WO2016072246A1 - Organic electroluminescence element - Google Patents

Organic electroluminescence element Download PDF

Info

Publication number
WO2016072246A1
WO2016072246A1 PCT/JP2015/079406 JP2015079406W WO2016072246A1 WO 2016072246 A1 WO2016072246 A1 WO 2016072246A1 JP 2015079406 W JP2015079406 W JP 2015079406W WO 2016072246 A1 WO2016072246 A1 WO 2016072246A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
electrode
translucent
layer
Prior art date
Application number
PCT/JP2015/079406
Other languages
French (fr)
Japanese (ja)
Inventor
宏 石代
敦 今村
中山 知是
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016557685A priority Critical patent/JPWO2016072246A1/en
Publication of WO2016072246A1 publication Critical patent/WO2016072246A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes

Definitions

  • the present invention relates to an organic electroluminescence element. More specifically, it is a double-sided light-emitting organic electroluminescence element that is transparent when not emitting light, emits light with uniform brightness and chromaticity from both sides when emitting light, and freely changes the emission color.
  • the present invention relates to an organic electroluminescence device capable of producing
  • a light emitting element using electroluminescence (EL) of an organic material is attracting attention as a thin light emitting device.
  • a so-called organic electroluminescence element (hereinafter also referred to as an organic EL element) is a thin-film completely solid element that can emit light at a low voltage of several V to several tens V, and has high brightness, high luminous efficiency, thin thickness, It has many excellent features such as light weight. For this reason, it has been attracting attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources.
  • Such an organic EL element has a structure in which a light emitting layer made of an organic material (also referred to as a light emitting unit in the present application) is disposed between two opposing electrodes, and the emitted light generated in the light emitting layer passes through the electrode. Permeated and taken out to the outside. For this reason, at least one of the two electrodes is configured as a transparent electrode, and emitted light is extracted from the transparent electrode side.
  • a light emitting layer made of an organic material also referred to as a light emitting unit in the present application
  • a substantially transparent organic EL element capable of emitting light on both sides is increasing due to its high design.
  • a flexible organic EL element that can emit light on both sides and can freely change the emission color is extremely high in design and lightweight, and therefore has a wide range of applications as an advertising medium or a lighting device.
  • Patent Document 1 As an organic EL element capable of emitting light on both sides, in Patent Document 1, a reflective conductive intermediate electrode is arranged in the center, and a light emitting layer and an electrode are laminated on both sides to enable double-sided light emission. Therefore, when not emitting light, it is not transparent and uses are limited.
  • Patent Document 2 discloses an organic EL element in which a plurality of light emitting layers, an intermediate electrode layer, and a charge generation layer are laminated between an anode (anode) layer and a cathode (cathode) layer, and the light emitting layer is blue (B), green ( G), red (R) light is emitted, and the intermediate electrode layer is a transparent electrode. Therefore, the organic EL element can emit light of various colors from both sides of the element and is transparent when not emitting light. It becomes. However, since an ITO film or an aluminum film is used as the material for the anode (anode) and the cathode (cathode), and an aluminum film or a magnesium-silver film is used as the intermediate electrode, the transparency is poor.
  • the layers that emit light of different colors such as blue, green, red, etc. are stacked, so when actually observed from both sides, there are differences in color tone and brightness, and both sides emit light. Inferior uniformity of light when the light is emitted, and the emission color cannot be freely changed.
  • Patent Document 3 by adjusting the layer thickness of the transparent conductive film provided on the cathode (cathode) side and the layer thickness of the cathode (cathode), both the light emission on the upper surface and the light emission on the lower surface are uniform in color tone,
  • the object is to obtain a high-quality image display, but since there is a gap inside the element, reflection occurs at the interface between the electrode and the sealing space, and the lower electrode side emits light more strongly, resulting in a uniform emission. There is a problem that double-sided light emission cannot be performed and a problem that the viewing angle dependency of chromaticity is large.
  • an organic electroluminescence element that is transparent when not emitting light, emits light with uniform brightness and chromaticity from both sides when emitting light, and can freely change the emission color has not been obtained.
  • the present invention has been made in view of the above-mentioned problems and situations, and the problem to be solved is that it is transparent when not emitting light, emits light with uniform brightness and chromaticity from both sides when emitting light, and freely emits color. It is to provide an organic electroluminescence device capable of changing the above.
  • the present inventor in the process of examining the cause of the above problems, at least a translucent substrate, a translucent first electrode, an odd number of three or more light emitting units, and between the light emitting units.
  • a plurality of light-transmitting intermediate electrodes, a light-transmitting second electrode, and a light-transmitting sealing substrate that are disposed are stacked in this order, and are organic electroluminescence elements sealed by the light-transmitting sealing substrate, It has been found that the above-mentioned problems can be solved by an organic electroluminescence element in which the odd number of light emitting units of 3 or more are light emitting units having a light emitting property selected from specific light emitting colors and are laminated in a specific arrangement. .
  • At least a translucent substrate, a translucent first electrode, an odd number of three or more light emitting units, a plurality of translucent intermediate electrodes arranged between the light emitting units, a translucent second electrode, and a translucent seal An organic electroluminescence device in which substrates are stacked in this order and sealed by the translucent sealing substrate, wherein the odd number of the three or more light emitting units are blue, green and red, or a mixture thereof
  • Luminescence element is used in which uses at least two types of light emitting units selected from light emitting units having a light emitting color, and has light emitting units of different light emitting colors arranged at symmetrical positions with respect to the light emitting unit arranged in the center.
  • the light emitting center inside the light emitting units at the symmetrical positions of the odd number of light emitting units of 3 or more is respectively equidistant from the light emitting centers of the light emitting units arranged at the center.
  • the first to fourth items, wherein the translucent first electrode, the translucent intermediate electrode, and the translucent second electrode are all transparent electrodes mainly composed of silver.
  • an organic electroluminescence device which is transparent when not emitting light, emits light with uniform brightness and chromaticity from both sides when emitting light, and can freely change the emission color. it can.
  • the organic electroluminescence element of the present invention includes at least a light transmissive substrate, a light transmissive first electrode, an odd number of three or more light emitting units, a plurality of light transmissive intermediate electrodes arranged between the light emitting units, and a light transmissive property.
  • the second electrode and the light-transmitting sealing substrate are stacked in this order, the element is sealed by the light-transmitting sealing substrate, and the odd number of the three or more light emitting units are blue, green and red, or they
  • the odd number of the three or more light emitting units are blue, green and red, or they
  • Conventional double-sided light-emitting organic EL elements as disclosed in Patent Document 2, generally have a structure in which layers for emitting blue, green, and red light are stacked as a light-emitting unit. Then, although the emission color can be changed and both sides can emit light, since the layers emitting light of different colors such as blue, green, red, etc. are laminated, actually observing the organic EL element from both sides, Since the layer order of the layers emitting different colors is different, the color tone and brightness of the observed emitted light are different, and the chromaticity and brightness uniformity of the light emitted from both sides are inferior.
  • a light emitting unit uses at least two types of light emitting units selected from light emitting units having blue, green and red light emitting colors, and an odd number of three or more light emitting units, and is arranged in the center.
  • light emitting units with different emission colors By arranging light emitting units with different emission colors at symmetrical positions, the order of the layers of the units emitting different colors is the same when the organic EL element is observed from both sides. It is speculated that the uniformity of the chromaticity and brightness of the light to be improved and an organic EL element that can be easily adjusted when changing the emission color can be obtained.
  • the light emission centers inside the light emission units at the symmetrical positions of the odd number of the light emission units of 3 or more are equidistant from the light emission centers of the light emission units arranged in the center, it contributes to uniformity. Inferred.
  • the translucent substrate and the translucent sealing substrate are both flexible substrates and are formed of the same material, so that the translucency of the substrate and the refractive index inside the element are the same, Regardless of the design of the light-emitting unit, it is assumed that uniform light-emitting characteristics can be obtained on both sides.
  • the translucent first electrode, the plurality of translucent intermediate electrodes, and the translucent second electrode are electrodes mainly composed of silver, indium oxide, which is conventionally known as a transparent electrode, Compared to tin (SnO 2 —In 2 O 3 : Indium Tin Oxide: ITO) electrode, it can be adjusted to a thin film that does not cause specular reflection at the metal electrode, so it is necessary to consider the loss of light due to the specular reflection. It is considered that the light emission characteristics on both sides are substantially the same, and the transparency of the entire device is improved.
  • the organic EL element of the present invention is preferably solid-sealed (also referred to as laminate sealing) by the translucent sealing substrate, and thus has a hollow portion applied to a general organic EL element. It is presumed that there is almost no reflection at the interface between the electrode and the sealing space and the cavity effect compared to sealing, and the uniformity of luminance and chromaticity on both sides can be improved.
  • the organic electroluminescence element of the present invention includes at least a light transmissive substrate, a light transmissive first electrode, an odd number of three or more light emitting units, a plurality of light transmissive intermediate electrodes arranged between the light emitting units, and a light transmissive property.
  • An organic electroluminescence element in which a second electrode and a light-transmitting sealing substrate are laminated in this order and sealed by the light-transmitting sealing substrate, wherein the odd number of the three or more light emitting units are blue, green And at least two kinds of light emitting units selected from light emitting units having red or a light emitting color in which they are mixed, and light emitting units having different light emitting colors are arranged at symmetrical positions with respect to the light emitting unit arranged in the center. It is characterized by doing.
  • This feature is a technical feature common to the inventions according to claims 1 to 5.
  • the light emission center inside the light emission unit at the symmetrical position of each of the odd number of three or more light emission units is arranged in the center. It is preferable that they are equidistant from the emission center.
  • the light-transmitting substrate and the light-transmitting sealing substrate are both flexible substrates and made of the same material, so that the light-transmitting property and refractive index of the substrate are the same, and the light emission Regardless of the unit design, it is preferable from the viewpoint of obtaining emitted light having substantially the same light emission characteristics from both sides.
  • the polarity of the plurality of translucent intermediate electrodes is positive, negative, or negative, positive from the translucent substrate side, and the polarity of the electrodes is adjusted as described above. By doing so, light emission from the front and back can be adjusted and the emission color can be freely changed, which is preferable.
  • the first transparent electrode, the transparent intermediate electrode, and the second transparent electrode are all transparent electrodes containing silver as a main component, specular reflection at the metal electrode does not occur. Therefore, it is not necessary to consider the loss of light due to the specular reflection, and the light emission luminance on both surfaces is almost the same, and the transparency of the entire element can be improved.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the organic electroluminescence element of the present invention (hereinafter referred to as an organic EL element) includes at least a translucent substrate, a translucent first electrode, an odd number of three or more light emitting units, and a plurality of light emitting units disposed between the light emitting units.
  • a translucent intermediate electrode, a translucent second electrode, and a translucent sealing substrate are laminated in this order, and are organic electroluminescence elements sealed by the translucent sealing substrate, wherein the odd number is 3 or more
  • Each light emitting unit uses at least two types of light emitting units selected from blue, green and red, or a light emitting unit in which they are mixed, and different light emitting colors from the light emitting units arranged in the center
  • the light emitting units are arranged at symmetrical positions.
  • a conventional double-sided light emitting organic EL element including a substrate, a first electrode, a plurality of light emitting units, a plurality of intermediate electrodes arranged between the light emitting units, a second electrode, and a sealing substrate is disclosed in Patent Document 2.
  • the light emitting unit has a structure in which layers emitting blue, green, and red light are stacked.
  • the emission color can be changed and both sides can emit light.
  • the layers emitting different colors such as blue, green and red are laminated, the organic EL element is actually mounted on both sides. From the observation, it was found that the layer order of the layers emitting different colors differed, resulting in a difference in the color tone and brightness of the observed emitted light, and the uniformity of the brightness and chromaticity of the light emitted from both sides was inferior. . In addition, since the configuration is inferior in uniformity of luminance and chromaticity, it has been found that when the emission color is changed, the shift must be corrected each time and complicated adjustment is required.
  • the light emitting unit according to the present invention uses at least two types of light emitting units selected from light emitting units in which an odd number of three or more light emitting units have blue, green and red, or a light emitting color in which they are mixed, and By arranging light emitting units having different light emission colors in symmetrical positions with respect to the light emitting unit arranged in the center, when the organic EL element is observed from both sides, the layer order of the units emitting different colors is the same. Therefore, the present inventors have found that the uniformity of luminance and chromaticity of light emitted from both surfaces is improved, and an organic EL element that can be easily adjusted when changing the emission color can be obtained.
  • substrate which concern on this invention are both flexible substrates, and the translucency and refractive index of a board
  • the inventors have found that uniform light emission characteristics can be obtained on both sides regardless of the design of the light emitting unit.
  • Patent Document 2 has a problem that transparency is inferior because an ITO film or an aluminum film is used as an anode (anode) or cathode (cathode) material, and an aluminum film or a magnesium-silver film is used as an intermediate electrode.
  • the light-transmitting first electrode, the light-transmitting intermediate electrode, and the light-transmitting second electrode according to the present invention are, as a preferred embodiment, an electrode containing silver as a main component, compared with the ITO electrode. Since it can be adjusted to a thin film that does not cause specular reflection at the metal electrode, there is no need to consider the loss of light due to the specular reflection, the light emission luminance on both sides is almost the same, and the transparency of the entire element is Further improve.
  • the organic EL element of the present invention is preferably solid-sealed (also referred to as laminate sealing) by the translucent sealing substrate, and thus has a hollow portion applied to a general organic EL element.
  • laminate sealing also referred to as laminate sealing
  • the organic EL device of the present invention includes at least a light transmissive substrate, a light transmissive first electrode, an odd number of three or more light emitting units, a plurality of light transmissive intermediate electrodes disposed between the light emitting units, and a light transmissive first.
  • An organic electroluminescence device in which two electrodes and a light-transmitting sealing substrate are laminated in this order and sealed by the light-transmitting sealing substrate, is transparent when not emitting light, and uniform from both sides when emitting light
  • the present invention provides an organic electroluminescence element that emits light with brightness and chromaticity and can freely change the emission color.
  • “when emitting light, light is emitted with uniform brightness and chromaticity from both sides” means, for example, that the light emitting unit emits light in an environment of 23 ° C. and 55 RH, and the substrate from the translucent substrate side.
  • Lx is the luminance of Lx and Ly
  • Lx is the light emitted in the normal direction with respect to the substrate from the translucent sealing substrate side.
  • the ratio (%) is obtained by dividing the smaller value of the chromaticity value by the larger value, and the ratio (%) falls within the range of 95 to 100%.
  • Luminance of light (Lx) emitted in the normal direction from the translucent substrate side to the substrate, and light (Ly) emitted in the normal direction from the translucent sealing substrate side to the substrate The chromaticity can be measured by the following method. These are merely examples, and devices and software having equivalent functions may be used.
  • Measuring instrument Konica Minolta 2D color luminance meter CA-2500
  • Data analysis software Konica Minolta Co., Ltd.
  • data management software CA-S25w Measurement conditions: In an environment of 23 ° C. and 55% RH, the organic EL element emits light, and light (Lx) emitted in the normal direction from the translucent substrate side to the substrate is placed at a distance of 5 cm from the substrate. Then measure the luminance and chromaticity with the above measuring equipment. Similarly, the luminance and chromaticity of light (Ly) emitted from the translucent sealing substrate side in the normal direction with respect to the substrate is measured at a distance of 5 cm from the substrate with the measuring instrument.
  • the ratio (%) is obtained by dividing the smaller value of the luminance and chromaticity values of Lx and Ly measured from both sides of the organic EL element by the larger value, and the ratio (%) is 95 to 100%. It is preferable to fall within the range in order to obtain the effect of the present invention that emits light with uniform brightness and chromaticity from both sides during light emission. More preferably, it is in the range of 97 to 100%, and particularly preferably in the range of 99 to 100%.
  • FIG. 1A is a schematic diagram showing an example of the configuration of an organic EL element having three light emitting units according to the present invention.
  • Light emitting unit 103-2 / Translucent intermediate electrode 104-2 / Light emitting unit 103-3 (same as 103-1) / Transparent second electrode 102 / Transparent sealing substrate 106 are laminated in this order. It is basic.
  • the translucent intermediate electrodes may be the same or different.
  • Each of the light-transmitting first electrode 101 and the light-transmitting intermediate electrode 104-1 is wired with a lead wire, and by applying about 2 to 40V as the driving voltage V1 to each connection terminal, the light emitting unit 103- 1 emits light.
  • the light-transmitting intermediate electrode 104-1 and the light-transmitting intermediate electrode 104-2 are also wired with lead wires, and a drive voltage V2 of about 2 to 40 V is applied to the respective connection terminals, whereby the light emitting unit 103-2 emits light.
  • the light-transmitting intermediate electrode 104-2 and the light-transmitting second electrode 102 are also wired with lead wires, and by applying about 2 to 40V as the driving voltage V3 to each connection terminal, the light emitting unit 103- 3 emits light.
  • the translucent first electrode 101 that is an anode is set to a positive polarity.
  • the translucent second electrode 102 which is a cathode (cathode) has a negative polarity and is applied within a voltage range of 2 to 40 V.
  • an anode (anode) and a cathode (cathode) are applied to the translucent intermediate electrode. Apply an intermediate voltage.
  • the light emitting units 103-1 and 103-2 use two types of light emitting units selected from blue, green and red, or a light emitting unit having a mixed emission color, and are arranged in the center (103 -2), the light emitting units (103-1, 103-3) of different luminescent colors are arranged at symmetrical positions.
  • a light emitting unit having a different emission color with respect to a light emitting unit arranged in the center such as a blue light emitting layer / red light emitting layer / blue light emitting layer structure or a green light emitting layer / red light emitting layer / green light emitting layer structure. Disposing them at symmetrical positions is preferable from the viewpoint of improving the chromaticity and luminance uniformity of light emitted from both surfaces and facilitating adjustment when changing the emission color.
  • white light can also be obtained as an illuminating device that emits light from both sides by selecting two types of emitted light so as to have a complementary color relationship.
  • light emission units exhibiting different emission colors are stacked to obtain white light emission
  • these light emission units have a complementary color relationship with each other.
  • an organic EL element that emits white light can be obtained by providing a blue light-emitting layer and a light-emitting unit that emits a complementary green-yellow, yellow, or orange (orange) light-emitting color.
  • the “complementary color” relationship is a relationship between colors that become achromatic when mixed. That is, white light emission can be obtained by mixing light emission of substances emitting light of complementary colors.
  • the light emitting unit disposed in the center is a blue light emitting layer including a blue light emitting dopant, and the light emitting units disposed symmetrically on both sides thereof are green and red (yellow) light emitting units including a green light emitting dopant and a red light emitting dopant. If there is, white light can be obtained.
  • FIG. 1B is a schematic diagram showing an example of the configuration of an organic EL element having a five-layer light-emitting unit of the present invention.
  • Light emitting unit 103-2 / Translucent intermediate electrode 104-2 / Light emitting unit 103-3 / Translucent intermediate electrode 104-3 / Light emitting unit 103-4 (same as light emitting unit 103-2) / Translucent intermediate Basically, the electrode 104-4 / the light emitting unit 103-5 (the light emitting unit 103-1) / the light transmissive second electrode 102 / the light transmissive sealing substrate 106 are laminated in this order.
  • the translucent intermediate electrodes may be the same or different.
  • the light emitting units 103-1, 103-2, 103-3, 103-4 and 103-5 are preferably light emitting units having blue, green and red, or a light emitting color obtained by mixing them, and in the center. It is preferable that the light emitting units of different emission colors are arranged at symmetrical positions with respect to the light emitting units to be arranged.
  • the light emitting units 103-1, 103-2, 103-3, 103-4 and 103-5 have a configuration of blue light emitting layer / green light emitting layer / red light emitting layer / green light emitting layer / blue light emitting layer.
  • the chromaticity and luminance uniformity of the light emitted from both surfaces are improved and the adjustment when changing the emission color can be easily performed.
  • the light emitting unit having blue, green and red light emission colors uniform full color light emission can be performed from both sides, which is extremely useful as a double-sided display.
  • the light emission centers inside the light emission units at the symmetrical positions of the odd number of the light emission units of 3 or more are respectively equidistant from the light emission centers of the light emission units arranged in the center, it is observed from both sides.
  • the brightness and chromaticity of the emitted light can be observed uniformly, which is preferable.
  • FIG. 2 is a schematic diagram showing the distance relationship between the light emission centers of the light emitting unit according to the present invention.
  • FIG. 2 is a schematic diagram of the organic EL element including the three light emitting units shown in FIG. 1A, and shows the emission center h 1 of the light emitting unit 103-1 with respect to the emission center h 2 of the central light emitting unit 103-2.
  • the “light emission center” refers to a position where the light emission energy has a peak when the light emission energy in the thickness direction of the light emission unit described later is measured. Specifically, it can be specified by the method described in JP2009-181829A.
  • the position of the light emission center of the light emitting unit having the structure to be described later varies depending on the type of the organic layer to be stacked, the layer thickness, etc., but is arranged at a symmetrical position with the light emission center of the light emitting unit arranged in the center as the starting point.
  • the electron mobility is about 1 ⁇ 10 ⁇ 5 cm 2 / Vs and the hole mobility is about 1 ⁇ 10 ⁇ 7 cm 2 / Vs due to the transportability of the carrier transport material. Therefore, it is considered that light is emitted at the interface close to the hole transport layer in the light emitting unit.
  • the light emitting units located on the hole transport layer side easily emit light.
  • the position of the light emission center is controlled by the layer configuration and the layer thickness, and as described above, the light emission center of the light emission unit arranged at the symmetrical position with the light emission center of the light emission unit arranged at the center as the starting point. Adjusting the distance to the same distance is a preferable aspect for obtaining emitted light having uniform luminance and chromaticity from both sides.
  • Translucent substrate “Translucent substrate” “Translucency” as used in the present invention is described in JIS K 7105: 1981 using the spectrophotometer (U-3300, manufactured by Hitachi High-Technologies Corporation) for each of the substrate, the electrode, and the light emitting layer.
  • the light transmittance (%) at a light wavelength of 550 nm is measured by the method, it means having a light transmittance of 50% or more.
  • the light transmittance of each element constituting the organic EL element is preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the organic EL element of the present invention is a double-sided light emitting type, and in order to meet the demand for free design, the light transmittance of the entire organic EL element at a light wavelength of 550 nm is preferably 50% or more, More preferably, it is 65% or more, and particularly preferably 75% or more.
  • the translucent substrate according to the present invention is preferably a flexible substrate.
  • the flexible substrate as used in the present invention refers to a substrate that is wound around a ⁇ (diameter) 50 mm roll and does not crack before and after winding with a constant tension, and more preferably a substrate that can be wound around a ⁇ 30 mm roll.
  • Examples of the flexible substrate according to the present invention include a resin substrate, a thin film metal foil, and a thin plate flexible glass.
  • polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, and cellulose triacetate (abbreviation: TAC).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC cellulose triacetate
  • CAP Cellulose acetate butyrate, cellulose acetate propionate
  • PC Polycarbonate
  • PES poly
  • films such as polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate, polyethylene naphthalate (abbreviation: PEN), polycarbonate (abbreviation: PC) are flexible resin substrates in terms of cost and availability. Are preferably used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • the resin substrate may be an unstretched film or a stretched film.
  • the resin substrate applicable to the present invention can be manufactured by a conventionally known general film forming method.
  • an unstretched resin substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the resin substrate transport direction (vertical axis direction, MD) is applied to the unstretched resin substrate by a known method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like.
  • Direction or a direction (horizontal axis direction, TD direction) perpendicular to the transport direction of the resin substrate, the stretched resin substrate can be produced.
  • the draw ratio in this case can be appropriately selected according to the resin as the raw material of the resin substrate, but is preferably in the range of 2 to 10 times in the vertical axis direction and the horizontal axis direction.
  • the thickness of the resin substrate is preferably a thin resin substrate in the range of 3 to 200 ⁇ m, more preferably in the range of 10 to 150 ⁇ m, and particularly preferably in the range of 20 to 120 ⁇ m. is there.
  • the thin flexible glass applicable as the flexible substrate according to the present invention is a glass plate that is thin enough to be bent.
  • the thickness of the thin flexible glass can be appropriately set within the range in which the thin flexible glass exhibits flexibility.
  • the thin flexible glass examples include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the thickness of the thin flexible glass is, for example, in the range of 5 to 300 ⁇ m, and preferably in the range of 20 to 150 ⁇ m.
  • a gas barrier layer may be provided on the above-described translucent substrate as necessary.
  • the gas barrier layer has a water vapor permeability (25 ⁇ 0.5 ° C., relative humidity 90 ⁇ 2% environment) measured by a method according to JIS K 7129: 1992, 0.01 g / (m 2 ⁇ 24 hours.
  • the following gas barrier layer (also referred to as a gas barrier film or the like) is preferable, and the oxygen permeability measured by a method according to JIS K 7126: 1987 is 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ It is more preferable that the high gas barrier layer has a water vapor permeability of 1 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 hours) or less.
  • any material that has a function of suppressing intrusion of water or oxygen that causes deterioration of the organic EL element may be used.
  • an inorganic substance such as silicon oxide, silicon dioxide, or silicon nitride may be used. Can be used.
  • the method for forming the gas barrier layer is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method and the like can be used, but an atmospheric pressure plasma polymerization method described in JP-A-2004-68143 is preferable.
  • Translucent first electrode anode electrode (anode)
  • a metal such as Ag or Au or an alloy containing a metal as a main component, CuI or indium-tin composite oxide (ITO), SnO 2, ZnO or the like
  • ITO indium-tin composite oxide
  • SnO 2, ZnO zinc-doped organic EL element
  • a metal oxide it is preferably a metal or an alloy containing a metal as a main component, more preferably silver or an alloy containing silver as a main component.
  • the translucent first electrode is composed mainly of silver
  • the purity of silver is preferably 99% or more.
  • palladium (Pd), copper (Cu), gold (Au), or the like may be added to ensure the stability of silver.
  • the translucent first electrode is a layer composed mainly of silver, but specifically, it may be formed of silver alone or an alloy containing silver (Ag). .
  • alloys include silver / magnesium (Ag / Mg), silver / copper (Ag / Cu), silver / palladium (Ag / Pd), silver / palladium / copper (Ag / Pd / Cu), silver -Indium (Ag.In) etc. are mentioned.
  • the electrode composing the organic EL device of the present invention is composed of silver as a main component and translucent having a thickness in the range of 2 to 20 nm.
  • the electrode is preferably a conductive electrode, but more preferably has a thickness in the range of 4 to 12 nm.
  • a thickness of 20 nm or less is preferable because the light-absorbing and reflecting components of the translucent electrode are kept low and high light transmittance is maintained.
  • the layer composed mainly of silver in the present invention means that the silver content of the translucent first electrode is 60% by mass or more, preferably the silver content is 80% by mass or more. More preferably, the silver content is 90% by mass or more, and particularly preferably the silver content is 98% by mass or more.
  • the translucent first electrode may have a configuration in which a layer composed mainly of silver is divided into a plurality of layers as necessary.
  • the first electrode when the first electrode is a translucent electrode composed mainly of silver, from the viewpoint of increasing the uniformity of the silver film of the translucent electrode to be formed, It is preferable to provide an underlayer.
  • a base layer it is a layer containing the organic compound which has a nitrogen atom or a sulfur atom, and the method of forming the translucent 1st electrode on the said base layer is a preferable aspect. is there.
  • Examples of the method for forming the light-transmitting first electrode include a method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, and a CVD method.
  • a method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, and a CVD method.
  • a method using a dry process such as, for example, is mentioned, but it is preferable to form by a vapor deposition method.
  • a vacuum vapor deposition method As a vapor deposition method, a vacuum vapor deposition method is mainly used, and silver, which is a constituent material of a transparent anode (anode), or other alloy as necessary is applied to a resistance heating boat for vapor deposition in a vacuum vapor deposition apparatus. Fill.
  • the resistance heating boat for vapor deposition is made of molybdenum or tungsten.
  • the vacuum degree in the vacuum deposition apparatus is reduced to, for example, a range of 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 6 Pa, and then a transparent anode (anode) forming material such as silver
  • a transparent anode (anode) forming material such as silver
  • the above-mentioned resistance heating boat for vapor deposition containing is heated and energized, and a silver thin film is vapor-deposited on a resin base material or an underlayer at a predetermined vapor deposition rate (nm / second) to obtain a thickness of 2 to 20 nm.
  • a transparent anode (anode) in the range of is formed.
  • the first transparent electrode since the first transparent electrode is formed on the base layer, the first transparent electrode can be sufficiently conductive without a high-temperature annealing treatment (for example, a heating process at 150 ° C. or higher) after the formation. .
  • a high-temperature annealing treatment for example, a heating process at 150 ° C. or higher
  • the translucent first electrode is an electrode composed mainly of silver, at least at a position adjacent to the translucent substrate side of the translucent first electrode. It is a preferable aspect to have an underlayer containing an organic compound having a nitrogen atom or a sulfur atom, and further, the nitrogen compound having an effective unshared electron pair in which the organic compound contained in the underlayer does not participate in aromaticity It is preferable that it is a compound which has this.
  • a transparent anode (anode) is formed by providing a base layer containing an organic compound having a nitrogen atom or a sulfur atom below the first electrode.
  • the silver atoms interact with the nitrogen atoms or sulfur atoms of the organic compound contained in the underlayer, and as a result, the diffusion distance of silver atoms on the underlayer surface decreases and the silver agglomerates. Formation of aggregates can be suppressed, and a light-transmitting electrode film having high uniformity can be formed.
  • the organic compound having at least a nitrogen atom or a sulfur atom is not particularly limited.
  • the translucent first electrode can achieve both improved conductivity and improved light transmission.
  • the organic EL device of the present invention is characterized by having an odd number of light emitting units of at least 3 or more.
  • Examples of the configuration of each light emitting unit include the following configurations.
  • the light emitting unit collectively refers to a functional layer existing between an anode (anode) and a cathode (cathode).
  • the light emitting layer constituting the light emitting unit preferably has a structure containing a light emitting material, and the light emitting material is preferably a phosphorescent compound or a fluorescent compound.
  • This light emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
  • Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer between the light emitting layers.
  • the total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained.
  • the sum total of the thickness of a light emitting layer is the thickness also including the said intermediate
  • the light emitting layer as described above may be formed by using a light emitting material or a host compound described later, for example, a known method such as a vacuum deposition method, a spin coating method, a casting method, an LY method (Langmuir-Blodget, Lxngmuir Blodgett method), and an ink jet method. Can be formed.
  • a known method such as a vacuum deposition method, a spin coating method, a casting method, an LY method (Langmuir-Blodget, Lxngmuir Blodgett method), and an ink jet method. Can be formed.
  • a plurality of light emitting materials may be mixed, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer.
  • the structure of the light-emitting layer preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound), and emits light from the light-emitting material.
  • a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
  • the host compound a known host compound may be used alone, or a plurality of types of host compounds may be used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
  • the host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
  • Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2001-357777, 2002-8860, 2002-43056, 2002-105445, 2002-352957, 2002-231453, 2002-234888, 2002-260861, 2002-305083, US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754, International Publication No. 2005/030900, International Publication 200th / No. 086,028, WO 2012/023947, can be mentioned JP 2007-254297, JP-European compounds described in Japanese Patent No. 2034538 Pat like.
  • a phosphorescent compound also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant
  • a fluorescent compound both a fluorescent compound or a fluorescent material
  • the phosphorescent compound is a compound in which light emission is observed during the deactivation process from the excited triplet state to the ground state, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), Although the phosphorescence quantum yield is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C., the preferred phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7.
  • the phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
  • the phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferred are iridium compounds.
  • At least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compounds in the light emitting layer varies in the thickness direction of the light emitting layer. It may be an embodiment.
  • preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond is preferable.
  • the phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and methods disclosed in the references and the like described in these documents Can be synthesized.
  • Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. And dyes, polythiophene dyes, and rare earth complex phosphors.
  • the charge injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • the organic EL element and its industrialization front line June 30, 1998, NT. The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Part 2” of S Co., Ltd., and there are a hole injection layer and an electron injection layer.
  • the charge injection layer is between the anode (anode) and the light emitting layer or hole transport layer if it is a hole injection layer, or the cathode (cathode) and light emitting layer or electron transport layer if it is an electron injection layer.
  • the present invention is characterized in that the charge injection layer is disposed adjacent to the transparent electrode. When used in an intermediate electrode, it is sufficient that at least one of the adjacent electron injection layer and hole injection layer satisfies the requirements of the present invention.
  • the hole injection layer is a layer disposed adjacent to the anode (anode) which is a transparent electrode in order to lower the driving voltage and improve the luminance of light emission.
  • anode anode
  • the hole injection layer is a layer disposed adjacent to the anode (anode) which is a transparent electrode in order to lower the driving voltage and improve the luminance of light emission.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • materials used for the hole injection layer include: , Porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives, Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinylcarbazole, aromatic amines introduced into the main chain or side chain Child material or oligomer, polysilane, a conductive polymer or oligomer
  • Examples of the triarylamine derivative include benzidine type represented by ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ′′).
  • Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
  • the electron injection layer is a layer provided between the cathode (cathode) and the light emitting layer for lowering the driving voltage and improving the light emission luminance.
  • the cathode (cathode) is a light-transmitting material mainly composed of silver or silver. In the case of a conductive electrode, it is provided adjacent to the transparent electrode, and “Organic EL element and its forefront of industrialization” (issued on November 30, 1998 by NTT) The electrode material "(pages 123 to 166) is described in detail.
  • JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like Specific examples of materials preferably used for the electron injection layer are as follows. Metals represented by strontium and aluminum, alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkali metal halide layers represented by magnesium fluoride, calcium fluoride, etc. Examples thereof include an alkaline earth metal compound layer typified by magnesium, a metal oxide typified by molybdenum oxide and aluminum oxide, and a metal complex typified by lithium 8-hydroxyquinolate (Liq).
  • Metals represented by strontium and aluminum alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc.
  • the transparent electrode in this invention is a cathode (cathode)
  • organic materials such as a metal complex
  • the electron injection layer is preferably a very thin film, and depending on the constituent material, the layer thickness is preferably in the range of 1 nm to 10 ⁇ m.
  • the hole transport layer is made of a hole transport material having a function of transporting holes.
  • the hole injection layer and the electron blocking layer also have the function of a hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
  • hole transport material those described above can be used, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can be used, and in particular, aromatic tertiary amine compounds can be used. preferable.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p
  • the hole transport material may be formed by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, and an LY method (Langmuir Brodget, Lxngmuir Brodgett method). Thus, it can be formed by thinning.
  • the layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the p property can be increased by doping impurities into the material of the hole transport layer.
  • Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer structure or a stacked structure of a plurality of layers.
  • an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer is used as an electron transporting material. What is necessary is just to have the function to transmit.
  • any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. It can. Furthermore, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc. and the central metal of these metal complexes
  • a metal complex replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer.
  • the electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LY method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single structure composed of one or more of the above materials.
  • the blocking layer includes a hole blocking layer and an electron blocking layer, and is a layer provided as necessary in addition to the constituent layers of the organic functional layer unit 3 described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved.
  • the structure of an electron carrying layer can be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense.
  • the electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made.
  • the structure of a positive hole transport layer can be used as an electron blocking layer as needed.
  • the layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • a plurality of light emitting units are configured between an anode (anode) and a cathode (cathode), and independent connection for obtaining an electrical connection between the plurality of light emitting units.
  • the structure is separated by a translucent intermediate electrode having a terminal.
  • the material that can be used as the translucent intermediate electrode is the same as that of the above-described translucent first electrode. Among them, it is preferable that the electrode is composed of silver or an alloy containing silver as a main component. Is a preferred embodiment having an underlayer containing an organic compound having at least a nitrogen atom or a sulfur atom as described above at a position adjacent to the translucent intermediate electrode.
  • the translucent second electrode is an electrode film that functions to supply electrons to the organic functional layer group and the light emitting layer, and a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof is used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO Oxide semiconductors such as 2 and SnO 2 .
  • the translucent second electrode can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the second electrode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the organic EL element of the present invention is a double-sided light emitting type in which emitted light is extracted also from the cathode (cathode) side. Therefore, an electrode having good light transmittance may be selected and configured.
  • an electrode composed of silver or an alloy containing silver as a main component is preferable, and in this case, the above-described position is adjacent to the translucent intermediate electrode. It is a preferable embodiment to have an underlayer containing an organic compound having at least a nitrogen atom or a sulfur atom.
  • Translucent sealing substrate As a sealing means used for sealing the organic EL element of the present invention, a light-emitting unit and an electrode group are solid-sealed with an adhesive on a light-transmitting substrate (laminate sealing). ).
  • the translucent sealing substrate may be disposed so as to cover the display area of the organic EL element, and may be concave or flat as long as it is translucent, and the electrical insulation is not particularly limited.
  • the substrate is preferably a flexible substrate formed of the same material as the light-transmitting substrate.
  • the substrate is preferably formed from the same material, the light-transmitting property of the substrate and the refractive index inside the element become the same.
  • it is preferable because uniform light emitting characteristics can be obtained on both sides.
  • polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, and cellulose triacetate (abbreviation: TAC).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC cellulose triacetate
  • CAP Cellulose acetate butyrate, cellulose acetate propionate
  • PC Polycarbonate
  • PES poly
  • examples of the thin flexible glass applicable to the present invention include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the thickness of the thin flexible glass is, for example, in the range of 5 to 300 ⁇ m, and preferably in the range of 20 to 150 ⁇ m.
  • a resin film can be preferably used from the viewpoint of reducing the thickness of the organic EL element. Further, the resin film has a water vapor transmission rate of 1 ⁇ 10 ⁇ 3 g / m 2 .multidot.m at a temperature of 25 ⁇ 0.5 ° C. and a relative humidity of 90 ⁇ 2% RH measured by a method according to JIS K 7129-1992.
  • the oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm (1 atm is 1.01325 ⁇ 10 5 a Pa) equal to or lower than a temperature of 25 ⁇ 0.5 ° C.
  • water vapor permeability at a relative humidity of 90 ⁇ 2% RH is preferably not more than 1 ⁇ 10 -3 g / m 2 ⁇ 24h.
  • a method for performing laminate sealing (solid sealing) with a light-transmitting sealing substrate is not particularly limited.
  • the organic EL element is subjected to an environment in which oxygen and moisture concentrations are constant (for example, an oxygen concentration of 10 ppm or less). Placed in a glove box having a moisture concentration of 10 ppm or less, etc.) and pressed under a reduced pressure (1 ⁇ 10 ⁇ 3 MPa or less) while applying pressure, and the adhesive layer formed on the translucent sealing substrate
  • the organic EL element 100 is laminated and sealed, and then the adhesive layer is thermally cured by heating with a hot air circulation oven, an infrared heater, a heat gun, a high frequency induction heating device, a heat tool, or the like.
  • thermosetting resins such as epoxy resins, cyanate ester resins, phenol resins, bismaleimide-triazine resins, polyimide resins, acrylic resins, and vinylbenzyl resins.
  • an epoxy resin is preferable from the viewpoint of low-temperature curability and adhesiveness.
  • epoxy resin those having an average of two or more epoxy groups per molecule may be used.
  • bisphenol A type epoxy resin biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, and naphthol type epoxy are used.
  • alicyclic epoxy resin aliphatic chain epoxy resin
  • phenol novolac epoxy resin cresol novolac epoxy resin
  • bisphenol A novolac epoxy resin Epoxy resin having a butadiene structure, phenol aralkyl type epoxy resin, epoxy resin having a dicyclopentadiene structure, diglycidyl ether
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, phenol novolac type epoxy resin, biphenyl aralkyl type epoxy resin, phenol aralkyl type epoxy from the viewpoint of maintaining high heat resistance and low moisture permeability of the resin composition.
  • a resin, an aromatic glycidylamine type epoxy resin, an epoxy resin having a dicyclopentadiene structure, and the like are preferable.
  • the epoxy resin may be liquid, solid, or both liquid and solid.
  • “liquid” and “solid” are states of the epoxy resin at 25 ° C. From the viewpoints of coatability, processability, adhesiveness, and the like, it is preferable that 10% by mass or more of the entire epoxy resin to be used is liquid.
  • the epoxy resin preferably has an epoxy equivalent in the range of 100 to 1000, more preferably in the range of 120 to 1000, from the viewpoint of reactivity.
  • the epoxy equivalent is the number of grams (g / eq) of a resin containing 1 gram equivalent of an epoxy group, and is measured according to the method defined in JIS K-7236.
  • the curing agent for the epoxy resin is not particularly limited as long as it has a function of curing the epoxy resin, but from the viewpoint of suppressing thermal deterioration of the element (particularly the organic EL element) during the curing treatment of the resin composition.
  • the curing treatment of the composition is preferably performed at 140 ° C. or lower, more preferably 120 ° C. or lower, and the curing agent preferably has an epoxy resin curing action in such a temperature range.
  • amine adduct-based compounds Amicure PN-23, Amicure MY-24, Amicure PN-D, Amicure MY-D, Amicure PN-H, Amicure MY-H, Amicure PN-31, Amicure PN-40, Amicure PN-40J, etc. (all Ajinomoto Fine Techno)
  • organic acid dihydrazide Amicure VDH-J, Amicure UDH, Amicure LDH, etc. (all manufactured by Ajinomoto Fine Techno Co.)
  • these may be used alone or in combination of two or more.
  • the epoxy resin has extremely good low-temperature curability, and the upper limit of the curing temperature is preferably 140 ° C. or less, more preferably 120 ° C. or less, and even more preferably 110 ° C. or less.
  • the lower limit of the curing temperature is preferably 50 ° C. or higher, and more preferably 55 ° C. or higher.
  • 120 minutes or less is preferable, as for the upper limit of hardening time, 90 minutes or less are more preferable, and 60 minutes or less are still more preferable.
  • the lower limit of the curing time is preferably 20 minutes or more, and more preferably 30 minutes or more. Thereby, the thermal deterioration of the organic EL element can be extremely reduced.
  • the extraction electrode is for electrically connecting the translucent first electrode, translucent intermediate electrode, translucent second electrode, and external power source, and the material thereof is not particularly limited and is publicly known. However, for example, a metal film such as a MAM electrode (Mo / Al ⁇ Nd alloy / Mo) having a three-layer structure can be used.
  • a metal film such as a MAM electrode (Mo / Al ⁇ Nd alloy / Mo) having a three-layer structure can be used.
  • the auxiliary electrode is provided for the purpose of reducing the resistance of the translucent electrode, and is provided in contact with the translucent first electrode.
  • the material for forming the auxiliary electrode is preferably a metal having low resistance such as gold, platinum, silver, copper, or aluminum. Since these metals have low light transmittance, a pattern is formed in a range not affected by extraction of the emitted light h from the light extraction surface. Examples of a method for forming such an auxiliary electrode include a vapor deposition method, a sputtering method, a printing method, an ink jet method, and an aerosol jet method.
  • the line width of the auxiliary electrode is preferably 50 ⁇ m or less from the viewpoint of the aperture ratio for extracting light, and the thickness of the auxiliary electrode is preferably 1 ⁇ m or more from the viewpoint of conductivity.
  • the protective film or the protective plate is for mechanically protecting the organic EL element, and particularly when the sealing material is a sealing film, the mechanical protection for the organic EL element is not sufficient. It is preferable to provide such a protective film or protective plate.
  • a glass plate, a polymer plate, a resin film thinner than this, a metal plate, a metal film thinner than this, a polymer material film or a metal material film is applied.
  • a resin film because it is lightweight and thin.
  • a translucent first electrode anode
  • a light emitting unit-1 a translucent intermediate electrode-1
  • a light emitting unit-2 are provided on a translucent substrate.
  • the light-transmitting intermediate electrode-2, the light-emitting unit-3 (same as the light-emitting unit-1), the light-transmitting second electrode (cathode) and the light-transmitting sealing substrate are stacked to form a laminate. .
  • a translucent substrate is prepared, and a thin film made of a desired electrode material, for example, an anode (anode) material is formed on the translucent substrate to a thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm.
  • an anode (anode) is formed by a method such as vapor deposition or sputtering.
  • a connection electrode portion connected to an external power source is formed at the end of the anode (anode).
  • a hole injection layer and a hole transport layer constituting the light-emitting unit-1, a light-emitting layer, an electron transport layer constituting the organic functional layer group 2 and the like are sequentially laminated thereon.
  • each of these layers includes spin coating, casting, inkjet, vapor deposition, and printing, but vacuum vapor deposition is easy because a homogeneous layer is easily obtained and pinholes are difficult to generate.
  • the method or spin coating method is particularly preferred.
  • different formation methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 Pa. It is desirable to appropriately select the respective conditions within the range of a deposition rate of 0.01 to 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a layer thickness of 0.1 to 5 ⁇ m.
  • the translucent intermediate electrode-1 is formed thereon by an appropriate forming method such as vapor deposition or sputtering.
  • the light-emitting unit-2, the translucent intermediate electrode-2, and the light-emitting unit-3 are laminated in the same manner, and the light-transmitting second electrode emits light while being insulated from the anode (anode) by the light-emitting unit group.
  • the pattern is formed in a shape in which the terminal portion is drawn from the upper side of the delegate unit group to the periphery of the translucent substrate.
  • the translucent second electrode After the formation of the translucent second electrode, these are sealed with a translucent sealing substrate. At this time, the terminal portions of the anode (anode) and the cathode (cathode) are exposed, and sealing is performed on the light-transmitting substrate so as to cover at least the light emitting unit group.
  • each electrode of the organic EL element is electrically connected to a light emitting element driving circuit unit or a touch detection circuit unit, and an electrical connection member that can be used at that time
  • an electrical connection member that can be used at that time
  • anisotropic conductive film examples include a layer having fine conductive particles having conductivity mixed with a thermosetting resin.
  • the conductive particle-containing layer that can be used in the present invention is not particularly limited as long as it is a layer containing conductive particles as an anisotropic conductive member, and can be appropriately selected according to the purpose.
  • electroconductive particle which can be used as an anisotropic conductive member, According to the objective, it can select suitably, For example, a metal particle, a metal covering resin particle, etc. are mentioned.
  • commercially available ACFs include low-temperature curing ACFs that can also be applied to resin films, such as MF-331 (manufactured by Hitachi Chemical).
  • the metal particles include nickel, cobalt, silver, copper, gold, palladium, and the like.
  • the metal-coated resin particles for example, the surface of the resin core is any one of nickel, copper, gold, and palladium.
  • the metal paste may be a commercially available metal nanoparticle paste.
  • the organic EL device of the present invention is designed so that the polarities of the plurality of translucent intermediate electrodes are laminated from the translucent substrate side in the positive, negative repeating order, or the negative, positive repeating order. From the viewpoint of providing an organic electroluminescence device that is easy to control and can freely change the emission color, this is a preferred embodiment.
  • FIG. 3 is a schematic diagram showing an example of a circuit for driving an organic EL element having three light emitting units of the present invention.
  • FIG. 3 is an example of a circuit in the case of the configuration of FIG. 1A.
  • the translucent second electrode 102, the translucent first electrode 101, and the translucent intermediate electrodes 104-1 and 104-2 can be independently applied with a voltage from the outside of the organic EL element 100.
  • the translucent first electrode 101, the translucent intermediate electrode 104-1, the translucent intermediate electrode 104-2, and the translucent second electrode 102 are formed of these electrodes. It is connected to a power supply circuit 200 that applies a voltage between arbitrary electrodes.
  • the translucent second electrode 102 can be connected to the cathode (cathode) terminal of the voltage source 210 via the first switch S1.
  • the translucent intermediate electrode 104-2 can be connected to the cathode (cathode) terminal or the anode (anode) terminal of the voltage source 210 via the second switch S2.
  • the translucent intermediate electrode 104-1 can be connected to the cathode (cathode) terminal or the anode (anode) terminal of the voltage source 210 via the third switch S3.
  • the translucent first electrode 101 can be connected to the anode (anode) terminal of the voltage source 210 via the fourth switch S4.
  • the power supply circuit 200 controls the connection state of the first switch S1 to the fourth switch S4, thereby translucent first electrode 101, translucent intermediate electrode 104-1, translucent intermediate electrode 104-3, and translucent intermediate electrode 104-3.
  • a voltage is applied between any of the optical second electrodes 102 to generate light in one or a plurality of light emitting layers of the organic EL element 100. That is, by selecting an electrode to which a voltage is applied by the power supply circuit 200, it is possible to output light of mixed colors in which light emission of a desired single color or a plurality of colors overlaps from the organic EL element 100.
  • Table 1 shows the relationship between the connection states of the first switch S1 to the fourth switch S4 of the power supply circuit 200 and the light emission states of the light emitting unit 103-1, the light emitting unit 103-2, and the light emitting unit 103-3 of the organic EL element 100. It is a table
  • “+” indicates that the first switch S1 to the fourth switch S4 are connected to the anode (anode) terminal of the voltage source 210
  • “ ⁇ ” indicates that the first switch S1 to the fourth switch S4 are connected.
  • the state connected to the cathode (cathode) terminal of the voltage source 210 is shown.
  • “NC” indicates that the first switch S 1 to the fourth switch S 4 are open and not connected to the voltage source 210.
  • the first switch S1 is connected to the cathode terminal of the voltage source 210, and the second switch S2 is connected to the anode terminal of the voltage source 210. And the third switch S3 and the fourth switch S4 are opened.
  • the translucent second electrode 102 becomes a cathode electrode and the translucent intermediate electrode 104-2 becomes an anode electrode, and light is emitted by recombination of holes and electrons in the light emitting unit 103-3.
  • the second switch S2 is connected to the cathode terminal of the voltage source 210
  • the third switch S3 is connected to the anode terminal of the voltage source 210
  • the first switch S1 and the fourth switch S4 are opened.
  • the translucent intermediate electrode 104-2 becomes a cathode electrode
  • the translucent intermediate electrode 104-1 becomes an anode electrode, and light is emitted by recombination of holes and electrons in the light emitting unit 103-2.
  • the third switch S 3 is connected to the cathode terminal of the voltage source 210
  • the fourth switch S 4 is connected to the anode terminal of the voltage source 210
  • the first switch S1 and the second switch S2 are opened.
  • the translucent intermediate electrode 104-1 becomes a cathode electrode
  • the translucent first electrode 101 becomes an anode electrode, and light is emitted by recombination of holes and electrons in the light emitting unit 103-1.
  • the first switch S1 is connected to the cathode terminal of the voltage source 210, and the third switch S3 is connected to the anode terminal of the voltage source 210. And the second switch S2 and the fourth switch S4 are opened.
  • the light-transmitting second electrode 102 becomes the cathode electrode and the light-transmitting intermediate electrode 104-1 becomes the anode electrode, and the light emitting unit 103-3 and the light emitting unit 103-2 emit light. Therefore, the mixed color light of the light emitting unit is output from the organic EL element 100.
  • the second switch S2 is connected to the cathode terminal of the voltage source 210, and the fourth switch S4 is connected to the anode terminal of the voltage source 210.
  • the first switch S1 and the third switch S3 are opened.
  • the light-transmitting intermediate electrode 104-2 becomes the cathode electrode and the light-transmitting first electrode 101 becomes the anode electrode, and the light emitting unit 103-2 and the light emitting unit 103-1 emit light. For this reason, light of mixed colors of the respective emitted lights is output from the organic EL element 100.
  • the first switch S1 and the third switch S3 are connected to the cathode (cathode) terminal of the voltage source 210, and the second switch S2 and the fourth switch S4. Is connected to the anode terminal of the voltage source 210.
  • the light-transmitting second electrode 102 becomes the cathode electrode and the light-transmitting intermediate electrode 104-2 becomes the anode electrode, and the light emitting unit 103-3 emits light.
  • the light-transmitting intermediate electrode 104-1 serves as a cathode electrode and the light-transmitting first electrode 101 serves as an anode electrode, and the light emitting unit 103-1 emits light. For this reason, light of mixed colors of the respective emitted lights is output from the organic EL element 100.
  • the first switch S1 is connected to the cathode terminal of the voltage source 210
  • the fourth switch S4 is connected to the voltage source.
  • the second switch S2 and the third switch S3 are opened while being connected to the anode (anode) terminal 210.
  • the light transmissive second electrode 102 becomes the cathode electrode and the light transmissive first electrode 101 becomes the anode electrode
  • the light emitting unit 103-3, the light emitting unit 103-2, and the light emitting unit 103-1 emit light.
  • the organic EL element 100 outputs white light in which the respective emitted lights are mixed.
  • the organic EL element 100 shown in FIG. 3 includes any one of the light-transmitting second electrode 102, the light-transmitting first electrode 101, and the light-transmitting intermediate electrodes 104-1 and 104-2.
  • light of any color can be output by generating light in any one or a plurality of layers of the light emitting unit 103-1, the light emitting unit 103-2, and the light emitting unit 103-3.
  • the connection states of the first switch S1 to the fourth switch S4 are controlled by a control circuit (not shown) in order to output light of a desired color from the organic EL element 100.
  • the organic EL device of the present invention is a surface light emitter and is a double-sided light emitting type, and therefore can be used as various light emitting sources.
  • lighting devices such as home lighting and interior lighting, backlights for watches and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors,
  • the light source of an optical sensor can be used by taking advantage of the double-sided emission characteristics.
  • the organic EL element of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a type that directly recognizes a still image or a moving image. It may be used as a display device (display).
  • the light emitting surface may be enlarged by so-called tiling, in which light emitting panels provided with organic EL elements are joined together in a plane.
  • the drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • a color or full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
  • the lighting device using the organic EL element of the present invention may be designed such that each organic EL element having the above-described configuration has a resonator structure.
  • Examples of the purpose of use of the organic EL element configured as a resonator structure include, but are not limited to, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. .
  • the material used for the organic EL element of the present invention can be applied to an organic EL element that emits white light (also referred to as a white organic EL element).
  • a plurality of light emitting materials can simultaneously emit a plurality of light emission colors to obtain white light emission by color mixing.
  • the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of red, green, and blue as described above, or use the relationship of complementary colors such as blue and yellow, blue green and orange, etc. It may be one containing the two emission maximum wavelengths.
  • a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and excitation of light from the light emitting materials. Any combination with a pigment material that emits light as light may be used, but in a white organic EL element, a combination of a plurality of light-emitting dopants may be used.
  • Such a white organic EL element is different from a configuration in which organic EL elements emitting each color are individually arranged in parallel to obtain white light emission, and the organic EL element itself emits white light. For this reason, a mask is not required for film formation of most layers constituting the element, and for example, an electrode film can be formed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is improved. To do.
  • the light emitting material used for the light emitting layer of such a white organic EL element is not particularly limited.
  • the light emitting material is adapted to a wavelength range corresponding to CF (color filter) characteristics. Any one of the metal complexes according to the present invention and known light-emitting materials may be selected and combined for whitening.
  • the white organic EL element described above it is possible to produce a lighting device that emits substantially white light.
  • the organic EL element of this invention can be used also as an illuminating device which used multiple and made the light emission surface large area.
  • the light emitting surface is enlarged by arranging a plurality of light emitting panels provided with organic EL elements on a transparent substrate (that is, tiling) on the support substrate.
  • the support substrate may also serve as a sealing material, and each light emitting panel is tiled in a state where the organic EL element is sandwiched between the support substrate and the transparent substrate of the light emitting panel.
  • An adhesive may be filled between the support substrate and the transparent substrate, thereby sealing the organic EL element. Note that the terminals of the translucent first electrode, the translucent intermediate electrode, and the translucent second electrode are exposed around the light emitting panel.
  • the center of each light emitting panel is a light emitting region, and a non-light emitting region is generated between the light emitting panels.
  • a light extraction member for increasing the amount of light extracted from the non-light emitting area may be provided in the non-light emitting area of the light extraction surface.
  • a light collecting sheet or a light diffusion sheet can be used as the light extraction member.
  • Example 1 [Production of Organic EL Element 101] ⁇ Translucent substrate> A polyester film MELINEX ST504 (manufactured by Teijin DuPont Films Ltd.) having a width of 50 cm and a thickness of 125 ⁇ m was prepared as a translucent substrate. This polyester film is degassed for 3 hours by heating to 80 ° C. under a reduced pressure of 0.01 Torr.
  • a polysilazane-containing coating solution was applied, and then a vacuum ultraviolet ray was applied to perform a modification treatment to provide a gas barrier layer, thereby producing a translucent flexible substrate.
  • TDAH 1,6-diaminohexane
  • the coating solution obtained above was formed into a film with a thickness of 300 nm on the translucent substrate with a spin coater, left for 2 minutes, and then subjected to heat treatment for 1 minute on an 80 ° C. hot plate, A polysilazane coating film was formed.
  • a vacuum ultraviolet ray irradiation treatment of 6000 mJ / cm 2 was performed to form a gas barrier layer.
  • ITO Indium Tin Oxide: ITO
  • ITO Indium Tin Oxide
  • ⁇ Formation of light emitting unit 1> (Formation of hole transport layer) First, a heating boat containing HT-1 as a hole transport injecting material is energized and heated, and a hole transport injecting layer serving as both a hole injecting layer and a hole transporting layer made of HT-1 is made transparent. The film was formed on the conductive first electrode. At this time, the pressure was reduced to a vacuum degree of 1 ⁇ 10 ⁇ 4 Pa using a commercially available vacuum vapor deposition apparatus, and then vapor deposition was performed at a vapor deposition rate of 0.1 to 0.2 nm / second to obtain a layer thickness of 20 nm.
  • each of the heating boat containing the host compound H-1 and the heating boat containing the phosphorescent emission dopant A-3 blue emission dopant: indicated as B in the table
  • the host compound H- A light emitting layer containing 1 and phosphorescent light emitting dopant A-3 was formed on the hole transport injection layer.
  • the layer thickness was 30 nm.
  • the hole blocking layer made of BAlq is heated by energizing a heating boat containing BAlq ([Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum]) as a hole blocking material.
  • BAlq [Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum]
  • a film was formed on the light emitting layer.
  • the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 10 nm.
  • a heating boat containing ET-1 shown below as an electron transporting material and a heating boat containing potassium fluoride were energized independently to form an electron transporting layer containing ET-1 and potassium fluoride.
  • a film was formed on the hole blocking layer.
  • the layer thickness was 30 nm.
  • a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer.
  • the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 1 nm.
  • ITO Indium Tin Oxide: ITO
  • ITO Indium Tin Oxide
  • the light emitting unit 2 was formed in the same manner as the light emitting unit 1 except that the light emitting layer 2 was formed as follows.
  • each laminate including the light-transmitting second electrode was moved again to a nitrogen atmosphere, and cut to a prescribed size using an ultraviolet laser to produce an organic EL element.
  • Crimping conditions Crimping was performed at a temperature of 170 ° C. (ACF temperature 140 ° C. measured using a separate thermocouple), a pressure of 2 MPa, and 10 seconds.
  • thermosetting liquid adhesive epoxy photo-curing adhesive: Luxtrac LC0629B manufactured by Toagosei Co., Ltd.
  • a thickness of 30 ⁇ m was applied to the gas barrier layer side of the produced gas barrier translucent substrate, The adhesive surface of the sealing member and the organic EL element organic so that the end portions of the lead electrodes of the light-transmitting first electrode, light-transmitting intermediate electrode, and light-transmitting second electrode of the organic EL element are exposed.
  • the functional layer surfaces were continuously overlapped and bonded by a dry laminating method to produce a sealed organic EL element 101 shown in Table 2.
  • the sealing process is performed under atmospheric pressure and in a nitrogen atmosphere with a moisture content of 1 ppm or less in accordance with JIS B 9920.
  • the measured cleanliness is class 100, the dew point temperature is ⁇ 80 ° C. or less, and the oxygen concentration is 0.8 ppm or less. At atmospheric pressure.
  • Organic EL Element 102 In the production of the organic EL element 101, the following light emitting unit 3 is added, and the light transmitting substrate / light transmitting first electrode / light emitting unit 1 (B) / light transmitting intermediate electrode 1 / light emitting unit 2 (G) / light transmitting.
  • the organic EL element 102 described in Table 2 was manufactured by laminating and sealing in the order of optical intermediate electrode 2 / light emitting unit 3 (R) / translucent second electrode / translucent sealing substrate.
  • ⁇ Formation of light emitting unit 3> (Formation of hole transport layer) A heating boat containing HT-1 as a hole transporting injection material is energized and heated, and a hole transporting injection layer made of HT-1 serving as both a hole injection layer and a hole transporting layer is made transparent. A film was formed on one electrode. At this time, the pressure was reduced to a vacuum degree of 1 ⁇ 10 ⁇ 4 Pa using a commercially available vacuum vapor deposition apparatus, and then vapor deposition was performed at a vapor deposition rate of 0.1 to 0.2 nm / second to obtain a layer thickness of 20 nm.
  • each of the heating boat containing the host compound H-1 and the heating boat containing the phosphorescent light emitting dopant A-2 red light emitting dopant: indicated as R in the table
  • the host compound H- A light emitting layer containing 1 and phosphorescent light emitting dopant A-2 was formed on the hole transport injection layer.
  • the layer thickness was 30 nm.
  • the hole blocking layer made of BAlq is heated by energizing a heating boat containing BAlq ([Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum]) as a hole blocking material.
  • BAlq [Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum]
  • a film was formed on the light emitting layer.
  • the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 10 nm.
  • a heating boat containing ET-1 shown below as an electron transporting material and a heating boat containing potassium fluoride were energized independently to form an electron transporting layer containing ET-1 and potassium fluoride.
  • a film was formed on the hole blocking layer.
  • the layer thickness was 30 nm.
  • a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer.
  • the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 1 nm.
  • the ratio a: b of the organic EL element 102 when the distance between the light emission unit 1 and the light emission center of the light emission unit 2 is a and the distance between the light emission unit 2 and the light emission center 3 is b is 1: 1 and equidistant from the light emission center of the light emitting unit disposed in the center.
  • B was 1: 1 and was equidistant from the light emission center of the light emitting unit disposed in the center.
  • the emission center was obtained by measuring the emission distribution by the method described in paragraphs [0059] to [0069] of JP-A-2009-181829.
  • B was 1: 1 and was equidistant from the light emission center of the light emitting unit disposed in the center.
  • Organic EL Element 105 In the production of the organic EL element 102, the following light emitting unit is added, and the light transmitting substrate / light transmitting first electrode / light emitting unit 1 (B) / light transmitting intermediate electrode 1 / light emitting unit 2 (G) / light transmitting. Intermediate electrode 2 / light emitting unit 3 (R) / light transmissive intermediate electrode 3 / light emitting unit 2 (G) / light transmissive intermediate electrode 4 / light emitting unit 1 (B) / light transmissive second electrode / light transmissive
  • the organic EL element 105 shown in Table 2 was produced by stacking and sealing in the order of the sealing substrate.
  • the distances between the light emitting unit 1 and the light emitting unit 2 of the organic EL element 105 with respect to the light emitting unit 3 are a-1 and a-2, respectively, and the light emitting unit 2 on the upper layer side with respect to the light emitting unit 3 is used.
  • the ratios a-1: b-1 and a-2: b-2 where the distance between the light emitting unit 1 and the light emission center of the light emitting unit 1 is b-1 and b-2 are 1: 1, respectively. All were equidistance with respect to the light emission center of the light emission unit to arrange
  • a translucent substrate with a gas barrier layer is set in a substrate holder, the compound ET-1 is placed in a resistance heating boat made of tantalum, and these substrate holder and heating boat are attached to the first vacuum chamber of the vacuum deposition apparatus. It was.
  • the first vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing a heating boat containing ET-1, and the layer thickness was deposited on the substrate at a deposition rate of 0.1 nm / second.
  • An underlayer made of 25 nm ET-1 was provided.
  • the translucent substrate formed up to the base layer was transferred to the second vacuum chamber while being vacuumed, and silver (Ag) was placed in a resistance heating boat made of tungsten, and attached to the vacuum chamber.
  • the resistance heating boat was energized and heated to form a single-layered translucent first electrode made of silver by resistance heating evaporation.
  • the layer thickness of the formed transparent first electrode made of silver (Ag) was 10 nm.
  • the translucent first electrode, the translucent intermediate electrode 1, and the translucent second electrode were formed in the same manner except that the electrodes were formed in the above-described configuration of the base layer and the silver layer, respectively.
  • the organic EL element 106 shown in Table 2 was produced.
  • ⁇ Formation of light emitting unit 1 (G / R)> (Formation of hole transport layer)
  • a heating boat containing HT-1 as a hole transporting injection material is energized and heated, and a hole transporting injection layer made of HT-1 serving as both a hole injection layer and a hole transporting layer is made transparent.
  • a film was formed on one electrode.
  • the pressure was reduced to a vacuum degree of 1 ⁇ 10 ⁇ 4 Pa using a commercially available vacuum vapor deposition apparatus, and then vapor deposition was performed at a vapor deposition rate of 0.1 to 0.2 nm / second to obtain a layer thickness of 20 nm.
  • the hole blocking layer made of BAlq is heated by energizing a heating boat containing BAlq ([Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum]) as a hole blocking material.
  • BAlq [Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum]
  • a film was formed on the light emitting layer.
  • the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 10 nm.
  • a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer.
  • the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 1 nm.
  • Organic EL Element 111 In the production of the organic EL element 105, the translucent first electrode, the translucent intermediate electrode 1, the translucent intermediate electrode 2, the translucent intermediate electrode 3, the translucent intermediate electrode 4, and the translucent second electrode are provided.
  • the organic EL element 111 shown in Table 2 was produced in the same manner except that the electrodes were formed with the above-described foundation layer and silver layer, respectively.
  • Translucent sealing substrate 2 As the translucent sealing substrate 2, a biaxially stretched polyethylene naphthalate film (PEN film, thickness: 100 ⁇ m, width: 50 cm, manufactured by Teijin DuPont Films, trade name “Teonex Q65FA”) was used.
  • PEN film thickness: 100 ⁇ m, width: 50 cm, manufactured by Teijin DuPont Films, trade name “Teonex Q65FA”
  • the polysilazane-containing coating solution was applied, and then modified by irradiation with vacuum ultraviolet rays in the same manner to provide a gas barrier layer, thereby producing a flexible translucent sealing substrate.
  • Translucent sealing substrate 3 As the translucent sealing substrate 3, a biaxially stretched cycloolefin film (COP film, thickness: 100 ⁇ m, width: 50 cm, manufactured by Nippon Zeon Co., Ltd., trade name “Zeonor”) was used.
  • COP film thickness: 100 ⁇ m, width: 50 cm, manufactured by Nippon Zeon Co., Ltd., trade name “Zeonor”.
  • the polysilazane-containing coating solution was applied, and then modified by irradiation with vacuum ultraviolet rays in the same manner, and a gas barrier layer was provided to prepare a flexible translucent sealing substrate.
  • ⁇ Formation of light emitting unit 1a> (Formation of hole transport layer)
  • a heating boat containing HT-1 as a hole transporting injection material is energized and heated, and a hole transporting injection layer made of HT-1 serving as both a hole injection layer and a hole transporting layer is made transparent.
  • a film was formed on one electrode.
  • the pressure was reduced to a vacuum degree of 1 ⁇ 10 ⁇ 4 Pa using a commercially available vacuum vapor deposition apparatus, and then vapor deposition was performed at a vapor deposition rate of 0.1 to 0.2 nm / second to obtain a layer thickness of 30 nm.
  • each of the heating boat containing the host compound H-1 and the heating boat containing the phosphorescent emission dopant A-3 blue emission dopant: indicated as B in the table
  • the host compound H- A blue light-emitting layer containing 1 and phosphorescent dopant A-3 was formed on the hole transport injection layer.
  • the layer thickness was 40 nm.
  • the hole blocking layer made of BAlq is heated by energizing a heating boat containing BAlq ([Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum]) as a hole blocking material.
  • BAlq [Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum]
  • a film was formed on the light emitting layer.
  • the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 15 nm.
  • a heating boat containing ET-1 shown below as an electron transporting material and a heating boat containing potassium fluoride were energized independently to form an electron transporting layer containing ET-1 and potassium fluoride.
  • a film was formed on the hole blocking layer.
  • the layer thickness was 40 nm.
  • a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer.
  • the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 2 nm.
  • B was a ⁇ b because the layer thickness was changed, and was not equidistant from the light emission center of the light emitting unit disposed in the center.
  • ⁇ Formation of light emitting unit 2a (G)> (Formation of hole transport layer)
  • a heating boat containing HT-1 as a hole transporting injection material is energized and heated, and a hole transporting injection layer made of HT-1 serving as both a hole injection layer and a hole transporting layer is made transparent.
  • a film was formed on one electrode.
  • the pressure was reduced to a vacuum degree of 1 ⁇ 10 ⁇ 4 Pa using a commercially available vacuum vapor deposition apparatus, and then vapor deposition was performed at a vapor deposition rate of 0.1 to 0.2 nm / second to obtain a layer thickness of 30 nm.
  • each of the heating boat containing the host compound H-1 and the heating boat containing the phosphorescent light emitting dopant A-1 (green light emitting dopant: indicated as G in the table) was energized independently, and the host compound H- A green light-emitting layer containing 1 and phosphorescent dopant A-1 was deposited on the hole transport injection layer.
  • the layer thickness was 40 nm.
  • the hole blocking layer made of BAlq is heated by energizing a heating boat containing BAlq ([Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum]) as a hole blocking material.
  • BAlq [Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum]
  • a film was formed on the light emitting layer.
  • the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 15 nm.
  • a heating boat containing ET-1 shown below as an electron transporting material and a heating boat containing potassium fluoride were energized independently to form an electron transporting layer containing ET-1 and potassium fluoride.
  • a film was formed on the hole blocking layer.
  • the layer thickness was 40 nm.
  • a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer.
  • the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 2 nm.
  • the distance between the light emitting unit 1 and the light emitting center of the light emitting unit 2 with respect to the light emitting unit 3 of the organic EL element 115 is c-1 and c-2, respectively, and the light emitting unit 2a on the upper layer side with respect to the light emitting unit 3 is used.
  • the distance between the light emitting unit 1a and the light emitting center of the light emitting unit 1a is d-2 and d-1, c-1 ⁇ d-1 and c-2 ⁇ d-2, and the light emitting center of the light emitting unit disposed in the center Are not equidistant.
  • Transmittance is 75% or more ⁇ : Transmittance is 65% or more and less than 75% ⁇ : Transmittance is 55% or more and less than 65% ⁇ : Transmittance is less than 55%
  • Measuring instrument Konica Minolta 2D color luminance meter
  • Data analysis software Konica Minolta Co., Ltd.
  • data management software CA-S25w Measurement conditions: The distance from the substrate is the light (Lx) emitted in the normal direction from the translucent substrate side to the substrate by causing each organic EL element to emit light in an environment of 23 ° C. and 55% RH.
  • the luminance and chromaticity were measured with the above measuring instrument at 5 cm. Similarly, the luminance and chromaticity of light emitted from the light-transmitting sealing substrate side in the normal direction with respect to the substrate (Ly) at a distance of 5 cm from the substrate were measured with the measuring instrument.
  • the organic EL device of the present invention is an organic EL device having high transparency, small deviation in luminance and chromaticity when emitting light on both sides, and capable of emitting light uniformly from both sides.
  • the use of a silver electrode can be made thinner than the use of ITO as a translucent electrode, and thus the transparency is excellent.
  • the organic EL element of the present invention can freely change the emission color by selecting the light emitting unit. However, like the organic EL element 110, a yellow light emitting layer having a complementary color relationship with the blue light emitting layer is provided. As a result, it was found that white light emission was obtained, and the structure of the organic EL element suitable for illumination use and a transparent element were obtained.
  • the organic electroluminescence device of the present invention is a double-sided light emitting type, is transparent when not emitting light, emits light with uniform brightness and chromaticity from both sides when emitting light, and can freely change the emission color. Therefore, it can be used as various light emission sources.
  • lighting devices such as home lighting and interior lighting, backlights for watches and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, It is suitable for applications that make use of the characteristics of a double-sided light emission type, such as a light source of an optical sensor.
  • Organic EL element 101 Translucent first electrode 102 Translucent second electrode (counter electrode) 103-1, 103-2, 103-3, 103-4, 103-5 Light-emitting unit 104-1, 104-2, 104-3, 104-4 Translucent intermediate electrode 105 Translucent substrate 106 Translucent Sealing substrate h Light emission (emission center) 200 Power supply circuit 210 Voltage source

Abstract

The present invention addresses the problem of providing an organic electroluminescence element which is of a two-side emission type and is transparent when not emitting light but emits light at a uniform brightness and chromaticity from both sides when emitting light, and with which the light emission color can be freely altered. This organic electroluminescence element has, layered in the following order, at least a light-transmitting substrate, a light-transmitting first electrode, an odd number of three or more light-emitting units, a plurality of light-transmitting intermediate electrodes arranged between the light-emitting units, a light-transmitting second electrode, and a light-transmitting sealing substrate, and is sealed by the light-transmitting sealing substrate. The organic electroluminescence element is characterized in that the odd number of three or more light-emitting units include the use of at least two different types of light-emitting unit selected from light-emitting units having light emission colors of blue, green, red, or a mixture thereof, and light-emitting units of different light emission colors are each arranged at positions of symmetry with respect to a light-emitting unit that is arranged in the center.

Description

有機エレクトロルミネッセンス素子Organic electroluminescence device
 本発明は、有機エレクトロルミネッセンス素子に関する。より詳しくは、両面発光型の透明な有機エレクトロルミネッセンス素子であって、非発光時は透明であり、発光時は両面から均一な輝度及び色度で発光し、かつ自在に発光色を変化させることができる有機エレクトロルミネッセンス素子に関する。 The present invention relates to an organic electroluminescence element. More specifically, it is a double-sided light-emitting organic electroluminescence element that is transparent when not emitting light, emits light with uniform brightness and chromaticity from both sides when emitting light, and freely changes the emission color. The present invention relates to an organic electroluminescence device capable of producing
 現在、薄型の発光デバイスとして有機材料のエレクトロルミネッセンス(Electro Luminescence:EL)を利用した発光素子が注目されている。 At present, a light emitting element using electroluminescence (EL) of an organic material is attracting attention as a thin light emitting device.
 いわゆる有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)は、数V~数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有している。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として近年注目されている。 A so-called organic electroluminescence element (hereinafter also referred to as an organic EL element) is a thin-film completely solid element that can emit light at a low voltage of several V to several tens V, and has high brightness, high luminous efficiency, thin thickness, It has many excellent features such as light weight. For this reason, it has been attracting attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources.
 このような有機EL素子は、対向する2枚の電極間に有機材料からなる発光層(本願では、発光ユニットともいう。)が配置された構成であり、発光層で生じた発光光は電極を透過して外部に取り出される。このため、2枚の電極のうちの少なくとも一方は透明電極として構成され、透明電極側から発光光が取り出される。 Such an organic EL element has a structure in which a light emitting layer made of an organic material (also referred to as a light emitting unit in the present application) is disposed between two opposing electrodes, and the emitted light generated in the light emitting layer passes through the electrode. Permeated and taken out to the outside. For this reason, at least one of the two electrodes is configured as a transparent electrode, and emitted light is extracted from the transparent electrode side.
 一方、意匠性の高さなどから、両面発光可能な実質的に透明な有機EL素子への要望が高まっている。さらに、両面発光可能で、自在に発光色を変化させることができ、かつフレキシブルな有機EL素子は、極めて意匠性が高く、軽量であるため、広告媒体や照明装置としての応用範囲が広い。 On the other hand, the demand for a substantially transparent organic EL element capable of emitting light on both sides is increasing due to its high design. In addition, a flexible organic EL element that can emit light on both sides and can freely change the emission color is extremely high in design and lightweight, and therefore has a wide range of applications as an advertising medium or a lighting device.
 両面発光可能な有機EL素子として、特許文献1では、反射性導電性中間電極を中央に配し、両側に発光層と電極を積層して両面発光を可能にしているが、中間電極が反射性であるため、非発光時は透明ではなく用途が限定される。 As an organic EL element capable of emitting light on both sides, in Patent Document 1, a reflective conductive intermediate electrode is arranged in the center, and a light emitting layer and an electrode are laminated on both sides to enable double-sided light emission. Therefore, when not emitting light, it is not transparent and uses are limited.
 特許文献2では、陽極(アノード)層と陰極(カソード)層間に複数の発光層と中間電極層と電荷発生層が積層された有機EL素子が開示され、発光層が青色(B)、緑色(G)、赤色(R)のいずれかの光を発光し、前記中間電極層が透明電極であるため、素子の両面から様々な色調の発光が可能であり、かつ非発光時に透明な有機EL素子となる。しかしながら、陽極(アノード)及び陰極(カソード)の材料として、ITO膜やアルミニウム膜、中間電極としてアルミニウム膜やマグネシウム-銀膜を使用しているため透明性に劣る。また、両面発光可能とはいえ、前記青色、緑色、赤色等の異なる色の光を発光する層を積層しているため、実際に両面から観察すると、色調や輝度に差がみられ、両面発光する際の光の均一性に劣り、自在に発光色を変化させることができない。 Patent Document 2 discloses an organic EL element in which a plurality of light emitting layers, an intermediate electrode layer, and a charge generation layer are laminated between an anode (anode) layer and a cathode (cathode) layer, and the light emitting layer is blue (B), green ( G), red (R) light is emitted, and the intermediate electrode layer is a transparent electrode. Therefore, the organic EL element can emit light of various colors from both sides of the element and is transparent when not emitting light. It becomes. However, since an ITO film or an aluminum film is used as the material for the anode (anode) and the cathode (cathode), and an aluminum film or a magnesium-silver film is used as the intermediate electrode, the transparency is poor. In addition, although it is possible to emit light on both sides, the layers that emit light of different colors such as blue, green, red, etc. are stacked, so when actually observed from both sides, there are differences in color tone and brightness, and both sides emit light. Inferior uniformity of light when the light is emitted, and the emission color cannot be freely changed.
 特許文献3では、陰極(カソード)側に設ける透明導電膜の層厚と、陰極(カソード)の層厚とを調節することによって、上面への発光及び下面への発光がともに色調が均一で、かつ、高品質な画像表示を得ることを課題としているが、素子内部に空隙を有するため、前記電極と封止空間の界面で反射が発生し、下部電極側がより強く発光してしまい、均一な両面発光ができないという問題や、色度の視野角依存性も大きいという問題がある。 In Patent Document 3, by adjusting the layer thickness of the transparent conductive film provided on the cathode (cathode) side and the layer thickness of the cathode (cathode), both the light emission on the upper surface and the light emission on the lower surface are uniform in color tone, In addition, the object is to obtain a high-quality image display, but since there is a gap inside the element, reflection occurs at the interface between the electrode and the sealing space, and the lower electrode side emits light more strongly, resulting in a uniform emission. There is a problem that double-sided light emission cannot be performed and a problem that the viewing angle dependency of chromaticity is large.
 したがって、現状では、非発光時は透明であり、発光時は両面から均一な輝度及び色度で発光し、かつ自在に発光色を変化させることができる有機エレクトロルミネッセンス素子は得られていない。 Therefore, at present, an organic electroluminescence element that is transparent when not emitting light, emits light with uniform brightness and chromaticity from both sides when emitting light, and can freely change the emission color has not been obtained.
特開2009-266520号公報JP 2009-266520 A 特開2009-252458号公報JP 2009-252458 A 特開2004-265691号公報JP 2004-265691 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、非発光時は透明であり、発光時は両面から均一な輝度及び色度で発光し、かつ自在に発光色を変化させることができる有機エレクトロルミネッセンス素子を提供することである。 The present invention has been made in view of the above-mentioned problems and situations, and the problem to be solved is that it is transparent when not emitting light, emits light with uniform brightness and chromaticity from both sides when emitting light, and freely emits color. It is to provide an organic electroluminescence device capable of changing the above.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、少なくとも透光性基板、透光性第1電極、3以上の奇数個の発光ユニット、当該発光ユニット間に配置される複数の透光性中間電極、透光性第2電極及び透光性封止基板がこの順に積層され、当該透光性封止基板によって封止された有機エレクトロルミネッセンス素子であって、前記3以上の奇数個の発光ユニットが特定の発光色から選択される発光性を有する発光ユニットであり、かつ特定の配置で積層されている有機エレクトロルミネッセンス素子によって、上記課題を解決できることを見出した。 In order to solve the above problems, the present inventor, in the process of examining the cause of the above problems, at least a translucent substrate, a translucent first electrode, an odd number of three or more light emitting units, and between the light emitting units. A plurality of light-transmitting intermediate electrodes, a light-transmitting second electrode, and a light-transmitting sealing substrate that are disposed are stacked in this order, and are organic electroluminescence elements sealed by the light-transmitting sealing substrate, It has been found that the above-mentioned problems can be solved by an organic electroluminescence element in which the odd number of light emitting units of 3 or more are light emitting units having a light emitting property selected from specific light emitting colors and are laminated in a specific arrangement. .
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.少なくとも透光性基板、透光性第1電極、3以上の奇数個の発光ユニット、当該発光ユニット間に配置される複数の透光性中間電極、透光性第2電極及び透光性封止基板がこの順に積層され、当該透光性封止基板によって封止された有機エレクトロルミネッセンス素子であって、前記3以上の奇数個の発光ユニットが、青色、緑色及び赤色、又はそれらが混合された発光色を有する発光ユニットから選択される少なくとも2種の発光ユニットを用い、かつ中央に配置する発光ユニットに対して異なる発光色の発光ユニットをそれぞれ対称の位置に配置したことを特徴とする有機エレクトロルミネッセンス素子。 1. At least a translucent substrate, a translucent first electrode, an odd number of three or more light emitting units, a plurality of translucent intermediate electrodes arranged between the light emitting units, a translucent second electrode, and a translucent seal An organic electroluminescence device in which substrates are stacked in this order and sealed by the translucent sealing substrate, wherein the odd number of the three or more light emitting units are blue, green and red, or a mixture thereof An organic electro that uses at least two types of light emitting units selected from light emitting units having a light emitting color, and has light emitting units of different light emitting colors arranged at symmetrical positions with respect to the light emitting unit arranged in the center. Luminescence element.
 2.前記3以上の奇数個の発光ユニットの、前記それぞれ対称の位置にある発光ユニット内部の発光中心が、前記中央に配置する発光ユニットの発光中心からそれぞれ等距離にあることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。 2. The light emitting center inside the light emitting units at the symmetrical positions of the odd number of light emitting units of 3 or more is respectively equidistant from the light emitting centers of the light emitting units arranged at the center. The organic electroluminescent element of description.
 3.前記透光性基板及び前記透光性封止基板が、いずれもフレキブル基板であり、かつ同一の材料から構成されていることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子。 3. 3. The organic electroluminescent element according to claim 1 or 2, wherein the translucent substrate and the translucent sealing substrate are both flexible substrates and are made of the same material. .
 4.前記複数の透光性中間電極の極性が、前記透光性基板側から陽、陰の繰り返し順、又は陰、陽の繰り返し順であることを特徴とする第1項から第3項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 4. Any one of the first to third aspects, wherein the polarities of the plurality of translucent intermediate electrodes are positive and negative repeating order from the translucent substrate side, or negative and positive repeating order The organic electroluminescent element according to claim 1.
 5.前記透光性第1電極、前記透光性中間電極及び前記透光性第2電極が、いずれも銀を主成分とする透明電極であることを特徴とする第1項から第4項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 5. The first to fourth items, wherein the translucent first electrode, the translucent intermediate electrode, and the translucent second electrode are all transparent electrodes mainly composed of silver. The organic electroluminescent element as described in any one.
 本発明の上記手段により、非発光時は透明であり、発光時は両面から均一な輝度及び色度で発光し、かつ自在に発光色を変化させることができる有機エレクトロルミネッセンス素子を提供することができる。 By the above means of the present invention, there is provided an organic electroluminescence device which is transparent when not emitting light, emits light with uniform brightness and chromaticity from both sides when emitting light, and can freely change the emission color. it can.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明の有機エレクトロルミネッセンス素子は、少なくとも透光性基板、透光性第1電極、3以上の奇数個の発光ユニット、当該発光ユニット間に配置される複数の透光性中間電極、透光性第2電極及び透光性封止基板がこの順に積層され、素子が当該透光性封止基板によって封止されおり、前記3以上の奇数個の発光ユニットが、青色、緑色及び赤色、又はそれらが混合された発光色を有する発光ユニットから選択される少なくとも2種の発光ユニットを用い、かつ中央に配置する発光ユニットに対して異なる発光色の発光ユニットをそれぞれ対称の位置に配置する構成によって、非発光時は透明であり、発光時は両面から均一な輝度及び色度で発光し、かつ透光性第1電極及び透光性第2電極と透光性中間電極に適宜印加することよって、自在に発光色を変化させることができる有機エレクトロルミネッセンス素子を提供することができる。 The organic electroluminescence element of the present invention includes at least a light transmissive substrate, a light transmissive first electrode, an odd number of three or more light emitting units, a plurality of light transmissive intermediate electrodes arranged between the light emitting units, and a light transmissive property. The second electrode and the light-transmitting sealing substrate are stacked in this order, the element is sealed by the light-transmitting sealing substrate, and the odd number of the three or more light emitting units are blue, green and red, or they By using at least two types of light emitting units selected from light emitting units having a mixed light emitting color, and arranging light emitting units having different light emitting colors at symmetrical positions with respect to the light emitting units arranged in the center, It is transparent when not emitting light, and emits light with uniform brightness and chromaticity from both sides when emitting light, and is appropriately applied to the translucent first electrode, translucent second electrode, and translucent intermediate electrode. , It is possible to provide an organic electroluminescent device can be changed freely emission color.
 従来の両面発光型の有機EL素子は、特許文献2で開示されているように、発光ユニットとして青色、緑色、赤色の光を発光する層を積層する構成が一般的であったが、この構成では、発光色を変化させることができ、両面発光可能ではあるが、前記青色、緑色、赤色等の異なる色を発光する層を積層しているため、実際に有機EL素子を両面から観察すると、それぞれ異なる色を発光する層の層順が異なるため、観察される発光光の色調や輝度に差が生じ、両面発光する光の色度や輝度の均一性が劣ることが分かった。 Conventional double-sided light-emitting organic EL elements, as disclosed in Patent Document 2, generally have a structure in which layers for emitting blue, green, and red light are stacked as a light-emitting unit. Then, although the emission color can be changed and both sides can emit light, since the layers emitting light of different colors such as blue, green, red, etc. are laminated, actually observing the organic EL element from both sides, Since the layer order of the layers emitting different colors is different, the color tone and brightness of the observed emitted light are different, and the chromaticity and brightness uniformity of the light emitted from both sides are inferior.
 本発明に係る発光ユニットは、3以上の奇数個の発光ユニットが、青色、緑色及び赤色の発光色を有する発光ユニットから選択される少なくとも2種の発光ユニットを用い、かつ中央に配置する発光ユニットに対して異なる発光色の発光ユニットをそれぞれ対称の位置に配置することによって、有機EL素子を両面から観察したときに、異なる色を発光するユニットの層順がそれぞれ同一となるため、両面から発光する光の色度や輝度の均一性が向上し、発光色を変化する際の調整が容易にできる有機EL素子が得られるものと推察している。 A light emitting unit according to the present invention uses at least two types of light emitting units selected from light emitting units having blue, green and red light emitting colors, and an odd number of three or more light emitting units, and is arranged in the center. By arranging light emitting units with different emission colors at symmetrical positions, the order of the layers of the units emitting different colors is the same when the organic EL element is observed from both sides. It is speculated that the uniformity of the chromaticity and brightness of the light to be improved and an organic EL element that can be easily adjusted when changing the emission color can be obtained.
 特に、前記3以上の奇数個の発光ユニットの、それぞれ対称の位置にある発光ユニット内部の発光中心が、中央に配置する発光ユニットの発光中心からそれぞれ等距離にあると、より均一性に寄与するものと推察される。 In particular, when the light emission centers inside the light emission units at the symmetrical positions of the odd number of the light emission units of 3 or more are equidistant from the light emission centers of the light emission units arranged in the center, it contributes to uniformity. Inferred.
 また、前記透光性基板及び前記透光性封止基板が、いずれもフレキシブル基板であり、かつ同一の材料から形成されることによって、基板の透光性及び素子内部の屈折率が同一となり、当該発光ユニットの設計によらず、両面で均一な発光特性が得られるものと推察される。 Moreover, the translucent substrate and the translucent sealing substrate are both flexible substrates and are formed of the same material, so that the translucency of the substrate and the refractive index inside the element are the same, Regardless of the design of the light-emitting unit, it is assumed that uniform light-emitting characteristics can be obtained on both sides.
 さらに、前記透光性第1電極、前記複数の透光性中間電極及び前記透光性第2電極が、銀を主成分とする電極であると、従来透明電極として知られている酸化インジウム・スズ(SnO-In:Indium Tin Oxide:ITO)電極に比較して、金属電極での鏡面反射が発生しない程度の薄膜に調整できるため、当該鏡面反射による光のロスを考慮する必要がなく、両面の発光輝度がほぼ同一の発光特性となり、かつ素子全体の透明度が向上するものと考えられる。 Further, when the translucent first electrode, the plurality of translucent intermediate electrodes, and the translucent second electrode are electrodes mainly composed of silver, indium oxide, which is conventionally known as a transparent electrode, Compared to tin (SnO 2 —In 2 O 3 : Indium Tin Oxide: ITO) electrode, it can be adjusted to a thin film that does not cause specular reflection at the metal electrode, so it is necessary to consider the loss of light due to the specular reflection. It is considered that the light emission characteristics on both sides are substantially the same, and the transparency of the entire device is improved.
 また、本発明の有機EL素子は、透光性封止基板によって好ましくは固体封止(ラミネート封止ともいう。)されることから、一般的な有機EL素子に適用されている中空部を有する封止に比較して電極と封止空間の界面での反射、及びキャビティー効果もほとんどなく、両面の輝度及び色度の均一性も向上できるものと推察される。 In addition, the organic EL element of the present invention is preferably solid-sealed (also referred to as laminate sealing) by the translucent sealing substrate, and thus has a hollow portion applied to a general organic EL element. It is presumed that there is almost no reflection at the interface between the electrode and the sealing space and the cavity effect compared to sealing, and the uniformity of luminance and chromaticity on both sides can be improved.
本発明の有機EL素子の構成の一例で、3個の発光ユニットを有する有機EL素子の断面図Sectional drawing of the organic EL element which has three light emission units with an example of the structure of the organic EL element of this invention 本発明の有機EL素子の構成の一例で、5個の発光ユニットを有する有機EL素子の断面図Sectional drawing of the organic EL element which has an example of a structure of the organic EL element of this invention, and has five light emission units. 本発明に係る発光ユニットの発光中心の距離関係を示した模式図The schematic diagram which showed the distance relationship of the light emission center of the light emission unit which concerns on this invention. 本発明の3個の発光ユニットを有する有機EL素子を駆動する回路の一例を示す概略図Schematic which shows an example of the circuit which drives the organic EL element which has three light emission units of this invention
 本発明の有機エレクトロルミネッセンス素子は、少なくとも透光性基板、透光性第1電極、3以上の奇数個の発光ユニット、当該発光ユニット間に配置される複数の透光性中間電極、透光性第2電極及び透光性封止基板がこの順に積層され、当該透光性封止基板によって封止された有機エレクトロルミネッセンス素子であって、前記3以上の奇数個の発光ユニットが、青色、緑色及び赤色又はそれらが混合された発光色を有する発光ユニットから選択される少なくとも2種の発光ユニットを用い、かつ中央に配置する発光ユニットに対して異なる発光色の発光ユニットをそれぞれ対称の位置に配置することを特徴とする。この特徴は、請求項1から請求項5までの請求項に係る発明に共通する技術的特徴である。 The organic electroluminescence element of the present invention includes at least a light transmissive substrate, a light transmissive first electrode, an odd number of three or more light emitting units, a plurality of light transmissive intermediate electrodes arranged between the light emitting units, and a light transmissive property. An organic electroluminescence element in which a second electrode and a light-transmitting sealing substrate are laminated in this order and sealed by the light-transmitting sealing substrate, wherein the odd number of the three or more light emitting units are blue, green And at least two kinds of light emitting units selected from light emitting units having red or a light emitting color in which they are mixed, and light emitting units having different light emitting colors are arranged at symmetrical positions with respect to the light emitting unit arranged in the center. It is characterized by doing. This feature is a technical feature common to the inventions according to claims 1 to 5.
 本発明の実施態様としては、本発明の効果発現の観点から、前記3以上の奇数個の発光ユニットの、それぞれ対称の位置にある発光ユニット内部の発光中心が、前記中央に配置する発光ユニットの発光中心に対しそれぞれ等距離にあることが、好ましい。このような構成とすることで、両面からの発光光がほぼ同一な輝度及び色度を有するように制御することができ、かつ透光性第1電極、透光性中間電極及び透光性第2電極に適宜電流を印加することで、発光色を自在に変化、調整することができる。 As an embodiment of the present invention, from the viewpoint of manifesting the effect of the present invention, the light emission center inside the light emission unit at the symmetrical position of each of the odd number of three or more light emission units is arranged in the center. It is preferable that they are equidistant from the emission center. By adopting such a configuration, it is possible to control the emitted light from both surfaces to have substantially the same luminance and chromaticity, and to transmit the first transparent electrode, the transparent intermediate electrode, and the transparent first. By appropriately applying a current to the two electrodes, the emission color can be freely changed and adjusted.
 また、前記透光性基板及び前記透光性封止基板が、いずれもフレキシブル基板であり、かつ同一の材料から構成されていることが、基板の透光性及び屈折率が同一となり、当該発光ユニットの設計によらず、両面からほぼ同一の発光特性を有する発光光が得られる観点から、好ましい。 Further, the light-transmitting substrate and the light-transmitting sealing substrate are both flexible substrates and made of the same material, so that the light-transmitting property and refractive index of the substrate are the same, and the light emission Regardless of the unit design, it is preferable from the viewpoint of obtaining emitted light having substantially the same light emission characteristics from both sides.
 さらに、前記複数の透光性中間電極の極性が、前記透光性基板側から陽、陰の繰り返し順、又は陰、陽の繰り返し順であることが好ましく、電極の極性を上記のように調整することで、表裏からの発光を調整し、自在に発光色を変化することができるため、好ましい。 Furthermore, it is preferable that the polarity of the plurality of translucent intermediate electrodes is positive, negative, or negative, positive from the translucent substrate side, and the polarity of the electrodes is adjusted as described above. By doing so, light emission from the front and back can be adjusted and the emission color can be freely changed, which is preferable.
 また、前記透光性第1電極、前記透光性中間電極及び前記透光性第2電極が、いずれも銀を主成分とする透明電極であることが、金属電極での鏡面反射が発生しない程度の薄膜に調整できるため、当該鏡面反射による光のロスを考慮する必要がなく、両面の発光輝度がほぼ同一の発光特性となり、かつ素子全体の透明度が向上することができ、好ましい。 In addition, when the first transparent electrode, the transparent intermediate electrode, and the second transparent electrode are all transparent electrodes containing silver as a main component, specular reflection at the metal electrode does not occur. Therefore, it is not necessary to consider the loss of light due to the specular reflection, and the light emission luminance on both surfaces is almost the same, and the transparency of the entire element can be improved.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 ≪本発明の有機エレクトロルミネッセンス素子の概要≫
 本発明の有機エレクトロルミネッセンス素子(以下、有機EL素子という。)は、少なくとも透光性基板、透光性第1電極、3以上の奇数個の発光ユニット、当該発光ユニット間に配置される複数の透光性中間電極、透光性第2電極及び透光性封止基板がこの順に積層され、当該透光性封止基板によって封止された有機エレクトロルミネッセンス素子であって、前記3以上の奇数個の発光ユニットが、青色、緑色及び赤色、又はそれらが混合された発光色を有する発光ユニットから選択される少なくとも2種の発光ユニットを用い、かつ中央に配置する発光ユニットに対して異なる発光色の発光ユニットをそれぞれ対称の位置に配置したことを特徴とする。
<< Outline of the organic electroluminescence device of the present invention >>
The organic electroluminescence element of the present invention (hereinafter referred to as an organic EL element) includes at least a translucent substrate, a translucent first electrode, an odd number of three or more light emitting units, and a plurality of light emitting units disposed between the light emitting units. A translucent intermediate electrode, a translucent second electrode, and a translucent sealing substrate are laminated in this order, and are organic electroluminescence elements sealed by the translucent sealing substrate, wherein the odd number is 3 or more Each light emitting unit uses at least two types of light emitting units selected from blue, green and red, or a light emitting unit in which they are mixed, and different light emitting colors from the light emitting units arranged in the center The light emitting units are arranged at symmetrical positions.
 基板、第1電極、複数の発光ユニット、当該発光ユニット間に配置される複数の中間電極、第2電極及び封止基板で構成される、従来の両面発光型の有機EL素子は、特許文献2で開示されているように、発光ユニットとして青色、緑色、赤色の光を発光する層を積層する構成が一般的であった。 A conventional double-sided light emitting organic EL element including a substrate, a first electrode, a plurality of light emitting units, a plurality of intermediate electrodes arranged between the light emitting units, a second electrode, and a sealing substrate is disclosed in Patent Document 2. In general, the light emitting unit has a structure in which layers emitting blue, green, and red light are stacked.
 しかしながら、この構成では、発光色を変化させることができ、両面発光可能ではあるが、前記青色、緑色、赤色等の異なる色を発光する層を積層しているため、実際に有機EL素子を両面から観察すると、それぞれ異なる色を発光する層の層順が異なるため、観察される発光光の色調や輝度に差が生じ、両面発光する光の輝度や色度の均一性が劣ることが分かった。また、当該構成では輝度や色度の均一性に劣ることから、発光色を変化する際に、そのずれをその都度補正しなければならず複雑な調整を要することが分かった。 However, in this configuration, the emission color can be changed and both sides can emit light. However, since the layers emitting different colors such as blue, green and red are laminated, the organic EL element is actually mounted on both sides. From the observation, it was found that the layer order of the layers emitting different colors differed, resulting in a difference in the color tone and brightness of the observed emitted light, and the uniformity of the brightness and chromaticity of the light emitted from both sides was inferior. . In addition, since the configuration is inferior in uniformity of luminance and chromaticity, it has been found that when the emission color is changed, the shift must be corrected each time and complicated adjustment is required.
 本発明に係る発光ユニットは、3以上の奇数個の発光ユニットが、青色、緑色及び赤色、又はそれらが混合された発光色を有する発光ユニットから選択される少なくとも2種の発光ユニットを用い、かつ中央に配置する発光ユニットに対して異なる発光色の発光ユニットをそれぞれ対称の位置に配置することによって、有機EL素子を両面から観察したときに、異なる色を発光するユニットの層順がそれぞれ同一となるため、両面から発光する光の輝度や色度の均一性が向上し、発光色を変化する際の調整が容易にできる有機EL素子が得られることを見出した。 The light emitting unit according to the present invention uses at least two types of light emitting units selected from light emitting units in which an odd number of three or more light emitting units have blue, green and red, or a light emitting color in which they are mixed, and By arranging light emitting units having different light emission colors in symmetrical positions with respect to the light emitting unit arranged in the center, when the organic EL element is observed from both sides, the layer order of the units emitting different colors is the same. Therefore, the present inventors have found that the uniformity of luminance and chromaticity of light emitted from both surfaces is improved, and an organic EL element that can be easily adjusted when changing the emission color can be obtained.
 また、本発明に係る前記透光性基板及び前記透光性封止基板が、いずれもフレキシブル基板であり、かつ同一の材料から形成されることによって、基板の透光性及び屈折率が同一となり、当該発光ユニットの設計によらず、両面で均一な発光特性が得られることを見出した。 Moreover, the translucent board | substrate and the said translucent sealing board | substrate which concern on this invention are both flexible substrates, and the translucency and refractive index of a board | substrate become the same by forming from the same material. The inventors have found that uniform light emission characteristics can be obtained on both sides regardless of the design of the light emitting unit.
 さらに特許文献2では、陽極(アノード)、陰極(カソード)の材料として、ITO膜やアルミニウム膜、中間電極としてアルミニウム膜やマグネシウム-銀膜を使用しているため透明性に劣るという問題があったが、本発明に係る透光性第1電極、透光性中間電極及び透光性第2電極は、好ましい実施態様として銀を主成分とする電極とすることにより、前記ITO電極に比較して、金属電極での鏡面反射が発生しない程度の薄膜に調整できるため、当該鏡面反射による光のロスを考慮する必要がなく、両面の発光輝度がほぼ同一の発光特性となり、かつ素子全体の透明度がよりいっそう向上する。 Further, Patent Document 2 has a problem that transparency is inferior because an ITO film or an aluminum film is used as an anode (anode) or cathode (cathode) material, and an aluminum film or a magnesium-silver film is used as an intermediate electrode. However, the light-transmitting first electrode, the light-transmitting intermediate electrode, and the light-transmitting second electrode according to the present invention are, as a preferred embodiment, an electrode containing silver as a main component, compared with the ITO electrode. Since it can be adjusted to a thin film that does not cause specular reflection at the metal electrode, there is no need to consider the loss of light due to the specular reflection, the light emission luminance on both sides is almost the same, and the transparency of the entire element is Further improve.
 また、本発明の有機EL素子は、透光性封止基板によって好ましくは固体封止(ラミネート封止ともいう。)されることから、一般的な有機EL素子に適用されている中空部を有する封止に比較して電極と封止空間の界面での反射、及びキャビティー効果もほとんどなく、両面の色度の均一性のさらなる向上に寄与するものである。 In addition, the organic EL element of the present invention is preferably solid-sealed (also referred to as laminate sealing) by the translucent sealing substrate, and thus has a hollow portion applied to a general organic EL element. Compared to sealing, there is almost no reflection at the interface between the electrode and the sealing space and the cavity effect, which contributes to further improvement in chromaticity uniformity on both sides.
 <両面からの発光光の輝度及び色度の測定>
 本発明の有機EL素子は、少なくとも透光性基板、透光性第1電極、3以上の奇数個の発光ユニット、当該発光ユニット間に配置される複数の透光性中間電極、透光性第2電極及び透光性封止基板がこの順に積層され、当該透光性封止基板によって封止された有機エレクトロルミネッセンス素子であって、非発光時は透明であり、発光時は両面から均一な輝度及び色度で発光し、かつ自在に発光色を変化させることができる有機エレクトロルミネッセンス素子を提供するものである。
<Measurement of luminance and chromaticity of emitted light from both sides>
The organic EL device of the present invention includes at least a light transmissive substrate, a light transmissive first electrode, an odd number of three or more light emitting units, a plurality of light transmissive intermediate electrodes disposed between the light emitting units, and a light transmissive first. An organic electroluminescence device in which two electrodes and a light-transmitting sealing substrate are laminated in this order and sealed by the light-transmitting sealing substrate, is transparent when not emitting light, and uniform from both sides when emitting light The present invention provides an organic electroluminescence element that emits light with brightness and chromaticity and can freely change the emission color.
 本発明でいう、「発光時は両面から均一な輝度及び色度で発光」するとは、例えば、前記発光ユニットを23℃・55RHの環境下で発光させて、前記透光性基板側から当該基板に対して法線方向に射出される光をLx、及び前記透光性封止基板側から当該基板に対して法線方向に射出される光をLyとしたときに、LxとLyの輝度及び色度の値のそれぞれ小さい方の値を大きい方の値で除して比率(%)を求め、当該比率(%)が95~100%の範囲内に入ることをいう。 In the present invention, “when emitting light, light is emitted with uniform brightness and chromaticity from both sides” means, for example, that the light emitting unit emits light in an environment of 23 ° C. and 55 RH, and the substrate from the translucent substrate side. Lx is the luminance of Lx and Ly, and Lx is the light emitted in the normal direction with respect to the substrate from the translucent sealing substrate side. The ratio (%) is obtained by dividing the smaller value of the chromaticity value by the larger value, and the ratio (%) falls within the range of 95 to 100%.
 上記透光性基板側から基板に対して法線方向に射出される光(Lx)、及び前記透光性封止基板側から基板に対して法線方向に射出される光(Ly)の輝度及び色度の測定は、以下の方法によって測定することができる。これらは一例であり、同等の機能を有する装置、ソフトを用いてもよい。 Luminance of light (Lx) emitted in the normal direction from the translucent substrate side to the substrate, and light (Ly) emitted in the normal direction from the translucent sealing substrate side to the substrate The chromaticity can be measured by the following method. These are merely examples, and devices and software having equivalent functions may be used.
 〈輝度及び色度の測定〉
 測定機器:コニカミノルタ(株)製2次元色彩輝度計CA-2500
 データ解析ソフト:コニカミノルタ(株)製データ管理ソフトCA-S25w
 測定条件:23℃・55%RHの環境下において、有機EL素子を発光させて、透光性基板側から基板に対して法線方向に射出される光(Lx)を基板からの距離5cmにて上記測定機器で輝度及び色度を測定する。同様に前記透光性封止基板側から基板に対して法線方向に射出される光を(Ly)を基板からの距離5cmにて上記測定機器で輝度及び色度を測定する。
<Measurement of luminance and chromaticity>
Measuring instrument: Konica Minolta 2D color luminance meter CA-2500
Data analysis software: Konica Minolta Co., Ltd. data management software CA-S25w
Measurement conditions: In an environment of 23 ° C. and 55% RH, the organic EL element emits light, and light (Lx) emitted in the normal direction from the translucent substrate side to the substrate is placed at a distance of 5 cm from the substrate. Then measure the luminance and chromaticity with the above measuring equipment. Similarly, the luminance and chromaticity of light (Ly) emitted from the translucent sealing substrate side in the normal direction with respect to the substrate is measured at a distance of 5 cm from the substrate with the measuring instrument.
 測定した輝度及び色度の値を上記データ解析ソフトにてデータとする。 Measure the brightness and chromaticity values as data using the above data analysis software.
 得られたLx及びLyの輝度及び色度のデータから、それぞれ小さい方の値を大きい方の値で除して比率(%)を求め、その差を検証する。 * From the obtained luminance and chromaticity data of Lx and Ly, the smaller value is divided by the larger value to obtain a ratio (%), and the difference is verified.
 有機EL素子の両面から測定したLxとLyの輝度及び色度の値のそれぞれ小さい方の値を大きい方の値で除して比率(%)を求め、当該比率(%)が95~100%の範囲内に入ることが、発光時において両面から均一な輝度及び色度で発光する本発明の効果を得る上で好ましい。より好ましくは97~100%の範囲内であり、特に好ましくは99~100%の範囲内である。 The ratio (%) is obtained by dividing the smaller value of the luminance and chromaticity values of Lx and Ly measured from both sides of the organic EL element by the larger value, and the ratio (%) is 95 to 100%. It is preferable to fall within the range in order to obtain the effect of the present invention that emits light with uniform brightness and chromaticity from both sides during light emission. More preferably, it is in the range of 97 to 100%, and particularly preferably in the range of 99 to 100%.
 <本発明の有機エレクトロルミネッセンス素子の構成>
 本発明の有機EL素子の構成を図によって説明する。ただし、本発明はこれによって限定されるものではない。
<Configuration of organic electroluminescence element of the present invention>
The configuration of the organic EL device of the present invention will be described with reference to the drawings. However, the present invention is not limited thereby.
 図1Aは、本発明の3個の発光ユニットを有する有機EL素子の構成の一例を示す概略図である。 FIG. 1A is a schematic diagram showing an example of the configuration of an organic EL element having three light emitting units according to the present invention.
 3個の発光ユニットを有する有機EL素子100の場合は、図1Aで示すように、透光性基板105/透光性第1電極101/発光ユニット103-1/透光性中間電極104-1/発光ユニット103-2/透光性中間電極104-2/発光ユニット103-3(103-1と同)/透光性第2電極102/透光性封止基板106の順に積層されていることが基本である。透光性中間電極は、同じでも異なっていてもよい。 In the case of the organic EL element 100 having three light emitting units, as shown in FIG. 1A, the light transmitting substrate 105 / the light transmitting first electrode 101 / the light emitting unit 103-1 / the light transmitting intermediate electrode 104-1. / Light emitting unit 103-2 / Translucent intermediate electrode 104-2 / Light emitting unit 103-3 (same as 103-1) / Transparent second electrode 102 / Transparent sealing substrate 106 are laminated in this order. It is basic. The translucent intermediate electrodes may be the same or different.
 それぞれ、透光性第1電極101と透光性中間電極104-1間は、リード線で配線され、それぞれの接続端子に駆動電圧V1として2~40V程度を印加することにより、発光ユニット103-1が発光する。同様に、透光性中間電極104-1と透光性中間電極104-2間も、リード線で配線され、それぞれの接続端子に駆動電圧V2として2~40V程度を印加することにより、発光ユニット103-2が発光する。さらに、透光性中間電極104-2と透光性第2電極102間も、リード線で配線され、それぞれの接続端子に駆動電圧V3として2~40V程度を印加することにより、発光ユニット103-3が発光する。 Each of the light-transmitting first electrode 101 and the light-transmitting intermediate electrode 104-1 is wired with a lead wire, and by applying about 2 to 40V as the driving voltage V1 to each connection terminal, the light emitting unit 103- 1 emits light. Similarly, the light-transmitting intermediate electrode 104-1 and the light-transmitting intermediate electrode 104-2 are also wired with lead wires, and a drive voltage V2 of about 2 to 40 V is applied to the respective connection terminals, whereby the light emitting unit 103-2 emits light. Further, the light-transmitting intermediate electrode 104-2 and the light-transmitting second electrode 102 are also wired with lead wires, and by applying about 2 to 40V as the driving voltage V3 to each connection terminal, the light emitting unit 103- 3 emits light.
 具体的には、有機EL素子100の駆動に際し、前記V、V及びVは直流電圧を印加する場合には、陽極(アノード)である透光性第1電極101を+の極性とし、陰極(カソード)である透光性第2電極102を-の極性として、電圧2~40Vの範囲内で印加し、さらに透光性中間電極に対しては陽極(アノード)と陰極(カソード)との中間電圧を印加する。 Specifically, when the organic EL element 100 is driven, when the DC voltage is applied to the V 1 , V 2, and V 3 , the translucent first electrode 101 that is an anode is set to a positive polarity. The translucent second electrode 102 which is a cathode (cathode) has a negative polarity and is applied within a voltage range of 2 to 40 V. Furthermore, an anode (anode) and a cathode (cathode) are applied to the translucent intermediate electrode. Apply an intermediate voltage.
 発光ユニット103-1及び103-2は、青色、緑色及び赤色、又はそれらが混合された発光色を有する発光ユニットから選択される2種の発光ユニットを用い、かつ中央に配置する発光ユニット(103-2)に対して異なる発光色の発光ユニット(103-1、103-3)をそれぞれ対称の位置に配置する。 The light emitting units 103-1 and 103-2 use two types of light emitting units selected from blue, green and red, or a light emitting unit having a mixed emission color, and are arranged in the center (103 -2), the light emitting units (103-1, 103-3) of different luminescent colors are arranged at symmetrical positions.
 例えば、青色発光層/赤色発光層/青色発光層の構成や、緑色発光層/赤色発光層/緑色発光層の構成のように、中央に配置する発光ユニットに対して異なる発光色の発光ユニットをそれぞれ対称の位置に配置することで、両面から発光する光の色度や輝度の均一性が向上し、発光色を変化する際の調整が容易にできる観点から好ましい。 For example, a light emitting unit having a different emission color with respect to a light emitting unit arranged in the center, such as a blue light emitting layer / red light emitting layer / blue light emitting layer structure or a green light emitting layer / red light emitting layer / green light emitting layer structure. Disposing them at symmetrical positions is preferable from the viewpoint of improving the chromaticity and luminance uniformity of light emitted from both surfaces and facilitating adjustment when changing the emission color.
 また、当該青色、緑色及び赤色の発光色を有する発光ユニットから2種の発光ユニットを選択することで、当該2種の混色発光を自在に調整することができる。また、2種の発光光が補色の関係となるように選択することで、両面から発光する照明装置として白色光を得ることもできる。 Also, by selecting two types of light emitting units from the light emitting units having the blue, green and red light emitting colors, the two types of mixed color light emission can be freely adjusted. Moreover, white light can also be obtained as an illuminating device that emits light from both sides by selecting two types of emitted light so as to have a complementary color relationship.
 異なる発光色を呈する発光ユニットを積層して白色発光を得ようとする場合には、これら発光ユニットが相互に補色の関係にあることが好ましい。例えば、青色発光層と、補色となる黄緑、黄色又はオレンジ色(橙色)の発光色を呈する発光ユニットを設けることで、白色発光を呈する有機EL素子とすることができる。なお、「補色」の関係とは、混合すると無彩色になる色同士の関係をいう。つまり、補色の関係にある色を発光する物質の発光を混合すると、白色発光を得ることができる。 In the case where light emission units exhibiting different emission colors are stacked to obtain white light emission, it is preferable that these light emission units have a complementary color relationship with each other. For example, an organic EL element that emits white light can be obtained by providing a blue light-emitting layer and a light-emitting unit that emits a complementary green-yellow, yellow, or orange (orange) light-emitting color. The “complementary color” relationship is a relationship between colors that become achromatic when mixed. That is, white light emission can be obtained by mixing light emission of substances emitting light of complementary colors.
 例えば、中央に配置される発光ユニットが青色発光ドーパントを含む青色発光層であり、その両側に対称に配置される発光ユニットが緑色発光ドーパント及び赤色発光ドーパントを含む緑色及び赤色(黄色)発光ユニットであると、白色光を得ることができる。 For example, the light emitting unit disposed in the center is a blue light emitting layer including a blue light emitting dopant, and the light emitting units disposed symmetrically on both sides thereof are green and red (yellow) light emitting units including a green light emitting dopant and a red light emitting dopant. If there is, white light can be obtained.
 図1Bは、本発明の5層の発光ユニットを有する有機EL素子の構成の一例を示す概略図である。 FIG. 1B is a schematic diagram showing an example of the configuration of an organic EL element having a five-layer light-emitting unit of the present invention.
 5層の発光ユニットを有する有機EL素子100の場合は、図1Bで示すように、透光性基板105/透光性第1電極101/発光ユニット103-1/透光性中間電極104-1/発光ユニット103-2/透光性中間電極104-2/発光ユニット103-3/透光性中間電極104-3/発光ユニット103-4(発光ユニット103-2と同)/透光性中間電極104-4/発光ユニット103-5(発光ユニット103-1)/透光性第2電極102/透光性封止基板106の順に積層されていることが基本である。透光性中間電極は、同じでも異なっていてもよい。 In the case of the organic EL element 100 having a five-layer light emitting unit, as shown in FIG. 1B, the light transmitting substrate 105 / the light transmitting first electrode 101 / the light emitting unit 103-1 / the light transmitting intermediate electrode 104-1. / Light emitting unit 103-2 / Translucent intermediate electrode 104-2 / Light emitting unit 103-3 / Translucent intermediate electrode 104-3 / Light emitting unit 103-4 (same as light emitting unit 103-2) / Translucent intermediate Basically, the electrode 104-4 / the light emitting unit 103-5 (the light emitting unit 103-1) / the light transmissive second electrode 102 / the light transmissive sealing substrate 106 are laminated in this order. The translucent intermediate electrodes may be the same or different.
 発光ユニット103-1、103-2、103-3、103-4及び103-5は、青色、緑色及び赤色、又はそれらが混合された発光色を有する発光ユニットであることが好ましく、かつ中央に配置する発光ユニットに対して異なる発光色の発光ユニットをそれぞれ対称の位置に配置することが好ましい。 The light emitting units 103-1, 103-2, 103-3, 103-4 and 103-5 are preferably light emitting units having blue, green and red, or a light emitting color obtained by mixing them, and in the center. It is preferable that the light emitting units of different emission colors are arranged at symmetrical positions with respect to the light emitting units to be arranged.
 例えば、前記発光ユニット103-1、103-2、103-3、103-4及び103-5は、青色発光層/緑色発光層/赤色発光層/緑色発光層/青色発光層の構成であることが、両面から発光する光の色度や輝度の均一性が向上し、発光色を変化する際の調整が容易にできる観点から好ましい。また、当該青色、緑色及び赤色の発光色を有する発光ユニットを用いることで、両面から均一なフルカラーの発光を行うことができ、両面型ディスプレイとして極めて有用である。 For example, the light emitting units 103-1, 103-2, 103-3, 103-4 and 103-5 have a configuration of blue light emitting layer / green light emitting layer / red light emitting layer / green light emitting layer / blue light emitting layer. However, it is preferable from the viewpoint that the chromaticity and luminance uniformity of the light emitted from both surfaces are improved and the adjustment when changing the emission color can be easily performed. Further, by using the light emitting unit having blue, green and red light emission colors, uniform full color light emission can be performed from both sides, which is extremely useful as a double-sided display.
 また、前記3以上の奇数個の発光ユニットの、それぞれ対称の位置にある発光ユニット内部の発光中心が、中央に配置する発光ユニットの発光中心からそれぞれ等距離にあることが両面から観察した時の発光光の輝度及び色度が均一に観察でき、好ましい。 In addition, when the light emission centers inside the light emission units at the symmetrical positions of the odd number of the light emission units of 3 or more are respectively equidistant from the light emission centers of the light emission units arranged in the center, it is observed from both sides. The brightness and chromaticity of the emitted light can be observed uniformly, which is preferable.
 図2は、本発明に係る発光ユニットの発光中心の距離関係を示した模式図である。 FIG. 2 is a schematic diagram showing the distance relationship between the light emission centers of the light emitting unit according to the present invention.
 図2では、図1Aで示される3個の発光ユニットを具備する有機EL素子の模式図であり、中央の発光ユニット103-2の発光中心hに対する発光ユニット103-1の発光中心hの距離dと、中央の発光ユニット103-2の発光中心hに対する発光ユニット103-3の発光中心hの距離dが、d=dであることが好ましい。 FIG. 2 is a schematic diagram of the organic EL element including the three light emitting units shown in FIG. 1A, and shows the emission center h 1 of the light emitting unit 103-1 with respect to the emission center h 2 of the central light emitting unit 103-2. the distance d 1, the distance d 2 of the emission center h 3 of the light-emitting unit 103-3 to the light emitting centers h 2 of the central light-emitting unit 103-2, it is preferable that d 1 = d 2.
 ここで、「発光中心」とは、後述する発光ユニットの厚さ方向の発光エネルギーを測定したときの、発光エネルギーがピークを示す位置をいう。具体的には、特開2009-181829号公報記載の方法によって特定できる。 Here, the “light emission center” refers to a position where the light emission energy has a peak when the light emission energy in the thickness direction of the light emission unit described later is measured. Specifically, it can be specified by the method described in JP2009-181829A.
 後述する構造を有する発光ユニットの発光中心の位置は、積層する有機層の種類、層厚等によって変動するが、中央に配置される発光ユニットの発光中心を起点として、それに対称の位置に配置される発光ユニットの発光中心との距離を等距離に調整することにより、両面から発光する光の色度や輝度の均一性が向上し、発光色を変化する際の調整が容易にできる観点から好ましい。 The position of the light emission center of the light emitting unit having the structure to be described later varies depending on the type of the organic layer to be stacked, the layer thickness, etc., but is arranged at a symmetrical position with the light emission center of the light emitting unit arranged in the center as the starting point. By adjusting the distance from the light emission center of the light emitting unit to be equal to each other, the uniformity of the chromaticity and luminance of light emitted from both surfaces is improved, and this is preferable from the viewpoint of easy adjustment when changing the light emission color. .
 通常、高効率で、かつ長寿命の白色発光素子、フルカラー発光素子を実現するためには、複数の発光ユニットを積層させることが必要となるが、輝度・電圧により発光中心の位置が変わり、色変動が起こりやすい。 Usually, in order to realize a white light emitting element and a full color light emitting element with high efficiency and long life, it is necessary to stack a plurality of light emitting units. Fluctuation is likely to occur.
 通常の一対の電極構成では、キャリア輸送材の輸送性の関係上、例えば、電子移動度は1×10-5cm/Vs、正孔移動度は1×10-7cm/Vs程度であることから、発光ユニット内の正孔輸送層に近い界面で発光していると考えられる。 In a normal pair of electrode configurations, for example, the electron mobility is about 1 × 10 −5 cm 2 / Vs and the hole mobility is about 1 × 10 −7 cm 2 / Vs due to the transportability of the carrier transport material. Therefore, it is considered that light is emitted at the interface close to the hole transport layer in the light emitting unit.
 したがって、複数の発光ユニットを用いた際には、正孔輸送層側に位置する発光ユニットが発光しやすくなる。その発光中心の位置は、層構成や層厚によって制御し、前述のように、中央に配置される発光ユニットの発光中心を起点として、それに対称の位置に配置される発光ユニットの発光中心との距離を等距離に調整することが、両面から均一な輝度及び色度を有する発光光を得る上で好ましい態様である。 Therefore, when a plurality of light emitting units are used, the light emitting units located on the hole transport layer side easily emit light. The position of the light emission center is controlled by the layer configuration and the layer thickness, and as described above, the light emission center of the light emission unit arranged at the symmetrical position with the light emission center of the light emission unit arranged at the center as the starting point. Adjusting the distance to the same distance is a preferable aspect for obtaining emitted light having uniform luminance and chromaticity from both sides.
 以下、上述した有機EL素子100を構成するための主要各層の詳細とその製造方法についてさらに説明する。 Hereinafter, details of each main layer for constituting the organic EL element 100 described above and a manufacturing method thereof will be further described.
 〔透光性基板〕
 本発明でいう「透光性」とは、上記基板、電極及び発光層を、それぞれ分光光度計((株)日立ハイテクノロジーズ製U-3300)を用いて、JIS K 7105:1981に記載された方法にて、光波長550nmにおける光透過率(%)を測定したときに、50%以上の光透過率を有することをいう。上記有機EL素子を構成する要素のそれぞれの光透過率は、好ましくは60%以上、より好ましくは70%以上、特に好ましくは80%以上である。
[Translucent substrate]
“Translucency” as used in the present invention is described in JIS K 7105: 1981 using the spectrophotometer (U-3300, manufactured by Hitachi High-Technologies Corporation) for each of the substrate, the electrode, and the light emitting layer. When the light transmittance (%) at a light wavelength of 550 nm is measured by the method, it means having a light transmittance of 50% or more. The light transmittance of each element constituting the organic EL element is preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
 また、本発明の有機EL素子は両面発光型であり、自由な意匠性への要望に応えるために、有機EL素子全体の光波長550nmにおける光透過率は、50%以上であることが好ましく、より好ましくは65%以上であり、特に好ましくは75%以上である。 Further, the organic EL element of the present invention is a double-sided light emitting type, and in order to meet the demand for free design, the light transmittance of the entire organic EL element at a light wavelength of 550 nm is preferably 50% or more, More preferably, it is 65% or more, and particularly preferably 75% or more.
 本発明に係る透光性基板はフレキシブル基板であることが好ましい。 The translucent substrate according to the present invention is preferably a flexible substrate.
 本発明でいうフレキシブル基板とは、φ(直径)50mmロールに巻き付け、一定の張力で巻取る前後で割れ等が生じることのない基板をいい、より好ましくはφ30mmロールに巻き付け可能な基板をいう。 The flexible substrate as used in the present invention refers to a substrate that is wound around a φ (diameter) 50 mm roll and does not crack before and after winding with a constant tension, and more preferably a substrate that can be wound around a φ30 mm roll.
 本発明に係るフレキシブル基板は、例えば、樹脂基板、薄膜金属箔、薄板フレキシブルガラス等が挙げられる。 Examples of the flexible substrate according to the present invention include a resin substrate, a thin film metal foil, and a thin plate flexible glass.
 本発明に適用可能な樹脂基板としては、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類及びそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート(略称:PC)、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル及びポリアリレート類、アートン(商品名、JSR社製)及びアペル(商品名、三井化学社製)等のシクロオレフィン系樹脂等を挙げることができる。 Examples of the resin substrate applicable to the present invention include polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, and cellulose triacetate (abbreviation: TAC). Cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate and their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, Polycarbonate (abbreviation: PC), norbornene resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone (Abbreviation: PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic and polyarylates, Arton (trade name, manufactured by JSR) and Appel (product) Name, manufactured by Mitsui Chemicals, Inc.) and the like.
 これら樹脂基板のうち、コストや入手の容易性の点では、ポリエチレンテレフタレート(略称:PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(略称:PEN)、ポリカーボネート(略称:PC)等のフィルムがフレキシブル樹脂基板として好ましく用いられる。 Among these resin substrates, films such as polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate, polyethylene naphthalate (abbreviation: PEN), polycarbonate (abbreviation: PC) are flexible resin substrates in terms of cost and availability. Are preferably used.
 また、上記の樹脂基板は、未延伸フィルムでもよく、延伸フィルムでもよい。 The resin substrate may be an unstretched film or a stretched film.
 本発明に適用可能な樹脂基板は、従来公知の一般的な製膜方法により製造することが可能である。例えば、材料となる樹脂を押出機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の樹脂基板を製造することができる。また、未延伸の樹脂基板を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、樹脂基板の搬送方向(縦軸方向、MD方向)、又は樹脂基板の搬送方向と直角の方向(横軸方向、TD方向)に延伸することにより、延伸樹脂基板を製造することができる。この場合の延伸倍率は、樹脂基板の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2~10倍の範囲内であることが好ましい。 The resin substrate applicable to the present invention can be manufactured by a conventionally known general film forming method. For example, an unstretched resin substrate that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. In addition, the resin substrate transport direction (vertical axis direction, MD) is applied to the unstretched resin substrate by a known method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like. Direction) or a direction (horizontal axis direction, TD direction) perpendicular to the transport direction of the resin substrate, the stretched resin substrate can be produced. The draw ratio in this case can be appropriately selected according to the resin as the raw material of the resin substrate, but is preferably in the range of 2 to 10 times in the vertical axis direction and the horizontal axis direction.
 樹脂基板の厚さとしては、3~200μmの範囲内にある薄膜の樹脂基板であることが好ましいが、より好ましくは10~150μmの範囲内であり、特に好ましくは、20~120μmの範囲内である。 The thickness of the resin substrate is preferably a thin resin substrate in the range of 3 to 200 μm, more preferably in the range of 10 to 150 μm, and particularly preferably in the range of 20 to 120 μm. is there.
 また、本発明に係るフレキシブル基板として適用可能な薄板フレキシブルガラスは、湾曲できるほど薄くしたガラス板である。薄板フレキシブルガラスの厚みは、薄板フレキシブルガラスが可撓性を示す範囲で適宜設定できる。 Further, the thin flexible glass applicable as the flexible substrate according to the present invention is a glass plate that is thin enough to be bent. The thickness of the thin flexible glass can be appropriately set within the range in which the thin flexible glass exhibits flexibility.
 薄板フレキシブルガラスとしては、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。薄板フレキシブルガラスの厚さとしては、例えば、5~300μmの範囲であり、好ましくは20~150μmの範囲である。 Examples of the thin flexible glass include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. The thickness of the thin flexible glass is, for example, in the range of 5 to 300 μm, and preferably in the range of 20 to 150 μm.
 本発明の有機EL素子においては、上記説明した透光性基板上に、必要に応じて、ガスバリアー層を設ける構成であってもよい。ガスバリアー層は、JIS K 7129:1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度90±2%環境下)が0.01g/(m・24時間)以下のガスバリアー層(ガスバリアー膜等ともいう)であることが好ましく、また、JIS K 7126:1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24時間・atm)以下、水蒸気透過度が1×10-5g/(m・24時間)以下の高ガスバリアー層であることがより好ましい。 In the organic EL element of the present invention, a gas barrier layer may be provided on the above-described translucent substrate as necessary. The gas barrier layer has a water vapor permeability (25 ± 0.5 ° C., relative humidity 90 ± 2% environment) measured by a method according to JIS K 7129: 1992, 0.01 g / (m 2 · 24 hours. ) The following gas barrier layer (also referred to as a gas barrier film or the like) is preferable, and the oxygen permeability measured by a method according to JIS K 7126: 1987 is 1 × 10 −3 ml / (m 2 · It is more preferable that the high gas barrier layer has a water vapor permeability of 1 × 10 −5 g / (m 2 · 24 hours) or less.
 ガスバリアー層を形成する材料としては、水分や酸素など、有機EL素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素などの無機物を用いることができる。更に、ガスバリアー層の脆弱性を改良するため、これら無機層と有機材料からなる有機層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 As a material for forming the gas barrier layer, any material that has a function of suppressing intrusion of water or oxygen that causes deterioration of the organic EL element may be used. For example, an inorganic substance such as silicon oxide, silicon dioxide, or silicon nitride may be used. Can be used. Furthermore, in order to improve the brittleness of the gas barrier layer, it is more preferable to have a laminated structure of these inorganic layers and organic layers made of organic materials. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 ガスバリアー層の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載の大気圧プラズマ重合法によるものが好ましい。 The method for forming the gas barrier layer is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method and the like can be used, but an atmospheric pressure plasma polymerization method described in JP-A-2004-68143 is preferable.
 〔透光性第1電極:アノード電極(陽極)〕
 有機EL素子を構成する透光性第1電極としては、Ag、Au等の金属又は金属を主成分とする合金、CuI、又はインジウム-スズの複合酸化物(ITO)、SnO及びZnO等の金属酸化物を挙げることができるが、金属又は金属を主成分とする合金であることが好ましく、更に好ましくは、銀又は銀を主成分とする合金である。
[Translucent first electrode: anode electrode (anode)]
As the translucent first electrode constituting the organic EL element, a metal such as Ag or Au or an alloy containing a metal as a main component, CuI or indium-tin composite oxide (ITO), SnO 2, ZnO or the like Although a metal oxide can be mentioned, it is preferably a metal or an alloy containing a metal as a main component, more preferably silver or an alloy containing silver as a main component.
 透光性第1電極を、銀を主成分として構成する場合、銀の純度としては、99%以上であることが好ましい。また、銀の安定性を確保するためにパラジウム(Pd)、銅(Cu)及び金(Au)等が添加されていてもよい。 When the translucent first electrode is composed mainly of silver, the purity of silver is preferably 99% or more. Further, palladium (Pd), copper (Cu), gold (Au), or the like may be added to ensure the stability of silver.
 透光性第1電極は銀を主成分として構成されている層であるが、具体的には、銀単独で形成しても、又は銀(Ag)を含有する合金から構成されていてもよい。そのような合金としては、例えば、銀・マグネシウム(Ag・Mg)、銀・銅(Ag・Cu)、銀・パラジウム(Ag・Pd)、銀・パラジウム・銅(Ag・Pd・Cu)、銀・インジウム(Ag・In)などが挙げられる。 The translucent first electrode is a layer composed mainly of silver, but specifically, it may be formed of silver alone or an alloy containing silver (Ag). . Examples of such alloys include silver / magnesium (Ag / Mg), silver / copper (Ag / Cu), silver / palladium (Ag / Pd), silver / palladium / copper (Ag / Pd / Cu), silver -Indium (Ag.In) etc. are mentioned.
 上記透光性第1電極を構成する各構成材料の中でも、本発明の有機EL素子を構成する電極としては、銀を主成分として構成し、厚さが2~20nmの範囲内にある透光性電極であることが好ましいが、更に好ましくは厚さが4~12nmの範囲内である。厚さが20nm以下であれば、透光性電極の吸収成分及び反射成分が低く抑えられ、高い光透過率が維持されるため好ましい。 Among the constituent materials composing the translucent first electrode, the electrode composing the organic EL device of the present invention is composed of silver as a main component and translucent having a thickness in the range of 2 to 20 nm. The electrode is preferably a conductive electrode, but more preferably has a thickness in the range of 4 to 12 nm. A thickness of 20 nm or less is preferable because the light-absorbing and reflecting components of the translucent electrode are kept low and high light transmittance is maintained.
 本発明でいう銀を主成分として構成されている層とは、透光性第1電極の銀の含有量が60質量%以上であることをいい、好ましくは銀の含有量が80質量%以上であり、より好ましくは銀の含有量が90質量%以上であり、特に好ましくは銀の含有量が98質量%以上である。 The layer composed mainly of silver in the present invention means that the silver content of the translucent first electrode is 60% by mass or more, preferably the silver content is 80% by mass or more. More preferably, the silver content is 90% by mass or more, and particularly preferably the silver content is 98% by mass or more.
 透光性第1電極においては、銀を主成分として構成されている層が、必要に応じて複数の層に分けて積層された構成であっても良い。 The translucent first electrode may have a configuration in which a layer composed mainly of silver is divided into a plurality of layers as necessary.
 また、本発明においては、第1電極が、銀を主成分として構成する透光性電極である場合には、形成する透光性電極の銀膜の均一性を高める観点から、その下部に、下地層を設けることが好ましい。下地層としては、特に制限はないが、窒素原子又は硫黄原子を有する有機化合物を含有する層であることが好ましく、当該下地層上に、透光性第1電極を形成する方法が好ましい態様である。 In the present invention, when the first electrode is a translucent electrode composed mainly of silver, from the viewpoint of increasing the uniformity of the silver film of the translucent electrode to be formed, It is preferable to provide an underlayer. Although there is no restriction | limiting in particular as a base layer, It is preferable that it is a layer containing the organic compound which has a nitrogen atom or a sulfur atom, and the method of forming the translucent 1st electrode on the said base layer is a preferable aspect. is there.
 透光性第1電極の形成方法としては、例えば、塗布法、インクジェット法、コーティング法、ディップ法などのウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法など)、スパッタ法、CVD法などのドライプロセスを用いる方法などが挙げられるが、蒸着法により形成することが好ましい。 Examples of the method for forming the light-transmitting first electrode include a method using a wet process such as a coating method, an inkjet method, a coating method, a dip method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, and a CVD method. A method using a dry process such as, for example, is mentioned, but it is preferable to form by a vapor deposition method.
 蒸着法としては、主には、真空蒸着法が用いられ、真空蒸着装置内の蒸着用の抵抗加熱ボートに、透明陽極(アノード)の構成材料である銀や、必要に応じてその他の合金を充填する。この蒸着用の抵抗加熱ボートは、モリブデン製又はタングステン製材料で作製されたものが用いられている。透明陽極(アノード)形成時には、真空蒸着装置内の真空度を、例えば、1×10-2~1×10-6Paの範囲内まで減圧した後、銀等の透明陽極(アノード)形成用材料の入った上記蒸着用の抵抗加熱ボートに通電して加熱し、所定の蒸着速度(nm/秒)で、樹脂基材上又は下地層上に、銀薄膜を蒸着して、厚さ2~20nmの範囲内にある透明陽極(アノード)を形成する。 As a vapor deposition method, a vacuum vapor deposition method is mainly used, and silver, which is a constituent material of a transparent anode (anode), or other alloy as necessary is applied to a resistance heating boat for vapor deposition in a vacuum vapor deposition apparatus. Fill. The resistance heating boat for vapor deposition is made of molybdenum or tungsten. When forming the transparent anode (anode), the vacuum degree in the vacuum deposition apparatus is reduced to, for example, a range of 1 × 10 −2 to 1 × 10 −6 Pa, and then a transparent anode (anode) forming material such as silver The above-mentioned resistance heating boat for vapor deposition containing is heated and energized, and a silver thin film is vapor-deposited on a resin base material or an underlayer at a predetermined vapor deposition rate (nm / second) to obtain a thickness of 2 to 20 nm. A transparent anode (anode) in the range of is formed.
 また、透光性第1電極は、下地層上に形成されることにより、形成後の高温アニール処理(例えば、150℃以上の加熱プロセス)等がなくても十分に導電性を有することができる。 In addition, since the first transparent electrode is formed on the base layer, the first transparent electrode can be sufficiently conductive without a high-temperature annealing treatment (for example, a heating process at 150 ° C. or higher) after the formation. .
 本発明の有機EL素子においては、透光性第1電極が銀を主成分として構成する電極である場合には、透光性第1電極の前記透光性基板側に隣接した位置に、少なくとも窒素原子又は硫黄原子を有する有機化合物を含有する下地層を有することが好ましい態様であり、更には、下地層が含有する有機化合物が、芳香族性に関与しない有効非共有電子対を持つ窒素原子を有する化合物であることが好ましい。 In the organic EL element of the present invention, when the translucent first electrode is an electrode composed mainly of silver, at least at a position adjacent to the translucent substrate side of the translucent first electrode. It is a preferable aspect to have an underlayer containing an organic compound having a nitrogen atom or a sulfur atom, and further, the nitrogen compound having an effective unshared electron pair in which the organic compound contained in the underlayer does not participate in aromaticity It is preferable that it is a compound which has this.
 本発明においては、銀を主成分とする透光性第1電極とする際に、その下部に窒素原子又は硫黄原子を有する有機化合物を含有する下地層を設けることにより、透明陽極(アノード)を形成する際に、銀原子と、下地層が含有している有機化合物の窒素原子又は硫黄原子とが相互作用し、その結果、銀原子の下地層表面上における拡散距離が減少し、銀の凝集体の生成を抑制することができ、高い均一性を有する透光性電極膜を形成することができる。 In the present invention, when the light-transmitting first electrode mainly composed of silver is provided, a transparent anode (anode) is formed by providing a base layer containing an organic compound having a nitrogen atom or a sulfur atom below the first electrode. During the formation, the silver atoms interact with the nitrogen atoms or sulfur atoms of the organic compound contained in the underlayer, and as a result, the diffusion distance of silver atoms on the underlayer surface decreases and the silver agglomerates. Formation of aggregates can be suppressed, and a light-transmitting electrode film having high uniformity can be formed.
 一般的には銀原子は、核成長型(Volumer-Weber:VW型)での膜成長により島状に孤立しやすいが、単層成長型(Frank-van der Merwe:FM型)の膜成長によって成膜されるようになる。したがって、薄い膜厚でありながらも、均一な膜厚の透光性第1電極が得られるようになる。 In general, silver atoms are likely to be isolated like islands by nuclear growth type (Volume-Weber: VW type) film growth, but by single layer growth type (Frank-van der Merwe: FM type) film growth A film is formed. Therefore, a transparent first electrode with a uniform film thickness can be obtained while having a thin film thickness.
 本発明においては、少なくとも窒素原子又は硫黄原子を有する有機化合物としては、特に制限はないが、例えば、国際公開第2013/105569号、国際公開第2013/141097号、国際公開第2013/161750号に記載の化合物を挙げることができる。 In the present invention, the organic compound having at least a nitrogen atom or a sulfur atom is not particularly limited. For example, International Publication No. 2013/105569, International Publication No. 2013/141097, International Publication No. 2013/161750 Mention may be made of the compounds described.
 以上の構成によって、透光性第1電極は、導電性の向上と光透過性の向上との両立を図ることが可能になる。 With the above configuration, the translucent first electrode can achieve both improved conductivity and improved light transmission.
 〔発光ユニット〕
 本発明の有機EL素子は、少なくとも3以上の奇数個の発光ユニットを有することを特徴としているが、個々の発光ユニットの構成は、例えば下記の構成が挙げられる。
[Light emitting unit]
The organic EL device of the present invention is characterized by having an odd number of light emitting units of at least 3 or more. Examples of the configuration of each light emitting unit include the following configurations.
 以下に、発光ユニットの構成の代表例を示す。ここで発光ユニットとは、陽極(アノード)及び陰極(カソード)間に存在する機能層をまとめていう。 The following is a typical example of the configuration of the light emitting unit. Here, the light emitting unit collectively refers to a functional layer existing between an anode (anode) and a cathode (cathode).
 (i)(陽極(アノード)側)/正孔注入輸送層/発光層/電子注入輸送層/(陰極(カソード)側)
 (ii)(陽極(アノード)側)/正孔注入輸送層/発光層/正孔阻止層/電子注入輸送層/(陰極(カソード)側)
 (iii)(陽極(アノード)側)/正孔注入輸送層/電子阻止層/発光層/正孔阻止層
/電子注入輸送層/(陰極(カソード)側)
 (iv)(陽極(アノード)側)/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/(陰極(カソード)側)
 (v)(陽極(アノード)側)/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/(陰極(カソード)側)
 (vi)(陽極(アノード)側)/正孔注入層/正孔輸送層/電子阻止層/発光層/正孔阻止層/電子輸送層/電子注入層/(陰極(カソード)側)
 上記発光層間には非発光性の中間層を有していてもよい。中間層は電荷発生層であってもよく、マルチフォトンユニット構成であってもよい。
(I) (anode (anode) side) / hole injection transport layer / light emitting layer / electron injection transport layer / (cathode (cathode) side)
(Ii) (anode (anode) side) / hole injection transport layer / light emitting layer / hole blocking layer / electron injection transport layer / (cathode (cathode) side)
(Iii) (anode (anode) side) / hole injection transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron injection transport layer / (cathode (cathode) side)
(Iv) (anode (anode) side) / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / (cathode (cathode) side)
(V) (anode (anode) side) / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / (cathode (cathode) side)
(Vi) (anode (anode) side) / hole injection layer / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / (cathode (cathode) side)
A non-light emitting intermediate layer may be provided between the light emitting layers. The intermediate layer may be a charge generation layer or a multi-photon unit configuration.
 本発明に適用可能な発光ユニットの概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。 As for the outline of the light emitting unit applicable to the present invention, for example, JP2013-157634A, JP2013-168552A, JP2013-177361A, JP2013-187221A, JP2013-2013A. -191644, JP2013-191804, JP2013-225678, JP2013-235994, JP2013-243234, JP2013-243236, JP2013-242366 JP, 2013-243371, JP 2013-245179, JP 2014-003249, JP 2014-003299, JP 2014-013910, JP 2014-014933 , JP 2014-017494 A It can be mentioned configurations described in equal.
 〈発光層〉
 上記発光ユニットを構成する発光層は、発光材料が含有されている構成が好ましく、更には発光材料が、リン光発光化合物又は蛍光発光性化合物であることが好ましい。
<Light emitting layer>
The light emitting layer constituting the light emitting unit preferably has a structure containing a light emitting material, and the light emitting material is preferably a phosphorescent compound or a fluorescent compound.
 この発光層は、電極又は電子輸送層から注入された電子と、正孔輸送層から注入された正孔とが再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接する層との界面であってもよい。 This light emitting layer is a layer that emits light by recombination of electrons injected from the electrode or the electron transport layer and holes injected from the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. Alternatively, it may be the interface between the light emitting layer and the adjacent layer.
 このような発光層としては、含まれる発光材料が発光要件を満たしていれば、その構成には特に制限はない。また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。この場合、各発光層間には非発光性の中間層を有していることが好ましい。 Such a light emitting layer is not particularly limited in its configuration as long as the light emitting material contained satisfies the light emission requirements. Moreover, there may be a plurality of layers having the same emission spectrum and emission maximum wavelength. In this case, it is preferable to have a non-light emitting intermediate layer between the light emitting layers.
 発光層の厚さの総和は、1~100nmの範囲内にあることが好ましく、より低い駆動電圧を得ることができることから1~30nmの範囲内がさらに好ましい。なお、発光層の厚さの総和とは、発光層間に非発光性の中間層が存在する場合には、当該中間層も含む厚さである。 The total thickness of the light emitting layers is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 30 nm because a lower driving voltage can be obtained. In addition, the sum total of the thickness of a light emitting layer is the thickness also including the said intermediate | middle layer, when a nonluminous intermediate | middle layer exists between light emitting layers.
 以上のような発光層は、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LY法(ラングミュア・ブロジェット、Lxngmuir Blodgett法)及びインクジェット法等の公知の方法により形成することができる。 The light emitting layer as described above may be formed by using a light emitting material or a host compound described later, for example, a known method such as a vacuum deposition method, a spin coating method, a casting method, an LY method (Langmuir-Blodget, Lxngmuir Blodgett method), and an ink jet method. Can be formed.
 発光層は、複数の発光材料を混合してもよく、リン光発光材料と蛍光発光材料(蛍光ドーパント、蛍光性化合物ともいう)とを同一発光層中に混合して用いてもよい。発光層の構成としては、ホスト化合物(発光ホスト等ともいう)及び発光材料(発光ドーパント化合物ともいう。)を含有し、発光材料より発光させることが好ましい。 In the light emitting layer, a plurality of light emitting materials may be mixed, and a phosphorescent light emitting material and a fluorescent light emitting material (also referred to as a fluorescent dopant or a fluorescent compound) may be mixed and used in the same light emitting layer. The structure of the light-emitting layer preferably includes a host compound (also referred to as a light-emitting host) and a light-emitting material (also referred to as a light-emitting dopant compound), and emits light from the light-emitting material.
 (ホスト化合物)
 発光層に含有されるホスト化合物としては、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物が好ましい。さらにリン光量子収率が0.01未満であることが好ましい。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。
(Host compound)
As the host compound contained in the light emitting layer, a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1 is preferable. Further, the phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、又は、複数種のホスト化合物を用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光材料を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, a known host compound may be used alone, or a plurality of types of host compounds may be used. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. In addition, by using a plurality of kinds of light emitting materials described later, it is possible to mix different light emission, thereby obtaining an arbitrary light emission color.
 発光層に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。 The host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
