WO2016098373A1 - 負荷追従による誘導電動機の省エネ制御方法及び装置 - Google Patents
負荷追従による誘導電動機の省エネ制御方法及び装置 Download PDFInfo
- Publication number
- WO2016098373A1 WO2016098373A1 PCT/JP2015/068104 JP2015068104W WO2016098373A1 WO 2016098373 A1 WO2016098373 A1 WO 2016098373A1 JP 2015068104 W JP2015068104 W JP 2015068104W WO 2016098373 A1 WO2016098373 A1 WO 2016098373A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- induction motor
- control
- load factor
- frequency
- control amount
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
Definitions
- the present invention relates to the field of induction motor control, and more specifically, to a control method, apparatus, and system for energy-saving operation of an induction motor by load following.
- Fig. 1 is a curve of the voltage and current characteristics of an induction motor operating at a variable load factor.
- X, Y, and Z as an example are the high efficiency points of induction motors operating at a load factor of 10%, 50%, and 100%, respectively (X1, X2), (Y1, Y2), (Z1, Z2) are adjacent efficiency points of X, Y, and Z points, respectively.
- the function point of the present invention is referred to as “load tracking and control by load tracking”.
- load tracking and control by load tracking As shown in Fig. 1, when the load factor of the induction motor changes from 100% to 50% and further to 10%, the amount of change in the load factor is detected instantaneously and accurately in real time, and the input voltage (V ) And current (I), the optimum operating point is maintained at the X, Y and Z points, and the voltage is adjusted to the lowest current point. It does not affect the torque and rotation speed, and is operated with high efficiency and energy saving.
- the induction motor is always operated in a more efficient state by adjusting the voltage due to load fluctuations.
- the specific method is as follows: By detecting the corresponding change in the current value by experimental voltage adjustment, the high efficiency point is specified. As shown in FIG. 1, for example, when the voltage is lowered from 200 V to a voltage value corresponding to Y1, and a change in the current value corresponding to the voltage value is detected, it can be seen that the current value is also reduced accordingly.
- the high efficiency point can be specified as Y by repeating the trial voltage value adjustment and the current value change.
- Such a method can increase the operating efficiency and power factor of the induction motor to some extent, but it is difficult to specify a high efficiency point once and accurately, and the response speed becomes slow in repeated detection investigations (usually 0.1 to 10). Second), it cannot respond to sudden load factor fluctuations, and the induction motor will slip greatly, which in turn may cause sudden stoppage.
- the present invention obtains a load factor of an induction motor instantaneously and accurately in real time, and a voltage that causes the induction motor to always operate at a high efficiency with a variable load factor and an arbitrary frequency through an optimization algorithm.
- a new control method and device that adjusts the input voltage and frequency of the induction motor in real time and always adapts the input power of the induction motor to the load factor.
- This is an energy-saving control method for induction motors by load following, that is, the control amount of voltage and frequency that allows the induction motor to always operate at high efficiency and energy-saving state at variable load factor and arbitrary frequency (rotation speed) through optimization algorithm.
- the conventional medium-to-low load induction motor which is a conventional technology, has a copper loss due to an increase in reactive power.
- the operation is realized with almost no reactive current of the induction motor and in an energy saving state with an optimum voltage.
- This method has the following effects: 1) Almost no reactive current, greatly reducing power consumption and improving power factor; 2) By almost eliminating reactive current, copper loss and iron loss of induction motors are greatly reduced, and operating efficiency is improved; 3) The active power was greatly reduced by greatly reducing copper loss and iron loss; 4) The operating temperature and noise of the induction motor have been greatly reduced and the life has been extended;
- FIG. 3 is a structural diagram of a second embodiment of an energy saving control method and apparatus for an induction motor by load following according to the present invention.
- FIG. 4 is a curve showing the optimum efficiency point due to load fluctuations of the induction motor.
- the operation efficiency ⁇ can be calculated from the induction motor characteristics by the following equation 1: Formula 1
- P1 represents the input capacity of the induction motor
- P2 represents the output capacity of the induction motor (shaft output capacity)
- Pcu1 represents the copper loss of the stator, ie the power loss that occurs when current flows through the stator winding, the magnitude of which depends on the load
- Pcu2 represents the rotor copper loss, ie the power loss that occurs when current flows through the rotor winding, the magnitude of which depends on the load
- PFe represents the iron loss, that is, the excitation loss caused by the rotating magnetic field in the stator core, the magnitude of which depends on the excitation electromotive force (right and left of the square of the induction motor input voltage).
- FIG. 3 is an explanatory diagram showing adjustment of the fluctuating V / F curve depending on the operating load factor.
- the change in the load factor coefficient Pk is identified by reading the phase angle ⁇ at a microsecond ( ⁇ s) level speed by the high-speed load following technique.
- the voltage control amount Ud that causes the induction motor to always operate at a high efficiency point is obtained, and from a low load output (low V / F) to a full load output (multiple V / F ratio curves) By changing between high V / F), the input voltage of the induction motor is adjusted quickly.
- the method proposed in this embodiment is a high-speed voltage control amount within several tens of microseconds ( ⁇ s) that allows the induction motor to be operated in a highly efficient state at a variable load factor and frequency (rotation speed) set value (conventional technology). 0.1s-10s) and accurate detection enabled energy-saving operation with the minimum current and optimum voltage of the induction motor.
- FIG. 5 is a flowchart of a second embodiment of the method for realizing load following control of the induction motor according to the present invention, and details of the implementation steps of this method are as follows:
- the operating phase angle ⁇ of the induction motor is closely related to the load factor, and the phase angle ⁇ is inversely proportional to the load factor of the induction motor, that is, the larger the phase angle ⁇ , the smaller the load factor becomes. The smaller the ⁇ , the larger the load factor.
- Step 21 for obtaining operating power factor PF, reactive current Is, and active current Iw by calculation reactive current Is in the present embodiment is obtained from operating currents Ia, Ib, Ic and operating phase angle ⁇ by coordinate conversion shown in FIG. .
- the reactive current Is of the acquired induction motor is subjected to minimum value control, and a reactive current Is control coefficient Isk is obtained 23.
- the frequency control coefficient Fq is obtained 25 by performing V / F calculation on the rotational speed command value.
- Step 26 for obtaining the variable V / F control amount Ud by the following equation 2: Ud Fq ⁇ k1 ⁇ Pk Equation 2
- Ud is the variable V / F control amount
- Fq is the control amount of the frequency (rotational speed)
- k1 is the V / F ratio constant (rated voltage V / rated frequency F.
- Induction motor rated voltage V Is 200 V and the rated frequency F is 50 Hz
- the V / F ratio constant is 200/50, ie 4.0, where the rated voltage V is not limited to 200 V, and the rated frequency F is not necessarily 50 Hz.
- Pk PFk ⁇ Isk represents the load factor coefficient.
- the waveform of SPWM generation is adjusted with the obtained variable V / F control amount Ud, and the three-phase input voltages Ua, Ub, Uc (three-phase input currents Ia, Ib, Ic are the three-phase input voltage Ua) of the induction motor with the voltage adjustment unit , And changes in accordance with changes in Ub and Uc) and frequency (rotation speed) in real time, and the input electric power of the induction motor is always adapted to the load factor of the induction motor and is operated in an energy saving state (step 27).
- a device for realizing the energy saving control method for an induction motor based on the load following, and an efficiency optimization control device for one induction motor composed of an induction motor and a voltage adjustment unit have been proposed.
- the energy saving control device for the induction motor is connected to the induction motor and the voltage adjusting unit, and is used to operate the induction motor in a constantly high efficiency and energy saving state.
- the energy-saving control device for induction motors according to the load following is connected to induction motors and related equipment widely used in the industrial field, and high efficiency and energy-saving are achieved at variable load factor and arbitrary rotational speed (frequency). Used to operate in
- Each step and calculation algorithm proposed in the present invention can be realized by a general computing device, such as aggregating in one computing device or distributing it in a network connecting a plurality of computing devices.
