WO2016097447A1 - Material de relleno para la construcción - Google Patents
Material de relleno para la construcción Download PDFInfo
- Publication number
- WO2016097447A1 WO2016097447A1 PCT/ES2015/070906 ES2015070906W WO2016097447A1 WO 2016097447 A1 WO2016097447 A1 WO 2016097447A1 ES 2015070906 W ES2015070906 W ES 2015070906W WO 2016097447 A1 WO2016097447 A1 WO 2016097447A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphite
- thermal
- interfere
- matrix
- present application
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B11/00—Calcium sulfate cements
- C04B11/02—Methods and apparatus for dehydrating gypsum
- C04B11/024—Ingredients added before, or during, the calcining process, e.g. calcination modifiers
Definitions
- the present invention relates to a filler material for construction, the purpose of which is to provide a filler material to be used in pastes with plasters, plasters or mixtures of both, even with additions of lime and dolomites in simple elements (coatings or fillings) or composite or multilayer (multilayer panels, plasterboard panel), being an inert material and physically and chemically stable over time.
- the object of the invention is to provide a filler material that allows to give greater versatility to the elements that need a better transmission of thermal energy, allowing to increase the size of industrial or prefabricated elements.
- the material of the invention can also be used as a filler or filler simply, thanks to its low cost.
- the invention is thus situated in the technical sector of construction, and in particular in the manufacture of materials for filling, secondary mechanical properties and with properties of conductor and thermal accumulator, as well as screen of electromagnetic waves and fire-resistant elements.
- Graphite has a nature that is neither metallic nor ceramic, it is chemically and thermally very resistant, in addition to being a good conductor of electricity and temperature.
- the graphite is also light, has a low coefficient of thermal expansion, and resists high temperatures very well. Its use is common in industrial supplies that require the improvement of the final properties, from its use in lubricants to the most technologically advanced products.
- synthetic graphite is manufactured using powdered coke and isostatic pressure, it is cooked at approximately 1000 e C, impregnated with pitch and baked again at approximately 3000 e C to favor atomic rearrangement. It is produced in large molds from which prisms can be obtained that can be reworked and modified by mechanical work or roughing, producing during the forming process the detachment of parts thereof to sizes smaller than 20 ⁇ . It is this industrial waste that is preferable as fine graphite in gypsum pastes and mortars. Commercial interest is important due mainly to its low cost.
- this material also has a high emissivity so that its introduction into insulating elements causes the dispersion of infrared radiation and the reduction of thermal transfers by radiation, which substantially improves their thermal behavior ( Jung & Park 2002; Meng 2007; Shi et al 2010: 689-692).
- graphite also acts as a fire retardant (Basf 1996) so, at present, we can find its addition in numerous insulating panels (Beck & Heun 2009; Uehlin 2010), which may be polystyrene (Basf 1996 ), of open cell polyurethane (Bosch & Vos 2003), of rigid polyisocyanurate-polyurethane foams (Kim et al 2012: 31 17-3123) or other synthetic resins (Bauer, Hell & Nalbach 2007).
- graphite is part of various lightened aggregates in the manufacture of mortars, plasters and concrete (Callou, deCadier & deCadier 2006), for various applications in building and civil works (Chuo 1993). And, along with other carbon-based materials, it has been incorporated into acoustic screens for noise reduction at frequencies between 100 kHz-1.5 GHz (Guoxuan et al 201 1: 1021-1024). Graphite has been used as an additive in ceramics, cement mortars and concretes, as well as with some polymers such as polystyrene and epoxy resins.
- Epoxy resin compounds (Xiunan et al 2012: 497-501)
- This patent uses graphite as an addition in expanded plastic matrix materials that have an application as brick insulators and therefore does not interfere with the use of the patent object of the present application.
- This patent uses expanded graphite as an addition in silicon matrix materials that have an application as thermal insulators, and therefore does not interfere with the use of the patent object of the present application.
- This patent uses Carbon, in graphite or coke black, as an addition in plastic matrix materials that have an application as thermal insulators and fire retardant, so it does not interfere with the use of the patent object of the present application.
- Thermal insulation material for use eg in domestic appliances comprises plastic foam, eg polyurethane foam, with embedded flake-like particles of heat-absorbing material, eg graphite.
- Heat-insulating element i.e. expandable polystyrene element with graphite particle, for e.g. thermal insulating hollow space in wall, has displacement element forming gap between insulating element and wall.
- This patent uses graphite as an addition in expanded plastic matrix materials that have an application as thermal insulators, and therefore does not interfere with the use of the patent object of the present application.
- This patent uses organic particles in materials of gypsum or cementitious matrix for lightening material, which have an application as thermal insulators, although it has the same plaster base matrix, its use as lightening does not coincide with what is described in the present application and also the graphite It is not a fundamental material in achieving subsequent manufacturing, so it does not interfere.
- Conductive cement for use as e.g. industrial antistatic material has mass ratio of amount of water to summation of amounts of cement, sand and graphite ranges from 0.3 to 1 to 0.35 is to 1.
- Patent number CN101333096-A is to be referred to be a patent number CN101333096-A.
- This patent uses organic particles in cementitious matrix materials for conductive, antistatic material, so it does not interfere with the present application.
- This patent uses graphite as an addition in dry cementitious matrix mortars, with additions of fiberglass, siliceous sand, and therefore does not interfere with the use of the patent object of the present application.
- This patent uses graphite as an addition in fire protection coatings of structural metal materials, and therefore does not interfere with the use of the patent object of the present application.
- Dry mortar for producing building components, heat accumulator, heat exchangers, fillers, and f ⁇ at plates comprises a portion of clay dry mortar, and an additive, which consists of natural graphite, expanded graphite and / or black coal Patent number EP2426096-A1.
- This patent uses graphite and graphite fiber in pavements and floors for electromagnetic protection, the matrix that makes up the material with graphite and the type of graphite is not described, so it does not interfere with the use of the patent object of The present application.
- cement mortar composition for building construction includes cement, frit glass, resin, combined water, glass fiber, chopped fiber, carbon fiber and conductive powder.
- Patent number KR2009129085-A This patent uses graphite as an addition in cement mortars, so it does not interfere with the use of the patent object of the present application.
- Corrosion-resistance high-strength conductive concrete has components which includes cement, aggregate, graphite, conductive fiber, and water having predetermined weight percentage.
- This patent uses graphite as an addition in hydraulic materials to increase the hardening time, so it does not interfere with the use of the patent object of the present application.
- Thermally conductive sheet used as heat relay material comprising sheet-like customer layer containing carbon nano tube and / or carbon micro coil, laminated on both sides of sheet-like graphite layer.
- Patent number JP2002038033-A Patent number JP2002038033-A.
- This patent uses expanded graphite for thermal insulators with chromium anhydrous and sulfuric acid treatments, so it does not interfere with the use of the patent object of the present application.
- Conductive cement material with reduced power frequency earthing resistance - contains graphite, Portland cement, cupric sulphate, etc.
- Patent number CN1241546-A Patent number CN1241546-A.
- This patent uses graphite as an addition to obtain cementitious vibration conductive materials, and therefore does not interfere with the use of the patent object of the present application.
- Energy-storing mortar for wall comprises cement, aggregate, additive, water and filler having porous composite phase-change energy storing graphite micro-powder, porous graphite micro-poser and organic phase-change material .
- Patent number CN101654350-A is a patent number of Patent number CN101654350-A.
- Phase change energy-storing mortar for buildings comprises concrete material as substrate, fine aggregate, water and filler, which is porous graphitic phase change energy-storing composite material.
- This patent uses graphite as an addition in phase change materials with energy storage capacity, so it does not interfere with the use of the patent object of the present application.
- the present invention relates to a filler material that is a mixture of sulfates (calcium, phosphoyeso, boroyeso, fluoroyeso, titano-plaster ”) known and named as plasters, plasters or mixtures of both, and / or limes and dolomites or other charges and binders.
- sulfates calcium, phosphoyeso, boroyeso, fluoroyeso, titano-plaster
- plasters plasters or mixtures of both, and / or limes and dolomites or other charges and binders.
- "filler or filler or addition” is defined as the material capable of filling the pores and increasing the porosity, and consequently increasing the compactness.
- the filling used in this case also works well thanks to the roughness of its faces that improves the adhesion with the matrix.
- the filling of the matrix with graphite allows to improve the thermal capacity, the conductivity and the fire behavior, of the mass and of the elements or products that contain it.
- the graphite is in a natural or recycled plaster matrix in preferable weight percentages around 10-20%, with water / plaster ratios preferably 0.4-0.6%.
- the graphite is in a matrix of natural or recycled plaster in preferable weight percentages in the environment of 10-20%, with water / plaster ratios preferably 0.4-0.6%.
- the graphite is in a matrix of natural or recycled plaster or natural or recycled plaster, or mixture of several, in preferable weight percentages in the environment of 10-20%, with elements of improvement of the rheology of the paste, water reducers in percentages in percentage of preferred water weight of 5-10%, with water / plaster ratios preferably 0.4-0.5%. Water reducers or rheology enhancers would increase the docility of the mixture in the fresh state depending on the use of the paste or mortar.
- the graphite is in a matrix of natural or recycled plaster or natural or recycled plaster, or mixture of several, in preferable weight percentages in the environment of 10-20%, with elements of improvement of the rheology of the paste, aerators or gasifiers in percentages in percentage of preferred water weight of 25%, with water / plaster ratios preferably 0.4-0.5%.
- the aerators or gasifiers mainly favor among other features the reduction of density and insulation in large percentages.
- the graphite is in a chalky or dolomitic matrix (lime), or its mixture, with the possible incorporation of additives and additions.
- pastes described in the previous embodiments can form mortars with sands of different origin in preferred percentages of 25-40% by weight.
- It can also be used as a hygrothermal regulator in the rooms, helping to distribute the temperatures in the room.
- Figure 1 Corresponds to a multilayer panel detail with an inner core, determined by a multilayer plaster or plasterboard or graphite limes (1), according to any of the preferred dosages mentioned above, and outer layers of cardboard (2) with internal face Porous or organic or inorganic adhesive finish (3).
- Alternative exterior finish (4) Alternative exterior finish (4).
- Figure 2 Corresponds to a detail of facade façade with multilayer plasterboard or plasterboard or lime (1) (described in Figure 1) in facade (5).
- the support on which the product is installed is the outer sheet of ceramic brick (6) or of another material, the insulator (7) and a few rails (8) or metal supports or other resistant material being fixed in the chamber, fixed to the façade factory (6) and to which the panel is screwed.
- the placement system is preferably dry, screwed or anchored (9).
- Figure 3 Shows a coating detail by laying the material of the invention (1) applied prior to the work or preferably on site, by hand or mechanically by projection of the product.
- the support on which the product is installed is preferably the inner sheet of a facade with double brick or block sheet (1 1) and insulating (7) or single ceramic brick or other material.
- Figure 4 Shows a detail of an interior partition with a multilayer plate with material of the invention (1) (described in Figure 1) on one or two sides, with metal or wooden support as a structure of the partition (6) to the ground and to the ceiling with metal fixing (9).
- the insulation (7) can be placed in the chamber between plates.
- the placement system is preferably dry.
- Example 1 Mix of coarse or common plaster with synthetic powder graphite For soft consistency.
- Example 2 Mixture of coarse or common plaster with synthetic graphite powder mixture of dry consistency. 1000 g of thick plaster mixtures (YP-M thick construction according to UNE-EN 13279-1) were mixed with synthetic waste graphite. The proportions varied in plaster substitutions for graphite in percentages of 0% to 25% in percentages of 0/5/10/15/20/25%. The kneading water was then added in a gypsum water ratio of 0.60. The paste was kneaded with an electric mixer, and once kneaded it was poured into a 40x40x16 mm steel mold and 250x250x40 mm prismatic molds. Once set, the apparent density measured with the hydrostatic balance gave a value between 1 1 18 and 1233 kg / m 3 with a resistance increase of 300%. The consistency was measured by shaking table with values of cake diameter in the fresh state between 10-15 cm.
- Example 3 Mixture of coarse or common work plaster with synthetic graphite powder mixture of fluid consistency. 1000 g of thick plaster mixtures (YP-M thick construction according to UNE-EN 13279-1) were mixed with synthetic waste graphite. The proportions varied in plaster substitutions for graphite in percentages of 0% to 25% in percentages of 0/5/10/15/20/25%. The kneading water was then added in a gypsum water ratio of 0.60 with a 5% substitution of the water with superplasticizer / aerator (SIKA-sikanol) when it was in a liquid state.
- SIKA-sikanol superplasticizer / aerator
- the paste was kneaded with an electric mixer, and once kneaded it was poured into a 40x40x16 mm steel mold and 250x250x40 mm prismatic molds. Once set, the apparent density measured with the hydrostatic balance gave a value between an increase of 15% and resistance of 300%. The consistency was measured by shaking table with values of cake diameter in the fresh state between 10-15 cm.
- Example 4 Mix of coarse or common work plaster with synthetic graphite powder and dry consistency sand mixture.
- 700 g of mixtures of thick plaster (YP-M thick construction according to UNE-EN 13279-1) were mixed with synthetic waste graphite and siliceous sand.
- the proportions varied in plaster substitutions for graphite in percentages of 0% to 25% in percentages of 0/5/10/15/20/25% and 300 grams of siliceous sand.
- the kneading water was then added in a gypsum water ratio of 0.60 with a 5% substitution of the water with superplasticizer / aerator (SIKA-sikanol) when it was in a liquid state.
- SIKA-sikanol superplasticizer / aerator
- the paste was kneaded with an electric mixer, and once kneaded it was poured into a 40x40x16 mm steel mold and 250x250x40 mm prismatic molds. Once set, the apparent density measured with the hydrostatic balance gave a value between an increase of 15% and resistance of 300%. The consistency was measured by shaking table with values of cake diameter in the fresh state between 10-15 cm.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Nuevo material de relleno para su uso como aditivo o filler empleado en mezclas para pastas y morteros con matriz de sulfatos (cálcico, fosfoyeso, boroyeso, fluoroyeso, titano- yeso...), denominados genéricamente yesos y escayolas, así como con matriz calcárea y/o dolomítica, para la mejora de la conductividad térmica, reducción de la trasmisión de onda electromagnética (pantalla electromagnética) y mejora del comportamiento mecánico. Puede emplearse en pastas con yesos, escayolas o mezclas de ambos, incluso con añadidos de cal y dolomías en elementos simples (revestimientos o rellenos) o compuestos o multicapa (paneles multicapa, panel cartón-yeso), al ser un material inerte y estable física y químicamente en el tiempo. Permite dar mayor versatilidad a los elementos que necesiten una mejor transmisión de la energía térmica, permitiendo aumentar el tamaño de elementos industriales o prefabricados. También puede ser empleado como carga o relleno simplemente, gracias a su bajo coste.
Description
MATERIAL DE RELLENO PARA LA CONSTRUCCIÓN
D E S C R I P C I O N
OBJETO DE LA INVENCION
La presente invención se refiere a un material de relleno para la construcción, cuya finalidad es la de proporcionar un material de relleno para ser empleado en pastas con yesos, escayolas o mezclas de ambos, incluso con añadidos de cal y dolomías en elementos simples (revestimientos o rellenos) o compuestos o multicapa (paneles multicapa, panel cartón-yeso), al ser un material inerte y estable física y químicamente en el tiempo.
El objeto de la invención es proporcionar un material de relleno que permita dar mayor versatilidad a los elementos que necesiten una mejor transmisión de la energía térmica, permitiendo aumentar el tamaño de elementos industriales o prefabricados. El material de la invención puede igualmente ser empleado como carga o relleno simplemente, gracias a su bajo coste.
Consecuentemente, la invención se sitúa pues en el sector técnico de la construcción, y en concreto en la fabricación de materiales para relleno, propiedades secundarias mecánicas y con propiedades de conductor y acumulador térmico, así como pantalla de ondas electromagnéticas y elementos resistentes al fuego.
ANTECEDENTES DE LA INVENCIÓN
El grafito posee una naturaleza que no es ni metálica ni cerámica, es química y térmicamente muy resistente, además de ser buen conductor de la electricidad y de la temperatura. También el grafito es ligero, tiene un bajo coeficiente de dilatación térmica, y resiste muy bien las altas temperaturas. Su empleo es común en suministros industriales que requieren la mejora de las propiedades finales, desde su uso en lubricantes hasta los productos más avanzados tecnológicamente.
Por lo general, el grafito sintético es fabricado mediante el uso de coque pulverizado y sometido a presión isostática, se cuece a 1000 eC aproximadamente, se impregna con brea y se vuelve a cocer a 3000 eC aproximadamente para favorecer la reordenación atómica.
Se produce en grandes moldes de los que se obtienen prismas que pueden ser retallados y modificados mediante trabajo mecánico o desbaste, produciendo durante el proceso de conformado el desprendimiento de partes del mismo hasta tamaños menores a los 20 μηι. Es este desecho industrial el preferible como fino de grafito en las pastas y morteros de yeso. El interés comercial es importante debido principalmente a su bajo coste.
En relación a la anterior, este material también dispone de una elevada emisividad por lo que su introducción en elementos aislantes provoca la dispersión de la radiación de infrarrojos y la reducción de las transferencias térmicas por radiación, lo que mejora sustancialmente el comportamiento térmico de aquéllos (Jung & Park 2002; Meng 2007; Shi et al 2010: 689-692). Al mismo tiempo, el grafito también actúa como retardador al fuego (Basf 1996) por lo que, en la actualidad, podemos encontrar su adición en numerosos paneles aislantes (Beck & Heun 2009; Uehlin 2010), pudiendo ser éstos de poliestireno (Basf 1996), de poliuretano en celda abierta (Bosch & Vos 2003), de espumas rígidas de poliisocianurato-poliuretano (Kim et al 2012: 31 17-3123) u otras resinas sintéticas (Bauer, Hell & Nalbach 2007). Por el mismo motivo, el grafito se incorpora en paneles sanwich (Matsuki 2009) y de morteros aislantes (Jung & Park 2002; Jia, Jian & Bi 2012) y aligerados (Gellert et al 1999) así como en hormigones espumados con grafito natural (Shaohai 201 1 : 356-360).
Su elevada capacidad de acumulación térmica, el grafito se utiliza en intercambiadores y acumuladores de calor (Herberg & Landenberger 2010). En hormigones y morteros de sistemas geotérmicos (Lee et al 201 1 : 3660-3676) así como también en "acumuladores" para la reducción del consumo energético aumentando la inercia térmica de los sistemas constructivos (Zhang 2008; Yu 2010; Zhang et al 2013: 670-675).. En este último aspecto, el mayor número de investigaciones y patentes, en este sentido, se centra en su incorporación en geles de cambio de fase para sistemas de calor latente (Py, Olives & Mauran 2001 : 2727-2737; Xiao, Feng & Gong 2001 : 293-296; Marín et al 2005: 2561 -2570; Zhang & Fang 2006: 303-310; Sari & Karaipekli 2007: 1271 -1277; Karaipekli, Sari & Kaygusuz 2007: 2201 -2210; Karaipekli & Sari 2009: 323-332; Lueking 2009; Bayón et al 2010: 2643-2651 ; Cheng et al 2010: 1636-1642; Xia, Zhang & Wang 2010: 2538-2548; Wang et al 2012: 949-954; Zhang et al 2012: 426-431 ) para plantas solares (Guo et al 2010: 628-630; Yuan et al 2012: 3227-3233). Y, en las investigaciones más recientes, el grafito se incorpora en forma de nanopartículas (Kim & Drzal 2009: 136-142; Shi et al 2013: 365-372).
La elevada conductividad térmica está asociada, a su vez, con una elevada conductividad eléctrica que asciende a 106 Sm"1 a temperatura ambiente. Esta última propiedad es fomentada en distintas aplicaciones de materiales conductores (Krzesiñska et al 2006: 173- 181 ; Debelak & Lafdi 2007: 1727-1734; Hu et al 2012b). En el ámbito de los materiales compuestos con matriz cementicia, así como morteros y hormigones, diversas investigaciones analizan su comportamiento en aplicaciones tales como protecciones eléctricas (Fan 201 1 : 1022-1026; Gan, Huang & Chen 201 1 : 556-559; Waldemar 201 1 : 210- 214), electromagnéticas (Hitachi 1991 ; Hitachi 1991 b; Dong & Si 2006; Kwak & Tae 2009) y catódicas, resistencia al calentamiento y disipación de las cargas estáticas (Wang 2000; Lee 2003; Chung 2004: 167-176; Chen et al 2008; Kwak & Tae 2009), y generación de energía termoeléctrica, entre otros. De esta última aplicación, abundantes publicaciones y patentes revelan su interés, principalmente, en aplicaciones de carreteras (Jeong & Park 2004; Liu, Wu & Li 2010: 545-549; Chen et al 201 1 b: 3241 -3250; Zhang, Zhou & Zhang 201 1 : 256-262) junto con otras adiciones como fibra de acero (García et al 2009: 3175- 3181 ). La elevada dureza es otra de las razones del fomento de la aplicación del grafito en carreteras así como también en películas cerámicas (Gao & Shao 2012: 126-129). Por otra parte, su elevada conductividad eléctrica es también de utilidad en la reparación de estructuras de hormigón (Park 2010) y, en relación con esta aplicación, se ha desarrollado un programa de simulación numérica para establecer las relaciones entre el comportamiento mecánico y el eléctrico de hormigones con grafito (Wu et al 2006: 556- 558).
Además de las anteriores, el grafito forma parte de distintos agregados aligerados en la manufactura de morteros, yesos y hormigones (Callou, deCadier & deCadier 2006), para aplicaciones diversas en edificación y obra civil (Chuo 1993). Y, junto con otros materiales en base carbono, se ha incorporado en pantallas acústicas para reducción del ruido en frecuencias entre 100 kHz-1 .5GHz (Guoxuan et al 201 1 : 1021 -1024). El grafito ha sido empleado como aditivo en cerámicas, pastas de cemento morteros y hormigones, así como con algunos polímeros tales como poliestireno y resinas epoxídicas.
Los usos y estudios existentes en la bibliografía (publicaciones) del grafito en general son:
Morteros y hormigones con cemento:
Reducción del tiempo de fraguado (Nakajima & Ichimura 2006),
Morteros de alta resistencia (Cülfik & Ózturan 2002: 809-816; Pichor &
Slomka 201 1 : 210)
Morteros de impermeables (Fan et al 2009: 12-14; Fan et al 2010: 72-75).
(Krawczyk & Slosarczyk 2009: 829-831 ; Cátala et al 201 1 : 321 -329).
Aumento de la resistencia al choque térmico lo que fomenta su incorporación tanto en morteros y hormigones (Cülfik & Ózturan 2002: 809-816; Okushi 2007)
Altas temperaturas (Meca 1988; Chuo 1992; Toshiba 1997; Margishvili et al 2006; Okushi 2007).
Estabilizador (Li et al 2012) aportando resistencia a la fisuración.
Morteros de cemento para suelos radiantes (Lee et al 2005)
Polímeros:
Compuestos de resinas epoxi (Xiunan et al 2012: 497-501 )
Bases Poliméricas (Ganguli, Roy & Anderson 2008: 806-817).
Sector industrial:
Mejora de la eficiencia de los procesos o en aplicaciones estructurales de alta temperatura (Wang et al 2009: 390-394; Wang et al 2009b: 338- 341 ;
Colorado, Hiél & Hahn 201 1 : 376-384; Zhi, Zhanjun & Guodong 201 1 b: 351 -355; Zhi, Zhanjun & Guodong 201 1 : 2870-2874; Zhi et al 201 1 : 6871 -6875). Recubrimientos de los vidrios empleados en hornos (Xun 2006).
Sector electrónico como disipador de calor (Nakanishi 2002).
Aeronáutico (Patel & Case 2000: 809-820).
Automovilístico (Shanks & Cerezo 2012).
Cerámicas:
Cerámicas refractarias (Wang et al 201 1 : 1 103-1 1 1 1 )
Revestimiento cerámico en aleaciones de aluminio (Gao & Shao 2012:
126-129).
Las patentes que emplean el grafito son:
Alborghetti, A. (2009): Hollow brick t ermal insulation met od for providing masonry, involves removing expanded plástic material from surface portions of faces of bricks, and freeing expanded plástic material from ends of hollow channels by fíame diffusers. Patente número WO2009106402-A1 .
Esta patente usa el grafito como adición en materiales de matriz plástica expandidos que tienen una aplicación como aislantes en ladrillos por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Asperger, L; Rehor, P. (1996): Thermal insulation material - based on silicon contg. Powder and/or granules with binder comprising órgano: silicon cpd. And opt. expanded graphite. Patente número DE19507400-A1 .
Esta patente usa el grafito expandido como adición en materiales de matriz siliconosa que tienen una aplicación como aislantes térmico, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Basf, (1996): Thermal and sound floor insulation - comprises sheets of polystyrene particle foam contg. Carbón (black or graphite), opt. with an organic bromo cpd. As fire retardant. Patente número DE29616362-U
Esta patente usa el Carbono, en grafito o negro de coque, como adición en materiales de matriz plástica que tienen una aplicación como aislantes térmico y retardador a fuego, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Bauer, P.; Hell, E.; Nalbach, P. (2009): Thermal insulation material for use e.g. in domestic appliances, comprises plástic foam, e.g. polyurethane foam, with embedded flake-like particles of heat-absorbing material, e.g. graphite. Patente número DE102006015993-A1 .
Esta patente usa el grafito como adición en materiales de matriz plástica que tienen una aplicación como aislantes térmico, por lo que no interfiere en el uso de la patente objeto de la presente solicitud. · Bayón, R.; Rojas, E.; Valenzuela, L; Zarza, E.; León, J. (2010): Analysis of the experimental behaviour of a 100 kWth latent heat storage system for direct steam generation in solar thermal power plants, Applied Thermal Engineering 30: 2643- 2651 . Esta patente usa el grafito en placas solares como acumulador térmico, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
• Beck & Heun GmbH (2009): Heat-insulating element i.e. expandable polystyrene element with graphite particle, for e.g. thermal insulating hollow space in wall, has displacement element forming gap between insulating element and wall. Patente número DE202004021567-U1 .
Esta patente usa el grafito como adición en materiales de matriz plástica expandida que tienen una aplicación como aislantes térmico, por lo que no interfiere en el uso de la patente que objeto de la presente solicitud.
• Bosch, R.J.M.; Vos, H.A.G. (2003): Espumas semirígidas de celda abierta con grafito exfoliante. Patente número: ES2183792T3. Esta patente usa el grafito como exfoliante de celdas de espumas semirígidas, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
• Callou, B.; de Cadier, D.V.C.; de Cadier de Veauce, C. (2006): Use of organic polymer particles for the manufacture of lightened building materials for mortar, gypsum plaster or concrete. Patente número FR2878519-A1 .
Esta patente usa partículas orgánicas en materiales de matriz yesífera o cementosa para material aligerante, que tienen una aplicación como aislantes térmico, aunque posee la misma matriz base yeso su uso como aligerante no coincide con lo que se describe en la presente solicitud y además el grafito no es un material fundamental
en la consecución de la fabricación posterior, por lo que no interfiere.
Chen, G.; Xie, H.; Zha, O.L. (2008): Conductive cement for use as e.g. industrial antistatic material, has mass ratio of amount of water to summation of amounts of cement, sand and graphite ranges from 0.3 to 1 to 0.35 is to 1 . Patente número CN101333096-A.
Esta patente usa partículas orgánicas en materiales de matriz cementosa para material conductor, antistático , por lo que no interfiere en la presente solicitud.
Chuo, K.K.K. (1992): Lightweight cement mortar having fire resistance, heat insulation, etc. obtd. By mixing cement-synthetic resin emulsión, and fibres with graphite inorganic lamellar foam aggregate. Patente número JP4285082-A.
Esta patente usa el grafito como adición en morteros de matriz cementosa aligerados, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Chuo, K.K.K. (1993): Cpd. Of graphite dry mix mortar useful for buildings - comprises graphite layered foamed aggregate, cement and additives e.g. silica sand, glass fibers, etc. Patente número JP5078158-A.
Esta patente usa el grafito como adición en morteros de matriz cementosa secos, con adiciones de fibra de vidrio, arena silícea, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Gellert, R.; Hahn, K.; Glueck, G.; Naegele, D.; Hohwiller, F. (1999): Light plaster for thermal insulating wall cladding. Patente número DE19802230-A1 .
Esta patente usa el grafito como adición en morteros de matriz yesífera aligerados, aunque para un uso de aislante y no conductor como se propone en esta invención, donde además no se aligera el material, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Hallissy, G.; Higbie, W.G.; Camarota, A.; Rowen, J.B.; Hallisy, G. (2004): Flexible and adherent intumescent fire protective insulating coating for pre-installation or post- installation application to structural or utilitarian components, e.g. structural steel, comprises expandable flake graphite. Patente número: WO2004024833-A3
Esta patente usa el grafito como adición en revestimientos de protección a fuego de materiales metálicos estructurales, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Herberg, D.; Landenberger, H. (2010): Dry mortar for producing building components, heat accumulator, heat exchangers, fillers, and fíat plates, comprises a portion of clay dry mortar, and an additive, which consists of natural graphite, expanded graphite and/or carbón black. Patente número EP2426096-A1 .
Esta patente usa el grafito como adición en morteros para construcción, de manera genérica, aunque no con grafito sintético, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Hitachi Chem Co Ltd (1991 ): Composite of fibre-reinforced and expanded graphite sheets with cement - for wall material of building or floor of computer room, etc, to shield electromagnetic radiation. Patente númer JP3187964-A.
Esta patente usa el grafito y la fibra de grafito en pavimentos y suelos para la protección electromagnética, no se describe la matriz que conforma el material con el grafito ni el tipo de grafito, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Hitachi Chem Co Ltd (1991 b): Composite material for radiation shielding - contains expanded graphite layer(s) sandwiched by cement or mortar layers. Patente númer JP3086538-A.
Esta patente usa el grafito como adición en materiales compuestos, aunque con grafito expandido en capas, fijado con capa realizadas con cemento o morteros, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Hu (2012): Preparation of foam ceramic material by mixing silicon carbide powder, deionized water, zirconium, polycarbosilane, sand, calcium carbonate, graphite, dolomite, trimeric sodium phosphate, polyethylene glycol, polyvinyl alcohol, and valerate. Patente número CN102442833-A.
Esta patente usa el grafito como adición en materiales cerámicos, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Guo, C; Zhu, J.; Ahou, W.; Chen, W. (2010): Fabrication and thermal properties of a new heat storage concrete material, 25 (4): 628-630. Doi: 10.1007/s1 1595-010-0058- 3.
Esta patente usa el grafito como adición en hormigones que se emplean como acumuladores térmicos, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Hu, S.; Wang, L; Xu, X.; Zhao, D. (2012): Graphite ceramic linear resistor, is prepared by utilizing preset amount of raw materials such as aluminum oxide, kaolín, graphite, sodium silicate, adhesive and dispersant. Patente número CN102426891 -A.
Esta patente usa el grafito como adición en cerámicos, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Jeong, M.W.; Park, S.G. (2004): Heat-generating mortar powder using graphite and construction method using the same. Patente número KR2004090006-A
Esta patente usa el grafito como adición en morteros, no se describe la matriz ni el tipo de grafito, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Jia, M.; Jia, Y.; Bi, L. (2012): Inorganic insulation board comprises ordinary cement, pulverized coal ash, hemihydrate gypsum, gypsum, sierozem, silicon ash, expanded graphite, flexibilizer, early strength agent, superplasticizer and waterproof agent. Patente número CN102408207-A.
Esta patente usa el grafito expandido como adición en materiales compuestos como aislante, fijado con capa realizadas con cemento o morteros, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
• Jung, B.H.; Park, K.P. (2002): Electrical conductive and exothermic mortar panel emitting far infrared rays. Patente número KR2002079289-A.
Esta patente usa el grafito como adición en morteros, para protección del infrarrojo lejano, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
• Kwak, S.W.; Tae, K.K. (2009): Cement mortar composition for building construction, includes cement, frit glass, resin, combined water, glass fiber, chopped fiber, carbón fiber and conductive powder. Patente número KR2009129085-A. Esta patente usa el grafito como adición en morteros de cemento, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
• Lee, S.G. (2003): Electric conductive and exothermic mortar using graphite and inorganic binders. Patente número KR2003059602-A.
Esta patente usa el grafito como adición en morteros para conducción eléctrica y como morteros exotérmicos, por lo que no interfiere en el uso de la patente objeto de la presente solicitud. · Lee, J.H.; Lee, K.C.; Lee, G.C. (2005): Mortar composition for floor of house comprises cement, heat-conductive material and thickening agent. Patente número KR2005040566-A.
Esta patente usa el grafito como adición en morteros, para la realización de pavimentos, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
• Li, J.; Du, L.; Hu, J.; Gong, Y.; Yang, Q.; Sima, W.; Yuan, T.; Sun, C; Zhou, Q.
(2012): Corrosion-resistance high-strength conductive concrete has components which includes cement, aggregate, graphite, conductive fiber, and water having
predetermined weight percentage. Patente número CN102432239-A.
Esta patente usa el grafito como adición en hormigones para la mejora del comportamiento a la corrosión, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Lueking, R. (2009): Fagade or roof element for mounting at outer wall in building i.e. house, has latent heat accumulator with heat-conductive, open-cell light building board in which storage médium is held, where board is in thermal contact with fluid duct. Patente número: WO2009043338-A2.
Esta patente usa el grafito como adición en para la acumulación de calor en paneles de fachada o cubierta, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Margishvili, A.P.; Gromova, L.Y.; Khirgilizhiu, T.A.; Mozhzherin, V.A.; Sakulin, V.Y.A.; Migal, V.P.; Novikov, A.N.; Salagina, G.N.; Shtern, E.A. (2006): Refractory mortar powder, comprises alumina-containing filler in form of reactive alumina, phospate binder, additionally includes industrial-grade silicon and graphite. Patente número RU2274624-C1 .
Esta patente usa el grafito como adición en morteros refractarios, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Matsuki, A. (2009): Fire-resistant insulation sheet for use in fire-shutter screen apparatus to protect building material e.g. ceiling, of building from heat, has thermal- insulating sheet arranged between non-flammable sheets. Patente número JP2009215721 .
Esta patente usa el grafito como adición en materiales aislantes al fuego no inflamables, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Meca, B. (1988): Refractory bonding mortar - based on water glass and ground graphite. Patente número CS8601580-A.
Esta patente usa el grafito como adición en morteros refractarios, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Meng, Z. (2007): Nano-thermal insulation paint and its production method. Patente número CN101029191 -A.
Esta patente usa el grafito como adición en pinturas aislantes, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Nakajima, H.; Ichimura, T. (2006): Quick-hardening admixture for hydraulic composition, contains nitrite or nitrate of alkaline earth metal, graphite, water- reducing agent and thickener. Patente número JP2006182609-A.
Esta patente usa el grafito como adición en materiales hidráulicos para el aumento del tiempo de endurecimiento, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Nakanishi, M. (2002): Thermally conductive sheet used as heat reléase material, comprises sheet-like customer layer containing carbón nano tube and/or carbón micro coil, laminated on both sides of sheet-like graphite layer. Patente número JP2002038033-A.
Esta patente usa el grafito como adición en materiales multicapa comprimidos, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Okushi, Y. (2007): Fire-resisting construction for building, has binding material containing refractory material which contains expanded graphite. Patente número JP2007056637-A.
Esta patente usa el grafito para la obtención de materiales de construcción con resistencia al fuego, por lo que no interfiere en el uso de la patente objeto de la presente solicitud. Park, H. (2010): Mortar composition for repairing concrete structure, comprises
hollow micropowder, natural cellulosic fiber, redispersible powder resin, antifoaming agent, zinc, graphite, silica sand, slag, silica fume and fluidizer. Patente número KR2010012495-A.
Esta patente usa el grafito como adición en morteros para la reparación de estructuras de hormigón armado, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Shapranov, V.V.; Yaroshenko, A.P.; Kucherenko, V.A. (1995): Thermally expanding graphite prodn. For use as heat insulation -includes successive treatments with chromic anhydride, conc. Sulphuric acid, urea and neutralising agent. Patente número SU1817438-A1
Esta patente usa el grafito expandido para aislantes térmicos con tratamientos de anhidro de cromo y acido sulfúrico, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Toshiba Ceramics Co. (1997): Refractory mortar material -includes refractory fibres, graphite and silica. Patente número JP9183671 -A.
Esta patente usa el grafito como adición en morteros refractarios con fibra de carbono, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Uehlin, J. (2010): Method for the production of insulating materials from closed-cell foam, comprises adding an additive to the closed-cell foam before and/or during the foaming, where gaseous blowing agent incorporates into the foam material after foaming. Patente número: DE10200901 1819-A1 .
Esta patente usa el grafito en materiales de celda cerrada con características aislantes térmicas, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Wang, D. (2000): Conductive cement material with reduced power frequency earthing resistance - contains graphite, Portland cement, cupric sulphate, etc.
Patente número CN1241546-A.
Esta patente usa el grafito como adición para la obtención de materiales cementosos conductores de vibración, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
• Xun, J. (2006): Thermal insulation device for single-crystal furnace. Patente número CN1840745-A. Esta patente usa el grafito como aislante térmico en hornos, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
• Yu, Y. (2010): Energy-storing mortar for wall, comprises cement, aggregate, additive, water and filler having porous composite phase-change energy storing graphite micro-powder, porous graphite micro-poser and organic phase-change material.
Patente número CN101654350-A.
Esta patente usa el grafito como adición en morteros de revestimiento de pared de matriz cementosa para la acumulación energética, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
• Zhang, D. (2008): Phase change energy-storing mortar for buildings comprises concrete material as substrate, fine aggregate, water and filler, which is porous graphitic phase change energy-storing composite material. Patente número CN101 144006-A.
Esta patente usa el grafito como adición en materiales de cambio de fase con capacidad de almacenamiento energético, por lo que no interfiere en el uso de la patente objeto de la presente solicitud.
Bibliografía existente sobre el uso del grafito:
• Cátala, G.; Ramos-Fernandez, E.V.; Zornoza, E.; Andion, L.G.; Garces, P. (201 1 ):
Influence of the oxidation process of carbón material on the mechanical properties of cement mortars, Journal of Materials in Civil Engineering 23 (3): 321 -329.
• Cülfik, M.S.; Ózturan, T. (2002): Effect of elevated temperatures on the residual mechanical properties of high-performance mortar, Cement and Concrete Research 32: 809-816.
• Chen, M.; Wu, S.; Wang, H.; Zhang, J. (201 1 b): Study of ice and snow melting process on conductive asphalt solar collector. Solar Energy Materials & Solar Cells
95: 3241 -3250.
• Cheng, W.L.; Zhang, R.M.; Xie, K.; Liu, N.; Wang, J. (2010): Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: preparation and thermal properties. Solar Energy Materials & Solar Cells 94: 1636- 1642.
• Chung, D.D.L. (2004): Electrically conductive cement-based materials, Advances in Cement Research 16 (4): 167-176.
• Colorado, H.A.; Hiél, C; Hahn, H.T. (201 1 ): Chemically bonded phosphate ceramics composites reinforced with graphite nanoplatelets. Composites Part A 42: 376-384. · Cülfik, M.S.; Ózturan, T. (2002): Effect of elevated temperatures on the residual mechanical properties of high-performance mortar. Cement and Concrete Research 32: 809-816.
• Debelak, B.; Lafdi, K. (2007): Use of exfoliated graphite filler to enhance polymer physical properties, Carbón 45: 1727-1734.
· Dong, F.; Si, Q. (2006): Cement based composite materials with electromagnetic screen function. Patente número CN1727357-A.
• Fan, X.M.; Dong, X.; Sun, M.Q.; Li, Z.Q. (2009): Research on the electric characteristic and pressure sensitivity of graphite-cement based composites, Journal of Wuhan University of Technology, 31 (12): 12-14.
· Fan, X.M.; Dong, F.; Mingquing, S.; Zhuoqiu, L. (2010): Piezoresistivity of graphite cement-based composites with CCCW. Journal of Huazhoung University of Science and Technology 38 (2): 72-75.
• Fan (201 1 ): Effects of environmental temperature and humidity on the electrical properties of carbón fiber graphite cement mortar, Smart Materials and Intelligent Systems 143-144: 1022-1026.
• Gan, W.; Huang, X.; Chen, P. (201 1 ): Piezoresistivity of cement based material with small amount of graphite, Journal of Beijing University of Aeronautics and Astronautics 34 (5): 556-559.
• Ganguli, S.; Roy, A.K.; Anderson, D.P. (2008): Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites, Carbón 46: 806-817
• Gao, J.L.; Shao, Z.C. (2012): The effects of graphite on ceramic coatings on LY12 Aluminium Alloys by Micro-are Oxidation, Advanced Materials Research 454: 126- 129.
• García, A.; Schlangen, E.; van de Ven, M.; Liu, Q. (2009): Electrical conductivity of asphalt mortar containing conductive fibers and fillers, Construction and Building
Materials, 23: 3175-3181 .
• Guoxuan, X.; Zhibin, Z.; Min, D.; Yufen, Z. (201 1 ): Investigation of electromagnetic interference shielding effectiveness of cement-based composites filled with carbón materials, Advanced Materials Research, 168-170: 1021 -1024.
· Hu, Z.L.; Chen, Y.F.; Hou, Q.L.; Chen, H. (2012): Characterizacion of graphite oxide after heat treatment, New Journal of Chemistry 36 (6): 1373-1377
• Jae Yang, S.; Kim, T.; Jung, H.; Rae Park, C. (2013): The effect of heating rate on porosity production during the low temperature reduction of graphite oxide, Carbón 53: 73-80.
· Kim, S.; Drzal, L.T. (2009): High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Solar Energy Materials & Solar Cells 2009: 136-142.
• Krzesiñska, M.; Celzard, A.; Grzyb, B.; Maréché, J.F. (2006): Elastic properties and electrical conductivity of mica/expanded graphite nanocomposites, Materials Chemistry and Physics 97: 173-181 .
• Karaipekli, A.; Sari, A.; Kaygusuz, K. (2007): Thermal conductivity improvement of stearic acid using expanded graphite and carbón fiber for energy storage applications, Renewable Energy, 32: 2201 -2210.
• Karaipekli, A.; Sari, A. (2009): Capric-myristic acid/vermiculite composite as form- stable phase change material for thermal energy storage, Solar Energy 83: 323-332.
• Kim, Y.H.; Kang, M.J.; Park, G.P.; Park, S.D.; Kim, S.B.; Kim, W.N. (2012): Effects of liquid-type silane additives and organoclay on the morphology and thermal conductivity of rigid polyisocyannurate-polyurethane foams, Journal of Applied Polymer Science 124 (4): 31 17-3123.
· Krawczyk, P. ; Slosarczyk, A. (2009): Expanded graphite after electrochemical oxidation of phenol as cement mortar additive, Przemysl Chemiczny, 88 (7): 829-831 .
• Lee, C; Park, M.; Min, S.; Kang, S.H.; Sohn, B.; Choi, H. (201 1 ): Comparison of effective thermal conductivity in closed-loop vertical ground heat exchangers. Applied Thermal Engineering 31 : 3660-3676.
· Liu, X.; Wu, S.; Ning, L. (2010): Influence of graphite on the road performance of
asphalt concrete, Journal of Wuhan University of Technology, 34 (3): 545-549.
• Marín, J.M.; Zalba, B.; Cabeza, L.F.; Mehling, H. (2005): Improvement of a thermal energy storage using plates with paraffin-graphite composite. International Journal of Heat and Mass Transfer 48: 2561 -2570.
· Patel, S.R.; Case, S.W. (2000): Durability of a graphite/epoxy woven composite under combined hygrothermal conditions. International Journal of Fatigue 22: 809- 820.
• Pichor, W.; Slomka, J. (201 1 ): The properties of cement composites with expanded graphite, Cement Wapno Betón 16 (4): 210.
· Py, X.; Olives, R.; Mauran, S. (2001 ): Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. International Journal of Heat and Mass Transfer 44: 2727-2737.
• Sánchez-Coronado, J.; Chung, D.D.L. (2003): Thermomechanical behavior of a graphite foam, Carbón 41 : 1 175-1 180.
· Sari, A.; Karaipekli, A. (2007): Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering 27: 1271 -1277.
• Shanks, R.A.; Cerezo, F.T. (2012): Preparation and properties of poly(propylene-g- maleic anhydride) filled with expanded graphite oxide. Composites Part A 43: 1092- 1 100.
• Shaohai, W. (201 1 ): Preparation of foam concrete from graphite tailing, Advanced Materials Research 356-360: 1994-1997.
• Shi, X.; Zhang, S.C.; Chen, Y.F.; Li, M.Q.; Ouyang, S.X.; Pen, X.Y. (2010): Effects of infrared scattering powders on the thermal properties of porous Si02 insulation material. En Pan, W., Gong, J, eds. High-performance ceramics IV, Trans Tech
Publications Ltd, Zurich, pp. 689-692.
• Shi, J.N.; Ger, M.D.; Liu, Y.M.; Fan, Y.C.; Wen, N.T.; Lin, C.K.; Pu, N.W. (2013):
Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbón 51 : 365-372.
· Waldemar Pichór, J.S. (201 1 ): The properties of cement composites with expanded graphite, CWB 4: 210-214.
• Wang, Z.; Wang, S.; Zhang, X.; Hu, P.; Han, W.; Hong, C. (2009): Effect of graphite flake on microstructure as well as mechanical properties and thermal stock resistance of ZrB2-SiC matrix ultrahigh temperature ceramics. Journal of Alloys and Compounds 484: 390-394.
• Wang, Z.; Hong, C; Zhang, X.; Sun, X.; Han, J. (2009): Microstructure and thermal shock behavior of ZrB2-SiC graphite composite, Materials Chemistry and Physics 1 13: 338-341 .
• Wang, Z.G.; Guo, W.M.; Kan, Y.M:; Zhang, G.J.; Wang, P.L. (201 1 ): Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives.
Journal of the European Ceramic Society 31 : 1 103-1 1 1 1 .
• Wang, N.; Zhang, X.R.; Zhu, D.S.; Gao, J.W. (2012): The investigación of thermal conductivity and energy storage properties of graphite/paraffin composites, Journal of Thermal Anal. Calorimetry 107: 949-954.
· Wu, X.; Wu, B.; Win, G.J.; Tang, C. (2006): Numerical simulation of mechanical- electrical relationship in failure process of graphite concrete, Journal of Northeastern University, 27 (5): 556-558.
• Xia, L; Zhang, P.; Wang, R.Z. (2010): Preparation and thermal characterization of expanded graphite/paraffin composite phase change material, Carbón 48: 2538- 2548.
• Xiao, M.; Feng, B.; Gong, K. (2001 ): Thermal performance of a high conductive shape-stabilized thermal storage material. Solar Energy Materials & Solar Cells 69: 293-296.
• Xiunan, C; Yonggen, L; Zhang, X.; Zhao, F. (2012): The thermal and mechanical properties of graphite foam/epoxy resin composite, Materials and Design 40: 497-
501 .
• Yuan; H.W.; Lu, C.H.; Xu, Z.Z.; Ni, Y.R.; Lan, X.H. (2012): Mechanical and thermal properties of cement composite graphite for slar thermal storage materials, Solar Energy 86: 3227-3233.
· Zhang, B.; Bicanic, N.; Pearce, C.J.; Balabanic, G. (2000): Assessment of toughness of concrete subjected to elevated temperatures from complete load-displacement curve: Part II. Experimental investigation, ACI Mater. J. 97: 556-566
• Zhang, Z.; Fang, X. (2006): Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Conversión and Management 47: 303-310.
• Zhang, Z.; Zhang, N.; Pengs, J.; Fang, X.; Gao, X.; Fang, Y. (2012): Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material, Applied Energy 91 : 426-431 .
• Zhang, Y.; Zhou, Z.; Zhang, X. (201 1 ): Strength and electro-thermal effect of conductive film coated aggregate mortar, Journal of Tongji University 39 (2): 259-
262.
• Zhi, W.; Zhanjun, W.; Guodong, S. (201 1 ): Effect of annealing treatment on mechanical properties of a ZrB2-SiC graphite ceramic, Materials Science and Technology A 528: 2870-2874.
· Zhi, W.; Zhanjun, W.; Guodong, S. (201 1 b): Fabrication, mechanical properties and thermal shock resistance of a ZrB2-graphite ceramic. International Journal of Refractory Metals and Hard Materials, 29: 351 -355.
• Zhi, W.; Qiang, Q.; Zhanjun, W.; Guodong, S. (201 1 ): Effect of oxidation at 1 100eC on the strength of ZrB2-SiC-graphite ceramics. Journal of Alloys and Compounds 509: 6871 -6875.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a un material de relleno que es una mezcla de sulfatos (cálcico, fosfoyeso, boroyeso, fluoroyeso, titano-yeso...) conocidos y nombrados como yesos, escayolas o mezclas de ambos, y/o cales y dolomías u otras cargas y conglomerantes. El uso de ninguno de ellos no es excluyente, de forma que en una realización de la invención se pueden mezclar varios. En el ámbito de la presente solicitud se define como "filler o relleno o adición" aquel material capaz de rellenar los poros y aumentar la porosidad, y en consecuencia la aumentar la compacidad. El relleno empleado en este caso funciona además bien gracias a la rugosidad de sus caras que mejora la adherencia con la matriz. Estos dos aspectos producen una mejora del comportamiento mecánico principalmente.
El relleno de la matriz con grafito permite mejorar la capacidad térmica, la conductividad y el comportamiento a fuego, de la masa y de los elementos o productos que lo contengan.
En una realización preferible de la invención, el grafito se encuentra en una matriz de escayola natural o reciclada en porcentajes de peso preferibles en el entorno del 10-20 %, con relaciones agua/escayola preferentemente del 0.4-0.6%.
En otra realización preferible de la invención, el grafito se encuentra en una matriz de yeso natural o reciclada en porcentajes de peso preferibles en el entorno del 10-20 %, con relaciones agua/yeso preferentemente del 0.4-0.6%.
En otra realización preferible de la invención, el grafito se encuentra en una matriz de yeso natural o reciclada o escayola natural o reciclada, o mezcla de varios, en porcentajes de peso preferibles en el entorno del 10-20 %, con elementos de mejora de la reología de la pasta, reductores de agua en porcentajes en porcentaje de peso del agua preferente del 5- 10%, con relaciones agua/escayola preferentemente del 0.4-0.5%. Los reductores de agua o de mejora de la reología aumentarían la docilidad de la mezcla en estado fresco según el uso de la pasta o mortero. En otra realización preferible de la invención, el grafito se encuentra en una matriz de yeso natural o reciclada o escayola natural o reciclada, o mezcla de varios, en porcentajes de peso preferibles en el entorno del 10-20 %, con elementos de mejora de la reología de la pasta, aireantes o gasificantes en porcentajes en porcentaje de peso del agua preferente del 25%, con relaciones agua/escayola preferentemente del 0.4-0.5%. Los aireantes o gasificantes favorecen principalmente entre otras características la reducción de la densidad y el aislamiento en grandes porcentajes.
En otra realización preferible de la invención, el grafito se encuentra en una matriz calcárea o dolomítica (cales), o su mezcla, con la posible incorporación de aditivos y adiciones.
Estas pastas descritas en las realizaciones anteriores, pueden formar morteros con arenas de diverso origen en porcentajes preferentes del 25-40% de peso.
También se puede usar como regulador higrotérmico en las estancias, ayudando al reparto de las temperaturas en la estancia.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que seguidamente se va a realizar y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1 . Corresponde a un detalle de panel multicapa con un alma interior, determinada por una placa multicapa de yeso o de escayola o cales con grafito (1 ), según alguna de las dosificaciones preferentes mencionadas anteriormente, y capas externas de cartón (2) con cara interna acabado poroso o con adhesivo orgánico o inorgánico (3). Acabado exterior alternativo (4).
La figura 2. Corresponde a un detalle de trasdosado de fachada con placa multicapa de yeso o escayola o cales (1 ) (descrito en la figura 1 ) en fachada (5). El soporte sobre el que se instala el producto es la hoja exterior de ladrillo cerámico (6) o de otro material, quedando en la cámara el aislante (7) y unos rastreles (8) o soportes metálicos o de otro material resistente, fijados a la fábrica de fachada (6) y a los que se atornilla el panel. El sistema de colocación es preferentemente en seco, atornillado o anclado (9). La figura 3. Muestra un detalle de revestimiento mediante tendido del material de la invención (1 ) aplicado previo a la obra o preferentemente en obra, a mano o mecánicamente mediante proyección del producto. El soporte sobre el que se instala el producto es preferentemente la hoja interior de una fachada con doble hoja de ladrillo o bloque (1 1 ) y aislante (7) o única de ladrillo cerámico o de otro material.
La figura 4. Muestra un detalle de tabique interior con placa multicapa con material de la invención (1 ) (descrito en la figura 1 ) en una o dos caras, con soporte metálico o de madera como estructura del tabique (6) al suelo y al techo con fijación metálica (9). En la cámara entre placas se puede colocar el aislamiento (7). El sistema de colocación es preferentemente en seco.
EXPLICACIÓN DETALLADA DE REALIZACIONES DE LA INVENCIÓN Con la intención de mostrar la presente invención de un modo ilustrativo, aunque en ningún modo limitante, se aportan los siguientes ejemplos. Las normas o reglamentos que se citan son accesibles y conocidos por el experto del medio, y representan el valor de los estándares más usados en la técnica para las mediciones que se indican. Ejemplo 1 : Mezcla de yeso grueso o común de obra con grafito sintético en polvo
para consistencia blanda.
Se mezclaron 1000 g de mezclas de yeso grueso (YP-M grueso de construcción según la UNE-EN 13279-1 ) con grafito sintético de desecho. Las proporciones variaron en sustituciones de yeso por grafito en porcentajes de 0% hasta el 25 %, en porcentajes hasta el 25 % en porcentajes de 0/5/10/15/20/25 %. Se añadió entonces el agua de amasado en una relación agua/yeso de un 0,74. La pasta se amasó con una mezcladora eléctrica, y una vez amasada se vertió en un molde de 40x40x16 mm de acero y en moldes prismáticos de 250x250x40 mm. Una vez fraguada, la densidad aparente medida con la balanza hidrostática dio un valor entre con un aumento del 15% y de las resistencias de un 300%. Se midió la consistencia mediante mesa de sacudidas con unos valores de diámetro de torta en estado fresco entre 15-25 cm.
Se midió la conductividad en caja caliente según norma ISO 8990:1994 obteniendo un valor de λ=0,27-0,31 W/m/eK.
Ejemplo 2: Mezcla de yeso grueso o común de obra con grafito sintético en polvo mezcla de consistencia seca. Se mezclaron 1000 g de mezclas de yeso grueso (YP-M grueso de construcción según la UNE-EN 13279-1 ) con grafito sintético de desecho. Las proporciones variaron en sustituciones de yeso por grafito en porcentajes de 0% hasta el 25 % en porcentajes de 0/5/10/15/20/25 %. Se añadió entonces el agua de amasado en una relación agua yeso de un 0,60. La pasta se amasó con una mezcladora eléctrica, y una vez amasada se vertió en un molde de 40x40x16 mm de acero y en moldes prismáticos de 250x250x40 mm. Una vez fraguada, la densidad aparente medida con la balanza hidrostática dio un valor entre 1 1 18 y 1233 kg/m3 con un aumento de las resistencias de un 300%. Se midió la consistencia mediante mesa de sacudidas con unos valores de diámetro de torta en estado fresco entre 10-15 cm.
Se midió la conductividad en caja caliente según norma ISO 8990:1994 obteniendo un valor de λ=0, 19-0,37 W/m/eK.
Ejemplo 3: Mezcla de yeso grueso o común de obra con grafito sintético en polvo mezcla de consistencia fluida.
Se mezclaron 1000 g de mezclas de yeso grueso (YP-M grueso de construcción según la UNE-EN 13279-1 ) con grafito sintético de desecho. Las proporciones variaron en sustituciones de yeso por grafito en porcentajes de 0% hasta el 25 % en porcentajes de 0/5/10/15/20/25 %. Se añadió entonces el agua de amasado en una relación agua yeso de un 0,60 con una sustitución del 5 % del agua por superplastificante/aireante (SIKA-sikanol) al estar en estado líquido. La pasta se amasó con una mezcladora eléctrica, y una vez amasada se vertió en un molde de 40x40x16 mm de acero y en moldes prismáticos de 250x250x40 mm. Una vez fraguada, la densidad aparente medida con la balanza hidrostática dio un valor entre con un aumento del 15% y de las resistencias de un 300%. Se midió la consistencia mediante mesa de sacudidas con unos valores de diámetro de torta en estado fresco entre 10-15 cm.
Se midió la conductividad en caja caliente según norma ISO 8990:1994 obteniendo un valor de λ=0, 18-0,30 W/m/eK.
Ejemplo 4: Mezcla de yeso grueso o común de obra con grafito sintético en polvo y arena mezcla de consistencia seca. Se mezclaron 700 g de mezclas de yeso grueso (YP-M grueso de construcción según la UNE-EN 13279-1 ) con grafito sintético de desecho y arena silícea. Las proporciones variaron en sustituciones de yeso por grafito en porcentajes de 0% hasta el 25 % en porcentajes de 0/5/10/15/20/25 % y 300 gramos de arena silícea. Se añadió entonces el agua de amasado en una relación agua yeso de un 0,60 con una sustitución del 5 % del agua por superplastificante/aireante (SIKA-sikanol) al estar en estado líquido. La pasta se amasó con una mezcladora eléctrica, y una vez amasada se vertió en un molde de 40x40x16 mm de acero y en moldes prismáticos de 250x250x40 mm. Una vez fraguada, la densidad aparente medida con la balanza hidrostática dio un valor entre con un aumento del 15% y de las resistencias de un 300%. Se midió la consistencia mediante mesa de sacudidas con unos valores de diámetro de torta en estado fresco entre 10-15 cm.
Se midió la conductividad en caja caliente según norma ISO 8990:1994 obteniendo un valor de λ=0, 18-0,27 W/m/eK.
Claims
R E I V I N D I C A C I O N E S
1 a.- Material de relleno para la construcción, en el que participa grafito sintético en polvo como material de adición en porcentajes sustitución en peso hasta el 25 %, aditivo o filler empleado en mezclas hidráulicas caracterizado porque incorpora una matriz de sulfatos (cálcico, fosfoyeso, boroyeso, fluoroyeso, titano-yeso...) de origen natural o reciclado, también denominados yesos y escayolas, así como en matriz calcárea y/o dolomítica, o mezcla de los anteriores.
2a.- Material de relleno para la construcción, según reivindicación 1 a, caracterizado porque incorpora aditivos reductores de agua o modificadores de la reología.
3a.- Material de relleno para la construcción, según cualquiera de las reivindicaciones 1 y 2, caracterizado porque incorpora aditivos aireantes o gasificantes.
4a.- Material de relleno para la construcción según cualquiera de las reivindicaciones 1 a 3, caracterizado porque incorpora arenas y/o agregados de origen natural o recicladas. 5a.- Material de relleno para la construcción según cualquiera de las reivindicaciones 1 a 4, caracterizado porque es aplicable en revestimientos interiores.
6a.- Material de relleno para la construcción según cualquiera de las reivindicaciones 1 a 4, caracterizado porque es aplicable en productos multicapa, tanto como relleno o alma así como producto de acabado.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201431878A ES2529269B2 (es) | 2014-12-18 | 2014-12-18 | Material de relleno para la construcción |
ESP201431878 | 2014-12-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016097447A1 true WO2016097447A1 (es) | 2016-06-23 |
Family
ID=52465599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2015/070906 WO2016097447A1 (es) | 2014-12-18 | 2015-12-15 | Material de relleno para la construcción |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2529269B2 (es) |
WO (1) | WO2016097447A1 (es) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109608145A (zh) * | 2019-01-21 | 2019-04-12 | 中铁隧道局集团有限公司 | 一种用于回填工程的可硬性磷石膏基注浆材料及使用方法 |
CN111848099A (zh) * | 2020-06-15 | 2020-10-30 | 广东韶钢嘉羊新型材料有限公司 | 一种尾砂激发胶凝充填材料及其制备方法 |
CN111892344A (zh) * | 2020-07-22 | 2020-11-06 | 广西大学 | 一种用于沥青面层加固抗流动变形的复合地聚合物注浆材料及注浆方法 |
CN117105627A (zh) * | 2023-10-24 | 2023-11-24 | 中国建筑西南设计研究院有限公司 | 一种高强保温板及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6090195A (en) * | 1992-08-11 | 2000-07-18 | E. Khashoggi Industries, Llc | Compositions used in manufacturing articles having an inorganically filled organic polymer matrix |
CN101792287A (zh) * | 2010-01-25 | 2010-08-04 | 广州大学 | 一种耐腐蚀抗钝化导电材料 |
US20120208003A1 (en) * | 2003-04-02 | 2012-08-16 | Kirby Wayne Beard | Composite Materials Using Novel Reinforcements |
CN103342533A (zh) * | 2013-07-15 | 2013-10-09 | 中国人民解放军第三军医大学 | 电磁防护石膏板及其制备方法 |
-
2014
- 2014-12-18 ES ES201431878A patent/ES2529269B2/es active Active
-
2015
- 2015-12-15 WO PCT/ES2015/070906 patent/WO2016097447A1/es active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6090195A (en) * | 1992-08-11 | 2000-07-18 | E. Khashoggi Industries, Llc | Compositions used in manufacturing articles having an inorganically filled organic polymer matrix |
US20120208003A1 (en) * | 2003-04-02 | 2012-08-16 | Kirby Wayne Beard | Composite Materials Using Novel Reinforcements |
CN101792287A (zh) * | 2010-01-25 | 2010-08-04 | 广州大学 | 一种耐腐蚀抗钝化导电材料 |
CN103342533A (zh) * | 2013-07-15 | 2013-10-09 | 中国人民解放军第三军医大学 | 电磁防护石膏板及其制备方法 |
Non-Patent Citations (1)
Title |
---|
DATABASE WPI Derwent World Patents Index; * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109608145A (zh) * | 2019-01-21 | 2019-04-12 | 中铁隧道局集团有限公司 | 一种用于回填工程的可硬性磷石膏基注浆材料及使用方法 |
CN111848099A (zh) * | 2020-06-15 | 2020-10-30 | 广东韶钢嘉羊新型材料有限公司 | 一种尾砂激发胶凝充填材料及其制备方法 |
CN111848099B (zh) * | 2020-06-15 | 2022-08-19 | 广东韶钢嘉羊新型材料有限公司 | 一种尾砂激发胶凝充填材料及其制备方法 |
CN111892344A (zh) * | 2020-07-22 | 2020-11-06 | 广西大学 | 一种用于沥青面层加固抗流动变形的复合地聚合物注浆材料及注浆方法 |
CN111892344B (zh) * | 2020-07-22 | 2022-05-13 | 广西大学 | 一种用于沥青面层加固抗流动变形的复合地聚合物注浆材料及注浆方法 |
CN117105627A (zh) * | 2023-10-24 | 2023-11-24 | 中国建筑西南设计研究院有限公司 | 一种高强保温板及其制备方法 |
CN117105627B (zh) * | 2023-10-24 | 2023-12-22 | 中国建筑西南设计研究院有限公司 | 一种高强保温板及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
ES2529269B2 (es) | 2015-07-08 |
ES2529269A1 (es) | 2015-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100564305C (zh) | 煤矸石-粉煤灰泡沫混凝土 | |
KR101740700B1 (ko) | 단열 및 방음성이 향상된 경량기포 콘크리트 | |
KR101311700B1 (ko) | 단열성 및 내구성이 우수한 시멘트 모르타르 조성물, 이를 이용한 판넬의 제조방법 및 블록의 제조방법 | |
WO2016097447A1 (es) | Material de relleno para la construcción | |
CN106242426A (zh) | 外墙保温材料及其制备方法 | |
EA038281B1 (ru) | Смесь строительных материалов для защиты от электромагнитного излучения | |
CN102503333A (zh) | 复合硅质墙体保温材料 | |
CN104446295A (zh) | 一种耐潮湿环境加气砖及其制备方法 | |
CN102093020A (zh) | 聚氨酯专用轻质防火防水保温浆料 | |
CN103317789B (zh) | 厚抹灰防火砂浆酚醛树脂板及酚醛专用防火砂浆 | |
CN207176955U (zh) | 一种轻质结构保温一体化板 | |
WO2022088397A1 (zh) | 一种碱液处理陶粒轻型混凝土砌块的制备方法 | |
CN110616862A (zh) | 一种轻质安全保温装饰一体板及其制备方法 | |
CN107032738A (zh) | 一种环保节能的建筑材料及其制备方法 | |
CN107244842A (zh) | 一种抗裂防火节能保温板 | |
JP5041521B2 (ja) | 高強度修復材 | |
ES2880392T3 (es) | Procedimiento para la fabricación de una pieza moldeada a partir de una mezcla seca con partículas de grafito y pieza moldeada así fabricada | |
KR101175664B1 (ko) | 내화단열용 수성 분말페인트 | |
CN103803909B (zh) | 一种泡沫玻璃颗粒混凝土 | |
Zheng et al. | The effect of elevated temperature on bond performance of alkali-activated GGBFS paste | |
CN103058612B (zh) | 一种微晶无机保温砂浆粉料及其制备方法 | |
KR101360261B1 (ko) | 경량기포시멘트 조성물을 이용한 경량기포시멘트 발포체 제조방법 | |
CN101774224A (zh) | 节能环保混凝土的生产方法 | |
CN108425439B (zh) | 一种高延性保温隔热砌体墙的施工方法 | |
CN115095095A (zh) | 一种无机材包裹聚苯颗粒气凝胶复合保温隔声系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15869393 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15869393 Country of ref document: EP Kind code of ref document: A1 |