WO2016096417A1 - Verfahren zur verbindung von werkstücken die beim generativen fertigungsprozess aus einem rohmaterial hergestellt werden - Google Patents

Verfahren zur verbindung von werkstücken die beim generativen fertigungsprozess aus einem rohmaterial hergestellt werden Download PDF

Info

Publication number
WO2016096417A1
WO2016096417A1 PCT/EP2015/078295 EP2015078295W WO2016096417A1 WO 2016096417 A1 WO2016096417 A1 WO 2016096417A1 EP 2015078295 W EP2015078295 W EP 2015078295W WO 2016096417 A1 WO2016096417 A1 WO 2016096417A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
workpiece
individual parts
contact surfaces
production
Prior art date
Application number
PCT/EP2015/078295
Other languages
English (en)
French (fr)
Inventor
Michael Ott
Steffen Walter
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP15816378.2A priority Critical patent/EP3194097A1/de
Priority to CN201580069488.6A priority patent/CN107107192A/zh
Priority to US15/535,183 priority patent/US20170333995A1/en
Publication of WO2016096417A1 publication Critical patent/WO2016096417A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a process for the generative manufacturing a part made of a raw material which tens comprises Wenig ⁇ a metal, wherein a mathematical model of the workpiece is created, and in each case in a production step, a unit amount of the raw material under local heat input to an already manufactured part locally melted on ⁇ and solidified there.
  • Generative manufacturing processes represent a novel approach for producing workpieces with a high geometric complexity, and have recently gained in importance.
  • An essential feature of generative manufacturing processes is that a raw material based on virtual data models of a workpiece in low-dimensional form (for example as wire or as foil) or informal (for example as powder or as liquid) by means of chemical and / or physical processes is gradually formed to the finished workpiece.
  • Eger ⁇ ben generative manufacturing processes on one hand the production of improved, conventionally impossible or very laborious prepared components, such as workpieces measured ⁇ tailored material properties, light weight or inner surfaces for better cooling. This thus allows an increase in efficiencies, respectively, a cost reduction for new parts.
  • generative manufacturing processes promise great simplifications in service and repair.
  • Geometries for workpieces to be produced can be realized, which can be realized by conventional manufacturing only with significantly increased production costs, such. Undercuts or cavities are also limited here.
  • in the simultaneous production of thick-walled and thin-walled structures in a workpiece may be due to occurring in the workpiece during the production process residual stresses. These residual stresses are due to the different thermodynamic conditions for the classification of the atoms in the respective local crystal structure, which on thick-walled or
  • thin-walled structures prevail: the local heat dissipation of the heat introduced for the addition of the particles takes place almost completely through the already manufactured part of a workpiece. A larger thermal gradient is thus possible at a thick-walled structure, whereby the heat is dissipated fast ⁇ ler than a thin-walled structure to which molten material remains longer in the liquid phase. This can also lead to deposition processes of the alloy used.
  • the thus "frozen" during solidification in the different structures voltages in a workpiece can thereby be greater than the yield strength of the workpiece, can thereby cracks occur.
  • the delay of the production can already currency ⁇ rend result in damage to the manufacturing plant.
  • the invention is therefore based on the object, a method for manufacturing a workpiece from a raw material suits ⁇ ben to produce that complex geometries it possible ⁇ laubt and thereby causes a lowest possible gen delay in the finished workpiece.
  • the above object is achieved by a method for the generative production of a workpiece from a raw material comprising at least one metal, wherein a geometric model of the workpiece created and the Mo ⁇ dell is divided into a plurality of individual parts, each item gradually from the Raw material is produced by each in a manufacturing step a Gamen ⁇ unit of the raw material with local heat input to an already manufactured part of each item is locally melted and solidified there, and wherein the individual ⁇ parts under the action of pressure and local heat on the Contact surfaces are joined together by a diffusion process and thereby the finished workpiece is joined.
  • the raw material is present given by a metal or a Le ⁇ government.
  • a unit of quantity of the raw material in particular comprises a powder or granule grain.
  • the local melting of the unit of quantity of the raw material under local heat input comprises in particular a complete melting, as well as a melting, in which the melting process remains reduced to the surface of the respective unit of quantity, ie in particular also a sintering process.
  • the contact surfaces are each joined at which the items under the action of pressure and under local to warmth, are predetermined by the geometric ⁇ specific model of the workpiece.
  • the invention is in a first step, assume that with increasing geometric complexity of the to be produced workpiece, a conventional production, in ⁇ play, of a forging or casting process, with closing at ⁇ post usually at a disproportionately high expenditure and thereby unacceptable costs leads.
  • the problems which occur in the generative production of a workpiece with complex geometry, in particular with respect to the material stresses should therefore be solved as far as possible in the context of a generative manufacturing process.
  • the individual production steps or the respective local heat input in the spatial sequence are optimized can be.
  • the invention proposes different individual ⁇ parts of the workpiece by means of the separately-described ⁇ NEN manufacturing steps to produce.
  • this procedure makes it possible to select the dimensioning of the individual parts in such a way that problems of the material structure of the workpiece, in particular tension, arising from the individual melting and solidification processes do not yet occur to any appreciable extent.
  • the division of the workpiece into different individual parts he ⁇ follows this by means of a geometric model, which in each case for the spatial division of the single manufacturing steps, each adding a unit of quantity of the raw material, is present anyway.
  • the off-closing assembly is carried out at a pressure which only causes a slight elastic deformation of the to be joined work ⁇ piece.
  • a plurality of individual parts is assembled under the action of unidirectionally acting pressure.
  • all items are assembled under the action of unidirectional pressure.
  • this can also be done in stages, so that initially ver ⁇ different groups of items are packed under pressure to unidirektio- nalem rough structures, and then the coarse structures once again under the action of unidirectional pressure, which is not acting along the joining axis of the coarse structures, are assembled to the finished workpiece.
  • Unidirectional printing is particularly easy to implement in the production process.
  • a plurality of individual parts is assembled by means of spark plasma sintering.
  • Spark plasma sintering is a process established in the industry, the application of which in the present method for joining the individual parts results in a particularly homogeneous structure of the finished workpiece.
  • layers ge ⁇ made of the raw material As a further advantage, it has proven when a plurality of individual parts in each case layers ge ⁇ made of the raw material.
  • stresses may occur in the material during the manufacturing ⁇ this process are in already manufactured part of the workpiece in Schich ⁇ power direction.
  • ⁇ ne manufacturing processes in a layered structure of the individual parts is particularly advantageous.
  • a one ⁇ parts right here may also include additional auxiliary structures, which, given the geometry of the single part, which should allow the layered structure of the raw material be ⁇ low or at all concerned ⁇ . These auxiliary structures are preferably to be removed before joining the individual parts to the finished workpiece.
  • a plurality of individual parts is preferably manufactured in parallel in a plant for layered production.
  • a parallel production is to be understood that a layer is added to an already manufactured part of an item, and before there another
  • Layer is added, at least one layer is added to an already manufactured part of another item.
  • the plant is often subjected to a preparation process after a single production step or a plurality of production steps.
  • This preparation process may consist, for example, in the correct placement of the raw material on the already manufactured part of a single part. If the raw material in powder form, the Vorbe ⁇ preparatory process includes providing a layer of powder wel ⁇ surface completely covers the already manufactured part of a workpiece and to have a very smooth surface has, for which the powder is still pulled apart separately.
  • each individual layer is added to raw material in a multiplicity of production steps with a respective local heat input for melting the relevant unit of quantity.
  • the sum of all local heat inputs required for adding a layer forms a maximum of simple coverage of the already manufactured part of the workpiece. If a workpiece is now manufactured in one piece in layers, the next local heat input takes place at a specific point on the surface of the already manufactured part much earlier than if corresponding parallel layers of other individual parts had previously been to be produced.
  • the items thus retain during the layered Ferti ⁇ supply better heat dissipation than that of a single piece manufactured workpiece, which can have an advantageous effect on the solidification process, depending on the raw material. Among other things, in a faster solidification, the unwanted deposition of individual material phases of the raw material can be better prevented.
  • the raw material is provided in powder form.
  • the local heat input is concentrated substantially point-like, so that the improved heat dissipation can have a particularly advantageous effect.
  • the raw material is melted locally by means of selective laser melting. Selective laser melting is a particularly widespread process in order to provide the local heat input for a generative production process with a powdery raw material.
  • the invention further specifies a workpiece which is made of a raw material by means of the above-described method.
  • a workpiece which is made of a raw material by means of the above-described method.
  • the workpiece is designed as a component of an internal combustion engine.
  • FIG. 1 shows a diagram of the sequence of a method for the generative production of a workpiece from a raw material
  • FIG. 3 shows an oblique view of the assembly of individual parts to a finished workpiece according to FIG. 1
  • FIG. 1 the sequence of a method 1 for producing a workpiece 2 is shown in a schematic diagram.
  • the workpiece 2 is designed as a turbine blade 4 of a gas turbine, not shown.
  • the turbine blade 4 in this case has two platforms 6a, 6b and a profiled wing.
  • 8 In a first method step, a geometric model 10 of the workpiece 2 will now he provides ⁇ .
  • This geometric model 10 is now first in Parts 12a-12f divided, the circumstances in the system provided for the production of the items 12a-12f system for an advantageous distribution are to be considered.
  • the individual parts 12a-12f are then manufactured in layers in a plant, not shown, from a raw material 14.
  • the raw material 14 which is designed here as a powdery Me ⁇ tallleg réelle, locally melted in a plurality of individual production steps by means of selective laser melting 16 so that a melted in a manufacturing step by the local heat input of the laser Pul ⁇ is confusing to an already fabricated part 13b, 13c of an item 12b, 12c solidifies, and thereby gradually the next layer is formed.
  • the geometric model 10 of the workpiece 2 can be used. Depending on their geometry, certain groups of individual parts 12b, 12c are manufactured in parallel. Details of this production will be explained with reference to FIG 2.
  • FIG. 2 schematically shows, in an oblique view, a system 26 for selective laser melting.
  • a Pul ⁇ verbett 28 already manufactured parts are 13b-13e of the individual parts 12b-12e, each having a similar geometry exhibit.
  • a laser 30 scans the powder bed 28 according to the geometry of the individual parts 12b-12e, each individual laser pulse corresponding to a production step 32 in which a unit of quantity 34 of powder grains is melted.
  • the thus-molten raw material 14 solidifies on the already produced ge ⁇ part 13b of the item 12b, and by a plurality ⁇ number of such production steps 32 a next layer is applied to the already made part 13b of the A ⁇ zelteils 12b 36b.
  • FIG. 3 the assembly of individual parts 12a-12f into the finished turbine blade 4 is schematically illustrated in an oblique view.
  • this single ⁇ parts 12b-12e which constitute a disk-like dividing an internal structure of the wing 6 in the geometrical model of the turbine blade 4, and here not shown in detail platforms 8a, 8b are joined together by a first spark plasma sintering process, in which the pressure 20a acts perpendicular to the contact surfaces 24a-24d provided on the individual parts.
  • a second step by egg NEN second Spark plasma sintering process, the outer through the A ⁇ individual parts 12b-12e formed inside structure rempligelflä ⁇ surfaces 12a, added 12f, the used for this purpose pressure 20b respect.
  • the geometric model 10 defi ⁇ n Being arrangement of the items acts perpendicular to the pressure 20a, which was used in the first spark plasma sintering process ver ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die Erfindung nennt ein Verfahren (1) zur generativen Fertigung eines Werkstücks (2) aus einem Rohmaterial (14), welches wenigstens ein Metall umfasst, wobei ein geometrisches Modell (10) des Werkstücks (2) erstellt und das Modell (10) in eine Mehrzahl von Einzelteilen (12a-12f) aufgeteilt wird, wobei jedes Einzelteil (12a-12f) schrittweise aus dem Rohmaterial (14) gefertigt wird, indem jeweils in einem Fertigungsschritt (32) eine Mengeneinheit (34) des Rohmaterials (14) unter lokalem Wärmeeintrag auf einen bereits gefertigten Teil (13b-13e) des jeweiligen Einzelteils (12a-12f) lokal aufgeschmolzen und dort erstarrt wird, und wobei die Einzelteile (12a-12f) unter der Einwirkung von Druck (20a, b) und unter lokaler Wärmeeinwirkung an den Kontaktflächen (24a-d) durch einen Diffusionsprozess zusammengefügt werden und hierdurch das fertige Werkstück (2) gefügt wird. Die Erfindung nennt weiter ein mittels eines derartigen Verfahrens (1) aus einem Rohmaterial (14) gefertigtes Werkstück (2).

Description

Beschreibung
VERFAHREN ZUR VERBINDUNG VON WERKSTÜCKEN DIE BEIM GENERATIVEN FERTIGUNGSPROZESS AUS EINEM ROHMATERIAL HERGESTELLT WERDEN
Die Erfindung betrifft ein Verfahren zur generativen Fertigung eines Werkstücks aus einem Rohmaterial, welches wenigs¬ tens ein Metall umfasst, wobei ein mathematisches Modell des Werkstücks erstellt wird, und jeweils in einem Fertigungs- schritt eine Mengeneinheit des Rohmaterials unter lokalem Wärmeeintrag auf einen bereits gefertigten Teil lokal auf¬ geschmolzen und dort erstarrt wird.
Generative Fertigungsverfahren stellen einen neuartigen An- satz zur Herstellung von Werkstücken mit einer hohen geometrischen Komplexität dar, und haben in letzter Zeit stark an Bedeutung gewonnen. Ein wesentliches Merkmal der generativen Fertigungsverfahren ist, dass ein in niedrig dimensionaler Form (zum Beispiel als Draht oder als Folie) oder formlos (zum Beispiel als Pulver oder als Flüssigkeit) vorliegendes Rohmaterial auf Basis von virtuellen Datenmodellen eines Werkstückes mittels chemischer und/oder physikalischer Prozesse schrittweise zum fertigen Werkstück geformt wird. Insbesondere auf dem Gebiet der Verbrennungsmaschinen erlau¬ ben generative Fertigungsverfahren einerseits die Fabrikation von verbesserten, konventionell nicht oder nur sehr aufwändig herstellbaren Bauteilen, so zum Beispiel Werkstücke mit ma߬ geschneiderten Materialeigenschaften, einem geringen Gewicht oder inneren Oberflächen für eine optimierte Kühlung. Dies ermöglicht somit eine Erhöhung der Wirkungsgrade, respektive eine Kostensenkung bei Neuteilen. Andererseits versprechen generative Fertigungsverfahren aufgrund der Möglichkeit zur individuellen, dezentralen und instantanen Fertigung starke Vereinfachungen bei Service und Reparatur.
Von besonderem Interesse sind hierbei Laser-gestützte Ferti¬ gungsverfahren, die eine Verarbeitung der typischen Konstruk- tionswerkstoffe im Heißbereich einer Verbrennungsmaschine ge¬ statten. Die Fertigung erfolgt dabei typischerweise durch das Abrastern eines Pulverbetts mit einem Laserstrahl, wobei punktuell die metallischen Partikel des Ausgangsmaterials, durch welches das Pulver gebildet wird - meist eine Nickel- Basislegierung - Stück für Stück und Schicht für Schicht miteinander verschmolzen werden, bis das fertige Bauteil geformt ist . Wenngleich mit einem generativen Fertigungsverfahren
Geometrien für zu fertigende Werkstücke verwirklicht werden können, welche mittels konventioneller Fertigung nur mit wesentlich erhöhtem Produktionsaufwand zu realisieren sind, wie z.B. Hinterschnitte oder Hohlräume, sind auch hier Grenzen gesetzt. Insbesondere bei der gleichzeitigen Fertigung dickwandiger und dünnwandiger Strukturen in einem Werkstück kann es aufgrund von im Werkstück während des Produktionsprozesses auftretender Eigenspannungen zu Verzug kommen. Diese Eigenspannungen rühren von den unterschiedlichen thermodynamischen Voraussetzungen für die Einordnung der Atome in die jeweilige lokale Kristallstruktur her, welche an dickwandiger bzw.
dünnwandiger Strukturen vorherrschen: Der lokale Wärmeabfluss der zum Hinzufügen der Partikel eingebrachten Wärme findet fast vollständig durch den bereits gefertigten Teil eines Werkstücks statt. An einer dickwandigen Struktur ist somit ein größerer Wärmegradient möglich, wodurch die Wärme schnel¬ ler abgeführt wird als bei einer dünnwandigen Struktur, an welcher aufgeschmolzenes Material länger in der flüssigen Phase verbleibt. Hierbei kann es auch zu Abscheidungsprozes- sen der verwendeten Legierung kommen.
Die so beim Erstarren in den unterschiedlichen Strukturen „eingefrorenen" Spannungen in einem Werkstück können dabei größer als die Streckgrenze des Werkstücks werden, wodurch Risse auftreten können. Überdies kann der Verzug bereits wäh¬ rend der Fertigung zu einer Beschädigung der Fertigungsanlage führen . Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Fertigung eines Werkstücks aus einem Rohmaterial anzuge¬ ben, welches möglichst komplexe Geometrien zu fertigen er¬ laubt und dabei im fertigen Werkstück einen möglichst gerin- gen Verzug bewirkt.
Die genannte Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur generativen Fertigung eines Werkstücks aus einem Rohmaterial, welches wenigstens ein Metall umfasst, wobei ein geometrisches Modell des Werkstücks erstellt und das Mo¬ dell in eine Mehrzahl von Einzelteilen aufgeteilt wird, wobei jedes Einzelteil schrittweise aus dem Rohmaterial gefertigt wird, indem jeweils in einem Fertigungsschritt eine Mengen¬ einheit des Rohmaterials unter lokalem Wärmeeintrag auf einen bereits gefertigten Teil des jeweiligen Einzelteils lokal aufgeschmolzen und dort erstarrt wird, und wobei die Einzel¬ teile unter der Einwirkung von Druck und unter lokaler Wärmeeinwirkung an den Kontaktflächen durch einen Diffusionspro- zess zusammengefügt werden und hierdurch das fertige Werk- stück gefügt wird.
Vorteilhafte und teils für sich gesehen erfinderische Ausfüh¬ rungsformen sind Gegenstand der Unteransprüche. Das Rohmaterial ist vorliegend durch ein Metall oder eine Le¬ gierung gegeben. Unter einer Mengeneinheit des Rohmaterials ist dabei insbesondere ein Pulver- oder Granulatkorn umfasst. Das lokale Aufschmelzen der Mengeneinheit des Rohmaterials unter lokalem Wärmeeintrag umfasst dabei insbesondere ein vollständiges Aufschmelzen, sowie ein Aufschmelzen, bei welchem der Schmelzvorgang auf die Oberfläche der jeweiligen Mengeneinheit reduziert bleibt, also insbesondere auch einen Sintervorgang. Die Kontaktflächen, an welchen die Einzelteile unter der Einwirkung von Druck und unter lokaler Wärmeeinwir- kung jeweils zusammengefügt werden, sind durch das geometri¬ sche Modell des Werkstücks vorbestimmt. Insbesondere wird das geometrische Modell des Werkstücks für einzelne Fertigungs- schritte zum Hinzufügen einer jeweiligen Mengeneinheit des Rohmaterials herangezogen.
Die Erfindung geht dabei in einem ersten Schritt davon aus, dass mit zunehmender geometrischer Komplexität eines zu fertigenden Werkstücks eine konventionelle Herstellung, bei¬ spielsweise aus einem Schmiede- oder Gußprozess, mit an¬ schließender Nachbearbeitung meist zu einem unverhältnismäßig hohen Aufwand und dadurch zu unvertretbaren Kosten führt. Die Probleme, welche bei der generativen Fertigung eines Werkstücks mit komplexer Geometrie auftreten, insbesondere hin¬ sichtlich der Materialspannungen, sollen deshalb möglichst im Rahmen eines generativen Fertigungsprozesses gelöst werden. In diesem Zusammenhang wird erkannt, dass insbesondere zur Verringerung von Materialspannungen im aufgeschmolzenen und erstarrten Rohmaterial, welche von einer unterschiedlichen Einfügung der so hinzugefügten Atome in die Kristallstruktur des Werkstücks herrühren, die einzelnen Fertigungsschritte bzw. der jeweilige lokale Wärmeeintrag in der räumlichen Ab¬ folge optimiert werden können. Ausgehend von einer durch die Geometrie des Werkstücks vorgegebenen räumlichen Anordnung lokaler Schmelzstellen bedeutet eine solche Optimierung der zeitlichen Verteilung jeweiliger lokaler Schmelzvorgänge je- doch unter anderem eine vielfache, gekoppelte Anwendung und Simulation der Wärmeleitungsgleichung, wodurch auch hier der Aufwand unverhältnismäßig steigt. Dies gilt umso mehr für Werkstücke mit komplexer Geometrie, an deren Fertigung hier besonders gelegen ist.
Ebenso kann ein nachträgliches Bearbeiten eines Werkstücks mittels Hitze und Druck gegebenenfalls bestimmte Verspannun- gen und/oder Verformungen im gefertigten Werkstück beheben, jedoch sind zur Behebung von durch derartige Verspannungen auftretenden Beschädigungen einer Kristallstruktur, wie zum Beispiel Risse, meist Drücke notwendig, welche die Struktur des gefertigten Werkstücks beeinträchtigen können. Eine derartige Nachbearbeitung wird deshalb verworfen. Demgegenüber schlägt die Erfindung vor, verschiedene Einzel¬ teile des Werkstücks jeweils separat mittels der beschriebe¬ nen Fertigungsschritte herzustellen. Die Erfindung erkennt dabei in einem zweiten Schritt, dass dieses Vorgehen erlaubt, die Dimensionierung der Einzelteile so zu wählen, dass von den einzelnen Schmelz- und Erstarrungsvorgängen herrührende Probleme der Materialstruktur des Werkstücks, insbesondere Verspannungen, noch nicht in nennenswertem Maß auftreten. Die Aufteilung des Werkstückes in verschiedene Einzelteile er¬ folgt dabei mittels eines geometrischen Modells, welches zur räumlichen Aufteilung der einzigen Fertigungsschritte, jeweils eine Mengeneinheit des Rohmaterials hinzuzufügen, meist ohnehin vorliegt.
Insbesondere bei einer gleichzeitigen Fertigung dick- und dünnwandiger Strukturen im Werkstück kann ein unterschiedlicher Verzug der jeweiligen Strukturen auftreten, so dass hier die Aufteilung des Werkstücks in Einzelteile, welche später zusammengefügt werden, aufgrund des in kleineren Einzelteilen leichter zu unterdrückenden Verzugs eine erheblich verbesserte Fertigungsqualität erlaubt.
Als weiter vorteilhaft erweist sich hierbei, wenn das ab- schließende Zusammenfügen bei einem Druck erfolgt, welcher nur eine geringe elastische Verformung des zu fügenden Werk¬ stücks bewirkt, wobei für die Diffusionsprozesse zum Zusam¬ menfügen der Einzelteile jeweils die lokale Wärmeentwicklung betrachtet wird.
Bevorzugt wird eine Mehrzahl von Einzelteilen unter der Einwirkung von unidirektional wirkendem Druck zusammengefügt. Insbesondere werden alle Einzelteile unter der Einwirkung von unidirektional wirkendem Druck zusammengefügt. Insbesondere kann dies auch stufenweise geschehen, so dass zunächst ver¬ schiedene Gruppen von Einzelteilen jeweils unter unidirektio- nalem Druck zu Grobstrukturen zusammengefügt werden, und anschließend die Grobstrukturen erneut unter der Einwirkung von unidirektionalem Druck, welcher nicht entlang der Fügeachse der Grobstrukturen wirkend ist, zum fertigen Werkstück zusammengesetzt werden. Unidirektonaler Druck lässt sich im Pro- duktionsprozess besonders einfach realisieren.
Zweckmäßigerweise wird die lokale Wärmeeinwirkung an den an¬ grenzenden Kontaktflächen je zweier Einzelteile mittels eines von außen angelegten Stromflusses über den an den angrenzenden Kontaktflächen auftretenden ohmschen Widerstand erzielt. Je nach verwendetem Rohmaterial weisen die Einzelteile in ih¬ rem inneren jeweils eine hohe elektrische Leitfähigkeit auf. Wird nun durch zwei Einzelteile, an welchen eine Kontaktflä¬ che vorgesehen ist, ein Stromfluss angelegt, so ist der ohm¬ sche Widerstand an der Kontaktfläche deutlich höher als im jeweiligen Inneren der Einzelteile. Hierdurch führt der der angelegte Stromfluss zu einer merklichen lokalen Wärmeeinwirkung an den sich berührenden Kontaktflächen. Diese Wärmeentwicklung bleibt bei angelegtem Stromfluss solange aufrechterhalten, bis die beiden Einzelteile an ihren Kontaktflächen durch hinreichende Diffusion der Atome eine Materialverbindung eingegangen sind und somit aufgrund der verbesserten Beweglichkeit der Leitungsträger dort der ohmsche Widerstand wieder sinkt. Durch das somit erreichte Beschränken der loka¬ len Wärmeeinwirkung auf die an den Einzelteilen vorgesehenen Kontaktflächen ist das abschließende Zusammenfügen der Einzelteile zum Fertigen Werkstück energetisch besonders effizient. Zudem kann auf eine übermäßige äußere Wärmeeinwirkung verzichtet werden, welche die äußere Form und/oder Struktur der Einzelteile beeinträchtigen könnte.
Günstigerweise wird hierbei eine Mehrzahl von Einzelteilen mittels Spark-Plasma-Sintering zusammengefügt. Spark-Plasma- Sintering ist ein in der Industrie etablierter Prozess, dessen Anwendung im vorliegenden Verfahren zum Zusammenfügen der Einzelteile eine besonders homogene Struktur des fertigen Werkstücks bewirkt. Als weiter vorteilhaft erweist es sich, wenn eine Mehrzahl von Einzelteilen jeweils schichtweise aus dem Rohmaterial ge¬ fertigt wird. Insbesondere in Fertigungsverfahren, in welchen ein Werkstück schichtweise generativ aus einem metallischen Rohmaterial gefertigt wird, können während des Fertigungspro¬ zesses im bereits gefertigten Teil des Werkstücks in Schich¬ tungsrichtung Spannungen im Material auftreten. Diese Spannungen können zu einer Verformung bzw. einem Verzug des bereits gefertigten Teils des Werkstücks führen, durch welchen unter anderem auch die Anlage für den Fertigungsprozess ge¬ fährdet werden kann. Vor diesem Hintergrund ist das angegebe¬ ne Herstellungsverfahren bei einem schichtweisen Aufbau der Einzelteile besonders vorteilhaft. Insbesondere kann ein Ein¬ zelteil hierbei auch zusätzliche Hilfsstrukturen umfassen, welche in Anbetracht der Geometrie des betreffenden Einzel¬ teils dessen den schichtweisen Aufbau aus dem Rohmaterial be¬ günstigen oder überhaupt ermöglichen sollen. Bevorzugt sind diese Hilfsstrukturen vor dem Zusammenfügen der Einzelteile zum fertigen Werkstück zu entfernen.
Bevorzugt wird hierbei in einer Anlage zur schichtweisen Fertigung eine Mehrzahl von Einzelteilen parallel gefertigt. Unter einer solchen parallelen Fertigung ist dabei zu verstehen, dass einem bereits gefertigten Teil eines Einzelteils eine Schicht hinzugefügt wird, und bevor dort eine weitere
Schicht hinzufügt wird, wenigstens eine Schicht einem bereits gefertigten Teil eines anderen Einzelteils hinzugefügt wird.
Diese Vorgehensweise hat folgende Vorteile: Einerseits ist oftmals die Anlage nach einem einzelnen Fertigungsschritt oder einer Mehrzahl von Fertigungsschritten einem Vorberei- tungsprozess zu unterziehen. Dieser Vorbereitungsprozess kann beispielsweise im korrekten Anordnen des Rohmaterials auf den bereits gefertigten Teil eines Einzelteils bestehen. Liegt das Rohmaterial in Pulverform vor, so beinhaltet der Vorbe¬ reitungsprozess das Bereitstellen einer Ebene an Pulver, wel¬ che den bereits gefertigten Teil eines Werkstücks vollständig überdeckt und eine möglichst glatte Oberfläche aufzuweisen hat, wofür das Pulver noch gesondert glattgezogen wird. Durch das parallele Fertigen mehrerer Einzelteile desselben Werkstücks in derselben Anlage wird somit die Zeit für einen Vor- bereitungsprozess eines Fertigungsschritts oder einer Schicht für mehrere Einzelteile gleichzeitig genutzt, wodurch insge¬ samt die Zeit für die Fertigung wesentlich verkürzt werden kann .
Andererseits ist bei einer gleichzeitigen, parallelen Ferti- gung mehrerer Einzelteile in derselben Anlage eine verbesserte Wärmeableitung der zur Fertigung einer Schicht lokal eingetragenen Wärmemenge möglich. Bei einer einstückigen
schichtweisen Fertigung des Werkstücks wird jede einzelne Schicht in einer Vielzahl von Fertigungsschritten mit jewei- ligem lokalem Wärmeeintrag zum Aufschmelzen der betreffenden Mengeneinheit an Rohmaterial hinzufügt. Räumlich betrachtet bildet hierbei die Summe aller lokalen Wärmeeinträge, welche zum Hinzufügen einer Schicht erforderlich sind, eine maximal einfache Überdeckung des bereits gefertigten Teils des Werk- Stücks. Wird ein Werkstück nun einstückig schichtweise gefertigt, so findet an einer bestimmten Stelle der Oberfläche des bereits gefertigten Teils der nächste lokale Wärmeeintrag deutlich früher statt, als wenn zuvor noch entsprechende parallele Schichten anderer Einzelteile zu fertigen wären. Die Einzelteile behalten somit während der schichtweisen Ferti¬ gung eine bessere Wärmeableitung bei als ein einstückig gefertigtes Werkstück, was sich je nach Rohmaterial vorteilhaft auf den Erstarrungsprozess auswirken kann. Unter anderem kann bei einem schnelleren Erstarren das unerwünschte Abscheiden einzelner Materialphasen des Rohmaterials besser unterbunden werden .
Besonders bevorzugt wird dabei das Rohmaterial in Pulverform bereitgestellt. In diesem Fall ist der lokale Wärmeeintrag im Wesentlichen punktförmig konzentriert, so dass sich die verbesserte Wärmeableitung besonders vorteilhaft auswirken kann. Zweckmäßigerweise wird hierfür das Rohmaterial lokal mittels selektiven Laser-Schmelzens aufgeschmolzen. Das selektive La¬ ser-Schmelzen ist ein besonders weit verbreiteter Prozess, um für ein generatives Fertigungsverfahren mit einem pulverför- migen Rohmaterial den lokalen Wärmeeintrag bereitzustellen.
Die Erfindung gibt des Weiteren ein Werkstück an, welches mittels des vorbeschriebenen Verfahrens aus einem Rohmaterial gefertigt ist. Die für das Verfahren und seine Weiterbildun¬ gen genannten Vorteile können dabei sinngemäß auf das Werk¬ stück übertragen werden. Insbesondere ist dabei das Werkstück als eine Komponente einer Verbrennungsmaschine ausgestaltet.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Hierbei zeigen jeweils sche¬ matisch :
FIG 1 in einem Diagramm den Ablauf eines Verfahrens zur generativen Fertigung eines Werkstücks aus einem Rohmaterial ,
FIG 2 in einer Schrägansicht die parallele Fertigung meh¬ rerer Einzelteile in derselben Anlage, und