- Inverters which are control devices for induction motors that are now widely used in the industrial field, can save energy in induction motors that can be decelerated. Processing machine grinding machine, bending machine, press machine, shearing machine, forging machine, spring forming machine, woodworking machine concrete, molding machine, rubber molding machine, chemical machine, textile machine, It cannot be applied when the speed of agricultural machinery, paper machinery, food processing machinery, transport machinery, or other industrial machinery cannot be reduced. In this case, when the load factor fluctuates drastically, the operating efficiency and power factor of the induction motor are greatly reduced, resulting in serious waste of power consumption.
- the energy saving control method and apparatus for an induction motor by load following proposed by the present invention can be applied to all cases where the induction motor decelerates or does not decelerate and there are many load fluctuations.
- the energy saving operation of the induction motor It is now possible to handle equipment that does not decelerate and load fluctuation that conventional general-purpose inverters cannot handle.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
本発明は負荷追従の方法は、誘導電動機の負荷率及び回転速度を検知することで、電動機の入力電力を常に負荷に合わせて、電動機の変動負荷率及び任意の回転速度において電動機の関連パラメータを調整し、全範囲で電動機の高い効率の省エネで運転させるために、負荷追従制御装置(18)に、負荷率算出するユニット(9、8)で稼動負荷率をリアルタイムで獲得して、力率PF 演算(4)で力率(PF)を、Is 計算アルゴリズム(5)で無効電流(Is)を、それぞれ獲得し、無効電流Is 最小化制御(2)で無効電流の制御量(Isk)を、PF 制御(3)で力率の制御量(PFk)を、それぞれ算出して、V/F 設定器(1)で周波数(回転速度) 制御量(Fq)を、変動V/F 算出アルゴリズム(6)に入力し、最適電圧制御量(Ud)を算出し、最適電圧制御量(Ud)及び周波数(回転速度)制御量(Fq)よりSPWM 生成(7)の波形を調整し、電力調整ユニット(14)で誘導電動機(17)の入力電力を自動的に最小値に、高い効率の省エネ状態に調整する。
Description
本発明は、誘導電動機の制御分野で、具体的には負荷追従による誘導電動
機の省エネ運転する制御方法、装置、システムに関わる。
機の省エネ運転する制御方法、装置、システムに関わる。
図1は誘導電動機における変動負荷率で稼働する電圧、電流特性を曲線化したものである。図1に示したように、変動負荷率のもとで稼働する誘導電動機の場合、その入力電圧とその曲線の交差点が曲線の最低点に近ければ近いほど、誘導電動機の効率が高くなる。このうち例としてのX、Y、Zは負荷率10%、50%、100%の状態で稼働する誘導電動機のそれぞれ高い効率点で、(X1、X2),(Y1、Y2),(Z1、Z2)はそれぞれX、Y、Z点の隣接効率点である。誘導電動機の入力電圧が定格電圧の200Vになっているとき、中低負荷で稼働する誘導電動機の効率が低いことがわかる。
本発明の機能ポイントは、「負荷追従及び負荷追従による制御」という。図1に示すように、誘導電動機の負荷率が100%から50%に、さらに10%に変化の時、負荷率の変化量をリアルタイムで瞬時、精確に検出し、誘導電動機の入力電圧(V)と電流(I)を調節し、稼働点は最適のX、Y、Z点を保持し、電圧を電流最低点に合わせる。トルクと回転数に影響を与えない上、高い効率、省エネ状態で運転させる。
本発明の機能ポイントは、「負荷追従及び負荷追従による制御」という。図1に示すように、誘導電動機の負荷率が100%から50%に、さらに10%に変化の時、負荷率の変化量をリアルタイムで瞬時、精確に検出し、誘導電動機の入力電圧(V)と電流(I)を調節し、稼働点は最適のX、Y、Z点を保持し、電圧を電流最低点に合わせる。トルクと回転数に影響を与えない上、高い効率、省エネ状態で運転させる。
江崎雅康著 「ブラシレスDCモータのベクトル制御技術」CQ出版社 2013年
今現在、産業領域で広く使用されている誘導電動機の制御において、主に以下のような制御方法が応用されている:
(1)従来の汎用インバーターV/F制御、ベクトル制御;
(2)従来の汎用インバーターの省エネ制御。
以上(1)の制御方法では、誘導電動機のトルクと速度の調整を注目していますが、負荷の変動が無視され、常に固定V/F(定格周波数の時定格電圧)比で稼動しているので、誘導電動機が中低負荷の状態になると、誘導電動機の無効電流、無効電力の増加に伴い、銅損や鉄損もそれなりに増加し、誘導電動機の運転効率、力率が大幅に低下して深刻な無駄電力の消費が発生するという問題である、これはこれらの技術の共通の欠陥である。従来の商用電源で駆動するときにも同じ問題が存在している
以上(2)の従来の省エネ制御では、負荷の変動により、電圧を調整して誘導電動機を常により高い効率な状態で運転させたい、その具体的な方法は次の通り:試験的な電圧調整により、相応する電流値の変化を検知して高い効率点を特定するものである。図1に示すように、例えば電圧を200VからY1に相応する電圧値まで下げて、それに相応する電流値の変化を検知したところ、電流値もそれなり低下していることがわかる。そのまま電圧を下げ続け、Y2に相応する電圧値まで来た後、それに相応した電流値の変化を確認したところ、電流値もある程度上昇したため、高い効率点がY1とY1の間にあると、その後、試験的な電圧値調整及び電流値の変化を繰り返すことで、高い効率点はYであると特定することができる。このような方法は、誘導電動機の運転効率及び力率をある程度上げられるが、高い効率点を一度かつ精確に特定するのが難しく、しかも繰り返し検知捜査で応答速度が遅くなる(通常は0.1~10秒)、急激な負荷率変動に対応できず、誘導電動機の大きい滑りが発生し、ひいては急停止を引き起こす場合もある、負荷変動の激しい負荷設備に対応出来なくなります。
(1)従来の汎用インバーターV/F制御、ベクトル制御;
(2)従来の汎用インバーターの省エネ制御。
以上(1)の制御方法では、誘導電動機のトルクと速度の調整を注目していますが、負荷の変動が無視され、常に固定V/F(定格周波数の時定格電圧)比で稼動しているので、誘導電動機が中低負荷の状態になると、誘導電動機の無効電流、無効電力の増加に伴い、銅損や鉄損もそれなりに増加し、誘導電動機の運転効率、力率が大幅に低下して深刻な無駄電力の消費が発生するという問題である、これはこれらの技術の共通の欠陥である。従来の商用電源で駆動するときにも同じ問題が存在している
以上(2)の従来の省エネ制御では、負荷の変動により、電圧を調整して誘導電動機を常により高い効率な状態で運転させたい、その具体的な方法は次の通り:試験的な電圧調整により、相応する電流値の変化を検知して高い効率点を特定するものである。図1に示すように、例えば電圧を200VからY1に相応する電圧値まで下げて、それに相応する電流値の変化を検知したところ、電流値もそれなり低下していることがわかる。そのまま電圧を下げ続け、Y2に相応する電圧値まで来た後、それに相応した電流値の変化を確認したところ、電流値もある程度上昇したため、高い効率点がY1とY1の間にあると、その後、試験的な電圧値調整及び電流値の変化を繰り返すことで、高い効率点はYであると特定することができる。このような方法は、誘導電動機の運転効率及び力率をある程度上げられるが、高い効率点を一度かつ精確に特定するのが難しく、しかも繰り返し検知捜査で応答速度が遅くなる(通常は0.1~10秒)、急激な負荷率変動に対応できず、誘導電動機の大きい滑りが発生し、ひいては急停止を引き起こす場合もある、負荷変動の激しい負荷設備に対応出来なくなります。
この課題を解決するために、本発明は、誘導電動機の負荷率をリアルタイムで瞬時、精確に獲得し、最適化アルゴリズムを通じて変動負荷率及び任意の周波数において誘導電動機を常に高い効率で運転させる電圧及び周波数の制御量をもとに、誘導電動機の入力電圧と周波数をリアルタイムで調整し、誘導電動機の入力電力が常に負荷率に適応する新しい制御方法及び装置を提案した。
これは負荷追従による誘導電動機の省エネ制御方法といい、即ち、最適化アルゴリズムを通じて変動負荷率及び任意の周波数(回転速度)において誘導電動機を常に高い効率、省エネ状態で運転させる電圧及び周波数の制御量を一括かつ瞬時、精確に獲得し、この電圧及び周波数の制御量をもとに、誘導電動機の入力電圧と周波数をリアルタイムで調整し、誘導電動機の入力電力を常に誘導電動機の負荷率に適応させ、無効電流がほぼなくして及び最適電圧の省エネ状態において高い効率、省エネで運転させることを確保したことで、従来の技術であるよく見かける中低負荷の誘導電動機だと無効電力の増加により銅損、鉄損も増加し、誘導電動機の運転効率、力率の大幅な低下と深刻な無駄電力の消耗が生じるという技術的な課題を解決した。
これは負荷追従による誘導電動機の省エネ制御方法といい、即ち、最適化アルゴリズムを通じて変動負荷率及び任意の周波数(回転速度)において誘導電動機を常に高い効率、省エネ状態で運転させる電圧及び周波数の制御量を一括かつ瞬時、精確に獲得し、この電圧及び周波数の制御量をもとに、誘導電動機の入力電圧と周波数をリアルタイムで調整し、誘導電動機の入力電力を常に誘導電動機の負荷率に適応させ、無効電流がほぼなくして及び最適電圧の省エネ状態において高い効率、省エネで運転させることを確保したことで、従来の技術であるよく見かける中低負荷の誘導電動機だと無効電力の増加により銅損、鉄損も増加し、誘導電動機の運転効率、力率の大幅な低下と深刻な無駄電力の消耗が生じるという技術的な課題を解決した。
本発明により、誘導電動機の無効電流がほぼなくして及び最適電圧の省エネ状態で運転を実現した。この方法には次のような効果がある:
1)無効電流がほぼなくして、無駄電力が大幅に低減し、力率が向上した;
2)無効電流がほぼなくすることにより、誘導電動機の銅損、鉄損が大幅に低減し、運転効率が向上した;
3)銅損、鉄損が大幅に低減することにより、有効電力が大幅に低減した;
4)誘導電動機の運転温度と騒音が大幅に低減し、寿命を伸ばした;
1)無効電流がほぼなくして、無駄電力が大幅に低減し、力率が向上した;
2)無効電流がほぼなくすることにより、誘導電動機の銅損、鉄損が大幅に低減し、運転効率が向上した;
3)銅損、鉄損が大幅に低減することにより、有効電力が大幅に低減した;
4)誘導電動機の運転温度と騒音が大幅に低減し、寿命を伸ばした;
次に、第一実施例と説明図を使って本発明について詳述する。
図4は誘導電動機の負荷変動による最適効率点を示す曲線である、まず、誘導電動機特性から運転効率ηを次の式1で算出できる:
式1
式1中:
P1は誘導電動機の入力容量を表す;
P2は誘導電動機の出力容量(軸の出力容量)を表す;
Pcu1は固定子の銅損を表し、即ち電流が固定子巻線に流れた時に生じる電力損失で、その大きさは負荷に依存する;
Pcu2は回転子銅損を表し、即ち電流が回転子巻線に流れた時に生じる電力損失で、その大きさは負荷に依存する;
PFeは鉄損を表し、即ち回転磁場が固定子鉄心の中で生じる励磁損失で、その大きさは主に励磁起電力によって左右(誘導電動機入力電圧の平方とは正比
例をなす)されるため、負荷に依存しない;Pmecは機械損失を表し、即ち軸受、ファン等による摩擦を発生する際に損失する電力で、その大きさはほぼ
変わらない;Padは附属品損失を表し、即ち固定子、回転子鉄心溝付及び調波により生じる損失で、その大きさは負荷に依存するが、無視できる。
(Pcu1+Pcu2)= Pcは負荷に依存するため可変損失(銅損)と、(PFe+Pmec+Pad)= Pfは負荷に殆ど依存しないため不変損失(鉄損)とそれぞれ呼ばれる。式1の公式を見てもわかるように、P2が変わらない場合において、誘導電動機を省エネの状態で運転させるには、誘導電動機の效率を上げ、即ちあらゆる損失の合計値を低減させる必要がある。誘導電動機の特性により、エネルギー保存則からもわかるように、銅損と鉄損が同じとき、即ち(Pcu1+ Pcu2)=(PFe+Pmec+ Pad)の時は、図4の交点(最適効率点)に示すように、誘導電動機の損失が最も低く、効率が最も高く省エネ運転点になる。即ち、誘導電動機の変動負荷に対して、負荷追従の方法でリアルタイムでPf=Pcまで入力電圧を瞬時、精確的に調整すれば、誘導電動機が最適効率で省エネ運転できることがわかる。図3は、稼働負荷率による変動V/F曲線の調整を示す説明図である。
本実施例では、高速負荷追従技術により、マイクロ秒(μs)レベルの速度で位相角θを読み取り、負荷率係数Pkの変化を識別している。下記のステップ26の公式2により、誘導電動機を常に高い効率点で運転させる電圧制御量Udを獲得し、複数のV/F比曲線により、低負荷出力(低V/F)から満負荷出力(高V/F)の間にを変えることで、誘導電動機の入力電圧を素早く調整している。
本実施例の提案した方法は、変動負荷率及び周波数(回転速度)設定値において誘導電動機を常に高い効率な状態で運転させる電圧制御量を数十マイクロ秒(μs)以内の高速(従来の技術は0.1s-10s)かつ精確に検知できるようにしたことで、誘導電動機の最小電流と最適電圧での省エネ状態運転を実現した。
図4は誘導電動機の負荷変動による最適効率点を示す曲線である、まず、誘導電動機特性から運転効率ηを次の式1で算出できる:
式1
式1中:
P1は誘導電動機の入力容量を表す;
P2は誘導電動機の出力容量(軸の出力容量)を表す;
Pcu1は固定子の銅損を表し、即ち電流が固定子巻線に流れた時に生じる電力損失で、その大きさは負荷に依存する;
Pcu2は回転子銅損を表し、即ち電流が回転子巻線に流れた時に生じる電力損失で、その大きさは負荷に依存する;
PFeは鉄損を表し、即ち回転磁場が固定子鉄心の中で生じる励磁損失で、その大きさは主に励磁起電力によって左右(誘導電動機入力電圧の平方とは正比
例をなす)されるため、負荷に依存しない;Pmecは機械損失を表し、即ち軸受、ファン等による摩擦を発生する際に損失する電力で、その大きさはほぼ
変わらない;Padは附属品損失を表し、即ち固定子、回転子鉄心溝付及び調波により生じる損失で、その大きさは負荷に依存するが、無視できる。
(Pcu1+Pcu2)= Pcは負荷に依存するため可変損失(銅損)と、(PFe+Pmec+Pad)= Pfは負荷に殆ど依存しないため不変損失(鉄損)とそれぞれ呼ばれる。式1の公式を見てもわかるように、P2が変わらない場合において、誘導電動機を省エネの状態で運転させるには、誘導電動機の效率を上げ、即ちあらゆる損失の合計値を低減させる必要がある。誘導電動機の特性により、エネルギー保存則からもわかるように、銅損と鉄損が同じとき、即ち(Pcu1+ Pcu2)=(PFe+Pmec+ Pad)の時は、図4の交点(最適効率点)に示すように、誘導電動機の損失が最も低く、効率が最も高く省エネ運転点になる。即ち、誘導電動機の変動負荷に対して、負荷追従の方法でリアルタイムでPf=Pcまで入力電圧を瞬時、精確的に調整すれば、誘導電動機が最適効率で省エネ運転できることがわかる。図3は、稼働負荷率による変動V/F曲線の調整を示す説明図である。
本実施例では、高速負荷追従技術により、マイクロ秒(μs)レベルの速度で位相角θを読み取り、負荷率係数Pkの変化を識別している。下記のステップ26の公式2により、誘導電動機を常に高い効率点で運転させる電圧制御量Udを獲得し、複数のV/F比曲線により、低負荷出力(低V/F)から満負荷出力(高V/F)の間にを変えることで、誘導電動機の入力電圧を素早く調整している。
本実施例の提案した方法は、変動負荷率及び周波数(回転速度)設定値において誘導電動機を常に高い効率な状態で運転させる電圧制御量を数十マイクロ秒(μs)以内の高速(従来の技術は0.1s-10s)かつ精確に検知できるようにしたことで、誘導電動機の最小電流と最適電圧での省エネ状態運転を実現した。
図5では、本発明における誘導電動機の負荷追従制御を実現する方法の第二実施例のフローチャートで、この方法の実施ステップについて詳述する:
誘導電動機の運転電流Ia、Ib、Ic,入力電圧Ua、Ub、Ucをリアルタイムで獲得して、誘導電動機の稼働負荷率を算出するステップ20。
このうち誘導電動機の稼働位相角θは負荷率と密接に関係しており、位相角θは誘導電動機の負荷率とは反比例を成し、即ち位相角θが大きいほど負荷率が小さく、位相角θが小さいほど負荷率が大きい。計算により稼動力率PF、無効電流Is、有効電流Iwを獲得するステップ21,本実施例における無効電流Isは図2に示す座標変換で運転電流Ia、Ib、Icと稼働位相角θから求められる。獲得した誘導電動機の稼動力率PFを設定した力率の指令値と比較して偏差値を獲得し、その偏差値に対して補償制御演算を行い、その力率制御係数PFkを求めるステップ22。獲得した誘導電動機の無効電流Isを最小値制御を行い、無効電流Is制御係数Iskを求める23。算出された力率制御係数PFkに無効電流Is制御係数Iskをかけて、負荷率係数Pkを求めるステップ24。回転速度の指令値をV/F演算を行って、周波数制御係数Fqを求める25。
以下の式2により変動V/F制御量Udを求めるステップ26:
Ud=Fq×k1×Pk 式2
式2の中,Udは変動V/F制御量,Fqは周波数(回転速度)の制御量,k1はV/F比定数(定格電圧V/定格周波数Fをそれぞれ表す。誘導電動機の定格電圧Vが200V、定格周波数Fが50Hzの場合は、V/F比定数は200/50、即ち4.0とする。ここにおける定格電圧Vは200Vとは限らず、定格周波数Fも50Hzとは限らない。ほかの定格電圧、例えば12V~800V、ほかの定格周波数,例えば1Hz~500Hzの時も本発明に適用する。),Pk=PFk×Iskで負荷率係数を表す。
獲得した変動V/F制御量UdでSPWM生成の波形を調整し、電圧調整ユニットで誘導電動機の3相入力電圧Ua、Ub、Uc(3相入力電流Ia、Ib、Icは3相入力電圧Ua、Ub、Ucの変化に応じて変化する)と周波数(回転速度)をリアルタイム調整して、誘導電動機の入力電力が常に誘導電動機の負荷率に適応して、省エネ状態で運転するステップ27。
本実施例では、さらに前記の負荷追従による誘導電動機の省エネ制御方法を実現する装置、誘導電動機及び電圧調整ユニットから構成される一つの誘導電動機の効率最適化制御装置を提案した。前記の誘導電動機の省エネ制御装置は誘導電動機及び電圧調整ユニットと接続し、誘導電動機を常に高い効率、省エネ状態で運転させるのに用いられる。
本実施例ではさらに前記の負荷追従による誘導電動機の省エネ制御装置は産業領域で広く使用されている誘導電動機及び関連設備と接続し、変動負荷率及び任意の回転速度(周波数)において高い効率、省エネで稼働させるのに用いられる。
上記の本発明で提案した各ステップ及び演算アルゴリズムは、一つの計算装置
に集成させたり、複数の計算装置を繋ぐネットワークに分布させたりと、一般的な計算装置でもって実現することができる。また、別の選択肢として、計算装置にインストールされたプログラムにより実現できるため、それらを記憶装置に保存して計算装置に実行させるか、或はそれぞれの集積回路モジュール或はプリント基板に制作し、もしくはそれに含まれる複数の各ステップ及び演算アルゴリズムを一つの集積回路モジュール或はプリント基板にして実現できることを意味し、よって本発明は、いかなるハードとソフトの結合にも制限されないことはこの分野の技術者にとって自明である。
また、上記の内容は、本発明の一最優先実施例に過ぎず、その実施形態に限定されるものではなく、この分野の技術者にとって、さまざまな変更が可能であるが、本発明の理念と原則に沿ったものであれば、本発明に対するいかなる修正、導価入れ替え、改良などは、いずれも本発明の保護対象と見なされる。
誘導電動機の運転電流Ia、Ib、Ic,入力電圧Ua、Ub、Ucをリアルタイムで獲得して、誘導電動機の稼働負荷率を算出するステップ20。
このうち誘導電動機の稼働位相角θは負荷率と密接に関係しており、位相角θは誘導電動機の負荷率とは反比例を成し、即ち位相角θが大きいほど負荷率が小さく、位相角θが小さいほど負荷率が大きい。計算により稼動力率PF、無効電流Is、有効電流Iwを獲得するステップ21,本実施例における無効電流Isは図2に示す座標変換で運転電流Ia、Ib、Icと稼働位相角θから求められる。獲得した誘導電動機の稼動力率PFを設定した力率の指令値と比較して偏差値を獲得し、その偏差値に対して補償制御演算を行い、その力率制御係数PFkを求めるステップ22。獲得した誘導電動機の無効電流Isを最小値制御を行い、無効電流Is制御係数Iskを求める23。算出された力率制御係数PFkに無効電流Is制御係数Iskをかけて、負荷率係数Pkを求めるステップ24。回転速度の指令値をV/F演算を行って、周波数制御係数Fqを求める25。
以下の式2により変動V/F制御量Udを求めるステップ26:
Ud=Fq×k1×Pk 式2
式2の中,Udは変動V/F制御量,Fqは周波数(回転速度)の制御量,k1はV/F比定数(定格電圧V/定格周波数Fをそれぞれ表す。誘導電動機の定格電圧Vが200V、定格周波数Fが50Hzの場合は、V/F比定数は200/50、即ち4.0とする。ここにおける定格電圧Vは200Vとは限らず、定格周波数Fも50Hzとは限らない。ほかの定格電圧、例えば12V~800V、ほかの定格周波数,例えば1Hz~500Hzの時も本発明に適用する。),Pk=PFk×Iskで負荷率係数を表す。
獲得した変動V/F制御量UdでSPWM生成の波形を調整し、電圧調整ユニットで誘導電動機の3相入力電圧Ua、Ub、Uc(3相入力電流Ia、Ib、Icは3相入力電圧Ua、Ub、Ucの変化に応じて変化する)と周波数(回転速度)をリアルタイム調整して、誘導電動機の入力電力が常に誘導電動機の負荷率に適応して、省エネ状態で運転するステップ27。
本実施例では、さらに前記の負荷追従による誘導電動機の省エネ制御方法を実現する装置、誘導電動機及び電圧調整ユニットから構成される一つの誘導電動機の効率最適化制御装置を提案した。前記の誘導電動機の省エネ制御装置は誘導電動機及び電圧調整ユニットと接続し、誘導電動機を常に高い効率、省エネ状態で運転させるのに用いられる。
本実施例ではさらに前記の負荷追従による誘導電動機の省エネ制御装置は産業領域で広く使用されている誘導電動機及び関連設備と接続し、変動負荷率及び任意の回転速度(周波数)において高い効率、省エネで稼働させるのに用いられる。
上記の本発明で提案した各ステップ及び演算アルゴリズムは、一つの計算装置
に集成させたり、複数の計算装置を繋ぐネットワークに分布させたりと、一般的な計算装置でもって実現することができる。また、別の選択肢として、計算装置にインストールされたプログラムにより実現できるため、それらを記憶装置に保存して計算装置に実行させるか、或はそれぞれの集積回路モジュール或はプリント基板に制作し、もしくはそれに含まれる複数の各ステップ及び演算アルゴリズムを一つの集積回路モジュール或はプリント基板にして実現できることを意味し、よって本発明は、いかなるハードとソフトの結合にも制限されないことはこの分野の技術者にとって自明である。
また、上記の内容は、本発明の一最優先実施例に過ぎず、その実施形態に限定されるものではなく、この分野の技術者にとって、さまざまな変更が可能であるが、本発明の理念と原則に沿ったものであれば、本発明に対するいかなる修正、導価入れ替え、改良などは、いずれも本発明の保護対象と見なされる。
今や産業領域で広く使用されている誘導電動機の制御装置であるインバ-タが減速可能な誘導電動機に省エネできますが、様々な負荷変動設備、例えば
加工機械の研削盤、ベンディングマシン、プレス機、せん断機、鍛造機、バネ成形機、木工機械コンクリート、成形機、ゴム成形機、化学機械、繊維機械、
農林用機械、紙工機械、食品加工機械、運搬機械、その他産業機械等の速度低減できない場合に適用できません。この場合には、負荷率が激しく変動する
ことにより、誘導電動機の運転効率、力率が大幅に低下して深刻な無駄電力の消費が発生する。
本発明が提案した負荷追従による誘導電動機の省エネ制御方法及び装置で、誘導電動機の減速する設備にも減速しない設備にもかつ負荷変動が多いすべての場合に適応でき、誘導電動機の省エネ運転において、従来の汎用インバ-タが対応できない減速しない設備かつ負荷変動の設備に対応が可能になりました。
加工機械の研削盤、ベンディングマシン、プレス機、せん断機、鍛造機、バネ成形機、木工機械コンクリート、成形機、ゴム成形機、化学機械、繊維機械、
農林用機械、紙工機械、食品加工機械、運搬機械、その他産業機械等の速度低減できない場合に適用できません。この場合には、負荷率が激しく変動する
ことにより、誘導電動機の運転効率、力率が大幅に低下して深刻な無駄電力の消費が発生する。
本発明が提案した負荷追従による誘導電動機の省エネ制御方法及び装置で、誘導電動機の減速する設備にも減速しない設備にもかつ負荷変動が多いすべての場合に適応でき、誘導電動機の省エネ運転において、従来の汎用インバ-タが対応できない減速しない設備かつ負荷変動の設備に対応が可能になりました。
1 速度V/F設定器
2 無効電流最小化制御器
3 力率補償制御器
4 力率演算器
5 無効電流演算器
6 平均負荷率獲得演算器
7 変動V/F値演算器
8 駆動波形生成器
9 3相負荷率獲得演算器
11 3相交流電源
12 整流コンバータ
13 コンデンサ
14 電圧調整ユニット
15 電圧検出センサー
16 電流検出センサー
17 誘導電動機
18 負荷追従による誘導電動機の省エネ制御装置
2 無効電流最小化制御器
3 力率補償制御器
4 力率演算器
5 無効電流演算器
6 平均負荷率獲得演算器
7 変動V/F値演算器
8 駆動波形生成器
9 3相負荷率獲得演算器
11 3相交流電源
12 整流コンバータ
13 コンデンサ
14 電圧調整ユニット
15 電圧検出センサー
16 電流検出センサー
17 誘導電動機
18 負荷追従による誘導電動機の省エネ制御装置
Claims (9)
- 誘導電動機の負荷率をリアルタイムで検知し、最適化アルゴリズムを通じて変動負荷率及び任意の周波数において誘導電動機を常に高い効率、省エネで運転させる電圧及び周波数の制御量を算出する。及び算出された電圧及び周波数の制御量をもとに、誘導電動機の入力電圧と周波数をリアルタイムで調整し、誘導電動機の入力電力が常に誘導電動機の負荷率に適応することを確保することを特徴とする新しい誘導電動機の高い効率、省エネで運転する制御方法。
- 誘導電動機の負荷率をリアルタイムで検知し、最適化アルゴリズムを通じて変動負荷率及び任意の周波数において誘導電動機を常に高い効率で運転させる電圧及び周波数の制御量を算出することと、その前に誘導電動機の入力電流、入力電圧、負荷率及び回転速度を含む誘導電動機の各関連パラメータ値をリアルタイムで獲得することを特徴とする請求項1に記載される誘導電動機の高い効率、省エネで運転する制御方法。
- 誘導電動機の負荷率をリアルタイムで検知し、最適化アルゴリズムを通じて変動負荷率及び任意の周波数において誘導電動機を常に高い効率で運転させる電圧及び周波数の制御量を算出する。及び計算により稼動力率PF、無効電流Is、有効電流Iw及び回転速度制御量Fqを含む誘導電動機の各関連パラメータ値をそれぞれ取得し、獲得した誘導電動機の稼動力率PFを設定した力率指令値と比較して、その偏差値に対して補償制御演算を行い、力率制御係数PFkを求める。獲得した誘導電動機の無効電流Isを最小化制御にして、無効電流制御係数Iskを求める。取得した力率制御係数PFkに無効電流制御係数Iskをかけて負荷率係数Pkを求める。回転速度の指令値をV/F変換して、周波数の制御量Fdを求める。
