WO2016098629A1 - Aqueous two layer-coated metal plate - Google Patents

Aqueous two layer-coated metal plate Download PDF

Info

Publication number
WO2016098629A1
WO2016098629A1 PCT/JP2015/084278 JP2015084278W WO2016098629A1 WO 2016098629 A1 WO2016098629 A1 WO 2016098629A1 JP 2015084278 W JP2015084278 W JP 2015084278W WO 2016098629 A1 WO2016098629 A1 WO 2016098629A1
Authority
WO
WIPO (PCT)
Prior art keywords
rich layer
layer
parts
aqueous
colloidal silica
Prior art date
Application number
PCT/JP2015/084278
Other languages
French (fr)
Japanese (ja)
Inventor
忠繁 中元
航 于
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020177017164A priority Critical patent/KR101808495B1/en
Priority to CN201580068417.4A priority patent/CN107000381B/en
Priority to MYPI2017702200A priority patent/MY182210A/en
Publication of WO2016098629A1 publication Critical patent/WO2016098629A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier

Definitions

  • the present invention relates to a water-based two-layer coated metal plate having excellent conductivity for electromagnetic wave countermeasures used for household electric appliances and the like.
  • Patent Document 1 a mixed film of lithium silicate having a film forming property and colloidal silica having no film forming property is formed on a first layer (metal plate side), and a film containing an organic resin as a main component on a second layer.
  • Techniques for forming the are disclosed.
  • lithium silicate has a hygroscopic property, water and oxygen passing through the second layer oxidize the galvanized layer, thereby causing a blackening phenomenon and reducing corrosion resistance.
  • an alkaline atmosphere when alkali degreasing is performed, there is a problem that lithium silicate is eluted and the corrosion resistance and adhesion with the galvanized layer are greatly deteriorated.
  • Patent Document 2 discloses an organic coated steel sheet having a layer containing a phosphoric acid compound, oxide fine particles (colloidal silica) and a metal compound as a first layer, and an organic resin film as a second layer.
  • a layer containing Si, P, Al, and an organic resin is coated as a first layer, reacted with a galvanized layer, washed with water, and an organic resin layer is coated thereon as a second layer.
  • a surface-treated galvanized steel sheet is disclosed.
  • Patent Document 4 discloses a surface-treated metal plate having a resin film formed from an aqueous resin liquid in which colloidal silica and a silane coupling agent are added to two types of organic resins. Since it is low, the barrier property against water and oxygen is poor, and the corrosion resistance and blackening resistance are insufficient.
  • the present invention has a surface-treated metal plate having good conductivity and having excellent adhesion, blackening resistance, alkali degreasing resistance, and persistent corrosion resistance (particularly a buttock). Providing special chemical conversion steel sheets) was raised as an issue.
  • the present invention that has solved the above problems is a metal plate in which two thin films are laminated on at least one surface of a metal plate, wherein 60-80 parts by mass of colloidal silica having an average particle size of 4-15 nm and carboxyl Containing 20 to 40 parts by mass of a group-containing polyurethane resin and 7.5 to 20 parts by mass of a silane coupling agent having a glycidoxy group at the terminal with respect to a total of 100 parts by mass of the colloidal silica and the carboxyl group-containing polyurethane resin; An inorganic rich layer having a film thickness of 0.01 to 0.1 ⁇ m formed from a first aqueous composition that does not contain a metal component other than an inorganic inorganic compound, a phosphoric acid compound, and lithium, and an organic layer on the inorganic rich layer The organic rich layer having a film thickness of 0.2 to 0.5 ⁇ m formed from the second aqueous composition containing a resin, and the total of the inorgan
  • the colloidal silica in the first aqueous composition has an average particle diameter of 4 to 6 nm. It is also a preferred embodiment of the present invention that the water vapor permeability of the film obtained from the organic resin contained in the second aqueous composition is 100 g / m 2 / day or less.
  • the present invention has good electrical conductivity (less than 0.5 ⁇ by a surface resistance meter / 2 probe method) useful for electromagnetic wave countermeasures for home appliances, etc., and has excellent adhesion, blackening resistance, An aqueous two-layer coated metal plate having alkali degreasing properties and long-term corrosion resistance could be provided.
  • the present inventors have secured corrosion resistance with an inorganic-rich ultrathin film (inorganic-rich layer) having a fine colloidal silica, and the organic resin is mainly used therefor.
  • the present invention has found that good conductivity can be obtained by providing an organic rich layer having a high barrier property (suppressing elution of silica and the like) and setting the total film thickness of both to 0.6 ⁇ m or less. Reached.
  • the present invention will be described in detail.
  • a galvanized layer is formed on a steel plate body, and an inorganic rich layer is formed on the first layer as a first layer.
  • a first aqueous composition is formed to a thickness of 0.1 ⁇ m, and an organic rich layer is formed as a second layer from the second aqueous composition to a thickness of 0.2 to 0.5 ⁇ m thereon.
  • a galvanized steel plate for example, besides a galvanized steel plate shown in FIG. 1, a galvanized steel plate, an aluminum plate, an aluminum-type alloy plate, a titanium plate etc. can be used. Most preferred is a galvanized steel sheet. From the viewpoint of environmental problems, it is preferable not to perform chromate treatment.
  • the inorganic rich layer needs to contain colloidal silica having an average particle size of 4 to 15 nm.
  • Colloidal silica is concentrated at the interface with the galvanized layer, and the interaction between the silanol group (—SiOH) of silica (SiO 2 ) and the galvanized surface (Zn—OH) causes the inorganic rich layer and the galvanized surface.
  • —SiOH silanol group
  • Zn—OH galvanized surface
  • Colloidal silica also has an effect of improving corrosion resistance.
  • the colloidal silica in the film is eluted when the ambient pH is increased in a corrosive environment, and forms a mixed corrosion product of zinc hydrate.
  • This mixed corrosion product exhibits a barrier effect and improves the corrosion resistance.
  • the organic rich layer described later exerts an action of slowing the elution rate of colloidal silica, it ensures a durable and excellent corrosion resistance (particularly the heel part), and also has blackening resistance and alkali degreasing resistance. Can be expressed.
  • the average particle diameter of the silica used is 4 to 15 nm.
  • the corrosion resistance of the inorganic rich layer improves as the average particle size of silica decreases. It is considered that the corrosion resistance is further improved by densifying the inorganic rich layer and further improving the interfacial adhesion with the galvanized layer. From this point of view, the smaller the particle diameter of the silica particles, the better. However, when the particles are extremely fine, the above effect is saturated, so the lower limit of the particle diameter is 4 nm.
  • silica in the above range examples include Snowtex (registered trademark) 30 (average particle size: 10 to 15 nm), Snowtex (registered trademark) S (8 to 11 nm), and Snowtex (registered trademark) XS manufactured by Nissan Chemical Industries, Ltd. (4 to 6 nm), Snowtex (registered trademark) N (10 to 15 nm), Snowtex (registered trademark) NXS (4 to 6 nm), Snowtex (registered trademark) C (10 to 15 nm), Snowtex (registered trademark) ) CXS (4 to 6 nm) or the like can be used alone or in combination.
  • the average particle diameter of the silica is preferably a nominal value in the catalog or a measurement method based on the Sears method (4 to 6 nm) or the BET method (4 to 20 nm).
  • the corrosion resistance of the inorganic rich layer improves as the silica particle size decreases. This is presumably because the silica has a large surface area and high activity, which is advantageous for elution of silica in a corrosive environment and formation of mixed corrosion products. From this viewpoint, it is preferable that 50% by mass or more of the colloidal silica included in the inorganic rich layer has an average particle diameter of 4 to 6 nm.
  • the “ST-30” (10 to 15 nm) or “ST-S” (8 to 11 nm) is used as a part of the colloidal silica. It is good to use. However, the total of these is preferably less than 50% by mass in 100% by mass of colloidal silica.
  • the inorganic rich layer of the present invention contains a carboxyl group-containing polyurethane resin. This is because the film cannot be formed only with colloidal silica.
  • a carboxyl group-containing polyurethane resin described in JP-A-2006-43913 can be suitably used.
  • This carboxyl group-containing polyurethane resin is an aqueous dispersion of a polyurethane resin synthesized by essentially using a polyol having a carboxyl group.
  • the raw materials include 1,4-cyclohexanedimethanol, polyol components such as polytetramethylene glycol having an average molecular weight of about 400 to 4000, a polyol having a carboxyl group such as dimethylolpropionic acid, tolylene diisocyanate, diphenylmethane diisocyanate, dicyclohexylmethane. Isocyanate components such as diisocyanate are used.
  • the chain extender is preferably a polyamine such as ethylenediamine.
  • a known method can be used to prepare an aqueous liquid of the carboxyl group-containing polyurethane resin used in the present invention.
  • the carboxyl group of the carboxyl group-containing urethane prepolymer is neutralized with a base,
  • a method of emulsifying and dispersing to chain extension reaction a method of emulsifying and dispersing a carboxyl group-containing polyurethane resin with high shear force in the presence of an emulsifier, and the like.
  • a relatively low molecular weight carboxyl group-containing isocyanate group-terminated urethane prepolymer is prepared by using the above-described polyisocyanate and the above-described polyol so that the isocyanate group becomes excessive in the NCO / OH ratio.
  • the temperature for synthesizing the urethane prepolymer is not particularly limited, but it can be synthesized at a temperature of 50 to 200 ° C.
  • the obtained carboxyl group-containing isocyanate group-terminated urethane prepolymer can be emulsified and dispersed in water by neutralization with a base.
  • the neutralizing agent is not particularly limited, but ammonia; tertiary amines such as triethylamine and triethanolamine are preferable. More preferably, triethylamine is used.
  • a chain extension reaction can be performed in water using a chain extender such as polyamine.
  • the chain extension reaction can be appropriately carried out before emulsification dispersion, simultaneously with emulsification dispersion, or after emulsification dispersion, depending on the reactivity of the chain extender used.
  • the carboxyl group-containing polyurethane resin is neutralized in the first aqueous composition, the amine used for neutralization is volatilized after the formation of the inorganic rich layer. Present as a resin.
  • silane coupling agent In the first aqueous composition used in the present invention, a glycidoxy group-containing silane coupling agent is blended at the terminal. This silane coupling agent further improves the adhesion between the metal plate surface and the inorganic rich layer.
  • the silane coupling agent has a functional group that binds an inorganic component and an organic component, and is more reactive than other silane coupling agents. Bonding strength is strengthened, and it is effective in improving performance such as corrosion resistance and alkali degreasing resistance.
  • silane coupling agent having a glycidoxy group at the terminal examples include ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -glycidoxypropylmethyldiethoxysilane.
  • first aqueous composition When forming the inorganic rich layer, a first aqueous composition in which colloidal silica, a carboxyl group-containing polyurethane resin, and a silane coupling agent are mixed is used.
  • the first aqueous composition does not include a metal component other than the lithium-based inorganic compound, the phosphate compound, and lithium.
  • the lithium-based inorganic compound include lithium silicate used in Patent Document 1, but lithium silicate is not preferable because it causes blackening (stain stain, discoloration).
  • Patent Documents 2 and 3 the adhesion between the first layer and the plating layer is improved by using the phosphoric acid compound and the metal component and etching the surface of the plating layer.
  • metal components other than a lithium-type inorganic compound, a phosphoric acid compound, and lithium are not added to a 1st aqueous composition.
  • colloidal silica colloidal silica stabilized with sodium like the above-mentioned Snowtex (registered trademark) XS may be used, that is, a metal component may be contained. It means that a metal component other than the lithium-based inorganic compound, the phosphate compound and lithium is not added to the carboxyl group-containing polyurethane resin and the silane coupling agent.
  • the colloidal silica in the inorganic rich layer is 60 to 80 parts by mass (preferably 65 to 75 parts by mass), and the carboxyl group-containing polyurethane resin is 20 to 40 parts by mass (preferably 25 to 35 parts by mass). It can be prepared by mixing colloidal silica, an aqueous solution of a carboxyl group-containing polyurethane resin, and the silane coupling agent so that the silane coupling agent having a glycidoxy group at the terminal is 7.5 to 20 parts by mass.
  • the description in this paragraph is the blending amount when the total amount of the two components of colloidal silica and carboxyl group-containing polyurethane resin is 100 parts by mass, that is, the amount of the silane coupling agent is colloidal silica and carboxyl. This is the blending amount when the total amount of the group-containing polyurethane resin is 100 parts by mass.
  • the desired corrosion resistance cannot be ensured.
  • carboxyl group-containing polyurethane resin When there is too little carboxyl group-containing polyurethane resin, the formation of the film becomes non-uniform. If the amount of the silane coupling agent is too small, the effect of improving the adhesion between the metal plate surface and the inorganic rich layer becomes insufficient, and the reactivity between the colloidal silica and the polyurethane resin also decreases, so that the corrosion resistance, tape peel resistance, Alkali degreasing resistance, blackening resistance, etc. deteriorate. On the other hand, when there are too many silane coupling agents, the time-dependent stability of a 1st aqueous composition will fall and it will become disadvantageous also in terms of cost.
  • the thickness of the inorganic rich layer as the first layer is set to 0.01 to 0.1 ⁇ m. Even when the inorganic rich layer of the present invention is an extremely thin film having a thickness of 0.01 ⁇ m, an effect of improving the adhesion with the galvanized layer is recognized. However, when it is thinner than 0.01 ⁇ m, the formation of the film becomes non-uniform, or the absolute amount of silica contributing to the adhesion is insufficient and the adhesion is lowered. On the other hand, when the thickness of the inorganic rich layer exceeds 0.1 ⁇ m, cohesive failure occurs inside the film, and as a result, the film remaining rate when the tape peel resistance test is performed is significantly reduced.
  • the film thickness of the inorganic rich layer is preferably 0.02 to 0.08 ⁇ m, more preferably 0.03 to 0.06 ⁇ m.
  • the inorganic rich layer is heated by applying the first aqueous composition to one or both surfaces of the metal plate surface using a known coating method, that is, a bar coater method, a roll coater method, a spray method, a curtain flow coater method, or the like. What is necessary is just to dry.
  • the heating temperature may be such that water is volatilized.
  • the organic rich layer has a function of ensuring barrier properties, slowing the elution rate of silica, and maintaining corrosion resistance.
  • the results shown in FIG. 2 were obtained. This is a result obtained by changing the film thickness of the organic rich layer while keeping the thickness of the inorganic rich layer constant at 0.06 ⁇ m.
  • What is required as an electromagnetic wave countermeasure is that the total film thickness must be 0.6 ⁇ m or less because the conductivity when measured by a two-probe method using a surface resistance meter is less than 0.5 ⁇ . It was.
  • the organic rich layer is 0.2 to 0.5 ⁇ m. 0.3 to 0.5 ⁇ m is preferable, and 0.35 to 0.45 ⁇ m is more preferable.
  • the organic rich layer is thinner than 0.2 ⁇ m, the barrier property is lowered, the corrosion resistance and the alkali degreasing resistance are lowered, and further, the lubricity is lowered.
  • the film thickness of the organic rich layer exceeds 0.5 ⁇ m, the conductivity is remarkably deteriorated.
  • the organic rich layer is formed from a second aqueous composition containing an organic resin.
  • an organic resin It is preferable that it is resin which can produce the film of water vapor permeability of 100 g / m ⁇ 2 > / day or less.
  • the water vapor permeability was obtained by applying an organic resin or a second aqueous composition on a copy paper so that the film thickness after drying with a bar coater was 18 ⁇ m, and drying at 105 ° C. for 2 minutes. was measured by a cup method according to JIS Z0208 using a sample left standing for a whole day and night as a sample.
  • the resin can produce a film having a water vapor permeability of 100 g / m 2 / day or less, the barrier property of the organic rich layer can be secured, and the elution rate of colloidal silica can be further reduced.
  • an organic resin that becomes a film having a water vapor permeability of more than 100 g / m 2 / day, when colloidal silica is added to the second aqueous composition in an amount exceeding 30% by mass in anticipation of an improvement effect such as corrosion resistance,
  • the water vapor permeability increases to 5000 g / m 2 / day or more, which is not preferable because the corrosion resistance and the like are greatly deteriorated.
  • a more preferable water vapor permeability is 50 g / m 2 / day or less.
  • colloidal silica (average particle diameter of 4 to 6 nm) is added to a second aqueous composition containing an organic resin having a water vapor permeability of 50 g / m 2 / day, in terms of solid content of the second aqueous composition. )
  • the water vapor permeability of the organic rich layer is about 1500 g / m 2 / day, but an effect of improving corrosion resistance or the like was observed.
  • the water vapor permeability of the organic rich layer tends to be reduced by the addition of a cross-linking agent described later, the above-described silane coupling agent, and the like, which can improve corrosion resistance, alkali degreasing resistance, blackening resistance, and the like. it can.
  • the organic resin preferably satisfies the water vapor permeability described above, but an ethylene-unsaturated carboxylic acid copolymer is particularly preferable.
  • an ethylene-unsaturated carboxylic acid copolymer those described in JP-A-2005-246953 and JP-A-2006-43913 can be used.
  • Examples of the unsaturated carboxylic acid include (meth) acrylic acid, crotonic acid, isocrotonic acid, maleic acid, fumaric acid, itaconic acid, and the like.
  • a copolymer can be obtained by polymerization using a legal method or the like.
  • the copolymerization ratio of unsaturated carboxylic acid to ethylene is preferably 10 to 40% by mass of unsaturated carboxylic acid when the total amount of monomers is 100% by mass.
  • the amount of unsaturated carboxylic acid is less than 10% by mass, there are few carboxyl groups that serve as base points for intermolecular association by ion clusters or cross-linking points with cross-linking agents.
  • the alkali degreasing resistance may be insufficient, and the emulsion stability of the emulsion composition is inferior.
  • a more preferable lower limit of the unsaturated carboxylic acid is 15% by mass.
  • the unsaturated carboxylic acid exceeds 40% by mass, the organic rich layer is inferior in corrosion resistance and water resistance, and the alkali degreasing resistance is also deteriorated.
  • a more preferred upper limit is 25% by mass.
  • the ethylene-unsaturated carboxylic acid copolymer has a carboxyl group, it can be emulsified (aqueous dispersion) by neutralization with an organic base or metal ion.
  • an organic base it is preferable to use an amine as the organic base, and any of the above-described amines can be used, and triethylamine is particularly preferable.
  • Monovalent metal ions are also preferably used in combination with amines.
  • the amine is preferably used in an amount of 0.2 to 0.8 mol (20 to 80 mol%) based on 1 mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer.
  • the amount of monovalent metal ions affects the water vapor permeability, and if the amount of monovalent metal compound used increases, the affinity between the resin and water increases, and the water vapor permeability increases.
  • the amount is preferably 0.02 to 0.2 mol (2 to 20 mol%) based on 1 mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer.
  • the total amount of amines and metal ions used is 0.3 to 1 per mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer. It is good to set it as the range of 0 mol.
  • the metal compound for imparting monovalent metal ions is preferably NaOH, KOH, LiOH or the like, and NaOH is most preferable because of its best performance.
  • Crosslinking agent An ethylene-unsaturated carboxylic acid copolymer having a carboxyl group neutralized with an amine and a monovalent metal ion forms an intermolecular association by ion clusters (ionomerization), and has excellent corrosion resistance and tape peel resistance. An organic rich layer is formed. However, in order to form a tougher film, it is desirable to crosslink the polymer chains by chemical bonding utilizing a reaction between functional groups.
  • a glycidyl group-containing crosslinking agent or an aziridinyl group-containing crosslinking agent is preferable.
  • glycidyl group-containing crosslinking agents examples include sorbitol polyglycidyl ether, (poly) glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, trimethylolpropane polyglycidyl ether, neopentyl glycol diglycidyl ether, (poly) ethylene glycol diglycidyl ether, etc.
  • Glycidyl group-containing crosslinking agents such as polyglycidyl ethers and polyglycidylamines.
  • aziridinyl group-containing crosslinking agent 4,4′-bis (ethyleneiminecarbonylamino) diphenylmethane, N, N′-hexamethylene-1,6-bis (1-aziridinecarboxamide), N, N′-diphenylmethane—
  • Bifunctional aziridine compounds such as 4,4′-bis (1-aziridinecarboxamide) and toluenebisaziridinecarboxyamide; tri-1-aziridinylphosphine oxide, tris [1- (2-methyl) aziridinyl] phosphine oxide, 3 such as trimethylolpropane tris ( ⁇ -aziridinylpropionate), tris-2,4,6- (1-aziridinyl) -1,3,5-triazine, tetramethylpropanetetraaziridinylpropionate, etc. More functional or more aziridine compounds or their derivatives It is below.
  • the organic rich layer contains a wax in order to improve processability.
  • Industrially preferred are spherical polyethylene wax, polypropylene wax, modified wax, copolymer wax with ethylene and propylene, ethylene copolymer wax, oxides thereof, derivatives with carboxyl groups, etc. Examples thereof include paraffinic wax and carnauba wax provided with acid groups.
  • spherical polyethylene wax is most suitable.
  • “Daijet E-17” manufactured by Kyoyo Chemical Co., Ltd.
  • “KUE-1”, “KUE-5”, “KUE-8” anyo Chemical Industries
  • “W-100”, “W-200”, “W-300”, “W-400”, “W-500”, “W-640” of "Chemipearl” series Mitsubishi Chemicals
  • Commercial products such as “W-700” and “Elepon E-20” (manufactured by Nikka Chemical Co., Ltd.) can be preferably used.
  • the second aqueous composition preferably contains colloidal silica having an average particle diameter of 4 to 6 nm.
  • the ethylene-unsaturated carboxylic acid copolymer (solid content) is 57 to 83% by mass
  • the colloidal silica having an average particle diameter of 4 to 6 nm is 10 to 30% by mass
  • the aziridinyl group-containing crosslink It is preferable to add 5 to 8% by mass of the agent and 2 to 5% by mass of the spherical polyethylene wax. In addition, the sum total of these 4 components shall be 100 mass%.
  • the method for applying the second aqueous composition to the metal plate on which the inorganic rich layer is formed is not particularly limited, and a bar coater method, a roll coater method, a spray method, a curtain flow coater method, or the like can be employed. After coating, it is preferable to heat and dry at about 80 to 130 ° C.
  • Corrosion resistance 1 Salt spray test (SST flat plate, SST cross cut) For the specimen with the back and edge seals, make a flat plate and a crosscut with a cutter knife, and perform a 5% salt spray test in an atmosphere of 35 ° C according to JIS Z2371. The time until the white rust occurrence rate reached 5% (area) was measured.
  • Corrosion resistance 2 Salt spray cycle test (SST cycle) The edge-sealed specimen (flat plate) was subjected to a salt spray cycle test in accordance with JIS Z2371, and the number of cycles at which the white rust generation rate reached 5% was measured. In one cycle, salt spray was performed for 8 hours (35 ° C.) and salt spray was stopped for 16 hours (35 ° C.).
  • Corrosion resistance 3 Neutral salt spray cycle test (JASO) The edge-sealed specimen (flat plate) was subjected to a neutral salt spray cycle test in accordance with JIS H8502, and the number of cycles in which the white rust generation rate reached 5% was measured. In one cycle, salt spray was performed for 2 hours, drying (60 ° C., humidity 30% or higher) for 4 hours, and wet (50 ° C., humidity 95% or higher) for 2 hours.
  • JASO Neutral salt spray cycle test
  • the surface resistance of each test material is measured directly using a surface resistance measuring device (LorestaEP; Dia Instruments (currently Mitsubishi Chemical Analytech)) without a copper plate (2-probe AP probe type A).
  • the pin spacing was 10 mm
  • the spring pressure was 240 g / piece
  • the pin tip diameter was 2 mm ⁇
  • a schematic diagram of the surface resistance measuring device is shown in FIG. .
  • Adhesive tape (filament tape No. 9510 manufactured by Sliontec Co., Ltd .; rubber adhesive) was affixed to the test material, and 120 hours in an atmosphere of 40 ° C. and 98% humidity using a constant temperature and humidity test device. After storage, the tape was subjected to a peel test according to JIS K5400, and the residual rate (area) of the film was measured.
  • Lubricity (dynamic friction coefficient)
  • the dynamic friction coefficient of each test material was measured using the friction coefficient measuring apparatus shown in FIG.
  • the size of the test material was 40 mm ⁇ 300 mm, the applied pressure was 4.5 MPa, the drawing speed was 300 mm / min, and no oil was applied.
  • the material of the flat plate die was SKD11.
  • the dynamic friction coefficient ⁇ is F / 2P.
  • Synthesis example 1 Synthesis of carboxyl group-containing polyurethane resin aqueous dispersion 60 parts of polytetramethylene ether glycol (average molecular weight 1000; manufactured by Hodogaya Chemical Co., Ltd.) as a polyol component was added to a synthesizer equipped with a stirrer, thermometer and temperature controller. 1,4-cyclohexanedimethanol and 20 parts of dimethylolpropionic acid were added, and 30 parts of N-methylpyrrolidone was added as a reaction solvent. 104 parts of tolylene diisocyanate (TDI) was added as an isocyanate component, heated to 80 ° C. to 85 ° C., and reacted for 5 hours.
  • TDI tolylene diisocyanate
  • the obtained prepolymer had an NCO content of 8.9%. Further, 16 parts of triethylamine was added for neutralization, a mixed aqueous solution of 16 parts of ethylenediamine and 480 parts of water was added, and a chain extension reaction was carried out while emulsifying at 50 ° C. for 4 hours to obtain an aqueous polyurethane resin dispersion (nonvolatile). Resin component 29.1%, acid value 41.4). This is designated as resin A.
  • the water vapor permeability of Resin A was 1500 g / m 2 / day.
  • Synthesis example 2 Synthesis of ethylene-unsaturated carboxylic acid copolymer aqueous dispersion 1 To an autoclave having an emulsification facility equipped with a stirrer, a thermometer and a temperature controller, 626 parts of water and 160 parts of an ethylene-acrylic acid copolymer (acrylic acid unit: 20% by mass, melt index: 300) were added. Add 40 mol% of triethylamine and 15 mol% of sodium hydroxide to 1 mol of carboxyl group of the acrylic acid copolymer, stir at 150 ° C and 5 Pa at high speed, cool to 40 ° C, and then add ethylene-acrylic acid A copolymer emulsion was obtained.
  • Synthesis Examples 3 and 4 Synthesis of aqueous dispersions of ethylene-unsaturated carboxylic acid copolymer, part 2 and part 3 Resin C was obtained in the same manner as in Synthesis Example 2 except that the amount of sodium hydroxide added was 20 mol% with respect to 1 mol of the carboxyl group of the ethylene-acrylic acid copolymer in Synthesis Example 2.
  • Resin D was obtained by adding 30 mol% of sodium hydroxide.
  • the water vapor permeability of Resin C was 100 g / m 2 / day, and the water vapor permeability of Resin D was 1000 g / m 2 / day.
  • Experimental example 1 Colloidal silica having an average particle size of 4 to 6 nm (manufactured by Nissan Chemical Industries, Ltd., “Snowtex (registered trademark) XS”) 55 to 85 parts, a carboxyl group-containing polyurethane resin aqueous dispersion prepared in Synthesis Example 1 (resin A ) In the range of 15 to 45 parts, and 15 parts by mass of silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM403 (glycidoxy group-containing silane coupling agent)) is added to 100 parts by mass of the total solid content. A first aqueous composition was prepared.
  • silane coupling agent manufactured by Shin-Etsu Chemical Co., Ltd., KBM403 (glycidoxy group-containing silane coupling agent)
  • an electrogalvanized steel plate (zinc adhesion amount 20 g / m 2 , plate thickness 0.8 mm) was used.
  • the first aqueous composition was applied to one side with a bar coater and dried at a plate temperature of 90 ° C.
  • An inorganic rich layer having a thickness of 0.06 ⁇ m was formed.
  • the film thickness was calculated by quantitatively measuring the Si element of colloidal silica (SiO 2 ) in the film with a fluorescent X-ray analyzer. At this time, the specific gravity of SiO 2 was calculated as 2.2 and the specific gravity of the resin as 1.
  • RunNo. 6 and 7 are examples in which the amount of colloidal silica is outside the scope of the present invention.
  • RunNo. 8 and 9 are 45 parts of an aqueous solution of aluminum biphosphate (manufactured by Nippon Chemical Industry Co., Ltd., solid content 50%) and acidic colloidal silica (Snowtex (registered trademark) ST-O; average particle size 10 to 15 nm) as an inorganic rich layer.
  • a surface treatment agent mixed with 55 parts was applied with a spray ringer apparatus, then washed with water and dried to give a base treatment (about 10 nm).
  • an organic rich layer was formed in the same manner as described above.
  • RunNo. No. 8 has a total film thickness of 0.46 ⁇ m
  • Run No. The total film thickness of 9 was 1.0 ⁇ m.
  • Table 1 The evaluation results are shown in Table 1.
  • Table 1 shows that when the amount of colloidal silica in the inorganic rich layer is small, the tape peel resistance, which is an index of adhesion to the plating layer, is inferior (Run No. 6). On the other hand, when the amount of colloidal silica was too large, the polyurethane resin was relatively decreased and the formation of the film was incomplete, and various performances were reduced (Run No. 7).
  • Experimental example 2 Add 30 parts of resin A in solids to 70 parts of Snowtex XS with an average particle size of 4 to 6 nm, and add KBM403 to 5 to 25 parts of the total 100 parts. Thus, a first aqueous composition was prepared. In the same manner as in Experimental Example 1, an inorganic rich layer having a thickness of 0.06 ⁇ m was formed on the surface of the electrogalvanized steel sheet.
  • Experimental Example 6 In the same manner as in Experimental Example 1, an inorganic rich layer was formed. An organic rich layer was formed in the same manner as in Experimental Example 1 except that the resin used for forming the organic rich layer was changed as shown in Table 6. The evaluation results are shown in Table 6.
  • an aqueous two-layer coated metal sheet having good conductivity, excellent adhesion, blackening resistance, alkali degreasing resistance, and persistent corrosion resistance (particularly a buttock). did it.
  • the aqueous two-layer coated metal plate of the present invention is useful for home appliances and the like that require countermeasures against electromagnetic waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Provided is an aqueous two layer-coated metal plate having good conductivity, excellent adhesiveness, blackening resistance, alkaline degreasing resistance, and long-lasting corrosion resistance. An aqueous two layer-coated metal plate having two layers of thin films layered on at least one surface of the metal plate, wherein the two thin films are: an inorganic material-rich layer having a film thickness of 0.01-0.1 µm and formed of a first aqueous composition containing 60-80 parts of colloidal silica having an average particle size of 4-15 nm, 20-40 parts of a carboxyl group-containing polyurethane resin, and 7.5-20 parts of a silane coupling agent having a glycidoxy group at a terminal end thereof with respect to a total of 100 parts of the colloidal silica and the carboxyl group-containing polyurethane resin, but not containing a lithium-based inorganic compound, a phosphoric acid compound, or a metal component other than lithium; and an organic material-rich layer provided on the inorganic material-rich layer, having a film thickness of 0.2-0.5 µm, and formed of a second aqueous composition containing an organic resin, wherein the total thickness of the inorganic material-rich layer and the organic material-rich layer is 0.25-0.6 µm.

Description

水系2層コート処理金属板Aqueous two-layer coated metal plate
 本発明は、家庭用電気製品等に用いられる電磁波対策用の導電性に優れた水系2層コート処理金属板に関するものである。 The present invention relates to a water-based two-layer coated metal plate having excellent conductivity for electromagnetic wave countermeasures used for household electric appliances and the like.
 近年、家電分野では、製品から発生する電磁波の漏洩を防止する為の電磁波対策として、導電性の良い金属材料への要望がより強くなっている。塗装鋼板では、塗料にNi粉末等の導電性顔料を添加して塗膜に導電性を付与してきたが、特殊化成処理鋼板のように膜厚1μm程度の薄い皮膜では、導電性顔料を皮膜中に添加することは難しい。 In recent years, in the field of home appliances, there is an increasing demand for a metal material with good conductivity as an electromagnetic wave countermeasure for preventing leakage of electromagnetic waves generated from products. In coated steel sheets, conductive pigments such as Ni powder have been added to the paint to impart conductivity to the coating film. However, in the case of thin films with a film thickness of about 1 μm, such as special chemical conversion treated steel sheets, the conductive pigment is contained in the film. It is difficult to add to.
 このような特殊化成処理薄膜としては2層構造にして耐食性や密着性を確保する技術が知られている。例えば特許文献1には、第1層(金属板側)に造膜性があるリチウムシリケートと造膜性のないコロイダルシリカの混合皮膜を形成し、第2層に有機樹脂を主成分とする皮膜を形成する技術が開示されている。しかしながら、リチウムシリケートは吸湿性を有するため、第2層を通過してくる水や酸素が亜鉛めっき層を酸化して、黒変現象が誘発され、また耐食性も低下してしまう。特に、アルカリ脱脂される際のアルカリ性雰囲気では、リチウムシリケートが溶出して、耐食性や亜鉛めっき層との密着性が大幅に劣化するという問題がある。 As such a special chemical conversion treatment thin film, a technique for ensuring corrosion resistance and adhesion with a two-layer structure is known. For example, in Patent Document 1, a mixed film of lithium silicate having a film forming property and colloidal silica having no film forming property is formed on a first layer (metal plate side), and a film containing an organic resin as a main component on a second layer. Techniques for forming the are disclosed. However, since lithium silicate has a hygroscopic property, water and oxygen passing through the second layer oxidize the galvanized layer, thereby causing a blackening phenomenon and reducing corrosion resistance. In particular, in an alkaline atmosphere when alkali degreasing is performed, there is a problem that lithium silicate is eluted and the corrosion resistance and adhesion with the galvanized layer are greatly deteriorated.
 また、特許文献2には、第1層としてリン酸系化合物と酸化物微粒子(コロイダルシリカ)と金属化合物とを含む層を、第2層として有機樹脂皮膜を有する有機被覆鋼板が開示されているが、腐食環境下でのリン酸系化合物の溶出による耐食性や耐アルカリ性の劣化や、金属元素の価数変化により皮膜が変色する等の問題がある。特許文献3には、第1層としてSiとPとAlと有機樹脂を含む層を被覆して亜鉛メッキ層と反応させた後、水洗し、その上に有機樹脂層を第2層として被覆した表面処理亜鉛系メッキ鋼板が開示されている。この技術では、水洗によって未反応成分を除去しているため、皮膜の密着性は向上するが、疵部の耐食性や耐アルカリ脱脂性は不充分であった。さらに、これらの特許文献に記載の技術の問題点を解決するには、第2層の膜厚を1μm程度と厚くする必要があり、良好な導電性は得られない。 Patent Document 2 discloses an organic coated steel sheet having a layer containing a phosphoric acid compound, oxide fine particles (colloidal silica) and a metal compound as a first layer, and an organic resin film as a second layer. However, there are problems such as deterioration of corrosion resistance and alkali resistance due to elution of a phosphoric acid compound in a corrosive environment, and discoloration of the film due to a change in the valence of metal elements. In Patent Document 3, a layer containing Si, P, Al, and an organic resin is coated as a first layer, reacted with a galvanized layer, washed with water, and an organic resin layer is coated thereon as a second layer. A surface-treated galvanized steel sheet is disclosed. In this technique, since unreacted components are removed by washing with water, the adhesion of the film is improved, but the corrosion resistance and alkali degreasing resistance of the heel portion are insufficient. Furthermore, in order to solve the problems of the techniques described in these patent documents, it is necessary to increase the thickness of the second layer to about 1 μm, and good conductivity cannot be obtained.
 一方、導電性を考慮した1層型の表面処理金属板も知られている。例えば、特許文献4には、2種類の有機樹脂にコロイダルシリカとシランカップリング剤を添加した樹脂水性液から形成した樹脂皮膜を有する表面処理金属板が開示されているが、樹脂成分の比率が低いため、水や酸素に対するバリア性に乏しく、耐食性や耐黒変性が不充分であった。 On the other hand, a one-layer type surface-treated metal plate in consideration of conductivity is also known. For example, Patent Document 4 discloses a surface-treated metal plate having a resin film formed from an aqueous resin liquid in which colloidal silica and a silane coupling agent are added to two types of organic resins. Since it is low, the barrier property against water and oxygen is poor, and the corrosion resistance and blackening resistance are insufficient.
特開2001-26886号公報Japanese Patent Laid-Open No. 2001-26886 特開2001-11645号公報JP 2001-11645 A 特開2005-26436号公報JP 2005-26436 A 特開2006-269018号公報JP 2006-269018 A
 本発明は上記諸事情を考慮して、良好な導電性を有すると共に、優れた密着性、耐黒変性、耐アルカリ脱脂性および持続性のある耐食性(特に疵部)を有する表面処理金属板(特殊化成処理鋼板)の提供を課題として掲げた。 In consideration of the above circumstances, the present invention has a surface-treated metal plate having good conductivity and having excellent adhesion, blackening resistance, alkali degreasing resistance, and persistent corrosion resistance (particularly a buttock). Providing special chemical conversion steel sheets) was raised as an issue.
 上記課題を解決し得た本発明は、金属板の少なくとも片方の表面に2層の薄膜が積層された金属板であって、平均粒子径が4~15nmのコロイダルシリカ60~80質量部およびカルボキシル基含有ポリウレタン樹脂20~40質量部と、末端にグリシドキシ基を有するシランカップリング剤を、前記コロイダルシリカおよびカルボキシル基含有ポリウレタン樹脂の合計100質量部に対し7.5~20質量部含有し、リチウム系無機化合物、リン酸化合物およびリチウム以外の金属成分は含まない第1水系組成物から形成された膜厚が0.01~0.1μmの無機リッチ層と、この無機リッチ層の上に、有機樹脂を含む第2水系組成物から形成された膜厚0.2~0.5μmの有機リッチ層を有し、無機リッチ層と有機リッチ層との合計膜厚が0.25~0.6μmであることを特徴とする水系2層コート処理金属板である。 The present invention that has solved the above problems is a metal plate in which two thin films are laminated on at least one surface of a metal plate, wherein 60-80 parts by mass of colloidal silica having an average particle size of 4-15 nm and carboxyl Containing 20 to 40 parts by mass of a group-containing polyurethane resin and 7.5 to 20 parts by mass of a silane coupling agent having a glycidoxy group at the terminal with respect to a total of 100 parts by mass of the colloidal silica and the carboxyl group-containing polyurethane resin; An inorganic rich layer having a film thickness of 0.01 to 0.1 μm formed from a first aqueous composition that does not contain a metal component other than an inorganic inorganic compound, a phosphoric acid compound, and lithium, and an organic layer on the inorganic rich layer The organic rich layer having a film thickness of 0.2 to 0.5 μm formed from the second aqueous composition containing a resin, and the total of the inorganic rich layer and the organic rich layer An aqueous two-layer coated metal sheet having a thickness of 0.25 to 0.6 μm.
 第1水系組成物中のコロイダルシリカの50質量%以上が、平均粒子径が4~6nmであることが好ましい。また、第2水系組成物に含まれる有機樹脂から得られるフィルムの水蒸気透過度が100g/m2/day以下であることも、本発明の好ましい実施態様である。 It is preferable that 50% by mass or more of the colloidal silica in the first aqueous composition has an average particle diameter of 4 to 6 nm. It is also a preferred embodiment of the present invention that the water vapor permeability of the film obtained from the organic resin contained in the second aqueous composition is 100 g / m 2 / day or less.
 本発明により、家電製品等の電磁波対策に有用な良好な導電性(表面抵抗計/2探針法で0.5Ω未満)を有し、薄膜でありながら優れた密着性、耐黒変性、耐アルカリ脱脂性および長期耐食性を有する水系2層コート処理金属板を提供することができた。 According to the present invention, it has good electrical conductivity (less than 0.5Ω by a surface resistance meter / 2 probe method) useful for electromagnetic wave countermeasures for home appliances, etc., and has excellent adhesion, blackening resistance, An aqueous two-layer coated metal plate having alkali degreasing properties and long-term corrosion resistance could be provided.
本発明の金属板の構造を示す模式図である。It is a schematic diagram which shows the structure of the metal plate of this invention. 導電性と処理膜の膜厚との関係を示すグラフである。It is a graph which shows the relationship between electroconductivity and the film thickness of a process film. 表面抵抗測定装置で表面抵抗を測定する方法を示す模式図である。It is a schematic diagram which shows the method of measuring surface resistance with a surface resistance measuring apparatus. 摩擦係数測定装置を示す模式図である。It is a schematic diagram which shows a friction coefficient measuring apparatus.
 本発明者等は、上記課題を解決するために検討した結果、微小なコロイダルシリカを有する無機リッチな極薄膜(無機リッチ層)でもって耐食性を確保し、その上に、有機樹脂を主体とするバリアー性(シリカの溶出等を抑制する)の高い有機リッチ層を設けること、および、両者の合計膜厚を0.6μm以下とすることで良好な導電性が得られることを見出し、本発明に到達した。以下、本発明を詳細に説明する。 As a result of investigations to solve the above-mentioned problems, the present inventors have secured corrosion resistance with an inorganic-rich ultrathin film (inorganic-rich layer) having a fine colloidal silica, and the organic resin is mainly used therefor. The present invention has found that good conductivity can be obtained by providing an organic rich layer having a high barrier property (suppressing elution of silica and the like) and setting the total film thickness of both to 0.6 μm or less. Reached. Hereinafter, the present invention will be described in detail.
 [水系2層コート処理金属板の構造]
 本発明の水系2層コート処理金属板は、例えば、図1に示すように、鋼板本体の上に亜鉛めっき層が形成され、その上に、第1層目として無機リッチ層が0.01~0.1μmの厚さで第1水系組成物から形成され、さらにその上に、第2層目として有機リッチ層が第2水系組成物から0.2~0.5μmの厚さで形成されている。金属板としては特に限定されないが、例えば、図1に示した亜鉛めっき鋼板以外に、亜鉛系めっき鋼板、アルミニウム板、アルミ系合金板、チタン板等を用いることができる。最も好ましいのは、亜鉛めっき鋼板である。環境問題の観点からは、クロメート処理を施さないことが好ましい。
[Structure of aqueous two-layer coated metal sheet]
In the aqueous two-layer coated metal sheet of the present invention, for example, as shown in FIG. 1, a galvanized layer is formed on a steel plate body, and an inorganic rich layer is formed on the first layer as a first layer. A first aqueous composition is formed to a thickness of 0.1 μm, and an organic rich layer is formed as a second layer from the second aqueous composition to a thickness of 0.2 to 0.5 μm thereon. Yes. Although it does not specifically limit as a metal plate, For example, besides a galvanized steel plate shown in FIG. 1, a galvanized steel plate, an aluminum plate, an aluminum-type alloy plate, a titanium plate etc. can be used. Most preferred is a galvanized steel sheet. From the viewpoint of environmental problems, it is preferable not to perform chromate treatment.
 [無機リッチ層]
 [コロイダルシリカ]
 本発明では、無機リッチ層には、平均粒子径が4~15nmのコロイダルシリカが含まれている必要がある。コロイダルシリカは、亜鉛めっき層との界面に濃化して、シリカ(SiO2)の持つシラノール基(-SiOH)と亜鉛めっき表面(Zn-OH)との相互作用によって、無機リッチ層と亜鉛めっき表面との界面密着性を向上させる効果を有する。また、コロイダルシリカは、耐食性の向上効果も有している。皮膜中のコロイダルシリカは、腐食環境において周囲のpHが上昇すると溶出し、亜鉛水和物の混合腐食生成物を形成し、この混合腐食生成物がバリア効果を発揮して耐食性を向上させる。本発明では、後述する有機リッチ層がコロイダルシリカの溶出速度を遅くする作用を発揮するため、持続性のある優れた耐食性(特に疵部)を確保すると共に、耐黒変性や耐アルカリ脱脂性も発現させることができる。
[Inorganic rich layer]
[Colloidal silica]
In the present invention, the inorganic rich layer needs to contain colloidal silica having an average particle size of 4 to 15 nm. Colloidal silica is concentrated at the interface with the galvanized layer, and the interaction between the silanol group (—SiOH) of silica (SiO 2 ) and the galvanized surface (Zn—OH) causes the inorganic rich layer and the galvanized surface. Has the effect of improving the interfacial adhesion. Colloidal silica also has an effect of improving corrosion resistance. The colloidal silica in the film is eluted when the ambient pH is increased in a corrosive environment, and forms a mixed corrosion product of zinc hydrate. This mixed corrosion product exhibits a barrier effect and improves the corrosion resistance. In the present invention, since the organic rich layer described later exerts an action of slowing the elution rate of colloidal silica, it ensures a durable and excellent corrosion resistance (particularly the heel part), and also has blackening resistance and alkali degreasing resistance. Can be expressed.
 こういったコロイダルシリカの作用効果をより有効に発揮させるには、用いるシリカの平均粒子径を4~15nmとする。シリカの平均粒子径が小さくなるほど無機リッチ層の耐食性が向上する。無機リッチ層が緻密化し、亜鉛めっき層との界面密着性が一層向上することにより、耐食性をさらに高めると考えられる。このような観点からはシリカ粒子の粒子径は小さいほど良いが、極端に微小な粒子となると、上記効果が飽和してしまうため、粒子径の下限は4nmとした。上記範囲のシリカは、例えば、日産化学工業社製のスノーテックス(登録商標)30(平均粒子径10~15nm)、スノーテックス(登録商標)S(8~11nm)、スノーテックス(登録商標)XS(4~6nm)、スノーテックス(登録商標)N(10~15nm)、スノーテックス(登録商標)NXS(4~6nm)、スノーテックス(登録商標)C(10~15nm)、スノーテックス(登録商標)CXS(4~6nm)等を1種または2種以上用いることができる。なお、シリカの平均粒子径は、カタログの公称値を採用するか、シアーズ法(4~6nm)又はBET法(4~20nm)による測定方法を採用することが好ましい。 In order to more effectively demonstrate the effect of such colloidal silica, the average particle diameter of the silica used is 4 to 15 nm. The corrosion resistance of the inorganic rich layer improves as the average particle size of silica decreases. It is considered that the corrosion resistance is further improved by densifying the inorganic rich layer and further improving the interfacial adhesion with the galvanized layer. From this point of view, the smaller the particle diameter of the silica particles, the better. However, when the particles are extremely fine, the above effect is saturated, so the lower limit of the particle diameter is 4 nm. Examples of the silica in the above range include Snowtex (registered trademark) 30 (average particle size: 10 to 15 nm), Snowtex (registered trademark) S (8 to 11 nm), and Snowtex (registered trademark) XS manufactured by Nissan Chemical Industries, Ltd. (4 to 6 nm), Snowtex (registered trademark) N (10 to 15 nm), Snowtex (registered trademark) NXS (4 to 6 nm), Snowtex (registered trademark) C (10 to 15 nm), Snowtex (registered trademark) ) CXS (4 to 6 nm) or the like can be used alone or in combination. The average particle diameter of the silica is preferably a nominal value in the catalog or a measurement method based on the Sears method (4 to 6 nm) or the BET method (4 to 20 nm).
 前記したとおり、シリカの粒子径が小さくなるほど無機リッチ層の耐食性が向上する。これは、シリカの表面積が大きくなり、活性度が高くなることにより、腐食環境でのシリカの溶出や混合腐食生成物の形成に有利なためであると考えられる。この観点から、無機リッチ層に含めるコロイダルシリカの50質量%以上が平均粒子径4~6nmであることが好ましい。なお、無機リッチ層に含める平均粒子径4~6nmのコロイダルシリカが次第に多くなってくると、得られる水系2層コート処理金属板の性能には問題はないが、第1水系組成物中のカルボキシル基含有ポリウレタン樹脂の中和にアミン等を使用した場合、シリカとアミンが反応し、コロイダルシリカを分散させている電荷のバランスが崩れて、第1水系組成物の粘度が上昇してゲル化を生じることがある。このため、第1水系組成物のポットライフを長くする必要がある場合は、コロイダルシリカの一部として、前記「ST-30」(10~15nm)や「ST-S」(8~11nm)を使用するとよい。ただし、これらの合計はコロイダルシリカ100質量%中、50質量%未満とすることが好ましい。 As described above, the corrosion resistance of the inorganic rich layer improves as the silica particle size decreases. This is presumably because the silica has a large surface area and high activity, which is advantageous for elution of silica in a corrosive environment and formation of mixed corrosion products. From this viewpoint, it is preferable that 50% by mass or more of the colloidal silica included in the inorganic rich layer has an average particle diameter of 4 to 6 nm. Note that when the amount of colloidal silica having an average particle size of 4 to 6 nm included in the inorganic rich layer is gradually increased, there is no problem in the performance of the obtained aqueous two-layer coated metal plate, but the carboxyl in the first aqueous composition When amine or the like is used for neutralization of the group-containing polyurethane resin, silica and amine react, the balance of the charge in which colloidal silica is dispersed is lost, the viscosity of the first aqueous composition is increased, and gelation occurs. May occur. Therefore, when it is necessary to lengthen the pot life of the first aqueous composition, the “ST-30” (10 to 15 nm) or “ST-S” (8 to 11 nm) is used as a part of the colloidal silica. It is good to use. However, the total of these is preferably less than 50% by mass in 100% by mass of colloidal silica.
 [カルボキシル基含有ポリウレタン樹脂]
 本発明の無機リッチ層には、カルボキシル基含有ポリウレタン樹脂が含まれる。コロイダルシリカだけでは造膜ができないためである。カルボキシル基含有ポリウレタン樹脂としては、特開2006-43913号公報に記載されているカルボキシル基含有ポリウレタン樹脂が好適に用い得る。このカルボキシル基含有ポリウレタン樹脂は、カルボキシル基を有するポリオールを必須的に用いて合成されるポリウレタン樹脂の水分散体である。原料としては、1,4-シクロヘキサンジメタノール、平均分子量400~4000程度のポリテトラメチレングリコール、ジメチロールプロピオン酸等のカルボキシル基を有するポリオール等のポリオール成分と、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ジシクロヘキシルメタンジイソシアネート等のイソシアネート成分が用いられる。鎖延長剤は、エチレンジアミン等のポリアミン類が好ましい。
[Carboxyl group-containing polyurethane resin]
The inorganic rich layer of the present invention contains a carboxyl group-containing polyurethane resin. This is because the film cannot be formed only with colloidal silica. As the carboxyl group-containing polyurethane resin, a carboxyl group-containing polyurethane resin described in JP-A-2006-43913 can be suitably used. This carboxyl group-containing polyurethane resin is an aqueous dispersion of a polyurethane resin synthesized by essentially using a polyol having a carboxyl group. The raw materials include 1,4-cyclohexanedimethanol, polyol components such as polytetramethylene glycol having an average molecular weight of about 400 to 4000, a polyol having a carboxyl group such as dimethylolpropionic acid, tolylene diisocyanate, diphenylmethane diisocyanate, dicyclohexylmethane. Isocyanate components such as diisocyanate are used. The chain extender is preferably a polyamine such as ethylenediamine.
 本発明で使用するカルボキシル基含有ポリウレタン樹脂の水性液の作製は、公知の方法を採用することができ、例えば、カルボキシル基含有ウレタンプレポリマーのカルボキシル基を塩基で中和して、水性媒体中に乳化分散して鎖延長反応させる方法、カルボキシル基含有ポリウレタン樹脂を乳化剤の存在下で、高せん断力で乳化分散して鎖延長反応させる方法等がある。 A known method can be used to prepare an aqueous liquid of the carboxyl group-containing polyurethane resin used in the present invention. For example, the carboxyl group of the carboxyl group-containing urethane prepolymer is neutralized with a base, There are a method of emulsifying and dispersing to chain extension reaction, a method of emulsifying and dispersing a carboxyl group-containing polyurethane resin with high shear force in the presence of an emulsifier, and the like.
 まず、上述したポリイソシアネートと上述したポリオールとを使用して、NCO/OH比でイソシアネート基が過剰になるようにして比較的低分子量のカルボキシル基含有イソシアネート基末端ウレタンプレポリマーを作製する。ウレタンプレポリマーを合成する温度は、特に限定されないが、50~200℃の温度で合成することができる。 First, a relatively low molecular weight carboxyl group-containing isocyanate group-terminated urethane prepolymer is prepared by using the above-described polyisocyanate and the above-described polyol so that the isocyanate group becomes excessive in the NCO / OH ratio. The temperature for synthesizing the urethane prepolymer is not particularly limited, but it can be synthesized at a temperature of 50 to 200 ° C.
 ウレタンプレポリマー反応終了後、得られたカルボキシル基含有イソシアネート基末端ウレタンプレポリマーは、塩基で中和することによって、水中へ乳化分散できる。前記中和剤としては、特に限定されるものではないが、アンモニア;トリエチルアミン、トリエタノールアミン等の3級アミンが好ましい。より好ましくは、トリエチルアミンを使用する。 After completion of the urethane prepolymer reaction, the obtained carboxyl group-containing isocyanate group-terminated urethane prepolymer can be emulsified and dispersed in water by neutralization with a base. The neutralizing agent is not particularly limited, but ammonia; tertiary amines such as triethylamine and triethanolamine are preferable. More preferably, triethylamine is used.
 カルボキシル基含有イソシアネート基末端ウレタンプレポリマーを乳化分散した後、水中でポリアミン等の鎖延長剤を使用して鎖延長反応を行うことができる。なお、鎖延長反応は、使用する鎖長延長剤の反応性に応じて、乳化分散前、乳化分散と同時、或いは、乳化分散後に適宜行うことができる。 After emulsifying and dispersing the carboxyl group-containing isocyanate group-terminated urethane prepolymer, a chain extension reaction can be performed in water using a chain extender such as polyamine. The chain extension reaction can be appropriately carried out before emulsification dispersion, simultaneously with emulsification dispersion, or after emulsification dispersion, depending on the reactivity of the chain extender used.
 なお、カルボキシル基含有ポリウレタン樹脂は、第1水系組成物中で中和された状態であっても、無機リッチ層形成後は、中和に用いたアミンが揮散しているので、カルボキシル基含有ポリウレタン樹脂として存在する。 In addition, even if the carboxyl group-containing polyurethane resin is neutralized in the first aqueous composition, the amine used for neutralization is volatilized after the formation of the inorganic rich layer. Present as a resin.
 [シランカップリング剤]
 本発明で用いられる第1水系組成物中には、末端にグリシドキシ基含有シランカップリング剤が配合される。このシランカップリング剤は、金属板表面と無機リッチ層との密着性をさらに向上させる。また、上記シランカップリング剤は、無機成分と有機成分とを結合させる官能基を有しており、他のシランカップリング剤に比べて反応性に富んでいるので、コロイダルシリカとポリウレタン樹脂との結合力が強化され、耐食性や耐アルカリ脱脂性等の性能向上に効果がある。
[Silane coupling agent]
In the first aqueous composition used in the present invention, a glycidoxy group-containing silane coupling agent is blended at the terminal. This silane coupling agent further improves the adhesion between the metal plate surface and the inorganic rich layer. In addition, the silane coupling agent has a functional group that binds an inorganic component and an organic component, and is more reactive than other silane coupling agents. Bonding strength is strengthened, and it is effective in improving performance such as corrosion resistance and alkali degreasing resistance.
 末端にグリシドキシ基を有するシランカップリング剤としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等がある。 Examples of the silane coupling agent having a glycidoxy group at the terminal include γ-glycidoxypropyltrimethoxysilane and γ-glycidoxypropylmethyldiethoxysilane.
 [第1水系組成物]
 無機リッチ層を形成する際には、コロイダルシリカ、カルボキシル基含有ポリウレタン樹脂、シランカップリング剤を混合した第1水系組成物を用いる。この第1水系組成物には、リチウム系無機化合物、リン酸化合物およびリチウム以外の金属成分は含まれない。リチウム系無機化合物としては、例えば特許文献1で用いられているリチウムシリケートが挙げられるが、リチウムシリケートは黒変(シミ汚れ、変色)を引き起こす原因となり、好ましくない。また、特許文献2や3ではリン酸化合物と金属成分とを用い、めっき層表面をエッチングすることにより、第1層とめっき層との密着性を向上させているが、第1層形成後に水洗処理を行わない場合、腐食環境で残留する金属化合物やリン酸成分が溶出し、耐食性や耐アルカリ脱脂性等の性能の劣化が起こり、また金属成分に由来する黒変や変色が起きる。このため、本発明では、第1水系組成物に、リチウム系無機化合物、リン酸化合物およびリチウム以外の金属成分は加えない。ただし、コロイダルシリカとしては、上述のスノーテックス(登録商標)XSのようにナトリウムで安定化させたコロイダルシリカを用いてもよい、すなわち、金属成分が含まれていてもよいため、厳密には、カルボキシル基含有ポリウレタン樹脂及びシランカップリング剤には、リチウム系無機化合物、リン酸化合物およびリチウム以外の金属成分は加えないことを意味する。
[First aqueous composition]
When forming the inorganic rich layer, a first aqueous composition in which colloidal silica, a carboxyl group-containing polyurethane resin, and a silane coupling agent are mixed is used. The first aqueous composition does not include a metal component other than the lithium-based inorganic compound, the phosphate compound, and lithium. Examples of the lithium-based inorganic compound include lithium silicate used in Patent Document 1, but lithium silicate is not preferable because it causes blackening (stain stain, discoloration). Further, in Patent Documents 2 and 3, the adhesion between the first layer and the plating layer is improved by using the phosphoric acid compound and the metal component and etching the surface of the plating layer. When the treatment is not carried out, the metal compound and phosphoric acid component remaining in the corrosive environment are eluted, performance deterioration such as corrosion resistance and alkali degreasing resistance occurs, and blackening or discoloration derived from the metal component occurs. For this reason, in this invention, metal components other than a lithium-type inorganic compound, a phosphoric acid compound, and lithium are not added to a 1st aqueous composition. However, as the colloidal silica, colloidal silica stabilized with sodium like the above-mentioned Snowtex (registered trademark) XS may be used, that is, a metal component may be contained. It means that a metal component other than the lithium-based inorganic compound, the phosphate compound and lithium is not added to the carboxyl group-containing polyurethane resin and the silane coupling agent.
 第1水系組成物は、無機リッチ層中のコロイダルシリカが60~80質量部(好ましくは65~75質量部)、カルボキシル基含有ポリウレタン樹脂が20~40質量部(好ましくは25~35質量部)、末端にグリシドキシ基を有するシランカップリング剤が7.5~20質量部となるように、コロイダルシリカとカルボキシル基含有ポリウレタン樹脂の水性液と上記シランカップリング剤とを混合することで作製できる。なお、本段落の記載は、コロイダルシリカとカルボキシル基含有ポリウレタン樹脂の2成分の合計量を100質量部としたときの配合量であり、すなわち、上記シランカップリング剤の量は、コロイダルシリカとカルボキシル基含有ポリウレタン樹脂の合計量を100質量部としたときの配合量である。 In the first aqueous composition, the colloidal silica in the inorganic rich layer is 60 to 80 parts by mass (preferably 65 to 75 parts by mass), and the carboxyl group-containing polyurethane resin is 20 to 40 parts by mass (preferably 25 to 35 parts by mass). It can be prepared by mixing colloidal silica, an aqueous solution of a carboxyl group-containing polyurethane resin, and the silane coupling agent so that the silane coupling agent having a glycidoxy group at the terminal is 7.5 to 20 parts by mass. The description in this paragraph is the blending amount when the total amount of the two components of colloidal silica and carboxyl group-containing polyurethane resin is 100 parts by mass, that is, the amount of the silane coupling agent is colloidal silica and carboxyl. This is the blending amount when the total amount of the group-containing polyurethane resin is 100 parts by mass.
 コロイダルシリカが少な過ぎると、所望とする耐食性が確保できない。カルボキシル基含有ポリウレタン樹脂が少な過ぎると、皮膜の形成が不均一となる。シランカップリング剤が少な過ぎると、金属板表面と無機リッチ層の密着性の向上効果が不充分になると共に、コロイダルシリカとポリウレタン樹脂との反応性も低下するため、耐食性、耐テープ剥離性、耐アルカリ脱脂性、耐黒変性等が劣化する。一方、シランカップリング剤が多過ぎると、第1水系組成物の経時安定性が低下し、コストの面でも不利になる。 If there is too little colloidal silica, the desired corrosion resistance cannot be ensured. When there is too little carboxyl group-containing polyurethane resin, the formation of the film becomes non-uniform. If the amount of the silane coupling agent is too small, the effect of improving the adhesion between the metal plate surface and the inorganic rich layer becomes insufficient, and the reactivity between the colloidal silica and the polyurethane resin also decreases, so that the corrosion resistance, tape peel resistance, Alkali degreasing resistance, blackening resistance, etc. deteriorate. On the other hand, when there are too many silane coupling agents, the time-dependent stability of a 1st aqueous composition will fall and it will become disadvantageous also in terms of cost.
 [無機リッチ層の膜厚]
 第1層である無機リッチ層の厚さは、0.01~0.1μmとする。本発明の無機リッチ層は、厚さ0.01μmの極薄膜の場合でも、亜鉛めっき層との密着性向上効果が認められる。但し、0.01μmよりも薄い場合は、皮膜の形成が不均一となったり、密着性に寄与するシリカの絶対量が不足して密着性が低下する。一方、無機リッチ層の厚さが0.1μmを超えると、皮膜内部での凝集破壊が発生し、結果として、耐テープ剥離試験を行った場合の皮膜残存率が大幅に低下する。また、導電性を確保するためには全膜厚を0.6μm以下に抑制する必要がある(後述)が、無機リッチ層の厚さが0.1μmを超えると、全膜厚に対する有機リッチ層(第2層)の膜厚を小さくせざるを得ず、バリア性の低下等によって、耐食性や耐黒変性、耐アルカリ脱脂性が低下してしまう。無機リッチ層の膜厚は0.02~0.08μmが好ましく、0.03~0.06μmがさらに好ましい。
[Film thickness of inorganic rich layer]
The thickness of the inorganic rich layer as the first layer is set to 0.01 to 0.1 μm. Even when the inorganic rich layer of the present invention is an extremely thin film having a thickness of 0.01 μm, an effect of improving the adhesion with the galvanized layer is recognized. However, when it is thinner than 0.01 μm, the formation of the film becomes non-uniform, or the absolute amount of silica contributing to the adhesion is insufficient and the adhesion is lowered. On the other hand, when the thickness of the inorganic rich layer exceeds 0.1 μm, cohesive failure occurs inside the film, and as a result, the film remaining rate when the tape peel resistance test is performed is significantly reduced. In order to ensure conductivity, it is necessary to suppress the total film thickness to 0.6 μm or less (described later), but when the thickness of the inorganic rich layer exceeds 0.1 μm, the organic rich layer with respect to the total film thickness The film thickness of the (second layer) must be reduced, and the corrosion resistance, blackening resistance, and alkali degreasing resistance are reduced due to a decrease in barrier properties. The film thickness of the inorganic rich layer is preferably 0.02 to 0.08 μm, more preferably 0.03 to 0.06 μm.
 [無機リッチ層の形成]
 無機リッチ層は、第1水系組成物を公知の塗布方法、すなわち、バーコーター法、ロールコーター法、スプレー法、カーテンフローコーター法等を用いて、金属板表面の片面または両面に塗布して加熱乾燥すればよい。加熱温度は、水が揮散する程度でよい。
[Formation of inorganic rich layer]
The inorganic rich layer is heated by applying the first aqueous composition to one or both surfaces of the metal plate surface using a known coating method, that is, a bar coater method, a roll coater method, a spray method, a curtain flow coater method, or the like. What is necessary is just to dry. The heating temperature may be such that water is volatilized.
 [有機リッチ層の膜厚]
 次に第2層目となる有機リッチ層について説明する。有機リッチ層は、バリア性を確保して、シリカの溶出速度を遅くし、耐食性を持続させる機能を担っている。本発明者らが、無機リッチ層と有機リッチ層の全膜厚と導電性の関係を調べたところ、図2に示される結果を得た。これは、無機リッチ層の厚さを0.06μmと一定にして、有機リッチ層の膜厚を変化させて得られた結果である。電磁波対策として求められるのは、表面抵抗計を用いて2探針法で測定した場合の導電性が0.5Ω未満であるので、全膜厚は0.6μm以下である必要があることがわかった。
[Thickness of organic rich layer]
Next, the organic rich layer as the second layer will be described. The organic rich layer has a function of ensuring barrier properties, slowing the elution rate of silica, and maintaining corrosion resistance. When the present inventors investigated the relationship between the total film thickness of the inorganic rich layer and the organic rich layer and conductivity, the results shown in FIG. 2 were obtained. This is a result obtained by changing the film thickness of the organic rich layer while keeping the thickness of the inorganic rich layer constant at 0.06 μm. What is required as an electromagnetic wave countermeasure is that the total film thickness must be 0.6 μm or less because the conductivity when measured by a two-probe method using a surface resistance meter is less than 0.5Ω. It was.
 よって、有機リッチ層は、0.2~0.5μmとする。0.3~0.5μmが好ましく、0.35~0.45μmがより好ましい。有機リッチ層が0.2μmより薄いと、バリア性が低下して、耐食性や耐アルカリ脱脂性が低下し、さらに、潤滑性が低下するため、加工性等に問題が発生する。一方、有機リッチ層の膜厚が0.5μmを超えて厚くなると、導電性が著しく悪くなる。 Therefore, the organic rich layer is 0.2 to 0.5 μm. 0.3 to 0.5 μm is preferable, and 0.35 to 0.45 μm is more preferable. When the organic rich layer is thinner than 0.2 μm, the barrier property is lowered, the corrosion resistance and the alkali degreasing resistance are lowered, and further, the lubricity is lowered. On the other hand, when the film thickness of the organic rich layer exceeds 0.5 μm, the conductivity is remarkably deteriorated.
 [有機リッチ層の有機樹脂]
 有機リッチ層は、有機樹脂を含む第2水系組成物から形成される。この有機樹脂としては特に限定されないが、水蒸気透過度が100g/m2/day以下のフィルムを作り得る樹脂であることが好ましい。なお、水蒸気透過度は、コピー用紙上に有機樹脂もしくは第2水系組成物をバーコーターで乾燥後のフィルム厚が18μmとなるように塗布し、105℃で2分間乾燥して、得られたフィルムを一昼夜静置したものを試料として用いて、JIS Z0208に準じたカップ法で測定した。
[Organic resin of organic rich layer]
The organic rich layer is formed from a second aqueous composition containing an organic resin. Although it does not specifically limit as this organic resin, It is preferable that it is resin which can produce the film of water vapor permeability of 100 g / m < 2 > / day or less. The water vapor permeability was obtained by applying an organic resin or a second aqueous composition on a copy paper so that the film thickness after drying with a bar coater was 18 μm, and drying at 105 ° C. for 2 minutes. Was measured by a cup method according to JIS Z0208 using a sample left standing for a whole day and night as a sample.
 水蒸気透過度が100g/m2/day以下のフィルムを作り得る樹脂であれば、有機リッチ層のバリア性が確保でき、コロイダルシリカの溶出速度を一層遅くすることができる。水蒸気透過度が100g/m2/dayを超えるフィルムとなる有機樹脂では、耐食性等の向上効果を期待して第2水系組成物にコロイダルシリカを30質量%を超えて添加すると、有機リッチ層の水蒸気透過度が5000g/m2/day以上に上昇してしまい、耐食性等が大幅に悪化するため好ましくない。より好ましい水蒸気透過度は50g/m2/day以下である。 If the resin can produce a film having a water vapor permeability of 100 g / m 2 / day or less, the barrier property of the organic rich layer can be secured, and the elution rate of colloidal silica can be further reduced. In the case of an organic resin that becomes a film having a water vapor permeability of more than 100 g / m 2 / day, when colloidal silica is added to the second aqueous composition in an amount exceeding 30% by mass in anticipation of an improvement effect such as corrosion resistance, The water vapor permeability increases to 5000 g / m 2 / day or more, which is not preferable because the corrosion resistance and the like are greatly deteriorated. A more preferable water vapor permeability is 50 g / m 2 / day or less.
 また、例えば、水蒸気透過度が50g/m2/dayの有機樹脂を含む第2水系組成物に、コロイダルシリカ(平均粒子径4~6nm)を20質量%(第2水系組成物の固形分換算)添加すると、有機リッチ層の水蒸気透過度は1500g/m2/day程度となるが、耐食性等の向上効果が認められた。さらに、後述する架橋剤や、前記したシランカップリング剤等の添加によっても、有機リッチ層の水蒸気透過度は低下する傾向にあり、耐食性や耐アルカリ脱脂性、耐黒変性等を向上させることができる。 In addition, for example, colloidal silica (average particle diameter of 4 to 6 nm) is added to a second aqueous composition containing an organic resin having a water vapor permeability of 50 g / m 2 / day, in terms of solid content of the second aqueous composition. ) When added, the water vapor permeability of the organic rich layer is about 1500 g / m 2 / day, but an effect of improving corrosion resistance or the like was observed. Furthermore, the water vapor permeability of the organic rich layer tends to be reduced by the addition of a cross-linking agent described later, the above-described silane coupling agent, and the like, which can improve corrosion resistance, alkali degreasing resistance, blackening resistance, and the like. it can.
 有機樹脂は、上記水蒸気透過度を満たすものであることが好ましいが、具体的に好ましいのは、エチレン-不飽和カルボン酸共重合体である。エチレン-不飽和カルボン酸共重合体としては、特開2005-246953号公報や特開2006-43913号公報に記載のものを用いることができる。 The organic resin preferably satisfies the water vapor permeability described above, but an ethylene-unsaturated carboxylic acid copolymer is particularly preferable. As the ethylene-unsaturated carboxylic acid copolymer, those described in JP-A-2005-246953 and JP-A-2006-43913 can be used.
 不飽和カルボン酸としては、(メタ)アクリル酸、クロトン酸、イソクロトン酸、マレイン酸、フマル酸、イタコン酸等が挙げられ、これらのうちの1種以上と、エチレンとを、公知の高温高圧重合法等で重合することにより、共重合体を得ることができる。 Examples of the unsaturated carboxylic acid include (meth) acrylic acid, crotonic acid, isocrotonic acid, maleic acid, fumaric acid, itaconic acid, and the like. A copolymer can be obtained by polymerization using a legal method or the like.
 エチレンに対する不飽和カルボン酸の共重合比率は、モノマー全量を100質量%とした時に、不飽和カルボン酸が10~40質量%であることが好ましい。不飽和カルボン酸が10質量%よりも少ないと、イオンクラスターによる分子間会合の基点、あるいは架橋剤との架橋点となるカルボキシル基が少ないため、皮膜強度効果が発揮されず、耐テープ剥離性や耐アルカリ脱脂性が不充分となることがある上に、エマルジョン組成物の乳化安定性に劣るため好ましくない。より好ましい不飽和カルボン酸の下限は15質量%である。一方、不飽和カルボン酸が40質量%を超えると、有機リッチ層の耐食性や耐水性に劣り、やはり耐アルカリ脱脂性が低下するため好ましくない。より好ましい上限は25質量%である。 The copolymerization ratio of unsaturated carboxylic acid to ethylene is preferably 10 to 40% by mass of unsaturated carboxylic acid when the total amount of monomers is 100% by mass. When the amount of unsaturated carboxylic acid is less than 10% by mass, there are few carboxyl groups that serve as base points for intermolecular association by ion clusters or cross-linking points with cross-linking agents. The alkali degreasing resistance may be insufficient, and the emulsion stability of the emulsion composition is inferior. A more preferable lower limit of the unsaturated carboxylic acid is 15% by mass. On the other hand, when the unsaturated carboxylic acid exceeds 40% by mass, the organic rich layer is inferior in corrosion resistance and water resistance, and the alkali degreasing resistance is also deteriorated. A more preferred upper limit is 25% by mass.
 上記エチレン-不飽和カルボン酸共重合体はカルボキシル基を有しているので、有機塩基や金属イオンで中和することにより、エマルション化(水分散体化)が可能となる。本発明では、有機塩基としてアミンを用いることが好ましく、前記したアミン類がいずれも使用可能であり、特にトリエチルアミンが好ましい。また、1価の金属イオンもアミン類に併せて用いることが好ましい。アミン類は、エチレン-不飽和カルボン酸共重合体中のカルボキシル基1モルに対し0.2~0.8モル(20~80モル%)とすることが好ましい。1価の金属イオンの量は、水蒸気透過度に影響を及ぼすことがわかり、1価の金属化合物の使用量が多くなれば樹脂と水との親和性が増して、水蒸気透過度が大きくなるので、エチレン-不飽和カルボン酸共重合体中のカルボキシル基1モルに対し0.02~0.2モル(2~20モル%)とすることが好ましい。また、過剰なアルカリ分は耐食性劣化の原因となるため、アミン類と金属イオンの合計使用量は、エチレン-不飽和カルボン酸共重合体中のカルボキシル基1モルに対し、0.3~1.0モルの範囲とするとよい。なお、1価の金属イオンを付与するための金属化合物は、NaOH、KOH、LiOH等が好ましく、NaOHが最も性能が良く好ましい。 Since the ethylene-unsaturated carboxylic acid copolymer has a carboxyl group, it can be emulsified (aqueous dispersion) by neutralization with an organic base or metal ion. In the present invention, it is preferable to use an amine as the organic base, and any of the above-described amines can be used, and triethylamine is particularly preferable. Monovalent metal ions are also preferably used in combination with amines. The amine is preferably used in an amount of 0.2 to 0.8 mol (20 to 80 mol%) based on 1 mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer. It can be seen that the amount of monovalent metal ions affects the water vapor permeability, and if the amount of monovalent metal compound used increases, the affinity between the resin and water increases, and the water vapor permeability increases. The amount is preferably 0.02 to 0.2 mol (2 to 20 mol%) based on 1 mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer. In addition, since excessive alkali content causes deterioration of corrosion resistance, the total amount of amines and metal ions used is 0.3 to 1 per mol of the carboxyl group in the ethylene-unsaturated carboxylic acid copolymer. It is good to set it as the range of 0 mol. The metal compound for imparting monovalent metal ions is preferably NaOH, KOH, LiOH or the like, and NaOH is most preferable because of its best performance.
 [架橋剤]
 アミンおよび1価の金属イオンによって中和されたカルボキシル基を有するエチレン-不飽和カルボン酸共重合体は、イオンクラスターによる分子間会合を形成し(アイオノマー化)、耐食性・耐テープ剥離性に優れた有機リッチ層を形成する。しかし、より強靱な皮膜を形成するためには、官能基間反応を利用した化学結合によってポリマー鎖同士を架橋させることが望ましい。架橋剤としては、グリシジル基含有架橋剤やアジリジニル基含有架橋剤が好ましい。
[Crosslinking agent]
An ethylene-unsaturated carboxylic acid copolymer having a carboxyl group neutralized with an amine and a monovalent metal ion forms an intermolecular association by ion clusters (ionomerization), and has excellent corrosion resistance and tape peel resistance. An organic rich layer is formed. However, in order to form a tougher film, it is desirable to crosslink the polymer chains by chemical bonding utilizing a reaction between functional groups. As the crosslinking agent, a glycidyl group-containing crosslinking agent or an aziridinyl group-containing crosslinking agent is preferable.
 グリシジル基含有架橋剤としては、ソルビトールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、(ポリ)エチレングリコールジグリシジルエーテル等のポリグリシジルエーテル類や、ポリグリシジルアミン類等のグリシジル基含有架橋剤が挙げられる。 Examples of glycidyl group-containing crosslinking agents include sorbitol polyglycidyl ether, (poly) glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, trimethylolpropane polyglycidyl ether, neopentyl glycol diglycidyl ether, (poly) ethylene glycol diglycidyl ether, etc. Glycidyl group-containing crosslinking agents such as polyglycidyl ethers and polyglycidylamines.
 アジリジニル基含有架橋剤としては、4,4’-ビス(エチレンイミンカルボニルアミノ)ジフェニルメタン、N,N’-ヘキサメチレン-1,6-ビス(1-アジリジンカルボキシアミド)、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トルエンビスアジリジンカルボキシアミド等の2官能アジリジン化合物;トリ-1-アジリジニルホスフィンオキサイド、トリス〔1-(2-メチル)アジリジニル〕ホスフィンオキサイド、トリメチロールプロパントリス(β-アジリジニルプロピオネート)、トリス-2,4,6-(1-アジリジニル)-1,3,5-トリアジン、テトラメチルプロパンテトラアジリジニルプロピオネート等の3官能以上のアジリジン化合物あるいはこれらの誘導体等が挙げられる。 As the aziridinyl group-containing crosslinking agent, 4,4′-bis (ethyleneiminecarbonylamino) diphenylmethane, N, N′-hexamethylene-1,6-bis (1-aziridinecarboxamide), N, N′-diphenylmethane— Bifunctional aziridine compounds such as 4,4′-bis (1-aziridinecarboxamide) and toluenebisaziridinecarboxyamide; tri-1-aziridinylphosphine oxide, tris [1- (2-methyl) aziridinyl] phosphine oxide, 3 such as trimethylolpropane tris (β-aziridinylpropionate), tris-2,4,6- (1-aziridinyl) -1,3,5-triazine, tetramethylpropanetetraaziridinylpropionate, etc. More functional or more aziridine compounds or their derivatives It is below.
 [ワックス]
 本発明の水系2層コート処理金属板は、有機リッチ層を最表面として加工に供されることがあるので、加工性を高めるために、有機リッチ層にはワックスが含まれることが好ましい。工業的に好ましいのは、球形のポリエチレンワックス、ポリプロピレンワックス、変性ワックス、エチレンやプロピレンとの共重合系ワックス、エチレン系共重合ワックスで、これらの酸化物、およびカルボキシル基を付与した誘導体等、また酸基を付与したパラフィン系ワックス、カルナバワックス等である。ワックスとしては、球形ポリエチレンワックスが最も好適であり、例えば、「ダイジェットE-17」(互応化学社製)、「KUE-1」、「KUE-5」、「KUE-8」(三洋化成工業社製)、「ケミパール」シリーズ(三井化学社製)の「W-100」、「W-200」、「W-300」、「W-400」、「W-500」、「W-640」、「W-700」等や、「エレポンE-20」(日華化学社製)等のような市販品を好適に用いることができる。
[wax]
Since the water-based two-layer coated metal plate of the present invention may be subjected to processing with the organic rich layer as the outermost surface, it is preferable that the organic rich layer contains a wax in order to improve processability. Industrially preferred are spherical polyethylene wax, polypropylene wax, modified wax, copolymer wax with ethylene and propylene, ethylene copolymer wax, oxides thereof, derivatives with carboxyl groups, etc. Examples thereof include paraffinic wax and carnauba wax provided with acid groups. As the wax, spherical polyethylene wax is most suitable. For example, “Daijet E-17” (manufactured by Kyoyo Chemical Co., Ltd.), “KUE-1”, “KUE-5”, “KUE-8” (Sanyo Chemical Industries) "W-100", "W-200", "W-300", "W-400", "W-500", "W-640" of "Chemipearl" series (Mitsui Chemicals) Commercial products such as “W-700” and “Elepon E-20” (manufactured by Nikka Chemical Co., Ltd.) can be preferably used.
 [第2水系組成物]
 第2水系組成物には、前記した平均粒子径4~6nmのコロイダルシリカを含めることが好ましい。但し、多すぎると前記したように水蒸気透過度が劣ったものとなる。よって、第2水系組成物においては、エチレン-不飽和カルボン酸共重合体(固形分)を57~83質量%、平均粒子径4~6nmのコロイダルシリカを10~30質量%、アジリジニル基含有架橋剤を5~8質量%、球形ポリエチレンワックス2~5質量%を配合することが好ましい。なお、これら4成分の合計は100質量%とする。
[Second aqueous composition]
The second aqueous composition preferably contains colloidal silica having an average particle diameter of 4 to 6 nm. However, if the amount is too large, the water vapor permeability is inferior as described above. Therefore, in the second aqueous composition, the ethylene-unsaturated carboxylic acid copolymer (solid content) is 57 to 83% by mass, the colloidal silica having an average particle diameter of 4 to 6 nm is 10 to 30% by mass, and the aziridinyl group-containing crosslink It is preferable to add 5 to 8% by mass of the agent and 2 to 5% by mass of the spherical polyethylene wax. In addition, the sum total of these 4 components shall be 100 mass%.
 必要により、各成分を一緒に、または別々に乳化して、水分散体として混合することが好ましい。第2水系組成物を無機リッチ層が形成された金属板に塗布する方法は特に限定されず、バーコーター法、ロールコーター法、スプレー法、カーテンフローコーター法等が採用可能である。塗布後は80~130℃程度で加熱乾燥を行うことが好ましい。 If necessary, it is preferable to emulsify the components together or separately and mix them as an aqueous dispersion. The method for applying the second aqueous composition to the metal plate on which the inorganic rich layer is formed is not particularly limited, and a bar coater method, a roll coater method, a spray method, a curtain flow coater method, or the like can be employed. After coating, it is preferable to heat and dry at about 80 to 130 ° C.
 本願は、2014年12月18日に出願された日本国特許出願第2014-256631号に基づく優先権の利益を主張するものである。2014年12月18日に出願された日本国特許出願第2014-256631号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2014-256631 filed on December 18, 2014. The entire contents of the specification of Japanese Patent Application No. 2014-256631 filed on December 18, 2014 are incorporated herein by reference.
 以下実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲の変更実施は本発明に含まれる。以下では、「部」は「質量部」を、「%」は「質量%」を示すものとする。また、実施例で用いた評価方法は、以下の通りである。 Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and modifications that do not depart from the spirit of the present invention are included in the present invention. Hereinafter, “part” indicates “part by mass”, and “%” indicates “% by mass”. Moreover, the evaluation method used in the Example is as follows.
[評価方法]
 (1)耐食性1:塩水噴霧試験(SST平板、SSTクロスカット)
 裏面とエッジシールを施した供試材について、平板のままのものとカッターナイフでクロスカットを入れたものを作り、JIS Z2371に準じて、35℃の雰囲気下で5%の塩水噴霧試験を実施し、白錆発生率が5%(面積)に達するまでの時間を測定した。
[Evaluation methods]
(1) Corrosion resistance 1: Salt spray test (SST flat plate, SST cross cut)
For the specimen with the back and edge seals, make a flat plate and a crosscut with a cutter knife, and perform a 5% salt spray test in an atmosphere of 35 ° C according to JIS Z2371. The time until the white rust occurrence rate reached 5% (area) was measured.
 SST平板の評価
 ◎:240時間以上
 ○:168時間以上、240時間未満
 △:120時間以上、168時間未満
 ×:120時間未満
 SSTクロスカットの評価
 ◎:120時間以上
 ○:96時間以上、120時間未満
 △:72時間以上、96時間未満
 ×:72時間未満
Evaluation of SST plate ◎: 240 hours or more ○: 168 hours or more, less than 240 hours Δ: 120 hours or more, less than 168 hours ×: Less than 120 hours Evaluation of SST crosscut ◎: 120 hours or more ○: 96 hours or more, 120 hours Less than △: 72 hours or more, less than 96 hours ×: Less than 72 hours
 (2)耐食性2:塩水噴霧サイクル試験(SSTサイクル)
 エッジシールした供試材(平板)について、JIS Z2371に準じた塩水噴霧のサイクル試験を実施し、白錆の発生率が5%に達したサイクル数を測定した。1サイクルは、塩水噴霧を8時間(35℃)、塩水噴霧休止を16時間(35℃)とした。
(2) Corrosion resistance 2: Salt spray cycle test (SST cycle)
The edge-sealed specimen (flat plate) was subjected to a salt spray cycle test in accordance with JIS Z2371, and the number of cycles at which the white rust generation rate reached 5% was measured. In one cycle, salt spray was performed for 8 hours (35 ° C.) and salt spray was stopped for 16 hours (35 ° C.).
 SSTサイクルの評価
 ◎:10サイクル以上
 ○:7サイクル以上、10サイクル未満
 △:5サイクル以上、7サイクル未満
 ×:5サイクル未満
Evaluation of SST cycle ◎: 10 cycles or more ○: 7 cycles or more, less than 10 cycles △: 5 cycles or more, less than 7 cycles ×: Less than 5 cycles
 (3)耐食性3:中性塩水噴霧サイクル試験(JASO)
 エッジシールした供試材(平板)について、JIS H8502に準じ、中性塩水噴霧サイクル試験を実施し、白錆の発生率が5%に達したサイクル数を測定した。1サイクルは、塩水噴霧を2時間、乾燥(60℃、湿度30%以上)を4時間、湿潤(50℃、湿度95%以上)2時間とした。
(3) Corrosion resistance 3: Neutral salt spray cycle test (JASO)
The edge-sealed specimen (flat plate) was subjected to a neutral salt spray cycle test in accordance with JIS H8502, and the number of cycles in which the white rust generation rate reached 5% was measured. In one cycle, salt spray was performed for 2 hours, drying (60 ° C., humidity 30% or higher) for 4 hours, and wet (50 ° C., humidity 95% or higher) for 2 hours.
 JASOの評価
 ◎:21サイクル以上
 ○:15サイクル以上、21サイクル未満
 △:9サイクル以上、15サイクル未満
 ×:9サイクル未満
JASO evaluation ◎: 21 cycles or more ○: 15 cycles or more, less than 21 cycles △: 9 cycles or more, less than 15 cycles ×: less than 9 cycles
 (4)導電性
 各供試材の表面抵抗値は、表面抵抗測定装置(LorestaEP;ダイヤインスツルメンツ社(現三菱化学アナリテック社)を用い、銅板なしで直接端子(2探針APプローブタイプA)を接触させて、2端子2探針法で測定した。ピン間隔は10mm、バネ圧は240g/本とし、ピン先径は2mmφであった。表面抵抗測定装置の模式図を図3に示した。
(4) Conductivity The surface resistance of each test material is measured directly using a surface resistance measuring device (LorestaEP; Dia Instruments (currently Mitsubishi Chemical Analytech)) without a copper plate (2-probe AP probe type A). The pin spacing was 10 mm, the spring pressure was 240 g / piece, the pin tip diameter was 2 mmφ, and a schematic diagram of the surface resistance measuring device is shown in FIG. .
 導電性の評価
 ◎:0.05Ω未満
 ○:0.05Ω以上、0.50Ω未満
 △:0.50Ω以上、1.00Ω未満
 ×:1.00Ω以上
Evaluation of conductivity ◎: Less than 0.05Ω ○: 0.05Ω or more, less than 0.50Ω △: 0.50Ω or more, less than 1.00Ω ×: 1.00Ω or more
 (5)耐テープ剥離性
 供試材に粘着テープ(スリオンテック社製フィラメントテープNo.9510;ゴム系粘着剤)を貼付し、恒温恒湿試験装置で40℃、湿度98%の雰囲気下で120時間保存した後、JIS K5400に準じてテープを剥離試験を実施して、皮膜の残存率(面積)を測定した。
(5) Tape peeling resistance Adhesive tape (filament tape No. 9510 manufactured by Sliontec Co., Ltd .; rubber adhesive) was affixed to the test material, and 120 hours in an atmosphere of 40 ° C. and 98% humidity using a constant temperature and humidity test device. After storage, the tape was subjected to a peel test according to JIS K5400, and the residual rate (area) of the film was measured.
 皮膜残存率の評価
 ◎:95%以上
 ○:90%以上、95%未満
 △:80%以上、90%未満
 ×:80%未満
Evaluation of film remaining ratio ◎: 95% or more ○: 90% or more, less than 95% △: 80% or more, less than 90% ×: less than 80%
 (6)耐黒変性
 供試材を、50℃、湿度98%以上の恒温恒湿試験装置で168時間保存した後、試験前後の外観(黒変としみ汚れの有無)観察と、色調変化を測定して色差(ΔE)を算出した。
(6) Blackening resistance After the test material was stored for 168 hours in a constant temperature and humidity test apparatus at 50 ° C. and humidity of 98% or more, the appearance (black / stained / stained / not stained) was observed before and after the test, and the color change was measured. The color difference (ΔE) was calculated.
 試験前後の外観評価
 ◎:試験前後で変化なし
 ○:ごくわずかに黒変し、しみ汚れなし
 △:わずかに黒変し、しみ汚れあり
 ×:黒変・しみ汚れあり
 色差(ΔE)の評価
 ◎:ΔEが1未満
 ○:ΔEが1以上、2未満
 △:ΔEが2以上、3未満
 ×:ΔEが3以上
Appearance evaluation before and after the test ◎: No change before and after the test ○: Slightly blackened, no stain stain △: Slightly blackened, stain stain ×: Black change / stained stain Color difference (ΔE) evaluation ◎ : ΔE is less than 1 ○: ΔE is 1 or more and less than 2 Δ: ΔE is 2 or more and less than 3 ×: ΔE is 3 or more
 (7)潤滑性(動摩擦係数)
 図4に示した摩擦係数測定装置を用いて、各供試材の動摩擦係数を測定した。供試材のサイズは40mm×300mm、加圧力は4.5MPa、引抜き速度は300mm/minとし、無塗油で行った。なお、平板ダイスの材質はSKD11とした。なお、動摩擦係数μはF/2Pである。
(7) Lubricity (dynamic friction coefficient)
The dynamic friction coefficient of each test material was measured using the friction coefficient measuring apparatus shown in FIG. The size of the test material was 40 mm × 300 mm, the applied pressure was 4.5 MPa, the drawing speed was 300 mm / min, and no oil was applied. The material of the flat plate die was SKD11. The dynamic friction coefficient μ is F / 2P.
 潤滑性の評価
 ◎:μ=0.09未満
 ○:μ=0.09以上、0.15未満
 △:μ=0.15以上、0.20未満
 ×:μ=0.20以上
Evaluation of lubricity ◎: μ = 0.09 or less ○: μ = 0.09 or more, less than 0.15 Δ: μ = 0.15 or more, less than 0.20 ×: μ = 0.20 or more
 (8)耐アルカリ脱脂性
 供試材を、日本パーカライジング社製のアルカリ脱脂剤(CL-N364S)20g/リットル(液温65℃)に2分間浸漬してから引き上げ、水洗および乾燥後、裏面とエッジシールを行い、JIS Z2371に準じた塩水噴霧サイクル試験(SSTサイクル平板)を実施し、白錆の発生率が5%になるまでのサイクル数を測定した。1サイクルは、5%の塩水噴霧8時間(35℃)、塩水噴霧休止16時間(35℃)とした。
(8) Alkali degreasing resistance The test material was immersed in an alkaline degreasing agent (CL-N364S) 20 g / liter (liquid temperature 65 ° C.) manufactured by Nihon Parkerizing Co., Ltd. for 2 minutes, pulled up, washed with water, dried, Edge sealing was performed, a salt spray cycle test (SST cycle flat plate) according to JIS Z2371 was performed, and the number of cycles until the white rust generation rate reached 5% was measured. One cycle was 5% salt spray 8 hours (35 ° C.) and salt spray rest 16 hours (35 ° C.).
 ◎:7サイクル以上
 ○:5サイクル以上、7サイクル未満
 △:3サイクル以上、5サイクル未満
 ×:3サイクル未満
◎: 7 cycles or more ○: 5 cycles or more, less than 7 cycles △: 3 cycles or more, less than 5 cycles ×: Less than 3 cycles
 合成例1
 カルボキシル基含有ポリウレタン樹脂水分散液の合成
 撹拌機、温度計、温度コントローラーを備えた合成装置に、ポリオール成分としてポリテトラメチレンエーテルグリコール(平均分子量1000;保土谷化学工業社製)を60部、1,4-シクロヘキサンジメタノール14部、ジメチロールプロピオン酸20部を仕込み、さらに反応溶媒としてN-メチルピロリドン30部を加えた。イソシアネート成分としてトリレンジイソシアネート(TDI)を104部仕込み、80℃~85℃に昇温し、5時間反応させた。得られたプレポリマーのNCO含有量は、8.9%であった。さらにトリエチルアミン16部を加えて中和を行い、エチレンジアミン16部と水480部の混合水溶液を加えて、50℃で4時間乳化しつつ鎖延長反応させて、ポリウレタン樹脂水分散液を得た(不揮発性樹脂成分29.1%、酸価41.4)。これを樹脂Aとする。なお、樹脂Aの水蒸気透過度は、1500g/m2/dayであった。
Synthesis example 1
Synthesis of carboxyl group-containing polyurethane resin aqueous dispersion 60 parts of polytetramethylene ether glycol (average molecular weight 1000; manufactured by Hodogaya Chemical Co., Ltd.) as a polyol component was added to a synthesizer equipped with a stirrer, thermometer and temperature controller. 1,4-cyclohexanedimethanol and 20 parts of dimethylolpropionic acid were added, and 30 parts of N-methylpyrrolidone was added as a reaction solvent. 104 parts of tolylene diisocyanate (TDI) was added as an isocyanate component, heated to 80 ° C. to 85 ° C., and reacted for 5 hours. The obtained prepolymer had an NCO content of 8.9%. Further, 16 parts of triethylamine was added for neutralization, a mixed aqueous solution of 16 parts of ethylenediamine and 480 parts of water was added, and a chain extension reaction was carried out while emulsifying at 50 ° C. for 4 hours to obtain an aqueous polyurethane resin dispersion (nonvolatile). Resin component 29.1%, acid value 41.4). This is designated as resin A. The water vapor permeability of Resin A was 1500 g / m 2 / day.
 合成例2
 エチレン-不飽和カルボン酸共重合体水分散液の合成その1
 撹拌機、温度計、温度コントローラーを備えた乳化設備を有するオートクレーブに、水626部、エチレン-アクリル酸共重合体(アクリル酸ユニット:20質量%、メルトインデックス:300)160部を加え、エチレン-アクリル酸共重合体のカルボキシル基1モルに対してトリエチルアミンを40モル%、水酸化ナトリウムを15モル%加えて、150℃、5Paで高速撹拌を行い、40℃に冷却して、エチレン-アクリル酸共重合体のエマルションを得た。ここに、4,4’-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン(日本触媒社製、「ケミタイト(登録商標)DZ-22E」)をエチレン-アクリル酸共重合体の固形分100部に対し、5部加えたものを樹脂Bとした。この樹脂Bの水蒸気透過度は、50g/m2/dayであった。
Synthesis example 2
Synthesis of ethylene-unsaturated carboxylic acid copolymer aqueous dispersion 1
To an autoclave having an emulsification facility equipped with a stirrer, a thermometer and a temperature controller, 626 parts of water and 160 parts of an ethylene-acrylic acid copolymer (acrylic acid unit: 20% by mass, melt index: 300) were added. Add 40 mol% of triethylamine and 15 mol% of sodium hydroxide to 1 mol of carboxyl group of the acrylic acid copolymer, stir at 150 ° C and 5 Pa at high speed, cool to 40 ° C, and then add ethylene-acrylic acid A copolymer emulsion was obtained. Here, 4,4′-bis (ethyleneiminocarbonylamino) diphenylmethane (manufactured by Nippon Shokubai Co., Ltd., “Chemite (registered trademark) DZ-22E”) was added to a solid content of 100 parts of ethylene-acrylic acid copolymer by 5 parts. The resin added was partly added. The water vapor permeability of this resin B was 50 g / m 2 / day.
 合成例3および4
 エチレン-不飽和カルボン酸共重合体水分散液の合成その2およびその3
 上記合成例2において、水酸化ナトリウムの添加量をエチレン-アクリル酸共重合体のカルボキシル基1モルに対して20モル%とした以外は、上記合成例2と同様にして樹脂Cを得た。また、水酸化ナトリウムの添加量を30モル%としたものを樹脂Dとした。樹脂Cの水蒸気透過度は100g/m2/day、樹脂Dの水蒸気透過度は1000g/m2/dayであった。
Synthesis Examples 3 and 4
Synthesis of aqueous dispersions of ethylene-unsaturated carboxylic acid copolymer, part 2 and part 3
Resin C was obtained in the same manner as in Synthesis Example 2 except that the amount of sodium hydroxide added was 20 mol% with respect to 1 mol of the carboxyl group of the ethylene-acrylic acid copolymer in Synthesis Example 2. Resin D was obtained by adding 30 mol% of sodium hydroxide. The water vapor permeability of Resin C was 100 g / m 2 / day, and the water vapor permeability of Resin D was 1000 g / m 2 / day.
 実験例1
 平均粒子径4~6nmのコロイダルシリカ(日産化学工業社製、「スノーテックス(登録商標)XS」55~85部に対して、合成例1で調製したカルボキシル基含有ポリウレタン樹脂水分散液(樹脂A)を15~45部の範囲で添加し、固形分合計の100質量部に対して、シランカップリング剤(信越化学社製、KBM403(グリシドキシ基含有シランカップリング剤))を15質量部加えて、第1水系組成物を調製した。
Experimental example 1
Colloidal silica having an average particle size of 4 to 6 nm (manufactured by Nissan Chemical Industries, Ltd., “Snowtex (registered trademark) XS”) 55 to 85 parts, a carboxyl group-containing polyurethane resin aqueous dispersion prepared in Synthesis Example 1 (resin A ) In the range of 15 to 45 parts, and 15 parts by mass of silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM403 (glycidoxy group-containing silane coupling agent)) is added to 100 parts by mass of the total solid content. A first aqueous composition was prepared.
 金属板として、電気亜鉛めっき鋼板(亜鉛付着量20g/m2、板厚0.8mm)を用い、その片面に第1水系組成物をバーコーターで塗布し、板温90℃で乾燥し、膜厚0.06μmの無機リッチ層を形成した。なお、膜厚は、皮膜中のコロイダルシリカ(SiO2)のSi元素を蛍光X線分析装置で定量測定して算出した。このとき、SiO2の比重は2.2、樹脂の比重は1として計算した。 As the metal plate, an electrogalvanized steel plate (zinc adhesion amount 20 g / m 2 , plate thickness 0.8 mm) was used. The first aqueous composition was applied to one side with a bar coater and dried at a plate temperature of 90 ° C. An inorganic rich layer having a thickness of 0.06 μm was formed. The film thickness was calculated by quantitatively measuring the Si element of colloidal silica (SiO 2 ) in the film with a fluorescent X-ray analyzer. At this time, the specific gravity of SiO 2 was calculated as 2.2 and the specific gravity of the resin as 1.
 合成例2で調製した樹脂Bの固形分59部に対し、平均粒子径4~6nmのコロイダルシリカを30部と、架橋剤として、グリシジル基含有架橋剤(DIC社製、「エピクロン(登録商標)CR5L」)を7.5部と、球形ポリエチレンワックス(三井化学社製、「ケミパール(登録商標)W640」)3.5部を添加して第2水系組成物を調製した。これを、前記亜鉛めっき鋼板上の無機リッチ層の上に、無機リッチ層と同様にバーコーターで塗布し、乾燥後の膜厚が0.4μmとなるように塗布・乾燥し有機リッチ層を形成し、水系2層コート処理金属板を得た。評価結果を表1に示す。 30 parts of colloidal silica having an average particle size of 4 to 6 nm with respect to 59 parts of the solid content of the resin B prepared in Synthesis Example 2, and a glycidyl group-containing crosslinking agent (“Epiclon (registered trademark)” manufactured by DIC) CR5L ") and 7.5 parts of spherical polyethylene wax (Mitsui Chemicals," Chemical (registered trademark) W640 ") were added to prepare a second aqueous composition. This is coated on the inorganic rich layer on the galvanized steel sheet with a bar coater in the same manner as the inorganic rich layer, and coated and dried so that the film thickness after drying is 0.4 μm to form an organic rich layer. Thus, an aqueous two-layer coated metal plate was obtained. The evaluation results are shown in Table 1.
 なお、RunNo.6と7は、コロイダルシリカ量が本発明の範囲外の例である。また、RunNo.8と9は、無機リッチ層として重リン酸アルミニウム水溶液(日本化学工業社製、固形分50%)45部と酸性コロイダルシリカ(スノーテックス(登録商標)ST-O;平均粒子径10~15nm)55部とを混合した表面処理剤を、スプレーリンガー装置で塗布し、その後水洗・乾燥して下地処理(約10nm)を施した。その上に、上記と同様にして有機リッチ層を形成した。RunNo.8の全膜厚は0.46μm、RunNo.9の全膜厚は1.0μmとした。評価結果を表1に示す。 In addition, RunNo. 6 and 7 are examples in which the amount of colloidal silica is outside the scope of the present invention. In addition, RunNo. 8 and 9 are 45 parts of an aqueous solution of aluminum biphosphate (manufactured by Nippon Chemical Industry Co., Ltd., solid content 50%) and acidic colloidal silica (Snowtex (registered trademark) ST-O; average particle size 10 to 15 nm) as an inorganic rich layer. A surface treatment agent mixed with 55 parts was applied with a spray ringer apparatus, then washed with water and dried to give a base treatment (about 10 nm). On top of that, an organic rich layer was formed in the same manner as described above. RunNo. No. 8 has a total film thickness of 0.46 μm, Run No. The total film thickness of 9 was 1.0 μm. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、無機リッチ層のコロイダルシリカ量が少ないと、めっき層に対する密着性の指標である耐テープ剥離性が劣ることがわかる(RunNo.6)。一方、コロイダルシリカ量が多すぎると、ポリウレタン樹脂が相対的に少なくなり皮膜の形成が不完全となったため、種々の性能が低下した(RunNo.7)。 Table 1 shows that when the amount of colloidal silica in the inorganic rich layer is small, the tape peel resistance, which is an index of adhesion to the plating layer, is inferior (Run No. 6). On the other hand, when the amount of colloidal silica was too large, the polyurethane resin was relatively decreased and the formation of the film was incomplete, and various performances were reduced (Run No. 7).
 実験例2
 平均粒子径4~6nmの前出のスノーテックスXS70部に対して、樹脂Aを固形分で30部添加し、これらの合計100部に対し、前出のKBM403を5~25部の範囲で添加して第1水系組成物を調製した。実験例1と同様にして、膜厚0.06μmの無機リッチ層を電気亜鉛めっき鋼板の表面に形成した。
Experimental example 2
Add 30 parts of resin A in solids to 70 parts of Snowtex XS with an average particle size of 4 to 6 nm, and add KBM403 to 5 to 25 parts of the total 100 parts. Thus, a first aqueous composition was prepared. In the same manner as in Experimental Example 1, an inorganic rich layer having a thickness of 0.06 μm was formed on the surface of the electrogalvanized steel sheet.
 次に、実験例1と同様にして、膜厚0.4μmの有機リッチ層を、上記無機リッチ層の上に形成した。評価結果を表2に示した。 Next, in the same manner as in Experimental Example 1, an organic rich layer having a thickness of 0.4 μm was formed on the inorganic rich layer. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、無機リッチ層のシランカップリング剤の量が少ないと、めっき層に対する密着性向上効果が不充分になると共に、シリカとポリウレタン樹脂との反応性も低下するため、耐食性、耐テープ剥離性、耐アルカリ脱脂性等が劣化した(RunNo.14)。一方、シランカップリング剤の量が多すぎると、種々の性能が低下した(RunNo.15)。 From Table 2, if the amount of the silane coupling agent in the inorganic rich layer is small, the effect of improving the adhesion to the plating layer becomes insufficient, and the reactivity between the silica and the polyurethane resin also decreases. And alkali degreasing resistance deteriorated (Run No. 14). On the other hand, when the amount of the silane coupling agent was too large, various performances were reduced (Run No. 15).
 実験例3
 平均粒子径4~6nmの前出のスノーテックスXS70部に対して、樹脂Aを固形分で30部添加し、これらの合計100部に対し、前出のKBM403を15部添加して第1水系組成物を調製した。膜厚を0.005~0.2μmと変化させた以外は実験例1と同様にして無機リッチ層を電気亜鉛めっき鋼板の表面に形成した。
Experimental example 3
30 parts of Resin A was added as solids to 70 parts of the above-mentioned Snowtex XS having an average particle size of 4 to 6 nm, and 15 parts of the above KBM403 was added to the total of 100 parts. A composition was prepared. An inorganic rich layer was formed on the surface of the electrogalvanized steel sheet in the same manner as in Experimental Example 1 except that the film thickness was changed to 0.005 to 0.2 μm.
 次に、実験例1と同様にして、膜厚0.4μmの有機リッチ層を、上記無機リッチ層の上に形成した。評価結果を表3に示した。 Next, in the same manner as in Experimental Example 1, an organic rich layer having a thickness of 0.4 μm was formed on the inorganic rich layer. The evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から、無機リッチ層の膜厚が薄すぎると、無機リッチ層の皮膜形成が不均一となったり、密着性に寄与するシリカの絶対量が不足するため、密着性が劣化した(RunNo.21)。一方、無機リッチ層の膜厚が厚すぎると、種々の性能が低下した(RunNo.22)。 From Table 3, when the film thickness of the inorganic rich layer is too thin, the film formation of the inorganic rich layer becomes non-uniform or the absolute amount of silica that contributes to the adhesiveness is insufficient, so that the adhesiveness deteriorates (Run No. 21). On the other hand, when the film thickness of the inorganic rich layer was too thick, various performances decreased (Run No. 22).
 実験例4
 平均粒子径4~6nmの前出のスノーテックスXS70部に、平均粒子径8~11nmのスノーテックスST-S(日産化学工業社製)および/または平均粒子径10~15nmのスノーテックスST-30(日産化学工業社製)を表4に記載の割合で加えて、このシリカの合計70部に対して、樹脂Aを固形分で30部添加し、これらの合計100部に対し、前出のKBM403を15部添加して第1水系組成物を調製した。後は実験例1と同様にして無機リッチ層と有機リッチ層を電気亜鉛めっき鋼板の表面にこの順で形成した。評価結果を表4に示した。
Experimental Example 4
To the above-mentioned 70 parts of Snowtex XS having an average particle diameter of 4 to 6 nm, Snowtex ST-S (manufactured by Nissan Chemical Industries, Ltd.) having an average particle diameter of 8 to 11 nm and / or Snowtex ST-30 having an average particle diameter of 10 to 15 nm is used. (Nissan Chemical Industry Co., Ltd.) was added at the ratio shown in Table 4, and 30 parts of Resin A was added as a solid content to a total of 70 parts of this silica. A first aqueous composition was prepared by adding 15 parts of KBM403. Thereafter, in the same manner as in Experimental Example 1, an inorganic rich layer and an organic rich layer were formed on the surface of the electrogalvanized steel sheet in this order. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から、平均粒子径の大きなコロイダルシリカを使うと、若干性能が低下する傾向が見られた。 From Table 4, when colloidal silica having a large average particle diameter was used, there was a tendency for the performance to slightly decrease.
 実験例5
 平均粒子径4~6nmの前出のスノーテックスXS70部に対して、樹脂Aを固形分で30部添加し、これらの合計100部に対し、前出のKBM403を15部添加して第1水系組成物を調製した。実験例1と同様にして、膜厚0.06μmの無機リッチ層を電気亜鉛めっき鋼板の上に形成した。
Experimental Example 5
30 parts of Resin A was added as solids to 70 parts of the above-mentioned Snowtex XS having an average particle size of 4 to 6 nm, and 15 parts of the above KBM403 was added to the total of 100 parts. A composition was prepared. In the same manner as in Experimental Example 1, an inorganic rich layer having a thickness of 0.06 μm was formed on the electrogalvanized steel sheet.
 有機リッチ層の膜厚を0.1~0.6μmの間で変化させた以外は、実験例1と同様にして、無機リッチ層の上に有機リッチ層を形成した。評価結果を表5に示した。 An organic rich layer was formed on the inorganic rich layer in the same manner as in Experimental Example 1 except that the film thickness of the organic rich layer was changed between 0.1 and 0.6 μm. The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 有機リッチ層の厚みが薄いと、コロイダルシリカの溶出を抑制する効果が発現せず、種々の性能が低下した(RunNo.37)。有機リッチ層の厚みが厚い場合は、導電性のみが低下した(RunNo.38)。 When the thickness of the organic rich layer was thin, the effect of suppressing the elution of colloidal silica was not exhibited, and various performances were reduced (Run No. 37). When the organic rich layer was thick, only the conductivity decreased (Run No. 38).
 実験例6
 実験例1と同様にして無機リッチ層を形成した。有機リッチ層形成に用いた樹脂を表6に示したように変えた以外は、実験例1と同様に有機リッチ層を形成した。評価結果を表6に示した。
Experimental Example 6
In the same manner as in Experimental Example 1, an inorganic rich layer was formed. An organic rich layer was formed in the same manner as in Experimental Example 1 except that the resin used for forming the organic rich layer was changed as shown in Table 6. The evaluation results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 水蒸気透過度の大きい樹脂Aを用いると、耐食性が劣る傾向にあった(RunNo.42)。 When the resin A having a high water vapor permeability was used, the corrosion resistance tended to be inferior (Run No. 42).
 本発明により、良好な導電性を有すると共に、優れた密着性、耐黒変性、耐アルカリ脱脂性および持続性のある耐食性(特に疵部)を有する水系2層コート処理金属板を提供することができた。 According to the present invention, it is possible to provide an aqueous two-layer coated metal sheet having good conductivity, excellent adhesion, blackening resistance, alkali degreasing resistance, and persistent corrosion resistance (particularly a buttock). did it.
 従って、本発明の水系2層コート処理金属板は、電磁波対策が必要な家電製品等に有用である。 Therefore, the aqueous two-layer coated metal plate of the present invention is useful for home appliances and the like that require countermeasures against electromagnetic waves.

Claims (3)

  1.  金属板の少なくとも片方の表面に2層の薄膜が積層された金属板であって、
     平均粒子径が4~15nmのコロイダルシリカ60~80質量部およびカルボキシル基含有ポリウレタン樹脂20~40質量部と、末端にグリシドキシ基を有するシランカップリング剤を、前記コロイダルシリカおよびカルボキシル基含有ポリウレタン樹脂の合計100質量部に対し7.5~20質量部含有し、リチウム系無機化合物、リン酸化合物およびリチウム以外の金属成分は含まない第1水系組成物から形成された膜厚が0.01~0.1μmの無機リッチ層と、この無機リッチ層の上に、有機樹脂を含む第2水系組成物から形成された膜厚0.2~0.5μmの有機リッチ層を有し、無機リッチ層と有機リッチ層との合計膜厚が0.25~0.6μmであることを特徴とする水系2層コート処理金属板。
    A metal plate in which two layers of thin films are laminated on at least one surface of the metal plate,
    60 to 80 parts by mass of colloidal silica having an average particle size of 4 to 15 nm and 20 to 40 parts by mass of a carboxyl group-containing polyurethane resin, and a silane coupling agent having a glycidoxy group at the terminal are used as the colloidal silica and carboxyl group-containing polyurethane resin. The film thickness formed from the first aqueous composition containing 7.5 to 20 parts by mass with respect to a total of 100 parts by mass and containing no metal component other than lithium-based inorganic compound, phosphate compound and lithium is 0.01 to 0 An inorganic rich layer having a thickness of 0.2 to 0.5 μm formed from a second aqueous composition containing an organic resin on the inorganic rich layer, An aqueous two-layer coated metal sheet characterized in that the total film thickness with the organic rich layer is 0.25 to 0.6 μm.
  2.  第1水系組成物中のコロイダルシリカの50質量%以上が、平均粒子径が4~6nmである請求項1に記載の水系2層コート処理金属板。 The aqueous two-layer coated metal plate according to claim 1, wherein 50% by mass or more of the colloidal silica in the first aqueous composition has an average particle diameter of 4 to 6 nm.
  3.  第2水系組成物に含まれる有機樹脂から得られるフィルムの水蒸気透過度が100g/m2/day以下である請求項1または2に記載の水系2層コート処理金属板。 The water-based two-layer coated metal sheet according to claim 1 or 2, wherein a water vapor permeability of a film obtained from the organic resin contained in the second water-based composition is 100 g / m 2 / day or less.
PCT/JP2015/084278 2014-12-18 2015-12-07 Aqueous two layer-coated metal plate WO2016098629A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177017164A KR101808495B1 (en) 2014-12-18 2015-12-07 Aqueous two layer-coated metal plate
CN201580068417.4A CN107000381B (en) 2014-12-18 2015-12-07 Water system two-layer coating handles metallic plate
MYPI2017702200A MY182210A (en) 2014-12-18 2015-12-07 Aqueous two layer-coated metal plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-256631 2014-12-18
JP2014256631A JP6396786B2 (en) 2014-12-18 2014-12-18 Aqueous two-layer coated metal plate

Publications (1)

Publication Number Publication Date
WO2016098629A1 true WO2016098629A1 (en) 2016-06-23

Family

ID=56126521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084278 WO2016098629A1 (en) 2014-12-18 2015-12-07 Aqueous two layer-coated metal plate

Country Status (6)

Country Link
JP (1) JP6396786B2 (en)
KR (1) KR101808495B1 (en)
CN (1) CN107000381B (en)
MY (1) MY182210A (en)
TW (1) TWI569956B (en)
WO (1) WO2016098629A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6626805B2 (en) * 2016-09-13 2019-12-25 株式会社神戸製鋼所 Surface-treated metal plate and method for producing surface-treated metal plate
CN108408245A (en) * 2018-02-12 2018-08-17 苏州福斯特光伏材料有限公司 A kind of corrosion-resistant finishes, lithium battery flexible packaging material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045163A (en) * 2006-08-11 2008-02-28 Kobe Steel Ltd ELECTRICALLY Zn-PLATED STEEL SHEET HAVING EXCELLENT STAIN RESISTANCE
WO2009107546A1 (en) * 2008-02-25 2009-09-03 株式会社神戸製鋼所 Electro-galvanized steel sheet with excellent unsusceptibility to stain
JP2013108126A (en) * 2011-11-18 2013-06-06 Kobe Steel Ltd Surface treated metal sheet excellent in corrosion resistance and conductivity
JP2014184709A (en) * 2013-02-22 2014-10-02 Kobe Steel Ltd Water-based resin coating laminated metal plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3069094B1 (en) * 1999-07-15 2000-07-24 株式会社神戸製鋼所 Surface-coated metal plate and method for producing the same
US6635341B1 (en) * 2000-07-31 2003-10-21 Ppg Industries Ohio, Inc. Coating compositions comprising silyl blocked components, coating, coated substrates and methods related thereto

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045163A (en) * 2006-08-11 2008-02-28 Kobe Steel Ltd ELECTRICALLY Zn-PLATED STEEL SHEET HAVING EXCELLENT STAIN RESISTANCE
WO2009107546A1 (en) * 2008-02-25 2009-09-03 株式会社神戸製鋼所 Electro-galvanized steel sheet with excellent unsusceptibility to stain
JP2013108126A (en) * 2011-11-18 2013-06-06 Kobe Steel Ltd Surface treated metal sheet excellent in corrosion resistance and conductivity
JP2014184709A (en) * 2013-02-22 2014-10-02 Kobe Steel Ltd Water-based resin coating laminated metal plate

Also Published As

Publication number Publication date
CN107000381B (en) 2018-09-18
KR101808495B1 (en) 2017-12-12
TWI569956B (en) 2017-02-11
JP6396786B2 (en) 2018-09-26
JP2016117171A (en) 2016-06-30
CN107000381A (en) 2017-08-01
TW201630722A (en) 2016-09-01
KR20170077262A (en) 2017-07-05
MY182210A (en) 2021-01-18

Similar Documents

Publication Publication Date Title
JP6923433B2 (en) Painted galvanized steel sheet
TWI674191B (en) Coated galvanized steel sheet
KR102376587B1 (en) Metal surface treatment agent for zinc-plated steel material, coating method, and coated steel material
KR20120135417A (en) Black metal sheet
KR101755963B1 (en) Metal sheet laminated with water-based resin coating film
KR101025008B1 (en) Method for forming insulating film of non-oriented electrical steel sheet and non-oriented electrical steel sheet by using it
JP4057626B2 (en) Electrical Zn-plated steel sheet with excellent stain resistance
JP2014015037A (en) Metal sheet coated with black thin film
WO2016098629A1 (en) Aqueous two layer-coated metal plate
WO2017150067A1 (en) Surface-treated galvanized steel sheet having excellent appearance
TW202003916A (en) Coated galvanized steel sheet
KR20170126973A (en) Resin coated zinc plated metal plate
JP7235556B2 (en) Painted galvanized steel sheet
JP7166955B2 (en) Painted galvanized steel sheet
CN111902272B (en) Coated galvanized steel sheet
JP6856451B2 (en) Surface-treated metal plate and method for manufacturing surface-treated metal plate
WO2018025651A1 (en) Surface-treated metal plate and method for producing surface-treated metal plate
WO2019188237A1 (en) Coated galvanized steel sheet
WO2018180092A1 (en) Coated galvanized steel sheet
WO2019188461A1 (en) Coated galvanized steel sheet
JP2019173125A (en) Coated galvanized steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177017164

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15869834

Country of ref document: EP

Kind code of ref document: A1