WO2016101296A1 - 画面显示的方法和装置 - Google Patents

画面显示的方法和装置 Download PDF

Info

Publication number
WO2016101296A1
WO2016101296A1 PCT/CN2014/095406 CN2014095406W WO2016101296A1 WO 2016101296 A1 WO2016101296 A1 WO 2016101296A1 CN 2014095406 W CN2014095406 W CN 2014095406W WO 2016101296 A1 WO2016101296 A1 WO 2016101296A1
Authority
WO
WIPO (PCT)
Prior art keywords
color gamut
pixel
range
screen
coordinates
Prior art date
Application number
PCT/CN2014/095406
Other languages
English (en)
French (fr)
Inventor
曹芝勇
曾庆忠
Original Assignee
深圳Tcl数字技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳Tcl数字技术有限公司 filed Critical 深圳Tcl数字技术有限公司
Publication of WO2016101296A1 publication Critical patent/WO2016101296A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours

Definitions

  • the present invention relates to the field of image processing technologies, and in particular, to a method and apparatus for displaying a picture.
  • the picture display device can support multiple color space display modes (such as standard color space, wide color space, and other color space), but only one color space mode can be selected when displaying the picture.
  • the corresponding color gamut coordinates (Xc, Yc, Zc) are displayed according to the empirical training value for each pixel in the screen.
  • the manner of displaying the picture is as follows: since the color gamut coordinate can only be fixed according to the empirical training value, once the user selects a color gamut space mode, the selected color gamut space mode is used to display the picture until the picture is displayed. The user reselects other gamut space modes.
  • the gamut space modes applicable to different pictures may be different, even the gamut space modes applicable to different pixels in the same picture may be different. Therefore, when playing the display dynamic picture in the existing way, some pictures cannot be correctly The color is restored, the color of the picture is not real enough, and the visual effect is poor.
  • the main object of the present invention is to solve the technical problem that some pictures cannot correctly restore color, the picture color is not real, and the visual effect is poor when playing and displaying a dynamic picture in the prior art.
  • the present invention provides a method for displaying a picture, calculating coordinates of each pixel of a current picture, and determining and marking a color gamut range of each of the pixel points;
  • the corresponding pixel point is displayed through the corresponding color gamut space when the current picture is displayed.
  • the pixel point coordinates are coordinates of a pixel point in a CIE-XYZ chromaticity diagram
  • the calculating pixel coordinates of the current picture specifically includes:
  • the color gamut range comprises: a BT.709 color gamut range, a screen color gamut range, and a screen color gamut triangle range.
  • the determining and marking the color gamut range of each of the pixel coordinates specifically includes:
  • Step 1 Calculate the gamut coordinate range of the screen and the BT.709 gamut coordinate range
  • Step 2 Obtain an unmarked color gamut pixel from the pixel of the current picture, and determine whether the acquired pixel coordinate is in the BT.709 color gamut coordinate range; if yes, go to step 3; if not, go to Step four;
  • Step 3 The pixel point obtained by the mark is in the BT.709 color gamut range, and it is determined whether there is a pixel point of the unmarked color gamut in the pixel of the current picture, and if yes, return to step 2;
  • Step 4 determining whether the coordinates of the acquired pixel points are within the coordinate range of the screen color gamut; if yes, proceeding to step 5; if not, proceeding to step 6;
  • Step 5 The pixel point obtained by the mark is in the range of the screen color gamut, and it is determined whether there is a pixel point of the unmarked color gamut in the pixel of the current picture, and if yes, return to step 2;
  • Step 6 In the chromaticity coordinate system of CIE-XYZ, the acquired pixel points are connected with the center point to form a connecting line, and the coordinates of the intersection point of the recording connecting line and the horizontal cross-line of the screen color gamut are the mapping of the acquired pixel points. Coordinates, and marks the acquired pixel points in the range of the screen color gamut triangle, and judges whether there are pixels in the unmarked gamut range of the pixels of the current picture; if yes, returns to step 2.
  • the displaying, according to the color gamut range of each of the pixel points, the corresponding pixel point by using the corresponding color gamut space when displaying the current picture comprises:
  • the pixel points whose coordinates are in the BT.709 color gamut range are displayed through the BT.709 color gamut space; the pixels whose coordinates are in the screen color gamut range are displayed through the screen color gamut space; the coordinates are displayed through the screen color gamut triangle space A pixel that is in the range of the triangle of the screen gamut.
  • the method for displaying the picture the pixel point in the triangle region of the screen color gamut is displayed in the range of the triangle of the screen color gamut, specifically:
  • the pixel points in the range of the screen gamut triangle are displayed in the screen gamut triangle space with the mapping coordinates of the pixel points in the range of the screen gamut triangle.
  • the present invention further provides an apparatus for displaying a screen, and the apparatus for displaying the screen includes:
  • a calculation module configured to calculate coordinates of each pixel of the current picture, determine and mark a color gamut range of each of the pixel points;
  • a display module configured to display, according to the color gamut range of each of the pixel points, a corresponding pixel point through a corresponding color gamut space when displaying the current picture.
  • the pixel point coordinates are coordinates of a pixel point in a CIE-XYZ chromaticity diagram
  • the calculation module includes:
  • a first calculating unit configured to acquire RGB values of each pixel of the current picture, calculate coordinates of each pixel of the current picture in a CIE-RGB chromaticity diagram according to RGB values of each pixel point, and according to each The RGB values of the pixels and the coordinates of the CIE-RGB chromaticity diagram are used to calculate the coordinates of each pixel in the CIE-XYZ chromaticity diagram.
  • the color gamut range comprises: a BT.709 color gamut range, a screen color gamut range, and a screen color gamut triangle range.
  • the calculating module further includes:
  • a second calculating unit configured to calculate a screen color gamut coordinate range and a BT.709 color gamut coordinate range; obtain an unmarked color gamut pixel from the pixel of the current picture, and determine whether the acquired pixel coordinate is in BT .709 color gamut coordinate range; when the acquired pixel coordinate is in the BT.709 color gamut coordinate range, the pixel obtained by the mark is in the BT.709 color gamut; when the acquired pixel coordinate is not in the BT.709 color gamut
  • the coordinate range determines whether the acquired pixel coordinate is in the screen color gamut coordinate range; if the acquired pixel coordinate is in the screen color gamut coordinate range, the pixel obtained by the marker is in the screen gamut range, if obtained
  • the pixel coordinates are not in the screen color gamut coordinate range, then in the CIE-XYZ chromaticity coordinate system, the acquired pixel points are connected with the center point to form a connecting line, and the recording connecting line intersects the screen color gamut triangle edge line.
  • a loop control unit configured to determine, in the second computing unit, that the acquired pixel point is in the BT.709 color gamut range, in the screen color gamut range, or in the screen color gamut triangle range, determining whether there is a pixel in the current screen pixel point Marking the pixels of the gamut range, and if so, returning to the second computing unit to perform the corresponding operation until the pixel points of the current picture have been marked with the gamut range.
  • the display module is specifically configured to display, by using a BT.709 color gamut space, a pixel point whose coordinate is in the BT.709 color gamut range when the current picture is displayed; and display the coordinate in the screen color gamut area through the screen color space display. Pixels; pixels in the triangle of the screen gamut are displayed through the gamut of the screen gamut.
  • the display module has pixel points that are also used to display the range of the color gamut in the screen color gamut in the screen color gamut space with the mapping coordinates of the pixel points in the range of the screen color gamut.
  • the method and device for displaying a picture of the present invention by calculating the coordinates of each pixel of the current picture, determining and marking the color gamut range of each pixel point; according to the color gamut range of each pixel point
  • the corresponding pixel points are displayed through the corresponding color gamut space, and the picture color can be correctly restored during the picture display process, so that the picture display is more natural and the high-quality visual effect is realized.
  • FIG. 1 is a flow chart of an embodiment of a method for displaying a screen according to the present invention
  • FIG. 2 is a schematic flow chart of determining and marking a color gamut range of each pixel point coordinate according to the present invention
  • FIG. 3 is a flow chart of an embodiment of a device for displaying a screen according to the present invention.
  • FIG. 4 is a schematic diagram of a refinement function module of the calculation module in FIG. 3;
  • FIG. 5 is a schematic diagram of another refinement function module of the computing module of FIG. 3.
  • FIG. 5 is a schematic diagram of another refinement function module of the computing module of FIG. 3.
  • FIG. 1 is a flowchart of an embodiment of a method for displaying a screen according to the present invention.
  • the method for displaying the screen includes:
  • Step S10 Calculate coordinates of each pixel of the current picture, and determine and mark the color gamut range of each of the pixel points.
  • the pixel point coordinates are coordinates of the pixel point in the CIE-XYZ chromaticity diagram.
  • the calculating pixel point coordinates of the current picture includes: acquiring RGB values of each pixel point of the current picture, and calculating each pixel point of the current picture according to the RGB value of each pixel point in a CIE-RGB chromaticity diagram.
  • the coordinates of each pixel in the CIE-XYZ chromaticity diagram are calculated based on the RGB values of each pixel and the coordinates of the CIE-RGB chromaticity diagram. Specifically, the image attributes of the current picture are first sampled, and the RGB values of each pixel of the current picture are obtained.
  • the current picture has a total of 1280 ⁇ 720 pixels, and the RGB values of the pixels are stored in the array Array[1280 ⁇ 720].
  • each pixel of the current picture is transformed from the CIE-RGB color space to the CIE-XYZ space using the formula (1).
  • x n , y n , z n , x r , y r , z r , x g , y g , z g , x b , y b , z b are all known numbers that can be provided, according to the above formula ( 1) to 5 can find a r , a g , a b .
  • the parameters of the 3 ⁇ 3 transformation matrix A can be obtained as follows:
  • the chromaticity coordinates of each pixel of the current picture are converted from the 1931 CIE-RGB chromaticity system to the 1931 CIE-XYZ chromaticity system using equation (6).
  • the color gamut range in step S10 includes: a BT.709 color gamut range, a screen color gamut range, and a screen color gamut triangle range.
  • FIG. 2 is a schematic flow chart of determining and marking the color gamut range of each pixel point coordinate according to the present invention.
  • the determining and marking the color gamut range of each pixel point coordinate specifically includes:
  • Step S11 calculating a screen color gamut coordinate range and a BT.709 color gamut coordinate range.
  • the specific process of calculating the color gamut coordinate range of the screen in step S11 is as follows: first input the picture test signal, including the full red field signal, the full green field signal, the full blue field signal; find the position of the center point of the screen (P 0 ), for the full red The field, the all green field, and the full blue field signal are respectively displayed, and the chromaticity coordinates (x R , of the center point P 0 of the screen are sequentially measured on the full red field, the whole green field, and the full blue field signal image displayed by the color instrument.
  • the screen color gamut coordinate range is x ⁇ (0.13,0.7); y ⁇ (0.05,0.8), and stored. Screen gamut coordinate range.
  • the specific process of obtaining the BT.709 color gamut coordinate range is as follows: the gamut coordinates of the three primary colors of BT.709 are obtained, and the specific coordinate values are as follows:
  • the BT.709 color gamut coordinate range is: x ⁇ (0.15, 0.66); Y ⁇ (0.07, 0.62) and store the BT.709 gamut coordinate range.
  • Step S12 Obtain a pixel point of the unmarked color gamut from the pixel points of the current picture, and determine whether the acquired pixel point coordinate is in the BT.709 color gamut coordinate range; if yes, go to step S13; if not, go to Step S14.
  • Step S13 The pixel point acquired by the mark is in the BT.709 color gamut range, and it is determined whether there is a pixel point of the unmarked color gamut in the pixel of the current picture, and if yes, the process returns to step S12.
  • Step S14 determining whether the acquired pixel coordinates are in the screen color gamut coordinate range; if yes, proceeding to step S15; if not, proceeding to step S16.
  • Step S15 The pixel point acquired by the mark is in the range of the screen color gamut, and it is determined whether there is a pixel point of the unmarked color gamut in the pixel of the current picture. If yes, the process returns to step S12.
  • Step S16 In the chromaticity coordinate system of CIE_XYZ, the acquired pixel points are connected with the center point to form a connecting line, and the intersection coordinates of the recording connecting line and the screen color gamut triangle edge are the mapping coordinates of the acquired pixel points. And marking the acquired pixel point in the range of the screen color gamut triangle, determining whether there is a pixel point of the unmarked color gamut in the pixel of the current picture; if yes, returning to step S12.
  • Step S20 Display corresponding pixel points through the corresponding color gamut space according to the color gamut range of each pixel point when the current picture is displayed.
  • the step S20 is specifically processed as follows: when the current picture is displayed, the pixel points whose coordinates are in the BT.709 color gamut range are displayed through the BT.709 color space; the display color coordinates are in the screen color gamut through the screen color space.
  • the pixel of the range; the pixel in the triangle of the screen color gamut is displayed through the screen color gamut space.
  • the pixel point in which the coordinates of the triangle in the screen color gamut is further displayed by the screen color gamut triangle space is specifically processed as follows: the screen color gamut is displayed in the map color gamut space with the mapping coordinates of the pixel points in the range of the screen gamut triangle Pixels in the range of triangles.
  • the method embodiment of the above-mentioned screen display determines and marks the color gamut range of each pixel point by calculating the coordinates of each pixel point of the current picture; according to the color gamut range of each pixel point, the current display is displayed.
  • the corresponding pixel points are displayed in the corresponding color gamut space, and the screen color can be correctly restored during the screen display process, so that the screen display is more natural and the high image quality is realized. Visual effect.
  • FIG. 3 is a schematic diagram of functional modules of an apparatus for displaying a screen according to the present invention.
  • the apparatus 100 for displaying a picture includes: a calculation module 110 and a display module 120.
  • the calculation module 110 is configured to calculate coordinates of each pixel of the current picture, and determine and mark a color gamut range of each pixel.
  • the display module 120 is configured to display corresponding pixel points through the corresponding color gamut space according to the color gamut range of each pixel point when the current picture is displayed.
  • FIG. 4 is a schematic diagram of a refinement function module of the calculation module of FIG.
  • the calculation module 110 includes: a first calculation unit 111.
  • the first calculating unit 111 is configured to acquire RGB values of each pixel of the current picture, and calculate coordinates of each pixel of the current picture in the CIE-RGB chromaticity diagram according to the RGB values of each pixel.
  • the coordinates of each pixel in the CIE-XYZ chromaticity diagram are calculated based on the RGB values of each pixel and the coordinates of the CIE-RGB chromaticity diagram.
  • the pixel point coordinates are coordinates of the pixel point in the CIE-XYZ chromaticity diagram.
  • the calculating pixel point coordinates of the current picture includes: acquiring RGB values of each pixel point of the current picture, and calculating each pixel point of the current picture according to the RGB value of each pixel point in a CIE-RGB chromaticity diagram.
  • the coordinates of each pixel in the CIE-XYZ chromaticity diagram are calculated based on the RGB values of each pixel and the coordinates of the CIE-RGB chromaticity diagram. Specifically, the image attributes of the current picture are first sampled, and the RGB values of each pixel of the current picture are obtained.
  • the current picture has a total of 1280 ⁇ 720 pixels, and the RGB values of the pixels are stored in the array Array[1280 ⁇ 720].
  • each pixel of the current picture is transformed from the CIE-RGB color space to the CIE-XYZ space using the formula (1).
  • x n , y n , z n , x r , y r , z r , x g , y g , z g , x b , y b , z b are all known numbers that can be provided, according to the above formula ( 1) to 5 can find a r , a g , a b .
  • the parameters of the 3 ⁇ 3 transformation matrix A can be obtained as follows:
  • the chromaticity coordinates of each pixel of the current picture are converted from the 1931 CIE-RGB chromaticity system to the 1931 CIE-XYZ chromaticity system using equation (6).
  • the color gamut range includes: a BT.709 color gamut range, a screen color gamut range, and a screen color gamut triangle range.
  • FIG. 5 is a schematic diagram of another refinement function module of the computing module of the present invention.
  • the calculation module 110 further includes a second calculation unit 112 and a loop control unit 113.
  • the second calculating unit 112 is configured to calculate a screen color gamut coordinate range and a BT.709 color gamut coordinate range; obtain an unmarked color gamut pixel point from the pixel of the current picture, and determine the acquired pixel.
  • the point coordinate is in the BT.709 color gamut coordinate range; when the acquired pixel coordinate is in the BT.709 color gamut coordinate range, the pixel obtained by the mark is in the BT.709 color gamut; when the acquired pixel coordinate is not in BT.709 color gamut coordinate range, it is determined whether the acquired pixel coordinate is in the screen color gamut coordinate range; if the acquired pixel coordinate is in the screen color gamut coordinate range, the pixel obtained by the mark is in the screen color gamut Range, if the acquired pixel coordinates are not in the screen gamut coordinate range, the acquired pixel points are connected to the center point in the CIE-XYZ chromaticity coordinate system
  • the coordinate of the intersection of the recording connection line and the triangle of the screen color gamut is the mapping coordinate of the acquired pixel point, and marks that the acquired pixel point is in the range of the screen color gamut triangle.
  • the loop control unit 113 is configured to determine, at the second calculating unit 112, that the acquired pixel point is in the BT.709 color gamut range, in the screen color gamut range, or in the screen color gamut triangle range, and determines the pixel point of the current screen. Whether there is a pixel of the unmarked gamut range, if yes, return to call the second calculation unit 112 to perform the corresponding operation until the pixel of the current picture has marked the gamut range.
  • the specific process of calculating the screen color gamut coordinate range by the second calculating unit 112 is as follows: first input a picture test signal, including a full red field signal, a full green field signal, and a full blue field signal; and find a screen center point position (P 0 ) The full red field, the whole green field, and the full blue field signal are respectively displayed, and the chromaticity coordinates of the screen center point P 0 are sequentially measured on the full red field, the whole green field, and the full blue field signal image displayed by the chroma instrument.
  • the screen color gamut coordinate range is x ⁇ (0.13,0.7); y ⁇ (0.05,0.8), and stored. Screen gamut coordinate range.
  • the specific process of obtaining the BT.709 color gamut coordinate range is as follows: the gamut coordinates of the three primary colors of BT.709 are obtained, and the specific coordinate values are as follows:
  • the BT.709 color gamut coordinate range is: x ⁇ (0.15, 0.66); y ⁇ (0.07, 0.62), and the BT.709 gamut coordinate range is stored.
  • mapping coordinates of the pixel points acquired in this embodiment adopt formulas (8) and (9):
  • the display module 120 is specifically configured to display, by using the BT.709 color gamut space, the pixel whose coordinates are in the BT.709 color gamut when displaying the current picture; and display the coordinates in the screen color space through the screen color space.
  • the pixel of the domain range; the pixel whose coordinates are in the range of the color gamut of the screen is displayed through the screen color gamut space.
  • the display module 120 is further configured to display the pixel points in the range of the screen color gamut triangle in the map color gamut space with the mapping coordinates of the pixel points in the range of the screen color gamut.
  • the device embodiment of the above screen display determines and marks the color gamut range of each pixel point by calculating the coordinates of each pixel point of the current picture; according to the color gamut range of each pixel point, the current display is displayed In the screen, the corresponding pixel points are displayed in the corresponding color gamut space, and the screen color can be correctly restored during the screen display process, so that the screen display is more natural and the high-quality visual effect is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Color Image Communication Systems (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Image Processing (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

本发明公开了一种画面显示的方法,所述方法包括:计算当前画面的每个像素点坐标,确定并标记所述每个像素点所处色域范围;根据所述每个像素点所处色域范围,在显示当前画面时通过相应的色域空间显示相应的像素点。本发明还公开了一种画面显示的装置。本发明所提供的画面显示的方法和装置,通过计算当前画面的每个像素点坐标,确定并标记所述每个像素点所处色域范围;根据所述每个像素点所处色域范围,在显示当前画面时通过相应的色域空间显示相应的像素点的方式,在画面显示过程中能够正确还原还画面颜色,使画面显示更为自然,实现了高画质的视觉效果。

Description

画面显示的方法和装置 技术领域
本发明涉及图像处理技术领域,尤其涉及一种画面显示的方法和装置。
背景技术
现有技术中,画面显示装置可以支持多种色域空间显示模式(如标准色域空间、广色域空间,其他色域空间),但显示画面时只能选择一种色域空间模式。其中,针对每一种色域空间显示模式,根据经验训练值固定画面中每个像素点显示时相应的色域坐标(Xc,Yc,Zc)。
现有技术中上述这种画面显示的方式,由于只能根据经验训练值固定色域坐标,用户一旦选择好一种色域空间模式,则一直采用该所选色域空间模式对画面进行显示直到用户重新选择其他色域空间模式。
由于不同画面所适用的色域空间模式可能不同,甚至同一画面中不同像素点所适用的色域空间模式也可能不同,因此采用现有的这种方式播放显示动态画面时,有些画面不能被正确还原颜色,画面颜色不够真实,视觉效果差。
发明内容
本发明的主要目的在于解决现有技术中播放显示动态画面时,有些画面不能正确还原颜色,画面颜色不够真实,视觉效果差的技术问题。
为实现上述目的,本发明提供的一种画面显示的方法,计算当前画面的每个像素点坐标,确定并标记所述每个像素点所处色域范围;
根据所述每个像素点所处色域范围,在显示当前画面时通过相应的色域空间显示相应的像素点。
优选地,所述像素点坐标为像素点在CIE-XYZ色度图中的坐标;
所述计算当前画面的像素点坐标具体包括:
获取所述当前画面的每个像素点的RGB值,根据每个像素点的RGB值 计算当前画面的每个像素点在CIE-RGB色度图的坐标,并根据每个像素点的RGB值以及在CIE-RGB色度图的坐标,计算每个像素点在CIE-XYZ色度图中的坐标。
优选地,所述色域范围包括:BT.709色域范围、屏色域范围、屏色域三角形范围。
优选地,所述确定并标记所述每个像素点坐标所处色域范围具体包括:
步骤一、计算屏色域坐标范围和BT.709色域坐标范围;
步骤二、从当前画面的像素点中获取一个未标记色域范围的像素点,判断所获取的像素点坐标是否处于BT.709色域坐标范围;若是,转入步骤三;若否,转入步骤四;
步骤三、标记所获取的像素点处于BT.709色域范围,判断当前画面的像素点中是否存在未标记色域范围的像素点,若是,返回步骤二;
步骤四、判断所获取的像素点坐标是否处于屏色域坐标范围内;若是,转入步骤五;若否,则转入步骤六;
步骤五、标记所获取的像素点处于屏色域范围,判断当前画面的像素点中是否存在未标记色域范围的像素点,若是,则返回步骤二;
步骤六、在CIE-XYZ的色度坐标系中,将所获取的像素点与中心点进行连接形成连接线,记录连接线与屏色域三角形边线相交的交点坐标为所获取的像素点的映射坐标,并标记所获取的像素点处于屏色域三角形范围,判断当前画面的像素点中是否存在未标记色域范围的像素点;若是,则返回步骤二。
优选地,所述根据所述每个像素点所处色域范围,在显示当前画面时通过相应的色域空间显示相应的像素点具体包括:
在显示当前画面时,通过BT.709色域空间显示坐标处于BT.709色域范围的像素点;通过屏色域空间显示坐标处于屏色域范围的像素点;通过屏色域三角形空间显示坐标处于屏色域三角形范围的像素点。
优选地,所述的画面显示的方法,通过屏色域三角形空间显示坐标处于屏色域三角形范围的像素点具体为:
在屏色域三角形空间中以处于屏色域三角形范围的像素点的映射坐标显示该处于屏色域三角形范围的像素点。
此外,为实现上述目的,本发明还提供一种画面显示的装置,所述画面显示的装置包括:
计算模块,用于计算当前画面的每个像素点坐标,确定并标记所述每个像素点所处色域范围;
显示模块,用于根据所述每个像素点所处色域范围,在显示当前画面时通过相应的色域空间显示相应的像素点。
优选地,所述像素点坐标为像素点在CIE-XYZ色度图中的坐标;
所述计算模块包括:
第一计算单元,用于获取所述当前画面的每个像素点的RGB值,根据每个像素点的RGB值计算当前画面的每个像素点在CIE-RGB色度图的坐标,并根据每个像素点的RGB值以及在CIE-RGB色度图的坐标,计算每个像素点在CIE-XYZ色度图中的坐标。
优选地,所述色域范围包括:BT.709色域范围、屏色域范围、屏色域三角形范围。
优选地,所述计算模块还包括:
第二计算单元,用于计算屏色域坐标范围和BT.709色域坐标范围;从当前画面的像素点中获取一个未标记色域范围的像素点,判断所获取的像素点坐标是否处于BT.709色域坐标范围;当所获取的像素点坐标处于BT.709色域坐标范围,则标记所获取的像素点处于BT.709色域范围;当所获取的像素点坐标未处于BT.709色域坐标范围,则判断所获取的像素点坐标是否处于屏色域坐标范围内;若所获取的像素点坐标处于屏色域坐标范围,则标记所获取的像素点处于屏色域范围,若所获取的像素点坐标未处于屏色域坐标范围,则在CIE-XYZ的色度坐标系中,将所获取的像素点与中心点进行连接形成连接线,记录连接线与屏色域三角形边线相交的交点坐标为所获取的像素点的映射坐标,并标记所获取的像素点处于屏色域三角形范围;
循环控制单元,用于在第二计算单元标记所获取的像素点处于BT.709色域范围、处于屏色域范围、或者处于屏色域三角形范围后,判断当前画面的像素点中是否存在未标记色域范围的像素点,若是,则返回调用所述第二计算单元执行相应的操作,直至当前画面的像素点均已标记色域范围。
优选地,所述显示模块,具体用于在显示当前画面时,通过BT.709色域空间显示坐标处于BT.709色域范围的像素点;通过屏色域空间显示坐标处于屏色域范围的像素点;通过屏色域三角形空间显示坐标处于屏色域三角形范围的像素点。
优选地,所述显示模块,具有还用于在屏色域三角形空间中以处于屏色域三角形范围的像素点的映射坐标显示该处于屏色域三角形范围的像素点。
本发明所提供的画面显示的方法和装置,通过计算当前画面的每个像素点坐标,确定并标记所述每个像素点所处色域范围;根据所述每个像素点所处色域范围,在显示当前画面时通过相应的色域空间显示相应的像素点的方式,在画面显示过程中能够正确还原还画面颜色,使画面显示更为自然,实现了高画质的视觉效果。
附图说明
图1为本发明的画面显示的方法一实施例的流程图;
图2为本发明的确定并标记每个像素点坐标所处色域范围的流程示意图;
图3为本发明的画面显示的装置一实施例的流程图;
图4为图3中计算模块的细化功能模块的示意图;
图5为图3中计算模块的另一细化功能模块的示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种画面显示的方法。参照图1,图1为本发明的画面显示的方法一实施例的流程图。在一实施例中,所述画面显示的方法包括:
步骤S10、计算当前画面的每个像素点坐标,确定并标记所述每个像素点所处色域范围。
本步骤中,所述像素点坐标为像素点在CIE-XYZ色度图中的坐标。其中,所述计算当前画面的像素点坐标包括:获取所述当前画面的每个像素点的RGB值,根据每个像素点的RGB值计算当前画面的每个像素点在CIE-RGB色度图的坐标,并根据每个像素点的RGB值以及在CIE-RGB色度图的坐标,计算每个像素点在CIE-XYZ色度图中的坐标。具体地,首先采样当前画面的图像属性,获取当前画面每个像素点的RGB值,例如当前画面共有1280×720个像素点,将这些像素点的RGB值存入数组Array[1280×720]中,从第一个像素点Array[0]开始累计;根据CIE-RGB色度图的原理,采用公式(1)当前画面的每个像素点从CIE-RGB颜色空间变换到CIE-XYZ空间。
Figure PCTCN2014095406-appb-000001
其中,在所述每个像素点从CIE-RGB颜色空间变换到CIE-XYZ空间时,CIE–XYZ的色度图中的R红色、G绿色和B蓝色的坐标定义如公式(2):
对于红色R:(xr,yr,zr=1-(xr+yr))
对于绿色G:(xg,yg,zg=1-(xg+yg))
对于蓝色B:(xb,yb,zb=1-(xb+yb))    ------(2);
定义白光点n坐标时,有R+G+B=1,从而得公式(3)。
Figure PCTCN2014095406-appb-000002
其中,ar,ag和ab是比例系数。由于在CIE–XYZ的色度图中,像素点D(Xn、Yn、Zn)的坐标被定义为(xn,yn),因此得到如下公式(4)。
Zn=1-(xn+yn)
Figure PCTCN2014095406-appb-000003
Yn=1(对白光)
Figure PCTCN2014095406-appb-000004
因此,上述公式(4)可转换为公式(5)。
Figure PCTCN2014095406-appb-000005
由于xn、yn、zn、xr、yr、zr、xg、yg、zg、xb、yb、zb均为可提供的已知数,因此根据以上公式(1)至5可以求得ar、ag、ab。本实施例以ITU-RBT.709为基准,使用标准白光D65,该标准白光的色度坐标(xD65,yD65)=(0.312713,0.329016);R红色、G绿色、B蓝色的色度坐标如下表1:
表1:
  r g b w
xn 0.640 0.300 0.150 0.3127
yn 0.330 0.600 0.060 0.3290
zn 0.030 0.100 0.790 0.3582
即:
红:xr=0.64,yr=0.33,zr=1-xr-yr=0.03
绿:xg=0.30,yg=0.60,zg=1-xg-yg=0.10
蓝:xb=0.15,yb=0.06,zb=1-xb-yr=0.79
根据公式(5)可求得出3×3转换矩阵A的参数如下:
0.412  0.358  0.180
0.213  0.715  0.072
0.019  0.119  0.950
将当前画面的每个像素点的色度坐标采用公式(6)从1931CIE-RGB色度系统转换成1931CIE-XYZ色度系统。
Figure PCTCN2014095406-appb-000006
最终根据公式(7)计算当前画面的每个像素点在CIE-XYZ色度图中的坐标(xc,yc)。
Figure PCTCN2014095406-appb-000007
Figure PCTCN2014095406-appb-000008
Figure PCTCN2014095406-appb-000009
另外,步骤S10中所述色域范围包括:BT.709色域范围、屏色域范围、屏色域三角形范围。参见图2,图2是本发明的确定并标记每个像素点坐标所处色域范围的流程示意图。所述确定并标记每个像素点坐标所处色域范围具体包括:
步骤S11、计算屏色域坐标范围和BT.709色域坐标范围。
本步骤S11计算屏色域坐标范围的具体过程如下:首先输入画面测试信号,包括全红场信号、全绿场信号、全蓝场信号;找出屏幕中心点位置(P0),对全红场、全绿场、全蓝场信号分别进行显示,并采用色度仪器显示的全红场、全绿场、全蓝场信号图像上依次测量屏幕中心点P0的色度坐标(xR,yR),(xG,yG)和(xB,yB),其测量出全红场、全绿场、全蓝场信号图像的屏幕中心点P0坐标如下表2。
表2:
坐标 x y
R(xR,yR) 0.7 0.29
G(xG,yG) 0.17 0.8
B(xB,yB) 0.13 0.05
由测量出全红场、全绿场、全蓝场信号图像的屏幕中心点P0坐标,得出屏色域坐标范围为x∈(0.13,0.7);y∈(0.05,0.8),并存储屏色域坐标范围。
获取BT.709色域坐标范围具体过程为:获取BT.709三基色的色域坐标,其具体坐标值如下表3:
表3:
坐标 x y
R 0.66 0.3
G 0.28 0.62
B 0.15 0.07
根据表3所示计算得出BT.709色域坐标范围为:x∈(0.15,0.66); y∈(0.07,0.62),并存储BT.709色域坐标范围。
步骤S12、从当前画面的像素点中获取一个未标记色域范围的像素点,判断所获取的像素点坐标是否处于BT.709色域坐标范围;若是,转入步骤S13;若否,转入步骤S14。
步骤S13、标记所获取的像素点处于BT.709色域范围,判断当前画面的像素点中是否存在未标记色域范围的像素点,若是,返回步骤S12。
步骤S14、判断所获取的像素点坐标是否处于屏色域坐标范围内;若是,转入步骤S15;若否,则转入步骤S16。
步骤S15、标记所获取的像素点处于屏色域范围,判断当前画面的像素点中是否存在未标记色域范围的像素点,若是,则返回步骤S12。
步骤S16、在CIE_XYZ的色度坐标系中,将所获取的像素点与中心点进行连接形成连接线,记录连接线与屏色域三角形边线相交的交点坐标为所获取的像素点的映射坐标,并标记所获取的像素点处于屏色域三角形范围,判断当前画面的像素点中是否存在未标记色域范围的像素点;若是,则返回步骤S12。
本步骤S16中,所获取的像素点的映射坐标采用公式(8)和(9):
(x'c-xB)/(xG-xB)=(y'c-yB)/(yG-yB)------(8);
(x'c-xD65)/(xc-xD65)=(yc-yD65)/(y'c-yD65)------(9)。
步骤S20、根据所述每个像素点所处色域范围,在显示当前画面时通过相应的色域空间显示相应的像素点。
本实施例中,所述步骤S20具体处理如下:在显示当前画面时,通过BT.709色域空间显示坐标处于BT.709色域范围的像素点;通过屏色域空间显示坐标处于屏色域范围的像素点;通过屏色域三角形空间显示坐标处于屏色域三角形范围的像素点。其中进一步地通过屏色域三角形空间显示坐标处于屏色域三角形范围的像素点具体处理如下:在屏色域三角形空间中以处于屏色域三角形范围的像素点的映射坐标显示该处于屏色域三角形范围的像素点。
上述画面显示的方法实施例,通过计算当前画面的每个像素点坐标,确定并标记所述每个像素点所处色域范围;根据所述每个像素点所处色域范围,在显示当前画面时通过相应的色域空间显示相应的像素点的方式,在画面显示过程中能够正确还原还画面颜色,使画面显示更为自然,实现了高画质的 视觉效果。
本发明进一步提供一种画面显示的装置。参照图3,图3为本发明的画面显示的装置一实施例的功能模块示意图。在该实施例中,所述画面显示的装置100包括:计算模块110和显示模块120。其中,所述计算模块110,用于计算当前画面的每个像素点坐标,确定并标记所述每个像素点所处色域范围。所述显示模块120,用于根据所述每个像素点所处色域范围,在显示当前画面时通过相应的色域空间显示相应的像素点。
本实施例中,所述像素点坐标为像素点在CIE-XYZ色度图中的坐标。参见图4,图4为图3中计算模块的细化功能模块的示意图。所述计算模块110包括:第一计算单元111。所述第一计算单元111,用于获取所述当前画面的每个像素点的RGB值,根据每个像素点的RGB值计算当前画面的每个像素点在CIE-RGB色度图的坐标,并根据每个像素点的RGB值以及在CIE-RGB色度图的坐标,计算每个像素点在CIE-XYZ色度图中的坐标。本步骤中,所述像素点坐标为像素点在CIE-XYZ色度图中的坐标。其中,所述计算当前画面的像素点坐标包括:获取所述当前画面的每个像素点的RGB值,根据每个像素点的RGB值计算当前画面的每个像素点在CIE-RGB色度图的坐标,并根据每个像素点的RGB值以及在CIE-RGB色度图的坐标,计算每个像素点在CIE-XYZ色度图中的坐标。具体地,首先采样当前画面的图像属性,获取当前画面每个像素点的RGB值,例如当前画面共有1280×720个像素点,将这些像素点的RGB值存入数组Array[1280×720]中,从第一个像素点Array[0]开始累计;根据CIE-RGB色度图的原理,采用公式(1)当前画面的每个像素点从CIE-RGB颜色空间变换到CIE-XYZ空间。
Figure PCTCN2014095406-appb-000010
其中,在所述每个像素点从CIE-RGB颜色空间变换到CIE-XYZ空间时,CIE–XYZ的色度图中的R红色、G绿色和B蓝色的坐标定义如公式(2):
对于红色R:(xr,yr,zr=1-(xr+yr))
对于绿色G:(xg,yg,zg=1-(xg+yg))
对于蓝色B:(xb,yb,zb=1-(xb+yb))    ------(2);
定义白光点n坐标时,有R+G+B=1,从而得公式(3)。
Figure PCTCN2014095406-appb-000011
其中,ar,ag和ab是比例系数。由于在CIE–XYZ的色度图中,像素点D(Xn、Yn、Zn)的坐标被定义为(xn,yn),因此得到如下公式(4)。
Zn=1-(xn+yn)
Figure PCTCN2014095406-appb-000012
Yn=1(对白光)
Figure PCTCN2014095406-appb-000013
因此,上述公式(4)可转换为公式(5)。
Figure PCTCN2014095406-appb-000014
由于xn、yn、zn、xr、yr、zr、xg、yg、zg、xb、yb、zb均为可提供的已知数,因此根据以上公式(1)至5可以求得ar、ag、ab。本实施例以ITU-R BT.709为基准,使用标准白光D65,该标准白光的色度坐标(xD65,yD65)=(0.312713,0.329016);R红色、G绿色、B蓝色的色度坐标如下表1:
表1:
  r g b w
xn 0.640 0.300 0.150 0.3127
yn 0.330 0.600 0.060 0.3290
zn 0.030 0.100 0.790 0.3582
即:
红:xr=0.64,yr=0.33,zr=1-xr-yr=0.03
绿:xg=0.30,yg=0.60,zg=1-xg-yg=0.10
蓝:xb=0.15,yb=0.06,zb=1-xb-yr=0.79
根据公式(5)可求得出3×3转换矩阵A的参数如下:
0.412  0.358  0.180
0.213  0.715  0.072
0.019  0.119  0.950
将当前画面的每个像素点的色度坐标采用公式(6)从1931CIE-RGB色度系统转换成1931CIE-XYZ色度系统。
Figure PCTCN2014095406-appb-000015
最终根据公式(7)计算当前画面的每个像素点在CIE-XYZ色度图中的坐标(xc,yc)。
Figure PCTCN2014095406-appb-000016
Figure PCTCN2014095406-appb-000017
Figure PCTCN2014095406-appb-000018
本实施例中,所述色域范围包括:BT.709色域范围、屏色域范围、屏色域三角形范围。参见图5,图5为本发明的计算模块的另一细化功能模块的示意图。所述计算模块110还包括第二计算单元112和循环控制单元113。其中,所述第二计算单元112,用于计算屏色域坐标范围和BT.709色域坐标范围;从当前画面的像素点中获取一个未标记色域范围的像素点,判断所获取的像素点坐标是否处于BT.709色域坐标范围;当所获取的像素点坐标处于BT.709色域坐标范围,则标记所获取的像素点处于BT.709色域范围;当所获取的像素点坐标未处于BT.709色域坐标范围,则判断所获取的像素点坐标是否处于屏色域坐标范围内;若所获取的像素点坐标处于屏色域坐标范围,则标记所获取的像素点处于屏色域范围,若所获取的像素点坐标未处于屏色域坐标范围,则在CIE-XYZ的色度坐标系中,将所获取的像素点与中心点进行连接形 成连接线,记录连接线与屏色域三角形边线相交的交点坐标为所获取的像素点的映射坐标,并标记所获取的像素点处于屏色域三角形范围。所述循环控制单元113,用于在第二计算单元112标记所获取的像素点处于BT.709色域范围、处于屏色域范围、或者处于屏色域三角形范围后,判断当前画面的像素点中是否存在未标记色域范围的像素点,若是,则返回调用所述第二计算单112元执行相应的操作,直至当前画面的像素点均已标记色域范围。
所述第二计算单元112计算屏色域坐标范围的具体过程如下:首先输入画面测试信号,包括全红场信号、全绿场信号、全蓝场信号;找出屏幕中心点位置(P0),对全红场、全绿场、全蓝场信号分别进行显示,并采用色度仪器显示的全红场、全绿场、全蓝场信号图像上依次测量屏幕中心点P0的色度坐标(xR,yR),(xG,yG)和(xB,yB),其测量出全红场、全绿场、全蓝场信号图像的屏幕中心点P0坐标如下表2。
表2:
坐标 x y
R(xR,yR) 0.7 0.29
G(xG,yG) 0.17 0.8
B(xB,yB) 0.13 0.05
由测量出全红场、全绿场、全蓝场信号图像的屏幕中心点P0坐标,得出屏色域坐标范围为x∈(0.13,0.7);y∈(0.05,0.8),并存储屏色域坐标范围。
获取BT.709色域坐标范围具体过程为:获取BT.709三基色的色域坐标,其具体坐标值如下表3:
表3:
坐标 x y
R 0.66 0.3
G 0.28 0.62
B 0.15 0.07
根据表3所示计算得出BT.709色域坐标范围为:x∈(0.15,0.66);y∈(0.07,0.62),并存储BT.709色域坐标范围。
本实施例中所获取的像素点的映射坐标采用公式(8)和(9):
(x'c-xB)/(xG-xB)=(y'c-yB)/(yG-yB)------(8);
(x'c-xD65)/(xc-xD65)=(yc-yD65)/(y'c-yD65)------(9)。
本实施例中,所述显示模块120,具体用于在显示当前画面时,通过BT.709色域空间显示坐标处于BT.709色域范围的像素点;通过屏色域空间显示坐标处于屏色域范围的像素点;通过屏色域三角形空间显示坐标处于屏色域三角形范围的像素点。进一步地所述显示模块120,还用于在屏色域三角形空间中以处于屏色域三角形范围的像素点的映射坐标显示该处于屏色域三角形范围的像素点。
上述画面显示的装置实施例,通过计算当前画面的每个像素点坐标,确定并标记所述每个像素点所处色域范围;根据所述每个像素点所处色域范围,在显示当前画面时通过相应的色域空间显示相应的像素点的方式,在画面显示过程中能够正确还原还画面颜色,使画面显示更为自然,实现了高画质的视觉效果。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种画面显示的方法,其特征在于,所述画面显示的方法包括以下步骤:
    计算当前画面的每个像素点坐标,确定并标记所述每个像素点所处色域范围;
    根据所述每个像素点所处色域范围,在显示当前画面时通过相应的色域空间显示相应的像素点。
  2. 根据权利要求1所述的画面显示的方法,其特征在于,所述像素点坐标为像素点在CIE-XYZ色度图中的坐标;
    所述计算当前画面的像素点坐标具体包括:
    获取所述当前画面的每个像素点的RGB值,根据每个像素点的RGB值计算当前画面的每个像素点在CIE-RGB色度图的坐标,并根据每个像素点的RGB值以及在CIE-RGB色度图的坐标,计算每个像素点在CIE-XYZ色度图中的坐标。
  3. 根据权利要求1所述的画面显示的方法,其特征在于,所述色域范围包括:BT.709色域范围、屏色域范围、屏色域三角形范围。
  4. 根据权利要求3所述的画面显示的方法,其特征在于,所述根据所述每个像素点所处色域范围,在显示当前画面时通过相应的色域空间显示相应的像素点具体包括:
    在显示当前画面时,通过BT.709色域空间显示坐标处于BT.709色域范围的像素点;通过屏色域空间显示坐标处于屏色域范围的像素点;通过屏色域三角形空间显示坐标处于屏色域三角形范围的像素点。
  5. 根据权利要求4所述的画面显示的方法,其特征在于,通过屏色域三角形空间显示坐标处于屏色域三角形范围的像素点具体为:
    在屏色域三角形空间中以处于屏色域三角形范围的像素点的映射坐标显 示该处于屏色域三角形范围的像素点。
  6. 根据权利要求1所述的画面显示的方法,其特征在于,所述色域范围包括:BT.709色域范围、屏色域范围、屏色域三角形范围。
  7. 根据权利要求6所述的画面显示的方法,其特征在于,所述确定并标记所述每个像素点坐标所处色域范围具体包括:
    步骤一、计算屏色域坐标范围和BT.709色域坐标范围;
    步骤二、从当前画面的像素点中获取一个未标记色域范围的像素点,判断所获取的像素点坐标是否处于BT.709色域坐标范围;若是,转入步骤三;若否,转入步骤四;
    步骤三、标记所获取的像素点处于BT.709色域范围,判断当前画面的像素点中是否存在未标记色域范围的像素点,若是,返回步骤二;
    步骤四、判断所获取的像素点坐标是否处于屏色域坐标范围内;若是,转入步骤五;若否,则转入步骤六;
    步骤五、标记所获取的像素点处于屏色域范围,判断当前画面的像素点中是否存在未标记色域范围的像素点,若是,则返回步骤二;
    步骤六、在CIE-XYZ的色度坐标系中,将所获取的像素点与中心点进行连接形成连接线,记录连接线与屏色域三角形边线相交的交点坐标为所获取的像素点的映射坐标,并标记所获取的像素点处于屏色域三角形范围,判断当前画面的像素点中是否存在未标记色域范围的像素点;若是,则返回步骤二。
  8. 根据权利要求7所述的画面显示的方法,其特征在于,所述像素点坐标为像素点在CIE-XYZ色度图中的坐标;
    所述计算当前画面的像素点坐标具体包括:
    获取所述当前画面的每个像素点的RGB值,根据每个像素点的RGB值计算当前画面的每个像素点在CIE-RGB色度图的坐标,并根据每个像素点的RGB值以及在CIE-RGB色度图的坐标,计算每个像素点在CIE-XYZ色度图中的坐标。
  9. 根据权利要求7所述的画面显示的方法,其特征在于,所述根据所述每个像素点所处色域范围,在显示当前画面时通过相应的色域空间显示相应的像素点具体包括:
    在显示当前画面时,通过BT.709色域空间显示坐标处于BT.709色域范围的像素点;通过屏色域空间显示坐标处于屏色域范围的像素点;通过屏色域三角形空间显示坐标处于屏色域三角形范围的像素点。
  10. 根据权利要求9所述的画面显示的方法,其特征在于,通过屏色域三角形空间显示坐标处于屏色域三角形范围的像素点具体为:
    在屏色域三角形空间中以处于屏色域三角形范围的像素点的映射坐标显示该处于屏色域三角形范围的像素点。
  11. 一种画面显示的装置,其特征在于,所述画面显示的装置包括:
    计算模块,用于计算当前画面的每个像素点坐标,确定并标记所述每个像素点所处色域范围;
    显示模块,用于根据所述每个像素点所处色域范围,在显示当前画面时通过相应的色域空间显示相应的像素点。
  12. 根据权利要求11所述的画面显示的装置,其特征在于,所述像素点坐标为像素点在CIE-XYZ色度图中的坐标;
    所述计算模块包括:
    第一计算单元,用于获取所述当前画面的每个像素点的RGB值,根据每个像素点的RGB值计算当前画面的每个像素点在CIE-RGB色度图的坐标,并根据每个像素点的RGB值以及在CIE-RGB色度图的坐标,计算每个像素点在CIE-XYZ色度图中的坐标。
  13. 根据权利要求11所述的画面显示的装置,其特征在于,所述色域范围包括:BT.709色域范围、屏色域范围、屏色域三角形范围。
  14. 根据权利要求13所述的画面显示的装置,其特征在于,
    所述显示模块,具体用于在显示当前画面时,通过BT.709色域空间显示坐标处于BT.709色域范围的像素点;通过屏色域空间显示坐标处于屏色域范围的像素点;通过屏色域三角形空间显示坐标处于屏色域三角形范围的像素点。
  15. 根据权利要求14所述的画面显示的装置,其特征在于,所述显示模块,具有还用于在屏色域三角形空间中以处于屏色域三角形范围的像素点的映射坐标显示该处于屏色域三角形范围的像素点。
  16. 根据权利要求11所述的画面显示的装置,其特征在于,所述色域范围包括:BT.709色域范围、屏色域范围、屏色域三角形范围。
  17. 根据权利要求16所述的画面显示的装置,其特征在于,
    所述计算模块还包括:
    第二计算单元,用于计算屏色域坐标范围和BT.709色域坐标范围;从当前画面的像素点中获取一个未标记色域范围的像素点,判断所获取的像素点坐标是否处于BT.709色域坐标范围;当所获取的像素点坐标处于BT.709色域坐标范围,则标记所获取的像素点处于BT.709色域范围;当所获取的像素点坐标未处于BT.709色域坐标范围,则判断所获取的像素点坐标是否处于屏色域坐标范围内;若所获取的像素点坐标处于屏色域坐标范围,则标记所获取的像素点处于屏色域范围,若所获取的像素点坐标未处于屏色域坐标范围,则在CIE-XYZ的色度坐标系中,将所获取的像素点与中心点进行连接形成连接线,记录连接线与屏色域三角形边线相交的交点坐标为所获取的像素点的映射坐标,并标记所获取的像素点处于屏色域三角形范围;
    循环控制单元,用于在第二计算单元标记所获取的像素点处于BT.709色域范围、处于屏色域范围、或者处于屏色域三角形范围后,判断当前画面的像素点中是否存在未标记色域范围的像素点,若是,则返回调用所述第二计算单元执行相应的操作,直至当前画面的像素点均已标记色域范围。
  18. 根据权利要求17所述的画面显示的装置,其特征在于,所述像素点 坐标为像素点在CIE-XYZ色度图中的坐标;
    所述计算模块包括:
    第一计算单元,用于获取所述当前画面的每个像素点的RGB值,根据每个像素点的RGB值计算当前画面的每个像素点在CIE-RGB色度图的坐标,并根据每个像素点的RGB值以及在CIE-RGB色度图的坐标,计算每个像素点在CIE-XYZ色度图中的坐标。
  19. 根据权利要求17所述的画面显示的装置,其特征在于,
    所述显示模块,具体用于在显示当前画面时,通过BT.709色域空间显示坐标处于BT.709色域范围的像素点;通过屏色域空间显示坐标处于屏色域范围的像素点;通过屏色域三角形空间显示坐标处于屏色域三角形范围的像素点。
  20. 根据权利要求19所述的画面显示的装置,其特征在于,所述显示模块,具有还用于在屏色域三角形空间中以处于屏色域三角形范围的像素点的映射坐标显示该处于屏色域三角形范围的像素点。
PCT/CN2014/095406 2014-12-25 2014-12-29 画面显示的方法和装置 WO2016101296A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410826689.3 2014-12-25
CN201410826689.3A CN105788498B (zh) 2014-12-25 2014-12-25 画面显示的方法和装置

Publications (1)

Publication Number Publication Date
WO2016101296A1 true WO2016101296A1 (zh) 2016-06-30

Family

ID=56149016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095406 WO2016101296A1 (zh) 2014-12-25 2014-12-29 画面显示的方法和装置

Country Status (2)

Country Link
CN (1) CN105788498B (zh)
WO (1) WO2016101296A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107018409B (zh) * 2017-03-09 2018-07-03 深圳达四海科技有限公司 光学品质参数获取方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621700A (zh) * 2008-10-21 2010-01-06 青岛海信电器股份有限公司 一种多媒体设备的色域匹配方法及电视机
CN102769759A (zh) * 2012-07-20 2012-11-07 上海富瀚微电子有限公司 数字图像颜色校正方法及实现装置
US20120281010A1 (en) * 2009-09-21 2012-11-08 Samsung Electronics Co., Ltd. System and method for generating rgb primary for wide gamut, and color encoding system using rgb primary
CN103106670A (zh) * 2013-01-16 2013-05-15 西安理工大学 一种计算机输入设备的色彩模型自动建立及转换方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621700A (zh) * 2008-10-21 2010-01-06 青岛海信电器股份有限公司 一种多媒体设备的色域匹配方法及电视机
US20120281010A1 (en) * 2009-09-21 2012-11-08 Samsung Electronics Co., Ltd. System and method for generating rgb primary for wide gamut, and color encoding system using rgb primary
CN102769759A (zh) * 2012-07-20 2012-11-07 上海富瀚微电子有限公司 数字图像颜色校正方法及实现装置
CN103106670A (zh) * 2013-01-16 2013-05-15 西安理工大学 一种计算机输入设备的色彩模型自动建立及转换方法

Also Published As

Publication number Publication date
CN105788498B (zh) 2018-11-23
CN105788498A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
JP4214154B2 (ja) ホワイトバランスを自動調整する映像装置及びそのホワイトバランス調整方法
CN105046646B (zh) 一种高光谱图像的色彩可视化的方法
US20170301275A1 (en) Display devices capable of adjusting the display color gamut and methods of adjusting the color gamut thereof
WO2019090914A1 (zh) 一种色域映射方法及色域映射装置
JP2008086011A (ja) 色欠損画像をエンハンスするためのシステムおよび方法
US8411936B2 (en) Apparatus and method for color reproduction
WO2019019856A1 (zh) 色域映射方法、显示终端及计算机可读存储介质
WO2019010917A1 (zh) 一种投影图像的颜色校准方法及系统
CN110349097B (zh) 图像显着性的色彩增强方法及图像处理装置
CN104966508B (zh) 一种驱动方法、控制芯片及显示设备
CN110660352A (zh) 一种led显示屏逐点校正方法、装置、系统及存储介质
WO2019041928A1 (zh) N基色显示屏的显示控制方法、装置及显示器件
CN105976743A (zh) 一种自带显示校准功能的显示屏
CN104935900A (zh) 图像感测装置及色彩校正矩阵修正方法与查找表建立方法
EP2039145A2 (en) System and method for correcting colour images
KR20200054299A (ko) 색 영역 매핑 방법 및 색 영역 매핑 장치
CN108717839B (zh) 一种rgb到rgbw的转换方法、装置及存储介质
WO2016110094A1 (zh) 投影控制方法、装置及投影设备
TWI640976B (zh) 用於顯示裝置的顏色配置之技術
JP2007282175A (ja) カラー修正システム及び方法
TWI602419B (zh) 調整方法及其所適用之顯示設備
CN111179801A (zh) 显示面板的色彩空间调整方法、设备和系统
US20140333654A1 (en) Image color adjusting method and electronic device using the same
CN107027017A (zh) 一种图像白平衡的调整方法、装置、图像处理芯片及存储装置
TWI485694B (zh) 影像色彩調整方法與其電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 10/10/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14908863

Country of ref document: EP

Kind code of ref document: A1