以下の式により前記の変動V/F制御量Udを求める。Ud=Fq×k1×Pk (式2)式中、Udは変動V/F制御量、Fqは周波数の制御量、k1はV/F比定数,Pk=PFk×Iskは負荷率係数をそれぞれ表す。
以上を特徴とする請求項2に記載される誘導電動機の高い効率、省エネで運転する制御方法。 - 誘導電動機の負荷率をリアルタイムで検知し、最適化アルゴリズムを通じて変動負荷率及び任意の周波数において誘導電動機を常に高い効率、省エネで運転させる電圧と周波数の制御量を算出するための最適化アルゴリズム。及び算出された電圧と周波数の制御量をもとに、誘導電動機の入力電圧と周波数をリアルタイムで調整し、誘導電動機の入力電力を常に誘導電動機の負荷率に適応させるための調整アルゴリズムを含むことを特徴とする誘導電動機の高い効率、省エネで運転する制御装置。
- 誘導電動機の3相入力電流、3相入力電圧、負荷率を含める誘導電動機の各関連パラメータ値をリアルタイムで獲得するための獲得アルゴリズムを含むことを特徴とする請求項4に記載される誘導電動機の高い効率、省エネで運転する制御装置。
- 前記の各アルゴリズムの具体的な用途は次の通り:計算により稼動力率PF、無効電流成分Is、有効電流成分Iwを含む誘導電動機の各関連パラメータ値をそれぞれ獲得し、獲得した誘導電動機の稼動力率PFを設定した力率指令値と比較して、その偏差値に対して補償制御演算を行い、力率制御係数PFkを求める。獲得した誘導電動機の無効電流Isを最小化制御を行い、無効電流制御係数Iskを求める。算出した力率制御係数PFkに無効電流制御係数Iskをかけて、負荷率係数Pkを求める。回転速度の指令値をV/F変換して、周波数の制御量Fqを求める。以下の式により前記の電圧制御量Udを求める:Ud=Fq×k1×Pk (式2)式中、Udは変動V/F制御量、Fqは周波数の制御量、k1はV/F比定数,Pk=PFk×Iskは負荷率係数をそれぞれ表す。 以上を特徴とする請求項5に記載される誘導電動機の高い効率、省エネで運転する制御装置。
- 請求項4~6の何れか1つに記載される装置、誘導電動機及び出力電圧調整ユニット
から構成され、請求項4~6のいずれか一つに記載される装置は、前記の出力電圧調整ユニット及び誘導電動機と接続し、前記の誘導電動機を常に高い効率、省エネで運転させる機能を持つことを特徴とする誘導電動機の制御装置。 - 前記の請求項6に記載される変動V/F制御量で、前記の交流出力電圧調整ユニットを駆動する任意の周波数と電圧を可変できるSPWM波形を生成する方法。
- 請求項7に記載される制御装置、図6に示す3相交流電源、整流コンバータ、コンデンサから構成されるシステム及びその製品、産業領域で広く使用されている誘導電動機及び関連設備と接続し、変動負荷率及び任意の回転速度において常に高い効率、省エネで運転させる役割を持つことを特徴とする誘導電動機の制御装置及びシステム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014267166A JP2016116431A (ja) | 2014-12-16 | 2014-12-16 | 負荷追従による誘導電動機の省エネ制御方法及び装置 |
JP2014-267166 | 2014-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016098373A1 true WO2016098373A1 (ja) | 2016-06-23 |
Family
ID=56126277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/068104 WO2016098373A1 (ja) | 2014-12-16 | 2015-06-23 | 負荷追従による誘導電動機の省エネ制御方法及び装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016116431A (ja) |
WO (1) | WO2016098373A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110112790A (zh) * | 2019-06-06 | 2019-08-09 | 南方电网科学研究院有限责任公司 | 有源配电网运行效率的评价方法、装置、设备及存储介质 |
CN111525862A (zh) * | 2020-04-28 | 2020-08-11 | 山西指尖科技有限公司 | 基于负载功率跟踪的电机节能控制方法、装置及系统 |
WO2022016691A1 (zh) * | 2020-07-21 | 2022-01-27 | 山东科技大学 | 一种电机功率密度测试装置及方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5388115A (en) * | 1977-01-13 | 1978-08-03 | Toshiba Corp | Controller for alternating current motors |
US4207510A (en) * | 1978-01-16 | 1980-06-10 | Sri International | Control method and means for efficient operation of brushless d-c motors over a wide range of operating conditions |
JPS62201085A (ja) * | 1986-02-24 | 1987-09-04 | Mitsubishi Electric Corp | 流体変速装置の高効率運転方法 |
JPH01311889A (ja) * | 1988-02-24 | 1989-12-15 | Matsushita Electric Works Ltd | 誘導電動機の制御装置 |
JPH0295197A (ja) * | 1988-09-27 | 1990-04-05 | Toshiba Corp | 交流電動機の運転方法 |
JPH06261597A (ja) * | 1993-03-08 | 1994-09-16 | Alex Denshi Kogyo Kk | 誘導電動機用電力制御装置 |
-
2014
- 2014-12-16 JP JP2014267166A patent/JP2016116431A/ja active Pending
-
2015
- 2015-06-23 WO PCT/JP2015/068104 patent/WO2016098373A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5388115A (en) * | 1977-01-13 | 1978-08-03 | Toshiba Corp | Controller for alternating current motors |
US4207510A (en) * | 1978-01-16 | 1980-06-10 | Sri International | Control method and means for efficient operation of brushless d-c motors over a wide range of operating conditions |
JPS62201085A (ja) * | 1986-02-24 | 1987-09-04 | Mitsubishi Electric Corp | 流体変速装置の高効率運転方法 |
JPH01311889A (ja) * | 1988-02-24 | 1989-12-15 | Matsushita Electric Works Ltd | 誘導電動機の制御装置 |
JPH0295197A (ja) * | 1988-09-27 | 1990-04-05 | Toshiba Corp | 交流電動機の運転方法 |
JPH06261597A (ja) * | 1993-03-08 | 1994-09-16 | Alex Denshi Kogyo Kk | 誘導電動機用電力制御装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110112790A (zh) * | 2019-06-06 | 2019-08-09 | 南方电网科学研究院有限责任公司 | 有源配电网运行效率的评价方法、装置、设备及存储介质 |
CN110112790B (zh) * | 2019-06-06 | 2023-10-20 | 南方电网科学研究院有限责任公司 | 有源配电网运行效率的评价方法、装置、设备及存储介质 |
CN111525862A (zh) * | 2020-04-28 | 2020-08-11 | 山西指尖科技有限公司 | 基于负载功率跟踪的电机节能控制方法、装置及系统 |
WO2022016691A1 (zh) * | 2020-07-21 | 2022-01-27 | 山东科技大学 | 一种电机功率密度测试装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2016116431A (ja) | 2016-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10063177B2 (en) | Method and apparatus for optimizing efficiency of induction motor in electric vehicle | |
JP2009183142A (ja) | 電動機制御方法およびその装置 | |
CN111066237A (zh) | 用于控制风能设施的多相他励同步发电机的方法 | |
Sarhan | Energy efficient control of three-phase induction motor drive | |
KR20150051165A (ko) | 모터 제어 장치 | |
Kukishev et al. | Energy saving in the scalar control system of an asynchronous electric drive | |
WO2016098373A1 (ja) | 負荷追従による誘導電動機の省エネ制御方法及び装置 | |
CN112737421B (zh) | 一种用于控制电动机减速的方法及系统 | |
CN106230333B (zh) | 直流电机输出能力控制方法及系统 | |
Bhase et al. | Energy conservation using VFD | |
Zhukovskiy et al. | Analysis of the behavior of asynchronous electric drive with a closed scalar control system when changing the inductance of the magnetizing circuit | |
CN105634355B (zh) | 变频器和用于变频器的控制装置和控制方法 | |
CN103684174A (zh) | 一种异步电机自动节能的方法 | |
CN108270246B (zh) | 风电变流器网侧有功功率控制方法及系统 | |
US20130271061A1 (en) | Method for controlling an asynchronous machine having a converter in a manner that is optimal for (copper) loss | |
Sergaki et al. | Online search based fuzzy optimum efficiency operation in steady and transient states for DC and AC vector controlled motors | |
JP5972060B2 (ja) | ドライブシステムの制御装置 | |
Diachenko et al. | Simple dynamic energy efficient field oriented control in induction motors | |
Zhou et al. | A simplified method for dynamic control of brushless doubly-fed machines | |
WO2016006439A1 (ja) | 電動自動車における誘導電動機の効率最適化方法及び装置 | |
Shurub et al. | Realization techniques of statistical optimization modes of induction drives | |
CN104901598A (zh) | 电机驱动装置、方法及电机 | |
KR100725868B1 (ko) | 전동기의 최대 토크 제어 시스템 | |
Sen et al. | Evolution of control techniques for industrial drives | |
CN111164880B (zh) | 高能效的异步电机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15869582 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.11.2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15869582 Country of ref document: EP Kind code of ref document: A1 |