WO2016097397A1 - Chaîne d'amplification du type dispositif de plot de gain améliorée - Google Patents

Chaîne d'amplification du type dispositif de plot de gain améliorée Download PDF

Info

Publication number
WO2016097397A1
WO2016097397A1 PCT/EP2015/080695 EP2015080695W WO2016097397A1 WO 2016097397 A1 WO2016097397 A1 WO 2016097397A1 EP 2015080695 W EP2015080695 W EP 2015080695W WO 2016097397 A1 WO2016097397 A1 WO 2016097397A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
gain
input
active
output
Prior art date
Application number
PCT/EP2015/080695
Other languages
English (en)
Inventor
Victor DUPUY
Benoit Mallet-Guy
Laurent Roussel
Claude Auric
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to EP15820507.0A priority Critical patent/EP3235125A1/fr
Publication of WO2016097397A1 publication Critical patent/WO2016097397A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/605Distributed amplifiers
    • H03F3/607Distributed amplifiers using FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0088Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/18Indexing scheme relating to amplifiers the bias of the gate of a FET being controlled by a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/36Indexing scheme relating to amplifiers the amplifier comprising means for increasing the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/372Noise reduction and elimination in amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/39Different band amplifiers are coupled in parallel to broadband the whole amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/42Indexing scheme relating to amplifiers the input to the amplifier being made by capacitive coupling means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/75Indexing scheme relating to amplifiers the amplifier stage being a common source configuration MOSFET
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7206Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by a switch in the bias circuit of the amplifier controlling a bias voltage in the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7236Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by putting into parallel or not, by choosing between amplifiers by (a ) switch(es)

Definitions

  • the subject of the invention is amplification chains operating over a wide bandwidth, in particular embedded systems.
  • a basic function of a processing chain, in particular microwave, is the amplification of the input signal so as to obtain an amplified signal at the output. It is often necessary to be able to control the gain of such an amplification chain.
  • gain control makes it possible to increase the dynamics of the amplification chain, in particular for the processing chain of an antenna operating in reception, and to adapt the characteristics of the amplification chain to the level of the amplifier. signal to be processed, this adaptation being preferably performed in real time.
  • Controlling the gain of an amplification chain is therefore a key feature.
  • variable gain amplification chains Two types are known.
  • the first type consists of the amplification chains whose gain varies continuously.
  • the second type consists of the amplification chains whose gain varies in a discrete manner between at least two gain values.
  • the gain control is obtained by combining a fixed gain amplifier with a variable attenuator.
  • the gain control is obtained by controlling the polarization point of the active components of the amplifier elements of the amplification chain.
  • the variable attenuator is placed upstream of the amplifier, a major disadvantage lies in the increase of the noise factor of the amplification chain. Indeed, for low intensity input signals, the attenuator is set to the minimum attenuation and this minimum attenuation is directly added to the noise factor of the amplifier.
  • the major disadvantage lies in the reduction of the maximum power of the output signals.
  • the gain of the amplifier is reduced by the value of the current attenuation at which the attenuator is set, that is to say at least the minimum attenuation.
  • the amplifier remains exposed directly to the strongest signals for which the attenuator will be blocked at its maximum attenuation. This has a detrimental effect on the linearity characteristics of the amplification chain for such strong signals.
  • the maximum gain of the amplification chain is equal to the gain of the amplifier, minus the attenuation of the variable attenuator, which is at least greater than the minimum attenuation of the latter. .
  • the second embodiment is even more difficult to implement because it combines the disadvantages of the first embodiment: the noise factor and the power (or the linearity characteristics) depend on the polarization points of the active components of the element. amplifier. Controlling these bias points to vary the gain is in general opposed to the desired objectives for a system to operate over a wide bandwidth.
  • a gain pad device In the second type of amplification chain, for which the gain varies in a discrete manner, there is an embodiment known as a gain pad device.
  • Such an amplifier element is constituted, as shown in FIG.
  • the first component is a gain amplifier G.
  • the second component is an attenuation attenuator A.
  • the total gain Gt of this device can take two values depending on the state of the input and output switches.
  • the total gain Gt is equal to:
  • P is the loss introduced by the input switch or the output switch.
  • the total gain Gt of the gain pad device is equal to:
  • the gain pad device is then characterized by the difference between these two possible gain values, namely: G + A.
  • switches at the input and at the output results in a direct degradation of the noise factor of the amplification chain.
  • the switches being passive structures, the losses of the input switch directly add to the noise factors of the rest of the amplification chain (output switches and amplifier or attenuator).
  • the invention therefore aims to overcome this problem.
  • document FR 2 953 666 A1 discloses a gain pad device having a non-symmetrical double distributed structure.
  • This device represented in FIG. 10, comprises an input line LO common to two distributed structures, respectively a first line L1 and a second line L2.
  • the first and second lines L1 and L2 are connected to the input line LO by a plurality of active cells.
  • each active connection cell of the first line L1 comprises only a transistor 1 16
  • each active connecting cell of the second line L2 comprises a transistor 1 17 and a capacitor 1 18, the latter being connected in series between the input line LO and transistor 1 17.
  • the device of FIG. 10 comprises a two-way to one-channel output switch, making it possible to choose the output of the first line L1 or the output of the second line L2, as a function of the level of the signal applied to the input In and the gain that we want to apply to him.
  • the invention therefore aims to find an alternative to the previous gain pad device.
  • the invention thus relates to an amplification chain according to the claims.
  • FIG. 1 is a schematic representation of an amplification system of the type of gain pad device according to the state of the art, comprising switches;
  • FIG. 2 is a diagram of the amplification chain of the gain pad device type according to the invention
  • FIG. 3 is an equivalent diagram of a transistor constituting a cell of the amplification chain of FIG. 2, according to a first embodiment
  • FIG. 4 represents a diagram of the assembly of two transistors of a cell of the amplification chain of FIG. 2, according to a second embodiment
  • FIG. 5 is an equivalent diagram of a capacitive voltage divider bridge implemented in the chain of Figure 2 with a cell according to that of Figure 3;
  • FIGS. 6 and 7 represent the state of maximum gain and the state of minimum gain of the amplification chain of FIG.
  • FIGS. 8 and 9 are graphs representative of the evolution of the gain and of the output power as a function of the frequency of the amplification chain of FIG. 2 in the state of maximum gain of FIG. 7 or in FIG. the minimum gain state of Figure 8.
  • FIG. 2 a gain-type amplifier-type gain chain 1 according to a preferred embodiment of the invention will be presented.
  • the string 1 is a quadripole having first and second input ports 2 and 4 and first and second output ports 3 and 5.
  • Channel 1 has the general structure of a distributed amplifier.
  • the chain 1 consists of two transmission lines: respectively an input line 7, between the ports 1 and 3, and an output line 8, between the ports 4 and 5.
  • Lines 7 and 8 behave like transmission lines. They have a substantially constant behavior since the low frequencies (the continuous in theory, the practical limitations coming from the circuits of polarization), up to frequencies of cuts related to the sizes of the transistors, thus to the fundamental characteristics of the circuit (gain, power output, ...), which gives this type of circuit broadband behavior.
  • the lines are constituted for a plurality of inductors 6 in series.
  • the inductances are either virtual, that is to say formed by the circuit inductances of the circuit which connect the components to each other, or real, that is to say constituted by inductors.
  • the input and output lines 7 and 8 are actively coupled together by a plurality of active elements 10-i, where i is an integer varying between 1 and n.
  • the total number n of active elements is not decisive and can be any integer greater than or equal to unity. In practice, this number is often between two and six.
  • three active elements connect the input and output lines together.
  • the device 1 is used by applying an input signal to the first port 2 (In in the figure) and collecting an output signal on the port 5 (Out in the figure), the ports 3 and 4 being connected to ancillary charges, preferably terminal resistors, denoted Zg and Zd in FIG. 2.
  • Each terminal resistor is, in principle, equal to the characteristic impedance of the line to which it is connected.
  • the connections of the ancillary charges are generally done on the chip and the accesses 3 and 4 are not available.
  • Each active element 10-1 has two meshes.
  • a first mesh connected between a node 12, on the first line 7, and a node 14, on the second line 8.
  • a second mesh connected between a node 13 on the first line and a node 15 on the second line.
  • the input line 7 comprises at least one inductor 6.
  • the output line 8 comprises at least one inductor 6, virtual or real.
  • the first cell has a first active cell 16.
  • an active cell comprises a single transistor, preferably having a field effect, whose gate electrode G is connected to the first line 7, the drain of which electrode D is connected to the second line. 8, and whose source electrode S is connected to a common point of the circuit, as shown in FIG. 3.
  • the transistor is biased by the application of a control voltage adapted to its gate electrode G.
  • the control voltage is -3 V to block the transistor and slightly greater than 0 V to bias the transistor.
  • bipolar transistors instead of using field effect transistors (for example MOSFETs), it is also possible to use bipolar transistors. For example a transistor mounted so that its base electrode is connected to the input line 7 and its collector electrode is connected to the output line 8, the emitter electrode of the transistor being connected to a common point of the circuit. The transistor is biased by the application of a control voltage adapted to its base electrode.
  • field effect transistors for example MOSFETs
  • an active cell comprises several transistors.
  • two solid-state transistors field are used. They are for example assembled according to a "cascode" assembly to form an active cell.
  • the second mesh comprises a second active cell 17 in series with a condenser Ci.
  • the second active cell 17 is similar to the first active cell 16. Preferably, and as is considered hereinafter in the present application, it is identical to the first active cell 16.
  • Capacitors Ci may have different capacitances from one active element 10-i to the other. However, preferably, and as is considered in the remainder of this application, the capacitances of the capacitors Ci are identical to each other.
  • FIG. 3 which represents an equivalent diagram of a field effect transistor
  • the source electrode and the gate electrode are connected by a capacitor Cgs.
  • the capacitor Ci is connected between the input line 7 and the second cell 17, so as to be placed in series of the capacitor Cgs.
  • the capacity Ci has no impact or at least a negligible influence on the behavior of the first mesh.
  • the presence of the capacitor Ci makes it possible to modify the gain of the second active cell 17.
  • a capacity capacitor Ci in series with the gate G, a voltage divider is produced between the capacitors Ci and Cgs. as shown in FIG. 5.
  • the gate voltage Vg at the input of the transistor is reduced in the proportion Ci / (Ci + Cgs).
  • the gain corresponds to the ratio of the output quantity to the input quantity, here an intensity on a voltage.
  • the device 1 is switched between two states each having a specific characteristic gain, thereby achieving the gain pad function.
  • the first active cells 16 of each coupling element 10-i are lit (that is to say that the transistors are polarized by the application of the same first positive control voltage on their gates), while the second cells 17 are off (that is to say that the transistors are blocked by the application of a second control voltage negative on their grids).
  • the first active cells 16 of each coupling element are extinguished (that is to say that the transistors are blocked by the applying a first negative control voltage to their gates), while the second cells 17 are lit (i.e., the transistors are biased by applying a first positive control voltage to their gates).
  • the first graph C1 represents the total gain for the state of maximum gain and the second graph C2 represents the total gain for the state of minimum gain.
  • the value of the gain pad that is the difference between Gmax and Gmin, has been adjusted to 6 dB. It is found that the value of the gain is substantially constant from 2 to 18 GHz, which validates the use of this structure as a broadband amplifier element.
  • the second graph D1 represents the output power at 1 dB of compression of the device in the state of maximum gain and the second graph D2 represents this same power for the state of minimum gain. It is interesting to note that this structure makes it possible to obtain an output power Pout that is almost identical for the two states of the chain 1.
  • the noise factor is not degraded by losses that would be generated by an input switch as is the case for a conventional device
  • the output power is not diminished by losses that would be caused by an output switch
  • the implementation is particularly simple, since only two gate control voltages are necessary (apart from that of drain polarization).
  • the gain pad device according to the invention differs from the gain pad device presented in the document FR 2 953 666 A1. Indeed, it brings together in the same input / output line, the first and second lines L1 and L2 of the device of this state of the art.
  • an output line is calculated specifically according to the impedance of the active cells of connection to the input line, that is to say is the impedance of the transistor for the first line L1, the impedance of the transistor in series with a capacitor for the second line L2 of the device of the document FR 2 953 666 A1.
  • the transistors remain suitable regardless of the activation state of the active cells. According to the theory of distributed amplifiers, they should not be. It appears that the distributed structure according to the present invention has some "flexibility", allowing it to continue to operate despite this gap in theory. Furthermore, the gain pad according to the invention has the advantage over that of the document FR 2 953 666 A1, to overcome the output switch and therefore losses it causes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Abstract

Cette chaîne (1) comporte : une ligne de transmission d'entrée (7); une ligne de transmission de sortie (8); un élément de couplage (10-i) entre les lignes d'entrée et de sortie comportant des première et seconde mailles en parallèle l'une de l'autre, la première maille comportant une première cellule active (16) comportant un transistor pouvant basculer d'un état bloqué à un état polarisé, la seconde maille comportant un condensateur (Ci) et une seconde cellule active (17) comportant un transistor, pouvant basculer d'un état bloqué à un état polarisé, une capacité du condensateur étant choisie pour qu'un gain de la première maille est différent du gain de la seconde maille, la chaîne d'amplification pouvant ainsi être basculée entre des premier et second états présentant chacun un gain caractéristique spécifique, de manière à réaliser la fonction plot de gain.

Description

Chaîne d'amplification du type dispositif de plot de gain améliorée
L'invention a pour domaine celui des chaînes d'amplification fonctionnant sur une large bande passante, notamment des systèmes embarqués.
Une fonction de base d'une chaîne de traitement, notamment hyperfréquence, est l'amplification du signal appliqué en entrée de manière à obtenir un signal amplifié en sortie. Il est souvent nécessaire de pouvoir contrôler le gain d'une telle chaîne d'amplification.
En effet, le contrôle du gain permet d'augmenter la dynamique de la chaîne d'amplification, en particulier pour la chaîne de traitement d'une antenne fonctionnant en réception, et d'adapter les caractéristiques de la chaîne d'amplification au niveau du signal à traiter, cette adaptation étant de préférence réalisée en temps réel.
Le contrôle du gain d'une chaîne d'amplification est par conséquent une fonctionnalité clé.
Le fait de devoir fonctionner sur une large bande passante impose à la chaîne d'amplification de posséder les caractéristiques suivantes :
- fonctionner sur une large bande de fréquence ;
- commuter d'une valeur de gain à l'autre en un temps limité, pouvant être extrêmement court, par exemple inférieur à 50 nanosecondes ;
- posséder un facteur de bruit qui n'augmente pas plus rapidement que la valeur absolue de la variation de gain, lorsque le gain est diminué ;
- présenter une puissance en sortie et des caractéristiques de linéarité du signal de sortie en fonction du signal d'entrée qui sont peu sensibles à des variations du gain de la chaîne d'amplification.
On connaît deux types de chaînes d'amplification à gain variable. Le premier type est constitué par les chaînes d'amplification dont le gain varie de manière continue. Le second type est constitué par les chaînes d'amplification dont le gain varie de manière discrète entre au moins deux valeurs de gain.
Pour le premier type de chaîne d'amplification, il existe deux modes de réalisation. Dans le premier mode de réalisation connu, le contrôle du gain est obtenu en combinant un amplificateur à gain fixe avec un atténuateur variable.
Dans le second mode de réalisation connu, le contrôle du gain est obtenu en pilotant le point de polarisation des composants actifs des éléments amplificateurs de la chaîne d'amplification. Dans le premier mode de réalisation, si l'atténuateur variable est placé en amont de l'amplificateur, un inconvénient majeur réside dans l'augmentation du facteur de bruit de la chaîne d'amplification. En effet, pour des signaux d'entrée de faible intensité, l'atténuateur est réglé à l'atténuation minimum et cette atténuation minimum vient directement s'ajouter au facteur de bruit de l'amplificateur.
Dans le premier mode de réalisation, si l'atténuateur variable est placé en aval de l'amplificateur, l'inconvénient majeur réside dans la diminution de la puissance maximum des signaux de sortie. En effet, le gain de l'amplificateur est diminué de la valeur de l'atténuation courante à laquelle est réglé l'atténuateur, c'est-à-dire au moins l'atténuation minimum. De plus, dans cette variante de réalisation, l'amplificateur reste exposé directement aux signaux les plus forts pour lesquels l'atténuateur sera bloqué à son atténuation maximum. Ceci a un effet dommageable sur les caractéristiques de linéarité de la chaîne d'amplification pour de tels signaux forts.
Dans ce premier mode de réalisation, le gain maximum de la chaîne d'amplification, est égal au gain de l'amplificateur, diminué de l'atténuation de l'atténuateur variable, qui est au moins supérieure à l'atténuation minimum de ce dernier. Plus l'atténuation minimum est forte plus il faudra augmenter le gain pour que la chaîne d'amplification présente le gain total souhaité. Ceci a un impact négatif sur la consommation de la chaîne d'amplification.
Le second mode de réalisation est encore plus difficile à mettre en œuvre car il cumule les inconvénients du premier mode de réalisation : le facteur de bruit et la puissance (ou les caractéristiques de linéarité) dépendent des points de polarisation des composants actifs de l'élément amplificateur. Le pilotage de ces points de polarisation pour faire varier le gain s'oppose en général aux objectifs recherchés pour un système devant fonctionner sur une large bande passante.
Dans le second type de chaîne d'amplification, pour lequel le gain varie de manière discrète, il existe un mode de réalisation connu sous la dénomination de dispositif de plot de gain.
Un tel élément amplificateur est constitué, comme cela est représenté sur la figure
1 , de deux composants de base placés en parallèle entre deux commutateurs. Le premier composant est un amplificateur de gain G. le second composant est un atténuateur d'atténuation A.
Le gain total Gt de ce dispositif peut prendre deux valeurs en fonction de l'état des commutateurs d'entrée et de sortie. Lorsque le chemin de commutation passe par la branche supérieure du dispositif de la figure 1 , c'est-à-dire à travers l'atténuateur, le gain total Gt est égal à :
Gt = - 2xP - A,
où P est la perte introduite par le commutateur d'entrée ou le commutateur de sortie.
Lorsque le chemin de puissance passe par la branche inférieure du dispositif de la figure 1 , c'est-à-dire à travers l'amplificateur, le gain total Gt du dispositif de plot de gain est égal à :
Gt = - 2xP + G.
Le dispositif de plot de gain est alors caractérisé par la différence entre ces deux valeurs de gain possibles, soit : G + A.
Dans une variante où l'atténuateur est remplacé par une simple connexion, qui, en première approximation, est à perte nulle, le principe présenté ci-dessus est le même avec : A = 0.
Dans une variante où l'amplificateur est remplacé par une simple connexion, qui, en première approximation, est à perte nulle, le principe est le même que celui indiqué ci- dessus avec G = 0. Cette dernière variante de réalisation est généralement dénommée dispositif de plot d'atténuation.
Ainsi, l'utilisation de commutateurs en entrée et en sortie a pour conséquence une dégradation directe du facteur de bruit de la chaîne d'amplification. En effet, les commutateurs étant des structures passives, les pertes du commutateur d'entrée viennent directement s'ajouter aux facteurs de bruit du reste de la chaîne d'amplification (commutateurs de sortie et amplificateur ou atténuateur).
De la même manière, la puissance de sortie du dispositif de plot de gain est directement dégradée par les pertes du commutateur de sortie.
De plus, l'utilisation de deux commutateurs entraîne systématiquement l'augmentation des pertes de la chaîne d'amplification, quel que soit le chemin suivi par la puissance.
Dans le cas d'une chaîne de réception utilisant plusieurs dispositifs de plots de gain en série pour gérer la dynamique de la chaîne d'amplification, il est nécessaire d'ajouter un ou plusieurs amplificateurs additionnels permettant de compenser l'ensemble des pertes introduites par les différents commutateurs.
L'invention a donc pour but de pallier ce problème.
On connaît par ailleurs, par le document FR 2 953 666 A1 , un dispositif de de plot de gain ayant une structure distribuée double non symétrique. Ce dispositif, représenté sur la figure 10, comporte une ligne d'entrée LO commune à deux structures distribuées, respectivement une première ligne L1 et une seconde ligne L2. Les première et seconde lignes L1 et L2 sont reliées à la ligne d'entrée LO par une pluralité de cellules actives. Cependant, alors que chaque cellule active de connexion de la première ligne L1 comporte uniquement un transistor 1 16, chaque cellule active de connexion de la seconde ligne L2 comporte un transistor 1 17 et un condensateur 1 18, ce dernier étant monté en série entre la ligne d'entrée LO et le transistor 1 17.
En ajoutant un condensateur 1 18, on réalise un diviseur de tension capacitif, qui va avoir pour conséquence de diminuer la tension de commande à l'entrée du transistor 1 17 correspondant. Cette diminution de la tension de commande se reporte proportionnellement au courant de commande par l'intermédiaire de la transconductance du transistor 1 17. En conséquence, le gain global de la structure distribuée, c'est-à-dire de la seconde ligne L2, diminue, par rapport au gain global de la première ligne L1 .
Le dispositif de la figure 10 comporte un commutateur de sortie de type deux voies vers une voie, permettant de choisir la sortie de la première ligne L1 ou la sortie de la seconde ligne L2, en fonction du niveau du signal appliqué en entrée In et du gain que l'on souhaite lui appliquer.
Il est alors possible en commandant, d'une part, les tensions de polarisation des deux ensembles de transistors à partir d'un module de commande et, d'autre part, l'état du commutateur de sortie par un autre module de commande, d'aiguiller le signal appliquer en entrée In et délivré en sortie Out soit sur la voie haute, appliquant un gain maximal, soit sur la voie basse, appliquant un gain minimal.
L'invention a donc pour but de trouver une alternative au dispositif de plot de gain précédent.
L'invention a ainsi pour objet une chaîne d'amplification conforme aux revendications.
L'invention et ses avantages seront mieux compris à la lecture de la description détaillée qui va suivre d'un mode de réalisation particulier, donnée uniquement à titre d'exemple non limitatif, cette description étant faite en se référant aux dessins annexés sur lesquels :
- la figure 1 est une représentation schématique d'une chaîne d'amplification du type dispositif de plot de gain selon l'état de la technique, comportant des commutateurs ;
- la figure 2 est un schéma de la chaîne d'amplification du type dispositif de plot de gain selon l'invention; - la figure 3 est un schéma équivalent d'un transistor constituant une cellule de la chaîne d'amplification de la figure 2, selon un premier mode de réalisation ;
- la figure 4 représente un schéma du montage de deux transistors d'une cellule de la chaîne d'amplification de la figure 2, selon un second mode de réalisation ;
- la figure 5 est un schéma équivalent d'un pont diviseur de tension capacitif mis en œuvre dans la chaîne de la figure 2 avec une cellule conforme à celle de la figure 3 ;
- les figures 6 et 7 représentent l'état de gain maximum et l'état de gain minimum de la chaîne d'amplification de la figure 2 et,
- les figures 8 et 9 sont des graphes représentatifs de l'évolution du gain et de la puissance de sortie en fonction de la fréquence de la chaîne d'amplification de la figure 2 dans l'état de gain maximum de la figure 7 ou dans l'état de gain minimum de la figure 8.
En se référant à la figure 2, une chaîne d'amplification du type dispositif à plot de gain 1 selon un mode de réalisation préféré de l'invention va être présentée.
La chaîne 1 est un quadripôle comportant des premier et second accès d'entrée 2 et 4 et des premier et second accès de sortie 3 et 5.
La chaîne 1 possède la structure générale d'un amplificateur distribué.
La chaîne 1 est constituée de deux lignes de transmission : respectivement une ligne d'entrée 7, entre les accès 1 et 3, et une ligne de sortie 8, entre les accès 4 et 5.
Les lignes 7 et 8 se comportent comme des lignes de transmission. Elles ont un comportement sensiblement constant depuis les fréquences basses (le continu en théorie, les limitations pratiques venant des circuits de polarisation), jusqu'à des fréquences de coupures liées à la tailles des transistors, donc aux caractéristiques fondamentales du circuit (gain, puissance de sortie, ...), ce qui confère à ce type de circuit un comportement large bande. Les lignes sont constituées pour une pluralité d'inductances 6 en série.
Les inductances sont soit virtuelles, c'est-à-dire constituées par les inductances de pistes du circuit qui connectent les composants entre eux, soit réelles, c'est-à-dire constituées par des selfs.
Les lignes d'entrée et de sortie 7 et 8 sont activement couplées entre elles par une pluralité d'éléments actifs 10-i, où i est un entier variant entre 1 et n. Le nombre total n d'éléments actifs n'est pas déterminant et peut être n'importe quel entier supérieur ou égal à l'unité. Dans la pratique, ce nombre est souvent compris entre deux et six. Sur la figure 2, trois éléments actifs relient les lignes d'entrée et de sortie entre elles. Le dispositif 1 est utilisé en appliquant un signal d'entrée sur le premier accès 2 (In sur la figure) et en collectant un signal de sortie sur l'accès 5 (Out sur la figure), les accès 3 et 4 étant connectés à des charges annexes, de préférence des résistances terminales, notées Zg et Zd sur la figure 2. Chaque résistance terminale est égale, en principe, à l'impédance caractéristique de la ligne à laquelle elle est connectée. Dans le cas d'une intégration dans un Circuit Intégré Monolithique Hyperfréquence ou MMIC, selon l'acronyme anglais « Monolithic Microwave Integrated Circuit », les connexions des charges annexes se font généralement sur la puce et les accès 3 et 4 ne sont pas disponibles.
Chaque élément actif 10-1 comporte deux mailles. Une première maille connectée entre un nœud 12, sur la première ligne 7, et un nœud 14, sur la seconde ligne 8. Une seconde maille connectée entre un nœud 13 sur la première ligne et un nœud 15 sur la seconde ligne.
Il est à noter que, entre deux nœuds 12 et 13 d'un même élément actif ou de deux éléments actifs voisins, la ligne d'entrée 7 comporte au moins une inductance 6. De même, entre deux nœuds 14 et 15 d'un même élément actif ou de deux éléments actifs voisins, la ligne de sortie 8 comporte au moins une inductance 6, virtuelle ou réelle.
La première maille comporte une première cellule active 16.
Dans un premier mode de réalisation, une cellule active comporte un unique transistor, de préférence à effet de champ, dont l'électrode de grille G est connectée à la première ligne 7, dont l'électrode le drain D est connectée à la seconde ligne 8, et dont l'électrode de source S est connectée à un point commun du circuit, comme cela est représenté sur la figure 3. Le transistor est polarisé par l'application d'une tension de commande adapté sur son électrode de grille G. Par exemple la tension de commande est de -3 V pour bloquer le transistor et légèrement supérieur à 0 V pour polariser le transistor.
Au lieu d'utiliser des transistors à effet de champ (par exemple MOSFET), Il est également possible d'utiliser des transistors bipolaires. Par exemple un transistor monté de manière à ce que son électrode de base soit connectée à la ligne d'entrée 7 et que son électrode de collecteur soit connectée à la ligne de sortie 8, l'électrode d'émetteur du transistor étant connecté à un point commun du circuit. Le transistor est polarisé par l'application d'une tension de commande adaptée sur son électrode de base.
Dans un seconde mode de réalisation, une cellule active comporte plusieurs transistors. Par exemple, comme représenté sur la figure 4, deux transistors à effet de champ sont utilisés. Ils sont par exemple assemblés selon un montage « cascode » pour former une cellule active.
La seconde maille comporte une seconde cellule active 17 en série avec un condenseur Ci.
La seconde cellule active 17 est similaire à la première cellule active 16. De préférence, et comme cela est considéré dans la suite de la présente demande, elle est identique à la première cellule active 16.
Les condensateurs Ci peuvent avoir des capacités différentes d'un élément actif 10-i à l'autre. Cependant, de préférence, et comme cela est considéré dans la suite de la présente demande, les capacités des condensateurs Ci sont identiques entre elles.
Comme le montre la figure 3, qui représente un schéma équivalent d'un transistor à effet de champ, l'électrode de source et l'électrode de grille sont connectées par un condensateur Cgs.
Le condensateur Ci est connecté entre la ligne d'entrée 7 et la seconde cellule 17, de manière à être placé en série du condensateur Cgs.
De la sorte, seule la valeur de la capacité totale connectée à la ligne d'entrée est modifiée. La ligne d'entrée continue donc à se comporter comme une ligne de transmission.
De plus, il n'y a pas de différence de nature entre les première et seconde mailles. II est à noter que la capacité Ci n'a aucune incidence ou tout au moins une influence négligeable sur le comportement de la première maille.
Enfin, la présence du condensateur Ci permet de modifier le gain de la seconde cellule active 17. En effet, en ajoutant un condensateur de capacité Ci en série avec la grille G, on réalise un diviseur de tension, entre les capacités Ci et Cgs, comme cela est représenté à la figure 5. En conséquence, la tension de grille Vg en entrée du transistor est réduite dans la proportion Ci/(Ci+Cgs). Cette diminution de la tension de grille Vg se retrouve sur l'intensité du courant commandé Id, généré par la transconductance, de gain Gm, puisque l'intensité du courant Id est proportionnelle à la tension de grille : Id = Gm x Vg. Le gain total G2 de la seconde maille est donc diminué selon : G2 = Gm x Ci/(Ci+Cgs).
Il est à noter que, dans le cas où les cellules actives sont identiques entre elles, le gain total G1 de la première cellule est : G1 = Gm.
Il est à noter que le gain correspond au rapport de la grandeur de sortie sur la grandeur d'entrée, soit ici une intensité sur une tension. En fonctionnement, le dispositif 1 est basculé entre deux états présentant chacun un gain caractéristique spécifique, réalisant ainsi la fonction plot de gain.
Dans le premier état, représenté à la figure 7, correspondant à un état de gain maximal du dispositif 1 , les premières cellules actives 16 de chaque élément de couplage 10-i sont allumées (c'est-à-dire que les transistors sont polarisés par l'application d'une même première tension de commande positive sur leurs grilles), alors que les secondes cellules 17 sont éteintes (c'est-à-dire que les transistors sont bloqués par l'application d'une seconde tension de commande négative sur leurs grilles). Le gain total obtenu dans cet état est : Gmax = G1 .
Dans le deuxième état, représenté à la figure 8, correspondant à un état de gain minimal du dispositif 1 , les premières cellules actives 16 de chaque élément de couplage sont éteintes (c'est-à-dire que les transistors sont bloqués par l'application d'une première tension de commande négative sur leurs grilles), alors que les secondes cellules 17 sont allumées (c'est-à-dire que les transistors sont polarisés en appliquant une première tension de commande positive sur leurs grilles). Le gain obtenu dans cet état est : Gmin = G2.
La valeur du gain total Gmin dans l'état de gain minimal est ajustée grâce par le choix des valeurs des condensateurs Ci. Pour valider l'intérêt de cette chaîne d'amplification du type dispositif de plot de gain, un modèle en technologie MMIC a été développé. Les résultats de simulation sont présentés sur les graphes des figures 8 et 9.
Sur la figure 8, le premier graphe C1 représente le gain total pour l'état de gain maximal et le second graphe C2 représente le gain total pour l'état de gain minimal. Dans cet exemple, la valeur du plot de gain, c'est-à-dire la différence entre Gmax et Gmin, a été ajustée à 6 dB. On constate que la valeur du gain est sensiblement constante de 2 à 18 GHz, ce qui valide l'utilisation de cette structure en tant qu'élément amplificateur large bande.
Sur la figure 9, le deuxième graphe D1 représente la puissance de sortie à 1 dB de compression du dispositif dans l'état gain maximal et le second graphe D2 représente cette même puissance pour l'état de gain minimal. Il est intéressant de noter que cette structure permet d'obtenir une puissance de sortie Pout quasiment identique pour les deux états de la chaîne 1 .
L'avantage de la chaîne d'amplification venant d'être présentée réside dans le fait qu'elle ne comporte aucun commutateur, ni en entrée ni en sortie. Ceci induit les avantages suivants :
- le facteur de bruit n'est pas dégradé par des pertes qui seraient générées par un commutateur d'entrée comme c'est le cas pour un dispositif classique,
- la puissance de sortie n'est pas diminuée par des pertes qui seraient causées par un commutateur de sortie,
- la surface du circuit correspondant est quasiment équivalente à celle d'un dispositif classique,
- la mise en œuvre est particulièrement simple, puisque seulement deux tensions de commande de grille sont nécessaires (hormis celle de polarisation de drain).
Le mode de réalisation de ce nouveau type d'amplificateur distribué est parfaitement compatible avec une technologie de type MMIC.
Le dispositif de plot de gain selon l'invention diffère du dispositif de plot de gain présenté dans le document FR 2 953 666 A1 . En effet, il rassemble dans une même ligne d'entrée - sortie, les première et seconde lignes L1 et L2 du dispositif de cet état de la technique.
Cette idée de rassembler dans une même ligne d'entrée - sortie, les première et seconde lignes L1 et L2 du dispositif connu ne va pas de soi pour un homme du métier.
En effet, l'homme du métier pense que venir multiplexer sur une même ligne d'entrée - sortie des transistors d'impédance différentes (avec et sans condensateur) conduit à un montage qui n'est pas fonctionnel, puisque un tel multiplexage s'oppose à la théorie des amplificateurs distribués. Selon cette théorie, pour être adaptée, une ligne de sortie est calculée spécifiquement en fonction de l'impédance des cellules actives de connexion à la ligne d'entrée, c'est-à-dire soit l'impédance du transistor pour la première ligne L1 , soit l'impédance du transistor en série avec un condensateur pour la seconde ligne L2 du dispositif du document FR 2 953 666 A1 .
Un tel calcul n'est donc plus possible avec des cellules actives dont l'impédance est modifiée en fonction de leurs états d'activation.
Dans le dispositif selon l'invention, il s'avère donc être surprenant que les transistors restent adaptés quel que soit l'état d'activation des cellules actives. Selon la théorie des amplificateurs distribués, ils ne devraient pas l'être. Il semble que la structure distribuée selon la présente invention présente une certaine « souplesse », lui permettant de continuer à fonctionner en dépit de cet écart à la théorie. Par ailleurs, le plot de gain selon l'invention présente l'avantage par rapport à celui du document FR 2 953 666 A1 , de s'affranchir du commutateur de sortie et par conséquent des pertes qu'il occasionne.

Claims

REVENDICATIONS
1 . - Chaîne d'amplification du type dispositif de plot de gain (1 ), caractérisée en ce qu'elle comporte, entre des premier et second accès d'entrée (2, 4) et des premier et second accès de sortie (3, 5) :
- Une ligne de transmission d'entrée (7) entre les premiers accès d'entrée et de sortie ;
- Une ligne de transmission de sortie (8) entre les second accès d'entrée et de sortie ;
- au moins un élément de couplage (10-i) entre les lignes d'entrée et de sortie comportant des première et seconde mailles en parallèle l'une de l'autre et respectivement connectées entre la ligne d'entrée et la ligne de sortie,
la première maille comportant une première cellule active (16) comportant au moins un transistor pouvant être basculé d'un état bloqué à un état polarisé par l'application d'un premier signal de commande,
la seconde maille comportant, en série, un condensateur (Ci) et une seconde cellule active (17) comportant au moins un transistor, pouvant être basculé d'un état bloqué à un état polarisé par l'application d'un second signal de commande, le condensateur étant connecté d'une part à la ligne de transmission d'entrée et d'autre part à la seconde cellule,
une capacité dudit condensateur étant choisie pour qu'un gain total de la première maille (G1 ) lorsque le transistor de la première cellule est dans l'état polarisé est différent du gain total de la seconde maille (G2) lorsque le transistor de la seconde cellule est dans l'état polarisé,
la chaîne d'amplification pouvant ainsi être basculée entre un premier état, dans lequel le transistor des premières mailles est polarisé et le transistor des secondes mailles est bloqué, et un second état, dans lequel le transistor des premières mailles est bloqué et le transistor des secondes mailles est polarisé, les premier et second états présentant chacun un gain caractéristique spécifique, de manière à réaliser la fonction plot de gain.
2. - Chaîne d'amplification selon la revendication 1 , dans laquelle ledit au moins un transistor d'une cellule active parmi les première et seconde cellules (16, 17) est un transistor à effet de champ.
3. - Chaîne d'amplification selon la revendication 2, dans la quelle une cellule active parmi les première et seconde cellules actives (16, 17) comporte un unique transistor à effet de champ dont l'électrode de grille (G) est connectée à la ligne de transmission d'entrée (7), dont l'électrode de drain (D) est connectée à la ligne de transmission de sortie (8), et dont l'électrode de source (S) est connectée à un point commun.
4. - Chaîne d'amplification selon la revendication 2 ou la revendication 3, dans laquelle une cellule active parmi les première et seconde cellules actives (16, 17) comporte deux transistors à effet de champ, assemblés selon un montage cascode.
5. - Chaîne d'amplification selon la revendication 1 , dans laquelle ledit au moins un transistor d'une cellule active parmi les première et seconde cellules (16, 17) est un transistor bipolaire.
6.- Chaîne d'amplification selon la revendication 5, dans laquelle une cellule active parmi les première et seconde cellules actives (16, 17) comporte un unique transistor bipolaire dont l'électrode de base est connectée à la ligne de transmission d'entrée (7), dont l'électrode de collecteur est connectée à la ligne de transmission de sortie (8), et dont l'électrode d'émetteur est connectée à un point commun.
7.- Chaîne d'amplification selon la revendication 5 ou la revendication 6, dans lequel une cellule active parmi les première et seconde cellules actives (16, 17) comporte deux transistors bipolaires, assemblés selon un montage cascode.
8.- Chaîne d'amplification selon l'une quelconque des revendications 1 à 7, dans laquelle la ligne de transmission d'entrée (7) et/ou la ligne de transmission de sortie (8) comporte, entre deux nœuds de connexion des deux mailles d'un même élément actif (10-i) ou de deux éléments actifs consécutifs, au moins une inductance réelle (6).
9.- Chaîne d'amplification selon l'une quelconque des revendications 1 à 8, dans laquelle le premier accès de sortie (3) et/ou le second accès d'entrée (4) est connectée à une charge (Zg, Zd).
10.- Chaîne d'amplification selon l'une quelconque des revendications 1 à 9, propre à fonctionner sur une large bande de fréquence, notamment entre 1 et 25 GHz.
PCT/EP2015/080695 2014-12-18 2015-12-18 Chaîne d'amplification du type dispositif de plot de gain améliorée WO2016097397A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15820507.0A EP3235125A1 (fr) 2014-12-18 2015-12-18 Chaîne d'amplification du type dispositif de plot de gain améliorée

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1402916 2014-12-18
FR1402916A FR3030940B1 (fr) 2014-12-18 2014-12-18 Chaine d'amplification du type dispositif de plot de gain amelioree

Publications (1)

Publication Number Publication Date
WO2016097397A1 true WO2016097397A1 (fr) 2016-06-23

Family

ID=53177519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/080695 WO2016097397A1 (fr) 2014-12-18 2015-12-18 Chaîne d'amplification du type dispositif de plot de gain améliorée

Country Status (3)

Country Link
EP (1) EP3235125A1 (fr)
FR (1) FR3030940B1 (fr)
WO (1) WO2016097397A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110693482A (zh) * 2019-08-23 2020-01-17 西安电子科技大学 一种应用于心电信号采集的模拟前端电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010002803A1 (en) * 1999-12-02 2001-06-07 Fujitsu Limited Distributed amplifier with improved flatness of frequency characteristic
FR2953665A1 (fr) * 2009-12-08 2011-06-10 Thales Sa Amplificateur distribue hyperfrequences large bande et grande dynamique et structures hyperfrequences utilisant un tel amplificateur
US8035449B1 (en) * 2009-01-02 2011-10-11 Rf Micro Devices, Inc. Capacitively-coupled distributed amplifier with baseband performance
EP2457326A1 (fr) * 2009-07-24 2012-05-30 Thales Structure hyperfréquences de commutation à amplificateur distribué avec entrée d'injection de signal de test

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839216B2 (en) * 2008-05-27 2010-11-23 Rayspan Corporation RF power amplifiers with linearization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010002803A1 (en) * 1999-12-02 2001-06-07 Fujitsu Limited Distributed amplifier with improved flatness of frequency characteristic
US8035449B1 (en) * 2009-01-02 2011-10-11 Rf Micro Devices, Inc. Capacitively-coupled distributed amplifier with baseband performance
EP2457326A1 (fr) * 2009-07-24 2012-05-30 Thales Structure hyperfréquences de commutation à amplificateur distribué avec entrée d'injection de signal de test
FR2953665A1 (fr) * 2009-12-08 2011-06-10 Thales Sa Amplificateur distribue hyperfrequences large bande et grande dynamique et structures hyperfrequences utilisant un tel amplificateur

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AYASLI Y ET AL: "CAPACITIVELY COUPLED-TRAVELING-WAVE POWER AMPLIFIER", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 32, no. 12, 1 January 1984 (1984-01-01), pages 1704 - 1709, XP000916481, ISSN: 0018-9480, DOI: 10.1109/TMTT.1984.1132918 *
See also references of EP3235125A1 *
SHOHAT J ET AL: "INVESTIGATION OF DRAIN-LINE LOSS AND THE S22 KINK EFFECT IN CAPACITIVELY COUPLED DISTRIBUTED AMPLIFIERS INVESTIGATION OF DRAIN-LIKE LOSS AND THE S22 KINK EFFECT IN CAPACITIVELY COUPLED DISTRIBUTED AMPLIFIERS", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 53, no. 12, 1 December 2005 (2005-12-01), pages 3767 - 3773, XP001240889, ISSN: 0018-9480, DOI: 10.1109/TMTT.2005.859873 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110693482A (zh) * 2019-08-23 2020-01-17 西安电子科技大学 一种应用于心电信号采集的模拟前端电路
CN110693482B (zh) * 2019-08-23 2020-12-22 西安电子科技大学 一种应用于心电信号采集的模拟前端电路

Also Published As

Publication number Publication date
FR3030940B1 (fr) 2018-03-09
FR3030940A1 (fr) 2016-06-24
EP3235125A1 (fr) 2017-10-25

Similar Documents

Publication Publication Date Title
FR2538191A1 (fr) Amplificateur a paire de transistors a effet de champ de couplage a grilles
FR2959077A1 (fr) Amplificateur a faible facteur de bruit, a gain variable et de puissance
WO2015162063A1 (fr) Cellule de commutation de puissance a transistors a effet de champ de type normalement conducteur
EP1388935B1 (fr) Dispositif de charge active permettant de polariser un circuit amplificateur distribué très large bande avec contrôle de gain
FR2721156A1 (fr) Circuit de linéarisation à prédistorsion.
WO2016097397A1 (fr) Chaîne d'amplification du type dispositif de plot de gain améliorée
FR3030153A1 (fr) Amplificateur rf a plages multiples
EP3824549B1 (fr) Architecture emettrice radiofrequence rf
EP1870716B1 (fr) Dispositif de detection hyperfrequence large bande
EP2705605B1 (fr) Circuit d'amplification et chaîne de réception
EP1652293A1 (fr) Amplificateur a grande dynamique de puissance de sortie
FR2625052A1 (fr) Circuit hyperfrequences comprenant au moins un transistor a effet de champ charge
FR2818762A1 (fr) Regulateur de tension a gain statique en boucle ouverte reduit
EP0420106B1 (fr) Atténuateur à transistor à effet de champ bigrille
EP1017171B1 (fr) Dispositif de contrôle de phase constitué de multiples structures amplificatrices distribuées à éléments actifs commutables pour former une ligne à longueur programmable
FR2953665A1 (fr) Amplificateur distribue hyperfrequences large bande et grande dynamique et structures hyperfrequences utilisant un tel amplificateur
EP4020821B1 (fr) Système d'adaptation de la tension d'un drain d'un étage de puissance
FR2633119A1 (fr) Circuit actif hyperfrequences du type passe-tout
FR2473745A1 (fr) Comparateur verrouille par diodes rapides a haute resolution
EP0801467B1 (fr) Amplificateur distribué adaptateur basse impédance pour émetteur optoélectronique de signaux hyperfréquences à trés large bande
FR2640444A1 (fr)
FR2759508A1 (fr) Amplificateur distribue
EP2039000A1 (fr) Dispositif d'amplification d'un signal hyperfrequence a large bande
FR2955721A1 (fr) Cellule amplificatrice hyperfrequence large bande a gain reglable faible cout et amplificateur distribue comportant une telle cellule
WO2010054904A1 (fr) Filtre actif miniature a faible cout

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15820507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015820507

Country of ref document: EP