 本発明に適用可能なホスト化合物としては、例えば、特開2001-257076号公報、同2001-357977号公報、同2002-8860号公報、同2002-43056号公報、同2002-105445号公報、同2002-352957号公報、同2002-231453号公報、同2002-234888号公報、同2002-260861号公報、同2002-305083号公報、米国特許出願公開第2005/0112407号明細書、米国特許出願公開第2009/0030202号明細書、国際公開第2001/039234号、国際公開第2008/056746号、国際公開第2005/089025号、国際公開第2007/063754号、国際公開第2005/030900号、国際公開第2009/086028号、国際公開第2012/023947号、特開2007-254297号公報、欧州特許第2034538号明細書等に記載されている化合物を挙げることができる。 Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2001-357777, 2002-8860, 2002-43056, 2002-105445, 2002-352957, 2002-231453, 2002-234888, 2002-260861, 2002-305083, US Patent Application Publication No. 2005/0112407, US Patent Application Publication No. 2009/0030202, International Publication No. 2001/039234, International Publication No. 2008/056746, International Publication No. 2005/089025, International Publication No. 2007/063754, International Publication No. 2005/030900, International Publication 200th / No. 086,028, WO 2012/023947, can be mentioned JP 2007-254297, JP-European compounds described in Japanese Patent No. 2034538 Pat like.
 (発光材料)
 本発明で用いることのできる発光材料としては、リン光発光性化合物(リン光性化合物、リン光発光材料又はリン光発光ドーパントともいう。)及び蛍光発光性化合物(蛍光性化合物又は蛍光発光材料ともいう。)が挙げられる。
(Luminescent material)
As the light-emitting material that can be used in the present invention, a phosphorescent compound (also referred to as a phosphorescent compound, a phosphorescent material, or a phosphorescent dopant) and a fluorescent compound (both a fluorescent compound or a fluorescent material) are used. Say).
 リン光発光性化合物とは、励起三重項状態から基底状態への失活過程の際に発光が観測される化合物であり、具体的には室温(25℃)でリン光発光する化合物であり、リン光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。 The phosphorescent compound is a compound in which light emission is observed during the deactivation process from the excited triplet state to the ground state, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), Although the phosphorescence quantum yield is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C., the preferred phosphorescence quantum yield is 0.1 or more.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は、種々の溶媒を用いて測定できるが、本発明においてリン光発光性化合物を用いる場合、任意の溶媒のいずれかにおいて、上記リン光量子収率として0.01以上が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. The phosphorescence quantum yield in the solution can be measured using various solvents, but when using a phosphorescent compound in the present invention, the phosphorescence quantum yield is 0.01 or more in any solvent. Should be achieved.
 リン光発光性化合物は、一般的な有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、白金化合物(白金錯体系化合物)又は希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent compound can be appropriately selected from known compounds used for the light-emitting layer of a general organic EL device, but preferably contains a group 8 to 10 metal in the periodic table of elements. More preferred are iridium compounds, more preferred are iridium compounds, osmium compounds, platinum compounds (platinum complex compounds) or rare earth complexes, and most preferred are iridium compounds.
 本発明においては、少なくとも一つの発光層に、2種以上のリン光発光性化合物が含有されていてもよく、発光層におけるリン光発光性化合物の濃度比が発光層の厚さ方向で変化している態様であってもよい。 In the present invention, at least one light emitting layer may contain two or more phosphorescent compounds, and the concentration ratio of the phosphorescent compounds in the light emitting layer varies in the thickness direction of the light emitting layer. It may be an embodiment.
 本発明に使用できる公知のリン光発光性化合物の具体例としては、以下の文献に記載されている化合物等が挙げられる。 Specific examples of known phosphorescent compounds that can be used in the present invention include compounds described in the following documents.
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許出願公開第2006/835469号明細書、米国特許出願公開第2006/0202194号明細書、米国特許出願公開第2007/0087321号明細書、米国特許出願公開第2005/0244673号明細書等に記載の化合物を挙げることができる。 Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Application Publication No. 2006/835469, US Patent Application Publication No. 2006 /. Examples thereof include compounds described in US Patent No. 0202194, US Patent Application Publication No. 2007/0087321, US Patent Application Publication No. 2005/0244673, and the like.
 また、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2009/000673号、米国特許第7332232号明細書、米国特許出願公開第2009/0039776号、米国特許第6687266号明細書、米国特許出願公開第2006/0008670号明細書、米国特許出願公開第2008/0015355号明細書、米国特許第7396598号明細書、米国特許出願公開第2003/0138657号明細書、米国特許第7090928号明細書等に記載の化合物を挙げることができる。 Also, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2009/000673, US Pat. No. 7,332,232, US Patent Application Publication No. 2009/0039776, US Pat. No. 6,687,266, US Patent Application Publication No. 2006/0008670, US Patent Application Publication No. 2008/0015355, US Pat. No. 7,396,598, US Patent Application Publication No. 2003/0138667, US Pat. No. 7090928 And the like.
 また、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2006/056418号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2006/082742号、米国特許出願公開第2005/0260441号明細書、米国特許第7534505号明細書、米国特許出願公開第2007/0190359号明細書、米国特許第7338722号明細書、米国特許第7279704号明細書、米国特許出願公開第2006/103874号明細書等に記載の化合物も挙げることができる。 Also, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics 23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2006/056418, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2006/082742, US Patent Application Publication No. 2005/0260441. , U.S. Pat. No. 7,534,505, U.S. Patent Application Publication No. 2007/0190359, U.S. Pat. No. 7,338,722, U.S. Pat. No. 7,279,704, U.S. Patent Application Publication No. 2006/103874, etc. Mention may also be made of the compounds described.
 さらには、国際公開第2005/076380号、国際公開第2008/140115号、国際公開第2011/134013号、国際公開第2010/086089号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/073149号、特開2009-114086号公報、特開2003-81988号公報、特開2002-363552号公報等に記載の化合物も挙げることができる。 Furthermore, International Publication No. 2005/076380, International Publication No. 2008/140115, International Publication No. 2011/134013, International Publication No. 2010/086089, International Publication No. 2012/020327, International Publication No. 2011/051404. Further, compounds described in International Publication No. 2011/073149, JP2009-114086, JP2003-81988, JP2002-363552, and the like can also be mentioned.
 本発明においては、好ましいリン光発光性化合物としてはIrを中心金属に有する有機金属錯体が挙げられる。さらに好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。 In the present invention, preferred phosphorescent compounds include organometallic complexes having Ir as a central metal. More preferably, a complex containing at least one coordination mode of metal-carbon bond, metal-nitrogen bond, metal-oxygen bond, and metal-sulfur bond is preferable.
 上記説明したリン光発光性化合物(リン光発光性金属錯体ともいう)は、例えば、Organic Letter誌、vol3、No.16、2579~2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685~1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704~1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055~3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695~709頁(2004年)、さらにこれらの文献中に記載されている参考文献等に開示されている方法を適用することにより合成することができる。 The phosphorescent compound described above (also referred to as a phosphorescent metal complex) is described in, for example, Organic Letter, vol. 16, 2579-2581 (2001), Inorganic Chemistry, Vol. 30, No. 8, pp. 1685-1687 (1991), J. Am. Am. Chem. Soc. , 123, 4304 (2001), Inorganic Chemistry, Vol. 40, No. 7, pages 1704-1711 (2001), Inorganic Chemistry, Vol. 41, No. 12, pages 3055-3066 (2002) , New Journal of Chemistry. 26, 1171 (2002), European Journal of Organic Chemistry, Vol. 4, pages 695-709 (2004), and methods disclosed in the references and the like described in these documents Can be synthesized.
 蛍光発光性化合物としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素又は希土類錯体系蛍光体等が挙げられる。 Fluorescent compounds include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes. And dyes, polythiophene dyes, and rare earth complex phosphors.
 〈発光層を除く有機機能層群〉
 次いで、発光ユニットを構成する発光層以外の各層について、電荷注入層、正孔輸送層、電子輸送層及び阻止層の順に説明する。
<Organic functional layer group excluding luminescent layer>
Next, each layer other than the light emitting layer constituting the light emitting unit will be described in the order of the charge injection layer, the hole transport layer, the electron transport layer, and the blocking layer.
 (電荷注入層)
 電荷注入層は、駆動電圧低下や発光輝度向上のために、電極と発光層の間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されており、正孔注入層と電子注入層とがある。
(Charge injection layer)
The charge injection layer is a layer provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. “The organic EL element and its industrialization front line (November 30, 1998, NT. The details are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Part 2” of S Co., Ltd., and there are a hole injection layer and an electron injection layer.
 電荷注入層としては、一般には、正孔注入層であれば、陽極(アノード)と発光層又は正孔輸送層との間、電子注入層であれば陰極(カソード)と発光層又は電子輸送層との間に存在させることができるが、本発明においては、透明電極に隣接して電荷注入層を配置させることを特徴とする。また、中間電極で用いられる場合は、隣接する電子注入層及び正孔注入層の少なくとも一方が、本発明の要件を満たしていれば良い。 In general, the charge injection layer is between the anode (anode) and the light emitting layer or hole transport layer if it is a hole injection layer, or the cathode (cathode) and light emitting layer or electron transport layer if it is an electron injection layer. However, the present invention is characterized in that the charge injection layer is disposed adjacent to the transparent electrode. When used in an intermediate electrode, it is sufficient that at least one of the adjacent electron injection layer and hole injection layer satisfies the requirements of the present invention.
 正孔注入層は、駆動電圧低下や発光輝度向上のために、透明電極である陽極(アノード)に隣接して配置される層であり、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。 The hole injection layer is a layer disposed adjacent to the anode (anode) which is a transparent electrode in order to lower the driving voltage and improve the luminance of light emission. “The organic EL element and its industrialization front line (November 1998) (Published by NTS, Inc., 30th) ”, the second volume, Chapter 2,“ Electrode Materials ”(pages 123 to 166).
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT(ポリエチレンジオキシチオフェン):PSS(ポリスチレンスルホン酸)、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。 The details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc. Examples of materials used for the hole injection layer include: , Porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives, Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinylcarbazole, aromatic amines introduced into the main chain or side chain Child material or oligomer, polysilane, a conductive polymer or oligomer (e.g., PEDOT (polyethylene dioxythiophene): PSS (polystyrene sulfonic acid), aniline copolymers, polyaniline, polythiophene, etc.) and the like can be mentioned.
 トリアリールアミン誘導体としては、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)に代表されるベンジジン型や、MTDATA(4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン)に代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。 Examples of the triarylamine derivative include benzidine type represented by α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), and MTDATA (4,4 ′, 4 ″). Examples include a starburst type represented by -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine), a compound having fluorene or anthracene in the triarylamine-linked core.
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。 In addition, hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
 電子注入層は、駆動電圧低下や発光輝度向上のために、陰極(カソード)と発光層との間に設けられる層のことであり、陰極(カソード)が銀又は銀を主成分とする透光性電極である場合は、当該透明電極に隣接して設けられ、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。 The electron injection layer is a layer provided between the cathode (cathode) and the light emitting layer for lowering the driving voltage and improving the light emission luminance. The cathode (cathode) is a light-transmitting material mainly composed of silver or silver. In the case of a conductive electrode, it is provided adjacent to the transparent electrode, and “Organic EL element and its forefront of industrialization” (issued on November 30, 1998 by NTT) The electrode material "(pages 123 to 166) is described in detail.
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ金属ハライド層、フッ化マグネシウムに代表されるアルカリ土類金属化合物層、酸化モリブデン、酸化アルミニウム等に代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、本発明における透明電極が陰極(カソード)の場合は、金属錯体等の有機材料が特に好適に用いられる。電子注入層はごく薄い膜であることが望ましく、構成材料にもよるが、その層厚は1nm~10μmの範囲が好ましい。 Details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specific examples of materials preferably used for the electron injection layer are as follows. Metals represented by strontium and aluminum, alkali metal compounds represented by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkali metal halide layers represented by magnesium fluoride, calcium fluoride, etc. Examples thereof include an alkaline earth metal compound layer typified by magnesium, a metal oxide typified by molybdenum oxide and aluminum oxide, and a metal complex typified by lithium 8-hydroxyquinolate (Liq). Moreover, when the transparent electrode in this invention is a cathode (cathode), organic materials, such as a metal complex, are used especially suitably. The electron injection layer is preferably a very thin film, and depending on the constituent material, the layer thickness is preferably in the range of 1 nm to 10 μm.
 (正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層及び電子阻止層も正孔輸送層の機能を有する。正孔輸送層は単層又は複数層設けることができる。
(Hole transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes. In a broad sense, the hole injection layer and the electron blocking layer also have the function of a hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー及びチオフェンオリゴマー等が挙げられる。 The hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, and thiophene oligomers.
 正孔輸送材料としては、上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物を用いることができ、特に芳香族第3級アミン化合物を用いることが好ましい。 As the hole transport material, those described above can be used, but porphyrin compounds, aromatic tertiary amine compounds and styrylamine compounds can be used, and in particular, aromatic tertiary amine compounds can be used. preferable.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(略称:TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン及びN-フェニルカルバゾール等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (abbreviation: TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminophenyl) phenylmethane, N, N'-diphenyl-N N'-di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) Quadriphenyl, N, N, N-tri (p-tolyl) amine, 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene, 4-N, N -Diphenylamino- (2-diphenylvinyl) benzene, 3-methoxy-4'-N, N-diphenylaminostilbenzene, N-phenylcarbazole and the like.
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLY法(ラングミュア・ブロジェット、Lxngmuir Blodgett法)等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲である。この正孔輸送層は、上記材料の1種又は2種以上からなる1層構造であってもよい。 For the hole transport layer, the hole transport material may be formed by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, and an LY method (Langmuir Brodget, Lxngmuir Brodgett method). Thus, it can be formed by thinning. The layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、正孔輸送層の材料に不純物をドープすることにより、p性を高くすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報及びJ.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 Also, the p property can be increased by doping impurities into the material of the hole transport layer. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175 and J.P. Appl. Phys. 95, 5773 (2004), and the like.
 このように、正孔輸送層のp性を高くすると、より低消費電力の素子を作製することができるため好ましい。 Thus, it is preferable to increase the p property of the hole transport layer because an element with lower power consumption can be manufactured.
 (電子輸送層)
 電子輸送層は、電子を輸送する機能を有する材料から構成され、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層構造又は複数層の積層構造として設けることができる。
(Electron transport layer)
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer structure or a stacked structure of a plurality of layers.
 単層構造の電子輸送層及び積層構造の電子輸送層において、発光層に隣接する層部分を構成する電子輸送材料(正孔阻止材料を兼ねる)としては、カソードより注入された電子を発光層に伝達する機能を有していれば良い。このような材料としては、従来公知の化合物の中から任意のものを選択して用いることができる。例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体及びオキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送層の材料として用いることができる。さらにこれらの材料を高分子鎖に導入した高分子材料又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 In the electron transport layer having a single-layer structure and the electron transport layer having a multilayer structure, an electron transport material (also serving as a hole blocking material) constituting a layer portion adjacent to the light emitting layer is used as an electron transporting material. What is necessary is just to have the function to transmit. As such a material, any one of conventionally known compounds can be selected and used. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, and oxadiazole derivatives. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as a material for the electron transport layer. it can. Furthermore, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送層の材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8- Quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc. and the central metal of these metal complexes A metal complex replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as a material for the electron transport layer.
 電子輸送層は、上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法及びLY法等の公知の方法により、薄膜化することで形成することができる。電子輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmの範囲内である。電子輸送層は上記材料の1種又は2種以上からなる単一構造であってもよい。 The electron transport layer can be formed by thinning the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LY method. The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The electron transport layer may have a single structure composed of one or more of the above materials.
 (阻止層)
 阻止層としては、正孔阻止層及び電子阻止層が挙げられ、上記説明した有機機能層ユニット3の各構成層の他に、必要に応じて設けられる層である。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層等を挙げることができる。
(Blocking layer)
The blocking layer includes a hole blocking layer and an electron blocking layer, and is a layer provided as necessary in addition to the constituent layers of the organic functional layer unit 3 described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. Hole blocking (hole block) layer and the like.
 正孔阻止層とは、広い意味では、電子輸送層の機能を有する。正孔阻止層は、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer has a function of an electron transport layer in a broad sense. The hole blocking layer is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes, and recombines electrons and holes by blocking holes while transporting electrons. Probability can be improved. Moreover, the structure of an electron carrying layer can be used as a hole-blocking layer as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer.
 一方、電子阻止層とは、広い意味では、正孔輸送層の機能を有する。電子阻止層は、正孔を輸送する機能を有しつつ、電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に適用する正孔阻止層の層厚としては、好ましくは3~100nmの範囲であり、さらに好ましくは5~30nmの範囲である。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense. The electron blocking layer is made of a material that has the ability to transport holes and has a very small ability to transport electrons. By blocking holes while transporting holes, the probability of recombination of electrons and holes is improved. Can be made. Moreover, the structure of a positive hole transport layer can be used as an electron blocking layer as needed. The layer thickness of the hole blocking layer applied to the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
 〔透光性中間電極〕
 本発明の有機EL素子においては、陽極(アノード)と陰極(カソード)との間に複数の発光ユニットが構成されるが、当該複数の発光ユニット間を、電気的接続を得るための独立した接続端子を有する透光性中間電極で分離した構造をとる。
(Translucent intermediate electrode)
In the organic EL device of the present invention, a plurality of light emitting units are configured between an anode (anode) and a cathode (cathode), and independent connection for obtaining an electrical connection between the plurality of light emitting units. The structure is separated by a translucent intermediate electrode having a terminal.
 透光性中間電極として用いることのできる材料は前述の透光性第1電極と同様であり、中でも、銀又は銀を主成分とした合金で構成される電極であることが好ましく、この場合には、透光性中間電極に隣接した位置に、前述の少なくとも窒素原子又は硫黄原子を有する有機化合物を含有する下地層を有することが好ましい態様である。 The material that can be used as the translucent intermediate electrode is the same as that of the above-described translucent first electrode. Among them, it is preferable that the electrode is composed of silver or an alloy containing silver as a main component. Is a preferred embodiment having an underlayer containing an organic compound having at least a nitrogen atom or a sulfur atom as described above at a position adjacent to the translucent intermediate electrode.
 〔透光性第2電極〕
 透光性第2電極は、有機機能層群や発光層に電子を供給するために機能する電極膜であり、金属、合金、有機又は無機の導電性化合物若しくはこれらの混合物が用いられる。具体的には、金、アルミニウム、銀、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、ITO、ZnO、TiO及びSnO等の酸化物半導体などが挙げられる。
[Translucent second electrode]
The translucent second electrode is an electrode film that functions to supply electrons to the organic functional layer group and the light emitting layer, and a metal, an alloy, an organic or inorganic conductive compound, or a mixture thereof is used. Specifically, gold, aluminum, silver, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, indium, lithium / aluminum mixture, rare earth metal, ITO, ZnO, TiO Oxide semiconductors such as 2 and SnO 2 .
 透光性第2電極は、これらの導電性材料を蒸着やスパッタリング等の方法により薄膜を形成させて作製することができる。また、第2電極としてのシート抵抗は、数百Ω/□以下が好ましく、膜厚は通常5nm~5μm、好ましくは5~200nmの範囲で選ばれる。 The translucent second electrode can be produced by forming a thin film of these conductive materials by a method such as vapor deposition or sputtering. The sheet resistance as the second electrode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 5 nm to 5 μm, preferably 5 to 200 nm.
 なお、本発明の有機EL素子は、陰極(カソード)側からも発光光を取り出す両面発光型であるので、光透過性の良好な電極を選択して構成すればよい。 Note that the organic EL element of the present invention is a double-sided light emitting type in which emitted light is extracted also from the cathode (cathode) side. Therefore, an electrode having good light transmittance may be selected and configured.
 中でも、透光性第1電極と同様に、銀又は銀を主成分とした合金で構成される電極であることが好ましく、この場合には、透光性中間電極に隣接した位置に、前述の少なくとも窒素原子又は硫黄原子を有する有機化合物を含有する下地層を有することが好ましい態様である。 Among them, like the translucent first electrode, an electrode composed of silver or an alloy containing silver as a main component is preferable, and in this case, the above-described position is adjacent to the translucent intermediate electrode. It is a preferable embodiment to have an underlayer containing an organic compound having at least a nitrogen atom or a sulfur atom.
 〔透光性封止基板〕
 本発明の有機EL素子を封止するのに用いられる封止手段としては、透光性封止基板によって、発光ユニット及び電極群を透光性基板上に接着剤で固体封止(ラミネート封止)する方法を挙げることができる。
[Translucent sealing substrate]
As a sealing means used for sealing the organic EL element of the present invention, a light-emitting unit and an electrode group are solid-sealed with an adhesive on a light-transmitting substrate (laminate sealing). ).
 透光性封止基板としては、有機EL素子の表示領域を覆うように配置されていればよく透光性であれば、凹板状でも、平板状でもよく、電気絶縁性は特に限定されない。 The translucent sealing substrate may be disposed so as to cover the display area of the organic EL element, and may be concave or flat as long as it is translucent, and the electrical insulation is not particularly limited.
 具体的には、前記透光性基板と同一の材料から形成されるフレキシブル基板であることが好ましく、同一の材料から形成されることによって、基板の透光性及び素子内部の屈折率が同一となり、当該発光ユニットの設計によらず、両面で均一な発光特性が得られるため、好ましい。 Specifically, it is preferably a flexible substrate formed of the same material as the light-transmitting substrate. By forming the substrate from the same material, the light-transmitting property of the substrate and the refractive index inside the element become the same. Regardless of the design of the light emitting unit, it is preferable because uniform light emitting characteristics can be obtained on both sides.
 本発明に適用可能な樹脂基板としては、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類及びそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート(略称:PC)、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル及びポリアリレート類、アートン(商品名、JSR社製)及びアペル(商品名、三井化学社製)等のシクロオレフィン系樹脂等を挙げることができる。 Examples of the resin substrate applicable to the present invention include polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, and cellulose triacetate (abbreviation: TAC). Cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate and their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, Polycarbonate (abbreviation: PC), norbornene resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone (Abbreviation: PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic and polyarylates, Arton (trade name, manufactured by JSR) and Appel (product) Name, manufactured by Mitsui Chemicals, Inc.) and the like.
 また、本発明に適用可能な薄板フレキシブルガラスは、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。薄板フレキシブルガラスの厚さとしては、例えば、5~300μmの範囲であり、好ましくは20~150μmの範囲である。 Further, examples of the thin flexible glass applicable to the present invention include soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. The thickness of the thin flexible glass is, for example, in the range of 5 to 300 μm, and preferably in the range of 20 to 150 μm.
 透光性封止基板としては、有機EL素子を薄膜化することできる観点から、樹脂フィルムを好ましく使用することができる。さらに、樹脂フィルムは、JIS K 7129-1992に準拠した方法で測定された温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m・24h・atm(1atmは、1.01325×10Paである)以下であって、温度25±0.5℃、相対湿度90±2%RHにおける水蒸気透過度が、1×10-3g/m・24h以下であることが好ましい。 As the translucent sealing substrate, a resin film can be preferably used from the viewpoint of reducing the thickness of the organic EL element. Further, the resin film has a water vapor transmission rate of 1 × 10 −3 g / m 2 .multidot.m at a temperature of 25 ± 0.5 ° C. and a relative humidity of 90 ± 2% RH measured by a method according to JIS K 7129-1992. The oxygen permeability measured by a method according to JIS K 7126-1987 is preferably 1 × 10 −3 ml / m 2 · 24 h · atm (1 atm is 1.01325 × 10 5 a Pa) equal to or lower than a temperature of 25 ± 0.5 ° C., water vapor permeability at a relative humidity of 90 ± 2% RH is preferably not more than 1 × 10 -3 g / m 2 · 24h.
 このようなガスバリアー性を具備させるには、透光性封止基板上に透光性基板と同様に前述のガスバリアー層を設けることが好ましい。 In order to provide such a gas barrier property, it is preferable to provide the above-described gas barrier layer on the light-transmitting sealing substrate in the same manner as the light-transmitting substrate.
 (ラミネート封止方法)
 透光性封止基板によるラミネート封止(固体封止)する方法は、特に限定されるものではないが、例えば上記有機EL素子を酸素及び水分濃度が一定の環境下(例えば、酸素濃度10ppm以下、水分濃度10ppm以下のグローブボックス内等)に置き、減圧下(1×10-3MPa以下)で吸引しながら加重をかけてプレスして、透光性封止基板に形成した接着層によって当該有機EL素子100をラミネート封止し、その後、熱風循環式オーブン、赤外線ヒーター、ヒートガン、高周波誘導加熱装置、ヒートツールの圧着による加熱等によって、当該接着層を熱硬化することによって行われる。
(Laminate sealing method)
A method for performing laminate sealing (solid sealing) with a light-transmitting sealing substrate is not particularly limited. For example, the organic EL element is subjected to an environment in which oxygen and moisture concentrations are constant (for example, an oxygen concentration of 10 ppm or less). Placed in a glove box having a moisture concentration of 10 ppm or less, etc.) and pressed under a reduced pressure (1 × 10 −3 MPa or less) while applying pressure, and the adhesive layer formed on the translucent sealing substrate The organic EL element 100 is laminated and sealed, and then the adhesive layer is thermally cured by heating with a hot air circulation oven, an infrared heater, a heat gun, a high frequency induction heating device, a heat tool, or the like.
 接着剤としては、特に制限はないが、具体的には、エポキシ樹脂、シアネートエステル樹脂、フェノール樹脂、ビスマレイミド-トリアジン樹脂、ポリイミド樹脂、アクリル樹脂、ビニルベンジル樹脂等の種々の熱硬化性樹脂が好ましい。中でも、低温硬化性や接着性等の観点から、エポキシ樹脂が好ましい。 There are no particular restrictions on the adhesive, but specific examples include various thermosetting resins such as epoxy resins, cyanate ester resins, phenol resins, bismaleimide-triazine resins, polyimide resins, acrylic resins, and vinylbenzyl resins. preferable. Among these, an epoxy resin is preferable from the viewpoint of low-temperature curability and adhesiveness.
 エポキシ樹脂としては、平均して1分子当り2個以上のエポキシ基を有するものであればよく、具体的には、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、リン含有エポキシ樹脂、ビスフェノールS型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂(具体的には、テトラグリシジルジアミノジフェニルメタン、トリグリシジル-p-アミノフェノール、ジグリシジルトルイジン、ジグリシジルアニリン等)、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ジシクロペンタジエン構造を有するエポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のグリシジルエーテル化物、及びアルコール類のジグリシジルエーテル化物、並びにこれらのエポキシ樹脂のアルキル置換体、ハロゲン化物及び水素添加物等が挙げられる。これらは1種又は2種以上を組み合わせて使用してもよい。 As an epoxy resin, those having an average of two or more epoxy groups per molecule may be used. Specifically, bisphenol A type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, and naphthol type epoxy are used. Resin, naphthalene type epoxy resin, bisphenol F type epoxy resin, phosphorus-containing epoxy resin, bisphenol S type epoxy resin, aromatic glycidylamine type epoxy resin (specifically, tetraglycidyldiaminodiphenylmethane, triglycidyl-p-aminophenol, Diglycidyl toluidine, diglycidyl aniline, etc.), alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin , Epoxy resin having a butadiene structure, phenol aralkyl type epoxy resin, epoxy resin having a dicyclopentadiene structure, diglycidyl etherified product of bisphenol, diglycidyl etherified product of naphthalenediol, glycidyl etherified product of phenol, and diester of alcohol Examples thereof include glycidyl etherified products, and alkyl-substituted products, halides, and hydrogenated products of these epoxy resins. These may be used alone or in combination of two or more.
 これらの中でも、樹脂組成物の高い耐熱性及び低い透湿性を保つ等の観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂、ジシクロペンタジエン構造を有するエポキシ樹脂等が好ましい。 Among these, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, biphenyl aralkyl type epoxy resin, phenol aralkyl type epoxy from the viewpoint of maintaining high heat resistance and low moisture permeability of the resin composition. A resin, an aromatic glycidylamine type epoxy resin, an epoxy resin having a dicyclopentadiene structure, and the like are preferable.
 また、エポキシ樹脂は、液状であっても、固形状であっても、液状と固形状の両方を用いてもよい。ここで、「液状」及び「固形状」とは、25℃でのエポキシ樹脂の状態である。塗工性、加工性、接着性等の観点から、使用するエポキシ樹脂全体の10質量%以上が液状であるのが好ましい。 The epoxy resin may be liquid, solid, or both liquid and solid. Here, “liquid” and “solid” are states of the epoxy resin at 25 ° C. From the viewpoints of coatability, processability, adhesiveness, and the like, it is preferable that 10% by mass or more of the entire epoxy resin to be used is liquid.
 また、エポキシ樹脂は反応性の観点から、エポキシ当量が100~1000の範囲のものが好ましく、より好ましくは120~1000の範囲のものである。ここでエポキシ当量とは1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)であり、JIS K-7236に規定された方法に従って測定されるものである。 The epoxy resin preferably has an epoxy equivalent in the range of 100 to 1000, more preferably in the range of 120 to 1000, from the viewpoint of reactivity. Here, the epoxy equivalent is the number of grams (g / eq) of a resin containing 1 gram equivalent of an epoxy group, and is measured according to the method defined in JIS K-7236.
 エポキシ樹脂の硬化剤としては、エポキシ樹脂を硬化する機能を有するものであれば特に限定されないが、樹脂組成物の硬化処理時における素子(特に有機EL素子)の熱劣化を抑制する観点から、樹脂組成物の硬化処理は好ましくは140℃以下、より好ましくは120℃以下で行うのが好ましく、硬化剤はかかる温度領域にてエポキシ樹脂の硬化作用を有するものが好ましい。 The curing agent for the epoxy resin is not particularly limited as long as it has a function of curing the epoxy resin, but from the viewpoint of suppressing thermal deterioration of the element (particularly the organic EL element) during the curing treatment of the resin composition. The curing treatment of the composition is preferably performed at 140 ° C. or lower, more preferably 120 ° C. or lower, and the curing agent preferably has an epoxy resin curing action in such a temperature range.
 具体的には、一級アミン、二級アミン、三級アミン系硬化剤、ポリアミノアミド系硬化剤、ジシアンジアミド、有機酸ジヒドラジド等が挙げられるが、中でも、速硬化性の観点から、アミンアダクト系化合物(アミキュアPN-23、アミキュアMY-24、アミキュアPN-D、アミキュアMY-D、アミキュアPN-H、アミキュアMY-H、アミキュアPN-31、アミキュアPN-40、アミキュアPN-40J等(いずれも味の素ファインテクノ社製))、有機酸ジヒドラジド(アミキュアVDH-J、アミキュアUDH、アミキュアLDH等(いずれも味の素ファインテクノ社製))等が好ましい。これらは1種又は2種以上組み合わせて使用してもよい。 Specific examples include primary amines, secondary amines, tertiary amine-based curing agents, polyaminoamide-based curing agents, dicyandiamide, and organic acid dihydrazides. Among these, amine adduct-based compounds ( Amicure PN-23, Amicure MY-24, Amicure PN-D, Amicure MY-D, Amicure PN-H, Amicure MY-H, Amicure PN-31, Amicure PN-40, Amicure PN-40J, etc. (all Ajinomoto Fine Techno)), organic acid dihydrazide (Amicure VDH-J, Amicure UDH, Amicure LDH, etc. (all manufactured by Ajinomoto Fine Techno Co.)) and the like are preferable. These may be used alone or in combination of two or more.
 エポキシ樹脂は極めて良好な低温硬化性を有しており、硬化温度の上限は140℃以下が好ましく、120℃以下がより好ましく、110℃以下が更に好ましい。一方、硬化物の接着性を確保するという観点から、硬化温度の下限は50℃以上が好ましく、55℃以上がより好ましい。また、硬化時間の上限は120分以下が好ましく、90分以下がより好ましく、60分以下が更に好ましい。一方、硬化物の硬化を確実に行うという観点から、硬化時間の下限は20分以上が好ましく、30分以上がより好ましい。これによって、有機EL素子の熱劣化を極めて小さくすることができる。 The epoxy resin has extremely good low-temperature curability, and the upper limit of the curing temperature is preferably 140 ° C. or less, more preferably 120 ° C. or less, and even more preferably 110 ° C. or less. On the other hand, from the viewpoint of securing the adhesiveness of the cured product, the lower limit of the curing temperature is preferably 50 ° C. or higher, and more preferably 55 ° C. or higher. Moreover, 120 minutes or less is preferable, as for the upper limit of hardening time, 90 minutes or less are more preferable, and 60 minutes or less are still more preferable. On the other hand, from the viewpoint of surely curing the cured product, the lower limit of the curing time is preferably 20 minutes or more, and more preferably 30 minutes or more. Thereby, the thermal deterioration of the organic EL element can be extremely reduced.
 〔その他の構成要素〕
 (取り出し電極)
 取り出し電極は、透光性第1電極、透光性中間電極及び透光性第2電極と外部電源とを電気的に接続するものであって、その材料としては特に限定されるものではなく公知の素材を好適に使用できるが、例えば、3層構造からなるMAM電極(Mo/Al・Nd合金/Mo)等の金属膜を用いることができる。
[Other components]
(Extraction electrode)
The extraction electrode is for electrically connecting the translucent first electrode, translucent intermediate electrode, translucent second electrode, and external power source, and the material thereof is not particularly limited and is publicly known. However, for example, a metal film such as a MAM electrode (Mo / Al · Nd alloy / Mo) having a three-layer structure can be used.
 (補助電極)
 補助電極は、透光性電極の抵抗を下げる目的で設けるものであって、透光性第1電極に接して設けられる。補助電極を形成する材料は、金、白金、銀、銅、アルミニウム等の抵抗が低い金属が好ましい。これらの金属は光透過性が低いため、光取り出し面からの発光光hの取り出しの影響のない範囲でパターン形成される。このような補助電極の形成方法としては、蒸着法、スパッタリング法、印刷法、インクジェット法、エアロゾルジェット法などが挙げられる。補助電極の線幅は、光を取り出す開口率の観点から50μm以下であることが好ましく、補助電極の厚さは、導電性の観点から1μm以上であることが好ましい。
(Auxiliary electrode)
The auxiliary electrode is provided for the purpose of reducing the resistance of the translucent electrode, and is provided in contact with the translucent first electrode. The material for forming the auxiliary electrode is preferably a metal having low resistance such as gold, platinum, silver, copper, or aluminum. Since these metals have low light transmittance, a pattern is formed in a range not affected by extraction of the emitted light h from the light extraction surface. Examples of a method for forming such an auxiliary electrode include a vapor deposition method, a sputtering method, a printing method, an ink jet method, and an aerosol jet method. The line width of the auxiliary electrode is preferably 50 μm or less from the viewpoint of the aperture ratio for extracting light, and the thickness of the auxiliary electrode is preferably 1 μm or more from the viewpoint of conductivity.
 (保護膜、保護板)
 保護膜若しくは保護板は、有機EL素子を機械的に保護するためのものであり、特に封止材が封止膜である場合には、有機EL素子に対する機械的な保護が十分ではないため、このような保護膜若しくは保護板を設けることが好ましい。
(Protective film, protective plate)
The protective film or the protective plate is for mechanically protecting the organic EL element, and particularly when the sealing material is a sealing film, the mechanical protection for the organic EL element is not sufficient. It is preferable to provide such a protective film or protective plate.
 以上のような保護膜若しくは保護板は、ガラス板、ポリマー板、これよりも薄型の樹脂フィルム、金属板、これよりも薄型の金属フィルム、又はポリマー材料膜や金属材料膜が適用される。このうち特に、透光性に有利であり、軽量かつ薄膜化ということから樹脂フィルムを用いることが好ましい。 As the above protective film or protective plate, a glass plate, a polymer plate, a resin film thinner than this, a metal plate, a metal film thinner than this, a polymer material film or a metal material film is applied. Among these, it is particularly advantageous for translucency, and it is preferable to use a resin film because it is lightweight and thin.
 〔有機EL素子の製造方法〕
 本発明の有機EL素子の製造方法としては、最小構成として、透光性基板上に、透光性第1電極(陽極)、発光ユニット-1、透光性中間電極-1、発光ユニット-2、透光性中間電極-2、発光ユニット-3(発光ユニット-1と同)、透光性第2電極(陰極(カソード))及び透光性封止基板を積層して積層体を形成する。
[Method for producing organic EL element]
As a method for producing the organic EL element of the present invention, as a minimum configuration, a translucent first electrode (anode), a light emitting unit-1, a translucent intermediate electrode-1, and a light emitting unit-2 are provided on a translucent substrate. The light-transmitting intermediate electrode-2, the light-emitting unit-3 (same as the light-emitting unit-1), the light-transmitting second electrode (cathode) and the light-transmitting sealing substrate are stacked to form a laminate. .
 まず、透光性基板を準備し、該透光性基板上に、所望の電極物質、例えば、陽極(アノード)用物質からなる薄膜を1μm以下、好ましくは10~200nmの範囲内の膜厚になるように、蒸着やスパッタリング等の方法により形成させ、陽極(アノード)を形成する。同時に、陽極(アノード)端部に、外部電源と接続する接続電極部を形成する。 First, a translucent substrate is prepared, and a thin film made of a desired electrode material, for example, an anode (anode) material is formed on the translucent substrate to a thickness of 1 μm or less, preferably in the range of 10 to 200 nm. In this manner, an anode (anode) is formed by a method such as vapor deposition or sputtering. At the same time, a connection electrode portion connected to an external power source is formed at the end of the anode (anode).
 次に、この上に、発光ユニット-1を構成する正孔注入層及び正孔輸送層、発光層、有機機能層群2を構成する電子輸送層等を順に積層する。 Next, a hole injection layer and a hole transport layer constituting the light-emitting unit-1, a light-emitting layer, an electron transport layer constituting the organic functional layer group 2 and the like are sequentially laminated thereon.
 これらの各層の形成は、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な層が得られやすく、かつ、ピンホールが生成しにくい等の点から、真空蒸着法又はスピンコート法が特に好ましい。更に、層ごとに異なる形成法を適用しても良い。これらの各層の形成に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度1×10-6~1×10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、層厚0.1~5μmの範囲内で、各条件を適宜選択することが望ましい。 The formation of each of these layers includes spin coating, casting, inkjet, vapor deposition, and printing, but vacuum vapor deposition is easy because a homogeneous layer is easily obtained and pinholes are difficult to generate. The method or spin coating method is particularly preferred. Further, different formation methods may be applied for each layer. When a vapor deposition method is employed for forming each of these layers, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C. and a degree of vacuum of 1 × 10 −6 to 1 × 10 −2 Pa. It is desirable to appropriately select the respective conditions within the range of a deposition rate of 0.01 to 50 nm / second, a substrate temperature of −50 to 300 ° C., and a layer thickness of 0.1 to 5 μm.
 以上のようにして発光ユニット-1を形成した後、この上部に透光性中間電極-1を蒸着法やスパッタ法などの適宜の形成法によって形成する。次いで、発光ユニット-2、透光性中間電極-2、発光ユニット-3を同様に積層し、透光性第2電極を発光ユニット群によって陽極(アノード)に対して絶縁状態を保ちつつ、発光委ユニット群の上方から透光性基板の周縁に端子部分を引き出した形状にパターン形成する。 After the light emitting unit-1 is formed as described above, the translucent intermediate electrode-1 is formed thereon by an appropriate forming method such as vapor deposition or sputtering. Next, the light-emitting unit-2, the translucent intermediate electrode-2, and the light-emitting unit-3 are laminated in the same manner, and the light-transmitting second electrode emits light while being insulated from the anode (anode) by the light-emitting unit group. The pattern is formed in a shape in which the terminal portion is drawn from the upper side of the delegate unit group to the periphery of the translucent substrate.
 透光性第2電極の形成後、これらを透光性封止基板によって封止する。その際、陽極(アノード)及び陰極(カソード)の端子部分を露出させた状態で、透光性基板上に、少なくとも発光ユニット群を覆うように封止する。 After the formation of the translucent second electrode, these are sealed with a translucent sealing substrate. At this time, the terminal portions of the anode (anode) and the cathode (cathode) are exposed, and sealing is performed on the light-transmitting substrate so as to cover at least the light emitting unit group.
 また、有機EL素子の製造において、例えば、有機EL素子の各電極と、発光素子駆動回路ユニット、又はタッチ検知回路ユニットと電気的に接続するが、その際に用いることのできる電気的な接続部材としては、導電性を備えた部材であれば特に制限はないが、異方性導電膜(ACF)、導電性ペースト、又は金属ペーストであることが好ましい態様である。 In the manufacture of an organic EL element, for example, each electrode of the organic EL element is electrically connected to a light emitting element driving circuit unit or a touch detection circuit unit, and an electrical connection member that can be used at that time Although there is no restriction | limiting in particular if it is a member provided with electroconductivity, It is a preferable aspect that it is an anisotropic conductive film (ACF), an electroconductive paste, or a metal paste.
 異方性導電膜(ACF)とは、例えば、熱硬化性樹脂に混ぜ合わせた導電性を持つ微細な導電性粒子を有する層を挙げることができる。本発明に用いることができる導電性粒子含有層としては、異方性導電部材としての導電性粒子を含有する層であれば、特に制限はなく、目的に応じて適宜選択することができる。異方性導電部材として用いることができる導電性粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属粒子、金属被覆樹脂粒子などが挙げられる。市販されているACFとしては、例えば、MF-331(日立化成製)などの、樹脂フィルムにも適用可能な低温硬化型のACFを挙げることができる。 Examples of the anisotropic conductive film (ACF) include a layer having fine conductive particles having conductivity mixed with a thermosetting resin. The conductive particle-containing layer that can be used in the present invention is not particularly limited as long as it is a layer containing conductive particles as an anisotropic conductive member, and can be appropriately selected according to the purpose. There is no restriction | limiting in particular as electroconductive particle which can be used as an anisotropic conductive member, According to the objective, it can select suitably, For example, a metal particle, a metal covering resin particle, etc. are mentioned. Examples of commercially available ACFs include low-temperature curing ACFs that can also be applied to resin films, such as MF-331 (manufactured by Hitachi Chemical).
 金属粒子としては、例えば、ニッケル、コバルト、銀、銅、金、パラジウムなどが挙げられ、金属被覆樹脂粒子としては、例えば、樹脂コアの表面をニッケル、銅、金、及びパラジウムのいずれかの金属を被覆した粒子が挙げられ、金属ペーストとしては、市販されている金属ナノ粒子ペースト等を挙げることができる。 Examples of the metal particles include nickel, cobalt, silver, copper, gold, palladium, and the like. As the metal-coated resin particles, for example, the surface of the resin core is any one of nickel, copper, gold, and palladium. The metal paste may be a commercially available metal nanoparticle paste.
 〔本発明の有機EL素子の回路の一例〕
 本発明の有機EL素子は、前記複数の透光性中間電極の極性が、前記透光性基板側から陽、陰の繰り返し順、又は陰、陽の繰り返し順に積層されていることが、設計及び制御しやすく、自在に発光色を変化させることができる有機エレクトロルミネッセンス素子を提供する観点から、好ましい態様である。
[Example of circuit of organic EL element of the present invention]
The organic EL device of the present invention is designed so that the polarities of the plurality of translucent intermediate electrodes are laminated from the translucent substrate side in the positive, negative repeating order, or the negative, positive repeating order. From the viewpoint of providing an organic electroluminescence device that is easy to control and can freely change the emission color, this is a preferred embodiment.
 図3は、本発明の3個の発光ユニットを有する有機EL素子を駆動する回路の一例を示す模式図である。図3は図1Aの構成の場合の回路の一例である。 FIG. 3 is a schematic diagram showing an example of a circuit for driving an organic EL element having three light emitting units of the present invention. FIG. 3 is an example of a circuit in the case of the configuration of FIG. 1A.
 透光性第2電極102、透光性第1電極101、及び透光性中間電極104-1、104-2は、それぞれ独立して有機EL素子100の外部から電圧を印加可能である。図3に示した例では、透光性第1電極101、透光性中間電極104-1と透光性中間電極104-2、及び透光性第2電極102は、これらの電極のうちの任意の電極間に電圧を印加する電源回路200に接続される。具体的には、透光性第2電極102は第1スイッチS1を介して電圧源210の陰極(カソード)端子に接続可能である。透光性中間電極104-2は第2スイッチS2を介して電圧源210の陰極(カソード)端子又は陽極(アノード)端子に接続可能である。透光性中間電極104-1は第3スイッチS3を介して電圧源210の陰極(カソード)端子又は陽極(アノード)端子に接続可能である。透光性第1電極101は第4スイッチS4を介して電圧源210の陽極(アノード)端子に接続可能である。 The translucent second electrode 102, the translucent first electrode 101, and the translucent intermediate electrodes 104-1 and 104-2 can be independently applied with a voltage from the outside of the organic EL element 100. In the example shown in FIG. 3, the translucent first electrode 101, the translucent intermediate electrode 104-1, the translucent intermediate electrode 104-2, and the translucent second electrode 102 are formed of these electrodes. It is connected to a power supply circuit 200 that applies a voltage between arbitrary electrodes. Specifically, the translucent second electrode 102 can be connected to the cathode (cathode) terminal of the voltage source 210 via the first switch S1. The translucent intermediate electrode 104-2 can be connected to the cathode (cathode) terminal or the anode (anode) terminal of the voltage source 210 via the second switch S2. The translucent intermediate electrode 104-1 can be connected to the cathode (cathode) terminal or the anode (anode) terminal of the voltage source 210 via the third switch S3. The translucent first electrode 101 can be connected to the anode (anode) terminal of the voltage source 210 via the fourth switch S4.
 電源回路200は、第1スイッチS1~第4スイッチS4の接続状態を制御することによって透光性第1電極101、透光性中間電極104-1、透光性中間電極104-3、及び透光性第2電極102のうちの任意の電極間に電圧を印加し、有機EL素子100の一つ若しくは複数の発光層で光を発生させる。つまり、電源回路200によって電圧を印加する電極を選択することにより、有機EL素子100から所望の単色若しくは複数の色の発光が重なった混色の光を出力できる。 The power supply circuit 200 controls the connection state of the first switch S1 to the fourth switch S4, thereby translucent first electrode 101, translucent intermediate electrode 104-1, translucent intermediate electrode 104-3, and translucent intermediate electrode 104-3. A voltage is applied between any of the optical second electrodes 102 to generate light in one or a plurality of light emitting layers of the organic EL element 100. That is, by selecting an electrode to which a voltage is applied by the power supply circuit 200, it is possible to output light of mixed colors in which light emission of a desired single color or a plurality of colors overlaps from the organic EL element 100.
 表1は、電源回路200の第1スイッチS1~第4スイッチS4の接続状態と有機EL素子100の発光ユニット103-1、発光ユニット103-2及び発光ユニット103-3の発光状態との関係を示す表である。表1において、「+」は第1スイッチS1~第4スイッチS4が電圧源210の陽極(アノード)端子に接続している状態を示し、「-」は第1スイッチS1~第4スイッチS4が電圧源210の陰極(カソード)端子に接続している状態を示す。また、「NC」は第1スイッチS1~第4スイッチS4が開かれ、電圧源210に接続されていない状態であることを示す。 Table 1 shows the relationship between the connection states of the first switch S1 to the fourth switch S4 of the power supply circuit 200 and the light emission states of the light emitting unit 103-1, the light emitting unit 103-2, and the light emitting unit 103-3 of the organic EL element 100. It is a table | surface which shows. In Table 1, “+” indicates that the first switch S1 to the fourth switch S4 are connected to the anode (anode) terminal of the voltage source 210, and “−” indicates that the first switch S1 to the fourth switch S4 are connected. The state connected to the cathode (cathode) terminal of the voltage source 210 is shown. “NC” indicates that the first switch S 1 to the fourth switch S 4 are open and not connected to the voltage source 210.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 例えば、発光ユニット103-3のみを発光させるためには、第1スイッチS1を電圧源210の陰極(カソード)端子に接続し、第2スイッチS2を電圧源210の陽極(アノード)端子に接続し、かつ第3スイッチS3と第4スイッチS4を開く。その結果、透光性第2電極102がカソード電極、透光性中間電極104-2がアノード電極となって、発光ユニット103-3において正孔と電子の再結合により発光する。 For example, in order to cause only the light emitting unit 103-3 to emit light, the first switch S1 is connected to the cathode terminal of the voltage source 210, and the second switch S2 is connected to the anode terminal of the voltage source 210. And the third switch S3 and the fourth switch S4 are opened. As a result, the translucent second electrode 102 becomes a cathode electrode and the translucent intermediate electrode 104-2 becomes an anode electrode, and light is emitted by recombination of holes and electrons in the light emitting unit 103-3.
 発光ユニット103-2のみを発光させるためには、第2スイッチS2を電圧源210の陰極(カソード)端子に接続し、第3スイッチS3を電圧源210の陽極(アノード)端子に接続し、かつ第1スイッチS1と第4スイッチS4を開く。その結果、透光性中間電極104-2がカソード電極、透光性中間電極104-1がアノード電極となって、発光ユニット103-2において正孔と電子の再結合により発光する。 In order to cause only the light emitting unit 103-2 to emit light, the second switch S2 is connected to the cathode terminal of the voltage source 210, the third switch S3 is connected to the anode terminal of the voltage source 210, and The first switch S1 and the fourth switch S4 are opened. As a result, the translucent intermediate electrode 104-2 becomes a cathode electrode and the translucent intermediate electrode 104-1 becomes an anode electrode, and light is emitted by recombination of holes and electrons in the light emitting unit 103-2.
 発光ユニット103-1のみを発光させるためには、第3スイッチS3を電圧源210の陰極(カソード)端子に接続し、第4スイッチS4を電圧源210の陽極(アノード)端子に接続し、かつ第1スイッチS1と第2スイッチS2を開く。その結果、透光性中間電極104-1がカソード電極、透光性第1電極101がアノード電極となって、発光ユニット103-1において正孔と電子の再結合により発光する。 In order to cause only the light emitting unit 103-1 to emit light, the third switch S 3 is connected to the cathode terminal of the voltage source 210, the fourth switch S 4 is connected to the anode terminal of the voltage source 210, and The first switch S1 and the second switch S2 are opened. As a result, the translucent intermediate electrode 104-1 becomes a cathode electrode and the translucent first electrode 101 becomes an anode electrode, and light is emitted by recombination of holes and electrons in the light emitting unit 103-1.
 発光ユニット103-3と発光ユニット103-2を発光させるためには、第1スイッチS1を電圧源210の陰極(カソード)端子に接続し、第3スイッチS3を電圧源210の陽極(アノード)端子に接続し、かつ第2スイッチS2と第4スイッチS4を開く。その結果、透光性第2電極102がカソード電極、透光性中間電極104-1がアノード電極となって、発光ユニット103-3と発光ユニット103-2が発光する。このため、有機EL素子100から当該発光ユニットの混色の光が出力される。 In order to cause the light emitting unit 103-3 and the light emitting unit 103-2 to emit light, the first switch S1 is connected to the cathode terminal of the voltage source 210, and the third switch S3 is connected to the anode terminal of the voltage source 210. And the second switch S2 and the fourth switch S4 are opened. As a result, the light-transmitting second electrode 102 becomes the cathode electrode and the light-transmitting intermediate electrode 104-1 becomes the anode electrode, and the light emitting unit 103-3 and the light emitting unit 103-2 emit light. Therefore, the mixed color light of the light emitting unit is output from the organic EL element 100.
 発光ユニット103-2と発光ユニット103-1を発光させるためには、第2スイッチS2を電圧源210の陰極(カソード)端子に接続し、第4スイッチS4を電圧源210の陽極(アノード)端子に接続し、かつ第1スイッチS1と第3スイッチS3を開く。その結果、透光性中間電極104-2がカソード電極、透光性第1電極101がアノード電極となって、発光ユニット103-2及び発光ユニット103-1が発光する。このため、有機EL素子100からそれぞれの発光光の混色の光が出力される。 In order to cause the light emitting unit 103-2 and the light emitting unit 103-1 to emit light, the second switch S2 is connected to the cathode terminal of the voltage source 210, and the fourth switch S4 is connected to the anode terminal of the voltage source 210. And the first switch S1 and the third switch S3 are opened. As a result, the light-transmitting intermediate electrode 104-2 becomes the cathode electrode and the light-transmitting first electrode 101 becomes the anode electrode, and the light emitting unit 103-2 and the light emitting unit 103-1 emit light. For this reason, light of mixed colors of the respective emitted lights is output from the organic EL element 100.
 発光ユニット103-3と発光ユニット103-1を発光させるためには、第1スイッチS1及び第3スイッチS3を電圧源210の陰極(カソード)端子に接続し、第2スイッチS2及び第4スイッチS4を電圧源210の陽極(アノード)端子に接続する。その結果、透光性第2電極102がカソード電極、透光性中間電極104-2がアノード電極となって、発光ユニット103-3が発光する。同時に、透光性中間電極104-1がカソード電極、透光性第1電極101がアノード電極となって、発光ユニット103-1が発光する。このため、有機EL素子100からそれぞれの発光光の混色の光が出力される。 In order to cause the light emitting unit 103-3 and the light emitting unit 103-1 to emit light, the first switch S1 and the third switch S3 are connected to the cathode (cathode) terminal of the voltage source 210, and the second switch S2 and the fourth switch S4. Is connected to the anode terminal of the voltage source 210. As a result, the light-transmitting second electrode 102 becomes the cathode electrode and the light-transmitting intermediate electrode 104-2 becomes the anode electrode, and the light emitting unit 103-3 emits light. At the same time, the light-transmitting intermediate electrode 104-1 serves as a cathode electrode and the light-transmitting first electrode 101 serves as an anode electrode, and the light emitting unit 103-1 emits light. For this reason, light of mixed colors of the respective emitted lights is output from the organic EL element 100.
 発光ユニット103-3、発光ユニット103-2及び発光ユニット103-1をすべて発光させるためには、第1スイッチS1を電圧源210の陰極(カソード)端子に接続し、第4スイッチS4を電圧源210の陽極(アノード)端子に接続し、かつ第2スイッチS2と第3スイッチS3を開く。その結果、透光性第2電極102がカソード電極、透光性第1電極101がアノード電極となって、発光ユニット103-3、発光ユニット103-2及び発光ユニット103-1が発光する。このため、有機EL素子100からそれぞれの発光光が混色された白色の光が出力される。 In order to make all of the light emitting unit 103-3, the light emitting unit 103-2, and the light emitting unit 103-1 emit light, the first switch S1 is connected to the cathode terminal of the voltage source 210, and the fourth switch S4 is connected to the voltage source. The second switch S2 and the third switch S3 are opened while being connected to the anode (anode) terminal 210. As a result, the light transmissive second electrode 102 becomes the cathode electrode and the light transmissive first electrode 101 becomes the anode electrode, and the light emitting unit 103-3, the light emitting unit 103-2, and the light emitting unit 103-1 emit light. For this reason, the organic EL element 100 outputs white light in which the respective emitted lights are mixed.
 上記のように、図3に示す有機EL素子100は、透光性第2電極102、透光性第1電極101、及び透光性中間電極104-1、104-2のいずれかの層を選択して電圧を印加することによって、発光ユニット103-1、発光ユニット103-2及び発光ユニット103-3のいずれか1層又は複数層において光を発生させて任意の色の光を出力できる。第1スイッチS1~第4スイッチS4は、有機EL素子100から所望の色の光を出力するために、図示を省略する制御回路によって接続状態が制御される。 As described above, the organic EL element 100 shown in FIG. 3 includes any one of the light-transmitting second electrode 102, the light-transmitting first electrode 101, and the light-transmitting intermediate electrodes 104-1 and 104-2. By selecting and applying a voltage, light of any color can be output by generating light in any one or a plurality of layers of the light emitting unit 103-1, the light emitting unit 103-2, and the light emitting unit 103-3. The connection states of the first switch S1 to the fourth switch S4 are controlled by a control circuit (not shown) in order to output light of a desired color from the organic EL element 100.
 ≪有機EL素子の用途≫
 本発明の有機EL素子は、面発光体であり、両面発光型であるため各種の発光光源として用いることができる。例えば、家庭用照明や車内照明等の照明装置、時計や液晶用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等で、両面発光型である特徴を活かした使用方法が挙げられる。
≪Use of organic EL elements≫
The organic EL device of the present invention is a surface light emitter and is a double-sided light emitting type, and therefore can be used as various light emitting sources. For example, lighting devices such as home lighting and interior lighting, backlights for watches and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, The light source of an optical sensor can be used by taking advantage of the double-sided emission characteristics.
 特に、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。この場合、近年の照明装置及びディスプレイの大型化にともない、有機EL素子を設けた発光パネル同士を平面的に接合する、いわゆるタイリングによって発光面を大面積化してもよい。 In particular, the organic EL element of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a type that directly recognizes a still image or a moving image. It may be used as a display device (display). In this case, with the recent increase in the size of lighting devices and displays, the light emitting surface may be enlarged by so-called tiling, in which light emitting panels provided with organic EL elements are joined together in a plane.
 動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。また、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、カラー又はフルカラー表示装置を作製することが可能である。 The drive method when used as a display device for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method. In addition, a color or full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
 以下、照明装置について説明する。 Hereinafter, the lighting device will be described.
 〔照明装置-1〕
 本発明の有機EL素子を用いた照明装置は、上述した構成の各有機EL素子に共振器構造を持たせた設計としてもよい。共振器構造として構成された有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
[Lighting device-1]
The lighting device using the organic EL element of the present invention may be designed such that each organic EL element having the above-described configuration has a resonator structure. Examples of the purpose of use of the organic EL element configured as a resonator structure include, but are not limited to, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. . Moreover, you may use for the said use by making a laser oscillation.
 なお、本発明の有機EL素子に用いられる材料は、白色の発光を生じる有機EL素子(白色有機EL素子ともいう。)に適用できる。例えば、複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得ることもできる。複数の発光色の組み合わせとしては、前述のとおり赤色、緑色、青色の3原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。 Note that the material used for the organic EL element of the present invention can be applied to an organic EL element that emits white light (also referred to as a white organic EL element). For example, a plurality of light emitting materials can simultaneously emit a plurality of light emission colors to obtain white light emission by color mixing. As described above, the combination of a plurality of emission colors may include three emission maximum wavelengths of the three primary colors of red, green, and blue as described above, or use the relationship of complementary colors such as blue and yellow, blue green and orange, etc. It may be one containing the two emission maximum wavelengths.
 また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光又は蛍光で発光する材料を複数組み合わせたもの、蛍光又はリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、白色有機EL素子においては、発光ドーパントを複数組み合わせて混合したものでもよい。 In addition, a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and excitation of light from the light emitting materials. Any combination with a pigment material that emits light as light may be used, but in a white organic EL element, a combination of a plurality of light-emitting dopants may be used.
 このような白色有機EL素子は、各色発光の有機EL素子をアレー状に個別に並列配置して白色発光を得る構成と異なり、有機EL素子自体が白色を発光する。このため、素子を構成するほとんどの層の成膜にマスクを必要とせず、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。 Such a white organic EL element is different from a configuration in which organic EL elements emitting each color are individually arranged in parallel to obtain white light emission, and the organic EL element itself emits white light. For this reason, a mask is not required for film formation of most layers constituting the element, and for example, an electrode film can be formed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is improved. To do.
 またこのような白色有機EL素子の発光層に用いる発光材料としては、特に制限はなく、例えば液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。 In addition, the light emitting material used for the light emitting layer of such a white organic EL element is not particularly limited. For example, in the case of a backlight in a liquid crystal display element, the light emitting material is adapted to a wavelength range corresponding to CF (color filter) characteristics. Any one of the metal complexes according to the present invention and known light-emitting materials may be selected and combined for whitening.
 以上に説明した白色有機EL素子を用いれば、実質的に白色の発光を生じる照明装置を作製することが可能である。 If the white organic EL element described above is used, it is possible to produce a lighting device that emits substantially white light.
 〔照明装置-2〕
 また本発明の有機EL素子は、複数用いて発光面を大面積化した照明装置としても用いることができる。この場合、透明基板上に有機EL素子を設けた複数の発光パネルを、支持基板上に複数配列する(すなわちタイリングする)ことによって発光面を大面積化する。支持基板は、封止材を兼ねるものであっても良く、この支持基板と、発光パネルの透明基板との間に有機EL素子を挟持する状態で各発光パネルをタイリングする。支持基板と透明基板との間には接着剤を充填し、これによって有機EL素子を封止しても良い。なお、発光パネルの周囲には、透光性第1電極、透光性中間電極及び透光性第2電極の端子を露出させている。
[Lighting device-2]
Moreover, the organic EL element of this invention can be used also as an illuminating device which used multiple and made the light emission surface large area. In this case, the light emitting surface is enlarged by arranging a plurality of light emitting panels provided with organic EL elements on a transparent substrate (that is, tiling) on the support substrate. The support substrate may also serve as a sealing material, and each light emitting panel is tiled in a state where the organic EL element is sandwiched between the support substrate and the transparent substrate of the light emitting panel. An adhesive may be filled between the support substrate and the transparent substrate, thereby sealing the organic EL element. Note that the terminals of the translucent first electrode, the translucent intermediate electrode, and the translucent second electrode are exposed around the light emitting panel.
 このような構成の照明装置では、各発光パネルの中央が発光領域となり、発光パネル間には非発光領域が発生する。このため、非発光領域からの光取り出し量を増加させるための光取り出し部材を、光取り出し面の非発光領域に設けても良い。光取り出し部材としては、集光シートや光拡散シートを用いることができる。 In the lighting device having such a configuration, the center of each light emitting panel is a light emitting region, and a non-light emitting region is generated between the light emitting panels. For this reason, a light extraction member for increasing the amount of light extracted from the non-light emitting area may be provided in the non-light emitting area of the light extraction surface. As the light extraction member, a light collecting sheet or a light diffusion sheet can be used.
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。 When the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 cd / m 2 is X when the 2 ° viewing angle front luminance is measured by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 実施例1
 〔有機EL素子101の作製〕
 〈透光性基板〉
 透光性基板として、幅50cm、厚さ125μmのポリエステルフィルムMELINEX ST504(帝人デュポンフィルム(株)製)を用意した。このポリエステルフィルムは、0.01Torrの減圧下において、80℃まで加熱して3時間の脱気処理が施されている。
Example 1
[Production of Organic EL Element 101]
<Translucent substrate>
A polyester film MELINEX ST504 (manufactured by Teijin DuPont Films Ltd.) having a width of 50 cm and a thickness of 125 μm was prepared as a translucent substrate. This polyester film is degassed for 3 hours by heating to 80 ° C. under a reduced pressure of 0.01 Torr.
 当該ポリエステルフィルム上に、ポリシラザン含有塗布液を塗布し、次いで真空紫外線を照射して改質処理を行ってガスバリアー層を設けて、透光性フレキシブル基板を作製した。 On the polyester film, a polysilazane-containing coating solution was applied, and then a vacuum ultraviolet ray was applied to perform a modification treatment to provide a gas barrier layer, thereby producing a translucent flexible substrate.
 (ポリシラザン含有塗布液の調製)
 無触媒のパーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))5質量%を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NAX120-20)とを、4:1の割合で混合し、さらにジブチルエーテルと2,2,4-トリメチルペンタンとの質量比が65:35となるように混合した溶媒で、塗布液の固形分が5質量%になるように、塗布液を希釈調製した。
(Preparation of polysilazane-containing coating solution)
Dibutyl ether solution containing 20% by mass of non-catalytic perhydropolysilazane (manufactured by AZ Electronic Materials, Aquamica (registered trademark) NN120-20) and amine catalyst (N, N, N ′, N′-tetramethyl-) Perhydropolysilazane 20 mass% dibutyl ether solution (AZ Electronic Materials Co., Ltd., Aquamica (registered trademark) NAX120-20) containing 5 mass% of 1,6-diaminohexane (TMDAH) 4: 1 In a solvent mixed so that the mass ratio of dibutyl ether and 2,2,4-trimethylpentane was 65:35, the coating solution was mixed so that the solid content of the coating solution was 5% by mass. Was diluted and prepared.
 上記で得られた塗布液を、スピンコーターにて上記透光性基板上に厚さが300nmになるよう成膜し、2分間放置した後、80℃のホットプレートで1分間加熱処理を行い、ポリシラザン塗膜を形成した。 The coating solution obtained above was formed into a film with a thickness of 300 nm on the translucent substrate with a spin coater, left for 2 minutes, and then subjected to heat treatment for 1 minute on an 80 ° C. hot plate, A polysilazane coating film was formed.
 ポリシラザン塗膜を形成した後、6000mJ/cmの真空紫外線照射処理を施してガスバリアー層を形成した。 After forming the polysilazane coating film, a vacuum ultraviolet ray irradiation treatment of 6000 mJ / cm 2 was performed to form a gas barrier layer.
 〈透光性第1電極の形成〉
 上記ガスバリアー層上に、厚さ150nmのITO(酸化インジウム・スズ(Indiumu Tin Oxide:ITO))をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、透光性第1電極を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。
<Formation of translucent first electrode>
On the gas barrier layer, ITO (Indium Tin Oxide: ITO) having a thickness of 150 nm was formed by sputtering, and patterned by photolithography to form a transparent first electrode. . The pattern was such that the light emission area was 50 mm square.
 〈発光ユニット1の形成〉
 (正孔輸送層の形成)
 まず、正孔輸送注入材料としてHT-1が入った加熱ボートに通電して加熱し、HT-1よりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送注入層を、透光性第1電極上に成膜した。この際、市販の真空蒸着装置を用い、真空度1×10-4Paまで減圧した後、蒸着速度0.1~0.2nm/秒で蒸着を行い、層厚20nmとした。
<Formation of light emitting unit 1>
(Formation of hole transport layer)
First, a heating boat containing HT-1 as a hole transport injecting material is energized and heated, and a hole transport injecting layer serving as both a hole injecting layer and a hole transporting layer made of HT-1 is made transparent. The film was formed on the conductive first electrode. At this time, the pressure was reduced to a vacuum degree of 1 × 10 −4 Pa using a commercially available vacuum vapor deposition apparatus, and then vapor deposition was performed at a vapor deposition rate of 0.1 to 0.2 nm / second to obtain a layer thickness of 20 nm.
 (発光層1の形成)
 次いで、ホスト化合物H-1の入った加熱ボートと、リン光発光ドーパントA-3(青色発光ドーパント:表中Bと表記)の入った加熱ボートとを、それぞれ独立に通電し、ホスト化合物H-1とリン光発光ドーパントA-3を含有する発光層を、正孔輸送注入層上に成膜した。この際、蒸着速度がホスト化合物H-1:リン光発光ドーパントA-3=100:6となるように、加熱ボートの通電を調節した。また、層厚は30nmとした。
(Formation of the light emitting layer 1)
Next, each of the heating boat containing the host compound H-1 and the heating boat containing the phosphorescent emission dopant A-3 (blue emission dopant: indicated as B in the table) was energized independently, and the host compound H- A light emitting layer containing 1 and phosphorescent light emitting dopant A-3 was formed on the hole transport injection layer. At this time, the energization of the heating boat was adjusted so that the vapor deposition rate was host compound H-1: phosphorescent dopant A-3 = 100: 6. The layer thickness was 30 nm.
 (正孔阻止層〉
 次いで、正孔阻止材料としてBAlq([Bis(2-methyl-8-quinolinolate)-4-(phenylphenolato)aluminium])が入った加熱ボートに通電して加熱し、BAlqよりなる正孔阻止層を、発光層上に成膜した。この際、蒸着速度0.1~0.2nm/秒、層厚10nmとした。
(Hole blocking layer)
Next, the hole blocking layer made of BAlq is heated by energizing a heating boat containing BAlq ([Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum]) as a hole blocking material. A film was formed on the light emitting layer. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 10 nm.
 その後、電子輸送材料として下記に示すET-1の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、ET-1とフッ化カリウムを含有する電子輸送層を、正孔阻止層上に成膜した。この際、蒸着速度がET-1:フッ化カリウム=75:25になるように、加熱ボートの通電を調節した。また、層厚30nmとした。 Thereafter, a heating boat containing ET-1 shown below as an electron transporting material and a heating boat containing potassium fluoride were energized independently to form an electron transporting layer containing ET-1 and potassium fluoride. A film was formed on the hole blocking layer. At this time, the energization of the heating boat was adjusted so that the deposition rate was ET-1: potassium fluoride = 75: 25. The layer thickness was 30 nm.
 次に、電子注入材料としてフッ化カリウムの入った加熱ボートに通電して加熱し、フッ化カリウムよりなる電子注入層を、電子輸送層上に成膜した。この際、蒸着速度0.01~0.02nm/秒、層厚1nmとした。 Next, a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer. At this time, the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 1 nm.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 〈透光性中間電極1〉
 第1発光ユニット上に、厚さ150nmのITO(酸化インジウム・スズ(Indiumu Tin Oxide:ITO))をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、透光性中間電極を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。
<Translucent intermediate electrode 1>
On the first light emitting unit, ITO (Indium Tin Oxide: ITO) having a thickness of 150 nm was formed by sputtering, and patterned by photolithography to form a light-transmitting intermediate electrode. The pattern was such that the light emission area was 50 mm square.
 〈発光ユニット2の形成〉
 発光ユニット1の形成と同様にして、発光層2の形成を以下のとおりとした以外は同様にして、発光ユニット2を形成した。
<Formation of light emitting unit 2>
The light emitting unit 2 was formed in the same manner as the light emitting unit 1 except that the light emitting layer 2 was formed as follows.
 (発光層2)
 ホスト化合物H-1の入った加熱ボートと、リン光発光ドーパントA-1(緑色発光ドーパント:表中Gと表記)の入った加熱ボートとを、それぞれ独立に通電し、ホスト材料H-1とリン光発光ドーパントA-3を含有する発光層を、正孔輸送注入層上に成膜した。この際、蒸着速度がホスト化合物H-1:リン光発光ドーパントA-1=100:4となるように、加熱ボートの通電を調節した。また、層厚は30nmとした。
(Light emitting layer 2)
A heating boat containing the host compound H-1 and a heating boat containing the phosphorescent emission dopant A-1 (green emission dopant: indicated as G in the table) were energized independently, and the host material H-1 and A light emitting layer containing phosphorescent light emitting dopant A-3 was formed on the hole transport injection layer. At this time, the energization of the heating boat was adjusted so that the deposition rate was host compound H-1: phosphorescent dopant A-1 = 100: 4. The layer thickness was 30 nm.
 〈透光性第2電極の形成)
 上記で形成した電子注入層の上であって、透光性第1電極の取り出し電極になる部分を除く部分に、5×10-4Paの真空下で、透光性第2電極形成材料としてITOを使用し、取り出し電極を有するように蒸着法にて、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ150nmの透光性第2電極を積層した。
<Formation of translucent second electrode>
On the electron injection layer formed as described above, except for the portion that becomes the extraction electrode of the light transmissive first electrode, under a vacuum of 5 × 10 −4 Pa, as a light transmissive second electrode forming material Using ITO, a mask pattern was formed by vapor deposition so as to have an extraction electrode so that the emission area was 50 mm square, and a light-transmitting second electrode having a thickness of 150 nm was laminated.
 (裁断)
 以上のように、透光性第2電極までが形成された各積層体を、再び窒素雰囲気に移動し、規定の大きさに、紫外線レーザーを用いて裁断し、有機EL素子を作製した。
(Cutting)
As described above, each laminate including the light-transmitting second electrode was moved again to a nitrogen atmosphere, and cut to a prescribed size using an ultraviolet laser to produce an organic EL element.
 (電極リード接続)
 作製した有機EL素子に、ソニーケミカル&インフォメーションデバイス株式会社製の異方性導電フィルムDP3232S9を用いて、可撓性プリント基板(ベースフィルム:ポリイミド12.5μm、圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。
(Electrode lead connection)
An anisotropic conductive film DP3232S9 manufactured by Sony Chemical & Information Device Co., Ltd. was used for the produced organic EL element, and a flexible printed circuit board (base film: polyimide 12.5 μm, rolled copper foil 18 μm, coverlay: polyimide 12 0.5 μm, surface-treated NiAu plating).
 圧着条件:温度170℃(別途熱伝対を用いて測定したACF温度140℃)、圧力2MPa、10秒で圧着を行った。 Crimping conditions: Crimping was performed at a temperature of 170 ° C. (ACF temperature 140 ° C. measured using a separate thermocouple), a pressure of 2 MPa, and 10 seconds.
 〈透光性封止基板による封止〉
 前記作製したガスバリアー性透光性基板のガスバリアー層側に熱硬化型の液状接着剤(エポキシ系光硬化型接着剤:東亞合成社製ラックストラックLC0629B)を厚さ30μmで塗設して、有機EL素子の透光性第1電極、透光性中間電極、透光性第2電極の引き出し電極の端部が外に出るように、封止部材の接着剤面と、有機EL素子の有機機能層面を連続的に重ね合わせ、ドライラミネート法により接着を行って、封止済みの表2に記載の有機EL素子101を作製した。
<Sealing with translucent sealing substrate>
A thermosetting liquid adhesive (epoxy photo-curing adhesive: Luxtrac LC0629B manufactured by Toagosei Co., Ltd.) with a thickness of 30 μm was applied to the gas barrier layer side of the produced gas barrier translucent substrate, The adhesive surface of the sealing member and the organic EL element organic so that the end portions of the lead electrodes of the light-transmitting first electrode, light-transmitting intermediate electrode, and light-transmitting second electrode of the organic EL element are exposed. The functional layer surfaces were continuously overlapped and bonded by a dry laminating method to produce a sealed organic EL element 101 shown in Table 2.
 上記封止工程は、大気圧下、含水率1ppm以下の窒素雰囲気下で、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が-80℃以下、酸素濃度0.8ppm以下の大気圧で行った。 The sealing process is performed under atmospheric pressure and in a nitrogen atmosphere with a moisture content of 1 ppm or less in accordance with JIS B 9920. The measured cleanliness is class 100, the dew point temperature is −80 ° C. or less, and the oxygen concentration is 0.8 ppm or less. At atmospheric pressure.
 〔有機EL素子102の作製〕
 有機EL素子101の作製において、以下の発光ユニット3を加え、透光性基板/透光性第1電極/発光ユニット1(B)/透光性中間電極1/発光ユニット2(G)/透光性中間電極2/発光ユニット3(R)/透光性第2電極/透光性封止基板の順に積層、封止して表2に記載の有機EL素子102を作製した。
[Production of Organic EL Element 102]
In the production of the organic EL element 101, the following light emitting unit 3 is added, and the light transmitting substrate / light transmitting first electrode / light emitting unit 1 (B) / light transmitting intermediate electrode 1 / light emitting unit 2 (G) / light transmitting. The organic EL element 102 described in Table 2 was manufactured by laminating and sealing in the order of optical intermediate electrode 2 / light emitting unit 3 (R) / translucent second electrode / translucent sealing substrate.
 〈発光ユニット3の形成〉
 (正孔輸送層の形成)
 正孔輸送注入材料としてHT-1が入った加熱ボートに通電して加熱し、HT-1よりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送注入層を、透光性第1電極上に成膜した。この際、市販の真空蒸着装置を用い、真空度1×10-4Paまで減圧した後、蒸着速度0.1~0.2nm/秒で蒸着を行い、層厚20nmとした。
<Formation of light emitting unit 3>
(Formation of hole transport layer)
A heating boat containing HT-1 as a hole transporting injection material is energized and heated, and a hole transporting injection layer made of HT-1 serving as both a hole injection layer and a hole transporting layer is made transparent. A film was formed on one electrode. At this time, the pressure was reduced to a vacuum degree of 1 × 10 −4 Pa using a commercially available vacuum vapor deposition apparatus, and then vapor deposition was performed at a vapor deposition rate of 0.1 to 0.2 nm / second to obtain a layer thickness of 20 nm.
 (発光層3の形成)
 次いで、ホスト化合物H-1の入った加熱ボートと、リン光発光ドーパントA-2(赤色発光ドーパント:表中Rと表記)の入った加熱ボートとを、それぞれ独立に通電し、ホスト化合物H-1とリン光発光ドーパントA-2を含有する発光層を、正孔輸送注入層上に成膜した。この際、蒸着速度がホスト化合物H-1:リン光発光ドーパントA-3=100:6となるように、加熱ボートの通電を調節した。また、層厚は30nmとした。
(Formation of the light emitting layer 3)
Next, each of the heating boat containing the host compound H-1 and the heating boat containing the phosphorescent light emitting dopant A-2 (red light emitting dopant: indicated as R in the table) was energized independently, and the host compound H- A light emitting layer containing 1 and phosphorescent light emitting dopant A-2 was formed on the hole transport injection layer. At this time, the energization of the heating boat was adjusted so that the vapor deposition rate was host compound H-1: phosphorescent dopant A-3 = 100: 6. The layer thickness was 30 nm.
 (正孔阻止層〉
 次いで、正孔阻止材料としてBAlq([Bis(2-methyl-8-quinolinolate)-4-(phenylphenolato)aluminium])が入った加熱ボートに通電して加熱し、BAlqよりなる正孔阻止層を、発光層上に成膜した。この際、蒸着速度0.1~0.2nm/秒、層厚10nmとした。
(Hole blocking layer)
Next, the hole blocking layer made of BAlq is heated by energizing a heating boat containing BAlq ([Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum]) as a hole blocking material. A film was formed on the light emitting layer. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 10 nm.
 その後、電子輸送材料として下記に示すET-1の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、ET-1とフッ化カリウムを含有する電子輸送層を、正孔阻止層上に成膜した。この際、蒸着速度がET-1:フッ化カリウム=75:25になるように、加熱ボートの通電を調節した。また、層厚30nmとした。 Thereafter, a heating boat containing ET-1 shown below as an electron transporting material and a heating boat containing potassium fluoride were energized independently to form an electron transporting layer containing ET-1 and potassium fluoride. A film was formed on the hole blocking layer. At this time, the energization of the heating boat was adjusted so that the deposition rate was ET-1: potassium fluoride = 75: 25. The layer thickness was 30 nm.
 次に、電子注入材料としてフッ化カリウムの入った加熱ボートに通電して加熱し、フッ化カリウムよりなる電子注入層を、電子輸送層上に成膜した。この際、蒸着速度0.01~0.02nm/秒、層厚1nmとした。 Next, a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer. At this time, the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 1 nm.
 有機EL素子102の、前記発光ユニット1と前記発光ユニット2の発光中心との距離をa、前記発光ユニット2と前記発光ユニット3の発光中心との距離をbとしたときの比a:bは、1:1であり、中央に配置する発光ユニットの発光中心に対して等距離であった。 The ratio a: b of the organic EL element 102 when the distance between the light emission unit 1 and the light emission center of the light emission unit 2 is a and the distance between the light emission unit 2 and the light emission center 3 is b is 1: 1 and equidistant from the light emission center of the light emitting unit disposed in the center.
 〔有機EL素子103の作製〕
 有機EL素子102の作製において、上記発光ユニット3の代わりに発光ユニット1を使用し、発光ユニット2の代わりに発光ユニット3を用い、透光性基板/透光性第1電極/発光ユニット1(B)/透光性中間電極1/発光ユニット3(R)/透光性中間電極2/発光ユニット1(B)/透光性第2電極/透光性封止基板の順に積層、封止して表2に記載の有機EL素子103を作製した。
[Production of Organic EL Element 103]
In the production of the organic EL element 102, the light emitting unit 1 is used instead of the light emitting unit 3, the light emitting unit 3 is used instead of the light emitting unit 2, and the light transmissive substrate / light transmissive first electrode / light emitting unit 1 ( B) / translucent intermediate electrode 1 / light emitting unit 3 (R) / translucent intermediate electrode 2 / light emitting unit 1 (B) / translucent second electrode / translucent sealing substrate in this order and sealing Thus, the organic EL element 103 shown in Table 2 was produced.
 有機EL素子103の、前記発光ユニット1と前記発光ユニット2の発光中心との距離をa、前記発光ユニット2と上層側の前記発光ユニット1の発光中心との距離をbとしたときの比a:bは、1:1であり、中央に配置する発光ユニットの発光中心に対して等距離であった。 Ratio a when the distance between the light emitting unit 1 and the light emitting center of the light emitting unit 2 of the organic EL element 103 is a, and the distance between the light emitting unit 2 and the light emitting center of the upper light emitting unit 1 is b. : B was 1: 1 and was equidistant from the light emission center of the light emitting unit disposed in the center.
 前記発光中心は、特開2009-181829号公報段落〔0059〕~〔0069〕記載の方法によって発光分布を測定して求めた。 The emission center was obtained by measuring the emission distribution by the method described in paragraphs [0059] to [0069] of JP-A-2009-181829.
 〔有機EL素子104の作製〕
 有機EL素子102の作製において、透光性基板/透光性第1電極/発光ユニット2(G)/透光性中間電極1/発光ユニット3(R)/透光性中間電極2/発光ユニット2(G)/透光性第2電極/透光性封止基板の順に積層、封止して表2に記載の有機EL素子104を作製した。
[Production of Organic EL Element 104]
In the production of the organic EL element 102, a translucent substrate / a translucent first electrode / a light emitting unit 2 (G) / a translucent intermediate electrode 1 / a light emitting unit 3 (R) / a translucent intermediate electrode 2 / a light emitting unit 2 (G) / translucent second electrode / translucent sealing substrate were laminated and sealed in this order to produce an organic EL element 104 shown in Table 2.
 有機EL素子104の、前記発光ユニット2と前記発光ユニット3の発光中心との距離をa、前記発光ユニット3と上層側の前記発光ユニット2の発光中心との距離をbとしたときの比a:bは、1:1であり、中央に配置する発光ユニットの発光中心に対して等距離であった。 Ratio a when the distance between the light emitting unit 2 and the light emitting center of the light emitting unit 3 of the organic EL element 104 is a, and the distance between the light emitting unit 3 and the light emitting center of the upper light emitting unit 2 is b. : B was 1: 1 and was equidistant from the light emission center of the light emitting unit disposed in the center.
 〔有機EL素子105の作製〕
 有機EL素子102の作製において、以下の発光ユニットを加え、透光性基板/透光性第1電極/発光ユニット1(B)/透光性中間電極1/発光ユニット2(G)/透光性中間電極2/発光ユニット3(R)/透光性中間電極3/発光ユニット2(G)/透光性中間電極4/発光ユニット1(B)/透光性第2電極/透光性封止基板の順に積層、封止して表2に記載の有機EL素子105を作製した。
[Production of Organic EL Element 105]
In the production of the organic EL element 102, the following light emitting unit is added, and the light transmitting substrate / light transmitting first electrode / light emitting unit 1 (B) / light transmitting intermediate electrode 1 / light emitting unit 2 (G) / light transmitting. Intermediate electrode 2 / light emitting unit 3 (R) / light transmissive intermediate electrode 3 / light emitting unit 2 (G) / light transmissive intermediate electrode 4 / light emitting unit 1 (B) / light transmissive second electrode / light transmissive The organic EL element 105 shown in Table 2 was produced by stacking and sealing in the order of the sealing substrate.
 有機EL素子105の、前記発光ユニット3に対する前記発光ユニット1と前記発光ユニット2との発光中心との距離をそれぞれa-1、a-2とし、前記発光ユニット3に対する上層側の前記発光ユニット2と前記発光ユニット1の発光中心との距離をb-1、b-2としたときの比a-1:b-1及びa-2:b-2は、それぞれ1:1であり、中央に配置する発光ユニットの発光中心に対していずれも等距離であった。 The distances between the light emitting unit 1 and the light emitting unit 2 of the organic EL element 105 with respect to the light emitting unit 3 are a-1 and a-2, respectively, and the light emitting unit 2 on the upper layer side with respect to the light emitting unit 3 is used. The ratios a-1: b-1 and a-2: b-2 where the distance between the light emitting unit 1 and the light emission center of the light emitting unit 1 is b-1 and b-2 are 1: 1, respectively. All were equidistance with respect to the light emission center of the light emission unit to arrange | position.
 〔有機EL素子106の作製〕
 有機EL素子101の作製において用いた前記ガスバリアー層付き透光性基板を用いて、当該ガスバリアー層上に単層構造の透光性第1電極を以下のように作製した。
[Production of Organic EL Element 106]
Using the translucent substrate with the gas barrier layer used in the production of the organic EL element 101, a translucent first electrode having a single layer structure was produced on the gas barrier layer as follows.
 まず、ガスバリアー層付き透光性基板を基板ホルダーにセットし、前記化合物ET-1をタンタル製抵抗加熱ボートに入れ、これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。 First, a translucent substrate with a gas barrier layer is set in a substrate holder, the compound ET-1 is placed in a resistance heating boat made of tantalum, and these substrate holder and heating boat are attached to the first vacuum chamber of the vacuum deposition apparatus. It was.
 この状態で、まず、第1真空槽を4×10-4Paまで減圧した後、ET-1の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で基板上に層厚25nmのET-1からなる下地層を設けた。 In this state, first, the first vacuum chamber was depressurized to 4 × 10 −4 Pa, and then heated by energizing a heating boat containing ET-1, and the layer thickness was deposited on the substrate at a deposition rate of 0.1 nm / second. An underlayer made of 25 nm ET-1 was provided.
 次に、下地層まで成膜した透光性基板を真空のまま第2真空槽に移し、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、当該真空槽内に取り付けた。次に、真空槽を4×10-4Paまで減圧した後、抵抗加熱ボートを通電して加熱し、銀からなる単層構造の透光性第1電極を抵抗加熱蒸着にて形成した。形成された銀(Ag)からなる透光性第1電極の層厚は10nmであった。 Next, the translucent substrate formed up to the base layer was transferred to the second vacuum chamber while being vacuumed, and silver (Ag) was placed in a resistance heating boat made of tungsten, and attached to the vacuum chamber. Next, after the vacuum chamber was depressurized to 4 × 10 −4 Pa, the resistance heating boat was energized and heated to form a single-layered translucent first electrode made of silver by resistance heating evaporation. The layer thickness of the formed transparent first electrode made of silver (Ag) was 10 nm.
 有機EL素子101の作製において、透光性第1電極、透光性中間電極1、透光性第2電極を、上記下地層及び銀層の構成でそれぞれ電極を形成した以外は同様にして、表2に記載の有機EL素子106を作製した。 In the production of the organic EL element 101, the translucent first electrode, the translucent intermediate electrode 1, and the translucent second electrode were formed in the same manner except that the electrodes were formed in the above-described configuration of the base layer and the silver layer, respectively. The organic EL element 106 shown in Table 2 was produced.
 〔有機EL素子107の作製〕
 有機EL素子102の作製において、透光性第1電極、透光性中間電極1、透光性中間電極2、透光性第2電極を、上記下地層及び銀層の構成でそれぞれ電極を形成した以外は同様にして、表2に記載の有機EL素子107を作製した。
[Production of Organic EL Element 107]
In the production of the organic EL element 102, the light-transmitting first electrode, the light-transmitting intermediate electrode 1, the light-transmitting intermediate electrode 2, and the light-transmitting second electrode are formed with the above-described base layer and silver layer, respectively. The organic EL element 107 shown in Table 2 was produced in the same manner except that.
 〔有機EL素子108の作製〕
 有機EL素子103の作製において、透光性第1電極、透光性中間電極1、透光性中間電極2、透光性第2電極を、上記下地層及び銀層の構成でそれぞれ電極を形成した以外は同様にして、表2に記載の有機EL素子108を作製した。
[Production of Organic EL Element 108]
In the production of the organic EL element 103, the transparent first electrode, the transparent intermediate electrode 1, the transparent intermediate electrode 2, and the transparent second electrode are formed with the above-described structure of the base layer and the silver layer, respectively. The organic EL element 108 shown in Table 2 was produced in the same manner except that.
 〔有機EL素子109の作製〕
 有機EL素子104の作製において、透光性第1電極、透光性中間電極1、透光性中間電極2、透光性第2電極を、上記下地層及び銀層の構成でそれぞれ電極を形成した以外は同様にして、表2に記載の有機EL素子109を作製した。
[Production of Organic EL Element 109]
In the production of the organic EL element 104, the light-transmitting first electrode, the light-transmitting intermediate electrode 1, the light-transmitting intermediate electrode 2, and the light-transmitting second electrode are formed with the above-described base layer and silver layer, respectively. An organic EL element 109 shown in Table 2 was produced in the same manner except that.
 〔有機EL素子110の作製〕
 有機EL素子108の作製において、発光ユニット1、発光ユニット2、発光ユニット3を以下の様に形成した以外は同様にして、表2に記載の有機EL素子110を作製した。
[Production of Organic EL Element 110]
In the production of the organic EL element 108, the organic EL element 110 shown in Table 2 was produced in the same manner except that the light emitting unit 1, the light emitting unit 2, and the light emitting unit 3 were formed as follows.
 〈発光ユニット1(G/R)の形成〉
 (正孔輸送層の形成)
 正孔輸送注入材料としてHT-1が入った加熱ボートに通電して加熱し、HT-1よりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送注入層を、透光性第1電極上に成膜した。この際、市販の真空蒸着装置を用い、真空度1×10-4Paまで減圧した後、蒸着速度0.1~0.2nm/秒で蒸着を行い、層厚20nmとした。
<Formation of light emitting unit 1 (G / R)>
(Formation of hole transport layer)
A heating boat containing HT-1 as a hole transporting injection material is energized and heated, and a hole transporting injection layer made of HT-1 serving as both a hole injection layer and a hole transporting layer is made transparent. A film was formed on one electrode. At this time, the pressure was reduced to a vacuum degree of 1 × 10 −4 Pa using a commercially available vacuum vapor deposition apparatus, and then vapor deposition was performed at a vapor deposition rate of 0.1 to 0.2 nm / second to obtain a layer thickness of 20 nm.
 (発光層3の形成)
 次いで、ホスト化合物H-1の入った加熱ボートと、リン光発光ドーパントA-1(緑色発光ドーパント:表中Gと表記)及びリン光発光ドーパントA-2(赤色発光ドーパント:表中R)の入った加熱ボートとを、それぞれ独立に通電し、ホスト化合物H-1とリン光発光ドーパントA-1及びA2を含有する黄色発光層を、正孔輸送注入層上に成膜した。この際、蒸着速度がホスト化合物H-1:リン光発光ドーパントA-1:リン光発光ドーパントA-2=100:4:1となるように、加熱ボートの通電を調節した。また、層厚は30nmとした。
(Formation of the light emitting layer 3)
Next, a heating boat containing the host compound H-1, a phosphorescence emission dopant A-1 (green emission dopant: indicated as G in the table) and a phosphorescence emission dopant A-2 (red emission dopant: R in the table) The heated boats were energized independently to form a yellow light emitting layer containing the host compound H-1 and phosphorescent light emitting dopants A-1 and A2 on the hole transport injection layer. At this time, the energization of the heating boat was adjusted so that the deposition rate was host compound H-1: phosphorescent light emitting dopant A-1: phosphorescent light emitting dopant A-2 = 100: 4: 1. The layer thickness was 30 nm.
 (正孔阻止層)
 次いで、正孔阻止材料としてBAlq([Bis(2-methyl-8-quinolinolate)-4-(phenylphenolato)aluminium])が入った加熱ボートに通電して加熱し、BAlqよりなる正孔阻止層を、発光層上に成膜した。この際、蒸着速度0.1~0.2nm/秒、層厚10nmとした。
(Hole blocking layer)
Next, the hole blocking layer made of BAlq is heated by energizing a heating boat containing BAlq ([Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum]) as a hole blocking material. A film was formed on the light emitting layer. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 10 nm.
 その後、電子輸送材料としてET-1の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、ET-1とフッ化カリウムを含有する電子輸送層を、正孔阻止層上に成膜した。この際、蒸着速度がET-1:フッ化カリウム=75:25になるように、加熱ボートの通電を調節した。また、層厚30nmとした。 Thereafter, a heating boat containing ET-1 as an electron transport material and a heating boat containing potassium fluoride were energized independently, and the electron transport layer containing ET-1 and potassium fluoride was changed to a hole. A film was formed on the blocking layer. At this time, the energization of the heating boat was adjusted so that the deposition rate was ET-1: potassium fluoride = 75: 25. The layer thickness was 30 nm.
 次に、電子注入材料としてフッ化カリウムの入った加熱ボートに通電して加熱し、フッ化カリウムよりなる電子注入層を、電子輸送層上に成膜した。この際、蒸着速度0.01~0.02nm/秒、層厚1nmとした。 Next, a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer. At this time, the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 1 nm.
 〈第2発光ユニットの形成〉
 有機EL素子108の発光ユニット1(B)を同様に用いた。
<Formation of second light emitting unit>
The light emitting unit 1 (B) of the organic EL element 108 was used in the same manner.
 〈第3発光ユニットの形成〉
 上記発光ユニット1(G/R)を同様に用いた。
<Formation of third light emitting unit>
The light emitting unit 1 (G / R) was used in the same manner.
 〔有機EL素子111の作製〕
 有機EL素子105の作製において、透光性第1電極、透光性中間電極1、透光性中間電極2、透光性中間電極3、透光性中間電極4、透光性第2電極を、上記下地層及び銀層の構成でそれぞれ電極を形成した以外は同様にして、表2に記載の有機EL素子111を作製した。
[Production of Organic EL Element 111]
In the production of the organic EL element 105, the translucent first electrode, the translucent intermediate electrode 1, the translucent intermediate electrode 2, the translucent intermediate electrode 3, the translucent intermediate electrode 4, and the translucent second electrode are provided. The organic EL element 111 shown in Table 2 was produced in the same manner except that the electrodes were formed with the above-described foundation layer and silver layer, respectively.
 〔有機EL素子112の作製〕
 有機EL素子108の作製において、透光性封止基板を下記透光性封止基板2に変えた以外は同様にして、表2に記載の有機EL素子112を作製した。
[Production of Organic EL Element 112]
In the production of the organic EL element 108, the organic EL element 112 shown in Table 2 was produced in the same manner except that the translucent sealing substrate was changed to the translucent sealing substrate 2 described below.
 (透光性封止基板2)
 透光性封止基板2として、二軸延伸ポリエチレンナフタレートフィルム(PENフィルム、厚さ:100μm、幅:50cm、帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)を用いた。
(Translucent sealing substrate 2)
As the translucent sealing substrate 2, a biaxially stretched polyethylene naphthalate film (PEN film, thickness: 100 μm, width: 50 cm, manufactured by Teijin DuPont Films, trade name “Teonex Q65FA”) was used.
 当該PENフィルム上に、前記ポリシラザン含有塗布液を塗布し、次いで同様に真空紫外線を照射して改質処理を行い、ガスバリアー層を設けて、フレキシブル透光性封止基板を作製した。 On the PEN film, the polysilazane-containing coating solution was applied, and then modified by irradiation with vacuum ultraviolet rays in the same manner to provide a gas barrier layer, thereby producing a flexible translucent sealing substrate.
 〔有機EL素子113の作製〕
 有機EL素子108の作製において、透光性封止基板を下記透光性封止基板3に変えた以外は同様にして、表2に記載の有機EL素子113を作製した。
[Preparation of organic EL element 113]
In the production of the organic EL element 108, the organic EL element 113 shown in Table 2 was produced in the same manner except that the translucent sealing substrate was changed to the translucent sealing substrate 3 described below.
 (透光性封止基板3)
 透光性封止基板3として、二軸延伸シクロオレフィンフィルム(COPフィルム、厚さ:100μm、幅:50cm、日本ゼオン(株)製、商品名「ゼオノア」)を用いた。
(Translucent sealing substrate 3)
As the translucent sealing substrate 3, a biaxially stretched cycloolefin film (COP film, thickness: 100 μm, width: 50 cm, manufactured by Nippon Zeon Co., Ltd., trade name “Zeonor”) was used.
 当該COPフィルム上に、前記ポリシラザン含有塗布液を塗布し、次いで同様に真空紫外線を照射して改質処理を行い、ガスバリアー層を設けて、フレキシブル透光性封止基板を作製した。 On the COP film, the polysilazane-containing coating solution was applied, and then modified by irradiation with vacuum ultraviolet rays in the same manner, and a gas barrier layer was provided to prepare a flexible translucent sealing substrate.
 〔有機EL素子114の作製〕
 有機EL素子108の作製において、発光ユニット3(R)上に積層する発光ユニット1(B)の代わりに、下記それぞれの層厚を変化させた発光ユニット1a(B)を用いた以外は同様にして、表2に記載の有機EL素子114を作製した。
[Production of Organic EL Element 114]
In the production of the organic EL element 108, the same procedure was performed except that the light emitting unit 1a (B) having the following respective layer thicknesses was used instead of the light emitting unit 1 (B) stacked on the light emitting unit 3 (R). Thus, an organic EL element 114 shown in Table 2 was produced.
 〈発光ユニット1aの形成〉
 (正孔輸送層の形成)
 正孔輸送注入材料としてHT-1が入った加熱ボートに通電して加熱し、HT-1よりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送注入層を、透光性第1電極上に成膜した。この際、市販の真空蒸着装置を用い、真空度1×10-4Paまで減圧した後、蒸着速度0.1~0.2nm/秒で蒸着を行い、層厚30nmとした。
<Formation of light emitting unit 1a>
(Formation of hole transport layer)
A heating boat containing HT-1 as a hole transporting injection material is energized and heated, and a hole transporting injection layer made of HT-1 serving as both a hole injection layer and a hole transporting layer is made transparent. A film was formed on one electrode. At this time, the pressure was reduced to a vacuum degree of 1 × 10 −4 Pa using a commercially available vacuum vapor deposition apparatus, and then vapor deposition was performed at a vapor deposition rate of 0.1 to 0.2 nm / second to obtain a layer thickness of 30 nm.
 (発光層1aの形成)
 次いで、ホスト化合物H-1の入った加熱ボートと、リン光発光ドーパントA-3(青色発光ドーパント:表中Bと表記)の入った加熱ボートとを、それぞれ独立に通電し、ホスト化合物H-1とリン光発光ドーパントA-3を含有する青色発光層を、正孔輸送注入層上に成膜した。この際、蒸着速度がホスト化合物H-1:リン光発光ドーパントA-3=100:6となるように、加熱ボートの通電を調節した。また、層厚は40nmとした。
(Formation of the light emitting layer 1a)
Next, each of the heating boat containing the host compound H-1 and the heating boat containing the phosphorescent emission dopant A-3 (blue emission dopant: indicated as B in the table) was energized independently, and the host compound H- A blue light-emitting layer containing 1 and phosphorescent dopant A-3 was formed on the hole transport injection layer. At this time, the energization of the heating boat was adjusted so that the vapor deposition rate was host compound H-1: phosphorescent dopant A-3 = 100: 6. The layer thickness was 40 nm.
 (正孔阻止層)
 次いで、正孔阻止材料としてBAlq([Bis(2-methyl-8-quinolinolate)-4-(phenylphenolato)aluminium])が入った加熱ボートに通電して加熱し、BAlqよりなる正孔阻止層を、発光層上に成膜した。この際、蒸着速度0.1~0.2nm/秒、層厚15nmとした。
(Hole blocking layer)
Next, the hole blocking layer made of BAlq is heated by energizing a heating boat containing BAlq ([Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum]) as a hole blocking material. A film was formed on the light emitting layer. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 15 nm.
 その後、電子輸送材料として下記に示すET-1の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、ET-1とフッ化カリウムを含有する電子輸送層を、正孔阻止層上に成膜した。この際、蒸着速度がET-1:フッ化カリウム=75:25になるように、加熱ボートの通電を調節した。また、層厚40nmとした。 Thereafter, a heating boat containing ET-1 shown below as an electron transporting material and a heating boat containing potassium fluoride were energized independently to form an electron transporting layer containing ET-1 and potassium fluoride. A film was formed on the hole blocking layer. At this time, the energization of the heating boat was adjusted so that the deposition rate was ET-1: potassium fluoride = 75: 25. The layer thickness was 40 nm.
 次に、電子注入材料としてフッ化カリウムの入った加熱ボートに通電して加熱し、フッ化カリウムよりなる電子注入層を、電子輸送層上に成膜した。この際、蒸着速度0.01~0.02nm/秒、層厚2nmとした。 Next, a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer. At this time, the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 2 nm.
 有機EL素子114の、前記発光ユニット1と前記発光ユニット2の発光中心との距離をa、前記発光ユニット2と上層側の前記発光ユニット1aの発光中心との距離をbとしたときの比a:bは、層厚を変化させたため、a≠bであり、中央に配置する発光ユニットの発光中心に対して等距離ではなかった。 Ratio a when the distance between the light emitting unit 1 and the light emitting center of the light emitting unit 2 of the organic EL element 114 is a, and the distance between the light emitting unit 2 and the light emitting center of the upper light emitting unit 1a is b. : B was a ≠ b because the layer thickness was changed, and was not equidistant from the light emission center of the light emitting unit disposed in the center.
 〔有機EL素子115の作製〕
 有機EL素子111の作製において、発光ユニット3(R)上に積層する発光ユニット2(G)及び発光ユニット1(B)の代わりに、下記それぞれの層厚を変化させた発光ユニット2a(G)及び上記形成した発光ユニット1a(B)を用いた以外は同様にして、表2に記載の有機EL素子115を作製した。
[Production of Organic EL Element 115]
In the production of the organic EL element 111, instead of the light emitting unit 2 (G) and the light emitting unit 1 (B) stacked on the light emitting unit 3 (R), the light emitting unit 2a (G) in which the following respective layer thicknesses are changed. And the organic EL element 115 of Table 2 was produced similarly except having used the formed light emitting unit 1a (B).
 〈発光ユニット2a(G)の形成〉
 (正孔輸送層の形成)
 正孔輸送注入材料としてHT-1が入った加熱ボートに通電して加熱し、HT-1よりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送注入層を、透光性第1電極上に成膜した。この際、市販の真空蒸着装置を用い、真空度1×10-4Paまで減圧した後、蒸着速度0.1~0.2nm/秒で蒸着を行い、層厚30nmとした。
<Formation of light emitting unit 2a (G)>
(Formation of hole transport layer)
A heating boat containing HT-1 as a hole transporting injection material is energized and heated, and a hole transporting injection layer made of HT-1 serving as both a hole injection layer and a hole transporting layer is made transparent. A film was formed on one electrode. At this time, the pressure was reduced to a vacuum degree of 1 × 10 −4 Pa using a commercially available vacuum vapor deposition apparatus, and then vapor deposition was performed at a vapor deposition rate of 0.1 to 0.2 nm / second to obtain a layer thickness of 30 nm.
 (発光層2aの形成)
 次いで、ホスト化合物H-1の入った加熱ボートと、リン光発光ドーパントA-1(緑色発光ドーパント:表中Gと表記)の入った加熱ボートとを、それぞれ独立に通電し、ホスト化合物H-1とリン光発光ドーパントA-1を含有する緑色発光層を、正孔輸送注入層上に成膜した。この際、蒸着速度がホスト化合物H-1:リン光発光ドーパントA-3=100:6となるように、加熱ボートの通電を調節した。また、層厚は40nmとした。
(Formation of the light emitting layer 2a)
Next, each of the heating boat containing the host compound H-1 and the heating boat containing the phosphorescent light emitting dopant A-1 (green light emitting dopant: indicated as G in the table) was energized independently, and the host compound H- A green light-emitting layer containing 1 and phosphorescent dopant A-1 was deposited on the hole transport injection layer. At this time, the energization of the heating boat was adjusted so that the vapor deposition rate was host compound H-1: phosphorescent dopant A-3 = 100: 6. The layer thickness was 40 nm.
 (正孔阻止層)
 次いで、正孔阻止材料としてBAlq([Bis(2-methyl-8-quinolinolate)-4-(phenylphenolato)aluminium])が入った加熱ボートに通電して加熱し、BAlqよりなる正孔阻止層を、発光層上に成膜した。この際、蒸着速度0.1~0.2nm/秒、層厚15nmとした。
(Hole blocking layer)
Next, the hole blocking layer made of BAlq is heated by energizing a heating boat containing BAlq ([Bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum]) as a hole blocking material. A film was formed on the light emitting layer. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 15 nm.
 その後、電子輸送材料として下記に示すET-1の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、ET-1とフッ化カリウムを含有する電子輸送層を、正孔阻止層上に成膜した。この際、蒸着速度がET-1:フッ化カリウム=75:25になるように、加熱ボートの通電を調節した。また、層厚40nmとした。 Thereafter, a heating boat containing ET-1 shown below as an electron transporting material and a heating boat containing potassium fluoride were energized independently to form an electron transporting layer containing ET-1 and potassium fluoride. A film was formed on the hole blocking layer. At this time, the energization of the heating boat was adjusted so that the deposition rate was ET-1: potassium fluoride = 75: 25. The layer thickness was 40 nm.
 次に、電子注入材料としてフッ化カリウムの入った加熱ボートに通電して加熱し、フッ化カリウムよりなる電子注入層を、電子輸送層上に成膜した。この際、蒸着速度0.01~0.02nm/秒、層厚2nmとした。 Next, a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer. At this time, the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 2 nm.
 有機EL素子115の、前記発光ユニット3に対する前記発光ユニット1と前記発光ユニット2との発光中心との距離をそれぞれc-1、c-2とし、前記発光ユニット3に対する上層側の前記発光ユニット2aと前記発光ユニット1aの発光中心との距離をd-2、d-1としたとき、c-1≠d-1及びc-2≠d-2であり、中央に配置する発光ユニットの発光中心に対して対称に位置する発光中心が等距離ではなかった。 The distance between the light emitting unit 1 and the light emitting center of the light emitting unit 2 with respect to the light emitting unit 3 of the organic EL element 115 is c-1 and c-2, respectively, and the light emitting unit 2a on the upper layer side with respect to the light emitting unit 3 is used. When the distance between the light emitting unit 1a and the light emitting center of the light emitting unit 1a is d-2 and d-1, c-1 ≠ d-1 and c-2 ≠ d-2, and the light emitting center of the light emitting unit disposed in the center Are not equidistant.
 作製した有機EL素子101~115について、下記の評価を実施した。 The following evaluation was performed on the produced organic EL elements 101 to 115.
 ≪評価≫
 〔透明性の評価〕
 上記で作製した各々の有機EL素子について、23℃・55%RHの空調室で24時間調湿後、非発光時の透明性を、JIS K-7136に従って、ヘイズメーター(NDH2000型、日本電色工業(株)製)を使用して全光線透過率を測定し評価した。
≪Evaluation≫
[Evaluation of transparency]
For each of the organic EL devices prepared above, after being conditioned in an air-conditioned room at 23 ° C. and 55% RH for 24 hours, the non-light-emitting transparency was measured according to JIS K-7136 as a haze meter (NDH2000 type, Nippon Denshoku). Kogyo Co., Ltd.) was used to measure and evaluate the total light transmittance.
 ◎:透過率が75%以上
 ○:透過率が65%以上、75%未満
 △:透過率が55%以上、65%未満
 ×:透過率が55%未満
 〔輝度及び色度の差の評価〕
 測定機器:コニカミノルタ(株)製2次元色彩輝度計CA-2500
 データ解析ソフト:コニカミノルタ(株)製データ管理ソフトCA-S25w
 測定条件:23℃・55%RHの環境下において、それぞれの有機EL素子を発光させて、透光性基板側から基板に対して法線方向に射出される光(Lx)を基板からの距離5cmにて上記測定機器で輝度及び色度を測定した。同様に前記透光性封止基板側から基板に対して法線方向に射出される光を(Ly)を基板からの距離5cmにて上記測定機器で輝度及び色度を測定した。
◎: Transmittance is 75% or more ○: Transmittance is 65% or more and less than 75% Δ: Transmittance is 55% or more and less than 65% ×: Transmittance is less than 55% [Evaluation of difference in luminance and chromaticity]
Measuring instrument: Konica Minolta 2D color luminance meter CA-2500
Data analysis software: Konica Minolta Co., Ltd. data management software CA-S25w
Measurement conditions: The distance from the substrate is the light (Lx) emitted in the normal direction from the translucent substrate side to the substrate by causing each organic EL element to emit light in an environment of 23 ° C. and 55% RH. The luminance and chromaticity were measured with the above measuring instrument at 5 cm. Similarly, the luminance and chromaticity of light emitted from the light-transmitting sealing substrate side in the normal direction with respect to the substrate (Ly) at a distance of 5 cm from the substrate were measured with the measuring instrument.
 次いで、測定した輝度及び色度の値を上記データ解析ソフトにてデータとした。 Next, the measured luminance and chromaticity values were used as data by the above data analysis software.
 得られたLx及びLyの輝度及び色度のデータから、それぞれ小さい方の値を大きい方の値で除して比率(%)を求め、その差を検証した。 From the obtained Lx and Ly luminance and chromaticity data, the smaller value was divided by the larger value to obtain a ratio (%), and the difference was verified.
 有機EL素子の構成及び評価結果を下記表2に示す。 The structure and evaluation results of the organic EL element are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2より、本発明の有機EL素子は、透明性が高く、両面発光時の輝度及び色度のずれが小さい、両面から均一発光できる有機EL素子であることが分かる。特に、中央部発光中心からの距離が等距離である発光中心を有する発光ユニットを対称形に配置することで、それらのズレが小さいことが分かった。 From Table 2, it can be seen that the organic EL device of the present invention is an organic EL device having high transparency, small deviation in luminance and chromaticity when emitting light on both sides, and capable of emitting light uniformly from both sides. In particular, it has been found that by arranging light emitting units having light emission centers that are equidistant from the light emission center in the central portion in a symmetrical manner, their deviation is small.
 透明性については、透光性電極としてITOを用いることよりも、銀電極を用いた方が薄層化できるため、透明性に優れていることが分かる。 Regarding the transparency, it can be seen that the use of a silver electrode can be made thinner than the use of ITO as a translucent electrode, and thus the transparency is excellent.
 本発明の有機EL素子は、発光ユニットの選択によって、自在に発光色を変化させることができるが、有機EL素子110のように、青色発光層と補色の関係にある黄色発光層を設けることで、白色発光が得られ、照明用途に好適な有機EL素子の構成及び透明性素子が得られることが分かった。 The organic EL element of the present invention can freely change the emission color by selecting the light emitting unit. However, like the organic EL element 110, a yellow light emitting layer having a complementary color relationship with the blue light emitting layer is provided. As a result, it was found that white light emission was obtained, and the structure of the organic EL element suitable for illumination use and a transparent element were obtained.
 さらに、有機EL素子105、111、115のように、B、G、R発光ユニットを対称に配置することで、均一な輝度及び色度を有する両面発光可能なフルカラー発光素子を得ることができる。 Furthermore, like the organic EL elements 105, 111, and 115, by arranging B, G, and R light emitting units symmetrically, a full color light emitting element capable of emitting light on both sides with uniform luminance and chromaticity can be obtained.
 本発明の有機エレクトロルミネッセンス素子は、両面発光型であって、非発光時は透明であり、発光時は両面から均一な輝度及び色度で発光し、かつ自在に発光色を変化させることができるため、各種の発光光源として用いることができる。例えば、家庭用照明や車内照明等の照明装置、時計や液晶用のバックライト、看板広告用照明、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等で、両面発光型である特徴を活かした用途に好適である。 The organic electroluminescence device of the present invention is a double-sided light emitting type, is transparent when not emitting light, emits light with uniform brightness and chromaticity from both sides when emitting light, and can freely change the emission color. Therefore, it can be used as various light emission sources. For example, lighting devices such as home lighting and interior lighting, backlights for watches and liquid crystals, lighting for billboard advertisements, light sources for traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, It is suitable for applications that make use of the characteristics of a double-sided light emission type, such as a light source of an optical sensor.
 100  有機EL素子
 101  透光性第1電極
 102  透光性第2電極(対向電極)
 103-1、103-2、103-3、103-4、103-5 発光ユニット
 104-1、104-2、104-3、104-4 透光性中間電極
 105  透光性基板
 106  透光性封止基板
 h    発光光(発光中心)
 200  電源回路
 210  電圧源
100 Organic EL element 101 Translucent first electrode 102 Translucent second electrode (counter electrode)
103-1, 103-2, 103-3, 103-4, 103-5 Light-emitting unit 104-1, 104-2, 104-3, 104-4 Translucent intermediate electrode 105 Translucent substrate 106 Translucent Sealing substrate h Light emission (emission center)
200 Power supply circuit 210 Voltage source

Claims (5)

  1.  少なくとも透光性基板、透光性第1電極、3以上の奇数個の発光ユニット、当該発光ユニット間に配置される複数の透光性中間電極、透光性第2電極及び透光性封止基板がこの順に積層され、当該透光性封止基板によって封止された有機エレクトロルミネッセンス素子であって、前記3以上の奇数個の発光ユニットが、青色、緑色及び赤色、又はそれらが混合された発光色を有する発光ユニットから選択される少なくとも2種の発光ユニットを用い、かつ中央に配置する発光ユニットに対して異なる発光色の発光ユニットをそれぞれ対称の位置に配置したことを特徴とする有機エレクトロルミネッセンス素子。 At least a translucent substrate, a translucent first electrode, an odd number of three or more light emitting units, a plurality of translucent intermediate electrodes arranged between the light emitting units, a translucent second electrode, and a translucent seal An organic electroluminescence device in which substrates are stacked in this order and sealed by the translucent sealing substrate, wherein the odd number of the three or more light emitting units are blue, green and red, or a mixture thereof An organic electro that uses at least two types of light emitting units selected from light emitting units having a light emitting color, and has light emitting units of different light emitting colors arranged at symmetrical positions with respect to the light emitting unit arranged in the center. Luminescence element.
  2.  前記3以上の奇数個の発光ユニットの、前記それぞれ対称の位置にある発光ユニット内部の発光中心が、前記中央に配置する発光ユニットの発光中心からそれぞれ等距離にあることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。 2. The light emission centers inside the light emitting units at the symmetrical positions of the three or more odd number of light emitting units are equidistant from the light emission centers of the light emitting units arranged at the center, respectively. The organic electroluminescent element of description.
  3.  前記透光性基板及び前記透光性封止基板が、いずれもフレキブル基板であり、かつ同一の材料から構成されていることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。 3. The organic electroluminescence device according to claim 1, wherein the translucent substrate and the translucent sealing substrate are both flexible substrates and are made of the same material. .
  4.  前記複数の透光性中間電極の極性が、前記透光性基板側から陽、陰の繰り返し順、又は陰、陽の繰り返し順であることを特徴とする請求項1から請求項3までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 4. The polarity of the plurality of translucent intermediate electrodes is positive and negative repeating order from the translucent substrate side, or negative and positive repeating order. 5. The organic electroluminescent element according to claim 1.
  5.  前記透光性第1電極、前記透光性中間電極及び前記透光性第2電極が、いずれも銀を主成分とする透明電極であることを特徴とする請求項1から請求項4までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The said translucent 1st electrode, the said translucent intermediate electrode, and the said translucent 2nd electrode are all the transparent electrodes which have silver as a main component, From Claim 1 to Claim 4 characterized by the above-mentioned. The organic electroluminescent element as described in any one.
PCT/JP2015/079406 2014-11-04 2015-10-19 Organic electroluminescence element WO2016072246A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016557685A JPWO2016072246A1 (en) 2014-11-04 2015-10-19 Organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-223893 2014-11-04
JP2014223893 2014-11-04

Publications (1)

Publication Number Publication Date
WO2016072246A1 true WO2016072246A1 (en) 2016-05-12

Family

ID=55908973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079406 WO2016072246A1 (en) 2014-11-04 2015-10-19 Organic electroluminescence element

Country Status (2)

Country Link
JP (1) JPWO2016072246A1 (en)
WO (1) WO2016072246A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168617A1 (en) * 2017-03-16 2018-09-20 コニカミノルタ株式会社 Planar light emission device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335214A (en) * 2006-06-14 2007-12-27 Matsushita Electric Works Ltd Organic light-emitting element
JP2008010410A (en) * 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and electronic device
WO2012039213A1 (en) * 2010-09-24 2012-03-29 株式会社日立製作所 Organic light emitting device and light source device provided with same
WO2013141057A1 (en) * 2012-03-21 2013-09-26 コニカミノルタ株式会社 Organic electroluminescence element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010410A (en) * 2006-06-02 2008-01-17 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and electronic device
JP2007335214A (en) * 2006-06-14 2007-12-27 Matsushita Electric Works Ltd Organic light-emitting element
WO2012039213A1 (en) * 2010-09-24 2012-03-29 株式会社日立製作所 Organic light emitting device and light source device provided with same
WO2013141057A1 (en) * 2012-03-21 2013-09-26 コニカミノルタ株式会社 Organic electroluminescence element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168617A1 (en) * 2017-03-16 2018-09-20 コニカミノルタ株式会社 Planar light emission device

Also Published As

Publication number Publication date
JPWO2016072246A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
US11507649B2 (en) Optical fingerprint authentication device
JP6337883B2 (en) Electronic devices
JP6245102B2 (en) ORGANIC ELECTROLUMINESCENCE MODULE AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENCE MODULE
WO2017056682A1 (en) Organic electroluminescence panel
US20190044091A1 (en) Organic electroluminescence panel and method for manufacturing the same
WO2015146495A1 (en) Organic electroluminescent panel, method for manufacturing same, organic electroluminescent module and information device
JP2016091793A (en) Organic electroluminescent device and method for manufacturing the same
JP6592915B2 (en) Transparent electrode substrate and manufacturing method thereof, electronic device and organic EL device
WO2016072246A1 (en) Organic electroluminescence element
WO2015151855A1 (en) Organic electroluminescent module and information appartus
WO2016152792A1 (en) Organic electroluminescence panel module
JP7040006B2 (en) Manufacturing method of image display member and image display member
WO2014185219A1 (en) Method for producing organic electroluminescent element and organic electroluminescent element
WO2019107424A1 (en) Organic electroluminescence element, organic electroluminescence material, display device, and illumination device
WO2014168102A1 (en) Production method for organic electroluminescent element
WO2018116923A1 (en) Transparent electrode and electronic device
WO2014181695A1 (en) Organic electroluminescent element
WO2015118919A1 (en) Organic electroluminescent lighting device
JP6337897B2 (en) Method for manufacturing organic electroluminescence element
WO2018051617A1 (en) Organic electroluminescent element
US20130048961A1 (en) Organic light emitting device with enhanced emission uniformity
JP6264374B2 (en) Method for manufacturing surface-emitting panel with light-emitting pattern
JP2012234972A (en) Organic electroluminescent element and method for manufacturing the same
WO2016098397A1 (en) Electrical connection member, organic electroluminescence module, and method for producing organic electroluminescence module
WO2015029692A1 (en) Organic electroluminescent element and method for manufacturing organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557685

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856619

Country of ref document: EP

Kind code of ref document: A1