WO2016098908A1 - A snow tire having a tread comprising a rubber composition - Google Patents
A snow tire having a tread comprising a rubber composition Download PDFInfo
- Publication number
- WO2016098908A1 WO2016098908A1 PCT/JP2015/085598 JP2015085598W WO2016098908A1 WO 2016098908 A1 WO2016098908 A1 WO 2016098908A1 JP 2015085598 W JP2015085598 W JP 2015085598W WO 2016098908 A1 WO2016098908 A1 WO 2016098908A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phr
- tire according
- oils
- diene elastomer
- less
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 104
- 229920001971 elastomer Polymers 0.000 title claims abstract description 55
- 239000005060 rubber Substances 0.000 title claims abstract description 45
- 239000004014 plasticizer Substances 0.000 claims abstract description 61
- 229920003244 diene elastomer Polymers 0.000 claims abstract description 52
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 48
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 48
- 239000010452 phosphate Substances 0.000 claims abstract description 48
- 239000007788 liquid Substances 0.000 claims abstract description 47
- 239000006229 carbon black Substances 0.000 claims abstract description 22
- 229920003051 synthetic elastomer Polymers 0.000 claims abstract description 21
- 239000011256 inorganic filler Substances 0.000 claims abstract description 18
- 239000012763 reinforcing filler Substances 0.000 claims abstract description 18
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 17
- 229920002857 polybutadiene Polymers 0.000 claims abstract description 13
- 244000043261 Hevea brasiliensis Species 0.000 claims abstract description 12
- 229920003052 natural elastomer Polymers 0.000 claims abstract description 12
- 229920001194 natural rubber Polymers 0.000 claims abstract description 12
- 230000009477 glass transition Effects 0.000 claims abstract description 11
- 239000003921 oil Substances 0.000 claims description 35
- 235000019198 oils Nutrition 0.000 claims description 35
- 229920006026 co-polymeric resin Polymers 0.000 claims description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 28
- 125000003118 aryl group Chemical group 0.000 claims description 23
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Natural products CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 claims description 20
- 229920001577 copolymer Polymers 0.000 claims description 20
- 229920001519 homopolymer Polymers 0.000 claims description 20
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 20
- 239000000284 extract Substances 0.000 claims description 15
- 239000013032 Hydrocarbon resin Substances 0.000 claims description 13
- 229920006270 hydrocarbon resin Polymers 0.000 claims description 13
- 239000000377 silicon dioxide Substances 0.000 claims description 12
- 239000005062 Polybutadiene Substances 0.000 claims description 8
- GTVWRXDRKAHEAD-UHFFFAOYSA-N Tris(2-ethylhexyl) phosphate Chemical group CCCCC(CC)COP(=O)(OCC(CC)CCCC)OCC(CC)CCCC GTVWRXDRKAHEAD-UHFFFAOYSA-N 0.000 claims description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 150000003505 terpenes Chemical class 0.000 claims description 7
- 235000007586 terpenes Nutrition 0.000 claims description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 claims description 6
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 claims description 4
- 235000015112 vegetable and seed oil Nutrition 0.000 claims description 4
- 239000008158 vegetable oil Substances 0.000 claims description 4
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 claims description 3
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 239000002480 mineral oil Substances 0.000 claims description 3
- 239000010690 paraffinic oil Substances 0.000 claims description 3
- 239000012453 solvate Substances 0.000 claims description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 27
- 235000019241 carbon black Nutrition 0.000 description 18
- 238000012360 testing method Methods 0.000 description 17
- 229940044603 styrene Drugs 0.000 description 16
- 230000003014 reinforcing effect Effects 0.000 description 14
- 229920005989 resin Polymers 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- 238000004073 vulcanization Methods 0.000 description 12
- 239000000806 elastomer Substances 0.000 description 10
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 10
- 239000000178 monomer Substances 0.000 description 10
- 239000007822 coupling agent Substances 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 229920001021 polysulfide Polymers 0.000 description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 239000005864 Sulphur Substances 0.000 description 7
- 238000004132 cross linking Methods 0.000 description 7
- -1 ethoxyl Chemical group 0.000 description 7
- 239000000945 filler Substances 0.000 description 7
- 150000001993 dienes Chemical class 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 235000001510 limonene Nutrition 0.000 description 4
- 229940087305 limonene Drugs 0.000 description 4
- 239000003643 water by type Substances 0.000 description 4
- OWRCNXZUPFZXOS-UHFFFAOYSA-N 1,3-diphenylguanidine Chemical compound C=1C=CC=CC=1NC(=N)NC1=CC=CC=C1 OWRCNXZUPFZXOS-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000001588 bifunctional effect Effects 0.000 description 3
- 238000003490 calendering Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 125000002897 diene group Chemical group 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 238000001542 size-exclusion chromatography Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 230000000930 thermomechanical effect Effects 0.000 description 3
- XMGQYMWWDOXHJM-SNVBAGLBSA-N (-)-α-limonene Chemical compound CC(=C)[C@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-SNVBAGLBSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 2
- 239000006057 Non-nutritive feed additive Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 239000012764 mineral filler Substances 0.000 description 2
- CMAUJSNXENPPOF-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)-n-cyclohexylcyclohexanamine Chemical compound C1CCCCC1N(C1CCCCC1)SC1=NC2=CC=CC=C2S1 CMAUJSNXENPPOF-UHFFFAOYSA-N 0.000 description 2
- 239000012766 organic filler Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 239000012936 vulcanization activator Substances 0.000 description 2
- WTARULDDTDQWMU-RKDXNWHRSA-N (+)-β-pinene Chemical compound C1[C@H]2C(C)(C)[C@@H]1CCC2=C WTARULDDTDQWMU-RKDXNWHRSA-N 0.000 description 1
- WTARULDDTDQWMU-IUCAKERBSA-N (-)-Nopinene Natural products C1[C@@H]2C(C)(C)[C@H]1CCC2=C WTARULDDTDQWMU-IUCAKERBSA-N 0.000 description 1
- GRWFGVWFFZKLTI-IUCAKERBSA-N (-)-α-pinene Chemical compound CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical compound CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical class ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- CTHJQRHPNQEPAB-UHFFFAOYSA-N 2-methoxyethenylbenzene Chemical class COC=CC1=CC=CC=C1 CTHJQRHPNQEPAB-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- ZZMVLMVFYMGSMY-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CC(C)C)=CC=C1NC1=CC=CC=C1 ZZMVLMVFYMGSMY-UHFFFAOYSA-N 0.000 description 1
- KZTCAXCBXSIQSS-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-4-n-phenylbenzene-1,4-diamine Chemical compound C=1C=C(N)C=CC=1N(C(C)CC(C)C)C1=CC=CC=C1 KZTCAXCBXSIQSS-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000640882 Condea Species 0.000 description 1
- HECLRDQVFMWTQS-UHFFFAOYSA-N Dicyclopentadiene Chemical compound C1C2C3CC=CC3C1C=C2 HECLRDQVFMWTQS-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000006237 Intermediate SAF Substances 0.000 description 1
- 241000533950 Leucojum Species 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- CGSLYBDCEGBZCG-UHFFFAOYSA-N Octicizer Chemical compound C=1C=CC=CC=1OP(=O)(OCC(CC)CCCC)OC1=CC=CC=C1 CGSLYBDCEGBZCG-UHFFFAOYSA-N 0.000 description 1
- WTARULDDTDQWMU-UHFFFAOYSA-N Pseudopinene Natural products C1C2C(C)(C)C1CCC2=C WTARULDDTDQWMU-UHFFFAOYSA-N 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- SCPNGMKCUAZZOO-UHFFFAOYSA-N [3-[(3-dimethylsilyl-3-ethoxypropyl)tetrasulfanyl]-1-ethoxypropyl]-dimethylsilane Chemical compound CCOC([SiH](C)C)CCSSSSCCC([SiH](C)C)OCC SCPNGMKCUAZZOO-UHFFFAOYSA-N 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000005103 alkyl silyl group Chemical group 0.000 description 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229930006722 beta-pinene Natural products 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- AFZSMODLJJCVPP-UHFFFAOYSA-N dibenzothiazol-2-yl disulfide Chemical compound C1=CC=C2SC(SSC=3SC4=CC=CC=C4N=3)=NC2=C1 AFZSMODLJJCVPP-UHFFFAOYSA-N 0.000 description 1
- WITDFSFZHZYQHB-UHFFFAOYSA-N dibenzylcarbamothioylsulfanyl n,n-dibenzylcarbamodithioate Chemical compound C=1C=CC=CC=1CN(CC=1C=CC=CC=1)C(=S)SSC(=S)N(CC=1C=CC=CC=1)CC1=CC=CC=C1 WITDFSFZHZYQHB-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012156 elution solvent Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- LCWMKIHBLJLORW-UHFFFAOYSA-N gamma-carene Natural products C1CC(=C)CC2C(C)(C)C21 LCWMKIHBLJLORW-UHFFFAOYSA-N 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 229940083094 guanine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical group [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 1
- VILGDADBAQFRJE-UHFFFAOYSA-N n,n-bis(1,3-benzothiazol-2-ylsulfanyl)-2-methylpropan-2-amine Chemical compound C1=CC=C2SC(SN(SC=3SC4=CC=CC=C4N=3)C(C)(C)C)=NC2=C1 VILGDADBAQFRJE-UHFFFAOYSA-N 0.000 description 1
- IUJLOAKJZQBENM-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)-2-methylpropan-2-amine Chemical compound C1=CC=C2SC(SNC(C)(C)C)=NC2=C1 IUJLOAKJZQBENM-UHFFFAOYSA-N 0.000 description 1
- DEQZTKGFXNUBJL-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)cyclohexanamine Chemical compound C1CCCCC1NSC1=NC2=CC=CC=C2S1 DEQZTKGFXNUBJL-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000000485 pigmenting effect Effects 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011814 protection agent Substances 0.000 description 1
- 239000006235 reinforcing carbon black Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 150000003557 thiazoles Chemical class 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- WTLBZVNBAKMVDP-UHFFFAOYSA-N tris(2-butoxyethyl) phosphate Chemical compound CCCCOCCOP(=O)(OCCOCCCC)OCCOCCCC WTLBZVNBAKMVDP-UHFFFAOYSA-N 0.000 description 1
- HQUQLFOMPYWACS-UHFFFAOYSA-N tris(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(OCCCl)OCCCl HQUQLFOMPYWACS-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- AUMBZPPBWALQRO-UHFFFAOYSA-L zinc;n,n-dibenzylcarbamodithioate Chemical compound [Zn+2].C=1C=CC=CC=1CN(C(=S)[S-])CC1=CC=CC=C1.C=1C=CC=CC=1CN(C(=S)[S-])CC1=CC=CC=C1 AUMBZPPBWALQRO-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/521—Esters of phosphoric acids, e.g. of H3PO4
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/548—Silicon-containing compounds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L7/00—Compositions of natural rubber
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0016—Plasticisers
Definitions
- the invention relates to the tires having treads suitable for snow tires or winter tires, capable of rolling over ground surfaces covered with snow.
- the snow tires classified in a category of use "snow”, identified by an inscription the Alpine symbol ("3-peak-mountain with snowflake), marked on their sidewalls, mean tires whose tread patterns, tread compounds or structures are primarily designed to achieve, in snow conditions, a performance better than that of normal tires intended for normal on-road use with regard to their abilities to initiate, maintain or stop vehicle motion.
- Snowy ground referred to as white ground, has the feature of having a low friction coefficient and a constant objective of tire manufactures is improvement of a grip performance of winter tires on snow. .
- a first subjective matter of the invention is a snow tire having a tread comprising a rubber composition comprising at least, more than 50 and up to 100 phr of a first diene elastomer chosen from the group consisting of natural rubber, synthetic polyisoprenes, polybutadienes and the mixtures thereof, optionally, 0 to less than 50 phr of another diene elastomer, 40 to 200 phr of a reinforcing filler comprising an inorganic filler, a carbon black or the mixture thereof, wherein a content of the carbon black is less than 20 phr, more than 10 phr and less than 100 phr of a liquid phosphate plasticizer having a glass transition temperature less than - 80°C.
- a first diene elastomer chosen from the group consisting of natural rubber, synthetic polyisoprenes, polybutadienes and the mixtures thereof, optionally, 0 to less than 50 phr of another diene e
- aspects of the present invention can be as follows.
- a snow tire having a tread comprising a rubber composition comprising at least:
- first diene elastomer chosen from the group consisting of natural rubber, synthetic polyisoprenes, polybutadienes and the mixtures thereof,
- a reinforcing filler comprising an inorganic fil ler, a carbon black or the mixture thereof, wherein a content of the carbon black is less than 20 phr; and more than 10 phr and less than 100 phr of a liquid phosphate plasticizer having a glass transition temperature less than -80°C.
- liquid plasticizer(s) other than the liquid phosphate plasticizer are chosen from the group consisting of polyolefinic oils, naphthenic oils, paraffinic oils.
- plasticizing hydrocarbon resin(s) are chosen from the group consisting of cyclopentadiene homopolymer or copolymer resins, dicyclopentadiene homopolymer or copolymer resins, terpene homopolymer or copolymer resins, C5 fraction homopolymer or copolymer resins, C 9 fraction homopolymer or copolymer resins, alpha-methyl styrene homopolymer or copolymer resins, and the mixtures thereof.
- the tires of the invention are particularly intended to equip passenger motor vehicles, including 4x4 (four-wheel drive) vehicles and SUV (Sport Utility Vehicles) vehicles, and also industrial vehicles in particular chosen from vans and heavy duty vehicles (i.e., bus or heavy road transport vehicles (lorries, tractors, trailers).
- 4x4 four-wheel drive
- SUV Sport Utility Vehicles
- industrial vehicles in particular chosen from vans and heavy duty vehicles (i.e., bus or heavy road transport vehicles (lorries, tractors, trailers).
- treads and constituent rubber compositions of these treads of the tires according to the invention are characterized, after curing, as indicated below.
- a principle of the friction test is based on a block of a rubber composition that slides at a given speed (for example equal to 500 mm/s) over a snow track with an imposed load (for example: 2 to 3 bar).
- the forces generated in a direction of travel (Fx) of the block and in another direction perpendicular to the travel (Fz) are measured.
- the Fx/Fz ratio determines the friction coefficient of the test specimen on the snow.
- any interval of values denoted by the expression "between a and b" represents the range of values extending from greater than a to less than b (that is to say, limits a and b excluded) whereas any interval of values denoted by the expression “from a to b” means the range of values extending from a up to b (that is to say, including the strict limits a and b).
- the rubber composition of the tread of the snow tire according to the invention is based on at least more than 50 and up to 100 phr of a first diene elastomer chosen from the group consisting of natural rubber, synthetic polyisoprenes, polybutadienes and the mixtures thereof, a reinforcing filler, more than 10 phr and less than 100 phr a liquid phosphate plasticizer having a glass transition temperature less than -80°C.
- the expression "based on” should be understood in the present application to mean a composition comprising the mixture and/or the product of the reaction of the various constituents used, some of the constituents being able or intended to react together, .at least partly, during the various manufacturing phases of the composition, in particular during the vulcanization (curing).
- a "diene” elastomer (or “rubber”, the two terms being considered to be synonymous) should be understood, in a known manner, to mean an (one or more is understood) elastomer resulting at least in part (i.e., a homopolymer or a copolymer) from diene monomers (monomers bearing two carbon-carbon double bonds which may or may not be conjugated).
- diene elastomers can be classified in a known way into two categories: those "essentially unsaturated” and those "essentially saturated”.
- Butyl rubbers such as, for example copolymers of dienes and of a-olefins of EPDM type, come within the category of essentially saturated diene elastomers, having a content of units of diene origin which is low or very low, always less than 15% (mol %).
- essentially unsaturated diene elastomer is understood to mean a diene elastomer resulting at least in part from conjugated diene monomers, having a content of units of diene origin (conjugated dienes) which is greater than 15% (mol %).
- highly unsaturated diene elastomer is understood to mean in particular a diene elastomer having a content of units of diene origin (conjugated dienes) which is greater than 50%.
- An essential feature of the rubber composition of the tread of the snow tire of the invention is to use as a first diene elastomer base, more than 50 and up to 100 phr (it should be remembered that "phr" means parts by weight per 100 parts of elastomer) of a diene elastomer chosen from the group consisting of natural rubber (NR.), synthetic polyisoprenes (IR), polybutadienes (BR) and the mixtures thereof, and to use as another (or second) diene elastomer, optionally, 0 to less than 50 phr of the other diene elastomer.
- a diene elastomer base more than 50 and up to 100 phr (it should be remembered that "phr” means parts by weight per 100 parts of elastomer) of a diene elastomer chosen from the group consisting of natural rubber (NR.), synthetic polyisoprenes (IR), polybutadienes (BR) and the mixtures
- the following are preferably suitable: synthetic polyisoprenes in those of cis-1 ,4- type, in particular those having a content (mol%) of cis- l ,4-bonds of greater than 90%, preferably of greater than or equal to 98%, polybutadienes, in particular those having a content of 1,2-units of between 4% and 80% or those having a content of cis- 1 ,4 units of greater than 80%, preferably those having a content of cis-1 ,4 bonds which is greater than 90%.
- the first diene elastomer is natural rubber and/or a synthetic polyisoprene.
- the synthetic polyisoprene has a content (mol%) of cis- l ,4-bonds of greater than 90%, more preferably of greater than or equal to 98%.
- the second diene elastomer is polybutadiene, more particularly the polybutadiene having a content of cis- 1 ,4 bonds which is greater than 90%.
- the first diene elastomer is a polybutadiene, preferably the polybutadiene having a content of cis- 1 ,4 bonds which is greater than 90%. More preferably, the second diene elastomer is natural rubber or a synthetic polyisoprene, still more preferably the synthetic polyisoprene having a content (mol%) of cis- l ,4-bonds of greater than 90%, particularly of greater than or equal to 98%. [0022] According to a more preferred embodiment, the first diene elastomer is a synthetic polyisoprene. Preferably, the synthetic polyisoprene has a content (mol%) of cis- 1 ,4- bonds of greater than 90%, more preferably of greater than or equal to 98%.
- the other (second) diene elastomer other than the first dine elastomer is chosen from the group consisting of butadiene copolymers, isoprene copolymers (preferably other than butyl) and the mixtures thereof.
- Such copolymers are more preferably chosen from the group consisting of butadiene/styrene copolymers (SBR), isoprene/butadiene copolymers (BIR), isoprene/styrene copolymers (SIR), isoprene/butadiene/styrene copolymers (SBIR) and the mixtures thereof.
- Such copolymers are still more preferably butadiene/styrene copolymers (SBR), in particular bearing at least one (i.e., one or more) SiOR function, R being hydrogen or hydrocarbon radical, as described in an application WO 2012/069565.
- SBR butadiene/styrene copolymers
- butadiene/isoprene copolymers in particular those having an isoprene content of between 5% and 90% by weight and a glass transition temperature ("Tg"- measured according to ASTM D 3418-82) of -40°C to -80°C
- Tg glass transition temperature
- isoprene/styrene copolymers in particular those having a styrene content of between 5% and 50% by weight and a Tg of between -25°C and -50°C are suitable in particular.
- butadiene/styrene/isoprene copolymers those having a styrene content of between 5% and 50% by weight and more particularly of between 10% and 40%, an isoprene content of between 15% and 60% by weight and more particularly between 20% and 50%, a butadiene content of between 5% and 50% by weight and more particularly of between 20% and 40%, a content of 1 ,2-units of the butadiene part of between 4% and 85%, a content of trans- 1 ,4-un its of the butadiene part of between 6% and 80%, a content of 1 ,2 plus 3,4-units of the isoprene part of between 5% and 70% and a content of trans- 1 ,4-units of the isoprene part of between 10% and 50%, and more generally any butadiene/styrene/isoprene copolymer having a Tg of between -20°C and -70°C, are examples of the isoprene
- the first diene elastomer has a Tg less than -50°C (notably between - 100°C and -50°C), more preferably less than -55°C (notably between -90°C and - 55°C), still more preferably equal to or less than -60°C (notably from -80°C to - 60°C).
- the content of the first diene elastomer is preferably within a range from 60 to 100 phr (0 to 40 phr of the other elastomer optionally), more preferably from 80 to 100 phr (0 to 20 phr of the other elastomer optimally), still more preferably 100 phr.
- Use may be made of any type of reinforcing filler known for its capabilities of reinforcing a rubber composition which can be used for the manufacture of tires, for example an organic filler, such as carbon black, or a reinforcing inorganic filler, such as silica, with which a coupling agent is combined in a known way.
- an organic filler such as carbon black
- a reinforcing inorganic filler such as silica
- Such a reinforcing filler typically consists of nano particles, the mean size (by weight) of which is less than 500 nm, generally between 20 and 200 nm, in particular and preferably between 20 and 150 nm.
- J Al l carbon blacks in particular blacks of the HAF, ISAF or SAF type, conventionally used in treads for tires ("tire-grade" blacks) are suitable as carbon blacks. Mention will more particularly be made, among the latter, of the reinforcing carbon blacks of the 100, 200 or 300 series (ASTM grades), such as, for example, the N l 15, N 134, N234, N326, N330, N339, N347 or N375 blacks.
- the carbon blacks might, for example, be already incorporated in the isoprene elastomer in the form of a masterbatch (see, for example, Applications WO 97/36724 or W0 99/ 1 6600).
- organ ic fillers other than carbon blacks Mention may be made, as examples of organ ic fillers other than carbon blacks, of the functionalized polyvinyl organic fillers as described in Applications WO 2006/ 069792, WO 2006/069793, WO2008/003434 and WO2008/003435.
- the term "reinforcing inorganic filler” should be understood here as meaning any inorganic or mineral filler, whatever its color and its origin (natural or synthetic), also known as “white filler” or sometimes “clear fil ler” in contrast to carbon black, capable of reinforcing by itself, without means other than an intermediate coupling agent, a rubber composition intended for the manufacture of tires, in other words capable of replacing, in its reinforcing role, a conventional tire-grade carbon black; such a filler is generally characterized, in a known way, by the presence of hydroxy! (-OH) groups at its surface.
- -OH hydroxy!
- Mineral fillers of the sil iceous type in particular si lica (Si0 2 ), or of the aluminous type, in particular alumina (A I 2O3), are suitable in particular as reinforcing inorganic fillers.
- the silica used can be any reinforcing silica known to a person skilled in the art, in particular any precipitated or pyrogenic silica exhibiting a BET surface and a CTAB specific surface both of less than 450 m 2 / g, preferably from 30 to 400 m 3 /g. in particular between 60 and 300 m 2 / g.
- Mention wil l be made, as highly dispersible ("HD precipitated silicas"), for example, of the Ultrasil 7000 and Ultrasil 7005 silicas from Evonik, the Zeosi l 1 165 MP, 1 135 MP and 1 1 15 MP silicas from Rhodia, the Hi-Sil EZ 1 50G silica from PPG, the Zeopol 8715, 8745 and 8755 silicas from Huber.
- highly dispersible for example, of the Ultrasil 7000 and Ultrasil 7005 silicas from Evonik, the Zeosi l 1 165 MP, 1 135 MP and 1 1 15 MP silicas from Rhodia, the Hi-Sil EZ 1 50G silica from PPG, the Zeopol 8715, 8745 and 8755 silicas from Huber.
- the rubber composition of the tread of the snow tire according to the invention comprises 40 to 200 phr of a reinforcing filler comprising an inorganic filler, a carbon black or the mixture thereof, wherein a content of the carbon black is less than 20 phr.
- the content of total reinforcing filler is within a range from 50 to 1 50 phr, in particular from 60 to 140 phr.
- the reinforcing filler comprises predominantly an inorganic fi ller, in particular silica; in such a case, the inorganic fi ller, in particular silica, is present at a content preferably of greater than or equal to 40 phr, in combination or not with carbon black in a minor amount; the carbon black, when it is present, is used at a content of less than 20 phr, preferably less than 10 phr (for example between 0.5 and 20 phr, in particular between 2 and 10 phr).
- the coloring properties (black pigmenting agent) and UV-stabilizing properties of the carbon blacks are benefited from, without, moreover, adversely affecting the typical performances provided by the reinforcing inorganic fil ler.
- an at least bifunctional coupling agent (or bonding agent) intended to provide a satisfactory connection, of chemical and/or physical nature, between the inorganic filler (surface of its particles) and the diene elastomer.
- Use is made, in particular, of bifunctional organosilanes or polyorganosiloxanes.
- silane polysulphides referred to as “symmetrical” or “asymmetrical” depending on their specific structure, as described, for example, in Applications WO 03/002648 (or US 2005/01665 1 ) and WO 03/002649 (or US 2005/016650).
- x is an integer from 2 to 8 (preferably from 2 to 5);
- A is a divalent hydrocarbon radical (preferably, C pC ig alkylene groups or C6-C 12 arylene groups, more particularly C 1 -C t0 , in particular C 1-C4, alkylenes, especially propylene);
- the R 1 radicals which are unsubstituted or substituted and identical to or different from one another, represent a C i-C ( 8 alkyl. C 5 -C
- the R 2 radicals which are iinsubstituted or substituted and identical to or different from one another, represent a C C i8 alkoxyl or C 5 -C
- silane polysulphides of bis((C
- the content of coupling agent is preferably between 2 and 20 phr, more preferably between 3 and 15 phr.
- a reinforcing filler of another nature might be used as filler equivalent to the reinforcing inorganic filler described in the present section, provided that this reinforcing filler is covered With an inorganic layer, such as silica, or else comprises, at its surface, functional sites, in particular hydroxyls, requiring the use of a coupling agent in order to form the connection between the filler and the elastomer.
- an inorganic layer such as silica
- the rubber composition of the tread of the snow tire according to the invention has the other essential characteristic of comprising more than 10 phr and less than 100 phr a liquid phosphate plasticizer.
- the liquid phosphate plasticizer is l iquid at 20°C (under atmospheric pressure) by definition.
- the role of the liquid phosphate plasticizer is to soften the matrix by diluting the elastomer and the reinforcing filler.
- the content of the liquid phosphate plasticizer is preferably more than 20 phr and less than 80 phr, more preferably from 30 to 60 phr.
- the liquid phosphate plasticizer has a Tg (glass transition temperature, measured according to standard ASTM D3418) less than - 80°C (notably between -80°C and - 130°C), preferably less than -90°C (notably between -90°C and - 120°C), more preferably less than -100°C (notably between - 100°C and - 1 10°C).
- liquid phosphate plasticizers for example, of those that contain between 12 and 30 carbon atoms, for example trialkyi phosphate having between 12 and 30 carbon atoms.
- the number of carbon atoms of trialkyi phosphate should be taken to mean the total number of carbon atoms of three alkyl groups.
- the three alkyl groups of trialkyi phosphate may be the same or different each other.
- alkyl used herein refers to a straight or branched alkyl group, which may contain a hetero atom such as an oxygen atom in its chain, or which may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
- the trialkyi phosphate may have one or two phenyl groups of instead of alkyl groups.
- the liquid phosphate plasticizer is preferably trialkyi phosphate having between 12 and 30 carbon atoms.
- trialkyi phosphate of an oil selected from the group consisting of trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate (especially, tris(2-ethylhexyl) phosphate), tris(2-butoxyethyl) phosphate, tris(2-chloroethyl) phosphate, 2-ethylhexyl diphenyl phosphate, and the mixtures thereof.
- an oil selected from the group consisting of trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate (especially, tris(2-ethylhexyl) phosphate), tris(2-butoxyethyl) phosphate, tris(2-chloroethyl) phosphate, 2-ethylhexyl diphenyl phosphate, and the mixtures thereof.
- the liquid phosphate plasticizer is tris(2- ethylhexyl) phosphate.
- the rubber composition of the tread of the snow tire according to the invention is devoid or comprises less than 30 phr, preferably less than 20 phr, more preferably less than 10 phr, of any l iquid plasticizer(s) other than the liquid phosphate plasticizer.
- any extending oil whether of aromatic or non-aromatic nature, any liquid plasticizing agent known for its plasticizing properties with regard to diene elastomers, can be used as the liquid plasticizer other than the liquid phosphate plasticizer.
- these plasticizers or these oils which are more or less viscous, are liquids (that is to say, as a reminder, substances that have the ability to eventual ly take on the shape of their container), as opposed, in particular, to plasticizing hydrocarbon resins which are by nature solid at ambient temperature.
- the liquid plasticizer(s) (other than the liquid phosphate plasticizer) chosen from the group consisting of naphthenic oils (low or high viscosity, in particular hydrogenated or otherwise), polyolefinic oils, naphthenic oils, paraffinic oils, Distillate Aromatic Extracts (DAE) oils, Medium Extracted Solvates (MES) oils, Treated Distillate Aromatic Extracts (TDAE) oils, Residual Aromatic Extracts (RAE) oils, Treated Residual Aromatic Extracts (TRAE) oils.
- naphthenic oils low or high viscosity, in particular hydrogenated or otherwise
- polyolefinic oils naphthenic oils
- paraffinic oils Distillate Aromatic Extracts (DAE) oils
- MES Medium Extracted Solvates
- TDAE Treated Distillate Aromatic Extracts
- RAE Residual Aromatic Extracts
- TCE Treated Residual Aromatic Extracts
- SRAE Safety Residual Aromatic Extracts
- mineral oils vegetable oils
- vegetable oils ether plasticizers, ester plasticizers other than phosphate plasticizers, sulphonate plasticizers and the mixtures thereof are particularly suitable.
- the liquid plasticizer(s) are vegetable oils as described, for example, in an application WO 2012/069565.
- the rubber composition of the tread of the snow tire according to the invention is devoid or comprises less than 60 phr (that is from 0 to less than 60phr), preferably less than 50 phr (that is from 0 to 50 phr), more preferably less than 40 phr (that is from 0 to 40 phr) of any plasticizing hydrocarbon resin(s).
- Hydrocarbon resin(s) are polymers well known to those skilled in the art, essentially based on carbon and hydrogen but which may comprise other types of atoms, which can be used in particular as plasticizer or tackifiers in polymeric matrices. They are by nature miscible (i.e., compatible) in the contents used with the polymer compositions for which they are intended, so as to act as true diluents. They have been described for example in the work entitled "Hydrocarbon Resins" by R. Mildenberg, M. Zander and G. Collin (New York, VCH, 1997, ISBN 3-527-28617- 9), Chapter 5 of which is devoted to their applications, especially in rubber tyres (5.5.
- Rubber Tires and Mechanical Goods may be aliphatic, cycloaliphatic, aromatic, hydrogenated aromatic, of the aliphatic/aromatic type, i.e., based on aliphatic and/ or aromatic monomers. They may be natural or synthetic resins, whether or not based on petroleum (if such is the case, they are also known as petroleum resins). Their Tg is preferably above 0°C, in particular above 20°C (usually between 30°C and 95°C).
- these hydrocarbon resins may also be termed thermoplastic resins in the sense that they soften when heated and may thus be molded. They may also be defined by a softening point or temperature.
- the softening point of a hydrocarbon resin is generally about 50°C to 60°C higher than its Tg value. The softening point is measured according to standard ISO 4625 (ring-and-ball method).
- the macrostructure (Mw, Mn and Ip) is determined by size exclusion chromatography (SEC) as indicated below.
- SEC analysis for example, consists in separating the macromolecules in solution according to their size through columns filled with a porous gel; the molecules are separated according to their hydrodynamic volume, the bulkiest being eluted first.
- the sample to be analyzed is simply dissolved beforehand in an appropriate solvent, tetrahydrofuran, at a concentration of 1 g/liter.
- the solution is then filtered through a filter with a porosity of 0.45 ⁇ , before injection into the apparatus.
- the apparatus used is, for example, a "Waters Alliance" chromatographic line according to the following conditions:
- elution solvent is tetrahydrofuran
- flow rate 1 ml/min
- injected volume 100 ⁇ ⁇ ;
- a Moore calibration is carried out with a series of commercial polystyrene standards having a low Ip (less than 1.2), with known molar masses, covering the range of masses to be analyzed.
- the weight-average molar mass (Mw), the number-average molar mass (Mn) and the polydispersity index (Ip:Mw/Mn) are deduced from the data recorded (curve of distribution by mass of the molar masses).
- All the values for molar masses shown in the present application are thus relative to calibration curves produced with polystyrene standards.
- the plasticizing hydrocarbon resin exhibits at least any one, more preferably all, of the following characteristics:
- a Tg of above 25°C in particular between 30°C and 100°C, more preferably above 30°C (in particular between 30°C and 95°C);
- Mn a number-average molar mass between 400 and 2000 g/mol, preferably between 500 and 1500 g/mol;
- hydrocarbon resin(s) examples include those chosen from the group consisting of cyclopentadiene (abbreviated to CPD) homopolymer or copolymer resins, dicyclopentadiene (abbreviated to DCPD) homopolymer or copolymer resins, terpene homopolymer or copolymer resins, C 5 fraction homopolymer or copolymer resins, C fraction homopolymer or copolymer resins, alpha-methyl styrene homopolymer or copolymer resins and the mixtures thereof.
- CPD cyclopentadiene
- DCPD dicyclopentadiene
- terpene homopolymer or copolymer resins terpene homopolymer or copolymer resins
- C 5 fraction homopolymer or copolymer resins C fraction homopolymer or copolymer resins
- alpha-methyl styrene homopolymer or copolymer resins alpha-methyl
- Use is more preferably made, among the above copolymer resins, of those chosen from the group consisting of (D)CPD/vinylaromatic copolymer resins, (D)CPD/terpene copolymer resins, (D)CPD/C 5 fraction copolymer resins, (D)CPD/Cg fraction copolymer resins, terpene/vinylaromatic copolymer resins, terpene/phenol copolymer resins, C 5 fraction/vinyl-aromatic copolymer resins, C 9 fraction/vinylaromatic copolymer resins, and the mixtures thereof.
- pene' combines here, in a known way, the a-pinene, ⁇ -pinene and limonene monomers; use is preferably made of a limonene monomer, which compound exists, in a known way, in the form of three possible isomers: L-limonene ( laevorotatory enantiomer), D-l imonene (dextrorotatory enantiomer) or else dipentene, the racemate of the dextrorotatory and laevorotatory enantiomers.
- the vinylaromatic compound is styrene or a vinylaromatic monomer resulting from a C 9 fraction (or more generally from a Cg to C IO fraction).
- the vinylaromatic compound is the minor monomer, expressed as molar fraction, in the copolymer under consideration.
- resins selected from the group consisting of (D)CPD homopolymer resins, (D)CPD/ styrene copolymer resins, polylimonene resins, limonene/ styrene copolymer resins, limonene/D(CPD) copolymer resins, C 5 fraction/styrene copolymer resins, C 5 fraction /C 9 fraction copolymer resins and blends of these resins.
- the designation "resin” is reserved in the present application, by definition, for a compound which is solid at ambient temperature (20°C under atmosphere pressure), in contrast to a l iquid plasticizing compound, such as an oil.
- the rubber compositions of the treads of the tires in according to the invention also comprise all or a portion of the usual additives generally used in the elastomer compositions intended for the manufacture of treads for tires, in particular for snow tires or winter tires, such as, for example, protection agents, such as antiozone waxes, chemical antiozonants, antioxidants, reinforcing resins, methylene acceptors (for example phenol ic novolak resin) or methylene donors (for example HMT or H3M), a crosslinking system based either on sulphur or on donors of sulphur and/or per oxide and/or bismaleimides, vulcanization accelerators, or vulcanization activators.
- protection agents such as antiozone waxes, chemical antiozonants, antioxidants, reinforcing resins, methylene acceptors (for example phenol ic novolak resin) or methylene donors (for example HMT or H3M)
- methylene acceptors for example phenol ic novolak
- compositions can also comprise coupling activators when a coupling agent is used, agents for covering the inorganic filler or more generally processing aids capable, in a known way, by virtue of an improvement in the dispersion of the filler in the rubber matrix and of a lowering of the viscosity of the compositions, of improving their property of processing in the raw state; these agents are, for example, hydrolysable silanes, such as alkylalkoxysilanes, polyols, polyethers, amines, or hydroxylated or hydrolysable polyorganosiloxanes. -5.
- the rubber compositions of the treads of the snow tires according to the invention may be manufactured in appropriate mixers using two successive preparation phases well known to a person skilled in the art: a first phase of thermomechanical working or kneading (referred to a as “non-productive” phase) at high temperature, up to a maximum temperature of between 1 10°C and 190°C, preferably between 130°C and 180°C, followed by a second phase of mechanical working (referred to as “productive” phase) at a lower temperature, typically of less than 1 10°C, for example between 40°C and 100° C, finishing phase during which the crosslinking or vulcanization system is incorporated.
- a first phase of thermomechanical working or kneading referred to a as "non-productive" phase
- productive phase a second phase of mechanical working
- a process which can be used for the manufacture of such compositions comprises, for example and preferably, the following steps:
- the first (non-productive) phase is carried out in a single thermomechanical stage during which all the necessary constituents are introduced into an appropriate mixer, such as a standard internal mixer, followed, in a second step, for example after kneading for 1 to 2 minutes, by the other additives, optional additional filler-covering agents or processing aids, with the exception of the crosslinking system.
- the total kneading time, in this non-productive phase is preferably between 1 and 15 min.
- the crosslinking system is then incorporated at low temperature (for example, between 40°C and 100°C), generally in an external mixer, such as an open mill;
- the combined mixture is then mixed (the second (productive) phase) for a few minutes, for example between 2 and 15 min.
- the crosslinking system proper is preferably based on sulphur and on a primary vulcanization accelerator, in particular on an accelerator of sulphenamide type.
- a primary vulcanization accelerator in particular on an accelerator of sulphenamide type.
- various known secondary accelerators or vulcanization activators such as zinc oxide, stearic acid, guanidine derivatives (in particular diphenylguanidine), and the like, incorporated during the first nonproductive phase and/or during the productive phase.
- the content of sulphur is preferably between 0.5 and 3.0 phr, and that of the primary accelerator is preferably between 0.5 and 5.0 phr.
- Use may be made, as accelerator (primary or secondary) of any compound capable of acting as accelerator of the vulcanization of diene elastomers in the presence of sulphur, in particular accelerators of the thiazoles type and their derivatives, accelerators of thiurams types, or zinc dithiocar bamates.
- accelerators are more preferably chosen from the group consisting of 2-mercaptobenzothiazyl disulphide (abbreviated to "MBTS”), N-cycIohexyl-2-benzothiazole sulphenamide (abbreviated to “CBS”), N,N-dicyclohexyl-2 benzothiazolesulphenamide (“DCBS”), N-ter't-butyl-2-ben zothiazolesulphenamide (“TBBS”), N-tert-butyl-2 benzothiazolesulphenimide (“TBSI”), zinc dibenzyldithiocarbamate (“ZBEC”). Tetrabenzylthiuram disulfide (“TBZTD”) and the mixtures thereof.
- MBTS 2-mercaptobenzothiazyl disulphide
- CBS N-cycIohexyl-2-benzothiazole sulphenamide
- DCBS N,N-dicyclohexyl-2 benzothiazoles
- the final composition thus obtained is subsequently calendered, for example in the form of a sheet or of a plaque, in particular for laboratory characterization, or else extruded in the form of a rubber profiled element which can be used directly as snow tire tread or winter tire tread.
- the vulcanization (or curing) is carried out in a known way at a temperature generally of between 1 10°C and 190°C for a sufficient time which can vary, for example, between 5 and 90 min depending in particular on the curing temperature, the vulcanization system adopted and the vulcanization kinetics of the composition under consideration.
- the rubber compositions of the treads of the snow tires according to the invention can constitute all or a portion only of the tread in accordance with the invention, in the case of a tread of composite type formed from several rubber compositions of different formulations.
- the invention relates to the rubber compositions and to the treads described above, both in the raw state (i.e., before curing) and in the cured state (i.e., after crosslinking or vulcanization).
- the invention also applies to the cases where the rubber compositions described above form only one part of treads of composite or hybrid type, especially those consisting of two radially superposed layers of different formulations (referred to as "cap-base” construction), that are both patterned and intended to come into contact with the road when the tire is rolling, during the service life of the latter.
- the base part of the formulation described above could then constitute the radially outer layer of the tread intended to come into contact with the ground from the moment when a new tire starts rolling, or on the other hand its radially inner layer intended to come into. contact with the ground at a later stage.
- the reinforcing filler for example a reinforcing inorganic filler, such as silica, and its associated coupling agent
- the liquid phosphate plasticizer for example a reinforcing inorganic filler, such as silica, and its associated coupling agent
- the liquid phosphate plasticizer for example a reinforcing inorganic filler, such as silica, and its associated coupling agent
- the diene elastomer(s) and the various other ingredients with the exception of the vulcanization system
- compositions thus obtained were subsequently calendered, either in the form of sheets (thickness of 2 to 3 mm) or of fine sheets of rubber, for the measurement of their-physical or mechanical properties, or in the form of profiled elements which could be used directly, after cutting and/or assembling to the desired dimensions, for example as tire semi-finished products, in particular as tire treads.
- compositions based on a diene elastomer (IR) are compared, the three compositions are reinforced with a blend of silica and carbon black with 40phr of a tris(2-ethylhexyl)phosphate (as a liquid phosphate plasticizer) or of another liquid plasticizer (MES oils or TDAE oils instead of the liquid phosphate plasticizer) conventionally used for snow tires or winter tires:
- composition C- 1 composition with MES oils (a first reference);
- Composition C-2 composition with TDAE oils (a comparative example);
- composition C-3 composition according to the present invention with the liquid phosphate plasticizer
- composition C-3 according to the invention has equivalent values of shore A hardness and of moduli in the extension compared to that of the first reference of C- 1 (and also the comparative example C-2). This is a general indicator of a good road performance maintained on the snow tire of the invention.
- compositions C-4, C-5 and C-6 formulations of which are expressed in Table 4 were also subjected to the above friction test.
- the results are expressed in Table 5.
- the composition C-5, based on natural rubber, according to the invention has a certain increase (5%)
- the composition C-6, based on a synthetic polyisoprene, according to the invention has a further remarkable increase ( 13%) in the friction coefficient on the snow, relative to the composition C-4 (the second reference).
- the results of the tests commented above show that the specific rubber composition of the tread of the snow tire according to the present invention gives the snow tires and their treads a better and improved grip on snowy ground.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580068564.1A CN107001714A (zh) | 2014-12-15 | 2015-12-15 | 具有包含橡胶组合物的胎面的雪地轮胎 |
EP15870107.8A EP3234001A4 (en) | 2014-12-15 | 2015-12-15 | A snow tire having a tread comprising a rubber composition |
CA2971124A CA2971124C (en) | 2014-12-15 | 2015-12-15 | A snow tire having a tread comprising a rubber composition |
JP2017549964A JP6698261B2 (ja) | 2014-12-15 | 2015-12-15 | ゴム組成物を含むトレッドを有するスノータイヤ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014083634 | 2014-12-15 | ||
JPPCT/JP2014/083634 | 2014-12-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016098908A1 true WO2016098908A1 (en) | 2016-06-23 |
Family
ID=56126781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/085598 WO2016098908A1 (en) | 2014-12-15 | 2015-12-15 | A snow tire having a tread comprising a rubber composition |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3234001A4 (enrdf_load_stackoverflow) |
JP (1) | JP6698261B2 (enrdf_load_stackoverflow) |
CN (1) | CN107001714A (enrdf_load_stackoverflow) |
CA (1) | CA2971124C (enrdf_load_stackoverflow) |
WO (1) | WO2016098908A1 (enrdf_load_stackoverflow) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3305841A1 (en) * | 2016-10-10 | 2018-04-11 | The Goodyear Tire & Rubber Company | Rubber composition and tire with tread for combination of low temperature performance and wet traction |
WO2018079802A1 (en) * | 2016-10-31 | 2018-05-03 | Compagnie Generale Des Etablissements Michelin | A tire comprising a tread |
WO2018079803A1 (en) * | 2016-10-31 | 2018-05-03 | Compagnie Generale Des Etablissements Michelin | A tire comprising a tread |
US20180229552A1 (en) * | 2017-02-13 | 2018-08-16 | Cooper Tire & Rubber Company | Guayule tire tread compound |
WO2018151305A1 (en) * | 2017-02-20 | 2018-08-23 | Compagnie Generale Des Etablissements Michelin | A tire comprising a tread |
EP3385316A1 (en) * | 2017-04-04 | 2018-10-10 | The Goodyear Tire & Rubber Company | Rubber composition and tire with tread with oxidized carbon black |
WO2018221630A1 (en) * | 2017-05-31 | 2018-12-06 | Compagnie Generale Des Etablissements Michelin | A tire comprising a tread |
CN109952208A (zh) * | 2016-10-31 | 2019-06-28 | 米其林集团总公司 | 包括胎面的轮胎 |
CN110540679A (zh) * | 2018-05-29 | 2019-12-06 | 住友橡胶工业株式会社 | 轮胎用橡胶组合物和充气轮胎 |
CN112118968A (zh) * | 2018-05-17 | 2020-12-22 | 米其林集团总公司 | 包括基于有机过氧化物的交联体系的轮胎胎面 |
EP3676324A4 (en) * | 2017-08-30 | 2021-04-07 | Compagnie Générale des Etablissements Michelin | TIRE WITH A TREAD INCLUDING A RUBBER COMPOSITION |
EP3733758A4 (en) * | 2017-12-26 | 2021-05-12 | Sumitomo Rubber Industries, Ltd. | Tread rubber composition for studless tires |
CN113039074A (zh) * | 2018-11-15 | 2021-06-25 | 米其林集团总公司 | 用于轮胎胎面的橡胶组合物 |
US20210363332A1 (en) * | 2018-03-30 | 2021-11-25 | Compagnie Generale Des Etablissements Michelin | A tire comprising a tread |
US11267285B2 (en) | 2018-05-29 | 2022-03-08 | Sumitomo Rubber Industries, Ltd. | Rubber composition for tires and pneumatic tire |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60137945A (ja) * | 1983-12-26 | 1985-07-22 | Yokohama Rubber Co Ltd:The | タイヤトレツド用ゴム組成物 |
JPH10273560A (ja) * | 1997-02-03 | 1998-10-13 | Sumitomo Rubber Ind Ltd | タイヤトレッド用ゴム組成物 |
WO2006009002A1 (ja) * | 2004-07-23 | 2006-01-26 | Bridgestone Corporation | インナーライナー用ゴム組成物及びそれを用いた空気入りラジアルタイヤ |
JP2008038028A (ja) * | 2006-08-07 | 2008-02-21 | Yokohama Rubber Co Ltd:The | タイヤインナーライナー用ゴム組成物およびこれを用いた空気入りタイヤ |
WO2009062735A1 (fr) * | 2007-11-16 | 2009-05-22 | Societe De Technologie Michelin | Composition de caoutchouc pour pneumatique a base de polynorbornene et d'un plastifiant liquide |
WO2014104283A1 (ja) * | 2012-12-28 | 2014-07-03 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | 冬用タイヤトレッド用のゴム組成物 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2673187B1 (fr) * | 1991-02-25 | 1994-07-01 | Michelin & Cie | Composition de caoutchouc et enveloppes de pneumatiques a base de ladite composition. |
JP4429079B2 (ja) * | 2004-05-27 | 2010-03-10 | 株式会社ブリヂストン | 空気入りタイヤ |
JP5194546B2 (ja) * | 2007-04-25 | 2013-05-08 | 横浜ゴム株式会社 | ゴム組成物 |
FR2928647B1 (fr) * | 2008-03-13 | 2011-11-25 | Michelin Soc Tech | Composition de caoutchouc pour bande de roulement de pneumatique hiver |
FR2934273B1 (fr) * | 2008-07-24 | 2010-11-05 | Michelin Soc Tech | Composition de caoutchouc pour bande de roulement de pneumatique hiver |
FR2968005B1 (fr) * | 2010-11-26 | 2012-12-21 | Michelin Soc Tech | Bande de roulement de pneumatique neige |
FR2974538B1 (fr) * | 2011-04-28 | 2013-06-14 | Michelin Soc Tech | Pneumatique a adherence sur glace amelioree |
JP6087495B2 (ja) * | 2011-07-20 | 2017-03-01 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物及び空気入りタイヤ |
FR2980481B1 (fr) * | 2011-09-26 | 2013-10-11 | Michelin Soc Tech | Pneumatique a adherence amelioree sur sol mouille |
-
2015
- 2015-12-15 JP JP2017549964A patent/JP6698261B2/ja active Active
- 2015-12-15 CA CA2971124A patent/CA2971124C/en active Active
- 2015-12-15 WO PCT/JP2015/085598 patent/WO2016098908A1/en active Application Filing
- 2015-12-15 EP EP15870107.8A patent/EP3234001A4/en not_active Ceased
- 2015-12-15 CN CN201580068564.1A patent/CN107001714A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60137945A (ja) * | 1983-12-26 | 1985-07-22 | Yokohama Rubber Co Ltd:The | タイヤトレツド用ゴム組成物 |
JPH10273560A (ja) * | 1997-02-03 | 1998-10-13 | Sumitomo Rubber Ind Ltd | タイヤトレッド用ゴム組成物 |
WO2006009002A1 (ja) * | 2004-07-23 | 2006-01-26 | Bridgestone Corporation | インナーライナー用ゴム組成物及びそれを用いた空気入りラジアルタイヤ |
JP2008038028A (ja) * | 2006-08-07 | 2008-02-21 | Yokohama Rubber Co Ltd:The | タイヤインナーライナー用ゴム組成物およびこれを用いた空気入りタイヤ |
WO2009062735A1 (fr) * | 2007-11-16 | 2009-05-22 | Societe De Technologie Michelin | Composition de caoutchouc pour pneumatique a base de polynorbornene et d'un plastifiant liquide |
WO2014104283A1 (ja) * | 2012-12-28 | 2014-07-03 | コンパニー ゼネラール デ エタブリッスマン ミシュラン | 冬用タイヤトレッド用のゴム組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3234001A4 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3305841A1 (en) * | 2016-10-10 | 2018-04-11 | The Goodyear Tire & Rubber Company | Rubber composition and tire with tread for combination of low temperature performance and wet traction |
WO2018079802A1 (en) * | 2016-10-31 | 2018-05-03 | Compagnie Generale Des Etablissements Michelin | A tire comprising a tread |
WO2018079803A1 (en) * | 2016-10-31 | 2018-05-03 | Compagnie Generale Des Etablissements Michelin | A tire comprising a tread |
CN109922974A (zh) * | 2016-10-31 | 2019-06-21 | 米其林集团总公司 | 包括胎面的轮胎 |
CN109952208A (zh) * | 2016-10-31 | 2019-06-28 | 米其林集团总公司 | 包括胎面的轮胎 |
US11254164B2 (en) | 2016-10-31 | 2022-02-22 | Compagnie Generale Des Etablissements Michelin | Tire comprising a tread |
US10843508B2 (en) * | 2017-02-13 | 2020-11-24 | Cooper Tire & Rubber Company | Guayule tire tread compound |
US20180229552A1 (en) * | 2017-02-13 | 2018-08-16 | Cooper Tire & Rubber Company | Guayule tire tread compound |
US11465446B2 (en) | 2017-02-13 | 2022-10-11 | Cooper Tire & Rubber Company | Natural rubber tire tread compound |
WO2018151305A1 (en) * | 2017-02-20 | 2018-08-23 | Compagnie Generale Des Etablissements Michelin | A tire comprising a tread |
EP3385316A1 (en) * | 2017-04-04 | 2018-10-10 | The Goodyear Tire & Rubber Company | Rubber composition and tire with tread with oxidized carbon black |
US10457797B2 (en) | 2017-04-04 | 2019-10-29 | The Goodyear Tire & Rubber Company | Tire with tread with oxidized carbon black |
WO2018221630A1 (en) * | 2017-05-31 | 2018-12-06 | Compagnie Generale Des Etablissements Michelin | A tire comprising a tread |
CN110770036A (zh) * | 2017-05-31 | 2020-02-07 | 米其林集团总公司 | 包括胎面的轮胎 |
US11724545B2 (en) | 2017-05-31 | 2023-08-15 | Compagnie Generale Des Etablissements Michelin | Tire comprising a tread |
EP3676324A4 (en) * | 2017-08-30 | 2021-04-07 | Compagnie Générale des Etablissements Michelin | TIRE WITH A TREAD INCLUDING A RUBBER COMPOSITION |
EP3733758A4 (en) * | 2017-12-26 | 2021-05-12 | Sumitomo Rubber Industries, Ltd. | Tread rubber composition for studless tires |
US20210363332A1 (en) * | 2018-03-30 | 2021-11-25 | Compagnie Generale Des Etablissements Michelin | A tire comprising a tread |
CN112118968A (zh) * | 2018-05-17 | 2020-12-22 | 米其林集团总公司 | 包括基于有机过氧化物的交联体系的轮胎胎面 |
US11098180B2 (en) * | 2018-05-29 | 2021-08-24 | Sumitomo Rubber Industries, Ltd. | Rubber composition for tires and pneumatic tire |
US11267285B2 (en) | 2018-05-29 | 2022-03-08 | Sumitomo Rubber Industries, Ltd. | Rubber composition for tires and pneumatic tire |
CN110540679A (zh) * | 2018-05-29 | 2019-12-06 | 住友橡胶工业株式会社 | 轮胎用橡胶组合物和充气轮胎 |
CN110540679B (zh) * | 2018-05-29 | 2023-03-31 | 住友橡胶工业株式会社 | 轮胎用橡胶组合物和充气轮胎 |
CN113039074A (zh) * | 2018-11-15 | 2021-06-25 | 米其林集团总公司 | 用于轮胎胎面的橡胶组合物 |
Also Published As
Publication number | Publication date |
---|---|
CA2971124C (en) | 2022-09-27 |
JP2018505289A (ja) | 2018-02-22 |
CN107001714A (zh) | 2017-08-01 |
JP6698261B2 (ja) | 2020-05-27 |
EP3234001A1 (en) | 2017-10-25 |
EP3234001A4 (en) | 2018-05-30 |
CA2971124A1 (en) | 2016-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2971124C (en) | A snow tire having a tread comprising a rubber composition | |
EP3224315B1 (en) | A rubber composition | |
JP2014534283A (ja) | 湿潤地面上で改良されたグリップ性を有するタイヤ | |
EP3172275B1 (en) | A rubber composition comprising silicone oil | |
EP3237524B1 (en) | A tire having a tread comprising rubber composition comprising short fibers | |
EP3532311A1 (en) | A tire comprising a tread | |
JP2014528021A (ja) | 改良された湿潤地面上でのグリップ性を有するタイヤ | |
EP3532308A1 (en) | A tire comprising a tread | |
EP3532310A1 (en) | A tire comprising a tread | |
WO2018143223A1 (en) | A tire comprising a rubber composition | |
EP3532312B1 (en) | A tire comprising a tread | |
WO2017170654A1 (en) | A tire having a tread comprising a rubber composition | |
US20210363332A1 (en) | A tire comprising a tread | |
US11767417B2 (en) | Tire comprising a tread | |
US20210053397A1 (en) | A tire comprising a tread | |
EP3676324B1 (en) | A tire having a tread comprising a rubber composition | |
WO2015097918A1 (en) | A tire having a tread comprising particles of silicone rubber | |
WO2019220627A1 (en) | A composition for a tire tread |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15870107 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015870107 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2971124 Country of ref document: CA Ref document number: 2017549964 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |