WO2016098397A1 - Electrical connection member, organic electroluminescence module, and method for producing organic electroluminescence module - Google Patents

Electrical connection member, organic electroluminescence module, and method for producing organic electroluminescence module Download PDF

Info

Publication number
WO2016098397A1
WO2016098397A1 PCT/JP2015/075020 JP2015075020W WO2016098397A1 WO 2016098397 A1 WO2016098397 A1 WO 2016098397A1 JP 2015075020 W JP2015075020 W JP 2015075020W WO 2016098397 A1 WO2016098397 A1 WO 2016098397A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
electrical connection
connection member
layer
panel
Prior art date
Application number
PCT/JP2015/075020
Other languages
French (fr)
Japanese (ja)
Inventor
夏樹 山本
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016564702A priority Critical patent/JPWO2016098397A1/en
Publication of WO2016098397A1 publication Critical patent/WO2016098397A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Definitions

  • the present invention relates to an electrical connection member, an organic electroluminescence module, and a method for manufacturing the organic electroluminescence module.
  • the present invention relates to an electrical connection member that can suppress the thickness of the entire organic electroluminescence module when laminated on an organic electroluminescence panel, an organic electroluminescence module including the electrical connection member, and a method of manufacturing the organic electroluminescence module.
  • organic electroluminescence (hereinafter also referred to as “organic EL”) element is known as a surface emitting light source.
  • organic EL element is surface emitting, can be made thinner than conventional light sources, and can be flexible.
  • a so-called can-sealed configuration is adopted for an organic EL panel in which an organic EL element is formed on a glass substrate.
  • Can sealing means that a glass member formed into a concave shape or a metal plate processed into a hollow structure is placed with a desiccant that adsorbs moisture inside, and the organic functional layer is covered with an epoxy adhesive or the like It is the structure which joins (for example, refer patent document 1).
  • a so-called solid sealing configuration also called laminate sealing.
  • Solid sealing is a configuration in which, for example, an epoxy-based sealing adhesive is applied to a thin glass sheet, a metal foil layer, a resin film, and the like, and is bonded to the entire necessary portion of the organic EL panel by thermocompression bonding.
  • an epoxy-based sealing adhesive is applied to a thin glass sheet, a metal foil layer, a resin film, and the like, and is bonded to the entire necessary portion of the organic EL panel by thermocompression bonding.
  • a flexible printed circuit board (hereinafter also referred to as “FPC”) in which a wiring pattern is formed on a substrate such as polyimide is used.
  • FPC flexible printed circuit board
  • an organic EL module is manufactured by attaching an FPC to the sealed organic EL panel, it is necessary to arrange the FPC so as to overlap the region where the organic functional layer of the organic EL panel is formed, depending on the use mode of the organic EL module. There is. In such a case, in the region where the organic functional layer of the organic EL panel and the FPC overlap, there arises a problem that the thickness of the entire organic EL module increases.
  • organic EL panels are not limited to lighting, but are used as backlights for smart devices and light sources for icon keys, and in combination with user interfaces such as keyboards and sensing devices.
  • application to fields is being studied, and when the thickness of the organic EL module is large, application to these fields is often difficult.
  • the present invention has been made in view of the above-described problems and situations, and its solution is an electrical connection member that can suppress the thickness of the entire organic electroluminescence module when laminated on an organic electroluminescence panel, and And an organic electroluminescence module comprising the above and a method for producing the organic electroluminescence module.
  • the electrical connection member laminated and attached to the organic EL panel has an organic functional layer of the organic EL panel in addition to the wiring pattern normally provided
  • the electrical connection member itself functions as a sealing material for the organic EL panel, and the sealing configuration normally provided on the organic EL panel can be omitted. It was found that the thickness of the entire module can be suppressed. That is, the subject concerning this invention is solved by the following means.
  • An electrical connection member that is stacked and attached so as to overlap an area where an organic functional layer of an organic electroluminescence panel is formed, A substrate, In order to seal the organic functional layer, a sealing pattern formed on the surface facing the organic electroluminescence panel among both surfaces of the substrate; In order to drive the organic electroluminescence panel, a wiring pattern formed on at least the surface facing the organic electroluminescence panel among both surfaces of the substrate;
  • An electrical connection member comprising:
  • the electrical connection member according to any one of items 1 to 3, An organic electroluminescence panel, The electrical connection member is stacked and attached so as to overlap an area where the organic functional layer of the organic electroluminescence panel is formed, the organic functional layer is sealed with the sealing pattern, and the organic electroluminescent panel An organic electroluminescence module, wherein the connection electrode portion and the wiring pattern are electrically connected.
  • An organic electroluminescence module manufacturing method in which an electrical connection member is laminated and attached so as to overlap an area where an organic functional layer of an organic electroluminescence panel is formed, Forming a sealing pattern for sealing the organic functional layer and a wiring pattern for driving the organic electroluminescence panel on one surface of the substrate to produce the electrical connection member; When, Laminating the electrical connection member on the organic electroluminescence panel, and sealing the organic functional layer with the sealing pattern; Electrically connecting the connection electrode portion of the organic electroluminescence panel and the wiring pattern;
  • the manufacturing method of the organic electroluminescent module characterized by having.
  • the electrical connection member of the present invention when laminated on an organic electroluminescence panel, the electrical connection member capable of suppressing the thickness of the entire organic electroluminescence module, the organic electroluminescence module including the same, and the organic electroluminescence module A manufacturing method can be provided.
  • the expression mechanism or action mechanism of the effect of the present invention is as follows. That is, the electrical connection member of the present invention includes a sealing pattern for sealing the organic functional layer of the organic EL panel in addition to the wiring pattern. For this reason, while the said electrical connection member is laminated
  • the electrical connection member itself functions as a sealing material for the organic EL panel, the sealing configuration provided in the conventional organic EL panel can be omitted, and the organic EL is reduced by the amount that the sealing configuration is omitted.
  • the thickness of the module can be reduced.
  • Schematic plan view showing an example of the configuration of the organic electroluminescence panel constituting the organic electroluminescence module 1A is a cross-sectional view of the plane along the line IB-IB shown in FIG. 1A
  • Schematic sectional view showing an example of the configuration of the organic electroluminescence element constituting the organic electroluminescence panel Schematic bottom view showing an example of the configuration of the electrical connection member Cross-sectional view taken along the line IIIB-IIIB shown in FIG. 3A
  • Schematic sectional view showing an example of the configuration of the organic electroluminescence module of the present invention Schematic bottom view showing Modification 1 of the configuration of the electrical connection member Sectional view of the surface along the line VB-VB shown in FIG.
  • the electrical connection member of the present invention is an electrical connection member that is stacked and attached so as to overlap the region where the organic functional layer of the organic electroluminescence panel is formed, in order to seal the substrate and the organic functional layer A sealing pattern formed on a surface of the substrate facing the organic electroluminescence panel, and at least the organic electroluminescence panel of the both surfaces of the substrate for driving the organic electroluminescence panel; And a wiring pattern formed on the opposing surface.
  • This feature is a technical feature common to or corresponding to each of claims 1 to 5.
  • the sealing pattern and the wiring pattern are made of the same material. Thereby, the sealing pattern and the wiring pattern can be formed collectively on the substrate, and the electrical connection member can be easily manufactured, and the manufacturing cost of the electrical connection member can be reduced.
  • representing a numerical range is used in a sense including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
  • the organic EL module of the present invention includes an organic EL panel and an electrical connection member that is stacked and attached so as to overlap an area where the organic functional layer of the organic EL panel is formed.
  • the electrical connection member of the present invention drives the organic EL panel and the sealing pattern formed on the surface facing the organic EL panel among the both surfaces of the substrate in order to seal the substrate and the organic functional layer. In order to do so, a wiring pattern formed on at least the surface of the substrate facing the organic EL panel is provided.
  • the organic EL element refers to a light emitting element composed of a pair of electrodes and a plurality of organic functional layers
  • the organic EL panel refers to a pair of organic EL elements provided on a substrate.
  • An organic EL module is an electrical connection member in which a plurality of organic functional layers of an organic EL panel are sealed and a wiring pattern for driving the organic EL panel is formed. The attached one.
  • FIGS. 1A, 1B, and 2 are schematic views illustrating an example of the configuration of the organic EL panel 10 constituting the organic EL module 100.
  • FIG. 1A is a schematic plan view of the organic EL panel 10 viewed from the side opposite to the light emitting surface 10A.
  • FIG. 1B is a cross-sectional view taken along the line IB-IB in FIG. 1A.
  • FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the organic EL panel 10.
  • the organic EL panel 10 includes an organic EL element 1 having a light emitting region 3 and a transparent substrate 4 that supports the organic EL element 1.
  • a connection electrode portion 5 is drawn out to an end portion of the organic EL element 1 and is connected to a wiring pattern 23 of an electrical connection member 20 described later via a conductive adhesive 8.
  • An organic EL panel 10 shown in FIG. 1A and FIG. 1B is a single-sided light emitting organic EL panel that emits light from the transparent substrate 4 side, and is opposite to the surface of the transparent substrate 4 facing the organic EL element 1. The surface constitutes the light emitting surface 10A from which the emitted light L is emitted.
  • the organic EL element 1 is configured by stacking an anode 52, an organic functional layer 2, and a cathode 55, and the light emitting region 3 is formed in a region where these overlap.
  • the organic functional layer 2 is configured by laminating a first organic functional layer group 53A, a light emitting layer 54, and a second organic functional layer group 53B.
  • the first organic functional layer group 53A includes, for example, a hole injection layer, a hole transport layer, and the like
  • the second organic functional layer group 53B includes, for example, an electron transport layer, an electron injection layer, and the like.
  • a part of the anode 52 and the cathode 55 is formed up to the end of the transparent substrate 4, and constitutes the connection electrode parts 5 and 5, respectively.
  • the organic functional layer 2 is sealed with a sealing pattern 22 and an adhesive layer 24 of the electrical connection member 20 to be described later, thereby suppressing intrusion of gas (oxygen, moisture, etc.) that degrades the organic functional layer 2. Is done. Since the organic EL panel 10 is a single-sided emission type that emits light from the transparent substrate 4 side, the transparent substrate 4, the anode 52, and the first organic functional layer can be efficiently emitted from the light emitting surface 10 ⁇ / b> A. It is preferable that the group 53A and the like are made of a material having high light transmittance. In addition, the concrete component of the organic EL element 1 and the detail of a manufacturing method are mentioned later.
  • 3A is a schematic bottom view of the electrical connecting member 20, and
  • FIG. 3B is a cross-sectional view taken along the line IIIB-IIIB in FIG. 3A.
  • FIG. 4 is a schematic cross-sectional view showing an organic EL module 100 in which the electrical connection member 20 shown in FIG. 3B is laminated on the organic EL panel 10.
  • the adhesive layer 24 is omitted.
  • the electrical connection member 20 includes a flexible substrate 21, a sealing pattern 22, a wiring pattern 23, an adhesive layer 24, and the like.
  • the flexible substrate 21 is formed in substantially the same shape as the transparent substrate 4 of the organic EL panel 10, and is laminated and disposed so as to overlap the region where the organic functional layer 2 of the organic EL panel 10 is formed.
  • the flexible substrate 21 in a shape substantially the same as that of the transparent base material 4, the size of the organic EL module 100 can be reduced.
  • the material used for the flexible substrate 21 is not particularly limited as long as it is a resin material having flexibility and sufficient mechanical strength.
  • polyimide resin (PI), polycarbonate resin, polyethylene terephthalate resin (PET), polyethylene naphthalate resin (PEN), cycloolefin resin (COP) and the like are preferable, and polyimide resin (PI), polyethylene terephthalate resin (PET), polyethylene naphthalate resin (PEN) and the like are preferable.
  • a polyimide resin having high heat resistance is often used.
  • the thickness of the flexible substrate 21 can be in the range of 25 to 50 ⁇ m, for example.
  • the sealing pattern 22 is formed on the surface 21 a facing the organic EL panel 10 out of both surfaces of the flexible substrate 21, and when the electrical connection member 20 is laminated and attached to the organic EL panel 10, The organic functional layer 2 is sealed. That is, the sealing pattern 22 is formed on at least a portion of the surface 21 a of the flexible substrate 21 that faces the organic functional layer 2 of the organic EL panel 10.
  • the sealing pattern 22 is made of an inorganic material, and examples thereof include gold, silver, copper, and ITO. Among these, copper is preferably used from the viewpoint of cost reduction. Moreover, when the material which comprises the pattern 22 for sealing is the same as the wiring pattern 23, the pattern 22 for sealing and the wiring pattern 23 can be formed collectively, and the electrical connection member 20 is easy. The manufacturing cost of the electrical connecting member 20 can be reduced. Further, the thickness of the sealing pattern 22 can be set within a range of 12 to 36 ⁇ m, for example, from the viewpoint of required current amount, thickness, rigidity, and the like required according to the use of the organic EL module 100. It can be selected appropriately.
  • the wiring pattern 23 is formed on at least the surface 21a of both surfaces of the flexible substrate 21, and electrically connects the connection electrode portion 5 of the organic EL panel 10 to a driving IC (not shown) to drive the organic EL panel 10. . That is, the wiring pattern 23 is formed on the surface 21a and the surface 21b on the opposite side via the through hole 231. The wiring pattern 23 is electrically connected to the connection electrode portion 5 of the organic EL panel 10 in the portion formed on the surface 21a side. Connected and electrically connected to a driving IC (not shown) at a portion formed on the surface 21b.
  • the material constituting the wiring pattern 23 may be any material as long as it has conductivity, and the same material as that of the sealing pattern 22 can be used.
  • the adhesive layer 24 is formed on the sealing pattern 22 and joins the electrical connection member 20 and the organic EL panel 10.
  • a conventionally known sealing adhesive can be used.
  • a thermosetting adhesive or an ultraviolet curable resin is used, and preferably an epoxy resin, an acrylic resin,
  • a thermosetting adhesive such as a silicone resin, more preferably an epoxy thermosetting adhesive resin that is excellent in moisture resistance and water resistance and has little shrinkage upon curing is used.
  • the thickness of the adhesive layer 24 can be in the range of 10 to 30 ⁇ m, for example. Since the adhesive layer 24 is provided on the electrical connection member 20, the organic EL module 100 can be easily manufactured only by laminating the electrical connection member 20 on the organic EL panel 10.
  • the electrical connection member 20 may not include the adhesive layer 24. In this case, when the organic EL module 100 is manufactured, the organic functional layer 2 of the organic EL panel 10 and the electrical connection member 20 are sealed. The process of providing the adhesive bond layer 24 between the stop patterns 22 is performed.
  • the electrical connection member 20 shall be provided with the wiring pattern 23 on the flexible substrate 21, it is further provided with the cover layer (not shown) which covers them in order to suppress the corrosion of the said wiring pattern 23. It is good as a thing.
  • the organic EL panel 10 is a single-sided light emitting type that emits light from the transparent substrate 4 side.
  • the organic EL panel 10 is a transparent substrate. It is good also as what is the single-sided light emission type which light-emits from the surface on the opposite side of 4, or a double-sided light emission type.
  • the flexible substrate 21 is formed of a transparent resin or the like
  • the sealing pattern 22 is formed of a transparent metal such as ITO, so that the light emitting region 3 of the organic EL panel 10 of the electrical connection member 20 is formed. It is preferable that the overlapping portion is configured to have translucency.
  • surface or both surfaces of the flexible substrate 21 is prepared.
  • a polyimide film is used, and a laminated board is provided by providing copper foil as a metal layer on one surface or both surfaces of the flexible substrate 21 by heat fusion lamination or heat lamination using an adhesive layer.
  • the double-sided laminated board by which the 12-micrometer-thick copper foil was provided on both surfaces of the 25-micrometer-thick polyimide film, for example is used.
  • a CISV series manufactured by Nikkan Kogyo Co., Ltd. is used.
  • the sealing pattern 22 is formed on one side of the prepared double-sided laminated board, and the wiring pattern 23 is formed on one side and the other side of the double-sided laminated board.
  • a pattern formation method a wet patterning process using a photoresist is used.
  • a film type dry resist is preferably used in consideration of the affinity with the film handling process. In this case, all the manufacturing steps of the electrical connection member 20 can be performed by a roll-to-roll method.
  • the dry resist film is laminated on each copper foil by a heat laminating method.
  • the roll temperature of the thermal laminate is in the range of room temperature to 100 ° C., and can be appropriately set according to the physical properties of the dry resist film.
  • the laminated plate on which the dry resist film is laminated is intermittently fed by a roll-to-roll method, and the exposure mask is brought into close contact with the dry resist film.
  • An exposure mask for forming the sealing pattern 22 and the wiring pattern 23 is brought into intimate contact with one side of the laminate, and an exposure mask for forming the wiring pattern 23 is brought into intimate contact with the other side of the laminate.
  • the exposure mask for example, a single wafer glass mask or a film mask using a transparent film such as PET can be used, and is appropriately selected according to the pattern formation accuracy, cost, and the like.
  • the dry resist film is cured by irradiating the laminated plate with the exposure mask adhered thereto with UV light.
  • the exposed portion of the copper foil is etched by immersing the copper foil in the etching solution or applying the etching solution by a shower method. Thereby, the sealing pattern 22 and the wiring pattern 23 are formed.
  • the wiring patterns 23 formed on both surfaces of the flexible substrate 21 are electrically connected.
  • through holes are formed using an end mill having a diameter of about 0.3 mm in regions where the wiring patterns 23 are overlapped on both surfaces of the flexible substrate 21, and the wiring patterns 23 on both surfaces of the through hole portion and the flexible substrate 21 are formed.
  • Apply copper plating to The plating thickness is, for example, in the range of 6 to 10 ⁇ m. For example, if the plating thickness is 6 ⁇ m, the thickness of the wiring pattern 23 increases by 6 ⁇ m, and the thickness of the wiring pattern 23 becomes 18 ⁇ m.
  • an adhesive layer 24 is provided on the sealing pattern 22.
  • the adhesive layer 24 is formed by a sealing adhesive used for sealing an organic functional layer in a conventional organic EL panel.
  • the sealing adhesive is applied by a continuous coating process such as die coating.
  • the adhesive layer 24 is a sealing pattern.
  • it is preferably formed using an ink jet method or the like.
  • an epoxy-based material such as XMF series manufactured by Mitsui Chemicals, Inc. can be used.
  • a lightly peeled transparent protective film is laminated and wound into a roll.
  • the roll-shaped electrical connection member 20 can be produced as described above.
  • the organic EL module 100 of the present invention includes an organic EL panel 10 and an electrical connection member 20, and the electrical connection member 20 is laminated so as to overlap an area where the organic functional layer 2 of the organic EL panel 10 is formed.
  • the organic functional layer 2 is sealed with the sealing pattern 22, and the connection electrode portion 5 of the organic EL panel 10 and the wiring pattern 23 are electrically connected. That is, the organic EL module 100 is configured as shown in FIG.
  • the organic functional layer 2 of the organic EL panel 10 and the sealing pattern 22 of the electrical connection member 20 are joined by an adhesive layer 24 provided on the sealing pattern 22. Thereby, the organic functional layer 2 of the organic EL panel 10 is sealed by the sealing pattern 22 of the electrical connection member 20, and the organic EL panel 10 is additionally provided with a sealing configuration for sealing the organic functional layer 2. There is no need to be. Thus, since the sealing structure of the organic EL panel 10 can be omitted, the thickness of the organic EL module 100 as a whole can be reduced.
  • connection electrode portion 5 of the organic EL panel 10 and the wiring pattern 23 formed on the surface 21 a side of the electrical connection member 20 are joined by the conductive adhesive 8.
  • the conductive adhesive 8 for example, an anisotropic conductive film (ACF), an anisotropic conductive paste (ACP), a metal paste, or the like is used.
  • the conductive adhesive 8 may be provided on the wiring pattern 23 when the electrical connection member 20 is manufactured, and the electrical connection member 20 may be manufactured as a configuration including the conductive adhesive 8. When attached to the organic EL panel 10, it may be provided on the connection electrode portion 5 or the wiring pattern 23.
  • anisotropic conductive film for example, a thermosetting resin film is mixed with fine conductive particles having conductivity.
  • electroconductive particle there is no restriction
  • the commercially available anisotropic conductive film include a low-temperature curing type that can also be applied to a resin film, such as MF-331 (manufactured by Hitachi Chemical Co., Ltd.).
  • the metal particles include nickel, cobalt, silver, copper, gold, palladium and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, nickel, silver, and copper are preferable. In order to prevent these surface oxidations, particles having gold or palladium on the surface may be used. Furthermore, you may use what gave the metal film and the insulating film with the organic substance on the surface.
  • metal-coated resin particles examples include particles in which the surface of the resin core is coated with any metal of nickel, copper, gold, and palladium. Similarly, particles obtained by applying gold or palladium to the outermost surface of the resin core may be used. Further, a resin core whose surface is coated with a metal protrusion or an organic material may be used.
  • anisotropic conductive paste is constituted by mixing the above conductive particles with a paste-like thermosetting resin.
  • examples of the commercially available anisotropic conductive paste include NIR-30E manufactured by Sanyu Rec.
  • an anisotropic conductive paste is used as the conductive adhesive 8, it is on the connection electrode portion 5 of the organic EL panel 10 or the wiring pattern 23 formed on the surface 21 a side of the electrical connection member 20. It can be provided by a printing process such as a screen printing method. Specifically, an anisotropic conductive paste having a thickness of 5 to 30 ⁇ m is provided on the connection electrode portion 5 or the wiring pattern 23 by a screen printing method or the like, and then dried. Although the anisotropic conductive paste after drying can be stored at room temperature, since it has slight adhesiveness, it is preferable to protect it by covering with a slip sheet or a transparent protective film. When the anisotropic conductive paste is provided on the wiring pattern 23, the electrical connection member 20 is wound and stored in a roll shape in a state where the anisotropic conductive paste is protected with a slip sheet or a transparent protective film. Can do.
  • a commercially available metal nanoparticle paste such as a silver particle paste, a silver-palladium particle paste, a gold particle paste, a copper particle paste, or the like, can be appropriately selected and used.
  • the metal paste include silver pastes for organic EL element substrates (CA-6178, CA-6178B, CA-2500E, CA-2503-4, CA-2503N, CA-271, etc., sold by Daiken Chemical Co., Ltd.
  • connection electrode part 5 of the organic EL panel 10 and the wiring pattern 23 formed on the surface 21a side of the electrical connection member 20 are joined by the conductive adhesive 8, they are not limited thereto. However, they may be joined by any means as long as they can be electrically and mechanically connected.
  • connection electrode portion 5 and the wiring pattern 23 may be bonded by means such as ultrasonic connection or heat fusion.
  • the manufacturing method of the organic EL module of the present invention is a manufacturing method of the organic EL module 100 in which the electrical connection member 20 is stacked and attached so as to overlap the region where the organic functional layer 2 of the organic EL panel 10 is formed. Then, a sealing pattern 22 for sealing the organic functional layer 2 and a wiring pattern 23 for driving the organic EL panel 10 are formed on the one surface 21a of the flexible substrate 21.
  • connection member 20 The step of producing the connection member 20, the step of laminating the electrical connection member 20 on the organic EL panel 10, and sealing the organic functional layer 2 with the sealing pattern 22, and the connection electrode portion 5 of the organic EL panel 10 And a step of electrically connecting the wiring pattern 23 to each other.
  • the step of forming the electrical connection member 20 by forming the sealing pattern 22 and the wiring pattern 23 on the flexible substrate 21 is performed.
  • the electrical connection member 20 is produced as described in the method for producing the electrical connection member.
  • an anisotropic conductive paste is provided as the conductive adhesive 8 on the wiring pattern 23 formed on the surface 21 a side of the manufactured electrical connection member 20.
  • the process of laminating the produced electrical connection member 20 on the organic EL panel 10 and sealing the organic functional layer 2 with the sealing pattern 22 is performed.
  • the produced roll-shaped electrical connection member 20 is set in a laminating machine used in a conventional organic EL panel sealing process.
  • the produced electrical connection member 20 is aligned with the roll-shaped organic EL panel 10, and a roll laminating method using a heat roll or a vacuum laminating method using a diaphragm made of an elastomeric material is used.
  • the electrical connection member 20 is laminated on the substrate.
  • the sealing pattern 22 of the electrical connection member 20 and the organic EL element 1 portion of the organic EL panel 10 are bonded together by the adhesive layer 24, and the organic functional layer 2 is formed by the sealing pattern 22 and the adhesive layer 24. Sealed.
  • the roll of the organic EL panel 10 on which the electrical connection member 20 is laminated is roughly cut out so as to be divided into several pieces (primary cut), and then further cut into the actually designed shape. (Secondary cut).
  • a cutting method such as pressing with an upper and lower blade, pressing with an acute angle blade, cutting with a roll cutter, laser cutting, water jet, or the like can be used, and the organic EL panel 10 and the electrical connection member 20 are collectively.
  • Disconnect As a cutting method, a method in which troubles such as cracks and film peeling do not occur in each constituent member of the organic EL panel 10 and the electrical connection member 20 is appropriately selected and performed.
  • connection electrode portion 5 of the organic EL panel 10 and the wiring pattern 23 of the electrical connection member 20 is formed by thermocompression bonding the region where the conductive adhesive 8 is provided in the laminate of the organic EL panel 10 and the electrical connection member 20 using, for example, a heat tool.
  • the pattern 23 is electrically connected.
  • the temperature of the heat tool is set to about 100 to 150 ° C., and pressure bonding is performed at a pressure of about 1 to 3 MPa for 5 to 30 seconds.
  • the wiring pattern 23 of the electrical connection member 20 and the connection electrode part 5 of the organic EL panel 10 are bonded together by the conductive adhesive 8, and both are electrically connected.
  • the organic EL module 100 can be manufactured.
  • FIGS. 5A, 5B, and 6 are schematic bottom views of the electrical connection member 30 according to the first modification
  • FIG. 5B is a cross-sectional view taken along the line VB-VB in FIG. 5A
  • FIG. 6 is a schematic cross-sectional view showing an organic EL module 100A in which the electrical connection member 30 shown in FIG. 5B is laminated on the organic EL panel 10.
  • the adhesive layer 34 is omitted. Since configurations other than those described below are substantially the same as those of the electrical connection member 20 and the organic EL module 100, detailed description thereof is omitted.
  • the flexible substrate 31 has a main body portion 311 formed in a shape substantially similar to the transparent base material 4 of the organic EL panel 10 and an extending portion 312 extending from one side edge portion of the main body portion 311. .
  • the sealing pattern 32 is formed on the main body portion 311 on the surface 31 a facing the organic EL panel 10 out of both surfaces of the flexible substrate 31.
  • An adhesive layer 34 is provided on the sealing pattern 32.
  • the wiring pattern 33 is formed on the surface 31 a of both surfaces of the flexible substrate 31 from the main body portion 311 to the extending portion 312.
  • An end portion 33 a formed in the main body portion 311 of the wiring pattern 33 is electrically connected to the connection electrode portion 5 of the organic EL panel 10, and an end formed in the leading end of the extending portion 312 in the wiring pattern 33.
  • the part 33b is electrically connected to a drive IC (not shown).
  • the sealing pattern 32 and the wiring pattern 33 are formed only on the surface 31 a of the flexible substrate 31. For this reason, the electrical connection member 30 is producible using the single area layer board in which metal layers, such as copper foil, were formed only in the single side
  • the electrical connection member 30 configured as described above is stacked and attached on the organic EL panel 10, and the organic EL panel 10 is organically formed by the sealing pattern 32 and the adhesive layer 34.
  • the functional layer 2 is sealed, and the end portion 33a of the wiring pattern 33 and the connection electrode portion 5 of the organic EL panel 10 are electrically connected.
  • the organic EL module 100A according to the first modification is configured.
  • FIGS. 7A and 7B are schematic plan views of an electrical connection member 40 according to Modification Example 2
  • FIG. 7B is a schematic bottom view of the electrical connection member 40 according to Modification Example 2.
  • the adhesive layer is omitted. Since the configuration other than that described below is substantially the same as that of the electrical connection member 20, a detailed description thereof will be omitted.
  • the electrical connection member 40 includes a flexible substrate 41, a sealing pattern 42, a wiring pattern 43, an antenna electrode pattern 45, an adhesive layer (not shown), and the like.
  • the sealing pattern 42 is formed at the center of the surface 41 a that faces the organic EL panel 10 out of both surfaces of the flexible substrate 41, and a part thereof extends to the edge 41 c of the flexible substrate 41.
  • a drawer portion 42a is formed.
  • a connection electrode 42b is formed in a region corresponding to the lead portion 42a on the surface 41b opposite to the surface 41a of the flexible substrate 41, and the connection electrode 42b is connected to the lead portion 42a.
  • an adhesive layer (not shown) is laminated and provided in a portion other than the lead portion 42a.
  • the antenna electrode pattern 45 is formed in a substantially U-shape at the peripheral edge of the surface 41b of the flexible substrate 41, and one end thereof extends to the edge 41c of the flexible substrate 41 to be connected.
  • An electrode 45a is formed.
  • the material constituting the antenna electrode pattern 45 may be any material having conductivity, and the same material as the constituent material of the sealing pattern 42 can be used.
  • connection electrode 42b of the sealing pattern 42 and the connection electrode 45a of the antenna electrode pattern 45 are electrically connected to a driving IC (not shown), respectively, and a pulse signal is input to the antenna electrode pattern 45, thereby
  • the stop pattern 42 can function as a receiver electrode
  • the antenna electrode pattern 45 can function as an antenna electrode. Thereby, it can be set as the electrical connection member in which a mutual capacitive touch detection is possible.
  • the antenna electrode pattern 45 is formed on the surface 41b of the flexible substrate 41.
  • the antenna electrode pattern 45 may be formed on the surface 41a.
  • FIG. 8 is a schematic plan view of the electrical connection member 60 according to the third modification. Since the configuration other than that described below is substantially the same as that of the electrical connection member 20, a detailed description thereof will be omitted.
  • the electrical connection member 60 includes a flexible substrate 61, a sealing pattern 62, a wiring pattern 63, a strain gauge pattern 65, an adhesive layer (not shown), and the like.
  • the sealing pattern 62 and the wiring pattern 63 are configured in the same manner as the electrical connecting member 20 shown in FIGS. 3A and 3B.
  • the strain gauge pattern 65 is formed by meandering on the surface 61 b opposite to the surface facing the organic EL panel 10 of both surfaces of the flexible substrate 61, and both end portions thereof are drawn out to the edge portion 61 c of the flexible substrate 61. Thus, a connection electrode 65a is formed.
  • a material constituting the strain gauge pattern 65 the same material as that of the sealing pattern 42 can be used.
  • connection electrode 65a of the strain gauge pattern 65 By connecting the connection electrode 65a of the strain gauge pattern 65 to a detection unit (not shown), an electrical connection member capable of detecting deformation can be obtained.
  • the strain gauge pattern 65 is preferably configured to have a long length and increase the number of meanders as much as possible within a designable range in order to improve deformation detection accuracy.
  • an organic EL module capable of detecting deformation can be configured.
  • the organic EL element 1 constituting the organic EL panel 10 includes an anode 52, a first organic functional layer group 53 ⁇ / b> A, a light emitting layer 54, and a second organic functional layer on the transparent substrate 4.
  • the group 53B and the cathode 55 are stacked.
  • the first organic functional layer group 53A includes, for example, a hole injection layer, a hole transport layer, an electron blocking layer, and the like
  • the second organic functional layer group 53B includes, for example, a hole blocking layer, an electric transport layer, an electron It consists of an injection layer and the like.
  • Each of the first organic functional layer group 53A and the second organic functional layer group 53B may be composed of only one layer, and the first organic functional layer group 53A and the second organic functional layer group 53B are not provided respectively. May be. Below, the typical example of a structure of an organic EL element is shown.
  • Transparent substrate examples of the transparent substrate applicable to the organic EL element according to the present invention include transparent materials such as glass and plastic. Examples of the transparent substrate preferably used include glass, quartz, and resin film.
  • the glass material examples include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass.
  • a physical treatment such as polishing, a coating made of an inorganic material or an organic material, or these coatings, if necessary.
  • a combined hybrid coating can be formed.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate.
  • Cellulose esters such as propionate (CAP), cellulose acetate phthalate, cellulose nitrate and their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, poly Ether ketone, polyimide, polyethersulfone (PES), polyphenylene sulfide, Cyclones such as resulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic and polyarylates, Arton (trade name, manufactured by JSR) and Appel (trade name, manufactured by Mitsui Chemicals) An olefin resin etc. can be mentioned.
  • CAP propionate
  • CAP cellulose acetate phthalate
  • cellulose nitrate and their derivatives polyvinylidene chloride
  • polyvinyl alcohol polyethylene vinyl alcohol
  • the organic EL element may have a configuration in which a gas barrier layer is provided on the transparent substrate described above, if necessary.
  • the material for forming the gas barrier layer may be any material as long as it has a function of suppressing intrusion of water or oxygen that causes deterioration of the organic EL element.
  • inorganic materials such as silicon oxide, silicon dioxide, and silicon nitride are used. Can be used.
  • anode constituting the organic EL element examples include metals such as Ag and Au, alloys containing them, CuI, indium-tin composite oxide (ITO), metal oxides such as SnO 2 and ZnO.
  • metals such as Ag and Au, alloys containing them, CuI, indium-tin composite oxide (ITO), metal oxides such as SnO 2 and ZnO.
  • silver or an alloy containing silver is preferable.
  • the anode is composed of an alloy containing silver
  • examples of the alloy include silver / magnesium (Ag / Mg), silver / copper (Ag / Cu), silver / palladium (Ag / Pd), silver, and the like.
  • -Palladium copper (Ag * Pd * Cu), silver * indium (Ag * In), etc. are mentioned.
  • the anode is preferably a transparent anode composed mainly of silver.
  • silver as a main component means that the silver content in the anode is 60% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more. Preferably it is 98 mass% or more.
  • transparent means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the sheet resistance value as the anode is preferably several hundred ⁇ / ⁇ or less, and the thickness is usually in the range of 5 nm to 1 ⁇ m, preferably in the range of 5 to 200 nm, although it depends on the material.
  • the thickness is preferably in the range of 2 to 20 nm, and more preferably in the range of 4 to 12 nm.
  • a thickness of 20 nm or less is preferable because an absorption component and a reflection component of light emitted by the anode are kept low and a high light transmittance is maintained.
  • the anode when the anode is composed mainly of silver, it is preferable to provide a base layer below the silver layer from the viewpoint of improving the uniformity of the silver layer.
  • a base layer it is preferable that it is a layer containing the organic compound which has a nitrogen atom or a sulfur atom, and the method of forming a silver layer on the said base layer is a preferable aspect.
  • the light emitting layer constituting the organic EL element preferably has a structure containing a phosphorescent light emitting compound as a light emitting material.
  • This light emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
  • Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. There may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer between the light emitting layers.
  • the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained.
  • the sum total of the thickness of a light emitting layer is the thickness also including the said intermediate
  • the light emitting layer as described above is prepared by using a known method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir-Blodget, Langmuir Blodgett method) and an ink jet method. Can be formed.
  • a known method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir-Blodget, Langmuir Blodgett method) and an ink jet method. Can be formed.
  • the light emitting layer may be a mixture of a plurality of light emitting materials, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer.
  • the structure of the light-emitting layer preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound) and emits light from the light-emitting material.
  • Host compound As the host compound contained in the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C) of less than 0.1 is preferable. Furthermore, it is preferable that the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
  • a known host compound may be used alone, or a plurality of types of host compounds may be mixed and used.
  • a plurality of types of host compounds it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
  • a plurality of kinds of light emitting materials described later it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
  • Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2001-357777, 2002-8860, 2002-43056, 2002-105445, 2002-352957, 2002-231453, 2002-234888, 2002-260861, 2002-305083, US2005 / 0112407, US2009 No./0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754, International Publication No. 2005/030900, International Publication No. 2009. / 08 028, WO 2012/023947, can be mentioned JP 2007-254297, JP-European compounds described in Japanese Patent No. 2034538 Pat like.
  • Luminescent material As the luminescent material that can be used in the present invention, a phosphorescent compound (also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant) and a fluorescent compound (fluorescent compound) Or a fluorescent material).
  • a phosphorescent compound also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant
  • fluorescent compound fluorescent compound
  • Phosphorescent compound A phosphorescent compound is a compound in which light emission from an excited triplet is observed, specifically a compound that emits phosphorescence at room temperature (25 ° C.).
  • the phosphorescent quantum yield is defined as a compound having a phosphorescent quantum yield of 0.01 or more at 25 ° C., but the preferred phosphorescent quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
  • the phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferred are iridium compounds.
  • At least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer varies in the thickness direction of the light emitting layer. It may be an embodiment.
  • preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, or a metal-sulfur bond is preferable.
  • the phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and methods disclosed in the references and the like described in these documents Can be synthesized.
  • the fluorescent compound is, for example, a coumarin dye, a pyran dye, a cyanine dye, a croconium dye, a squalium dye, an oxobenzanthracene dye, a fluorescein dye, or a rhodamine dye.
  • a coumarin dye for example, a coumarin dye, a pyran dye, a cyanine dye, a croconium dye, a squalium dye, an oxobenzanthracene dye, a fluorescein dye, or a rhodamine dye.
  • Examples thereof include dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • injection layer hole injection layer, electron injection layer
  • the injection layer is a layer provided between the electrode and the light-emitting layer in order to lower the driving voltage and improve the light emission brightness.
  • the organic EL element and its forefront of industrialization June 30, 1998, NTS
  • the details are described in Chapter 2 “Electrode Materials” (pages 123 to 166) of the second volume of “published by the company”.
  • a hole injection layer can exist between an anode and a light emitting layer or a hole transport layer
  • an electron injection layer can exist between a cathode and a light emitting layer or an electron transport layer.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • materials used for the hole injection layer include: , Porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives, Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinylcarbazole, aromatic amines introduced into the main chain or side chain Child material or oligomer, polysilane, a conductive polymer or oligomer
  • Examples of the triarylamine derivative include benzidine type represented by ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ′′).
  • Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
  • the layer thickness of the hole injection layer is not particularly limited and is usually in the range of about 0.1 to 100 nm, preferably in the range of 2 to 50 nm, and in the range of 2 to 30 nm. Is more preferable.
  • the electron injection layer is also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like.
  • Specific examples of materials preferably used for the electron injection layer are as follows. Metals represented by strontium and aluminum, alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkali metal halide layers represented by magnesium fluoride, calcium fluoride, etc. Examples thereof include an alkaline earth metal compound layer typified by magnesium, a metal oxide typified by molybdenum oxide and aluminum oxide, and a metal complex typified by lithium 8-hydroxyquinolate (Liq).
  • the electron injection layer is preferably a very thin film, and depending on the constituent material, the layer thickness is preferably in the range of 1 nm to 10 ⁇ m.
  • the hole transport layer is made of a hole transport material having a function of transporting holes.
  • the hole injection layer and the electron blocking layer also have the function of a hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
  • hole transport material those described above can be used, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can be used, and in particular, aromatic tertiary amine compounds can be used. preferable.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p
  • the hole transport material may be formed by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, and an LB method (Langmuir Brodget, Langmuir Brodgett method). Thus, it can be formed by thinning.
  • the layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • This hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the p property can be increased by doping impurities into the material of the hole transport layer.
  • Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer structure or a stacked structure of a plurality of layers.
  • an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer is used as an electron transporting material. What is necessary is just to have the function to transmit.
  • any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. It can. Furthermore, a polymer material in which these materials are introduced into a polymer chain or a polymer material having these materials as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc. and the central metal of these metal complexes
  • a metal complex replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer.
  • the electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single structure composed of one or more of the above materials.
  • blocking layer hole blocking layer, electron blocking layer
  • the blocking layer examples include a hole blocking layer and an electron blocking layer.
  • the blocking layer is a layer provided as necessary. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of an electron carrying layer can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense.
  • the electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made.
  • the structure of a positive hole transport layer can be used as an electron blocking layer as needed.
  • the layer thickness of the hole blocking layer and the electron blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the cathode is an electrode film that functions to supply holes to the organic functional layer group and the light emitting layer, and a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof is used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO Oxide semiconductors such as 2 and SnO 2 .
  • the cathode can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the thickness is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm, although it depends on the material.
  • the organic EL device may have a structure in which two or more organic functional layer units each composed of an organic functional layer group and a light emitting layer are laminated between an anode and a cathode. Between the layer units, an intermediate electrode layer having independent connection terminals for obtaining electrical connection is provided.
  • An anode, a first organic functional layer group, a light emitting layer, a second organic functional layer group, and a cathode are laminated on a transparent substrate to form a laminate.
  • a transparent substrate is prepared, and a thin film made of a desired electrode material, for example, an anode material is deposited on the transparent substrate so as to have a thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm.
  • the anode is formed by a method such as sputtering.
  • a connection electrode portion connected to an external power source is formed at the anode end portion.
  • a hole injection layer and a hole transport layer constituting the first organic functional layer group, a light emitting layer, an electron transport layer constituting the second organic functional layer group, and the like are sequentially laminated thereon.
  • a spin coating method for example, a casting method, an ink jet method, a vapor deposition method, a printing method, or the like is used, but a uniform layer is easily obtained and pinholes are not easily generated. From the point of view, a vacuum deposition method or a spin coating method is particularly preferable. Further, different formation methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 Pa. It is desirable to appropriately select the respective conditions within the range of a deposition rate of 0.01 to 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a layer thickness of 0.1 to 5 ⁇ m.
  • the cathode is formed by an appropriate forming method such as a vapor deposition method or a sputtering method. At this time, the cathode is patterned in a shape in which terminal portions are drawn from the upper side of the second organic functional layer group to the periphery of the transparent substrate while maintaining an insulating state with respect to the anode by the organic functional layer group.
  • an organic EL element can be manufactured.
  • the transparent substrate, the anode, the first organic functional layer group, the light emitting layer, the second organic functional layer group, and the cathode are sealed with the sealing pattern of the electrical connection member of the present invention. That is, the electrical connection member of the present invention covering at least the organic functional layer is provided on the transparent substrate with the anode and cathode terminal portions exposed.
  • the present invention provides an electrical connection member capable of suppressing the thickness of the entire organic electroluminescence module when laminated on the organic electroluminescence panel, the organic electroluminescence module including the electrical connection member, and the organic electroluminescence module It is suitable for providing a method for manufacturing a luminescence module.
  • Organic functional layer 5 Connection electrode portion 10 Organic EL panel 10A Light emitting surface 20, 30 Electrical connection member 21, 31 Flexible substrate (substrate) 21a, 31a Surface 22, 32 Sealing pattern 23, 33 Wiring pattern 24, 34 Adhesive layer 100, 100A Organic EL module

Abstract

The present invention addresses the problem of providing an electrical connection member with which the overall thickness of an organic electroluminescence module can be controlled when the electrical connection member is laminated on an organic electroluminescence panel. An electrical connection member 20 is laminated on and attached to an organic EL panel 10 so as to overlap a region thereof where an organic functional layer 2 is formed, wherein the electrical connection member is characterized by including: a flexible substrate 21; a sealing pattern 22 that is formed on a surface 21a, which is the surface of the two surfaces of a flexible substrate 21 that faces the organic El panel 10, in order to seal the organic functional layer 2; and a wiring pattern 23 that is formed on at least the surface 21a, which is the surface of the two surfaces of the flexible substrate 21 that faces the organic EL panel 10, in order to drive the organic EL panel 10.

Description

電気接続部材、有機エレクトロルミネッセンスモジュール及び有機エレクトロルミネッセンスモジュールの製造方法Electrical connection member, organic electroluminescence module, and manufacturing method of organic electroluminescence module
 本発明は、電気接続部材、有機エレクトロルミネッセンスモジュール及び有機エレクトロルミネッセンスモジュールの製造方法に関する。特に、有機エレクトロルミネッセンスパネルに積層された際に、有機エレクトロルミネッセンスモジュール全体としての厚さを抑制できる電気接続部材、それを備えた有機エレクトロルミネッセンスモジュール、及び、当該有機エレクトロルミネッセンスモジュールの製造方法に関する。 The present invention relates to an electrical connection member, an organic electroluminescence module, and a method for manufacturing the organic electroluminescence module. In particular, the present invention relates to an electrical connection member that can suppress the thickness of the entire organic electroluminescence module when laminated on an organic electroluminescence panel, an organic electroluminescence module including the electrical connection member, and a method of manufacturing the organic electroluminescence module.
 従来、面発光の光源として有機エレクトロルミネッセンス(以下「有機EL」ともいう。)素子が知られている。特に、近年はTV等のアプリケーションに加え、照明用の光源としても注目され、各所で開発が進められている。有機EL素子は、面発光であり、これまでの光源よりも厚さを薄くできるとともに、屈曲性を付与することも可能である。 Conventionally, an organic electroluminescence (hereinafter also referred to as “organic EL”) element is known as a surface emitting light source. In particular, in recent years, it has attracted attention as a light source for illumination in addition to applications such as TV, and has been developed in various places. The organic EL element is surface emitting, can be made thinner than conventional light sources, and can be flexible.
 有機ELモジュールを構成する上で重要となるのが、有機EL素子の有機機能層を水分から保護する封止構成である。有機EL素子がガラス基板上に形成された有機ELパネルは、いわゆる缶封止の構成が採用されている。缶封止とは、凹状に形成されたガラス部材や中空構造に加工した金属板を、内部に水分を吸着させる乾燥剤を配置した上で、エポキシ系接着剤等により有機機能層を覆うように接合する構成である(例えば、特許文献1参照。)。
 一方、有機EL素子がフレキシブル基板上に形成された有機ELパネルについては、ラミネート封止とも呼ばれる、いわゆる固体封止の構成を採用することが一般的である。固体封止は、例えば薄板ガラスや金属フォイル層、樹脂フィルム等にエポキシ系の封止用接着剤を塗布し、これを加熱圧着させることで有機ELパネルの必要な部分全面に貼り付ける構成である(例えば、特許文献2参照。)。
What is important in configuring the organic EL module is a sealing configuration that protects the organic functional layer of the organic EL element from moisture. A so-called can-sealed configuration is adopted for an organic EL panel in which an organic EL element is formed on a glass substrate. Can sealing means that a glass member formed into a concave shape or a metal plate processed into a hollow structure is placed with a desiccant that adsorbs moisture inside, and the organic functional layer is covered with an epoxy adhesive or the like It is the structure which joins (for example, refer patent document 1).
On the other hand, for an organic EL panel in which an organic EL element is formed on a flexible substrate, it is common to adopt a so-called solid sealing configuration, also called laminate sealing. Solid sealing is a configuration in which, for example, an epoxy-based sealing adhesive is applied to a thin glass sheet, a metal foil layer, a resin film, and the like, and is bonded to the entire necessary portion of the organic EL panel by thermocompression bonding. (For example, refer to Patent Document 2).
 ここで、有機ELパネルに電気を供給するための電気接続部材として、ポリイミド等の基板上に配線パターンが形成されたフレキシブルプリント基板(以下、「FPC」ともいう。)が用いられている。封止後の有機ELパネルにFPCを取り付けて有機ELモジュールを作製する際、有機ELモジュールの使用態様によっては、FPCを有機ELパネルの有機機能層が形成された領域に重ねるように配置する必要がある。そのような場合、有機ELパネルの有機機能層とFPCとが重畳する領域においては、有機ELモジュール全体としての厚さが増大するという問題が生じる。
 特に、近年は、有機ELパネルは照明にとどまらず、スマートデバイスのバックライトやアイコンキー部分の光源として使用されたり、キーボードやセンシングデバイス等のユーザーインターフェースと組み合わされて使用されたりする等、様々な分野への適用が検討されており、有機ELモジュールの厚さが大きいとこれらの分野への適用が困難になる場合が多い。
Here, as an electrical connection member for supplying electricity to the organic EL panel, a flexible printed circuit board (hereinafter also referred to as “FPC”) in which a wiring pattern is formed on a substrate such as polyimide is used. When an organic EL module is manufactured by attaching an FPC to the sealed organic EL panel, it is necessary to arrange the FPC so as to overlap the region where the organic functional layer of the organic EL panel is formed, depending on the use mode of the organic EL module. There is. In such a case, in the region where the organic functional layer of the organic EL panel and the FPC overlap, there arises a problem that the thickness of the entire organic EL module increases.
In particular, in recent years, organic EL panels are not limited to lighting, but are used as backlights for smart devices and light sources for icon keys, and in combination with user interfaces such as keyboards and sensing devices. Application to fields is being studied, and when the thickness of the organic EL module is large, application to these fields is often difficult.
特開2006-331694号公報JP 2006-331694 A 特開2014-103290号公報JP 2014-103290 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、有機エレクトロルミネッセンスパネルに積層された際に、有機エレクトロルミネッセンスモジュール全体としての厚さを抑制できる電気接続部材、それを備えた有機エレクトロルミネッセンスモジュール、及び、当該有機エレクトロルミネッセンスモジュールの製造方法を提供することである。 The present invention has been made in view of the above-described problems and situations, and its solution is an electrical connection member that can suppress the thickness of the entire organic electroluminescence module when laminated on an organic electroluminescence panel, and And an organic electroluminescence module comprising the above and a method for producing the organic electroluminescence module.
 本発明に係る上記課題を解決すべく、上記問題の原因等について検討した結果、有機ELパネルに積層して取り付けられる電気接続部材が、通常備える配線パターンの他に、有機ELパネルの有機機能層を封止するための封止用パターンを備えることで、電気接続部材自体が有機ELパネルの封止材として機能し、通常有機ELパネル上に設けられる封止構成を省くことができ、有機ELモジュール全体としての厚さを抑制できることを見いだした。
 すなわち、本発明に係る課題は、以下の手段により解決される。
As a result of investigating the cause of the above-mentioned problems in order to solve the above-mentioned problems according to the present invention, the electrical connection member laminated and attached to the organic EL panel has an organic functional layer of the organic EL panel in addition to the wiring pattern normally provided By providing a sealing pattern for sealing the organic EL panel, the electrical connection member itself functions as a sealing material for the organic EL panel, and the sealing configuration normally provided on the organic EL panel can be omitted. It was found that the thickness of the entire module can be suppressed.
That is, the subject concerning this invention is solved by the following means.
 1.有機エレクトロルミネッセンスパネルの有機機能層が形成された領域に重なるように積層して取り付けられる電気接続部材であって、
 基板と、
 前記有機機能層を封止するために、前記基板の両面のうち前記有機エレクトロルミネッセンスパネルと対向する面に形成された封止用パターンと、
 前記有機エレクトロルミネッセンスパネルを駆動するために、前記基板の両面のうち少なくとも前記有機エレクトロルミネッセンスパネルと対向する面に形成された配線パターンと、
 を備えることを特徴とする電気接続部材。
1. An electrical connection member that is stacked and attached so as to overlap an area where an organic functional layer of an organic electroluminescence panel is formed,
A substrate,
In order to seal the organic functional layer, a sealing pattern formed on the surface facing the organic electroluminescence panel among both surfaces of the substrate;
In order to drive the organic electroluminescence panel, a wiring pattern formed on at least the surface facing the organic electroluminescence panel among both surfaces of the substrate;
An electrical connection member comprising:
 2.前記封止用パターンの上に形成された接着剤層を更に備えることを特徴とする第1項に記載の電気接続部材。 2. The electrical connection member according to claim 1, further comprising an adhesive layer formed on the sealing pattern.
 3.前記封止用パターンと前記配線パターンとが、同一の材料からなることを特徴とする第1項又は第2項に記載の電気接続部材。 3. The electrical connection member according to claim 1 or 2, wherein the sealing pattern and the wiring pattern are made of the same material.
 4.第1項から第3項までのいずれか一項に記載の電気接続部材と、
 有機エレクトロルミネッセンスパネルと、を備え、
 前記電気接続部材が、前記有機エレクトロルミネッセンスパネルの有機機能層が形成された領域に重なるように積層して取り付けられ、前記有機機能層が前記封止用パターンで封止され、前記有機エレクトロルミネッセンスパネルの接続電極部と前記配線パターンとが電気的に接続されていることを特徴とする有機エレクトロルミネッセンスモジュール。
4). The electrical connection member according to any one of items 1 to 3,
An organic electroluminescence panel,
The electrical connection member is stacked and attached so as to overlap an area where the organic functional layer of the organic electroluminescence panel is formed, the organic functional layer is sealed with the sealing pattern, and the organic electroluminescent panel An organic electroluminescence module, wherein the connection electrode portion and the wiring pattern are electrically connected.
 5.有機エレクトロルミネッセンスパネルの有機機能層が形成された領域に重なるようにして電気接続部材が積層して取り付けられてなる有機エレクトロルミネッセンスモジュールの製造方法であって、
 基板の一方の面上に、前記有機機能層を封止するための封止用パターンと、前記有機エレクトロルミネッセンスパネルを駆動するための配線パターンとを形成して、前記電気接続部材を作製する工程と、
 前記有機エレクトロルミネッセンスパネル上に前記電気接続部材を積層して、前記有機機能層を前記封止用パターンで封止する工程と、
 前記有機エレクトロルミネッセンスパネルの接続電極部と前記配線パターンとを電気的に接続する工程と、
 を有することを特徴とする有機エレクトロルミネッセンスモジュールの製造方法。
5. An organic electroluminescence module manufacturing method in which an electrical connection member is laminated and attached so as to overlap an area where an organic functional layer of an organic electroluminescence panel is formed,
Forming a sealing pattern for sealing the organic functional layer and a wiring pattern for driving the organic electroluminescence panel on one surface of the substrate to produce the electrical connection member; When,
Laminating the electrical connection member on the organic electroluminescence panel, and sealing the organic functional layer with the sealing pattern;
Electrically connecting the connection electrode portion of the organic electroluminescence panel and the wiring pattern;
The manufacturing method of the organic electroluminescent module characterized by having.
 本発明によれば、有機エレクトロルミネッセンスパネルに積層された際に、有機エレクトロルミネッセンスモジュール全体としての厚さを抑制できる電気接続部材、それを備えた有機エレクトロルミネッセンスモジュール、及び、当該有機エレクトロルミネッセンスモジュールの製造方法を提供することができる。
 本発明の効果の発現機構ないし作用機構については、以下のとおりである。
 すなわち、本発明の電気接続部材は、配線パターンの他に、有機ELパネルの有機機能層を封止するための封止用パターンを備えている。このため、当該電気接続部材が有機ELパネルに積層して取り付けられることで、有機ELパネルの接続電極部と配線パターンとが電気的に接続されて有機ELパネルに電気を供給可能にできるとともに、有機ELパネルの有機機能層が封止パターンで封止される。このように、電気接続部材自体が有機ELパネルの封止材として機能するので、従来の有機ELパネルに設けられている封止構成を省くことができ、封止構成を省いた分だけ有機ELモジュールの厚さを低減することができる。これにより、有機ELパネルに積層された際に、有機ELモジュール全体としての厚さを抑制できる電気接続部材を提供することができる。
According to the present invention, when laminated on an organic electroluminescence panel, the electrical connection member capable of suppressing the thickness of the entire organic electroluminescence module, the organic electroluminescence module including the same, and the organic electroluminescence module A manufacturing method can be provided.
The expression mechanism or action mechanism of the effect of the present invention is as follows.
That is, the electrical connection member of the present invention includes a sealing pattern for sealing the organic functional layer of the organic EL panel in addition to the wiring pattern. For this reason, while the said electrical connection member is laminated | stacked and attached to an organic EL panel, the connection electrode part and wiring pattern of an organic EL panel can be electrically connected, and electricity can be supplied to an organic EL panel, The organic functional layer of the organic EL panel is sealed with a sealing pattern. Thus, since the electrical connection member itself functions as a sealing material for the organic EL panel, the sealing configuration provided in the conventional organic EL panel can be omitted, and the organic EL is reduced by the amount that the sealing configuration is omitted. The thickness of the module can be reduced. Thereby, when laminated | stacked on an organic EL panel, the electrical connection member which can suppress the thickness as the whole organic EL module can be provided.
有機エレクトロルミネッセンスモジュールを構成する有機エレクトロルミネセンスパネルの構成の一例を示す概略平面図Schematic plan view showing an example of the configuration of the organic electroluminescence panel constituting the organic electroluminescence module 図1Aに示すIB-IB線に沿った面の矢視断面図1A is a cross-sectional view of the plane along the line IB-IB shown in FIG. 1A 有機エレクトロルミネッセンスパネルを構成する有機エレクトロルミネッセンス素子の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the organic electroluminescence element constituting the organic electroluminescence panel 電気接続部材の構成の一例を示す概略底面図Schematic bottom view showing an example of the configuration of the electrical connection member 図3Aに示すIIIB-IIIB線に沿った面の矢視断面図Cross-sectional view taken along the line IIIB-IIIB shown in FIG. 3A 本発明の有機エレクトロルミネッセンスモジュールの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the organic electroluminescence module of the present invention 電気接続部材の構成の変形例1を示す概略底面図Schematic bottom view showing Modification 1 of the configuration of the electrical connection member 図5Aに示すVB-VB線に沿った面の矢視断面図Sectional view of the surface along the line VB-VB shown in FIG. 5A 本発明の有機エレクトロルミネッセンスモジュールの構成の変形例1を示す概略断面図The schematic sectional drawing which shows the modification 1 of the structure of the organic electroluminescent module of this invention 電気接続部材の構成の変形例2を示す概略平面図Schematic plan view showing Modification Example 2 of the configuration of the electrical connection member 電気接続部材の構成の変形例2を示す概略底面図Schematic bottom view showing a second modification of the configuration of the electrical connection member 電気接続部材の構成の変形例3を示す概略平面図Schematic plan view showing modified example 3 of the configuration of the electrical connection member
 本発明の電気接続部材は、有機エレクトロルミネッセンスパネルの有機機能層が形成された領域に重なるように積層して取り付けられる電気接続部材であって、基板と、前記有機機能層を封止するために、前記基板の両面のうち前記有機エレクトロルミネッセンスパネルと対向する面に形成された封止用パターンと、前記有機エレクトロルミネッセンスパネルを駆動するために、前記基板の両面のうち少なくとも前記有機エレクトロルミネッセンスパネルと対向する面に形成された配線パターンと、を備えることを特徴とする。この特徴は、請求項1から請求項5までの各請求項に共通する又は対応する技術的特徴である。
 本発明においては、前記封止用パターンの上に形成された接着剤層を更に備えることが好ましい。これにより、例えばロールtoロール方式等を用いて、電気接続部材を有機ELパネル上に容易に積層して取り付けることができる。
 また、本発明においては、前記封止用パターンと前記配線パターンとが、同一の材料からなることが好ましい。これにより、基板上に封止用パターンと配線パターンとを一括して形成することができ、電気接続部材を容易に製造できるとともに、電気接続部材の製造コストを低減することができる。
The electrical connection member of the present invention is an electrical connection member that is stacked and attached so as to overlap the region where the organic functional layer of the organic electroluminescence panel is formed, in order to seal the substrate and the organic functional layer A sealing pattern formed on a surface of the substrate facing the organic electroluminescence panel, and at least the organic electroluminescence panel of the both surfaces of the substrate for driving the organic electroluminescence panel; And a wiring pattern formed on the opposing surface. This feature is a technical feature common to or corresponding to each of claims 1 to 5.
In this invention, it is preferable to further provide the adhesive bond layer formed on the said pattern for sealing. Thereby, an electrical connection member can be easily laminated | stacked and attached on an organic electroluminescent panel using a roll to roll system etc., for example.
In the present invention, it is preferable that the sealing pattern and the wiring pattern are made of the same material. Thereby, the sealing pattern and the wiring pattern can be formed collectively on the substrate, and the electrical connection member can be easily manufactured, and the manufacturing cost of the electrical connection member can be reduced.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” representing a numerical range is used in a sense including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
 本発明の有機ELモジュールは、有機ELパネルと、当該有機ELパネルの有機機能層が形成された領域に重なるように積層して取り付けられる電気接続部材と、を備えてなる。また、本発明の電気接続部材は、基板と、有機機能層を封止するために、基板の両面のうち有機ELパネルと対向する面に形成された封止用パターンと、有機ELパネルを駆動するために、基板の両面のうち少なくとも有機ELパネルと対向する面に形成された配線パターンと、を備えている。 The organic EL module of the present invention includes an organic EL panel and an electrical connection member that is stacked and attached so as to overlap an area where the organic functional layer of the organic EL panel is formed. In addition, the electrical connection member of the present invention drives the organic EL panel and the sealing pattern formed on the surface facing the organic EL panel among the both surfaces of the substrate in order to seal the substrate and the organic functional layer. In order to do so, a wiring pattern formed on at least the surface of the substrate facing the organic EL panel is provided.
 有機ELモジュールの全体構成を説明する前に、初めに、有機ELモジュールを構成する有機ELパネルと、電気接続部材の構成の詳細について、図を交えて説明する。 Before describing the overall configuration of the organic EL module, first, the details of the configuration of the organic EL panel constituting the organic EL module and the electrical connection member will be described with reference to the drawings.
 ここで、本発明において、有機EL素子とは、一対の電極及び複数の有機機能層により構成される発光素子をいい、有機ELパネルとは、有機EL素子が基材上に設けられ、一対の電極が引き出された状態のものをいい、有機ELモジュールとは、有機ELパネルの複数の有機機能層が封止されるとともに、有機ELパネル駆動用の配線パターン等が形成された電気接続部材が取り付けられたものをいう。 Here, in the present invention, the organic EL element refers to a light emitting element composed of a pair of electrodes and a plurality of organic functional layers, and the organic EL panel refers to a pair of organic EL elements provided on a substrate. An organic EL module is an electrical connection member in which a plurality of organic functional layers of an organic EL panel are sealed and a wiring pattern for driving the organic EL panel is formed. The attached one.
《有機エレクトロルミネッセンスパネル》
 図1A、図1B及び図2を参照して有機ELパネル10について説明する。
 図1A及び図1Bは、有機ELモジュール100を構成する有機ELパネル10の構成の一例を示す概略図であって、図1Aは、有機ELパネル10を発光面10Aの反対側から見た概略平面図であり、図1Bは、図1AにおけるIB-IB線に沿った面の矢視断面図である。また、図2は、有機ELパネル10の構成の一例を示す概略断面図である。
<< Organic electroluminescence panel >>
The organic EL panel 10 will be described with reference to FIGS. 1A, 1B, and 2. FIG.
1A and 1B are schematic views illustrating an example of the configuration of the organic EL panel 10 constituting the organic EL module 100. FIG. 1A is a schematic plan view of the organic EL panel 10 viewed from the side opposite to the light emitting surface 10A. FIG. 1B is a cross-sectional view taken along the line IB-IB in FIG. 1A. FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the organic EL panel 10.
 有機ELパネル10は、発光領域3を有する有機EL素子1と、当該有機EL素子1を支持する透明基材4と、を備えている。有機EL素子1の端部には接続電極部5が引き出されていて、後述する電気接続部材20の配線パターン23と、導電性接着剤8を介して接続される。図1A及び図1Bに示す有機ELパネル10は、透明基材4側から光を出射する片面発光型の有機ELパネルであり、透明基材4の有機EL素子1に対向する面と反対側の面が発光光Lを出射する発光面10Aを構成している。 The organic EL panel 10 includes an organic EL element 1 having a light emitting region 3 and a transparent substrate 4 that supports the organic EL element 1. A connection electrode portion 5 is drawn out to an end portion of the organic EL element 1 and is connected to a wiring pattern 23 of an electrical connection member 20 described later via a conductive adhesive 8. An organic EL panel 10 shown in FIG. 1A and FIG. 1B is a single-sided light emitting organic EL panel that emits light from the transparent substrate 4 side, and is opposite to the surface of the transparent substrate 4 facing the organic EL element 1. The surface constitutes the light emitting surface 10A from which the emitted light L is emitted.
 図2に示すように、有機EL素子1は、陽極52、有機機能層2及び陰極55が積層されて構成され、これらが重なり合う領域に発光領域3が形成されている。有機機能層2は、第1有機機能層群53A、発光層54及び第2有機機能層群53Bが積層されて構成されている。第1有機機能層群53Aは、例えば、正孔注入層、正孔輸送層等から構成され、第2有機機能層群53Bは、例えば、電子輸送層、電子注入層等から構成されている。また、陽極52及び陰極55は、その一部が透明基材4の端部まで形成されて、それぞれ接続電極部5、5を構成している。有機機能層2は、後述する電気接続部材20の封止用パターン22及び接着剤層24で封止されていることで、有機機能層2を劣化させるガス(酸素、水分等)の侵入が抑制される。有機ELパネル10は、透明基材4側から光を出射する片面発光型であるため、発光面10Aから効率的に光を出射できるように、透明基材4、陽極52、第1有機機能層群53A等が光透過性の高い材料で構成されていることが好ましい。
 なお、有機EL素子1の具体的な構成要素及び製造方法の詳細については、後述する。
As shown in FIG. 2, the organic EL element 1 is configured by stacking an anode 52, an organic functional layer 2, and a cathode 55, and the light emitting region 3 is formed in a region where these overlap. The organic functional layer 2 is configured by laminating a first organic functional layer group 53A, a light emitting layer 54, and a second organic functional layer group 53B. The first organic functional layer group 53A includes, for example, a hole injection layer, a hole transport layer, and the like, and the second organic functional layer group 53B includes, for example, an electron transport layer, an electron injection layer, and the like. Further, a part of the anode 52 and the cathode 55 is formed up to the end of the transparent substrate 4, and constitutes the connection electrode parts 5 and 5, respectively. The organic functional layer 2 is sealed with a sealing pattern 22 and an adhesive layer 24 of the electrical connection member 20 to be described later, thereby suppressing intrusion of gas (oxygen, moisture, etc.) that degrades the organic functional layer 2. Is done. Since the organic EL panel 10 is a single-sided emission type that emits light from the transparent substrate 4 side, the transparent substrate 4, the anode 52, and the first organic functional layer can be efficiently emitted from the light emitting surface 10 </ b> A. It is preferable that the group 53A and the like are made of a material having high light transmittance.
In addition, the concrete component of the organic EL element 1 and the detail of a manufacturing method are mentioned later.
《電気接続部材》
 図3A、図3B及び図4を参照して電気接続部材20について説明する。
 図3Aは、電気接続部材20の概略底面図であり、図3Bは、図3AにおけるIIIB-IIIB線に沿った面の矢視断面図である。また、図4は、有機ELパネル10に、図3Bに示す電気接続部材20が積層されてなる有機ELモジュール100を示す概略断面図である。なお、図3A及び図3Bにおいては、接着剤層24を省略して示している。
《Electrical connection member》
The electrical connection member 20 will be described with reference to FIGS. 3A, 3 </ b> B, and 4.
3A is a schematic bottom view of the electrical connecting member 20, and FIG. 3B is a cross-sectional view taken along the line IIIB-IIIB in FIG. 3A. FIG. 4 is a schematic cross-sectional view showing an organic EL module 100 in which the electrical connection member 20 shown in FIG. 3B is laminated on the organic EL panel 10. In FIGS. 3A and 3B, the adhesive layer 24 is omitted.
 電気接続部材20は、フレキシブル基板21、封止用パターン22、配線パターン23及び接着剤層24等を備えて構成されている。 The electrical connection member 20 includes a flexible substrate 21, a sealing pattern 22, a wiring pattern 23, an adhesive layer 24, and the like.
 フレキシブル基板21は、有機ELパネル10の透明基材4と略同様の形状に形成されて、有機ELパネル10の有機機能層2が形成された領域に重なるように積層して配置される。フレキシブル基板21が透明基材4と略同様の形状に形成されることで、有機ELモジュール100のサイズを低減することができる。 The flexible substrate 21 is formed in substantially the same shape as the transparent substrate 4 of the organic EL panel 10, and is laminated and disposed so as to overlap the region where the organic functional layer 2 of the organic EL panel 10 is formed. By forming the flexible substrate 21 in a shape substantially the same as that of the transparent base material 4, the size of the organic EL module 100 can be reduced.
 フレキシブル基板21に用いられる材料としては、可撓性を有し、かつ十分な機械的強度を備えた樹脂材料であれば特に制限はなく、例えば、ポリイミド樹脂(PI)、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂(PET)、ポリエチレンナフタレート樹脂(PEN)、シクロオレフィン樹脂(COP)等が挙げられ、好ましくは、ポリイミド樹脂(PI)、ポリエチレンテレフタレート樹脂(PET)、ポリエチレンナフタレート樹脂(PEN)等が挙げられる。一般的には、電極実装工程での熱印加を鑑み、熱耐性の高いポリイミド樹脂を用いることが多い。
 また、フレキシブル基板21の厚さとしては、例えば、25~50μmの範囲内とすることができる。
The material used for the flexible substrate 21 is not particularly limited as long as it is a resin material having flexibility and sufficient mechanical strength. For example, polyimide resin (PI), polycarbonate resin, polyethylene terephthalate resin (PET), polyethylene naphthalate resin (PEN), cycloolefin resin (COP) and the like are preferable, and polyimide resin (PI), polyethylene terephthalate resin (PET), polyethylene naphthalate resin (PEN) and the like are preferable. . In general, in view of heat application in the electrode mounting process, a polyimide resin having high heat resistance is often used.
In addition, the thickness of the flexible substrate 21 can be in the range of 25 to 50 μm, for example.
 封止用パターン22は、フレキシブル基板21の両面のうち有機ELパネル10と対向する面21aに形成され、電気接続部材20が有機ELパネル10に積層して取り付けられた際に有機ELパネル10の有機機能層2を封止する。すなわち、封止用パターン22は、フレキシブル基板21の面21aのうち、少なくとも有機ELパネル10の有機機能層2に対向する部分に形成されている。 The sealing pattern 22 is formed on the surface 21 a facing the organic EL panel 10 out of both surfaces of the flexible substrate 21, and when the electrical connection member 20 is laminated and attached to the organic EL panel 10, The organic functional layer 2 is sealed. That is, the sealing pattern 22 is formed on at least a portion of the surface 21 a of the flexible substrate 21 that faces the organic functional layer 2 of the organic EL panel 10.
 封止用パターン22は、無機材料で構成され、例えば、金、銀、銅、ITO等が挙げられる。これらの中では、コスト低減の観点から銅が用いられることが好ましい。また、封止用パターン22を構成する材料が、配線パターン23と同一である場合には、封止用パターン22と配線パターン23とを一括して形成することができ、電気接続部材20を容易に製造できるとともに、電気接続部材20の製造コストを低減することができる。
 また、封止用パターン22の厚さとしては、例えば、12~36μmの範囲内とすることができ、有機ELモジュール100の用途に応じて求められる必要電流量、厚さ及び剛性等の観点から適宜選択することができる。
The sealing pattern 22 is made of an inorganic material, and examples thereof include gold, silver, copper, and ITO. Among these, copper is preferably used from the viewpoint of cost reduction. Moreover, when the material which comprises the pattern 22 for sealing is the same as the wiring pattern 23, the pattern 22 for sealing and the wiring pattern 23 can be formed collectively, and the electrical connection member 20 is easy. The manufacturing cost of the electrical connecting member 20 can be reduced.
Further, the thickness of the sealing pattern 22 can be set within a range of 12 to 36 μm, for example, from the viewpoint of required current amount, thickness, rigidity, and the like required according to the use of the organic EL module 100. It can be selected appropriately.
 配線パターン23は、フレキシブル基板21の両面のうち少なくとも面21a上に形成され、有機ELパネル10の接続電極部5を駆動IC(図示略)と電気的に接続して有機ELパネル10を駆動する。すなわち、配線パターン23は、面21a及びその反対側の面21bにスルーホール231を介して形成されており、面21a側に形成された部分において有機ELパネル10の接続電極部5と電気的に接続され、面21bに形成された部分において駆動IC(図示略)と電気的に接続される。
 また、配線パターン23を構成する材料としては、導電性を有する材料であればいずれであっても良く、上記封止用パターン22の構成材料と同様のものを用いることができる。
The wiring pattern 23 is formed on at least the surface 21a of both surfaces of the flexible substrate 21, and electrically connects the connection electrode portion 5 of the organic EL panel 10 to a driving IC (not shown) to drive the organic EL panel 10. . That is, the wiring pattern 23 is formed on the surface 21a and the surface 21b on the opposite side via the through hole 231. The wiring pattern 23 is electrically connected to the connection electrode portion 5 of the organic EL panel 10 in the portion formed on the surface 21a side. Connected and electrically connected to a driving IC (not shown) at a portion formed on the surface 21b.
The material constituting the wiring pattern 23 may be any material as long as it has conductivity, and the same material as that of the sealing pattern 22 can be used.
 接着剤層24は、封止用パターン22の上に形成され、電気接続部材20と有機ELパネル10とを接合する。接着剤層24を構成する材料としては、従来公知の封止用接着剤を用いることができるが、例えば熱硬化接着剤や紫外線硬化樹脂等が用いられ、好ましくはエポキシ系樹脂、アクリル系樹脂、シリコーン樹脂等の熱硬化接着剤、より好ましくは耐湿性、耐水性に優れ、硬化時の収縮が少ないエポキシ系熱硬化型接着性樹脂が用いられる。接着剤層24の厚さとしては、例えば、10~30μmの範囲内とすることができる。
 電気接続部材20には接着剤層24が設けられているため、電気接続部材20を有機ELパネル10に積層するのみで容易に有機ELモジュール100を製造することができる。
 なお、電気接続部材20は接着剤層24を備えていなくても良く、その場合には、有機ELモジュール100を製造する際に、有機ELパネル10の有機機能層2と電気接続部材20の封止用パターン22との間に接着剤層24を設ける工程を行う。
The adhesive layer 24 is formed on the sealing pattern 22 and joins the electrical connection member 20 and the organic EL panel 10. As a material constituting the adhesive layer 24, a conventionally known sealing adhesive can be used. For example, a thermosetting adhesive or an ultraviolet curable resin is used, and preferably an epoxy resin, an acrylic resin, A thermosetting adhesive such as a silicone resin, more preferably an epoxy thermosetting adhesive resin that is excellent in moisture resistance and water resistance and has little shrinkage upon curing is used. The thickness of the adhesive layer 24 can be in the range of 10 to 30 μm, for example.
Since the adhesive layer 24 is provided on the electrical connection member 20, the organic EL module 100 can be easily manufactured only by laminating the electrical connection member 20 on the organic EL panel 10.
The electrical connection member 20 may not include the adhesive layer 24. In this case, when the organic EL module 100 is manufactured, the organic functional layer 2 of the organic EL panel 10 and the electrical connection member 20 are sealed. The process of providing the adhesive bond layer 24 between the stop patterns 22 is performed.
 なお、電気接続部材20は、フレキシブル基板21上に配線パターン23を備えているものとしたが、当該配線パターン23の腐食を抑制する目的でそれらを覆うカバー層(図示略)を更に備えているものとしても良い。 In addition, although the electrical connection member 20 shall be provided with the wiring pattern 23 on the flexible substrate 21, it is further provided with the cover layer (not shown) which covers them in order to suppress the corrosion of the said wiring pattern 23. It is good as a thing.
 また、図1A、図1B、図2及び図4に示す例においては、有機ELパネル10が透明基材4側から発光する片面発光型であるものとしたが、有機ELパネル10が透明基材4の反対側の面から発光する片面発光型、又は、両面発光型であるものとしても良い。この場合には、フレキシブル基板21が透明樹脂等で形成され、封止用パターン22がITO等の透明金属等で形成されていることで、電気接続部材20の有機ELパネル10の発光領域3に重なる部分が透光性を有するように構成されていることが好ましい。 In the examples shown in FIGS. 1A, 1B, 2 and 4, the organic EL panel 10 is a single-sided light emitting type that emits light from the transparent substrate 4 side. However, the organic EL panel 10 is a transparent substrate. It is good also as what is the single-sided light emission type which light-emits from the surface on the opposite side of 4, or a double-sided light emission type. In this case, the flexible substrate 21 is formed of a transparent resin or the like, and the sealing pattern 22 is formed of a transparent metal such as ITO, so that the light emitting region 3 of the organic EL panel 10 of the electrical connection member 20 is formed. It is preferable that the overlapping portion is configured to have translucency.
(電気接続部材の作製方法)
 以下に、電気接続部材20の作製方法の一例を説明する。
(Method for producing electrical connection member)
Below, an example of the production method of the electrical connection member 20 is demonstrated.
 まず、フレキシブル基板21の片面又は両面に金属層が設けられた積層板を用意する。
 フレキシブル基板21としては、ポリイミドフィルムが用いられ、当該フレキシブル基板21の片面又は両面に、熱融着ラミネート、又は、接着剤層を用いた熱ラミネートにより金属層として銅箔を設けることで、積層板を作製することができる。
 このような積層板としては、例えば、厚さ25μmのポリイミドフィルムの両面に、厚さ12μmの銅箔が設けられた両面積層板が用いられる。具体的には、ニッカン工業社製のCISVシリーズ等が用いられる。
First, the laminated board in which the metal layer was provided in the single side | surface or both surfaces of the flexible substrate 21 is prepared.
As the flexible substrate 21, a polyimide film is used, and a laminated board is provided by providing copper foil as a metal layer on one surface or both surfaces of the flexible substrate 21 by heat fusion lamination or heat lamination using an adhesive layer. Can be produced.
As such a laminated board, the double-sided laminated board by which the 12-micrometer-thick copper foil was provided on both surfaces of the 25-micrometer-thick polyimide film, for example is used. Specifically, a CISV series manufactured by Nikkan Kogyo Co., Ltd. is used.
 次に、用意した両面積層板の一方の面に封止用パターン22を形成し、両面積層板の一方の面及び他方の面に配線パターン23を形成する。
 パターン形成の方法としては、フォトレジストを用いたウェットパターニングプロセスが用いられる。フォトレジストとしては、フィルムハンドリングプロセスとの親和性を考慮し、フィルムタイプのドライレジストが用いられることが好ましい。この場合、電気接続部材20の作製工程は全てロールtoロール方式で行うことができる。
Next, the sealing pattern 22 is formed on one side of the prepared double-sided laminated board, and the wiring pattern 23 is formed on one side and the other side of the double-sided laminated board.
As a pattern formation method, a wet patterning process using a photoresist is used. As the photoresist, a film type dry resist is preferably used in consideration of the affinity with the film handling process. In this case, all the manufacturing steps of the electrical connection member 20 can be performed by a roll-to-roll method.
 まず、両面積層板の両側の銅箔を弱アルカリやUV等により洗浄した後、熱ラミネート方式にて上記ドライレジストフィルムを各銅箔にラミネートする。熱ラミネートのロール温度は常温~100℃の範囲内であり、ドライレジストフィルムの材料物性等に応じて適宜設定することができる。 First, after washing the copper foil on both sides of the double-sided laminated board with weak alkali or UV, the dry resist film is laminated on each copper foil by a heat laminating method. The roll temperature of the thermal laminate is in the range of room temperature to 100 ° C., and can be appropriately set according to the physical properties of the dry resist film.
 次に、ドライレジストフィルムがラミネートされた積層板を、ロールtoロール方式により間欠送りし、当該ドライレジストフィルムに露光マスクを密着させる。積層板の一方の面側には封止用パターン22及び配線パターン23形成用の露光マスクを密着させ、積層板の他方の面側には配線パターン23形成用の露光マスクを密着させる。露光マスクとしては、例えば、枚葉のガラスマスクや、PET等の透明フィルムを用いたフィルムマスクを用いることができ、パターン形成精度やコスト等に応じて適宜選定する。露光マスクを密着させた積層板に対し、UV光を照射することでドライレジストフィルムを硬化させる。 Next, the laminated plate on which the dry resist film is laminated is intermittently fed by a roll-to-roll method, and the exposure mask is brought into close contact with the dry resist film. An exposure mask for forming the sealing pattern 22 and the wiring pattern 23 is brought into intimate contact with one side of the laminate, and an exposure mask for forming the wiring pattern 23 is brought into intimate contact with the other side of the laminate. As the exposure mask, for example, a single wafer glass mask or a film mask using a transparent film such as PET can be used, and is appropriately selected according to the pattern formation accuracy, cost, and the like. The dry resist film is cured by irradiating the laminated plate with the exposure mask adhered thereto with UV light.
 次に、アルカリ性溶液の液浸処理により、積層板に設けられたドライレジストフィルムのうち、露光硬化されていない部分を除去し、銅箔を露出させる。 Next, a portion of the dry resist film provided on the laminated plate that has not been exposed and hardened is removed by immersion treatment with an alkaline solution to expose the copper foil.
 次に、銅箔をエッチング液に液浸、又はシャワー方式でエッチング液を付与することで、銅箔の露出された部分をエッチングする。これにより、封止用パターン22及び配線パターン23が形成される。 Next, the exposed portion of the copper foil is etched by immersing the copper foil in the etching solution or applying the etching solution by a shower method. Thereby, the sealing pattern 22 and the wiring pattern 23 are formed.
 次に、封止用パターン22及び配線パターン23上に残存する硬化されたドライレジストフィルムを剥離する。 Next, the cured dry resist film remaining on the sealing pattern 22 and the wiring pattern 23 is peeled off.
 次に、フレキシブル基板21にスルーホール231を形成することで、フレキシブル基板21の両面に形成された配線パターン23を電気的に接続する。具体的には、フレキシブル基板21の両面において配線パターン23が重畳している領域に直径0.3mm程度のエンドミルを用いて貫通孔を形成し、貫通孔部分及びフレキシブル基板21の両面の配線パターン23に対して銅メッキを施す。メッキ厚は例えば6~10μmの範囲内である。例えば、メッキ厚を6μmとすると、配線パターン23の厚さが6μm増加し、配線パターン23の厚さは18μmとなる。なお、貫通孔に導電性材料を充填することで、フレキシブル基板21の両面の各配線パターン23同士を電気的に接続するものとしても良い。 Next, by forming through holes 231 in the flexible substrate 21, the wiring patterns 23 formed on both surfaces of the flexible substrate 21 are electrically connected. Specifically, through holes are formed using an end mill having a diameter of about 0.3 mm in regions where the wiring patterns 23 are overlapped on both surfaces of the flexible substrate 21, and the wiring patterns 23 on both surfaces of the through hole portion and the flexible substrate 21 are formed. Apply copper plating to The plating thickness is, for example, in the range of 6 to 10 μm. For example, if the plating thickness is 6 μm, the thickness of the wiring pattern 23 increases by 6 μm, and the thickness of the wiring pattern 23 becomes 18 μm. In addition, it is good also as what electrically connects each wiring pattern 23 of both surfaces of the flexible substrate 21 by filling a through-hole with a conductive material.
 最後に、封止用パターン22の上に、接着剤層24を設ける。接着剤層24は、従来の有機ELパネルにおいて有機機能層の封止に用いられる封止用接着剤により形成する。従来の有機ELパネルにおいては、封止用接着剤の塗布はダイコート等の連続塗布プロセスで行われるが、本実施形態の電気接続部材20及び有機ELパネル10では接着剤層24は封止用パターン22の上にのみ設けられるため、例えば、インクジェット方式等を用いて形成することが好ましい。有機ELパネルの封止に用いられる封止用接着剤としては、例えば、三井化学社製のXMFシリーズ等のエポキシ系材料を使用することができる。接着剤層24を形成した後、軽剥離の透明保護フィルムをラミネートし、ロール状に巻き取る。
 以上のようにして、ロール状の電気接続部材20を作製することができる。
Finally, an adhesive layer 24 is provided on the sealing pattern 22. The adhesive layer 24 is formed by a sealing adhesive used for sealing an organic functional layer in a conventional organic EL panel. In the conventional organic EL panel, the sealing adhesive is applied by a continuous coating process such as die coating. In the electrical connection member 20 and the organic EL panel 10 of the present embodiment, the adhesive layer 24 is a sealing pattern. For example, it is preferably formed using an ink jet method or the like. As the sealing adhesive used for sealing the organic EL panel, for example, an epoxy-based material such as XMF series manufactured by Mitsui Chemicals, Inc. can be used. After the adhesive layer 24 is formed, a lightly peeled transparent protective film is laminated and wound into a roll.
The roll-shaped electrical connection member 20 can be produced as described above.
《有機エレクトロルミネッセンスモジュール》
 本発明の有機ELモジュール100は、有機ELパネル10と、電気接続部材20とを備え、電気接続部材20が、有機ELパネル10の有機機能層2が形成された領域に重なるように積層して取り付けられ、有機機能層2が封止用パターン22で封止され、有機ELパネル10の接続電極部5と配線パターン23とが電気的に接続されている。すなわち、有機ELモジュール100は、図4に示すように構成されている。
<< Organic electroluminescence module >>
The organic EL module 100 of the present invention includes an organic EL panel 10 and an electrical connection member 20, and the electrical connection member 20 is laminated so as to overlap an area where the organic functional layer 2 of the organic EL panel 10 is formed. The organic functional layer 2 is sealed with the sealing pattern 22, and the connection electrode portion 5 of the organic EL panel 10 and the wiring pattern 23 are electrically connected. That is, the organic EL module 100 is configured as shown in FIG.
 有機ELパネル10の有機機能層2と、電気接続部材20の封止用パターン22とは、封止用パターン22上に設けられた接着剤層24により接合されている。これにより、有機ELパネル10の有機機能層2が電気接続部材20の封止用パターン22により封止されており、有機ELパネル10が有機機能層2を封止する封止構成を別途備えている必要がない。このように、有機ELパネル10の封止構成を省略できるため、有機ELモジュール100全体としての厚さを低減することができる。 The organic functional layer 2 of the organic EL panel 10 and the sealing pattern 22 of the electrical connection member 20 are joined by an adhesive layer 24 provided on the sealing pattern 22. Thereby, the organic functional layer 2 of the organic EL panel 10 is sealed by the sealing pattern 22 of the electrical connection member 20, and the organic EL panel 10 is additionally provided with a sealing configuration for sealing the organic functional layer 2. There is no need to be. Thus, since the sealing structure of the organic EL panel 10 can be omitted, the thickness of the organic EL module 100 as a whole can be reduced.
 また、有機ELパネル10の接続電極部5と、電気接続部材20の面21a側に形成された配線パターン23とは、導電性接着剤8により接合されている。導電性接着剤8としては、例えば、異方性導電膜(ACF)、異方性導電ペースト(ACP)又は金属ペースト等が用いられる。導電性接着剤8は、電気接続部材20製造時に配線パターン23上に設けられ、導電性接着剤8を含めた構成として電気接続部材20が製造されるものとしても良いし、電気接続部材20を有機ELパネル10に取り付ける際に、接続電極部5又は配線パターン23の上に設けられるものとしても良い。 Further, the connection electrode portion 5 of the organic EL panel 10 and the wiring pattern 23 formed on the surface 21 a side of the electrical connection member 20 are joined by the conductive adhesive 8. As the conductive adhesive 8, for example, an anisotropic conductive film (ACF), an anisotropic conductive paste (ACP), a metal paste, or the like is used. The conductive adhesive 8 may be provided on the wiring pattern 23 when the electrical connection member 20 is manufactured, and the electrical connection member 20 may be manufactured as a configuration including the conductive adhesive 8. When attached to the organic EL panel 10, it may be provided on the connection electrode portion 5 or the wiring pattern 23.
 異方性導電膜としては、例えば、熱硬化性樹脂フィルムに導電性を持つ微細な導電性粒子が混ぜ合わされて構成される。導電性粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属粒子、金属被覆樹脂粒子等が挙げられる。市販されている異方性導電膜としては、例えば、MF-331(日立化成製)等の、樹脂フィルムにも適用可能な低温硬化型のものを挙げることができる。 As the anisotropic conductive film, for example, a thermosetting resin film is mixed with fine conductive particles having conductivity. There is no restriction | limiting in particular as electroconductive particle, According to the objective, it can select suitably, For example, a metal particle, a metal covering resin particle, etc. are mentioned. Examples of the commercially available anisotropic conductive film include a low-temperature curing type that can also be applied to a resin film, such as MF-331 (manufactured by Hitachi Chemical Co., Ltd.).
 金属粒子としては、例えば、ニッケル、コバルト、銀、銅、金、パラジウム等が挙げられる。これらは、1種単独で使用しても良いし、2種以上を併用しても良い。これらの中でも、ニッケル、銀、銅が好ましい。これらの表面酸化を防ぐ目的で、表面に金、パラジウムを施した粒子を用いても良い。更に、表面に金属突起や有機物で絶縁被膜を施したものを用いても良い。 Examples of the metal particles include nickel, cobalt, silver, copper, gold, palladium and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, nickel, silver, and copper are preferable. In order to prevent these surface oxidations, particles having gold or palladium on the surface may be used. Furthermore, you may use what gave the metal film and the insulating film with the organic substance on the surface.
 金属被覆樹脂粒子としては、例えば、樹脂コアの表面をニッケル、銅、金、及びパラジウムのいずれかの金属を被覆した粒子が挙げられる。同様に、樹脂コアの最外表面に金、パラジウムを施した粒子を用いても良い。更に、樹脂コアの表面に金属突起や有機物で絶縁皮膜を施したものを用いても良い。 Examples of the metal-coated resin particles include particles in which the surface of the resin core is coated with any metal of nickel, copper, gold, and palladium. Similarly, particles obtained by applying gold or palladium to the outermost surface of the resin core may be used. Further, a resin core whose surface is coated with a metal protrusion or an organic material may be used.
 また、異方性導電ペーストとしては、ペースト状の熱硬化性樹脂に上記導電性粒子が混ぜ合わされて構成される。市販されている異方性導電ペーストとしては、例えば、サンユレック社製NIR-30E等を挙げることができる。 Further, the anisotropic conductive paste is constituted by mixing the above conductive particles with a paste-like thermosetting resin. Examples of the commercially available anisotropic conductive paste include NIR-30E manufactured by Sanyu Rec.
 導電性接着剤8として異方性導電ペーストが用いられる場合には、有機ELパネル10の接続電極部5の上、又は、電気接続部材20の面21a側に形成された配線パターン23の上に、スクリーン印刷方式等の印刷プロセスにて設けることができる。具体的には、スクリーン印刷方式等により接続電極部5又は配線パターン23の上に異方性導電ペーストを厚さ5~30μmで設けた後、乾燥させる。乾燥後の異方性導電ペーストは常温で保管可能であるが、僅かに粘着性を有しているため、間紙又は透明保護フィルム等で被覆する等して保護することが好ましい。異方性導電ペーストを配線パターン23の上に設けた場合には、異方性導電ペーストを間紙又は透明保護フィルム等で保護した状態で、電気接続部材20をロール状に巻き取り保管することができる。 When an anisotropic conductive paste is used as the conductive adhesive 8, it is on the connection electrode portion 5 of the organic EL panel 10 or the wiring pattern 23 formed on the surface 21 a side of the electrical connection member 20. It can be provided by a printing process such as a screen printing method. Specifically, an anisotropic conductive paste having a thickness of 5 to 30 μm is provided on the connection electrode portion 5 or the wiring pattern 23 by a screen printing method or the like, and then dried. Although the anisotropic conductive paste after drying can be stored at room temperature, since it has slight adhesiveness, it is preferable to protect it by covering with a slip sheet or a transparent protective film. When the anisotropic conductive paste is provided on the wiring pattern 23, the electrical connection member 20 is wound and stored in a roll shape in a state where the anisotropic conductive paste is protected with a slip sheet or a transparent protective film. Can do.
 また、金属ペーストとしては、市販されている金属ナノ粒子ペーストである、銀粒子ペースト、銀-パラジウム粒子ペースト、金粒子ペースト、銅粒子ペースト等を適宜選択して用いることができる。金属ペーストとしては、例えば、大研化学社から販売されている有機EL素子基板用銀ペースト(CA-6178、CA-6178B、CA-2500E、CA-2503-4、CA-2503N、CA-271等、比抵抗値:15~30mΩ・cm、スクリーン印刷法で形成、硬化温度:120~200℃)、LTCC用ペースト(PA-88(Ag)、TCR-880(Ag)、PA-Pt(Ag・Pt))、ガラス基板用銀ペースト(US-201、UA-302、焼成温度:430~480℃)等を挙げることができる。 Further, as the metal paste, a commercially available metal nanoparticle paste, such as a silver particle paste, a silver-palladium particle paste, a gold particle paste, a copper particle paste, or the like, can be appropriately selected and used. Examples of the metal paste include silver pastes for organic EL element substrates (CA-6178, CA-6178B, CA-2500E, CA-2503-4, CA-2503N, CA-271, etc., sold by Daiken Chemical Co., Ltd. , Specific resistance value: 15-30 mΩ · cm, formed by screen printing, curing temperature: 120-200 ° C., LTCC paste (PA-88 (Ag), TCR-880 (Ag), PA-Pt (Ag · Pt)), silver paste for glass substrates (US-201, UA-302, baking temperature: 430 to 480 ° C.), and the like.
 なお、有機ELパネル10の接続電極部5と、電気接続部材20の面21a側に形成された配線パターン23とは、導電性接着剤8により接合されているものとしたが、これに限られるものではなく、両者を電気的及び機械的に接続することができればいずれの手段により接合されていても良い。例えば、接続電極部5と配線パターン23とは、超音波接続や熱融着等の手段により接合されているものとしても良い。 In addition, although the connection electrode part 5 of the organic EL panel 10 and the wiring pattern 23 formed on the surface 21a side of the electrical connection member 20 are joined by the conductive adhesive 8, they are not limited thereto. However, they may be joined by any means as long as they can be electrically and mechanically connected. For example, the connection electrode portion 5 and the wiring pattern 23 may be bonded by means such as ultrasonic connection or heat fusion.
(有機ELモジュールの製造方法)
 以下に、有機ELモジュール100の製造方法の一例を説明する。
 本発明の有機ELモジュールの製造方法は、有機ELパネル10の有機機能層2が形成された領域に重なるようにして電気接続部材20が積層して取り付けられてなる有機ELモジュール100の製造方法であって、フレキシブル基板21の一方の面21a上に、有機機能層2を封止するための封止用パターン22と、有機ELパネル10を駆動するための配線パターン23とを形成して、電気接続部材20を作製する工程と、有機ELパネル10上に電気接続部材20を積層して、有機機能層2を封止用パターン22で封止する工程と、有機ELパネル10の接続電極部5と配線パターン23とを電気的に接続する工程と、を有する。
(Method for manufacturing organic EL module)
Below, an example of the manufacturing method of the organic EL module 100 is demonstrated.
The manufacturing method of the organic EL module of the present invention is a manufacturing method of the organic EL module 100 in which the electrical connection member 20 is stacked and attached so as to overlap the region where the organic functional layer 2 of the organic EL panel 10 is formed. Then, a sealing pattern 22 for sealing the organic functional layer 2 and a wiring pattern 23 for driving the organic EL panel 10 are formed on the one surface 21a of the flexible substrate 21. The step of producing the connection member 20, the step of laminating the electrical connection member 20 on the organic EL panel 10, and sealing the organic functional layer 2 with the sealing pattern 22, and the connection electrode portion 5 of the organic EL panel 10 And a step of electrically connecting the wiring pattern 23 to each other.
 すなわち、まず、フレキシブル基板21上に封止用パターン22と配線パターン23とを形成して電気接続部材20を作製する工程を行う。具体的には、上記電気接続部材の作製方法で説明したようにして、電気接続部材20を作製する。また、作製した電気接続部材20の面21a側に形成された配線パターン23上に、上記導電性接着剤8として異方性導電ペーストを設ける。 That is, first, the step of forming the electrical connection member 20 by forming the sealing pattern 22 and the wiring pattern 23 on the flexible substrate 21 is performed. Specifically, the electrical connection member 20 is produced as described in the method for producing the electrical connection member. Further, an anisotropic conductive paste is provided as the conductive adhesive 8 on the wiring pattern 23 formed on the surface 21 a side of the manufactured electrical connection member 20.
 次に、有機ELパネル10の上に、作製した電気接続部材20を積層して、有機機能層2を封止用パターン22で封止する工程を行う。
 具体的には、作製したロール状の電気接続部材20を、従来の有機ELパネルの封止工程で用いられるラミネート機へセットする。ロール状の有機ELパネル10に対して、作製した電気接続部材20を位置合わせし、ヒートロールによるロールラミネート方式、又は、エラストマー系材料のダイヤフラムを用いた真空ラミネート方式を用いて、有機ELパネル10に電気接続部材20をラミネートする。
 これにより、電気接続部材20の封止用パターン22と有機ELパネル10の有機EL素子1部分とが接着剤層24により貼り合わされ、封止用パターン22及び接着剤層24により有機機能層2が封止される。
Next, the process of laminating the produced electrical connection member 20 on the organic EL panel 10 and sealing the organic functional layer 2 with the sealing pattern 22 is performed.
Specifically, the produced roll-shaped electrical connection member 20 is set in a laminating machine used in a conventional organic EL panel sealing process. The produced electrical connection member 20 is aligned with the roll-shaped organic EL panel 10, and a roll laminating method using a heat roll or a vacuum laminating method using a diaphragm made of an elastomeric material is used. The electrical connection member 20 is laminated on the substrate.
Thereby, the sealing pattern 22 of the electrical connection member 20 and the organic EL element 1 portion of the organic EL panel 10 are bonded together by the adhesive layer 24, and the organic functional layer 2 is formed by the sealing pattern 22 and the adhesive layer 24. Sealed.
 次に、電気接続部材20がラミネートされた有機ELパネル10のロールを、いくつかの断片に分かれるように粗く切り出した後(1次カット)、実際に設計された形状となるように更にカットする(2次カット)。2次カットにおいては、例えば、上下刃によるプレス、鋭角刃による押し切り、ロールカッターによるカット、レーザーカット、ウォータージェット等の切断方法を用いることができ、有機ELパネル10と電気接続部材20とを一括に切断する。切断方法としては、有機ELパネル10及び電気接続部材20の各構成部材にクラックや膜剥がれ等のトラブルが発生しない方法を適宜選択して行う。 Next, the roll of the organic EL panel 10 on which the electrical connection member 20 is laminated is roughly cut out so as to be divided into several pieces (primary cut), and then further cut into the actually designed shape. (Secondary cut). In the secondary cutting, for example, a cutting method such as pressing with an upper and lower blade, pressing with an acute angle blade, cutting with a roll cutter, laser cutting, water jet, or the like can be used, and the organic EL panel 10 and the electrical connection member 20 are collectively. Disconnect. As a cutting method, a method in which troubles such as cracks and film peeling do not occur in each constituent member of the organic EL panel 10 and the electrical connection member 20 is appropriately selected and performed.
 次に、有機ELパネル10の接続電極部5と、電気接続部材20の配線パターン23とを電気的に接続する工程を行う。
 具体的には、有機ELパネル10と電気接続部材20との積層体において導電性接着剤8が設けられている領域を、例えば、ヒートツールを用いて熱圧着することで接続電極部5と配線パターン23とを電気的に接続する。ヒートツールの温度は100~150℃程度に設定し、1~3MPa程度の圧力で5~30秒間圧着させる。
 これにより、電気接続部材20の配線パターン23と有機ELパネル10の接続電極部5とが導電性接着剤8により貼り合わされ、両者が電気的に接続される。
 以上のようにして、有機ELモジュール100を製造することができる。
Next, a process of electrically connecting the connection electrode portion 5 of the organic EL panel 10 and the wiring pattern 23 of the electrical connection member 20 is performed.
Specifically, the connection electrode portion 5 and the wiring are formed by thermocompression bonding the region where the conductive adhesive 8 is provided in the laminate of the organic EL panel 10 and the electrical connection member 20 using, for example, a heat tool. The pattern 23 is electrically connected. The temperature of the heat tool is set to about 100 to 150 ° C., and pressure bonding is performed at a pressure of about 1 to 3 MPa for 5 to 30 seconds.
Thereby, the wiring pattern 23 of the electrical connection member 20 and the connection electrode part 5 of the organic EL panel 10 are bonded together by the conductive adhesive 8, and both are electrically connected.
As described above, the organic EL module 100 can be manufactured.
《電気接続部材及び有機エレクトロルミネッセンスモジュールの変形例》
 上記した実施形態における記述は、本発明に係る電気接続部材及び有機ELモジュールの一例であり、これに限定されるものではない。
<< Modification of Electrical Connection Member and Organic Electroluminescence Module >>
The description in the above-described embodiment is an example of the electrical connection member and the organic EL module according to the present invention, and is not limited thereto.
(変形例1)
 具体的には、電気接続部材の形状及び構成を、例えば図5A、図5B及び図6に示すように構成するものとしても良い。図5Aは、変形例1に係る電気接続部材30の概略底面図であり、図5Bは、図5AにおけるVB-VB線に沿った面の矢視断面図である。また、図6は、有機ELパネル10に、図5Bに示す電気接続部材30が積層されてなる有機ELモジュール100Aを示す概略断面図である。なお、図5A及び図5Bにおいては、接着剤層34を省略して示している。
 以下に説明する以外の構成は上記電気接続部材20及び有機ELモジュール100と略同様であるため、その詳細な説明を省略する。
(Modification 1)
Specifically, the shape and configuration of the electrical connection member may be configured as shown in FIGS. 5A, 5B, and 6, for example. 5A is a schematic bottom view of the electrical connection member 30 according to the first modification, and FIG. 5B is a cross-sectional view taken along the line VB-VB in FIG. 5A. FIG. 6 is a schematic cross-sectional view showing an organic EL module 100A in which the electrical connection member 30 shown in FIG. 5B is laminated on the organic EL panel 10. In FIGS. 5A and 5B, the adhesive layer 34 is omitted.
Since configurations other than those described below are substantially the same as those of the electrical connection member 20 and the organic EL module 100, detailed description thereof is omitted.
 フレキシブル基板31は、有機ELパネル10の透明基材4と略同様の形状に形成された本体部311と、本体部311の一側縁部から延在する延在部312とを有している。 The flexible substrate 31 has a main body portion 311 formed in a shape substantially similar to the transparent base material 4 of the organic EL panel 10 and an extending portion 312 extending from one side edge portion of the main body portion 311. .
 封止用パターン32は、フレキシブル基板31の両面のうち有機ELパネル10と対向する面31a上であって、本体部311に形成されている。封止用パターン32の上には、接着剤層34が設けられている。 The sealing pattern 32 is formed on the main body portion 311 on the surface 31 a facing the organic EL panel 10 out of both surfaces of the flexible substrate 31. An adhesive layer 34 is provided on the sealing pattern 32.
 配線パターン33は、フレキシブル基板31の両面のうち面31a上であって、本体部311から延在部312にかけて形成されている。配線パターン33のうち本体部311に形成されている端部33aが有機ELパネル10の接続電極部5に電気的に接続され、配線パターン33のうち延在部312の先端に形成されている端部33bが駆動IC(図示略)に電気的に接続される。
 このように、変形例1に係る電気接続部材30は、フレキシブル基板31の面31aのみに封止用パターン32及び配線パターン33が形成されている。このため、フレキシブル基板の片面のみに銅箔等の金属層が形成された片面積層板を用いて電気接続部材30を作製することができる。
The wiring pattern 33 is formed on the surface 31 a of both surfaces of the flexible substrate 31 from the main body portion 311 to the extending portion 312. An end portion 33 a formed in the main body portion 311 of the wiring pattern 33 is electrically connected to the connection electrode portion 5 of the organic EL panel 10, and an end formed in the leading end of the extending portion 312 in the wiring pattern 33. The part 33b is electrically connected to a drive IC (not shown).
As described above, in the electrical connection member 30 according to the first modification, the sealing pattern 32 and the wiring pattern 33 are formed only on the surface 31 a of the flexible substrate 31. For this reason, the electrical connection member 30 is producible using the single area layer board in which metal layers, such as copper foil, were formed only in the single side | surface of a flexible substrate.
 上記のように構成された電気接続部材30は、図6に示すように、有機ELパネル10の上に積層して取り付けられ、封止用パターン32及び接着剤層34により有機ELパネル10の有機機能層2が封止され、配線パターン33の端部33aと有機ELパネル10の接続電極部5とが電気的に接続される。このようにして変形例1に係る有機ELモジュール100Aが構成されている。 As shown in FIG. 6, the electrical connection member 30 configured as described above is stacked and attached on the organic EL panel 10, and the organic EL panel 10 is organically formed by the sealing pattern 32 and the adhesive layer 34. The functional layer 2 is sealed, and the end portion 33a of the wiring pattern 33 and the connection electrode portion 5 of the organic EL panel 10 are electrically connected. In this way, the organic EL module 100A according to the first modification is configured.
(変形例2)
 また、電気接続部材の構成を、例えば図7A及び図7Bに示すように構成するものとしても良い。図7Aは、変形例2に係る電気接続部材40の概略平面図であり、図7Bは、変形例2に係る電気接続部材40の概略底面図である。なお、図7Bにおいては、接着剤層を省略して示している。
 以下に説明する以外の構成は上記電気接続部材20と略同様であるため、その詳細な説明を省略する。
(Modification 2)
Further, the configuration of the electrical connection member may be configured as shown in FIGS. 7A and 7B, for example. FIG. 7A is a schematic plan view of an electrical connection member 40 according to Modification Example 2, and FIG. 7B is a schematic bottom view of the electrical connection member 40 according to Modification Example 2. In FIG. 7B, the adhesive layer is omitted.
Since the configuration other than that described below is substantially the same as that of the electrical connection member 20, a detailed description thereof will be omitted.
 電気接続部材40は、フレキシブル基板41、封止用パターン42、配線パターン43、アンテナ電極用パターン45及び接着剤層(図示略)等を備えて構成されている。 The electrical connection member 40 includes a flexible substrate 41, a sealing pattern 42, a wiring pattern 43, an antenna electrode pattern 45, an adhesive layer (not shown), and the like.
 封止用パターン42は、図7Bに示すように、フレキシブル基板41の両面のうち有機ELパネル10と対向する面41aの中央部に形成され、その一部がフレキシブル基板41の縁部41cまで延在されて引き出し部42aが形成されている。また、図7Aに示すように、フレキシブル基板41の面41aの反対側の面41bにおいて、引き出し部42aに対応する領域には、接続電極42bが形成されており、当該接続電極42bは引き出し部42aとスルーホール421を介して電気的に接続されている。
 また、面41a上に形成された封止用パターン42のうち、引き出し部42a以外の部分には、図示しない接着剤層が積層して設けられている。
As shown in FIG. 7B, the sealing pattern 42 is formed at the center of the surface 41 a that faces the organic EL panel 10 out of both surfaces of the flexible substrate 41, and a part thereof extends to the edge 41 c of the flexible substrate 41. A drawer portion 42a is formed. Further, as shown in FIG. 7A, a connection electrode 42b is formed in a region corresponding to the lead portion 42a on the surface 41b opposite to the surface 41a of the flexible substrate 41, and the connection electrode 42b is connected to the lead portion 42a. Are electrically connected through a through hole 421.
Further, in the sealing pattern 42 formed on the surface 41a, an adhesive layer (not shown) is laminated and provided in a portion other than the lead portion 42a.
 アンテナ電極用パターン45は、図7Aに示すように、フレキシブル基板41の面41bの周縁部に略コの字状に形成され、その一端部がフレキシブル基板41の縁部41cまで延在されて接続電極45aが形成されている。アンテナ電極用パターン45を構成する材料としては、導電性を有する材料であればいずれであっても良く、封止用パターン42の構成材料と同様のものを用いることができる。 As shown in FIG. 7A, the antenna electrode pattern 45 is formed in a substantially U-shape at the peripheral edge of the surface 41b of the flexible substrate 41, and one end thereof extends to the edge 41c of the flexible substrate 41 to be connected. An electrode 45a is formed. The material constituting the antenna electrode pattern 45 may be any material having conductivity, and the same material as the constituent material of the sealing pattern 42 can be used.
 封止用パターン42の接続電極42b及びアンテナ電極用パターン45の接続電極45aがそれぞれ駆動IC(図示略)と電気的に接続され、アンテナ電極用パターン45にパルス信号が入力されることで、封止用パターン42をレシーバ電極、アンテナ電極用パターン45をアンテナ電極として機能させることができる。これにより、相互容量方式のタッチ検出が可能な電気接続部材とすることができる。
 なお、図7A及び図7Bに示す例では、アンテナ電極用パターン45をフレキシブル基板41の面41bに形成するものとしたが、面41aに形成するものとしても良い。
The connection electrode 42b of the sealing pattern 42 and the connection electrode 45a of the antenna electrode pattern 45 are electrically connected to a driving IC (not shown), respectively, and a pulse signal is input to the antenna electrode pattern 45, thereby The stop pattern 42 can function as a receiver electrode, and the antenna electrode pattern 45 can function as an antenna electrode. Thereby, it can be set as the electrical connection member in which a mutual capacitive touch detection is possible.
In the example shown in FIGS. 7A and 7B, the antenna electrode pattern 45 is formed on the surface 41b of the flexible substrate 41. However, the antenna electrode pattern 45 may be formed on the surface 41a.
 このような電気接続部材40を有機ELパネル10の上に積層して取り付けることで、薄型かつフラットで、タッチ検出が可能な有機ELモジュールを構成することができる。 By stacking and attaching such an electrical connection member 40 on the organic EL panel 10, a thin and flat organic EL module capable of touch detection can be configured.
(変形例3)
 また、電気接続部材の構成を、例えば図8に示すように構成するものとしても良い。図8は、変形例3に係る電気接続部材60の概略平面図である。
 以下に説明する以外の構成は上記電気接続部材20と略同様であるため、その詳細な説明を省略する。
(Modification 3)
Further, the electrical connection member may be configured as shown in FIG. 8, for example. FIG. 8 is a schematic plan view of the electrical connection member 60 according to the third modification.
Since the configuration other than that described below is substantially the same as that of the electrical connection member 20, a detailed description thereof will be omitted.
 電気接続部材60は、フレキシブル基板61、封止用パターン62、配線パターン63、ひずみゲージ用パターン65及び接着剤層(図示略)等を備えて構成されている。なお、封止用パターン62及び配線パターン63は、図3A及び図3Bに示す上記電気接続部材20と同様に構成されている。 The electrical connection member 60 includes a flexible substrate 61, a sealing pattern 62, a wiring pattern 63, a strain gauge pattern 65, an adhesive layer (not shown), and the like. The sealing pattern 62 and the wiring pattern 63 are configured in the same manner as the electrical connecting member 20 shown in FIGS. 3A and 3B.
 ひずみゲージ用パターン65は、フレキシブル基板61の両面のうち有機ELパネル10と対向する面の反対側の面61bに蛇行して形成され、その両端部がそれぞれフレキシブル基板61の縁部61cまで引き出されて接続電極65aを形成している。ひずみゲージ用パターン65を構成する材料としては、封止用パターン42の構成材料と同様のものを用いることができる。 The strain gauge pattern 65 is formed by meandering on the surface 61 b opposite to the surface facing the organic EL panel 10 of both surfaces of the flexible substrate 61, and both end portions thereof are drawn out to the edge portion 61 c of the flexible substrate 61. Thus, a connection electrode 65a is formed. As a material constituting the strain gauge pattern 65, the same material as that of the sealing pattern 42 can be used.
 ひずみゲージ用パターン65の接続電極65aが検出部(図示略)と接続されることで、変形の検出が可能な電気接続部材とすることができる。
 なお、ひずみゲージ用パターン65は、変形の検出精度向上のために、長さを長く取り、設計可能な範囲でできるだけ蛇行回数を増やすように構成することが好ましい。
By connecting the connection electrode 65a of the strain gauge pattern 65 to a detection unit (not shown), an electrical connection member capable of detecting deformation can be obtained.
The strain gauge pattern 65 is preferably configured to have a long length and increase the number of meanders as much as possible within a designable range in order to improve deformation detection accuracy.
 このような電気接続部材60を有機ELパネル10の上に積層して取り付けることで、変形の検出が可能な有機ELモジュールを構成することができる。 By stacking and attaching such an electrical connection member 60 on the organic EL panel 10, an organic EL module capable of detecting deformation can be configured.
《有機エレクトロルミネッセンス素子の構成及び製造方法》
 有機ELパネル10を構成する有機EL素子1は、例えば、図2で例示したように、透明基材4上に、陽極52、第1有機機能層群53A、発光層54、第2有機機能層群53B、陰極55が積層されて構成されている。第1有機機能層群53Aは、例えば、正孔注入層、正孔輸送層、電子阻止層等から構成され、第2有機機能層群53Bは、例えば、正孔阻止層、電気輸送層、電子注入層等から構成されている。第1有機機能層群53A及び第2有機機能層群53Bはそれぞれ1層のみで構成されていても良いし、第1有機機能層群53A及び第2有機機能層群53Bはそれぞれ設けられていなくても良い。
 以下に、有機EL素子の構成の代表例を示す。
<< Configuration and manufacturing method of organic electroluminescence element >>
For example, as illustrated in FIG. 2, the organic EL element 1 constituting the organic EL panel 10 includes an anode 52, a first organic functional layer group 53 </ b> A, a light emitting layer 54, and a second organic functional layer on the transparent substrate 4. The group 53B and the cathode 55 are stacked. The first organic functional layer group 53A includes, for example, a hole injection layer, a hole transport layer, an electron blocking layer, and the like, and the second organic functional layer group 53B includes, for example, a hole blocking layer, an electric transport layer, an electron It consists of an injection layer and the like. Each of the first organic functional layer group 53A and the second organic functional layer group 53B may be composed of only one layer, and the first organic functional layer group 53A and the second organic functional layer group 53B are not provided respectively. May be.
Below, the typical example of a structure of an organic EL element is shown.
 (i)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
 (ii)陽極/正孔注入輸送層/発光層/正孔阻止層/電子注入輸送層/陰極
 (iii)陽極/正孔注入輸送層/電子阻止層/発光層/正孔阻止層/電子注入輸送層/陰極
 (iv)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 (v)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 (vi)陽極/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
 更に、有機EL素子1は、非発光性の中間層を有していても良い。中間層は電荷発生層であっても良く、マルチフォトンユニット構成であっても良い。
(I) Anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode (ii) Anode / hole injection transport layer / light emitting layer / hole blocking layer / electron injection transport layer / cathode (iii) Anode / Hole injection / transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron injection transport layer / cathode (iv) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / Cathode (v) Anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode (vi) Anode / hole injection layer / hole transport layer / electron blocking Layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode Furthermore, the organic EL element 1 may have a non-light emitting intermediate layer. The intermediate layer may be a charge generation layer or a multi-photon unit configuration.
 本発明に適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。 As for the outline of the organic EL element applicable to the present invention, for example, JP2013-157634A, JP2013-168552A, JP2013-177361A, JP2013-187221A, JP JP 2013-191644 A, JP 2013-191804 A, JP 2013-225678 A, JP 2013-235994 A, JP 2013-243234 A, JP 2013-243236 A, JP 2013-2013 A. JP 242366, JP 2013-243371, JP 2013-245179, JP 2014-003249, JP 2014-003299, JP 2014-013910, JP 2014-017493. Gazette, JP 2014-017494 A It can be mentioned configurations described in equal.
 更に、有機EL素子を構成する各層について説明する。 Further, each layer constituting the organic EL element will be described.
〔透明基材〕
 本発明に係る有機EL素子に適用可能な透明基材としては、例えば、ガラス、プラスチック等の透明材料を挙げることができる。好ましく用いられる透明基材としては、例えば、ガラス、石英、樹脂フィルム等を挙げることができる。
(Transparent substrate)
Examples of the transparent substrate applicable to the organic EL element according to the present invention include transparent materials such as glass and plastic. Examples of the transparent substrate preferably used include glass, quartz, and resin film.
 ガラス材料としては、例えば、シリカガラス、ソーダ石灰シリカガラス、鉛ガラス、ホウケイ酸塩ガラス、無アルカリガラス等が挙げられる。これらのガラス材料の表面には、隣接する層との密着性、耐久性、平滑性の観点から、必要に応じて、研磨等の物理的処理、無機物又は有機物からなる被膜や、これらの被膜を組み合わせたハイブリッド被膜を形成することができる。 Examples of the glass material include silica glass, soda lime silica glass, lead glass, borosilicate glass, and alkali-free glass. On the surface of these glass materials, from the viewpoint of adhesion with adjacent layers, durability, and smoothness, a physical treatment such as polishing, a coating made of an inorganic material or an organic material, or these coatings, if necessary. A combined hybrid coating can be formed.
 樹脂フィルムを構成する材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類及びそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル及びポリアリレート類、アートン(商品名JSR社製)及びアペル(商品名三井化学社製)等のシクロオレフィン系樹脂等を挙げることができる。 Examples of the material constituting the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate. Cellulose esters such as propionate (CAP), cellulose acetate phthalate, cellulose nitrate and their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, poly Ether ketone, polyimide, polyethersulfone (PES), polyphenylene sulfide, Cyclones such as resulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic and polyarylates, Arton (trade name, manufactured by JSR) and Appel (trade name, manufactured by Mitsui Chemicals) An olefin resin etc. can be mentioned.
 有機EL素子においては、上記説明した透明基材上に、必要に応じて、ガスバリアー層を設ける構成であっても良い。 The organic EL element may have a configuration in which a gas barrier layer is provided on the transparent substrate described above, if necessary.
 ガスバリアー層を形成する材料としては、水分や酸素等、有機EL素子の劣化をもたらすものの浸入を抑制する機能を有する材料であれば良く、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素などの無機物を用いることができる。更に、ガスバリアー層の脆弱性を改良するため、これら無機層と有機材料からなる有機層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the gas barrier layer may be any material as long as it has a function of suppressing intrusion of water or oxygen that causes deterioration of the organic EL element. For example, inorganic materials such as silicon oxide, silicon dioxide, and silicon nitride are used. Can be used. Furthermore, in order to improve the brittleness of the gas barrier layer, it is more preferable to have a laminated structure of these inorganic layers and organic layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
〔陽極〕
 有機EL素子を構成する陽極としては、例えば、Ag、Au等の金属又はそれらを含有する合金、CuI、あるいはインジウム-スズの複合酸化物(ITO)、SnO及びZnO等の金属酸化物を挙げることができるが、銀又は銀を含有する合金であることが好ましい。
〔anode〕
Examples of the anode constituting the organic EL element include metals such as Ag and Au, alloys containing them, CuI, indium-tin composite oxide (ITO), metal oxides such as SnO 2 and ZnO. However, silver or an alloy containing silver is preferable.
 陽極が、銀を含有する合金で構成されている場合、当該合金としては、例えば、銀・マグネシウム(Ag・Mg)、銀・銅(Ag・Cu)、銀・パラジウム(Ag・Pd)、銀・パラジウム・銅(Ag・Pd・Cu)、銀・インジウム(Ag・In)等が挙げられる。 When the anode is composed of an alloy containing silver, examples of the alloy include silver / magnesium (Ag / Mg), silver / copper (Ag / Cu), silver / palladium (Ag / Pd), silver, and the like. -Palladium copper (Ag * Pd * Cu), silver * indium (Ag * In), etc. are mentioned.
 本発明に係る有機EL素子においては、陽極は、銀を主成分として構成された透明陽極であることが好ましい。本発明において、銀を主成分とするとは、陽極中の銀の含有量が60質量%以上であることをいい、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、特に好ましくは98質量%以上である。また、透明とは、波長550nmでの光透過率が50%以上であることをいう。 In the organic EL device according to the present invention, the anode is preferably a transparent anode composed mainly of silver. In the present invention, silver as a main component means that the silver content in the anode is 60% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more. Preferably it is 98 mass% or more. Further, the term “transparent” means that the light transmittance at a wavelength of 550 nm is 50% or more.
 また、陽極としてのシート抵抗値は、数百Ω/□以下が好ましく、厚さは、材料にもよるが、通常5nm~1μmの範囲内、好ましくは5~200nmの範囲内である。また、陽極が銀を主成分として構成されている場合、その厚さは、2~20nmの範囲内であることが好ましく、4~12nmの範囲内であることがより好ましい。厚さが20nm以下であれば、陽極による発光光の吸収成分及び反射成分が低く抑えられ、高い光透過率が維持されるため好ましい。 Further, the sheet resistance value as the anode is preferably several hundred Ω / □ or less, and the thickness is usually in the range of 5 nm to 1 μm, preferably in the range of 5 to 200 nm, although it depends on the material. When the anode is composed mainly of silver, the thickness is preferably in the range of 2 to 20 nm, and more preferably in the range of 4 to 12 nm. A thickness of 20 nm or less is preferable because an absorption component and a reflection component of light emitted by the anode are kept low and a high light transmittance is maintained.
 また、本発明においては、陽極が、銀を主成分として構成される場合には、銀層の均一性を高める観点から、その下部に、下地層を設けることが好ましい。下地層としては、特に制限はないが、窒素原子又は硫黄原子を有する有機化合物を含有する層であることが好ましく、当該下地層上に、銀層を形成する方法が好ましい態様である。 In the present invention, when the anode is composed mainly of silver, it is preferable to provide a base layer below the silver layer from the viewpoint of improving the uniformity of the silver layer. Although there is no restriction | limiting in particular as a base layer, It is preferable that it is a layer containing the organic compound which has a nitrogen atom or a sulfur atom, and the method of forming a silver layer on the said base layer is a preferable aspect.
〔発光層〕
 有機EL素子を構成する発光層は、発光材料としてリン光発光化合物が含有されている構成が好ましい。
[Light emitting layer]
The light emitting layer constituting the organic EL element preferably has a structure containing a phosphorescent light emitting compound as a light emitting material.
 この発光層は、電極又は電子輸送層から注入された電子と、正孔輸送層から注入された正孔とが再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接する層との界面であっても良い。 This light emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
 このような発光層としては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あっても良い。この場合、各発光層間には非発光性の中間層を有していることが好ましい。 Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. There may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer between the light emitting layers.
 発光層の厚さの総和は、1~100nmの範囲内にあることが好ましく、より低い駆動電圧を得ることができることから1~30nmの範囲内が更に好ましい。なお、発光層の厚さの総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む厚さである。 The total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. In addition, the sum total of the thickness of a light emitting layer is the thickness also including the said intermediate | middle layer, when a nonluminous intermediate | middle layer exists between light emitting layers.
 以上のような発光層は、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア・ブロジェット、Langmuir Blodgett法)及びインクジェット法等の公知の方法により形成することができる。 The light emitting layer as described above is prepared by using a known method such as a vacuum evaporation method, a spin coating method, a casting method, an LB method (Langmuir-Blodget, Langmuir Blodgett method) and an ink jet method. Can be formed.
 また、発光層は、複数の発光材料を混合しても良く、リン光発光材料と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう。)とを同一発光層中に混合して用いても良い。発光層の構成としては、ホスト化合物(発光ホスト等ともいう。)及び発光材料(発光ドーパント化合物ともいう。)を含有し、発光材料より発光させることが好ましい。 The light emitting layer may be a mixture of a plurality of light emitting materials, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer. . The structure of the light-emitting layer preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound) and emits light from the light-emitting material.
(1)ホスト化合物
 発光層に含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。更に、リン光量子収率が0.01未満であることが好ましい。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
(1) Host compound As the host compound contained in the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C) of less than 0.1 is preferable. Furthermore, it is preferable that the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
 ホスト化合物としては、公知のホスト化合物を単独で用いても良く、あるいは、複数種のホスト化合物を混合して用いても良い。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, a known host compound may be used alone, or a plurality of types of host compounds may be mixed and used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
 発光層に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でも良く、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でも良い。 The host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
 本発明に適用可能なホスト化合物としては、例えば、特開2001-257076号公報、同2001-357977号公報、同2002-8860号公報、同2002-43056号公報、同2002-105445号公報、同2002-352957号公報、同2002-231453号公報、同2002-234888号公報、同2002-260861号公報、同2002-305083号公報、米国特許公開第2005/0112407号明細書、米国特許公開第2009/0030202号明細書、国際公開第2001/039234号、国際公開第2008/056746号、国際公開第2005/089025号、国際公開第2007/063754号、国際公開第2005/030900号、国際公開第2009/086028号、国際公開第2012/023947号、特開2007-254297号公報、欧州特許第2034538号明細書等に記載されている化合物を挙げることができる。 Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2001-357777, 2002-8860, 2002-43056, 2002-105445, 2002-352957, 2002-231453, 2002-234888, 2002-260861, 2002-305083, US2005 / 0112407, US2009 No./0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754, International Publication No. 2005/030900, International Publication No. 2009. / 08 028, WO 2012/023947, can be mentioned JP 2007-254297, JP-European compounds described in Japanese Patent No. 2034538 Pat like.
(2)発光材料
 本発明で用いることのできる発光材料としては、リン光発光性化合物(リン光性化合物、リン光発光材料又はリン光発光ドーパントともいう。)及び蛍光発光性化合物(蛍光性化合物又は蛍光発光材料ともいう。)が挙げられる。
(2) Luminescent Material As the luminescent material that can be used in the present invention, a phosphorescent compound (also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant) and a fluorescent compound (fluorescent compound) Or a fluorescent material).
(2.1)リン光発光性化合物
 リン光発光性化合物とは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
(2.1) Phosphorescent compound A phosphorescent compound is a compound in which light emission from an excited triplet is observed, specifically a compound that emits phosphorescence at room temperature (25 ° C.). The phosphorescent quantum yield is defined as a compound having a phosphorescent quantum yield of 0.01 or more at 25 ° C., but the preferred phosphorescent quantum yield is 0.1 or more.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は、種々の溶媒を用いて測定できるが、本発明においてリン光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて、上記リン光量子収率として0.01以上が達成されれば良い。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. The phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
 リン光発光性化合物は、一般的な有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、白金化合物(白金錯体系化合物)又は希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferred are iridium compounds.
 本発明においては、少なくとも一つの発光層に、2種以上のリン光発光性化合物が含有されていても良く、発光層におけるリン光発光性化合物の濃度比が発光層の厚さ方向で変化している態様であっても良い。 In the present invention, at least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compound in the light emitting layer varies in the thickness direction of the light emitting layer. It may be an embodiment.
 本発明に使用できる公知のリン光発光性化合物の具体例としては、以下の文献に記載されている化合物等が挙げられる。 Specific examples of known phosphorescent compounds that can be used in the present invention include compounds described in the following documents.
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許公開第2006/835469号明細書、米国特許公開第2006/0202194号明細書、米国特許公開第2007/0087321号明細書、米国特許公開第2005/0244673号明細書等に記載の化合物を挙げることができる。 Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Publication No. 2006/835469, US Patent Publication No. 2006/020202194. The compounds described in the specification, US Patent Publication No. 2007/0087321, US Patent Publication No. 2005/0244673, and the like can be mentioned.
 また、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2009/000673号、米国特許第7332232号明細書、米国特許公開第2009/0039776号、米国特許第6687266号明細書、米国特許公開第2006/0008670号明細書、米国特許公開第2008/0015355号明細書、米国特許第7396598号明細書、米国特許公開第2003/0138657号明細書、米国特許第7090928号明細書等に記載の化合物を挙げることができる。 Also, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42,1248 (2003), International Publication No. 2009/050290, International Publication No. 2009/000673, US Pat. No. 7,332,232, US Patent Publication No. 2009/0039776, US Pat. No. 6,687,266, US Pat. As described in Japanese Patent Publication No. 2006/0008670, US Patent Publication No. 2008/0015355, US Pat. No. 7,396,598, US Patent Publication No. 2003/0138667, US Pat. No. 7090928, etc. A compound can be mentioned.
 また、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2006/056418号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2006/082742号、米国特許公開第2005/0260441号明細書、米国特許第7534505号明細書、米国特許公開第2007/0190359号明細書、米国特許第7338722号明細書、米国特許第7279704号明細書、米国特許公開第2006/103874号明細書等に記載の化合物も挙げることができる。 Also, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2006/056418, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2006/082742, US Patent Publication No. 2005/0260441, Compounds described in U.S. Pat. No. 7,534,505, U.S. Patent Publication No. 2007/0190359, U.S. Pat. No. 7,338,722, U.S. Pat. No. 7,279,704, U.S. Pat. Publication No. 2006/103874, etc. Can also be mentioned.
 更には、国際公開第2005/076380号、国際公開第2008/140115号、国際公開第2011/134013号、国際公開第2010/086089号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/073149号、特開2009-114086号公報、特開2003-81988号公報、特開2002-363552号公報等に記載の化合物も挙げることができる。 Furthermore, International Publication No. 2005/076380, International Publication No. 2008/140115, International Publication No. 2011/134013, International Publication No. 2010/086089, International Publication No. 2012/020327, International Publication No. 2011/051404. Further, compounds described in International Publication No. 2011/073149, JP2009-114086, JP2003-81988, JP2002-363552, and the like can also be mentioned.
 本発明においては、好ましいリン光発光性化合物としてはIrを中心金属に有する有機金属錯体が挙げられる。更に好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。 In the present invention, preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, or a metal-sulfur bond is preferable.
 上記説明したリン光発光性化合物(リン光発光性金属錯体ともいう)は、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、更にこれらの文献中に記載されている参考文献等に開示されている方法を適用することにより合成することができる。 The phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and methods disclosed in the references and the like described in these documents Can be synthesized.
(2.2)蛍光発光性化合物
 蛍光発光性化合物としては、例えば、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素又は希土類錯体系蛍光体等が挙げられる。
(2.2) Fluorescent compound The fluorescent compound is, for example, a coumarin dye, a pyran dye, a cyanine dye, a croconium dye, a squalium dye, an oxobenzanthracene dye, a fluorescein dye, or a rhodamine dye. Examples thereof include dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
〔注入層:正孔注入層、電子注入層〕
 注入層は、駆動電圧低下や発光輝度向上のために、電極と発光層の間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されている。一般には、正孔注入層であれば、陽極と発光層又は正孔輸送層との間、電子注入層であれば陰極と発光層又は電子輸送層との間に存在させることができる。
[Injection layer: hole injection layer, electron injection layer]
The injection layer is a layer provided between the electrode and the light-emitting layer in order to lower the driving voltage and improve the light emission brightness. “The organic EL element and its forefront of industrialization (November 30, 1998, NTS) The details are described in Chapter 2 “Electrode Materials” (pages 123 to 166) of the second volume of “published by the company”. In general, a hole injection layer can exist between an anode and a light emitting layer or a hole transport layer, and an electron injection layer can exist between a cathode and a light emitting layer or an electron transport layer.
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT(ポリエチレンジオキシチオフェン):PSS(ポリスチレンスルホン酸)、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。 The details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc. Examples of materials used for the hole injection layer include: , Porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives, Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinylcarbazole, aromatic amines introduced into the main chain or side chain Child material or oligomer, polysilane, a conductive polymer or oligomer (e.g., PEDOT (polyethylene dioxythiophene): PSS (polystyrene sulfonic acid), aniline copolymers, polyaniline, polythiophene, etc.) and the like can be mentioned.
 トリアリールアミン誘導体としては、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)に代表されるベンジジン型や、MTDATA(4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン)に代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。 Examples of the triarylamine derivative include benzidine type represented by α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ″). Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
 正孔注入層の層厚については特に制限はなく、通常は0.1~100nm程度の範囲内であるが、2~50nmの範囲内であることが好ましく、2~30nmの範囲内であることがより好ましい。 The layer thickness of the hole injection layer is not particularly limited and is usually in the range of about 0.1 to 100 nm, preferably in the range of 2 to 50 nm, and in the range of 2 to 30 nm. Is more preferable.
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデン、酸化アルミニウム等に代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。
 電子注入層はごく薄い膜であることが望ましく、構成材料にもよるが、その層厚は1nm~10μmの範囲が好ましい。
Details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specific examples of materials preferably used for the electron injection layer are as follows. Metals represented by strontium and aluminum, alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkali metal halide layers represented by magnesium fluoride, calcium fluoride, etc. Examples thereof include an alkaline earth metal compound layer typified by magnesium, a metal oxide typified by molybdenum oxide and aluminum oxide, and a metal complex typified by lithium 8-hydroxyquinolate (Liq).
The electron injection layer is preferably a very thin film, and depending on the constituent material, the layer thickness is preferably in the range of 1 nm to 10 μm.
〔正孔輸送層〕
 正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層及び電子阻止層も正孔輸送層の機能を有する。正孔輸送層は単層又は複数層設けることができる。
(Hole transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes. In a broad sense, the hole injection layer and the electron blocking layer also have the function of a hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであっても良い。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー及びチオフェンオリゴマー等が挙げられる。 The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
 正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることができ、特に芳香族第3級アミン化合物を用いることが好ましい。 As the hole transport material, those described above can be used, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can be used, and in particular, aromatic tertiary amine compounds can be used. preferable.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(略称:TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン及びN-フェニルカルバゾール等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N N'-di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) Quadriphenyl, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene, 4-N, N -Diphenylamino- (2-diphenylvinyl) benzene, 3-methoxy-4'-N, N-diphenylaminostilbenzene, N-phenylcarbazole and the like.
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法(ラングミュア・ブロジェット、Langmuir Blodgett法)等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲である。この正孔輸送層は、上記材料の1種又は2種以上からなる1層構造であっても良い。 For the hole transport layer, the hole transport material may be formed by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, and an LB method (Langmuir Brodget, Langmuir Brodgett method). Thus, it can be formed by thinning. The layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. This hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、正孔輸送層の材料に不純物をドープすることにより、p性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報及びJ.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 Also, the p property can be increased by doping impurities into the material of the hole transport layer. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
 このように、正孔輸送層のp性を高くすると、より低消費電力の素子を作製することができるため好ましい。 Thus, it is preferable to increase the p property of the hole transport layer because an element with lower power consumption can be manufactured.
〔電子輸送層〕
 電子輸送層は、電子を輸送する機能を有する材料から構成され、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層構造又は複数層の積層構造として設けることができる。
(Electron transport layer)
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer structure or a stacked structure of a plurality of layers.
 単層構造の電子輸送層及び積層構造の電子輸送層において、発光層に隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層に伝達する機能を有していれば良い。このような材料としては、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層の材料として用いることができる。更にこれらの材料を高分子鎖に導入した高分子材料又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 In the electron transport layer having a single-layer structure and the electron transport layer having a multilayer structure, an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer is used as an electron transporting material. What is necessary is just to have the function to transmit. As such a material, any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. it can. Furthermore, a polymer material in which these materials are introduced into a polymer chain or a polymer material having these materials as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層の材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc. and the central metal of these metal complexes A metal complex replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer.
 電子輸送層は、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLB法等の公知の方法により、薄膜化することで形成することができる。電子輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。電子輸送層は上記材料の1種又は2種以上からなる単一構造であっても良い。 The electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method. The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer may have a single structure composed of one or more of the above materials.
〔阻止層:正孔阻止層、電子阻止層〕
 阻止層としては、正孔阻止層及び電子阻止層が挙げられ、上記説明した有機EL素子の各層の他に、必要に応じて設けられる層である。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層等を挙げることができる。
[Blocking layer: hole blocking layer, electron blocking layer]
Examples of the blocking layer include a hole blocking layer and an electron blocking layer. In addition to the layers of the organic EL element described above, the blocking layer is a layer provided as necessary. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like.
 正孔阻止層とは、広い意味では、電子輸送層の機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer has a function of an electron transport layer in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved. Moreover, the structure of an electron carrying layer can be used as a hole-blocking layer as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer.
 一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ、電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense. The electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made. Moreover, the structure of a positive hole transport layer can be used as an electron blocking layer as needed.
 本発明に係る正孔阻止層及び電子阻止層の層厚としては、好ましくは3~100nmの範囲内であり、更に好ましくは5~30nmの範囲内である。 The layer thickness of the hole blocking layer and the electron blocking layer according to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
〔陰極〕
 陰極は、有機機能層群や発光層に正孔を供給するために機能する電極膜であり、金属、合金、有機又は無機の導電性化合物若しくはこれらの混合物が用いられる。具体的には、金、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO及びSnO等の酸化物半導体などが挙げられる。
〔cathode〕
The cathode is an electrode film that functions to supply holes to the organic functional layer group and the light emitting layer, and a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof is used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO Oxide semiconductors such as 2 and SnO 2 .
 陰極は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させて作製することができる。また、陰極としてのシート抵抗は、数百Ω/□以下が好ましく、厚さは、材料にもよるが通常5nm~5μmの範囲内、好ましくは5~200nmの範囲内である。 The cathode can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the thickness is usually in the range of 5 nm to 5 μm, preferably in the range of 5 to 200 nm, although it depends on the material.
〔中間電極層〕
 本発明に係る有機EL素子は、陽極と陰極との間に、有機機能層群と発光層から構成される有機機能層ユニットを二つ以上積層した構造であっても良く、この場合、有機機能層ユニット同士の間に、電気的接続を得るための独立した接続端子を有する中間電極層が設けられる。
[Intermediate electrode layer]
The organic EL device according to the present invention may have a structure in which two or more organic functional layer units each composed of an organic functional layer group and a light emitting layer are laminated between an anode and a cathode. Between the layer units, an intermediate electrode layer having independent connection terminals for obtaining electrical connection is provided.
〔有機EL素子の製造方法〕
 有機EL素子の製造方法としては、透明基材上に、陽極、第1有機機能層群、発光層、第2有機機能層群及び陰極を積層して積層体を形成する。
[Method for producing organic EL element]
As a method for producing an organic EL element, an anode, a first organic functional layer group, a light emitting layer, a second organic functional layer group, and a cathode are laminated on a transparent substrate to form a laminate.
 まず、透明基材を準備し、該透明基材上に、所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの範囲内の膜厚になるように、蒸着やスパッタリング等の方法により形成させ、陽極を形成する。同時に、陽極端部に、外部電源と接続する接続電極部を形成する。 First, a transparent substrate is prepared, and a thin film made of a desired electrode material, for example, an anode material is deposited on the transparent substrate so as to have a thickness of 1 μm or less, preferably in the range of 10 to 200 nm. The anode is formed by a method such as sputtering. At the same time, a connection electrode portion connected to an external power source is formed at the anode end portion.
 次に、この上に、第1有機機能層群を構成する正孔注入層及び正孔輸送層、発光層、第2有機機能層群を構成する電子輸送層等を順に積層する。 Next, a hole injection layer and a hole transport layer constituting the first organic functional layer group, a light emitting layer, an electron transport layer constituting the second organic functional layer group, and the like are sequentially laminated thereon.
 これらの各層の形成方法としては、例えば、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等が用いられるが、均質な層が得られやすく、かつ、ピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。更に、層ごとに異なる形成法を適用しても良い。これらの各層の形成に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1~5μmの範囲内で、各条件を適宜選択することが望ましい。 As a method for forming each of these layers, for example, a spin coating method, a casting method, an ink jet method, a vapor deposition method, a printing method, or the like is used, but a uniform layer is easily obtained and pinholes are not easily generated. From the point of view, a vacuum deposition method or a spin coating method is particularly preferable. Further, different formation methods may be applied for each layer. When a vapor deposition method is employed for forming each of these layers, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 × 10 −6 to 1 × 10 −2 Pa. It is desirable to appropriately select the respective conditions within the range of a deposition rate of 0.01 to 50 nm / second, a substrate temperature of −50 to 300 ° C., and a layer thickness of 0.1 to 5 μm.
 以上のようにして第1有機機能層群、発光層及び第2有機機能層群を形成した後、陰極を、例えば、蒸着法やスパッタ法等の適宜の形成法によって形成する。この際、陰極は、有機機能層群によって陽極に対して絶縁状態を保ちつつ、第2有機機能層群の上方から透明基板の周縁に端子部分を引き出した形状にパターン形成する。 After forming the first organic functional layer group, the light emitting layer, and the second organic functional layer group as described above, the cathode is formed by an appropriate forming method such as a vapor deposition method or a sputtering method. At this time, the cathode is patterned in a shape in which terminal portions are drawn from the upper side of the second organic functional layer group to the periphery of the transparent substrate while maintaining an insulating state with respect to the anode by the organic functional layer group.
 以上のようにして、有機EL素子を製造することができる。
 陰極の形成後、これら透明基材、陽極、第1有機機能層群、発光層、第2有機機能層群及び陰極を上記本発明の電気接続部材の封止用パターンで封止する。すなわち、陽極及び陰極の端子部分を露出させた状態で、透明基材上に、少なくとも有機機能層を覆う本発明の電気接続部材を設ける。
As described above, an organic EL element can be manufactured.
After the formation of the cathode, the transparent substrate, the anode, the first organic functional layer group, the light emitting layer, the second organic functional layer group, and the cathode are sealed with the sealing pattern of the electrical connection member of the present invention. That is, the electrical connection member of the present invention covering at least the organic functional layer is provided on the transparent substrate with the anode and cathode terminal portions exposed.
 以上のように、本発明は、有機エレクトロルミネッセンスパネルに積層された際に、有機エレクトロルミネッセンスモジュール全体としての厚さを抑制できる電気接続部材、それを備えた有機エレクトロルミネッセンスモジュール、及び、当該有機エレクトロルミネッセンスモジュールの製造方法を提供することに適している。 As described above, the present invention provides an electrical connection member capable of suppressing the thickness of the entire organic electroluminescence module when laminated on the organic electroluminescence panel, the organic electroluminescence module including the electrical connection member, and the organic electroluminescence module It is suitable for providing a method for manufacturing a luminescence module.
 2   有機機能層
 5   接続電極部
 10  有機ELパネル
 10A 発光面
 20、30 電気接続部材
 21、31 フレキシブル基板(基板)
 21a、31a 面
 22、32 封止用パターン
 23、33 配線パターン
 24、34 接着剤層
 100、100A 有機ELモジュール
2 Organic functional layer 5 Connection electrode portion 10 Organic EL panel 10A Light emitting surface 20, 30 Electrical connection member 21, 31 Flexible substrate (substrate)
21a, 31a Surface 22, 32 Sealing pattern 23, 33 Wiring pattern 24, 34 Adhesive layer 100, 100A Organic EL module

Claims (5)

  1.  有機エレクトロルミネッセンスパネルの有機機能層が形成された領域に重なるように積層して取り付けられる電気接続部材であって、
     基板と、
     前記有機機能層を封止するために、前記基板の両面のうち前記有機エレクトロルミネッセンスパネルと対向する面に形成された封止用パターンと、
     前記有機エレクトロルミネッセンスパネルを駆動するために、前記基板の両面のうち少なくとも前記有機エレクトロルミネッセンスパネルと対向する面に形成された配線パターンと、
     を備えることを特徴とする電気接続部材。
    An electrical connection member that is stacked and attached so as to overlap an area where an organic functional layer of an organic electroluminescence panel is formed,
    A substrate,
    In order to seal the organic functional layer, a sealing pattern formed on the surface facing the organic electroluminescence panel among both surfaces of the substrate;
    In order to drive the organic electroluminescence panel, a wiring pattern formed on at least the surface facing the organic electroluminescence panel among both surfaces of the substrate;
    An electrical connection member comprising:
  2.  前記封止用パターンの上に形成された接着剤層を更に備えることを特徴とする請求項1に記載の電気接続部材。 The electrical connection member according to claim 1, further comprising an adhesive layer formed on the sealing pattern.
  3.  前記封止用パターンと前記配線パターンとが、同一の材料からなることを特徴とする請求項1又は請求項2に記載の電気接続部材。 3. The electrical connection member according to claim 1, wherein the sealing pattern and the wiring pattern are made of the same material.
  4.  請求項1から請求項3までのいずれか一項に記載の電気接続部材と、
     有機エレクトロルミネッセンスパネルと、を備え、
     前記電気接続部材が、前記有機エレクトロルミネッセンスパネルの有機機能層が形成された領域に重なるように積層して取り付けられ、前記有機機能層が前記封止用パターンで封止され、前記有機エレクトロルミネッセンスパネルの接続電極部と前記配線パターンとが電気的に接続されていることを特徴とする有機エレクトロルミネッセンスモジュール。
    The electrical connection member according to any one of claims 1 to 3,
    An organic electroluminescence panel,
    The electrical connection member is stacked and attached so as to overlap an area where the organic functional layer of the organic electroluminescence panel is formed, the organic functional layer is sealed with the sealing pattern, and the organic electroluminescent panel An organic electroluminescence module, wherein the connection electrode portion and the wiring pattern are electrically connected.
  5.  有機エレクトロルミネッセンスパネルの有機機能層が形成された領域に重なるようにして電気接続部材が積層して取り付けられてなる有機エレクトロルミネッセンスモジュールの製造方法であって、
     基板の一方の面上に、前記有機機能層を封止するための封止用パターンと、前記有機エレクトロルミネッセンスパネルを駆動するための配線パターンとを形成して、前記電気接続部材を作製する工程と、
     前記有機エレクトロルミネッセンスパネル上に前記電気接続部材を積層して、前記有機機能層を前記封止用パターンで封止する工程と、
     前記有機エレクトロルミネッセンスパネルの接続電極部と前記配線パターンとを電気的に接続する工程と、
     を有することを特徴とする有機エレクトロルミネッセンスモジュールの製造方法。
    An organic electroluminescence module manufacturing method in which an electrical connection member is laminated and attached so as to overlap an area where an organic functional layer of an organic electroluminescence panel is formed,
    Forming a sealing pattern for sealing the organic functional layer and a wiring pattern for driving the organic electroluminescence panel on one surface of the substrate to produce the electrical connection member; When,
    Laminating the electrical connection member on the organic electroluminescence panel, and sealing the organic functional layer with the sealing pattern;
    Electrically connecting the connection electrode portion of the organic electroluminescence panel and the wiring pattern;
    The manufacturing method of the organic electroluminescent module characterized by having.
PCT/JP2015/075020 2014-12-16 2015-09-03 Electrical connection member, organic electroluminescence module, and method for producing organic electroluminescence module WO2016098397A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016564702A JPWO2016098397A1 (en) 2014-12-16 2015-09-03 Electrical connection member, organic electroluminescence module, and manufacturing method of organic electroluminescence module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014254088 2014-12-16
JP2014-254088 2014-12-16

Publications (1)

Publication Number Publication Date
WO2016098397A1 true WO2016098397A1 (en) 2016-06-23

Family

ID=56126299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075020 WO2016098397A1 (en) 2014-12-16 2015-09-03 Electrical connection member, organic electroluminescence module, and method for producing organic electroluminescence module

Country Status (2)

Country Link
JP (1) JPWO2016098397A1 (en)
WO (1) WO2016098397A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515309A (en) * 1997-05-22 2000-11-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Organic electroluminescent device
JP2008186618A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Organic electroluminescent device
JP2009123532A (en) * 2007-11-15 2009-06-04 Konica Minolta Holdings Inc Organic electroluminescent element, its manufacturing method, and protection film
JP2009123690A (en) * 2007-10-22 2009-06-04 Konica Minolta Holdings Inc Organic electronics element winding to past drying agent film after forming coated layer or after forming coupled electrode layer and its manufacturing method
JP2012133302A (en) * 2010-12-17 2012-07-12 Samsung Mobile Display Co Ltd Display device and organic light-emitting display device
WO2014057678A1 (en) * 2012-10-11 2014-04-17 パナソニック株式会社 Organic electroluminescent element and illuminating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515309A (en) * 1997-05-22 2000-11-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Organic electroluminescent device
JP2008186618A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Organic electroluminescent device
JP2009123690A (en) * 2007-10-22 2009-06-04 Konica Minolta Holdings Inc Organic electronics element winding to past drying agent film after forming coated layer or after forming coupled electrode layer and its manufacturing method
JP2009123532A (en) * 2007-11-15 2009-06-04 Konica Minolta Holdings Inc Organic electroluminescent element, its manufacturing method, and protection film
JP2012133302A (en) * 2010-12-17 2012-07-12 Samsung Mobile Display Co Ltd Display device and organic light-emitting display device
WO2014057678A1 (en) * 2012-10-11 2014-04-17 パナソニック株式会社 Organic electroluminescent element and illuminating apparatus

Also Published As

Publication number Publication date
JPWO2016098397A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6477683B2 (en) Organic electroluminescence module and smart device
US11507649B2 (en) Optical fingerprint authentication device
KR101828721B1 (en) Organic electroluminescence module, smart device, and illumination device
KR101828722B1 (en) Organic electroluminescence module, smart device, and lighting device
US9425439B2 (en) Organic electroluminescent module and method of manufacturing the same
JP6801664B2 (en) Organic electroluminescence modules, smart devices and lighting equipment
WO2017154278A1 (en) Organic electroluminescence module, smart device, and illumination device
WO2017056682A1 (en) Organic electroluminescence panel
WO2017056684A1 (en) Organic electroluminescence panel and production method therefor
WO2016181704A1 (en) Organic electroluminescence module and smart device
JP6358250B2 (en) Pattern formation method for organic electroluminescence device
JP2016099921A (en) Organic electroluminescence module, and smart device and illuminating device including the same
US10186559B2 (en) Organic electroluminescence module and information device
WO2016098397A1 (en) Electrical connection member, organic electroluminescence module, and method for producing organic electroluminescence module
JP6665856B2 (en) Method for manufacturing organic electroluminescence device
WO2018168617A1 (en) Planar light emission device
WO2016072246A1 (en) Organic electroluminescence element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564702

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869605

Country of ref document: EP

Kind code of ref document: A1