FIG 3 in einer Schrägansicht das Zusammenfügen von Einzelteilen zu einem fertigen Werkstück nach FIG 1.
Einander entsprechende Teile und Größen sind in allen Figuren jeweils mit gleichen Bezugszeichen versehen.
In FIG 1 ist in einem schematischen Diagramm der Ablauf eines Verfahrens 1 zur Herstellung eines Werkstücks 2 dargestellt. Das Werkstück 2 ist dabei als eine Turbinenschaufel 4 einer nicht näher dargestellten Gasturbine ausgebildet. Die Turbi¬ nenschaufel 4 weist hierbei zwei Plattformen 6a, 6b und einen profilierten Flügel 8 auf. In einem ersten Verfahrensschritt wird nun ein geometrisches Modell 10 des Werkstücks 2 er¬ stellt. Dieses geometrische Modell 10 wird nun zunächst in Einzelteile 12a-12f aufgeteilt, wobei die Gegebenheiten in der zur Fertigung der Einzelteile 12a-12f vorgesehenen Anlage für eine vorteilhafte Aufteilung mit zu berücksichtigen sind. Im nächsten Verfahrensschritt werden die Einzelteile 12a-12f anschließend in einer nicht näher dargestellten Anlage schichtweise aus einem Rohmaterial 14 gefertigt. Dazu wird das Rohmaterial 14, welches hier als eine pulverförmige Me¬ talllegierung ausgebildet ist, mittels selektiven Laser- Schmelzens 16 in einer Vielzahl einzelner Fertigungsschritte lokal geschmolzen, so dass ein in einem Fertigungsschritt durch den lokalen Wärmeeintrag des Lasers geschmolzenes Pul¬ vermenge auf einem bereits gefertigten Teil 13b, 13c eines Einzelteils 12b, 12c erstarrt, und hierdurch schrittweise die nächste Schicht gebildet wird. Für den schichtweisen Aufbau der Einzelteile 12a-12f kann dabei das geometrische Modell 10 des Werkstücks 2 herangezogen werden. Je nach ihrer Geometrie werden hierbei bestimmte Gruppen von Einzelteilen 12b, 12c parallel gefertigt. Einzelheiten dieser Fertigung werden an- hand von FIG 2 näher erläutert.
Die Einzelteile 12a-12f werden abschließend mittels Spark- Plasma-Sintering 18 zusammengefügt. Hierfür wird zunächst auf die Einzelteile 12a-12f in Richtung des Schichtaufbaus ein unidirektional wirkender Druck 20a ausgeübt und ein Strom- fluss 22 durch die Einzelteile 12a-12f angelegt. Durch das Spark-Plasma-Sintering 18 entsteht an den durch das geometrische Modell 10 vorgesehenen Kontaktflächen 24a-24d der Einzelteile 12a-12f eine hinreichende Diffusion der Legierung, so dass je zwei benachbarte Einzelteile 12a-12f hierdurch miteinander fest verbunden werden, und somit zum fertige des Werkstück 2 zusammengefügt werden. Einzelheiten dieses Fügeprozesses werden anhand von FIG 3 näher erläutert. In FIG 2 ist schematisch in einer Schrägansicht eine Anlage 26 für selektives Laser-Schmelzen dargestellt. In einem Pul¬ verbett 28 liegen die bereits gefertigten Teile 13b-13e der Einzelteile 12b-12e, welche jeweils eine ähnliche Geometrie aufweisen. Ein Laser 30 rastert das Pulverbett 28 gemäß der Geometrie der Einzelteile 12b-12e ab, wobei jeder einzelne Laserpuls einem Fertigungsschritt 32 entspricht, in welchem eine Mengeneinheit 34 an Pulverkörnern geschmolzen wird. Das so geschmolzene Rohmaterial 14 erstarrt auf dem bereits ge¬ fertigten Teil 13b des Einzelteils 12b, und durch eine Viel¬ zahl an derartigen Fertigungsschritten 32 wird so eine nächste Schicht 36b auf den bereits gefertigten Teil 13b des Ein¬ zelteils 12b aufgebracht. Bevor auf diese Schicht 36b eine weitere Schicht an Rohmaterial 14 aufgebracht wird, wird auf den bereits gefertigten Teil 13c-13e jedes anderen Einzel¬ teils 12c-12e erst eine Schicht aufgebracht, so dass die Ein¬ zelteile 12b-12e durch in Aufbaurichtung 38 parallele Schich¬ ten gebildet werden, und sich zu jedem Zeitpunkt der Ferti- gung in der Anlage 26 je zwei dort gleichzeitig entstehende Einzelteile 12b-12e in Aufbaurichtung 38 maximal um eine Schicht 36b unterscheiden.
Durch dieses parallele Fertigen der Einzelteile 12b-12e kann Fertigungszeit eingespart werden, welche bei jeder neuen Schicht für das Vorbereiten und Glattziehen des Pulverbetts 28 erfordert wird, da nun aufgrund der parallelen Fertigung insgesamt weniger Schichten und damit weniger einzelne sol¬ cher Vorbereitungsprozesse erforderlich sind. Zudem ist in Aufbaurichtung 38 die Wärmeableitung aus einem bereits gefertigten Teil 13b-13e gegenüber einer einstückigen Fertigung eines Werkstücks verbessert, da die Zeit, bis der Laser 30 nach einem Fertigungsschritt 32 für eine Schicht 36b bei Fer¬ tigung der nächst höheren Schicht erneut an derselben Stelle einstrahlt, aufgrund der zuvor noch zu bearbeitenden weiteren Einzelteile höher ist.
In FIG 3 ist schematisch in einer Schrägansicht das Zusammenfügen von Einzelteilen 12a-12f zur fertigen Turbinenschaufel 4 dargestellt. In einem ersten Schritt werden hierbei Einzel¬ teile 12b-12e, welche im geometrischen Modell der Turbinenschaufel 4 eine scheibenartige Aufteilung einer Innenstruktur des Flügels 6 darstellen, und die hier nicht näher darge- stellten Plattformen 8a, 8b durch einen ersten Spark-Plasma- Sintering-Prozess zusammengefügt, in welchem der Druck 20a senkrecht zu den an den Einzelteilen vorgesehenen Kontaktflächen 24a-24d wirkt. In einem zweiten Schritt werden durch ei- nen zweiten Spark-Plasma-Sintering-Prozess der durch die Ein¬ zelteile 12b-12e gebildeten Innenstruktur äußere Flügelflä¬ chen 12a, 12f hinzugefügt, wobei der hierfür eingesetzte Druck 20b bzgl. der durch das geometrische Modell 10 defi¬ nierten Anordnung der Einzelteile senkrecht zum Druck 20a wirkt, welcher im ersten Spark-Plasma-Sintering-Prozess ver¬ wendet wurde.
Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, ist die Erfindung nicht durch dieses Ausführungsbeispiel einge¬ schränkt. Andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen .

Claims

Patentansprüche
1. Verfahren (1) zur generativen Fertigung eines Werkstücks (2) aus einem Rohmaterial (14), welches wenigstens ein Metall umfasst,
wobei ein geometrisches Modell (10) des Werkstücks (2) er¬ stellt und das Modell (10) in eine Mehrzahl von Einzelteilen (12a-12f) aufgeteilt wird,
wobei jedes Einzelteil (12a-12f) schrittweise aus dem Rohma- terial (14) gefertigt wird, indem jeweils in einem Ferti¬ gungsschritt (32) eine Mengeneinheit (34) des Rohmaterials (14) unter lokalem Wärmeeintrag auf einen bereits gefertigten Teil (13b-13e) des jeweiligen Einzelteils (12a-12f) lokal aufgeschmolzen und dort erstarrt wird, und
wobei die Einzelteile (12a-12f) unter der Einwirkung von
Druck (20a, b) und unter lokaler Wärmeeinwirkung an den Kontaktflächen (24a-d) durch einen Diffusionsprozess zusammenge¬ fügt werden und hierdurch das fertige Werkstück (2) gefügt wird .
2. Verfahren (1) nach Anspruch 1,
wobei eine Mehrzahl von Einzelteilen (12a-12f) unter der Ein- Wirkung von unidirektional wirkendem Druck (20a, b) zusammen- gefügt wird.
3. Verfahren (1) nach Anspruch 1 oder Anspruch 2,
wobei die lokale Wärmeeinwirkung an den angrenzenden Kontaktflächen (24a-24d) je zweier Einzelteile (12a-12f) mittels ei¬ nes von außen angelegten Stromflusses (22) über den an den Kontaktflächen (24a-24d) auftretenden ohmschen Widerstand erzielt wird.
4. Verfahren (1) nach Anspruch 2 oder Anspruch 3,
wobei wenigstens eine Mehrzahl von Einzelteilen (12a-12f) mittels Spark-Plasma-Sintering (18) zusammengefügt wird.
5. Verfahren (1) nach einem der vorhergehenden Ansprüche, wobei eine Mehrzahl von Einzelteilen (12a-12f) jeweils schichtweise aus dem Rohmaterial (14) gefertigt wird.
6. Verfahren (1) nach Anspruch 5,
wobei in einer Anlage (26) zur schichtweisen Fertigung eine Mehrzahl von Einzelteilen (12b-12e) parallel gefertigt wird.
7. Verfahren (1) nach Anspruch 5 oder Anspruch 6,
wobei das Rohmaterial (14) in Pulverform bereitgestellt wird
8. Verfahren (1) nach Anspruch 7,
wobei das Rohmaterial (14) lokal mittels selektiven Laser- Schmelzens (16) aufgeschmolzen wird.
9. Werkstück (2), gefertigt aus einem Rohmaterial (14) mit¬ tels eines Verfahrens (1) nach einem der vorhergehenden Ansprüche .
PCT/EP2015/078295 2014-12-18 2015-12-02 Verfahren zur verbindung von werkstücken die beim generativen fertigungsprozess aus einem rohmaterial hergestellt werden WO2016096417A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15816378.2A EP3194097A1 (de) 2014-12-18 2015-12-02 Verfahren zur verbindung von werkstücken die beim generativen fertigungsprozess aus einem rohmaterial hergestellt werden
CN201580069488.6A CN107107192A (zh) 2014-12-18 2015-12-02 用于连接在增材制造工艺中由原材料制成的工件的方法
US15/535,183 US20170333995A1 (en) 2014-12-18 2015-12-02 Method for connecting workpieces which are produced from a raw material using an additive manufacturing process`

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014226370.0A DE102014226370A1 (de) 2014-12-18 2014-12-18 Verfahren zur generativen Fertigung eines Werkstücksaus einem Rohmaterial
DE102014226370.0 2014-12-18

Publications (1)

Publication Number Publication Date
WO2016096417A1 true WO2016096417A1 (de) 2016-06-23

Family

ID=55024065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/078295 WO2016096417A1 (de) 2014-12-18 2015-12-02 Verfahren zur verbindung von werkstücken die beim generativen fertigungsprozess aus einem rohmaterial hergestellt werden

Country Status (5)

Country Link
US (1) US20170333995A1 (de)
EP (1) EP3194097A1 (de)
CN (1) CN107107192A (de)
DE (1) DE102014226370A1 (de)
WO (1) WO2016096417A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11511343B2 (en) * 2016-04-19 2022-11-29 Siemens Energy Global GmbH & Co. KG Method for modular additive manufacturing of a component and a component

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3281725A1 (de) * 2016-08-09 2018-02-14 Siemens Aktiengesellschaft Verfahren zur additiven fertigung und computerlesbares medium
US20180111191A1 (en) * 2016-10-21 2018-04-26 Hamilton Sundstrand Corporation Method of manufacturing metal articles
DE102017208497A1 (de) * 2017-05-19 2018-11-22 Homag Bohrsysteme Gmbh Verfahren zum Vorbereiten eines Drucks eines dreidimensionalen Bauteils sowie System
DE102017219333A1 (de) 2017-10-27 2019-05-02 Siemens Aktiengesellschaft Verfahren zur Modifikation von Bauteilen unter Einsatz additiver Fertigung
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
US11318553B2 (en) * 2019-01-04 2022-05-03 Raytheon Technologies Corporation Additive manufacturing of laminated superalloys
DE102020216193A1 (de) 2020-12-17 2022-08-11 Rolls-Royce Deutschland Ltd & Co Kg Schaufelbauteil, Verfahren zu dessen Herstellung und Gasturbine
US12037912B2 (en) 2021-06-18 2024-07-16 Rtx Corporation Advanced passive clearance control (APCC) control ring produced by field assisted sintering technology (FAST)
US20230151738A1 (en) * 2021-06-18 2023-05-18 Raytheon Technologies Corporation Hybrid bonded configuration for blade outer air seal (boas)
EP4105440A1 (de) 2021-06-18 2022-12-21 Raytheon Technologies Corporation Artikel aus einer hybriden superlegierung und verfahren zu dessen herstellung
US20230286045A1 (en) * 2022-03-14 2023-09-14 Battelle Energy Alliance, Llc Methods of forming articles by applying electric current and pressure to materials, and related articles
US11952918B2 (en) 2022-07-20 2024-04-09 Ge Infrastructure Technology Llc Cooling circuit for a stator vane braze joint
US12129771B1 (en) 2023-08-22 2024-10-29 Ge Infrastructure Technology Llc Stator vane assembly having mechanical retention device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090183850A1 (en) * 2008-01-23 2009-07-23 Siemens Power Generation, Inc. Method of Making a Combustion Turbine Component from Metallic Combustion Turbine Subcomponent Greenbodies
EP2319641A1 (de) * 2009-10-30 2011-05-11 Alstom Technology Ltd Verfahren zur Anwendung mehrerer Materialien mit selektivem Laserschmelzen auf einem dreidimensionalen Artikel
FR2962357A1 (fr) * 2010-07-09 2012-01-13 Snecma Procede de reparation ou de rechargement d'au moins une piece metallique
FR2981590A1 (fr) * 2011-10-21 2013-04-26 Snecma Procede de realisation d'une preforme frittee et d'assemblage de ladite preforme sur une piece

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031509A (en) * 1995-09-13 2000-02-29 Suisaku Limited Self-tuning material for selectively amplifying a particular radio wave
JP4015796B2 (ja) * 1999-03-31 2007-11-28 Spsシンテックス株式会社 自動パルス通電加圧焼結方法及びそのシステム
US6384365B1 (en) * 2000-04-14 2002-05-07 Siemens Westinghouse Power Corporation Repair and fabrication of combustion turbine components by spark plasma sintering
JP2003222026A (ja) * 2002-01-30 2003-08-08 Hitachi Ltd タービン翼の製作方法およびタービン翼
DE102006049219A1 (de) * 2006-10-18 2008-04-30 Mtu Aero Engines Gmbh Hochdruckturbinen-Schaufel und Verfahren zur Reparatur von Hochdruckturbinen-Schaufeln
DE102006049216A1 (de) * 2006-10-18 2008-04-24 Mtu Aero Engines Gmbh Hochdruckturbinen-Rotor und Verfahren zur Herstellung eines Hochdruckturbinen-Rotors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090183850A1 (en) * 2008-01-23 2009-07-23 Siemens Power Generation, Inc. Method of Making a Combustion Turbine Component from Metallic Combustion Turbine Subcomponent Greenbodies
EP2319641A1 (de) * 2009-10-30 2011-05-11 Alstom Technology Ltd Verfahren zur Anwendung mehrerer Materialien mit selektivem Laserschmelzen auf einem dreidimensionalen Artikel
FR2962357A1 (fr) * 2010-07-09 2012-01-13 Snecma Procede de reparation ou de rechargement d'au moins une piece metallique
FR2981590A1 (fr) * 2011-10-21 2013-04-26 Snecma Procede de realisation d'une preforme frittee et d'assemblage de ladite preforme sur une piece

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3194097A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11511343B2 (en) * 2016-04-19 2022-11-29 Siemens Energy Global GmbH & Co. KG Method for modular additive manufacturing of a component and a component

Also Published As

Publication number Publication date
CN107107192A (zh) 2017-08-29
US20170333995A1 (en) 2017-11-23
DE102014226370A1 (de) 2016-06-23
EP3194097A1 (de) 2017-07-26

Similar Documents

Publication Publication Date Title
EP3194097A1 (de) Verfahren zur verbindung von werkstücken die beim generativen fertigungsprozess aus einem rohmaterial hergestellt werden
EP2913124A2 (de) Erzeugung von Druckeigenspannungen bei generativer Fertigung
EP0145897B1 (de) Fügeverfahren
DE102009051479A1 (de) Verfahren und Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine
DE102010046468B4 (de) Generatives Herstellverfahren und Pulver hierzu
EP2886226A2 (de) Belichtung bei generativer Fertigung
DE4031173A1 (de) Verfahren zum herstellen von turbinenscheiben aus zwei legierungen
DE102009034566A1 (de) Verfahren zum Herstellen eines Tanks für Treibstoff
EP3468740B1 (de) Verfahren zum fügen von werkstoffen durch verwendung einer mit einem additiven verfahren hergestellten gitterstruktur
DE102011101302A1 (de) Verfahren zum Herstellen eines Gehäuses mit wenigstens einer Temperierleitung und Gehäuse mit wenigstens einer Temperierleitung
DE102013226664A1 (de) Turbinenläufer und Verfahren zur Herstellung des Turbinenläufers
DE102016113246A1 (de) Verfahren und Vorrichtung zur Erzeugung eines metallischen Werkstoffgemischs bei der additiven Fertigung
EP3338918A1 (de) Schichtbauvorrichtung und schichtbauverfahren zum additiven herstellen zumindest eines bauteilbereichs eines bauteils
WO2019011641A1 (de) Verfahren für ein additiv herzustellendes bauteil mit vorbestimmter oberflächenstruktur
DE102014226839A1 (de) Verfahren zur generativen Fertigung eines Werkstücks
DE102014207622A1 (de) Verfahren zur Herstellung eines Bauteils
EP2695725A1 (de) Elektrostatische Pulveraufbringung bei einem generativem Herstellungsverfahren und Vorrichtung hierfür
WO2014146997A1 (de) Generatives verfahren insbesondere zur herstellung eines überzugs, vorrichtung zur durchführung des verfahrens, überzug und ein bauteilfertigungsverfahren sowie ein bauteil
WO2017162480A1 (de) Verfahren zum additiven herstellen eines bauteils mit mehreren baumaterialien
DE102018203877A1 (de) Verfahren zur generativen herstellung von bauteilen aus ausscheidungsgehärteten werkstoffen
DE102005021642B4 (de) Verfahren zur Herstellung eines einkristallinen Formkörpers
DE102017213468A1 (de) Verfahren zur Herstellung eines Fahrzeugbauteils und Fahrzeugbauteil
EP4151339A1 (de) Additiv hergestelltes bauteil mit einsatzgewinde, herstellungsverfahren dafür sowie bauteil mit drahtgewindeeinsatz installiert im einsatzgewinde
DE102016117766A1 (de) Additive Fertigung unter Verwendung von gegossenem Band-Superlegierungsmaterial
DE102016203901A1 (de) Verfahren und Vorrichtung zum Herstellen zumindest eines Bauteilbereichs eines Bauteils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15816378

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2015816378

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE