered wavelength,
  • the output collimator 60 employs a fiber collimator.
  • the optical path of the cavity (421) included in the third GT cavity (40) and the cavity (212) included in the first GT cavity (20) may be selected to be 3 mm, second.
  • the cavity (312) included in the GT cavity (30) may have an optical path of 1.5 mm.
  • the optical comb filter embodying the present invention has the following beneficial effects: 1.
  • the material of the transparent solid block 201 and the transparent fixing block 301 is the same as the thickness, and the temperature compensation is realized; 2.
  • the cavity 221 is passed through the through holes 201a, 301a and 402a. , 321, 421 to supplement and release the gas, convenient and quick adjustment of the pressure in the resonant cavity; 3.
  • the second GT resonant cavity 30 and the third GT resonant cavity 40 constitute a composite GT cavity structure, realize the matrix of the insertion loss curve, improve the bandwidth Utilization rate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)

Abstract

一种光学梳状滤波器,包括输入输出准直器(50)、输出准直器(60)、分光镜(10)、第一、二、三GT谐振腔(20、30、40),GT谐振腔包括镀有膜层的透明固体块以及间隔部,其中一透明固体块上设置通孔,且透明固体块与间隔部形成一空腔;实现插损曲线矩型化、带宽利用率高。

Description

光学梳状滤波器 技术领域
本发明涉及光通讯器件技术领域,特别是涉及对光信号进行滤波的GT腔干涉型滤波器的改进。
背景技术
随着信息通信的迅猛发展,语音、图像、数据的信息交流的日益增加。尤其是因特网的广泛应用,人们对宽带通信提出了更高的要求。为了在尽可能短的时间内,能够以低成本、高质量的系统满则人们对宽带通信的需求,波分复用(WDM)技术被广泛应用。
提高光纤传输容量的另一途径是进一步减小信道间隔。目前,根据国际通信联盟(ITU)的规定,信道的间隔都在100Hz或200Hz,若想要对原系统进行低价扩容,人们首选光学梳状滤波器,因为它可以再不改变原有设备和系统的基础上,通过改变信道间隔的方法来进行。现有光学梳状滤波器,是将一路多波长光信号分成两路,一路包括奇数路波长,另一路包含偶数路波长,信道间隔变为原来的两倍。目前, MGTI型梳状滤波器由于其成本低,工艺成熟而得到广泛应用。而该种MGTI型的光学梳状滤波器通常采用GT腔结构实现平顶化,但通道带宽小,带宽利用率较低。
技术问题
本发明提供一种插损曲线矩型化、带宽利用率高的光学梳状滤波器。
技术解决方案
为了实现所述目的,本发明提供一种光学梳状滤波器,包括输入输出准直器 、输出准直器、分光镜、第一GT谐振腔、第二GT谐振腔、第三GT谐振腔,第一GT谐振腔包括镀有反射膜层的透明固体块以及间隔部,其中透明固体块上设置通孔,且透明固体块与间隔部形成一空腔;第二GT谐振腔包括镀有反射膜层的透明固体块、镀制在分光器表面的反射膜层以及间隔部,其中透明固体块上设置通孔,且透明固体块、分光器与间隔部形成一空腔;第三GT谐振腔包括镀有反射膜层的透明固体块、镀制在透明固体块另一表面的反射膜层以及间隔部,其中透明固体块上设置通孔,且透明固体块与间隔部形成一空腔。
其中,优选实施方式为:分光器上镀制50:50分光比的薄膜。
其中,优选实施方式为:第一GT腔的反射膜层为高反膜层,反射膜层为部分反射膜层。
其中,优选实施方式为:第二GT腔的膜层均为增透膜层。
其中,优选实施方式为:第三GT腔的膜层为高反射膜层,膜层为部分反射膜层。
其中,优选实施方式为:输入输出准直器设置为光纤准直器。
其中,优选实施方式为:输出准直器设置为光纤准直器。
其中,优选实施方式为:第三GT腔包括的空腔的光程与第一GT腔包括的空腔的光程相同,且同为第二GT腔包括的空腔光程的两倍。
其中,优选实施方式为:当选择信道间隔为100GHz时,第三GT腔包括的空腔的光程与第一GT腔包括的空腔的光程为3mm,第二GT腔包括的空腔光程为1.5mm。
有益效果
实施本发明的光学梳状滤波器,具有以下有益效果:1.透明固体块和透明固定块的材料与厚度相同,实现温度补偿;2.通过通孔和对空腔进行补充和释放气体,方便快捷的调节谐振腔内的压强,以达到调节光程的目的;3.第二GT谐振腔和第三GT谐振腔组成复合GT腔结构,实现插损曲线矩型化,提高带宽利用率。
附图说明
下面结合附图和实施例对本发明的结构进一步说明。
图1为本发明的梳状滤波器的整体结构示意图。
本发明的最佳实施方式
下面结合附图对本发明具有低色散的光学梳状滤波器的工作原理做进一步说明。
如图1所示,本发明提供一种光学滤波器,包括
(1)分光器10,所述分光器10采用石英或其它光学玻璃作基底,并在基底上镀制50:50分光比的薄膜;
(2)第一GT谐振腔20,包括透明固体块201、202以及用于隔开透明固体块201和202的间隔部211和212,其中透明固体块201、202和间隔部211、212形成空腔221。
其中,透明固体块202上设置通孔202a,该通孔202a连通空腔221,通过通孔202a对空腔221进行补充或释放气体,以控制空腔221的气体压强。
其中,透明固体块201、202相对的表面上均镀有膜层201f和202f,膜层201f为部分反射膜层,膜层202f为高反膜层。透明固体块201、202例如为玻璃块。
第一GT腔20置于分光器10的反射光的一侧。
(3)第二GT谐振腔30,包括透明固体块301以及用于隔开透明固体块301和分光器10的间隔部311和312,其中透明固体块301和间隔部311、312形成空腔321。且空腔321的光程为空腔212光程的1/2。
其中,透明固体块301上设置通孔301a,该通孔301a连通空腔321,通过通孔301a对空腔321进行补充或释放气体,以控制空腔321的气体压强。
其中,分光器10和透明固体块301相对的表面上均镀有膜层100f和301f,其膜层100f和301f均为增透膜层。透明固体块301例如为玻璃块。且透明固体块301与透明固体块201的材料和厚度均相同。
第二GT腔30置于分光器10的透射光的一侧。
(4)第三GT谐振腔40,包括透明固体块301、402以及用于隔开透明固体块301和402的间隔部411和412,其中透明固体块301、402和间隔部411、412形成空腔421。且空腔421的光程与空腔212光程相同,即同为空腔312光程的两倍。
其中,透明固体块402上设置通孔402a,该通孔402a连通空腔421,通过通孔402a对空腔421进行补充或释放气体,以控制空腔421的气体压强。
其中,透明固体块301、402相对的表面上均镀有膜层401f和402f,其膜层401f为部分反射膜层,膜层402f为高反射膜层。且透明固体块301与第二GT腔30的透明固体块301为同一透明固体块。透明固体块402例如为玻璃块。
第三GT腔40置于第二GT腔30的后面。
(5)输入输出准直器50,所述输入输出准直器50设置于所述分光器10的一侧,对输入光路的光信号进行准直后输入至分光器10中,或者对分光器10反射回的光信号进行准直后输出奇数路波长的光信号,所述输入输出准直器50采用光纤准直器。
(6)输出准直器60,所述输入输出准直器60设置于所述分光器10的另一侧,对输出光路的光信号进行准直后,输出偶数路波长的光信号,所述输出准直器60采用光纤准直器。
当选择信道间隔为100GHz时,第三GT腔(40)包括的空腔(421)的光程与第一GT腔(20)包括的空腔(212)的光程可选择为3mm,第二GT腔(30)包括的空腔(312)光程可选择为1.5mm。
实施本发明的光学梳状滤波器,具有以下有益效果:1.透明固体块201和透明固定块301的材料与厚度相同,实现温度补偿;2.通过通孔201a、301a和402a对空腔221、321、421进行补充和释放气体,方便快捷的调节谐振腔内的压强;3.第二GT谐振腔30和第三GT谐振腔40组成复合GT腔结构,实现插损曲线矩阵化,提高带宽利用率。
以上所述者,仅为本发明最佳实施例而已,并非用于限制本发明的范围,凡依本发明申请专利范围所作的等效变化或修饰,皆为本发明所涵盖。
本发明的实施方式
工业实用性
序列表自由内容

Claims (9)

  1. 一种光学梳状滤波器,包括输入输出准直器(50 ) 、输出准直器(60)、分光镜(10)、第一GT谐振腔(20)、第二GT谐振腔(30)、第三GT谐振腔(40),其特征在于:第一GT谐振腔(20)包括镀有反射膜层(201f、 202f)的透明固体块(201、202)以及间隔部(211、212),其中透明固体块(202)上设置通孔(202a),且透明固体块(201、202)与间隔部(211、212)形成一空腔(221);第二GT谐振腔(30)包括镀有增透膜层(301f)的透明固体块(301)、镀制在分光器(10)表面的增透膜层(100f)以及间隔部(311、312),其中透明固体块(301)上设置通孔(301a),且透明固体块(301)、分光器10与间隔部(311、312)形成一空腔(321);第三GT谐振腔(40)包括镀有反射膜层(402f)的透明固体块(402)、镀制在透明固体块(301)另一表面的反射膜层(401f)以及间隔部(411、412),其中透明固体块(402)上设置通孔(402a),且透明固体块(301、402)与间隔部(411、412)形成一空腔(421)。
  2. 如权利要求 1 所述光学梳状滤波器,其特征在于:第一GT腔(20)的反射膜层(202f)为高反膜层,反射膜层(201f)为部分反射膜层。
  3. 如权利要求2所述光学梳状滤波器,其特征在于:第二GT腔(30)的膜层(100f、301f)均为增透膜层。
  4. 如权利要求3所述光学梳状滤波器,其特征在于:第三GT腔(40)的膜层(402f)为高反射膜层,膜层(401f)为部分反射膜层。
  5. 如权利要求1所述光学梳状滤波器,其特征在于:分光器上镀制50:50分光比的薄膜。
  6. 如权利要求1所述光学梳状滤波器,其特征在于:输入输出准直器设置为光纤准直器。
  7. 如权利要求6所述光学梳状滤波器,其特征在于:输出准直器设置为光纤准直器。
  8. 如权利要求 1 所述光学梳状滤波器,其特征在于:第三GT腔(40)包括的空腔(421)的光程与第一GT腔(20)包括的空腔(212)的光程相同,且同为第二GT腔(30)包括的空腔(312)光程的两倍。
  9. 如权利要求8所述光学梳状滤波器,其特征在于:当选择信道间隔为100GHz时,第三GT腔(40)包括的空腔(421)的光程与第一GT腔(20)包括的空腔(212)的光程为3mm,第二GT腔(30)包括的空腔(312)光程为1.5mm。
PCT/CN2015/074287 2014-12-26 2015-03-16 光学梳状滤波器 WO2016101416A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15871494.9A EP3153900A4 (en) 2014-12-26 2015-03-16 Optical comb filter
US15/303,524 US10281650B2 (en) 2014-12-26 2015-03-16 Optical comb filter having first, second and third GT resonant cavities

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410828912.8 2014-12-26
CN201410828912.8A CN104459891A (zh) 2014-12-26 2014-12-26 光学梳状滤波器

Publications (1)

Publication Number Publication Date
WO2016101416A1 true WO2016101416A1 (zh) 2016-06-30

Family

ID=52906226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074287 WO2016101416A1 (zh) 2014-12-26 2015-03-16 光学梳状滤波器

Country Status (4)

Country Link
US (1) US10281650B2 (zh)
EP (1) EP3153900A4 (zh)
CN (1) CN104459891A (zh)
WO (1) WO2016101416A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11546063B1 (en) * 2022-02-23 2023-01-03 King Fahd University Of Petroleum And Minerals Laser light source and optical network system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030107811A1 (en) * 2001-12-07 2003-06-12 Janssen Adrian P. Optical filters
CN2583691Y (zh) * 2002-07-02 2003-10-29 中国科学院长春光学精密机械与物理研究所 光学群组滤波器
CN2591651Y (zh) * 2002-07-02 2003-12-10 中国科学院长春光学精密机械与物理研究所 光学梳状滤波器
CN101943772A (zh) * 2010-08-26 2011-01-12 华中科技大学 G-t谐振腔与双折射元件结合的可调谐光梳状滤波器
CN104166243A (zh) * 2014-08-20 2014-11-26 湖北捷讯光电有限公司 一种不等带宽光学梳状滤波器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909511B2 (en) * 2001-02-27 2005-06-21 Jds Uniphase Corporation Athermal interferometer
US6386718B1 (en) * 2001-03-02 2002-05-14 Charles X. W. Qian Phase and free spectra range adjustable optical reflectors for dense wavelength division multiplexing applications
US6552856B1 (en) * 2001-09-27 2003-04-22 Fibera, Inc. Multi-channel wavelength locker using gas tuning
US6867868B1 (en) * 2002-01-08 2005-03-15 Avanex Corporation Method and apparatus for tunable interferometer utilizing variable air density
US6574049B1 (en) * 2002-05-14 2003-06-03 Nexfon Corporation Optical interleaver and de-interleaver
US6804063B2 (en) * 2002-10-25 2004-10-12 Research Electro-Optics, Inc. Optical interference filter having parallel phase control elements
US20050270544A1 (en) * 2004-06-04 2005-12-08 Optoplex Corporation Variable dispersion step-phase interferometers
US7991300B2 (en) * 2007-11-05 2011-08-02 Opnext Subsystems, Inc. Optical receiver having bandwidth control for intersymbol interference compensation
CN203519872U (zh) * 2013-11-08 2014-04-02 福州高意通讯有限公司 一种光交叉波分复用器的复用结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030107811A1 (en) * 2001-12-07 2003-06-12 Janssen Adrian P. Optical filters
CN2583691Y (zh) * 2002-07-02 2003-10-29 中国科学院长春光学精密机械与物理研究所 光学群组滤波器
CN2591651Y (zh) * 2002-07-02 2003-12-10 中国科学院长春光学精密机械与物理研究所 光学梳状滤波器
CN101943772A (zh) * 2010-08-26 2011-01-12 华中科技大学 G-t谐振腔与双折射元件结合的可调谐光梳状滤波器
CN104166243A (zh) * 2014-08-20 2014-11-26 湖北捷讯光电有限公司 一种不等带宽光学梳状滤波器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153900A4 *

Also Published As

Publication number Publication date
US20170038535A1 (en) 2017-02-09
EP3153900A4 (en) 2017-06-14
US10281650B2 (en) 2019-05-07
CN104459891A (zh) 2015-03-25
EP3153900A1 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
US6130971A (en) Fiber optic dense wavelength division multiplexer with a phase differential method of wavelength separation utilizing a polarization beam splitter and a nonlinear interferometer
CN110012368A (zh) 一种兼容波分复用信号的硅基集成化片上多模光交换系统
JP2007525868A (ja) 量子ネットワークアドレッシング方法及び量子ネットワークルーター
CN109870767A (zh) 一种光栅型单纤三向复用器
CA2372344C (en) Planar lightwave wavelength blocker
CN104350400A (zh) 阵列波导光栅、具备该阵列波导光栅的光模块以及光通信系统
KR20240124396A (ko) 광 신호 송신 장치 및 광 송신 시스템
WO2016101416A1 (zh) 光学梳状滤波器
WO2022134663A1 (zh) 一种多芯光纤、传输系统和多芯光纤扩容方法
WO2012122728A1 (zh) 一种偏振光干涉型的梳状滤波器
CN211791537U (zh) 一种模式转换型少模复用器
JP2001156716A5 (zh)
CN102841406B (zh) 一种光学交错滤波设备
CN105954835B (zh) 一种密集多波长合波的光学模块
JP5475728B2 (ja) 光フィルター
JP4916489B2 (ja) 光回路
CN211426855U (zh) 一种5g应用插头式波分复用器
CN203732814U (zh) 一种具有低色散的光学梳状滤波器
CN207396790U (zh) 一种波形可调的宽带梳状滤波器
JPH0915436A (ja) 光導波路構造並びに光分波器,光合波器,光選別器及び光合波・分波器
CN2583691Y (zh) 光学群组滤波器
JP2001142102A (ja) 光可変波長バッファ
CA2371272C (en) Wavelength selective cross-connect (wsc)
CN1169317C (zh) 光学群组滤波器
CN201965257U (zh) 一种高隔离度波分复用器及光网络

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15303524

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015871494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015871494

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE