WO2016098195A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2016098195A1
WO2016098195A1 PCT/JP2014/083403 JP2014083403W WO2016098195A1 WO 2016098195 A1 WO2016098195 A1 WO 2016098195A1 JP 2014083403 W JP2014083403 W JP 2014083403W WO 2016098195 A1 WO2016098195 A1 WO 2016098195A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
outdoor
heat exchanger
outdoor unit
Prior art date
Application number
PCT/JP2014/083403
Other languages
French (fr)
Japanese (ja)
Inventor
正 有山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP14908405.5A priority Critical patent/EP3236168B1/en
Priority to JP2016564505A priority patent/JP6246394B2/en
Priority to PCT/JP2014/083403 priority patent/WO2016098195A1/en
Publication of WO2016098195A1 publication Critical patent/WO2016098195A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2113Temperatures of a suction accumulator

Definitions

  • the present invention relates to an air conditioner that performs air conditioning or the like using a refrigeration cycle (heat pump cycle), and more particularly to an air conditioner that improves comfort when an indoor unit performs a heating operation.
  • a refrigeration cycle heat pump cycle
  • frost may be attached to the fin surface and the refrigerant pipe of the outdoor heat exchanger that functions as an evaporator. If frost adheres to the fin surface and the refrigerant pipe of the outdoor heat exchanger, the air path pressure loss of the outdoor heat exchanger increases and the heat transfer performance deteriorates. Therefore, although it is necessary to perform defrosting operation
  • an air conditioner that includes a plurality of outdoor units, performs heating operation during defrosting operation, and maintains comfort during defrosting operation is disclosed (for example, a patent) Reference 1 and Patent Document 2).
  • an air conditioner an air conditioner system having two outdoor units
  • the load on the entire system when performing a defrosting operation The defrosting operation is performed when the temperature decreases indoors and does not cause discomfort even if the defrosting operation is performed while continuing the heating operation.
  • JP 2008-175410 A see, for example, [0030] to [0047], FIG. 3 and FIG. 4
  • JP 2012-107790 A see, for example, [0030] to [0050], FIG. 1 and FIG. 2
  • the outdoor unit that performs the heating operation (hereinafter referred to as the heating operation side outdoor unit) and the outdoor unit that performs the defrosting operation (hereinafter referred to as the defrosting operation side outdoor unit)
  • the refrigerant amount is biased toward the heating operation side outdoor unit.
  • the refrigerant amount in the defrosting operation side outdoor unit is insufficient, causing an excessive increase in the compressor discharge temperature, etc., and the refrigerant operation amount in the heating operation side outdoor unit is increased.
  • a large amount of liquid flows into the compressor (liquid back) and the like, causing a problem that stable operation is not possible.
  • An object of the present invention is to provide an air conditioner that can correct a deviation in refrigerant amount between a heating operation-side outdoor unit and a defrosting operation-side outdoor unit and perform stable operation.
  • An air conditioner includes at least two outdoor units on which a compressor and an outdoor heat exchanger are mounted, and at least one indoor unit on which an indoor expansion device and an indoor heat exchanger are mounted.
  • the outdoor unit is connected in parallel to the indoor unit, and the compressor, the indoor heat exchanger, the indoor expansion device, and the outdoor heat exchanger are sequentially connected to form a refrigerant circuit in which the refrigerant circulates.
  • the outdoor unit includes a hot gas bypass pipe that bypasses the refrigerant discharged from the compressor to the outdoor heat exchanger, and a first throttle that adjusts a flow rate of the refrigerant flowing through the hot gas bypass pipe
  • a liquid bypass pipe that is bypassed from a connecting pipe connecting the apparatus, the indoor unit and the outdoor heat exchanger, and connected to a suction side of the compressor; and the liquid bypass pipe. Adjusting the flow rate of the refrigerant flowing in the outdoor connection pipe on the outdoor heat exchanger side from the branch point of the second bypass device for adjusting the flow rate of the refrigerant and the liquid bypass pipe among the connection pipes.
  • At least one of the outdoor units includes a refrigerant discharged from the compressor via the hot gas bypass pipe when the first throttle unit is opened when the other outdoor unit is in a heating operation. Is bypassed by the outdoor heat exchanger, the third expansion device is closed, and the defrosting operation is performed in which the opening degree of the second expansion device is adjusted.
  • At least one outdoor unit is configured such that when the other outdoor unit is in a heating operation, the first throttle device is opened and the refrigerant discharged from the compressor passes through the hot gas bypass pipe.
  • FIG. 1 is a refrigerant circuit diagram illustrating an example of an air-conditioning apparatus 1 according to an embodiment of the present invention.
  • the air conditioner 1 is installed in a building, a condominium, or the like, and can perform a cooling operation and a heating operation at the same time by using a refrigeration cycle (heat pump cycle) that circulates a refrigerant (air conditioning refrigerant). Moreover, a defrosting operation can be performed.
  • a refrigeration cycle heat pump cycle
  • a defrosting operation can be performed.
  • the relationship of the size of each component may be different from the actual one.
  • the present invention is not limited to the embodiments described below.
  • the air conditioning apparatus 1 includes outdoor units (heat source side units) 100A and 100B, an indoor unit (load side unit) 200, and a control device 300. .
  • the outdoor units 100A and 100B are connected to the indoor unit 200 in parallel through refrigerant pipes to form a main refrigerant circuit, and the refrigerant is circulated through the refrigerant circuit to heat or cool the target space.
  • the air conditioner 1 is configured by connecting the two outdoor units 100A and 100B to the single indoor unit 200, but is particularly limited if the number of the outdoor units 100 is two (two) or more. Is not to be done.
  • the refrigerant pipe includes a gas pipe 105 through which a gaseous refrigerant (gas refrigerant) flows, a liquid pipe 106 through which a liquid refrigerant (liquid refrigerant or gas-liquid two-phase refrigerant) flows, and the like.
  • the refrigerant to be circulated in the refrigerant circuit is not particularly limited.
  • R410A, R404A, or HFO (hydro-fluoro-olefin) that are HFC-based refrigerants, or CO 2 , ammonia, or the like, which is a natural refrigerant, is used.
  • the outdoor unit 100A includes a compressor 101A, a four-way valve 102A, an outdoor heat exchanger (heat source side heat exchanger) 103A, an accumulator 104A, a first valve 107A, a second valve 108A, a blower 109A, a first temperature sensor 110A, a second Temperature sensor 111A, third temperature sensor 112A, first pressure sensor 113A, second pressure sensor 114A, liquid bypass piping 115A, bypass throttle device 116A, refrigerant heat exchanger 117A, hot gas bypass piping 118A, outdoor connection piping 119A, These configurations are housed in the main body case 120A.
  • the indoor unit 200 includes an indoor heat exchanger (load-side heat exchanger) 201, a throttle means 202, and a blower 203. These configurations are housed in a housing 204.
  • indoor heat exchanger load-side heat exchanger
  • throttle means 202 throttle means
  • blower 203 blower
  • the refrigerant circuit of the air conditioner 1 in the outdoor unit 100A and the indoor unit 200, the compressor 101A, the four-way valve 102A, the indoor heat exchanger 201, the throttle means 202, the refrigerant heat exchanger 117A, the outdoor heat exchanger 103A, and the accumulator 104A Sequentially connected by piping.
  • a bypass pipe 118A is provided.
  • a liquid bypass pipe 115A that bypasses the low-temperature refrigerant flowing from the indoor unit 200 toward the outdoor heat exchanger 103A to the inlet of the accumulator 104A (the suction side of the compressor 101A) is provided.
  • Compressor 101A compresses the sucked refrigerant to bring it into a high temperature / high pressure state.
  • the four-way valve 102A switches the flow of the refrigerant flowing through the refrigerant circuit between the cooling operation and the heating operation.
  • the outdoor heat exchanger 103A performs heat exchange between the surrounding air and the refrigerant flowing in the outdoor heat exchanger 103A.
  • the outdoor heat exchanger 103A functions as, for example, an evaporator and evaporates the refrigerant.
  • the outdoor heat exchanger 103A functions as a radiator (condenser) and condenses and liquefies the refrigerant.
  • an example in which the outdoor unit 100A includes one heat exchanger will be described, but a configuration including a plurality of heat exchangers may be used.
  • Blower 109A blows air to outdoor heat exchanger 103A.
  • the accumulator 104A is disposed between the suction side of the compressor 101A and the four-way valve 102A and stores excess refrigerant.
  • the accumulator 104A is, for example, a container that stores excess refrigerant.
  • the bypass throttle device 116A is disposed at a position where the flow path of the liquid bypass pipe 115A can be adjusted.
  • the refrigerant heat exchanger 117A includes an outdoor connection pipe 119A on the outdoor heat exchanger 103A side from a branch point with the liquid bypass pipe 115A among connection pipes between the expansion means 202 and the outdoor heat exchanger 103A. , And the liquid bypass pipe 115A.
  • the bypass expansion device 116A and the refrigerant heat exchanger 117A have a low temperature whose flow rate is adjusted by the liquid (high temperature and high pressure) refrigerant (liquid refrigerant) flowing out of the outdoor heat exchanger 103A and the bypass expansion device 116A.
  • This is an apparatus for supercooling the refrigerant supplied to the indoor unit 200 by exchanging heat with the low-pressure refrigerant.
  • the liquid flowing through the bypass throttle device 116A is returned to the accumulator 104A through the liquid bypass pipe 115A.
  • the first valve 107A and the second valve 108A are, for example, electromagnetic valves, and adjust the flow rate of the refrigerant flowing through the refrigerant circuit by adjusting the opening thereof.
  • 107 A of 1st valves are arrange
  • the second valve 108A is disposed at a position where the flow path of the outdoor connection pipe 119A can be adjusted.
  • the first valve 107A and the second valve 108A may be on-off valves.
  • a three-way valve is provided instead of the first valve 107A and the second valve 108A, and the flow path of the hot gas bypass pipe 118A and the flow path between the header 134 and the outdoor heat exchanger 103A are switched. It may be.
  • the first pressure sensor 113A is a sensor that detects the pressure of the refrigerant, and detects the pressure of the refrigerant flowing into the accumulator 104A (or the pressure of the refrigerant on the suction side of the compressor 101A).
  • the first temperature sensor 110A is, for example, a thermistor, and detects the temperature of the refrigerant flowing into the accumulator 104A (or the temperature of the refrigerant on the suction side of the compressor 101A).
  • the saturation temperature of the refrigerant flowing into the accumulator 104A is obtained from the pressure of the first pressure sensor 113A, and it is compared with the temperature of the first temperature sensor 110A to determine whether the state of the refrigerant flowing into the accumulator 104A is superheated gas. Judgment can be made.
  • the second pressure sensor 114A is a sensor that detects the pressure of the refrigerant, and detects the pressure of the refrigerant discharged from the compressor 101A.
  • the second temperature sensor 111A is a thermistor, for example, and detects the temperature of the refrigerant discharged from the compressor 101A.
  • the saturation temperature of the refrigerant discharged from the compressor 101A is obtained from the pressure of the second pressure sensor 114A, and the state of the refrigerant discharged from the compressor 101A is superheated gas by comparing with the temperature of the second temperature sensor 111A. It can be determined whether there is.
  • the third temperature sensor 112A is, for example, a thermistor and detects the temperature of the refrigerant flowing through the outdoor heat exchanger 103A.
  • the third temperature sensor 112A has four-way communication with the outdoor heat exchanger 103A so as to detect the refrigerant temperature on the refrigerant outflow side during the cooling operation or the defrosting operation and detect the refrigerant temperature on the refrigerant inflow side during the heating operation. It is installed between the valve 102A. Therefore, based on the detection result of the third temperature sensor 112A, it can be determined whether the outdoor unit 100A is performing a defrosting operation or a heating operation.
  • the indoor heat exchanger 201 performs heat exchange between the surrounding air and the refrigerant flowing in the indoor heat exchanger 201.
  • the indoor heat exchanger 201 functions as, for example, an evaporator, and evaporates the refrigerant.
  • the indoor heat exchanger 201 functions as a radiator (condenser) and condenses and liquefies the refrigerant.
  • the throttle means 202 functions as a pressure reducing valve or an expansion valve, and depressurizes or expands the refrigerant.
  • the throttle means 202 is, for example, an electronic expansion valve whose opening degree can be variably controlled, and fine flow rate control can be performed by adjusting the opening degree.
  • the throttle means 202 may be an inexpensive refrigerant flow rate adjusting means such as a capillary tube.
  • the outdoor unit 100B includes a compressor 101B, a four-way valve 102B, an outdoor heat exchanger (heat source side heat exchanger) 103B, an accumulator 104B, a first valve 107B, a second valve 108B, a blower 109B, a first temperature sensor 110B, a second A temperature sensor 111B, a third temperature sensor 112B, a first pressure sensor 113B, a second pressure sensor 114B, a liquid bypass pipe 115B, a bypass throttle device 116B, a refrigerant heat exchanger 117B, and a hot gas bypass pipe 118B, and these configurations Is housed in the main body case 120B.
  • the compressor 101B of the outdoor unit 100B corresponds to the compressor 101A of the outdoor unit 100A.
  • the refrigerant circuit of the air conditioner 1 in the outdoor unit 100B and the indoor unit 200 is also the same as the refrigerant circuit of the air conditioner 1 in the outdoor unit 100A and the indoor unit 200, and thus detailed description thereof is omitted. .
  • the outdoor unit 100A and the outdoor unit 100B may be arranged in the same housing. Further, in order to switch the flow of the refrigerant flowing in the refrigerant circuit, a two-way valve or a three-way valve may be used in combination instead of the four-way valve 102. Moreover, although the air conditioning apparatus 1 which concerns on this Embodiment shall be able to perform air_conditionaing
  • the outdoor units 100A and 100B and the indoor unit 200 are connected by a gas pipe 105 and a liquid pipe 106 via headers 132 and 134, respectively.
  • the refrigerant flowing out of the outdoor units 100A and 100B merges at the header 132, and the refrigerant flowing out of the indoor unit 200 branches at the header 134.
  • the refrigerant flowing out of the outdoor units 100A and 100B merges at the header 134, and the refrigerant flowing out of the indoor unit 200 branches at the header 132.
  • the control device 300 includes, for example, a microcomputer, and controls the outdoor unit 100 and the indoor unit 200 of the air conditioner 1 according to various operations.
  • control device 300 controls bypass throttling device 116 in accordance with the values of first pressure sensor 113A, first temperature sensor 110A, second pressure sensor 114A, and second temperature sensor 111A. Do.
  • the bypass throttle device 116 corresponds to the “second throttle device” of the present invention
  • the first valve 107 corresponds to the “first throttle device” of the present invention
  • the second valve 108 corresponds to the “third throttle device” of the present invention
  • the aperture means 202 corresponds to the “indoor aperture device” of the present invention.
  • high pressure or low pressure represents a relative relationship of pressure in the refrigerant circuit.
  • the temperature and the high temperature or the low temperature represents a relative relationship of the temperature in the refrigerant circuit.
  • the main body of the operation of the air conditioner 1 below is the control device 300.
  • the first valves 107A and 107B are closed and the second valves 108A and 108B are opened.
  • the high-temperature and high-pressure gas (gas) refrigerant pressurized by the compressors 101A and 101B of the outdoor units 100A and 100B flows into the header 132 through the four-way valves 102A and 102B.
  • the gas refrigerant pressurized by the compressor 101A and the gas refrigerant pressurized by the compressor 101B merge at the header 132 and flow into the indoor unit 200.
  • the gas refrigerant that has flowed into the indoor unit 200 passes through the indoor heat exchanger 201 and is condensed by exchanging heat with ambient air. Then, the pressure of the refrigerant flowing out from the indoor heat exchanger 201 is adjusted by the throttle means 202, and the refrigerant in the intermediate pressure liquid or gas-liquid two-phase state is branched by the header 134 to be added to the outdoor unit 100A, Flows into 100B.
  • the refrigerant that has flowed into the outdoor units 100A and 100B passes through the outdoor heat exchangers 103A and 103B to exchange heat with the surrounding air, and is evaporated to become a gas refrigerant.
  • This gas refrigerant is sucked into the compressors 101A and 101B via the four-way valves 102A and 102B and the accumulators 104A and 104B.
  • the refrigerant sucked into the compressors 101A and 101B is pressurized again and discharged.
  • the defrosting operation is performed in the outdoor unit 100A
  • heating operation is performed in the outdoor unit 100B.
  • the defrosting operation may be performed by the outdoor unit 100B, and the heating operation may be performed by the outdoor unit 100A.
  • the air conditioner 1 continues the heating operation by performing the defrosting operation on one of the outdoor unit 100A or the outdoor unit 100B and performing the heating operation on the other of the outdoor unit 100A or the outdoor unit 100B. While performing the defrosting operation.
  • the first valve 107A When performing the defrosting operation in the outdoor unit 100A, the first valve 107A is opened and the second valve 108A is closed. Thereby, a part of the high-temperature refrigerant discharged from the compressor 101A passes through the first valve 107A and flows into the outdoor heat exchanger 103A.
  • the heating operation is performed in the outdoor unit 100B. That is, the high-temperature and high-pressure gas refrigerant pressurized by the compressor 101 ⁇ / b> B flows into the indoor unit 200 through the gas pipe 105.
  • the gas refrigerant that has flowed into the indoor unit 200 passes through the indoor heat exchanger 201 and enters an intermediate-pressure liquid or gas-liquid two-phase state.
  • the intermediate pressure liquid or the gas-liquid two-phase refrigerant passes through the liquid pipe 106, passes through the outdoor heat exchanger 103B of the outdoor unit 100B, and becomes a gas refrigerant. This gas refrigerant is again sucked into the compressor 101A, pressurized and discharged.
  • part of the high-temperature refrigerant discharged from the compressor 101A is part of the indoor heat exchanger 201 of the indoor unit 200. Flow into. However, since the low temperature refrigerant that has flowed out of the indoor unit 200 does not flow into the outdoor unit 100A because the second valve 108A is closed, the amount of refrigerant is biased toward the outdoor unit 100B into which the low temperature refrigerant flows.
  • the bypass expansion device 116A of the outdoor unit 100A is opened, and the low-temperature refrigerant from the liquid pipe 106 passes through the liquid bypass pipe 115A without passing through the outdoor heat exchanger 103A.
  • the accumulator 104A is also returned to. Accordingly, the liquid refrigerant is returned to the outdoor unit 100A without lowering the defrosting performance of the air conditioner 1, thereby preventing the refrigerant amount from being biased between the outdoor units 100 (between the outdoor unit 100A and the outdoor unit 100B). it can.
  • the liquid bypass pipe 115A and the bypass expansion device 116A can be used to supercool the refrigerant supplied to the indoor unit 200 during the cooling operation by the refrigerant heat exchanger 117A.
  • FIG. 2 is a control flow diagram during the defrosting operation of the air-conditioning apparatus 1 according to the embodiment of the present invention.
  • FIG. 2 is a diagram showing a control flow related to the opening degree control of the bypass expansion device 116A for preventing the deviation of the refrigerant amount between the outdoor units 100 during the defrosting operation.
  • the deviation of the refrigerant amount between the outdoor units 100 is determined by the degree of superheat (SH-A) of the refrigerant at the inlet of the accumulator 104A (or the suction side of the compressor 101A) of the outdoor unit 100A performing the defrosting operation.
  • SH-A degree of superheat
  • the degree of superheat (SH-A) of the refrigerant at the inlet of the accumulator 104A is calculated by the difference between the saturation temperature obtained from the value of the first pressure sensor 113A and the value of the first temperature sensor 110A (STEP 11).
  • Whether or not excessive refrigerant has returned to the outdoor unit 100A is determined by the degree of superheat (TdSH-A) of the refrigerant on the discharge side of the compressor 101A of the outdoor unit 100A that performs the defrosting operation.
  • the superheat degree (TdSH-A) of the refrigerant on the discharge side of the compressor 101A is calculated from the difference between the saturation temperature obtained from the value of the second pressure sensor 114A and the value of the second temperature sensor 111A (STEP 13).
  • TdSH-A obtained by the above is less than 20 ° C. (predetermined second threshold value)
  • the bypass throttling device 116A has a predetermined value. Close by X (the opening of bypass bypass device 116A is -X).
  • TdSH-A is 20 ° C. or higher, the opening degree of the bypass expansion device 116A is not changed (STEP 14).
  • the liquid refrigerant flowing into the outdoor unit 100A performing the defrosting operation can be controlled, and the deviation of the refrigerant amount between the outdoor units 100 can be corrected.
  • refrigerant control shown in FIG. 2 is similarly applied when the outdoor unit 100 performing the defrosting operation is switched or when there are three or more outdoor units 100.
  • At least one outdoor unit 100 is configured such that the first valve 107 is opened and the hot gas bypass pipe 118 is connected when the other outdoor unit 100 is in the heating operation.
  • the refrigerant discharged from the compressor 101 is bypassed to the outdoor heat exchanger 103, the second valve 108 is closed, and the defrosting operation in which the opening degree of the bypass expansion device 116 is adjusted is performed between the outdoor units 100.
  • the refrigerant amount deviation can be corrected, and stable operation can be performed without causing excessive discharge temperature, liquid back, or the like of the compressor 101.
  • the bypass expansion device according to the superheat degree (SH-A) of the refrigerant at the inlet of the accumulator 104 and the superheat degree (TdSH-A) of the refrigerant on the discharge side of the compressor 101A. 116 is adjusted.
  • the low-temperature refrigerant from the liquid pipe 106 also passes through the liquid bypass pipe 115 and returns to the outdoor unit 100 (accumulator 104) that performs the defrosting operation without passing through the outdoor heat exchanger 103. .
  • the first threshold value and the second threshold value are not limited to the above values, and are determined according to the type of refrigerant.
  • a value that opens the bypass diaphragm 116A when it is equal to or greater than the first threshold and a value that closes the bypass diaphragm 116A when it is less than the second threshold may be different.
  • Air conditioner 100A outdoor unit, 100B outdoor unit, 101A compressor, 101B compressor, 102A four-way valve, 102B four-way valve, 103A outdoor heat exchanger, 103B outdoor heat exchanger, 104A accumulator, 104B accumulator, 105 gas piping , 106 liquid piping, 107A first valve, 107B first valve, 108A second valve, 108B second valve, 109A blower, 109B blower, 110A first temperature sensor, 110B first temperature sensor, 111A second temperature sensor, 111B 2nd temperature sensor, 112A 3rd temperature sensor, 112B 3rd temperature sensor, 113A 1st pressure sensor, 113B 1st pressure sensor, 114A 2nd pressure sensor, 114B 2nd pressure sensor, 115A liquid bypass piping, 11 B Liquid bypass piping, 116A bypass throttle device, 116B bypass throttle device, 117A refrigerant heat exchanger, 117B refrigerant heat exchanger, 118A hot gas bypass

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioning device 1 comprises at least two outdoor units mounted with a compressor 101 and an outdoor heat exchanger 103, and at least one indoor unit 200 having an indoor throttling device and an indoor heat exchanger 201. While another outdoor unit 100 is in heating operations, at least one of the outdoor units 100 performs defrost operations in which refrigerant discharged from the compressor 101 bypasses to the outdoor heat exchanger 103 via hot gas bypass piping 118 by opening a first throttling device, a third throttling device is closed, and the degree that a second throttling device is opened is adjusted.

Description

空気調和装置Air conditioner
 本発明は、冷凍サイクル(ヒートポンプサイクル)を利用して空気調和等を行う空気調和装置に関し、特に室内機が暖房運転する際の快適性の向上を図った空気調和装置に関するものである。 The present invention relates to an air conditioner that performs air conditioning or the like using a refrigeration cycle (heat pump cycle), and more particularly to an air conditioner that improves comfort when an indoor unit performs a heating operation.
 従来の空気調和装置において、低外気温時に暖房運転を行うと、蒸発器として機能する室外熱交換器のフィン表面および冷媒配管に、霜が付着するおそれがあった。室外熱交換器のフィン表面および冷媒配管に霜が付着すると、室外熱交換器の風路圧力損失が増大して伝熱性能が低下してしまう。そのため、室外機を定期的に除霜運転させて除霜する必要があるが、除霜運転時には暖房運転を止めなければならないという課題があった。 In a conventional air conditioner, when heating operation is performed at a low outdoor temperature, frost may be attached to the fin surface and the refrigerant pipe of the outdoor heat exchanger that functions as an evaporator. If frost adheres to the fin surface and the refrigerant pipe of the outdoor heat exchanger, the air path pressure loss of the outdoor heat exchanger increases and the heat transfer performance deteriorates. Therefore, although it is necessary to perform defrosting operation | movement of an outdoor unit regularly, there existed a subject that heating operation had to be stopped at the time of defrosting operation.
 上記の課題に対して、複数台の室外機を備え、除霜運転時にも暖房運転を行い、除霜運転時の快適性を維持するようにした空気調和装置が開示されている(たとえば、特許文献1および特許文献2参照)。
 特許文献1および特許文献2に記載されているような複数台の室外機を備えた空気調和装置(室外機が2系統ある空気調和システム)においては、除霜運転を行う際にシステム全体の負荷の大きさを判断し、暖房運転を継続しながら除霜運転を行っても室内側で温度が低下して不快感を与えない場合に、除霜運転を行うようにしている。
In response to the above problem, an air conditioner that includes a plurality of outdoor units, performs heating operation during defrosting operation, and maintains comfort during defrosting operation is disclosed (for example, a patent) Reference 1 and Patent Document 2).
In an air conditioner (an air conditioner system having two outdoor units) including a plurality of outdoor units as described in Patent Document 1 and Patent Document 2, the load on the entire system when performing a defrosting operation The defrosting operation is performed when the temperature decreases indoors and does not cause discomfort even if the defrosting operation is performed while continuing the heating operation.
特開2008-175410号公報(たとえば、[0030]~[0047]、図3、図4参照)JP 2008-175410 A (see, for example, [0030] to [0047], FIG. 3 and FIG. 4) 特開2012-107790号公報(たとえば、[0030]~[0050]、図1、図2参照)JP 2012-107790 A (see, for example, [0030] to [0050], FIG. 1 and FIG. 2)
 特許文献1および特許文献2に記載されているような複数台の室外機を備えた空気調和装置において、暖房運転を継続しながら除霜運転を行う場合、つまり、少なくとも1台の室外機は、他の室外機が暖房運転時に除霜運転を行う場合、暖房運転を行う室外機(以下、暖房運転側室外機と称する)と除霜運転を行う室外機(以下、除霜運転側室外機と称する)との運転サイクルの違いから、暖房運転側室外機に冷媒量が偏ってしまう。
 そのため、長時間の除霜運転を継続または繰り返すと、除霜運転側室外機では冷媒量が不足して圧縮機吐出温度の過昇等を引き起こし、また、暖房運転側室外機では冷媒量が増加して圧縮機への多量の液流入(液バック)等を引き起こし、安定した運転ができないという課題があった。
In the air conditioner including a plurality of outdoor units as described in Patent Document 1 and Patent Document 2, when performing the defrosting operation while continuing the heating operation, that is, at least one outdoor unit is When other outdoor units perform the defrosting operation during the heating operation, the outdoor unit that performs the heating operation (hereinafter referred to as the heating operation side outdoor unit) and the outdoor unit that performs the defrosting operation (hereinafter referred to as the defrosting operation side outdoor unit) The refrigerant amount is biased toward the heating operation side outdoor unit.
Therefore, if the defrosting operation is continued or repeated for a long time, the refrigerant amount in the defrosting operation side outdoor unit is insufficient, causing an excessive increase in the compressor discharge temperature, etc., and the refrigerant operation amount in the heating operation side outdoor unit is increased. As a result, a large amount of liquid flows into the compressor (liquid back) and the like, causing a problem that stable operation is not possible.
本発明は、以上のような課題を解決するためになされたもので、複数台の室外機を備えた空気調和装置において、暖房運転を継続しながら除霜運転を行う場合に、室外機間(暖房運転側室外機と除霜運転側室外機との間)の冷媒量の偏りを是正し、安定した運転を行うことができる空気調和装置を提供することを目的としている。 The present invention has been made to solve the above-described problems. In an air conditioner including a plurality of outdoor units, when performing a defrosting operation while continuing a heating operation, between outdoor units ( An object of the present invention is to provide an air conditioner that can correct a deviation in refrigerant amount between a heating operation-side outdoor unit and a defrosting operation-side outdoor unit and perform stable operation.
 本発明に係る空気調和装置は、圧縮機および室外熱交換器が搭載された少なくとも2台の室外機と、室内絞り装置および室内熱交換器が搭載された少なくとも1台の室内機と、を備え、前記室外機は前記室内機に並列接続され、前記圧縮機、前記室内熱交換器、前記室内絞り装置、および、前記室外熱交換器が順次配管接続され、冷媒が循環する冷媒回路を構成する空気調和装置であって、前記室外機は、前記圧縮機からの吐出冷媒を前記室外熱交換器にバイパスさせるホットガスバイパス配管と、前記ホットガスバイパス配管を流れる冷媒の流量を調整する第1絞り装置と、前記室内機と前記室外熱交換器とを接続する接続配管からバイパスされ、前記圧縮機の吸入側と接続されるリキッドバイパス配管と、前記リキッドバイパス配管を流れる冷媒の流量を調整する第2絞り装置と、前記接続配管のうち前記リキッドバイパス配管との分岐点よりも前記室外熱交換器側である室外側接続配管を流れる冷媒の流量を調整する第3絞り装置と、を備え、少なくとも1台の前記室外機は、他の前記室外機が暖房運転時に、前記第1絞り装置が開かれて前記ホットガスバイパス配管を介して前記圧縮機からの吐出冷媒が前記室外熱交換器にバイパスされ、前記第3絞り装置が閉じられ、前記第2絞り装置の開度が調整される除霜運転を行うものである。 An air conditioner according to the present invention includes at least two outdoor units on which a compressor and an outdoor heat exchanger are mounted, and at least one indoor unit on which an indoor expansion device and an indoor heat exchanger are mounted. The outdoor unit is connected in parallel to the indoor unit, and the compressor, the indoor heat exchanger, the indoor expansion device, and the outdoor heat exchanger are sequentially connected to form a refrigerant circuit in which the refrigerant circulates. In the air conditioner, the outdoor unit includes a hot gas bypass pipe that bypasses the refrigerant discharged from the compressor to the outdoor heat exchanger, and a first throttle that adjusts a flow rate of the refrigerant flowing through the hot gas bypass pipe A liquid bypass pipe that is bypassed from a connecting pipe connecting the apparatus, the indoor unit and the outdoor heat exchanger, and connected to a suction side of the compressor; and the liquid bypass pipe. Adjusting the flow rate of the refrigerant flowing in the outdoor connection pipe on the outdoor heat exchanger side from the branch point of the second bypass device for adjusting the flow rate of the refrigerant and the liquid bypass pipe among the connection pipes. And at least one of the outdoor units includes a refrigerant discharged from the compressor via the hot gas bypass pipe when the first throttle unit is opened when the other outdoor unit is in a heating operation. Is bypassed by the outdoor heat exchanger, the third expansion device is closed, and the defrosting operation is performed in which the opening degree of the second expansion device is adjusted.
本発明に係る空気調和装置によれば、少なくとも1台の室外機は、他の室外機が暖房運転時に、第1絞り装置が開かれてホットガスバイパス配管を介して圧縮機からの吐出冷媒が室外熱交換器にバイパスされ、第3絞り装置が閉じられ、第2絞り装置の開度が調整される除霜運転を行うことで、室外機間の冷媒量の偏りを是正することができ、圧縮機の吐出温度過昇、液バック等を引き起こすことなく安定した運転を行うことができる。 According to the air conditioner of the present invention, at least one outdoor unit is configured such that when the other outdoor unit is in a heating operation, the first throttle device is opened and the refrigerant discharged from the compressor passes through the hot gas bypass pipe. By bypassing the outdoor heat exchanger, closing the third expansion device, and performing the defrosting operation in which the opening degree of the second expansion device is adjusted, the deviation of the refrigerant amount between the outdoor units can be corrected, Stable operation can be performed without causing excessive discharge temperature of the compressor, liquid back, and the like.
本発明の実施の形態に係る空気調和装置の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の除霜運転時の制御フロー図である。It is a control flow figure at the time of the defrost operation of the air conditioning apparatus which concerns on embodiment of this invention.
 実施の形態.
 図1は、本発明の実施の形態に係る空気調和装置1の一例を示す冷媒回路図である。
 以下、図1に基づいて空気調和装置1の冷媒回路構成について説明する。この空気調和装置1は、ビルやマンション等に設置され、冷媒(空調用冷媒)を循環させる冷凍サイクル(ヒートポンプサイクル)を利用することで冷房運転、暖房運転を同時に行うことができるものである。また、除霜運転を行うことができるものである。 
 なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下に説明する実施の形態によって本発明が限定されるものではない。
Embodiment.
FIG. 1 is a refrigerant circuit diagram illustrating an example of an air-conditioning apparatus 1 according to an embodiment of the present invention.
Hereinafter, the refrigerant circuit configuration of the air conditioner 1 will be described with reference to FIG. The air conditioner 1 is installed in a building, a condominium, or the like, and can perform a cooling operation and a heating operation at the same time by using a refrigeration cycle (heat pump cycle) that circulates a refrigerant (air conditioning refrigerant). Moreover, a defrosting operation can be performed.
In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. Further, the present invention is not limited to the embodiments described below.
 本実施の形態に係る空気調和装置1は、図1に示すように、室外機(熱源側ユニット)100A、100Bと、室内機(負荷側ユニット)200と、制御装置300と、を備えている。
 そして、室外機100A、100Bは室内機200に冷媒配管でそれぞれ並列に接続され、主となる冷媒回路を構成し、その冷媒回路に冷媒を循環させて対象空間の暖房または冷房を行う。なお、空気調和装置1は、2台の室外機100A、100Bが1台の室内機200に接続されて構成されているが、室外機100が複数台(2台)以上であれば、特に限定されるものではない。
As shown in FIG. 1, the air conditioning apparatus 1 according to the present embodiment includes outdoor units (heat source side units) 100A and 100B, an indoor unit (load side unit) 200, and a control device 300. .
The outdoor units 100A and 100B are connected to the indoor unit 200 in parallel through refrigerant pipes to form a main refrigerant circuit, and the refrigerant is circulated through the refrigerant circuit to heat or cool the target space. The air conditioner 1 is configured by connecting the two outdoor units 100A and 100B to the single indoor unit 200, but is particularly limited if the number of the outdoor units 100 is two (two) or more. Is not to be done.
 また、図1では、室外機100Aに備えられている各機器の符号の後に「A」を付加し、室外機100Bに備えられている各機器の符号の後に「B」を付加して図示している。そして、以下の説明においては、符号の後の「A」、「B」を省略する場合があるが、室外機100A、室外機100Bのいずれにも各機器が備えられていることは言うまでもない。 Further, in FIG. 1, “A” is added after the code of each device provided in the outdoor unit 100 </ b> A, and “B” is added after the code of each device provided in the outdoor unit 100 </ b> B. ing. In the following description, “A” and “B” after the reference may be omitted, but it goes without saying that both the outdoor unit 100A and the outdoor unit 100B are equipped with each device.
 冷媒配管は、気体の冷媒(ガス冷媒)が流れるガス配管105および液体の冷媒(液冷媒または気液二相冷媒)が流れる液配管106等を含む。冷媒回路に循環させる冷媒は、特に限定されず、たとえば、HFC系冷媒であるR410A、R404A、またはHFO(ハイドロ・フルオロ・オレフィン)等、または自然冷媒であるCO、アンモニア等である。 The refrigerant pipe includes a gas pipe 105 through which a gaseous refrigerant (gas refrigerant) flows, a liquid pipe 106 through which a liquid refrigerant (liquid refrigerant or gas-liquid two-phase refrigerant) flows, and the like. The refrigerant to be circulated in the refrigerant circuit is not particularly limited. For example, R410A, R404A, or HFO (hydro-fluoro-olefin) that are HFC-based refrigerants, or CO 2 , ammonia, or the like, which is a natural refrigerant, is used.
 室外機100Aは、圧縮機101A、四方弁102A、室外熱交換器(熱源側熱交換器)103A、アキュムレータ104A、第1弁107A、第2弁108A、送風機109A、第1温度センサ110A、第2温度センサ111A、第3温度センサ112A、第1圧力センサ113A、第2圧力センサ114A、リキッドバイパス配管115A、バイパス絞り装置116A、冷媒熱交換器117A、ホットガスバイパス配管118A、室外側接続配管119A、を含み、これらの構成は本体ケース120A内に収容されている。 The outdoor unit 100A includes a compressor 101A, a four-way valve 102A, an outdoor heat exchanger (heat source side heat exchanger) 103A, an accumulator 104A, a first valve 107A, a second valve 108A, a blower 109A, a first temperature sensor 110A, a second Temperature sensor 111A, third temperature sensor 112A, first pressure sensor 113A, second pressure sensor 114A, liquid bypass piping 115A, bypass throttle device 116A, refrigerant heat exchanger 117A, hot gas bypass piping 118A, outdoor connection piping 119A, These configurations are housed in the main body case 120A.
 また、室内機200は、室内熱交換器(負荷側熱交換器)201、絞り手段202、および送風機203を含み、これらの構成は、筐体204内に収容されている。 The indoor unit 200 includes an indoor heat exchanger (load-side heat exchanger) 201, a throttle means 202, and a blower 203. These configurations are housed in a housing 204.
 室外機100Aと室内機200とにおける空気調和装置1の冷媒回路、圧縮機101A、四方弁102A、室内熱交換器201、絞り手段202、冷媒熱交換器117A、室外熱交換器103A、アキュムレータ104Aが順次配管で接続されている。そして、室外機100Aにおいて、圧縮機101Aから四方弁102Aに向かって流れる吐出冷媒を、四方弁102Aを経由せずに室外熱交換器103Aに流れるように、室外熱交換器103Aにバイパスさせるホットガスバイパス配管118Aが設けられている。また、室内機200から室外熱交換器103Aに向かって流れる低温冷媒を、アキュムレータ104A入口(圧縮機101Aの吸入側)にバイパスさせるリキッドバイパス配管115Aが設けられている。 The refrigerant circuit of the air conditioner 1 in the outdoor unit 100A and the indoor unit 200, the compressor 101A, the four-way valve 102A, the indoor heat exchanger 201, the throttle means 202, the refrigerant heat exchanger 117A, the outdoor heat exchanger 103A, and the accumulator 104A Sequentially connected by piping. In the outdoor unit 100A, the hot gas that bypasses the outdoor heat exchanger 103A so that the refrigerant discharged from the compressor 101A toward the four-way valve 102A flows to the outdoor heat exchanger 103A without passing through the four-way valve 102A. A bypass pipe 118A is provided. In addition, a liquid bypass pipe 115A that bypasses the low-temperature refrigerant flowing from the indoor unit 200 toward the outdoor heat exchanger 103A to the inlet of the accumulator 104A (the suction side of the compressor 101A) is provided.
 圧縮機101Aは、吸入した冷媒を圧縮して、高温・高圧の状態にするものである。四方弁102Aは、冷房運転時と暖房運転時とで、冷媒回路に流れる冷媒の流れを切り替えるものである。 Compressor 101A compresses the sucked refrigerant to bring it into a high temperature / high pressure state. The four-way valve 102A switches the flow of the refrigerant flowing through the refrigerant circuit between the cooling operation and the heating operation.
 室外熱交換器103Aは、その周囲の空気と室外熱交換器103A内を流れる冷媒との熱交換を行うものである。室外熱交換器103Aは、たとえば、蒸発器として機能し、冷媒を蒸発ガス化させる。または、室外熱交換器103Aは、放熱器(凝縮器)として機能し、冷媒を凝縮液化させる。
 なお、本実施の形態では、室外機100Aが1台の熱交換器を備えた例について説明するが、複数の熱交換器を備えた構成であってもよい。
The outdoor heat exchanger 103A performs heat exchange between the surrounding air and the refrigerant flowing in the outdoor heat exchanger 103A. The outdoor heat exchanger 103A functions as, for example, an evaporator and evaporates the refrigerant. Alternatively, the outdoor heat exchanger 103A functions as a radiator (condenser) and condenses and liquefies the refrigerant.
In the present embodiment, an example in which the outdoor unit 100A includes one heat exchanger will be described, but a configuration including a plurality of heat exchangers may be used.
 送風機109Aは、室外熱交換器103Aに送風を行うものである。アキュムレータ104Aは、圧縮機101Aの吸入側と四方弁102Aとの間に配置され、過剰な冷媒を貯留するものである。アキュムレータ104Aは、たとえば、過剰な冷媒を貯留する容器である。 Blower 109A blows air to outdoor heat exchanger 103A. The accumulator 104A is disposed between the suction side of the compressor 101A and the four-way valve 102A and stores excess refrigerant. The accumulator 104A is, for example, a container that stores excess refrigerant.
 バイパス絞り装置116Aは、リキッドバイパス配管115Aの流路を調整できる位置に配置される。また、冷媒熱交換器117Aは、絞り手段202と室外熱交換器103Aとの間の接続配管のうち、リキッドバイパス配管115Aとの分岐点よりも室外熱交換器103A側である室外側接続配管119A、およびリキッドバイパス配管115Aの流路に配置される。 The bypass throttle device 116A is disposed at a position where the flow path of the liquid bypass pipe 115A can be adjusted. The refrigerant heat exchanger 117A includes an outdoor connection pipe 119A on the outdoor heat exchanger 103A side from a branch point with the liquid bypass pipe 115A among connection pipes between the expansion means 202 and the outdoor heat exchanger 103A. , And the liquid bypass pipe 115A.
 バイパス絞り装置116Aおよび冷媒熱交換器117Aは、たとえば、冷房運転時においては、室外熱交換器103Aから流れ出た液体(高温高圧)の冷媒(液冷媒)とバイパス絞り装置116Aにより流量調整された低温低圧の冷媒との間で熱交換を行って、室内機200に供給する冷媒を過冷却するための装置である。バイパス絞り装置116Aを介して流れる液体は、リキッドバイパス配管115Aを介してアキュムレータ104Aに戻される。 For example, in the cooling operation, the bypass expansion device 116A and the refrigerant heat exchanger 117A have a low temperature whose flow rate is adjusted by the liquid (high temperature and high pressure) refrigerant (liquid refrigerant) flowing out of the outdoor heat exchanger 103A and the bypass expansion device 116A. This is an apparatus for supercooling the refrigerant supplied to the indoor unit 200 by exchanging heat with the low-pressure refrigerant. The liquid flowing through the bypass throttle device 116A is returned to the accumulator 104A through the liquid bypass pipe 115A.
 第1弁107Aおよび第2弁108Aは、たとえば、電磁弁であり、その開度を調整して、冷媒回路に流れる冷媒の流量を調整するものである。第1弁107Aは、ホットガスバイパス配管118Aの流路を調整できる位置に配置される。また、第2弁108Aは、室外側接続配管119Aの流路を調整できる位置に配置される。
 なお、第1弁107Aおよび第2弁108Aは、開閉弁でもよい。また、第1弁107Aおよび第2弁108Aの代わりに三方弁を設け、ホットガスバイパス配管118Aの流路と、ヘッダー134と室外熱交換器103Aとの間の流路と、の切り換えを行う構成にしてもよい。
The first valve 107A and the second valve 108A are, for example, electromagnetic valves, and adjust the flow rate of the refrigerant flowing through the refrigerant circuit by adjusting the opening thereof. 107 A of 1st valves are arrange | positioned in the position which can adjust the flow path of 118 A of hot gas bypass piping. The second valve 108A is disposed at a position where the flow path of the outdoor connection pipe 119A can be adjusted.
The first valve 107A and the second valve 108A may be on-off valves. Further, a three-way valve is provided instead of the first valve 107A and the second valve 108A, and the flow path of the hot gas bypass pipe 118A and the flow path between the header 134 and the outdoor heat exchanger 103A are switched. It may be.
 第1圧力センサ113Aは、冷媒の圧力を検知するセンサであり、アキュムレータ104Aに流入する冷媒の圧力(または圧縮機101Aの吸入側の冷媒の圧力)を検知するものである。
 第1温度センサ110Aは、たとえば、サーミスタであり、アキュムレータ104Aに流入する冷媒の温度(または圧縮機101Aの吸入側の冷媒の温度)を検知するものである。
 第1圧力センサ113Aの圧力からアキュムレータ104Aに流入する冷媒の飽和温度が得られ、第1温度センサ110Aの温度と比較することにより、アキュムレータ104Aに流入する冷媒の状態が過熱ガスであるかどうかを判断することができる。
The first pressure sensor 113A is a sensor that detects the pressure of the refrigerant, and detects the pressure of the refrigerant flowing into the accumulator 104A (or the pressure of the refrigerant on the suction side of the compressor 101A).
The first temperature sensor 110A is, for example, a thermistor, and detects the temperature of the refrigerant flowing into the accumulator 104A (or the temperature of the refrigerant on the suction side of the compressor 101A).
The saturation temperature of the refrigerant flowing into the accumulator 104A is obtained from the pressure of the first pressure sensor 113A, and it is compared with the temperature of the first temperature sensor 110A to determine whether the state of the refrigerant flowing into the accumulator 104A is superheated gas. Judgment can be made.
 第2圧力センサ114Aは、冷媒の圧力を検知するセンサであり、圧縮機101Aから吐出される冷媒の圧力を検知するものである。
 第2温度センサ111Aは、たとえば、サーミスタであり、圧縮機101Aから吐出される冷媒の温度を検知するものである。
 第2圧力センサ114Aの圧力から圧縮機101Aから吐出される冷媒の飽和温度が得られ、第2温度センサ111Aの温度と比較することにより、圧縮機101Aから吐出される冷媒の状態が過熱ガスであるかどうかを判断することができる。
The second pressure sensor 114A is a sensor that detects the pressure of the refrigerant, and detects the pressure of the refrigerant discharged from the compressor 101A.
The second temperature sensor 111A is a thermistor, for example, and detects the temperature of the refrigerant discharged from the compressor 101A.
The saturation temperature of the refrigerant discharged from the compressor 101A is obtained from the pressure of the second pressure sensor 114A, and the state of the refrigerant discharged from the compressor 101A is superheated gas by comparing with the temperature of the second temperature sensor 111A. It can be determined whether there is.
 第3温度センサ112Aは、たとえば、サーミスタであり、室外熱交換器103Aに流れる冷媒の温度を検知するものである。第3温度センサ112Aは、冷房運転時または除霜運転時において冷媒流出側の冷媒温度を検出し、かつ暖房運転時において冷媒流入側の冷媒温度を検出するように、室外熱交換器103Aと四方弁102Aとの間に設置される。したがって、第3温度センサ112Aの検知結果に基づいて、室外機100Aが除霜運転を行っているのか、または暖房運転を行っているのかを判断することができる。 The third temperature sensor 112A is, for example, a thermistor and detects the temperature of the refrigerant flowing through the outdoor heat exchanger 103A. The third temperature sensor 112A has four-way communication with the outdoor heat exchanger 103A so as to detect the refrigerant temperature on the refrigerant outflow side during the cooling operation or the defrosting operation and detect the refrigerant temperature on the refrigerant inflow side during the heating operation. It is installed between the valve 102A. Therefore, based on the detection result of the third temperature sensor 112A, it can be determined whether the outdoor unit 100A is performing a defrosting operation or a heating operation.
 室内熱交換器201は、その周囲の空気と室内熱交換器201内を流れる冷媒との熱交換を行うものである。室内熱交換器201は、たとえば、蒸発器として機能し、冷媒を蒸発ガス化させる。または、室内熱交換器201は、放熱器(凝縮器)として機能し、冷媒を凝縮液化させる。 The indoor heat exchanger 201 performs heat exchange between the surrounding air and the refrigerant flowing in the indoor heat exchanger 201. The indoor heat exchanger 201 functions as, for example, an evaporator, and evaporates the refrigerant. Alternatively, the indoor heat exchanger 201 functions as a radiator (condenser) and condenses and liquefies the refrigerant.
 絞り手段202は、減圧弁または膨張弁として機能し、冷媒を減圧または膨張させるものである。絞り手段202は、たとえば、開度が可変に制御可能な電子式膨張弁であり、開度を調整することによって、緻密な流量制御を行うことができる。なお、絞り手段202は、毛細管等の安価な冷媒流量調節手段であってもよい。 The throttle means 202 functions as a pressure reducing valve or an expansion valve, and depressurizes or expands the refrigerant. The throttle means 202 is, for example, an electronic expansion valve whose opening degree can be variably controlled, and fine flow rate control can be performed by adjusting the opening degree. The throttle means 202 may be an inexpensive refrigerant flow rate adjusting means such as a capillary tube.
 室外機100Bは、圧縮機101B、四方弁102B、室外熱交換器(熱源側熱交換器)103B、アキュムレータ104B、第1弁107B、第2弁108B、送風機109B、第1温度センサ110B、第2温度センサ111B、第3温度センサ112B、第1圧力センサ113B、第2圧力センサ114B、リキッドバイパス配管115B、バイパス絞り装置116B、冷媒熱交換器117B、ホットガスバイパス配管118B、を含み、これらの構成は、本体ケース120B内に収容されている。 The outdoor unit 100B includes a compressor 101B, a four-way valve 102B, an outdoor heat exchanger (heat source side heat exchanger) 103B, an accumulator 104B, a first valve 107B, a second valve 108B, a blower 109B, a first temperature sensor 110B, a second A temperature sensor 111B, a third temperature sensor 112B, a first pressure sensor 113B, a second pressure sensor 114B, a liquid bypass pipe 115B, a bypass throttle device 116B, a refrigerant heat exchanger 117B, and a hot gas bypass pipe 118B, and these configurations Is housed in the main body case 120B.
 たとえば、室外機100Bの圧縮機101Bは、室外機100Aの圧縮機101Aに対応する。また、四方弁102B、室外熱交換器103B、アキュムレータ104B、第1弁107B、第2弁108B、送風機109B、第1温度センサ110B、第2温度センサ111B、第3温度センサ112B、第1圧力センサ113B、第2圧力センサ114B、リキッドバイパス配管115B、バイパス絞り装置116B、冷媒熱交換器117B、ホットガスバイパス配管118B、室外側接続配管119Bについても、室外機100Aの同じ数字のものにそれぞれ対応する。 For example, the compressor 101B of the outdoor unit 100B corresponds to the compressor 101A of the outdoor unit 100A. The four-way valve 102B, the outdoor heat exchanger 103B, the accumulator 104B, the first valve 107B, the second valve 108B, the blower 109B, the first temperature sensor 110B, the second temperature sensor 111B, the third temperature sensor 112B, and the first pressure sensor 113B, the second pressure sensor 114B, the liquid bypass pipe 115B, the bypass throttle device 116B, the refrigerant heat exchanger 117B, the hot gas bypass pipe 118B, and the outdoor connection pipe 119B respectively correspond to the same number of the outdoor unit 100A. .
 室外機100Bは、室外機100Aと同様の構成であるため、詳細の説明については省略する。また、室外機100Bと室内機200とにおける空気調和装置1の冷媒回路についても、室外機100Aと室内機200とにおける空気調和装置1の冷媒回路と同様であるため、詳細の説明については省略する。 Since the outdoor unit 100B has the same configuration as the outdoor unit 100A, detailed description thereof is omitted. The refrigerant circuit of the air conditioner 1 in the outdoor unit 100B and the indoor unit 200 is also the same as the refrigerant circuit of the air conditioner 1 in the outdoor unit 100A and the indoor unit 200, and thus detailed description thereof is omitted. .
 なお、室外機100Aと室外機100Bとは、同一の筐体内に配置されていてもよい。
 また、冷媒回路に流れる冷媒の流れを切り替えるものとして、四方弁102の代わりに二方弁、三方弁を組み合わせて用いてもよい。
 また、本実施の形態に係る空気調和装置1は、冷房運転、暖房運転を行うことができるものとしたが、冷房運転を行わない構成としてもよく、その場合は、四方弁102は不要である。
Note that the outdoor unit 100A and the outdoor unit 100B may be arranged in the same housing.
Further, in order to switch the flow of the refrigerant flowing in the refrigerant circuit, a two-way valve or a three-way valve may be used in combination instead of the four-way valve 102.
Moreover, although the air conditioning apparatus 1 which concerns on this Embodiment shall be able to perform air_conditionaing | cooling operation and heating operation, it is good also as a structure which does not perform air_conditionaing | cooling operation, In that case, the four-way valve 102 is unnecessary. .
 室外機100A、100Bと室内機200とは、ヘッダー132、134を介してガス配管105および液配管106で接続されている。そして、暖房運転時では、室外機100A、100Bから流出した冷媒はヘッダー132で合流し、室内機200から流出した冷媒はヘッダー134で分岐するようになっている。また、冷房運転時では、室外機100A、100Bから流出した冷媒はヘッダー134で合流し、室内機200から流出した冷媒はヘッダー132で分岐するようになっている。 The outdoor units 100A and 100B and the indoor unit 200 are connected by a gas pipe 105 and a liquid pipe 106 via headers 132 and 134, respectively. During the heating operation, the refrigerant flowing out of the outdoor units 100A and 100B merges at the header 132, and the refrigerant flowing out of the indoor unit 200 branches at the header 134. Further, during the cooling operation, the refrigerant flowing out of the outdoor units 100A and 100B merges at the header 134, and the refrigerant flowing out of the indoor unit 200 branches at the header 132.
 制御装置300は、たとえばマイクロコンピュータ等からなり、各種運転に応じて空気調和装置1の室外機100および室内機200を制御するものである。本実施の形態では、制御装置300は、第1圧力センサ113A、第1温度センサ110A、第2圧力センサ114A、および、第2温度センサ111Aの各値に応じて、バイパス絞り装置116の制御を行う。 The control device 300 includes, for example, a microcomputer, and controls the outdoor unit 100 and the indoor unit 200 of the air conditioner 1 according to various operations. In the present embodiment, control device 300 controls bypass throttling device 116 in accordance with the values of first pressure sensor 113A, first temperature sensor 110A, second pressure sensor 114A, and second temperature sensor 111A. Do.
 なお、バイパス絞り装置116は本発明の「第2絞り装置」に相当し、第1弁107は本発明の「第1絞り装置」に相当し、第2弁108は本発明の「第3絞り装置」に相当し、絞り手段202は本発明の「室内絞り装置」に相当する。 The bypass throttle device 116 corresponds to the “second throttle device” of the present invention, the first valve 107 corresponds to the “first throttle device” of the present invention, and the second valve 108 corresponds to the “third throttle device” of the present invention. The aperture means 202 corresponds to the “indoor aperture device” of the present invention.
 次に、空気調和装置1の暖房運転時の動作について説明する。
 以下の説明において、高圧または低圧とは、冷媒回路内における圧力の相対的な関係を表すものとする。また、温度についても同様であり、高温または低温とは、冷媒回路内における温度の相対的な関係を表すものとする。また、以下の空気調和装置1の動作の主体は制御装置300である。
Next, the operation | movement at the time of the heating operation of the air conditioning apparatus 1 is demonstrated.
In the following description, high pressure or low pressure represents a relative relationship of pressure in the refrigerant circuit. The same applies to the temperature, and the high temperature or the low temperature represents a relative relationship of the temperature in the refrigerant circuit. In addition, the main body of the operation of the air conditioner 1 below is the control device 300.
 室外機100A、100Bにて暖房運転を行う場合は、第1弁107A、107Bを閉じて、第2弁108A、108Bを開ける。 When heating operation is performed in the outdoor units 100A and 100B, the first valves 107A and 107B are closed and the second valves 108A and 108B are opened.
 室外機100A、100Bの圧縮機101A、101Bで加圧された高温・高圧のガス(気体)冷媒は、四方弁102A、102Bを通って、ヘッダー132に流入する。圧縮機101Aで加圧されたガス冷媒と圧縮機101Bで加圧されたガス冷媒とは、ヘッダー132で合流して、室内機200に流入する。 The high-temperature and high-pressure gas (gas) refrigerant pressurized by the compressors 101A and 101B of the outdoor units 100A and 100B flows into the header 132 through the four- way valves 102A and 102B. The gas refrigerant pressurized by the compressor 101A and the gas refrigerant pressurized by the compressor 101B merge at the header 132 and flow into the indoor unit 200.
 室内機200に流入したガス冷媒は、室内熱交換器201内を通過し、周囲空気と熱交換が行われて凝縮する。そして、室内熱交換器201から流出した冷媒の圧力は、絞り手段202によって調整され、中間圧力の液体または気液二相状態となった冷媒は、ヘッダー134にて分岐されて、室外機100A、100Bに流入する。 The gas refrigerant that has flowed into the indoor unit 200 passes through the indoor heat exchanger 201 and is condensed by exchanging heat with ambient air. Then, the pressure of the refrigerant flowing out from the indoor heat exchanger 201 is adjusted by the throttle means 202, and the refrigerant in the intermediate pressure liquid or gas-liquid two-phase state is branched by the header 134 to be added to the outdoor unit 100A, Flows into 100B.
 室外機100A、100Bに流入した冷媒は、室外熱交換器103A、103B内を通過することで周囲空気と熱交換が行われ、蒸発してガス冷媒となる。このガス冷媒は、四方弁102A、102B、アキュムレータ104A、104Bを介して圧縮機101A、101Bに吸入される。圧縮機101A、101Bに吸入された冷媒は、再び加圧されて吐出される。 The refrigerant that has flowed into the outdoor units 100A and 100B passes through the outdoor heat exchangers 103A and 103B to exchange heat with the surrounding air, and is evaporated to become a gas refrigerant. This gas refrigerant is sucked into the compressors 101A and 101B via the four- way valves 102A and 102B and the accumulators 104A and 104B. The refrigerant sucked into the compressors 101A and 101B is pressurized again and discharged.
 次に、本実施の形態に係る空気調和装置1の除霜運転時の動作について説明する。
 以下の説明では、室外機100Aにて、除霜運転を行う例について説明する。このとき、室外機100Bでは暖房運転が行われる。なお、室外機100Bにて除霜運転を行い、室外機100Aにて暖房運転を行ってもよい。
 以下のように、空気調和装置1は、室外機100Aまたは室外機100Bの一方で除霜運転を行い、かつ室外機100Aまたは室外機100Bの他方で暖房運転を行うことによって、暖房運転を継続しながら除霜運転を行う。
Next, the operation | movement at the time of the defrost driving | operation of the air conditioning apparatus 1 which concerns on this Embodiment is demonstrated.
In the following description, an example in which the defrosting operation is performed in the outdoor unit 100A will be described. At this time, heating operation is performed in the outdoor unit 100B. The defrosting operation may be performed by the outdoor unit 100B, and the heating operation may be performed by the outdoor unit 100A.
As described below, the air conditioner 1 continues the heating operation by performing the defrosting operation on one of the outdoor unit 100A or the outdoor unit 100B and performing the heating operation on the other of the outdoor unit 100A or the outdoor unit 100B. While performing the defrosting operation.
 室外機100Aにて除霜運転を行う場合は、第1弁107Aを開けて、第2弁108Aを閉じる。これによって、圧縮機101Aから吐出された高温の冷媒の一部は、第1弁107Aを通り、室外熱交換器103Aに流入する。なお、圧縮機101Aから吐出された高温の冷媒のうち室外熱交換器103Aに流入する以外は、ヘッダー132に流入し、室外機100Bから流出した冷媒とヘッダー132で合流して室内機200に流入する。 When performing the defrosting operation in the outdoor unit 100A, the first valve 107A is opened and the second valve 108A is closed. Thereby, a part of the high-temperature refrigerant discharged from the compressor 101A passes through the first valve 107A and flows into the outdoor heat exchanger 103A. The high-temperature refrigerant discharged from the compressor 101A, except for flowing into the outdoor heat exchanger 103A, flows into the header 132, merges with the refrigerant flowing out of the outdoor unit 100B and the header 132, and flows into the indoor unit 200. To do.
 高温の冷媒が室外熱交換器103Aに流入すると、高温のガス冷媒と室外熱交換器103Aに付着した霜との熱交換が行われる。具体的には、室外熱交換器103Aに付着した霜は、高温のガス冷媒の熱を吸熱する。その結果、室外熱交換器103Aに付着した霜は、融解して流れ落ちる。なお、このとき第2弁108Aは閉じられているので、液配管106からの低温冷媒は、室外熱交換器103Aには流入しないようになっている。 When the high-temperature refrigerant flows into the outdoor heat exchanger 103A, heat exchange between the high-temperature gas refrigerant and the frost attached to the outdoor heat exchanger 103A is performed. Specifically, the frost adhering to the outdoor heat exchanger 103A absorbs the heat of the high-temperature gas refrigerant. As a result, the frost attached to the outdoor heat exchanger 103A melts and flows down. At this time, since the second valve 108A is closed, the low-temperature refrigerant from the liquid pipe 106 does not flow into the outdoor heat exchanger 103A.
 室外機100Aで除霜運転が行われる際に、室外機100Bでは暖房運転が行われる。すなわち、圧縮機101Bで加圧された高温・高圧のガス冷媒は、ガス配管105を通って、室内機200に流入する。室内機200に流入したガス冷媒は、室内熱交換器201内を通過して、中間圧力の液体または気液二相状態となる。そして、中間圧力の液体または気液二相状態となった冷媒は、液配管106を通って、室外機100Bの室外熱交換器103Bを通過してガス冷媒となる。このガス冷媒は、再び圧縮機101Aに吸入され、加圧されて吐出される。 When the defrosting operation is performed in the outdoor unit 100A, the heating operation is performed in the outdoor unit 100B. That is, the high-temperature and high-pressure gas refrigerant pressurized by the compressor 101 </ b> B flows into the indoor unit 200 through the gas pipe 105. The gas refrigerant that has flowed into the indoor unit 200 passes through the indoor heat exchanger 201 and enters an intermediate-pressure liquid or gas-liquid two-phase state. Then, the intermediate pressure liquid or the gas-liquid two-phase refrigerant passes through the liquid pipe 106, passes through the outdoor heat exchanger 103B of the outdoor unit 100B, and becomes a gas refrigerant. This gas refrigerant is again sucked into the compressor 101A, pressurized and discharged.
 上記のように、本実施の形態に係る空気調和装置1の除霜運転時では、室外機100Aにおいて、圧縮機101Aから吐出された高温の冷媒の一部は室内機200の室内熱交換器201に流入する。しかし、室内機200から流出した低温冷媒は、第2弁108Aが閉じられていることにより室外機100Aには流入しないため、低温冷媒が流入する室外機100Bに冷媒量が偏っていく。 As described above, during the defrosting operation of the air-conditioning apparatus 1 according to the present embodiment, in the outdoor unit 100A, part of the high-temperature refrigerant discharged from the compressor 101A is part of the indoor heat exchanger 201 of the indoor unit 200. Flow into. However, since the low temperature refrigerant that has flowed out of the indoor unit 200 does not flow into the outdoor unit 100A because the second valve 108A is closed, the amount of refrigerant is biased toward the outdoor unit 100B into which the low temperature refrigerant flows.
 そこで、除霜運転時は室外機100Aのバイパス絞り装置116Aを開け、液配管106からの低温冷媒が、室外熱交換器103Aを通過することなく、リキッドバイパス配管115Aを通過して室外機100A(のアキュムレータ104A)にも戻るようにする。これにより、空気調和装置1の除霜性能を下げることなく室外機100Aにも液冷媒を戻し、室外機100間(室外機100Aと室外機100Bとの間)の冷媒量の偏りを防ぐことができる。 Therefore, during the defrosting operation, the bypass expansion device 116A of the outdoor unit 100A is opened, and the low-temperature refrigerant from the liquid pipe 106 passes through the liquid bypass pipe 115A without passing through the outdoor heat exchanger 103A. The accumulator 104A) is also returned to. Accordingly, the liquid refrigerant is returned to the outdoor unit 100A without lowering the defrosting performance of the air conditioner 1, thereby preventing the refrigerant amount from being biased between the outdoor units 100 (between the outdoor unit 100A and the outdoor unit 100B). it can.
 なお、このリキッドバイパス配管115A、およびバイパス絞り装置116Aは、冷房運転時に室内機200に供給する冷媒を冷媒熱交換器117Aにて過冷却するために用いることができる。 The liquid bypass pipe 115A and the bypass expansion device 116A can be used to supercool the refrigerant supplied to the indoor unit 200 during the cooling operation by the refrigerant heat exchanger 117A.
 図2は、本発明の実施の形態に係る空気調和装置1の除霜運転時の制御フロー図である。
 図2は、除霜運転時において室外機100間の冷媒量の偏りを防ぐためのバイパス絞り装置116Aの開度制御に関する制御フローを示す図である。室外機100間の冷媒量の偏りは、除霜運転を行う室外機100Aのアキュムレータ104A入口(または圧縮機101Aの吸入側)の冷媒の過熱度(SH-A)にて判断する。
 アキュムレータ104A入口の冷媒の過熱度(SH-A)は、第1圧力センサ113Aの値から求められる飽和温度と第1温度センサ110Aの値との差により算出する(STEP11)。
FIG. 2 is a control flow diagram during the defrosting operation of the air-conditioning apparatus 1 according to the embodiment of the present invention.
FIG. 2 is a diagram showing a control flow related to the opening degree control of the bypass expansion device 116A for preventing the deviation of the refrigerant amount between the outdoor units 100 during the defrosting operation. The deviation of the refrigerant amount between the outdoor units 100 is determined by the degree of superheat (SH-A) of the refrigerant at the inlet of the accumulator 104A (or the suction side of the compressor 101A) of the outdoor unit 100A performing the defrosting operation.
The degree of superheat (SH-A) of the refrigerant at the inlet of the accumulator 104A is calculated by the difference between the saturation temperature obtained from the value of the first pressure sensor 113A and the value of the first temperature sensor 110A (STEP 11).
 上記により求まるSH-Aが3℃(予め定められた第1閾値)以上の場合は、室外機100Aに液冷媒が戻ってきていないと判断し、バイパス絞り装置116Aを予め決められた値Xだけ開ける(バイパス絞り装置116Aの開度を+Xする)。一方、SH-Aが3℃未満の場合は、バイパス絞り装置116Aの開度は変化させない(STEP12)。 When SH-A obtained as described above is 3 ° C. (a predetermined first threshold value) or more, it is determined that the liquid refrigerant has not returned to the outdoor unit 100A, and the bypass throttling device 116A is set to a predetermined value X. Open (+ X the opening degree of the bypass throttle device 116A). On the other hand, when SH-A is less than 3 ° C., the opening degree of the bypass expansion device 116A is not changed (STEP 12).
 室外機100Aに過度の冷媒が戻ってきていないかどうかは、除霜運転を行う室外機100Aの圧縮機101Aの吐出側の冷媒の過熱度(TdSH-A)により判断する。圧縮機101Aの吐出側の冷媒の過熱度(TdSH-A)は、第2圧力センサ114Aの値から求められる飽和温度と第2温度センサ111Aの値との差により算出する(STEP13)。 Whether or not excessive refrigerant has returned to the outdoor unit 100A is determined by the degree of superheat (TdSH-A) of the refrigerant on the discharge side of the compressor 101A of the outdoor unit 100A that performs the defrosting operation. The superheat degree (TdSH-A) of the refrigerant on the discharge side of the compressor 101A is calculated from the difference between the saturation temperature obtained from the value of the second pressure sensor 114A and the value of the second temperature sensor 111A (STEP 13).
 上記により求まるTdSH-Aが20℃(予め定められた第2閾値)未満の場合は、室外機100Aに過度の液冷媒が戻ってきていると判断し、バイパス絞り装置116Aを予め決められた値Xだけ閉じる(バイパス絞り装置116Aの開度を-Xする)。一方、TdSH-Aが20℃以上の場合は、バイパス絞り装置116Aの開度は変化させない(STEP14)。 When TdSH-A obtained by the above is less than 20 ° C. (predetermined second threshold value), it is determined that excessive liquid refrigerant has returned to the outdoor unit 100A, and the bypass throttling device 116A has a predetermined value. Close by X (the opening of bypass bypass device 116A is -X). On the other hand, when TdSH-A is 20 ° C. or higher, the opening degree of the bypass expansion device 116A is not changed (STEP 14).
 以上のSTEP11~STEP14の処理を一定の間隔で行うことにより、除霜運転を行う室外機100Aに流入する液冷媒を制御し、室外機100間の冷媒量の偏りを是正することができる。 By performing the above STEP 11 to STEP 14 at regular intervals, the liquid refrigerant flowing into the outdoor unit 100A performing the defrosting operation can be controlled, and the deviation of the refrigerant amount between the outdoor units 100 can be corrected.
 なお、図2に示す冷媒制御は、除霜運転を行う室外機100が切り替わった場合、また、室外機100が3台以上の場合においても同様に適用される。 Note that the refrigerant control shown in FIG. 2 is similarly applied when the outdoor unit 100 performing the defrosting operation is switched or when there are three or more outdoor units 100.
 以上より、本実施の形態に係る空気調和装置1によれば、少なくとも1台の室外機100は、他の室外機100が暖房運転時に、第1弁107が開かれてホットガスバイパス配管118を介して圧縮機101からの吐出冷媒が室外熱交換器103にバイパスされ、第2弁108が閉じられ、バイパス絞り装置116の開度が調整される除霜運転を行うことで、室外機100間の冷媒量の偏りを是正することができ、圧縮機101の吐出温度過昇、液バック等を引き起こすことなく安定した運転を行うことができる。 As described above, according to the air conditioner 1 according to the present embodiment, at least one outdoor unit 100 is configured such that the first valve 107 is opened and the hot gas bypass pipe 118 is connected when the other outdoor unit 100 is in the heating operation. The refrigerant discharged from the compressor 101 is bypassed to the outdoor heat exchanger 103, the second valve 108 is closed, and the defrosting operation in which the opening degree of the bypass expansion device 116 is adjusted is performed between the outdoor units 100. The refrigerant amount deviation can be corrected, and stable operation can be performed without causing excessive discharge temperature, liquid back, or the like of the compressor 101.
 バイパス絞り装置116の開度の調整について、詳しくはアキュムレータ104入口の冷媒の過熱度(SH-A)および圧縮機101Aの吐出側の冷媒の過熱度(TdSH-A)に応じて、バイパス絞り装置116の開度を調整する。そして、除霜運転を行う室外機100(のアキュムレータ104)にも、液配管106からの低温冷媒が、室外熱交換器103を通過することなく、リキッドバイパス配管115を通過して戻るようにする。そうすることで、暖房運転を継続しながら除霜運転を行う場合において、室外機100間の冷媒量の偏りを是正することができ、圧縮機101の吐出温度過昇、液バック等を引き起こすことなく、安定した運転を行うことができる。 Regarding the adjustment of the opening degree of the bypass expansion device 116, in detail, the bypass expansion device according to the superheat degree (SH-A) of the refrigerant at the inlet of the accumulator 104 and the superheat degree (TdSH-A) of the refrigerant on the discharge side of the compressor 101A. 116 is adjusted. The low-temperature refrigerant from the liquid pipe 106 also passes through the liquid bypass pipe 115 and returns to the outdoor unit 100 (accumulator 104) that performs the defrosting operation without passing through the outdoor heat exchanger 103. . By doing so, in the case of performing the defrosting operation while continuing the heating operation, it is possible to correct the deviation of the refrigerant amount between the outdoor units 100 and cause the discharge temperature of the compressor 101 to rise, the liquid back, etc. And stable operation can be performed.
 なお、第1閾値および第2閾値は上記の値に限定されるものではなく、冷媒の種類等に応じて決定される。また、第1閾値以上の場合にバイパス絞り装置116Aを開ける値と、第2閾値未満の場合にバイパス絞り装置116Aを閉じる値とで、異なる値としてもよい。 The first threshold value and the second threshold value are not limited to the above values, and are determined according to the type of refrigerant. In addition, a value that opens the bypass diaphragm 116A when it is equal to or greater than the first threshold and a value that closes the bypass diaphragm 116A when it is less than the second threshold may be different.
 1 空気調和装置、100A 室外機、100B 室外機、101A 圧縮機、101B 圧縮機、102A 四方弁、102B 四方弁、103A 室外熱交換器、103B 室外熱交換器、104A アキュムレータ、104B アキュムレータ、105 ガス配管、106 液配管、107A 第1弁、107B 第1弁、108A 第2弁、108B 第2弁、109A 送風機、109B 送風機、110A 第1温度センサ、110B 第1温度センサ、111A 第2温度センサ、111B 第2温度センサ、112A 第3温度センサ、112B 第3温度センサ、113A 第1圧力センサ、113B 第1圧力センサ、114A 第2圧力センサ、114B 第2圧力センサ、115A リキッドバイパス配管、115B リキッドバイパス配管、116A バイパス絞り装置、116B バイパス絞り装置、117A 冷媒熱交換器、117B 冷媒熱交換器、118A ホットガスバイパス配管、118B ホットガスバイパス配管、119A 室外側接続配管、119B 室外側接続配管、120A 本体ケース、120B 本体ケース、132 ヘッダー、134 ヘッダー、200 室内機、201 室内熱交換器、202 絞り手段、203 送風機、204 筐体、300 制御装置。 1 Air conditioner, 100A outdoor unit, 100B outdoor unit, 101A compressor, 101B compressor, 102A four-way valve, 102B four-way valve, 103A outdoor heat exchanger, 103B outdoor heat exchanger, 104A accumulator, 104B accumulator, 105 gas piping , 106 liquid piping, 107A first valve, 107B first valve, 108A second valve, 108B second valve, 109A blower, 109B blower, 110A first temperature sensor, 110B first temperature sensor, 111A second temperature sensor, 111B 2nd temperature sensor, 112A 3rd temperature sensor, 112B 3rd temperature sensor, 113A 1st pressure sensor, 113B 1st pressure sensor, 114A 2nd pressure sensor, 114B 2nd pressure sensor, 115A liquid bypass piping, 11 B Liquid bypass piping, 116A bypass throttle device, 116B bypass throttle device, 117A refrigerant heat exchanger, 117B refrigerant heat exchanger, 118A hot gas bypass piping, 118B hot gas bypass piping, 119A outdoor connection piping, 119B outdoor connection piping , 120A body case, 120B body case, 132 header, 134 header, 200 indoor unit, 201 indoor heat exchanger, 202 throttle means, 203 blower, 204 housing, 300 control device.

Claims (5)

  1.  圧縮機および室外熱交換器が搭載された少なくとも2台の室外機と、
     室内絞り装置および室内熱交換器が搭載された少なくとも1台の室内機と、を備え、
     前記室外機は前記室内機に並列接続され、
     前記圧縮機、前記室内熱交換器、前記室内絞り装置、および、前記室外熱交換器が順次配管接続され、冷媒が循環する冷媒回路を構成する空気調和装置であって、
     前記室外機は、
     前記圧縮機からの吐出冷媒を前記室外熱交換器にバイパスさせるホットガスバイパス配管と、
     前記ホットガスバイパス配管を流れる冷媒の流量を調整する第1絞り装置と、
     前記室内機と前記室外熱交換器とを接続する接続配管からバイパスされ、前記圧縮機の吸入側と接続されるリキッドバイパス配管と、
     前記リキッドバイパス配管を流れる冷媒の流量を調整する第2絞り装置と、
     前記接続配管のうち前記リキッドバイパス配管との分岐点よりも前記室外熱交換器側である室外側接続配管を流れる冷媒の流量を調整する第3絞り装置と、を備え、
     少なくとも1台の前記室外機は、
     他の前記室外機が暖房運転時に、前記第1絞り装置が開かれて前記ホットガスバイパス配管を介して前記圧縮機からの吐出冷媒が前記室外熱交換器にバイパスされ、前記第3絞り装置が閉じられ、前記第2絞り装置の開度が調整される除霜運転を行うものである
     空気調和装置。
    At least two outdoor units equipped with a compressor and an outdoor heat exchanger;
    And at least one indoor unit equipped with an indoor expansion device and an indoor heat exchanger,
    The outdoor unit is connected in parallel to the indoor unit,
    The compressor, the indoor heat exchanger, the indoor expansion device, and the outdoor heat exchanger are sequentially connected by piping, and constitute an air conditioner that constitutes a refrigerant circuit in which refrigerant circulates,
    The outdoor unit is
    Hot gas bypass piping for bypassing refrigerant discharged from the compressor to the outdoor heat exchanger;
    A first expansion device that adjusts the flow rate of the refrigerant flowing through the hot gas bypass pipe;
    A liquid bypass pipe bypassed from a connection pipe connecting the indoor unit and the outdoor heat exchanger, and connected to a suction side of the compressor;
    A second expansion device that adjusts the flow rate of the refrigerant flowing through the liquid bypass pipe;
    A third expansion device that adjusts the flow rate of the refrigerant that flows through the outdoor connection pipe that is on the outdoor heat exchanger side of a branch point with the liquid bypass pipe among the connection pipes,
    At least one of the outdoor units is
    When the other outdoor unit is in a heating operation, the first expansion device is opened, and the refrigerant discharged from the compressor is bypassed to the outdoor heat exchanger via the hot gas bypass pipe, and the third expansion device is An air conditioner that performs a defrosting operation that is closed and the opening of the second expansion device is adjusted.
  2.  除霜運転を行う前記室外機は、
     前記圧縮機の吸入側の冷媒の過熱度および前記圧縮機の吐出側の冷媒の過熱度に応じて前記第2絞り装置の開度が調整されるものである
     請求項1に記載の空気調和装置。
    The outdoor unit performing the defrosting operation is
    The air conditioner according to claim 1, wherein the opening degree of the second expansion device is adjusted according to the degree of superheat of the refrigerant on the suction side of the compressor and the degree of superheat of the refrigerant on the discharge side of the compressor. .
  3.  除霜運転を行う前記室外機は、
     前記圧縮機の吸入側の冷媒の過熱度が予め決められた第1閾値以上の場合は、前記第2絞り装置の開度が予め決められた値だけ開けられ、
     前記圧縮機の吐出側の冷媒の過熱度が予め決められた第2閾値未満の場合は、前記第2絞り装置の開度が予め決められた値だけ閉められるものである
     請求項2に記載の空気調和装置。
    The outdoor unit performing the defrosting operation is
    If the degree of superheat of the refrigerant on the suction side of the compressor is equal to or greater than a predetermined first threshold, the opening of the second expansion device is opened by a predetermined value,
    The opening degree of the second expansion device is closed by a predetermined value when the degree of superheat of the refrigerant on the discharge side of the compressor is less than a predetermined second threshold value. Air conditioner.
  4.  前記室外機は、
     前記圧縮機の吸入側の冷媒の圧力を検知する第1圧力センサと、
     前記圧縮機の吸入側の冷媒の温度を検知する第1温度センサと、
     前記圧縮機の吐出側の冷媒の圧力を検知する第2圧力センサと、
     前記圧縮機の吐出側の冷媒の温度を検知する第2温度センサと、を備え、
     除霜運転を行う前記室外機は、
     前記第1圧力センサの値から求められる飽和温度と前記第1温度センサの値との差により前記圧縮機の吸入側の冷媒の過熱度が算出され、
     前記第2圧力センサの値から求められる飽和温度と前記第2温度センサの値との差により前記圧縮機の吐出側の冷媒の過熱度が算出されるものである
     請求項3に記載の空気調和装置。
    The outdoor unit is
    A first pressure sensor for detecting the pressure of refrigerant on the suction side of the compressor;
    A first temperature sensor for detecting the temperature of the refrigerant on the suction side of the compressor;
    A second pressure sensor for detecting the pressure of the refrigerant on the discharge side of the compressor;
    A second temperature sensor for detecting the temperature of the refrigerant on the discharge side of the compressor,
    The outdoor unit performing the defrosting operation is
    The degree of superheat of the refrigerant on the suction side of the compressor is calculated from the difference between the saturation temperature obtained from the value of the first pressure sensor and the value of the first temperature sensor,
    The air conditioning according to claim 3, wherein the degree of superheat of the refrigerant on the discharge side of the compressor is calculated based on a difference between a saturation temperature obtained from a value of the second pressure sensor and a value of the second temperature sensor. apparatus.
  5.  前記室外機は、
     前記室外側接続配管を流れる冷媒と前記リキッドバイパス配管を流れる冷媒とで熱交換を行う冷媒熱交換器を備えたものである
     請求項1~4のいずれか一項に記載の空気調和装置。
    The outdoor unit is
    The air conditioner according to any one of claims 1 to 4, further comprising a refrigerant heat exchanger that performs heat exchange between the refrigerant flowing through the outdoor connection pipe and the refrigerant flowing through the liquid bypass pipe.
PCT/JP2014/083403 2014-12-17 2014-12-17 Air conditioning device WO2016098195A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14908405.5A EP3236168B1 (en) 2014-12-17 2014-12-17 Air conditioning device
JP2016564505A JP6246394B2 (en) 2014-12-17 2014-12-17 Air conditioner
PCT/JP2014/083403 WO2016098195A1 (en) 2014-12-17 2014-12-17 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/083403 WO2016098195A1 (en) 2014-12-17 2014-12-17 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2016098195A1 true WO2016098195A1 (en) 2016-06-23

Family

ID=56126118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083403 WO2016098195A1 (en) 2014-12-17 2014-12-17 Air conditioning device

Country Status (3)

Country Link
EP (1) EP3236168B1 (en)
JP (1) JP6246394B2 (en)
WO (1) WO2016098195A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008130A1 (en) * 2016-07-07 2018-01-11 三菱電機株式会社 Air conditioning device
WO2020161834A1 (en) * 2019-02-06 2020-08-13 三菱電機株式会社 Refrigeration cycle device
JP2020165594A (en) * 2019-03-29 2020-10-08 三菱重工サーマルシステムズ株式会社 Air conditioner
JP2020165593A (en) * 2019-03-29 2020-10-08 三菱重工サーマルシステムズ株式会社 Air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3974744B1 (en) * 2019-05-21 2023-04-26 Mitsubishi Electric Corporation Air conditioning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286273A (en) * 2001-03-28 2002-10-03 Mitsubishi Electric Corp Air conditioner
JP2008175410A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Heat source-side unit and air conditioning system
JP2010071544A (en) * 2008-09-18 2010-04-02 Mitsubishi Electric Corp Air-conditioning system
JP2012107790A (en) * 2010-11-16 2012-06-07 Mitsubishi Electric Corp Air conditioning device
JP2014211251A (en) * 2013-04-17 2014-11-13 三菱電機株式会社 Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5352512B2 (en) * 2010-03-31 2013-11-27 日立アプライアンス株式会社 Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286273A (en) * 2001-03-28 2002-10-03 Mitsubishi Electric Corp Air conditioner
JP2008175410A (en) * 2007-01-16 2008-07-31 Mitsubishi Electric Corp Heat source-side unit and air conditioning system
JP2010071544A (en) * 2008-09-18 2010-04-02 Mitsubishi Electric Corp Air-conditioning system
JP2012107790A (en) * 2010-11-16 2012-06-07 Mitsubishi Electric Corp Air conditioning device
JP2014211251A (en) * 2013-04-17 2014-11-13 三菱電機株式会社 Air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008130A1 (en) * 2016-07-07 2018-01-11 三菱電機株式会社 Air conditioning device
JPWO2018008130A1 (en) * 2016-07-07 2018-11-15 三菱電機株式会社 Air conditioner
WO2020161834A1 (en) * 2019-02-06 2020-08-13 三菱電機株式会社 Refrigeration cycle device
JP2020165594A (en) * 2019-03-29 2020-10-08 三菱重工サーマルシステムズ株式会社 Air conditioner
JP2020165593A (en) * 2019-03-29 2020-10-08 三菱重工サーマルシステムズ株式会社 Air conditioner
JP7214533B2 (en) 2019-03-29 2023-01-30 三菱重工サーマルシステムズ株式会社 air conditioner
JP7225001B2 (en) 2019-03-29 2023-02-20 三菱重工サーマルシステムズ株式会社 air conditioner

Also Published As

Publication number Publication date
JP6246394B2 (en) 2017-12-13
EP3236168A1 (en) 2017-10-25
EP3236168B1 (en) 2020-01-22
EP3236168A4 (en) 2018-08-08
JPWO2016098195A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
CN108027179B (en) Air conditioner
US8302413B2 (en) Air conditioner
AU2007330102B2 (en) Refrigeration system
CN109804209B (en) Air conditioner
GB2569898A (en) Air conditioner
US10907866B2 (en) Refrigerant cycle apparatus and air conditioning apparatus including the same
JP6246394B2 (en) Air conditioner
US11022354B2 (en) Air conditioner
US10976090B2 (en) Air conditioner
JP4704728B2 (en) Refrigerant temperature control device and control method for air conditioner
JP6880204B2 (en) Air conditioner
WO2014128831A1 (en) Air conditioning device
WO2017138108A1 (en) Air conditioning device
JP6285172B2 (en) Air conditioner outdoor unit
JP2019086251A (en) Control device of multi-type air conditioning device, multi-type air conditioning device, control method of multi-type air conditioning device, and control program of multi-type air conditioning device
US20210341192A1 (en) Heat pump device
US9127865B2 (en) Air conditioning system including a bypass pipe
WO2015029220A1 (en) Air conditioner
WO2014054154A1 (en) Air conditioning device
JP3984250B2 (en) Multi-room air conditioner
KR101872783B1 (en) Outdoor heat exchanger
JP6573723B2 (en) Air conditioner
WO2016056078A1 (en) Air conditioner
WO2015029223A1 (en) Air conditioner
CN213089945U (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564505

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014908405

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014908405

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE