WO2016095831A1 - 一种数据多流传输方法、装置、锚点及系统 - Google Patents

一种数据多流传输方法、装置、锚点及系统 Download PDF

Info

Publication number
WO2016095831A1
WO2016095831A1 PCT/CN2015/097694 CN2015097694W WO2016095831A1 WO 2016095831 A1 WO2016095831 A1 WO 2016095831A1 CN 2015097694 W CN2015097694 W CN 2015097694W WO 2016095831 A1 WO2016095831 A1 WO 2016095831A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
anchor point
resource
wireless backhaul
access node
Prior art date
Application number
PCT/CN2015/097694
Other languages
English (en)
French (fr)
Inventor
赖志昌
王自强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15869338.2A priority Critical patent/EP3226604B1/en
Publication of WO2016095831A1 publication Critical patent/WO2016095831A1/zh
Priority to US15/625,983 priority patent/US10492193B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • H04W28/0967Quality of Service [QoS] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data multi-stream transmission method, apparatus, anchor point and system.
  • the future wireless network will combine the network layering and MSA (Multi Streaming Aggregation) technology to make mobile users no matter where they are on the network. They are able to enjoy high-speed and stable data connection services, enabling ultra-wideband, zero-waiting and ubiquitous mobile broadband services, bringing a high-speed, high-quality business experience.
  • MSA Multi Streaming Aggregation
  • Network layering refers to a multi-layer network architecture, including the Host Layer and the Boosting Layer.
  • Figure 1 shows a schematic diagram of the network layered architecture, which can be referenced.
  • the Host Layer is mainly used to ensure The network coverage is mainly composed of Macro Cell.
  • the Host Layer provides the user with signaling and basic data transmission through the established Host link system, providing ubiquitous connectivity and ensuring reliable basic services.
  • the User Link User Equipment, User Equipment
  • Boosting Layer is mainly used to improve network capacity.
  • Boosting Layer provides users with high-speed data transmission through the established Boosting link to provide users with the best users. Business experience.
  • MSA is a key technology of organic aggregation of Host Layer and Boosting Layer. It is a centralized node BBU Pool (Base Band Unit Pool) or SRC (Single Radio Controller) and multiple distribution nodes. Multi-stream aggregation is provided, that is, data on the network side can be sent to the UE through multiple transmission paths, thereby further improving user experience and network capacity.
  • BBU Pool Basic Band Unit Pool
  • SRC Single Radio Controller
  • FIG. 2 is a schematic diagram of a multi-stream transmission of data in the prior art.
  • a UE accesses a cellular network through a base station, and a base station transmits a wireless backhaul device with the Internet (Internet) to enable a presence between the UE and the Internet.
  • the data communication link further enables the UE to access the Internet; the UE accesses the WLAN (Wireless Local Area Network) network through the WiFi AP, and the WiFi AP passes the wireless backhaul device with the Internet to make the UE and the Internet
  • the WiFi AP passes the wireless backhaul device with the Internet to make the UE and the Internet
  • There is a data communication link which in turn enables the UE to access the Internet.
  • the base station and the WiFi AP may be referred to as an access node that the UE accesses the network.
  • the UE may implement a transmission path between multiple base stations owned by the cellular network and the Internet, and/or a transmission path between multiple WiFi APs and the Internet owned by the WLAN network.
  • Multi-stream transmission of data On the basis of the network architecture shown in FIG. 2, when the data is multi-streamed, the MSA service offload/aggregation control point shown in FIG. 2 is used to control the offloading and aggregation of the multi-stream transmission service, and is connected at the base station.
  • the inbound link resources are available and the resources of the WiFi AP access link are available, multiple data transmission paths are enabled to implement multi-stream transmission of data to the UE.
  • the inventor of the present invention has found that in the network architecture shown in FIG. 2, the cellular network and the WLAN network are two independent networks, and the resources are independent, in particular, the first segment of transmission resources close to the base station or the WiFi AP side (
  • the wireless backhaul device of the base station shown in FIG. 2 or the wireless backhaul link between the wireless backhaul device of the WiFi AP and the wireless backhaul device of the Internet is also independent and cannot be shared;
  • the base station access link resource is available, and the resources of the WiFi AP access link are available, the multi-stream transmission of the data is enabled, and the resource of the base station or the WiFi AP side wireless backhaul link is not considered, if the wireless backhaul chain is available. If the resources of the road are insufficient, the transmission rate of data caused by multi-stream transmission will become low, resulting in failure to provide a high-speed user service experience brought by multi-stream transmission.
  • an embodiment of the present invention provides a data multi-stream transmission method, apparatus, anchor point, and system, to solve the prior art, only when a base station access link resource is available, and a resource of a WiFi AP access link is available.
  • the transmission rate of data caused by multi-stream transmission will become low, and the problem of high-speed user service experience brought by multi-stream transmission cannot be provided.
  • the embodiment of the present invention provides the following technical solutions:
  • an embodiment of the present invention provides a data multi-stream transmission system, including: at least one access node, an anchor point, and a wireless backhaul device; and each access node and the anchor point are established by using a wireless backhaul device.
  • the anchor point is used to acquire resource availability data of each data transmission path between the user equipment UE and the anchor point, where the resource availability data includes wireless between each access node and the anchor point. Retrieving the resource data of the link, determining a plurality of target data transmission paths according to the resource availability data of the data transmission paths, and transmitting the service data to the UE by using the plurality of target data transmission paths.
  • the plurality of target data transmission paths include a corresponding wireless backhaul link established between the target access node and the anchor point by the wireless backhaul device, where the target access node transmits the at least one access node Access node for service data;
  • the target access node is configured to send service data to the UE by using a corresponding wireless backhaul link.
  • an embodiment of the present invention provides a data multi-stream transmission apparatus, where the macro-micro integrated network includes: at least one access node, an anchor point, and a wireless backhaul device; Data transmission is performed between the ingress node and the anchor point by using a wireless backhaul link established by the wireless backhaul device; the device is applied to the anchor point, and the device includes:
  • a data acquisition module configured to acquire resource availability data of each data transmission path between the user equipment UE and the anchor point, where the resource availability data includes a wireless backhaul chain between each access node and the anchor point Resource data of the road;
  • a path determining module configured to determine, according to resource availability data of each of the data transmission paths, a plurality of target data transmission paths;
  • a multi-stream transmission module configured to multi-flow service data by using the plurality of target data transmission paths Transmitting to the UE, where the multiple target data transmission paths include a corresponding wireless backhaul link established between the target access node and the anchor point by using a wireless backhaul device, where the target access node is An access node that transmits service data in the at least one access node.
  • an embodiment of the present invention provides an anchor point, including the data multi-stream transmission apparatus described above.
  • an embodiment of the present invention provides a data multi-stream transmission method, where the macro-micro integrated network includes: at least one access node, an anchor point, and a wireless backhaul device; Data transmission is performed between the ingress node and the anchor point by using a wireless backhaul link established by the wireless backhaul device; the method is applied to the anchor point, and the method includes:
  • resource availability data of each data transmission path between the user equipment UE and the anchor point where the resource availability data includes resource data of a wireless backhaul link between each access node and the anchor point;
  • the multiple target data transmission paths include a correspondence established between the target access node and the anchor point by using a wireless backhaul device
  • the wireless backhaul link, the target access node is an access node that transmits service data in the at least one access node.
  • the anchor point may acquire resource availability data of each data transmission path between the UE and the anchor point, where the resource availability data includes each access. And the resource data of the wireless backhaul link between the node and the anchor point, the anchor point may determine, according to the resource availability data of each of the data transmission paths, a plurality of target data transmission paths, and transmit the multiple target data
  • the path transmits the service data to the UE in multiple streams, where the multiple target data transmission paths include a corresponding wireless backhaul link established between the target access node and the anchor point by using a wireless backhaul device, where the target An access node is an access node that transmits service data in the at least one access node; and the target access node sends service data to the UE by using a corresponding wireless backhaul link, so that the UE passes the multiple targets.
  • the data transmission path acquires the service data.
  • the data multi-stream transmission method provided by the embodiment of the present invention considers resource data of a wireless backhaul link between each access node and the anchor point as a selection target.
  • the basis of the data transmission path avoids the fact that the prior art does not consider whether the resources of the base station or the WiFi AP side wireless backhaul link are available, so that the rate of data multi-stream transmission is guaranteed.
  • the embodiment of the invention realizes dynamic multi-stream transmission under the macro-micro integrated network architecture and combines the backhaul resources, and provides a high-speed, high-quality data multi-stream transmission user service experience; and simultaneously realizes wireless access resources and
  • the maximum utilization of the backhaul resources avoids the congestion and packet loss caused by the shortage of the backhaul resources, and avoids the waste of the access side radio resources.
  • FIG. 1 is a schematic diagram of a prior art network layered architecture
  • FIG. 3 is a network architecture diagram of a system for implementing a data multi-stream transmission method according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a data multi-stream transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of data multi-stream transmission according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a target data transmission path architecture according to an embodiment of the present invention.
  • FIG. 7 is another schematic diagram of a target data transmission path architecture according to an embodiment of the present invention.
  • FIG. 8 is still another schematic diagram of a target data transmission path architecture according to an embodiment of the present invention.
  • FIG. 9 is still another schematic diagram of a target data transmission path architecture according to an embodiment of the present invention.
  • FIG. 10 is still another schematic diagram of a target data transmission path architecture according to an embodiment of the present invention.
  • FIG. 11 is still another schematic diagram of a target data transmission path architecture according to an embodiment of the present invention.
  • FIG. 12 is still another schematic diagram of a target data transmission path architecture according to an embodiment of the present invention.
  • FIG. 13 is another flowchart of a data multi-stream transmission method according to an embodiment of the present invention.
  • FIG. 14 is still another flowchart of a data multi-stream transmission method according to an embodiment of the present invention.
  • FIG. 15 is a structural block diagram of a data multi-stream transmission apparatus according to an embodiment of the present invention.
  • FIG. 16 is a structural block diagram of a data acquiring module according to an embodiment of the present invention.
  • FIG. 17 is a block diagram showing another structure of a data multi-stream transmission apparatus according to an embodiment of the present invention.
  • FIG. 18 is a structural block diagram of a path determining module according to an embodiment of the present invention.
  • FIG. 19 is a structural block diagram of a multi-stream transmission module according to an embodiment of the present invention.
  • FIG. 20 is a block diagram showing the hardware structure of an anchor point according to an embodiment of the present invention.
  • FIG. 3 is a network architecture diagram of a system for implementing a data multi-stream transmission method according to an embodiment of the present invention.
  • the network architecture represents a macro-integrated network.
  • the network architecture may include: at least one access node 20
  • the anchor point 30 and the wireless backhaul device 40; the anchor point 30 may be a device such as a macro station that has the function of supporting connection Backhaul, supporting UE access, and supporting resource data acquisition, allocation, and management of other nodes and links.
  • the access node 20 may be a Small Cell (such as a base station, etc.), or may be a WiFi AP, etc.; each access node 20 is configured with a wireless backhaul device 40, and each access node 20 passes the set wireless backhaul.
  • the device 40 can establish a wireless backhaul link with the wireless backhaul device 40 provided by the anchor point 30.
  • the data can be transmitted between the access nodes and the anchor point through a wireless backhaul link established by the wireless backhaul device. ;
  • the UE and the anchor point can directly perform data transmission through the anchor air interface access link, thereby bypassing the access node;
  • the data transmission path between the UE and the anchor point includes:
  • the data transmission path of the UE-access node-wireless backhaul link-anchor includes: a data transmission path of the UE-base station-wireless backhaul link-anchor, and there may be multiple such data transmission paths, such as When there are multiple base stations, the number of corresponding wireless backhaul links may be multiple; and the data transmission path of the UE-WiFi AP-wireless backhaul link-anchor, such a data transmission path may also be If there are multiple, if there are multiple WiFi APs, the number of corresponding wireless backhaul links may be multiple.
  • the wireless backhaul mode used in the wireless backhaul link in the embodiment of the present invention may be a point-to-multi-point (P2MP) wireless transmission technology, such as Sub-6GHz frequency band Unlicensed transmission, Sub. Self-backhaul for licensed transmission or anchoring in the -6 GHz band; it can also be a point-to-point (P2P) wireless transmission technology, such as the Sub-6 GHz band, the conventional microwave band, or High frequency microwave transmission above 60 GHz; it can also be a combination of the various wireless transmission technologies mentioned above.
  • P2MP point-to-multi-point
  • P2P point-to-point
  • P2P point-to-point
  • other wireless transmission technologies such as P2P fiber and P2MP fiber, can be used, and the above is only an example.
  • the distribution point of the multi-stream data transmission is at the anchor point, and the convergence point is at the UE; from the UE to the anchor point, the distribution point of the multi-stream data transmission is at the UE, and the convergence point is at the anchor point.
  • the centralized control point of the dynamic multi-stream data transmission is at the anchor point, and the anchor point is used to uniformly decide and control the transmission of the multi-stream data.
  • FIG. 4 illustrates a data multi-stream transmission method according to an embodiment of the present invention.
  • the method may be based on the macro-micro integrated network shown in FIG. 3, and referring to FIG. 4, the method may include:
  • Step S100 The anchor point acquires resource availability data of each data transmission path between the UE and the anchor point, where the resource availability data includes a wireless backhaul link between each access node and the anchor point.
  • Resource data includes a wireless backhaul link between each access node and the anchor point.
  • the data transmission path between the UE and the anchor point may include: a data transmission path of the UE-access node-wireless backhaul link-anchor, and a data of the UE-anchor air interface access link-anchor point. a transmission path; wherein the data transmission path of the UE-access node-wireless backhaul link-anchor may further comprise: at least one data transmission path of the UE-Base Station-Wireless Backhaul Link-anchor formed by the at least one base station And/or at least one data transmission path of the UE-WiFi AP-Wireless Backhaul Link-Anchor composed of at least one WiFi AP.
  • the resource availability data of each data transmission path between the UE and the anchor point acquired by the anchor point may include: air interface access link resource data between each access node and the UE, and each access The resource data of the wireless backhaul link between the node and the anchor point, and the resource data of the anchor air interface access link between the UE and the anchor point.
  • the anchor point may also obtain transmission link resource data between the anchor point and the core network, and obtain resource information such as available bandwidth, for example, the anchor point may detect the transmission link resource between the anchor point and the core network in real time. After processing, the resource information such as available bandwidth is obtained.
  • the embodiment of the present invention detects resource data of a wireless backhaul link between each access node and the anchor point, and detects each access node and the anchor point.
  • the resource data of the wireless backhaul link guides the subsequent data multi-stream transmission process, so that the prior art does not consider whether the resources of the base station or the WiFi AP side wireless backhaul link are available.
  • Step S110 The anchor point determines, according to the resource availability data of each of the data transmission paths, a plurality of target data transmission paths, and the service data is multi-stream transmitted to the UE by using the multiple target data transmission paths, where
  • the plurality of target data transmission paths include a corresponding wireless backhaul link established between the target access node and the anchor point by the wireless backhaul device, where the target access node transmits the service in the at least one access node Access node for data;
  • the anchor point may determine whether data multi-stream transmission is currently enabled; whether multi-path transmission (ie, multi-stream transmission) is adopted between the terminal UE and the anchor point, depending on A plurality of factors, including whether the service requested by the UE needs to adopt multi-path transmission, whether the UE supports multi-path transmission, whether there are multiple transmission paths between the UE and the anchor, and resources on multiple transmission paths between the UE and the anchor point. Whether the availability matches the multipath transmission (such as whether the resources on multiple transmission paths between the UE and the anchor can support multipath transmission), the resource availability between the anchor and the core network matches the multipath transmission (such as anchor Whether the resources between the point and the core network can support multipath transmission, etc.
  • multipath transmission ie, multi-stream transmission
  • the terminal UE does not enable multipath transmission when the following conditions occur:
  • the terminal UE does not support multipath transmission
  • the terminal UE can enable multipath transmission when the following conditions occur:
  • the terminal UE supports multipath transmission
  • Any one of the transmission path resources between the UE and the anchor cannot transmit all the services requested by the UE, and needs to be transmitted through multiple transmission paths.
  • the resources between the anchor point and the core network are sufficient, and the multi-path transmission between the UE and the anchor point can be satisfied.
  • the anchor point can support the following multi-stream aggregation transmission scheme according to the service request of the UE and the availability of the resource:
  • UE-access node-wireless backhaul link-anchor wherein the wireless backhaul link may have multiple links
  • the multiple target data transmission paths refer to the path of multi-stream data transmission in the embodiment of the present invention
  • the data transmission path of the UE-access node-wireless backhaul link-anchor is a multi-stream data transmission process.
  • the necessary data transmission path, so the plurality of target data transmission paths necessarily include a corresponding wireless backhaul link established between the target access node and the anchor point by the wireless backhaul device; the target access node and the The wireless backhaul link between the anchor points and the data link between the target access node and the UE constitute a completed data transmission path.
  • the target access node is an access node that transmits service data in at least one access node, that is, an access node selected for the multi-stream data transmission selected by the embodiment of the present invention; the target access node may be the selected target base station and/or Target WiFi AP.
  • Step S120 The target access node sends the service data to the UE by using a corresponding wireless backhaul link.
  • the embodiment of the present invention does not use the data transmission path of the UE-anchor air interface access link-anchor to perform multi-stream data transmission, the adopted UE-access node-wireless backhaul link-anchor There are a plurality of points, and the embodiment of the present invention can use only the target access node to pass the corresponding wireless backhaul link.
  • Service data is sent to the UE;
  • the service data is allocated to the UE-access node-wireless backhaul link-
  • the data transmission path of the anchor point is transmitted on the data transmission path of the UE-anchor air interface access link-anchor; in the embodiment of the present invention, the target access node sends part of the service data through the corresponding wireless backhaul link.
  • the anchor point will also transmit part of the service data directly to the UE through the anchor air interface access link.
  • the UE may obtain service data by using multiple UE-access node-wireless backhaul link-anchor data transmission paths; or may pass at least one UE-access node-wireless backhaul link-anchor
  • the data transmission path of the point and the data transmission path of the UE-anchor air interface access link-anchor jointly acquire service data.
  • the data multi-stream transmission method provided by the embodiment of the present invention is based on a macro-micro integrated network, and data transmission is performed between each access node and the anchor point through a wireless backhaul link established by the wireless backhaul device;
  • the anchor point may acquire resource availability data of each data transmission path between the UE and the anchor point, where the resource availability data includes a wireless backhaul between each access node and the anchor point.
  • the resource data of the link, the anchor point may determine a plurality of target data transmission paths according to the resource availability data of the data transmission paths, and transmit the service data to the UE by using the multiple target data transmission paths.
  • the plurality of target data transmission paths include a corresponding wireless backhaul link established between the target access node and the anchor point by using a wireless backhaul device, where the target access node is in the at least one access node.
  • the data multi-stream transmission method provided by the embodiment of the present invention considers the resource data of the wireless backhaul link between each access node and the anchor point as the basis for selecting the target data transmission path, and avoids the prior art not considering Whether the resources of the base station or the WiFi AP side wireless backhaul link are available, so that the rate of data multi-stream transmission is guaranteed.
  • the embodiment of the invention realizes dynamic multi-stream transmission under the macro-micro integrated network architecture and combines the backhaul resources, and provides a high-speed, high-quality data multi-stream transmission user service experience; and simultaneously realizes wireless access resources and The maximum utilization of the backhaul resources avoids the congestion and packet loss caused by the shortage of the backhaul resources, and avoids the waste of the access side radio resources.
  • the foregoing describes the multi-stream data transmission from the anchor point to the UE direction, the distribution point of the multi-stream data transmission is at the anchor point, and the convergence point is at the UE; the embodiment of the present invention can also support the direction from the UE to the anchor point.
  • Multi-stream data transmission, the distribution point of multi-stream data transmission is at the UE, and the convergence point is at the anchor point.
  • the UE may transmit the service data to the anchor point by using the multiple target data transmission paths, where the multiple target data transmission paths include a correspondence established between the target access node and the anchor point by using a wireless backhaul device.
  • the anchor point can receive the service data sent by the UE by using the multiple target data transmission paths, where the multiple target data transmission paths include the target access node and the anchor point The corresponding wireless backhaul link established by the wireless backhaul device.
  • the anchor may perform data splitting at the IP layer, and distribute the IP data packet to different transmission paths, where the specific transmission path is determined according to the foregoing method.
  • the UE aggregates and transmits to the application layer.
  • the data stream generated by the UE application layer is multi-path shunted at the IP layer, and the IP data packets are distributed to different transmission paths for transmission.
  • the data streams are transmitted to the anchor point through multiple transmission paths, the data streams are aggregated at the IP layer. And then sent to the core network.
  • the anchor point supports the identification of the user IP data stream, and distributes the user IP data packet to different transmission paths for transmission.
  • the offloading of the user IP data stream can be implemented by installing an application program, or by modifying the operating system to implement the offloading and aggregation of the user IP data packets.
  • the offloading and aggregation transmission of the IP layer data packet may determine the transmission path of the IP data packet according to the availability of resources on the available multiple transmission paths, including bandwidth, delay, packet loss rate, and jitter. details as follows:
  • the data packet when the resources of each target data transmission path are greater than the set value, the data packet is preferentially offloaded to the transmission path with less resource consumption; when the resources of each target data transmission path are greater than the set value, The target data transmission path can ensure the user service experience.
  • the data packet can be preferentially offloaded to the transmission path with less resource consumption when the target data transmission path can ensure the user service experience.
  • FIG. 5 shows a schematic diagram of data multi-stream transmission. Referring to FIG. 5, if the multiplex transmission selects the transmission path 1 and the transmission path 2 to provide data transmission for the UE service, both the transmission path 1 and the transmission path 2 can provide the same. When the user service experience is performed, the user service data is preferentially distributed to the transmission path 2 for transmission;
  • the important high priority data packet is offloaded to the transmission path with relatively sufficient resources, and the low priority data packet is offloaded to the relatively tight transmission of the resource.
  • the resource of the target data transmission path is smaller than the set value, the resource of the transmission path is tight.
  • the embodiment of the present invention can preferentially offload important high-priority data packets to the quality assurance.
  • the low priority packets are offloaded to the transmission path that cannot provide quality assurance. For example, in FIG.
  • the wireless backhaul of the base station uses a dedicated licensed channel, and the spectrum is small, and the bandwidth that can be provided is small, which can provide quality assurance
  • the wireless backhaul of the WiFi AP uses the Unlicensed spectrum, and the spectrum is more. , can provide a large peak bandwidth, but can not provide quality assurance. If the multiplex transmission selects the transmission path 2 and the transmission path 3 to provide data transmission for the UE service, when the UE service traffic is large, the high priority data needs to be offloaded to the transmission path 2 for transmission, and the low priority data is divided to Transmission on transmission path 3;
  • the multi-stream transmission scheme is not selected, and only one of the transmission paths is selected to transmit the UE data.
  • the anchor point when determining the target data transmission path, may be according to the signal coverage area where the UE is located, and the air interface between each access node and the UE accesses the link resource data, and each access node and the anchor point
  • the resource data of the wireless backhaul link and the resource data of the anchor air interface access link between the UE and the anchor point are determined to be in the signal coverage area, and the link resource (the air interface in the signal coverage area)
  • the inbound resource data, or the resource of the wireless backhaul link, the data transmission path that satisfies the predetermined condition is the target data transmission path; the following description is performed by the access node including the base station and the WiFi AP, and the number of the base stations may be at least one, WIFI The number of the APs may also be at least one.
  • the multiple target data transmission paths for performing multi-stream data transmission provided by the embodiments of the present invention may include the following situations:
  • Figure 6 shows an alternative schematic diagram of the target data transmission path architecture, which can be referenced;
  • the embodiment of the present invention may be in the UE and the WiFi AP coverage area, the air interface.
  • the access link resources are sufficient, the wireless backhaul link resources between the base station and the anchor point are sufficient, the wireless backhaul link resources between the WiFi AP and the anchor point are sufficient, and the UE has a high rate service request;
  • the multi-stream transmission can be performed through the data transmission path shown in the case 1.
  • the schematic diagram of the target data transmission path in the case where the base station and the WiFi AP are separate devices is shown in FIG.
  • the wireless backhaul links establish a connection with the anchor point.
  • the wireless backhaul link may be a point-to-multipoint transmission technology, which is shared by the base station and the WiFi AP, and the wireless backhaul link may also be a point-to-point transmission technology, which respectively transmits the base station and the WiFi AP service flow.
  • Figure 6 shows a point-to-multipoint wireless backhaul link between a small station and a WiFi AP.
  • FIG. 7 shows another alternative schematic diagram of the target data transmission path architecture, which can be referred to;
  • FIG. 7 is a schematic structural diagram of a target data transmission path in the case where the base station and the WiFi AP are unified devices, as shown in FIG. 7 .
  • the base station device has a built-in WiFi AP function, that is, the base station is integrated with the WiFi AP, and establishes a connection with the anchor point through the shared wireless backhaul link.
  • the anchor point is a decision control point for multi-stream transmission, and according to the resource availability of the UE access link, the availability of the wireless backhaul link resource, the resources required for the UE service request, and the anchor point and the core.
  • the availability of transmission resources between networks can dynamically control whether to transmit UE services using multiple paths of "UE-Base Station-Wireless Backhaul Link-Anchor" + "UE-WiFi AP-Wireless Backhaul Link-Anchor" Data, providing high-speed service stream data transmission for the UE.
  • the anchor control decision can be selected.
  • the UE service transmission is provided only by "UE-Base Station-Wireless Backhaul Link-Anchor" or only by UE-WiFi AP-Wireless Backhaul Link-Anchor.
  • the wireless backhaul between the base station and the anchor point, and the wireless backhaul between the WiFi AP and the anchor point may be one physical link or multiple physical links.
  • the two physical links may include an Unlicensed wireless backhaul link and a Licensed wireless backhaul link; the Unlicensed wireless backhaul link and the Licensed wireless backhaul link may enrich the resources of the wireless backhaul link.
  • One of the typical applications is that the bandwidth requirement is small, and the important high-priority data is preferentially transmitted on the Licensed backhaul link, and the traffic with large traffic and medium-low priority data is distributed to the Unlicensed backhaul link for transmission.
  • Case 2 Multi-stream transmission of multiple "UE-Base Station-Wireless Backhaul Link-Anchor" data transmission paths. If the base station includes base station 1 and base station 2, "UE-Base Station 1 - Wireless Backhaul Link” may be employed. - anchor point + "UE - base station 2 - wireless backhaul link - anchor point" for multi-stream transmission;
  • the air interface access link resources of the UE and the base station 1 are sufficient, the air interface access link resources of the UE and the base station 2 are sufficient, and the wireless back between the base station 1, the base station 2 and the anchor point is sufficient.
  • the embodiment of the present invention may adopt “UE-Base Station 1 - Wireless Backhaul Link-Anchor Point” + “UE-Base Station 2 - Wireless Backhaul Link” when the link resource is sufficient and the UE has a high rate of service request.
  • the data transmission path of the anchor point is multi-streamed.
  • FIG. 8 shows still another alternative schematic diagram of the target data transmission path architecture, which can be referred to.
  • the base station 1 and the base station 2 share the same point-to-multipoint wireless backhaul link, and establish a transmission connection with the anchor point.
  • FIG. 9 shows still another alternative schematic diagram of the target data transmission path architecture, which can be referred to.
  • the base station 1 and the base station 2 adopt independent point-to-point wireless backhaul links, respectively establishing transmission with the anchor point. connection.
  • the wireless backhaul link between the base station 1, the base station 2 and the anchor point may also be a multi-channel link, such as an Unlicensed wireless backhaul link plus a Licensed wireless backhaul link, or two Licensed Wireless return channel, etc.
  • the anchor point is a decision control point of the UE multi-stream transmission, and the dynamic control uses “UE-Base Station 1 - Wireless Backhaul Link-Anchor Point” and “UE-Base Station 2 - Wireless Backhaul Link”.
  • the anchor point can be selected only by The "UE-Base Station 1-Wireless Backhaul Link-Anchor" transmission path transmits UE traffic, or only the UE-Base Station 2 - Wireless Backhaul Link-Anchor" transmission path transmits UE traffic.
  • the embodiment of the present invention performs multiple multi-stream data transmission by using a plurality of "UE-base station-radio backhaul link-anchor" data transmission paths with the number of base stations being 2, the value of the number of base stations may be regarded as actual conditions.
  • the description of the number of base stations is 2 (base station 1 and base station 2), which is only an optional
  • the description of the data multi-stream transmission using multiple "UE-Base Station-Wireless Backhaul Link-Anchor" data transmission paths described in the embodiments of the present invention is easier to understand.
  • UE in anchor point small station, WiFi-AP coverage area, "UE-Base Station-Wireless Backhaul Link-Anchor", “UE-WiFi AP-Wireless Backhaul Link-Anchor” and "UE-Anchor
  • UE-Base Station-Wireless Backhaul Link-Anchor The resources of any one of the transmission paths of the point-to-air access link-anchor cannot satisfy the transmission of the service requested by the UE.
  • the anchor point can dynamically control whether to use multi-path transmission according to the resource information on each transmission path, and Which transmission paths are used to provide service transmission for the UE; when the resources of each transmission path are both small, the embodiment of the present invention combines "UE-Base Station-Wireless Backhaul Link-Anchor", "UE-WiFi AP-Wireless” The backhaul link-anchor and the UE-anchor air interface access link-anchor point perform multi-stream data transmission.
  • FIG. 10 shows still another alternative schematic diagram of the target data transmission path architecture, which can be referred to.
  • FIG. 10 shows the use of “UE-Base Station-Wireless Backhaul Link-Anchor Point”, “UE-WiFi AP-
  • the three transmission paths of the wireless backhaul link-anchor and the UE-anchor air interface access link-anchor are the multi-stream transmission networking provided by the UE.
  • FIG. 11 shows still another alternative schematic diagram of the target data transmission path architecture
  • FIG. 12 shows Another alternative schematic diagram of the target data transmission path architecture, wherein FIG. 11 shows the use of "UE-anchor air interface access link-anchor” + “UE-base station-wireless backhaul link-anchor” "Multi-stream transmission networking for the UE, Figure 12 shows the UE with "UE-Anchor Air Port Access Link-Anchor” + “UE-WiFi AP-Wireless Backhaul Link-Anchor” Multi-streaming networking.
  • the wireless backhaul shown in Figure 10 to Figure 12 is a point-to-multipoint transmission technology.
  • the base station and the WiFi AP have only one backhaul link.
  • the actual networking can be point-to-point transmission technology, which can be multiple. Return the link.
  • the resource availability data of each data transmission path between the UE and the anchor point acquired by the anchor point may include: air interface access link resource data between each access node and the UE, Resource data of the wireless backhaul link between each access node and the anchor point, and the UE and The anchor air interface between the anchor points accesses the resource data of the link.
  • each access node may dynamically detect the air interface access link resource data between the access node and the UE in real time, and after the pre-processing, report the processed link resource data to the An anchor point; wherein the air interface access link resource data may include: resource data such as available bandwidth and congestion status of the access link.
  • the access node is a base station
  • the base station can dynamically detect the air interface access link resource data between the UE and the base station in real time, and after realizing, access the air interface such as the available bandwidth and congestion of the access link in real time.
  • the link resource data is reported to the decision point anchor point.
  • the WiFi AP can dynamically detect the air interface access link resource data between the UE and the WiFi AP in real time.
  • the air interface access link resource data such as the available bandwidth and congestion of the access link, is reported to the decision point anchor point;
  • the method for obtaining resource data of the wireless backhaul link between each access node and the anchor point may be obtained in multiple manners: one way is the wireless backhaul device itself. Dynamically detecting the status of the corresponding wireless backhaul link. After the detection result is processed, the resource data such as available bandwidth and link quality (such as available bandwidth, delay, jitter, packet loss rate, etc.) is reported to the anchor point; The method is to detect the wireless backhaul link resource between the access node and the anchor point by using an access node (base station or WiFi AP) and an anchor point, and after the pre-processing, the anchor point can obtain the available after pre-processing. Resource data such as bandwidth and link quality (such as available bandwidth, delay, jitter, packet loss rate, etc.).
  • bandwidth and link quality such as available bandwidth, delay, jitter, packet loss rate, etc.
  • the anchor point needs to comprehensively consider the wireless backhaul resource detection result between the base station or the WiFi AP and the anchor point, so as to accurately obtain the anchor point.
  • Resource information such as available bandwidth.
  • the anchor point can detect the air interface access link resource between the UE and the anchor point in real time, and after processing, obtain resource information such as available bandwidth and congestion;
  • the anchor air interface between the anchor points accesses the resource data of the link.
  • the anchor points summarize the resource information of each of the foregoing transmission paths, and after integration, the resource availability data of each transmission path between the UE and the anchor point can be respectively obtained.
  • the UE-Base Station-Wireless Backhaul Link-Anchor can be obtained by combining the air interface access link resources between the UE and the base station, and the resources of the wireless backhaul link between the base station and the anchor point.
  • the available resources of this transmission path such as available bandwidth.
  • resources of other transmission paths can be obtained.
  • the maximum utilization of the radio access resources and the backhaul resources is realized, and the congestion and packet loss caused by the shortage of the backhaul resources are avoided, and the waste of the access side radio resources is avoided;
  • the wireless backhaul link can distinguish between WLAN service data and cellular service data, thereby implementing fine management of wireless backhaul resources;
  • the anchor point acts as a service centralized control point, and can dynamically implement flow control according to the resource availability of the wireless backhaul link, or dynamically select a multi-stream transmission scheme to avoid congestion of the wireless backhaul link. Affect the user's business experience.
  • the data multi-stream transmission method provided by the embodiment of the present invention is described below with reference to an anchor point.
  • the data multi-stream transmission method described below can be mutually referenced with the data multi-stream transmission method described above in the macro-micro-integrated network perspective. .
  • FIG. 13 is another flowchart of a data multi-stream transmission method according to an embodiment of the present disclosure. The method is applied to an anchor point based on a macro-micro integrated network. Referring to FIG. 13, the method may include:
  • Step S200 Acquire resource availability data of each data transmission path between the UE and the anchor point, where the resource availability data includes resources of a wireless backhaul link between each access node and the anchor point. data;
  • the data transmission path between the UE and the anchor point includes: 1. UE-access node-wireless backhaul link-anchor; 2. UE-anchor air interface access link-anchor;
  • the resource availability data of the data transmission path may include: air interface access link resource data between each access node and the UE, resource data of the wireless backhaul link between each access node and the anchor point, and the UE
  • the anchor air interface between the anchor and the anchor accesses the resource data of the link.
  • the method for obtaining the air interface access link resource data between the access node and the UE may be: dynamically detecting the air interface access link resource data between the access node and the UE in real time in each access node, and detecting After the air interface access link resource data is preprocessed, the pre-processed air interface access link resource data uploaded by each access node is obtained;
  • Obtaining the resource data of the wireless backhaul link between each access node and the anchor point may be The following is: after the wireless backhaul device dynamically detects the resource data of the corresponding wireless backhaul link, and preprocesses the detected resource data, and obtains the preprocessed resource data uploaded by the wireless backhaul device; or Obtaining the detected pre-processed resource data when the ingress node and the anchor point detect the resource data of the wireless backhaul link between the access node and the anchor point;
  • the method for obtaining the resource data of the anchor air interface access link between the UE and the anchor point may be: the anchor point detects the air interface access link resource data between the UE and the anchor point in real time, and acquires the detected UE and the anchor point.
  • the air interface between the access points is connected to the resource data.
  • Step S210 Determine, according to resource availability data of each piece of data transmission path, a plurality of target data transmission paths;
  • the embodiment of the present invention may access the link resource data according to the signal coverage area of the UE, the air interface between each access node and the UE, and the wireless backhaul between each access node and the anchor point.
  • the resource data of the link and the resource data of the anchor air interface access link between the UE and the anchor point are determined to be in the signal coverage area, and the data transmission path of the link resource meeting the predetermined condition is the target data transmission path. .
  • the conditions for specifically determining the target data transmission path in various cases are described above, and can be referred to.
  • Step S220 Multi-streaming service data to the UE by using the multiple target data transmission paths, where the multiple target data transmission paths include a wireless backhaul device between the target access node and the anchor point And establishing a corresponding wireless backhaul link, where the target access node is an access node that transmits service data in the at least one access node.
  • the data packet of the service data is offloaded to the transmission path with less resource consumption; the resource of the target data transmission path may be less than When fixed, the important high-priority data packets are offloaded to the relatively sufficient resource transmission path, and the low-priority data packets are offloaded to the relatively tight resource transmission path.
  • the target data transmission path may include an anchor between the UE and the anchor point, in addition to a corresponding wireless backhaul link established between the target access node and the anchor point by using the wireless backhaul device.
  • the corresponding wireless backhaul link established between the target access node and the anchor point by using the wireless backhaul device may include: establishing, by the base station and the anchor point, by using a wireless backhaul device. At least one wireless backhaul link; and/or at least one wireless backhaul link established between the WIFI AP and the anchor through the wireless backhaul device.
  • the above describes the specific situation, and can be referred to, and details are not described herein again.
  • the embodiment of the present invention may determine whether to enable the data multi-stream transmission before determining the multiple target data transmission paths.
  • the embodiment of the present invention may support the multi-stream transmission according to the service type requested by the UE. Sex, the number of transmission paths between the UE and the anchor, the availability of resources on the multiple transmission paths between the UE and the anchor, and the availability of resources between the anchor and the core network to determine whether data multi-stream transmission is enabled;
  • the service type requested by the UE needs to adopt multi-path transmission, the UE supports multi-path transmission, the number of transmission paths between the UE and the anchor point is multiple, and the resource availability and multi-path on multiple transmission paths between the UE and the anchor point
  • the data multi-stream transmission is enabled to determine the plurality of target data transmission paths after the data multi-stream transmission is enabled.
  • FIG. 14 is still another flowchart of the data multi-stream transmission method provided by the embodiment of the present invention.
  • the method may include:
  • Step S300 Obtain air interface access link resource data between each access node and the UE, resource data of the wireless backhaul link between each access node and the anchor point, and between the UE and the anchor point. Resource data of the anchor air interface access link;
  • Step S310 determining whether data multi-stream transmission is enabled, if yes, executing step S320; if not, executing step S340,
  • Step S320 determining that the data coverage path that the UE is in the signal coverage area in which the link resource meets the predetermined condition is the target data transmission path;
  • Step S330 the service data is multi-streamed to the UE by using the multiple target data transmission paths;
  • Step S340 ending the process.
  • the UE may transmit the service data to the anchor point by using the multiple target data transmission paths, where the multiple target data transmission paths include the target access node and the anchor point established by the wireless backhaul device. a corresponding wireless backhaul link; correspondingly, the anchor point may receive the service data sent by the UE by using the multiple target data transmission paths, where the multiple target data transmission paths include between the target access node and the anchor point Corresponding wireless backhaul established by wireless backhaul device link.
  • the data multi-stream transmission method provided by the embodiment of the present invention realizes dynamic multi-stream transmission under the macro-micro integrated network architecture and combines the backhaul resources, and provides a high-speed, high-quality data multi-stream transmission user service experience; At the same time, the maximum utilization of the radio access resources and the backhaul resources is realized, and the congestion and packet loss caused by the shortage of the backhaul resources are avoided, and the waste of the access side radio resources is avoided.
  • the data multi-stream transmission apparatus provided by the embodiment of the present invention is described below.
  • the data multi-stream transmission apparatus described below can refer to the data multi-stream transmission method described above with an anchor point angle.
  • FIG. 15 is a structural block diagram of a data multi-stream transmission apparatus according to an embodiment of the present invention.
  • the apparatus is applied to an anchor point based on a macro-micro integrated network.
  • the data multi-stream transmission apparatus may include:
  • the data obtaining module 100 is configured to acquire resource availability data of each data transmission path between the UE and the anchor point, where the resource availability data includes a wireless backhaul between each access node and the anchor point. Resource data of the link;
  • the path determining module 200 is configured to determine, according to the resource availability data of each of the data transmission paths, a plurality of target data transmission paths;
  • the multi-stream transmission module 300 is configured to multi-stream traffic data to the UE by using the multiple target data transmission paths, where the multiple target data transmission paths include a target access node and the anchor point And the target access node is an access node that transmits service data in the at least one access node by using a corresponding wireless backhaul link established by the wireless backhaul device.
  • the target data transmission path may include an anchor between the UE and the anchor point, in addition to a corresponding wireless backhaul link established between the target access node and the anchor point by using the wireless backhaul device.
  • the corresponding wireless backhaul link established between the target access node and the anchor point by using the wireless backhaul device may include: at least one wireless established between the base station and the anchor point by using the wireless backhaul device. Returning the link; and/or at least one wireless backhaul link established between the WIFI AP and the anchor through the wireless backhaul device.
  • the above describes the specific situation, and can be referred to, and details are not described herein again.
  • FIG. 16 shows an optional structure of the data obtaining module 100.
  • the data obtaining module 100 may include:
  • the first data acquiring unit 110 is configured to acquire air interface access link resource data between each access node and the UE;
  • the anchor point can dynamically detect the air interface access link resource data between the access node and the UE in real time, and perform pre-processing on the detected air interface access link resource data to obtain each connection.
  • the second data acquiring unit 120 is configured to acquire resource data of a wireless backhaul link between each access node and the anchor point;
  • the anchor point may dynamically detect the resource data of the corresponding wireless backhaul link in the wireless backhaul device, and perform pre-processing on the detected resource data to obtain the pre-processed resource data uploaded by the wireless backhaul device. Or acquiring the detected pre-processed resource data when the access node and the anchor point detect the resource data of the wireless backhaul link between the access node and the anchor point;
  • the third data obtaining unit 130 is configured to acquire resource data of an anchor air interface access link between the UE and the anchor point.
  • the first data acquiring unit may be configured to: in the real-time, dynamically detect, by the access node, the air interface access link resource data between the access node and the UE, and detect the detected air interface. After the inbound resource data is preprocessed, the pre-processed air interface access link resource data uploaded by each access node is obtained;
  • the second data obtaining unit may be configured to: after the wireless backhaul device dynamically detects the resource data of the corresponding wireless backhaul link, and preprocess the detected resource data, obtain the wireless backhaul device.
  • the pre-processed resource data is uploaded; or the detected pre-processed resource data is acquired when the access node and the anchor point detect the resource data of the wireless backhaul link between the access node and the anchor point. ;
  • the third data acquiring unit may be configured to use the third acquiring execution sub-unit, and the anchor point is used to detect the air interface access link resource data between the UE and the anchor point in real time, and obtain the detected air interface between the UE and the anchor point. Incoming link resource data.
  • FIG. 17 is a block diagram showing another structure of a data multi-stream transmission apparatus according to an embodiment of the present invention.
  • the data multi-stream transmission apparatus may further include:
  • the determining module 400 is configured to support the multi-stream transmission, the number of transmission paths between the UE and the anchor point, the resource availability on the multiple transmission paths between the UE and the anchor point, and the anchor according to the service type requested by the UE.
  • the enabling module 500 is configured to use multi-path transmission in the service type requested by the UE, the UE supports multi-path transmission, and the number of transmission paths between the UE and the anchor point is multiple, and multiple between the UE and the anchor point
  • the data multi-stream transmission is enabled, so that after the data multi-stream transmission is enabled, the Multiple target data transmission paths.
  • FIG. 18 shows an optional structure of the path determining module 200 provided by the embodiment of the present invention.
  • the path determining module 200 may include:
  • the target path determining unit 210 is configured to: according to the signal coverage area where the UE is located, the air interface access resource data between each access node and the UE, and the wireless backhaul chain between each access node and the anchor point The resource data of the path and the resource data of the anchor air interface access link between the UE and the anchor point are determined to be in the signal coverage area, and the data transmission path in which the link resource meets the predetermined condition is the target data transmission path.
  • FIG. 19 shows an optional structure of the multi-stream transmission module 300.
  • the multi-stream transmission module 300 may include:
  • the first offloading unit 310 is configured to: when the resources of each target data transmission path are greater than a set value, offload the data packet of the service data to the transmission path with less resource consumption;
  • the second offloading unit 320 is configured to: when the resource of the target data transmission path is less than the set value, offload the important high priority data packet to the transmission path with relatively sufficient resources, and offload the low priority data packet to the resource relative to the resource. On a tight transmission path.
  • the data multi-stream transmission device realizes dynamic multi-stream transmission under the macro-micro integrated network architecture and combines the backhaul resources, and provides a user service experience of high-speed, high-quality data multi-stream transmission; At the same time, the maximum utilization of the radio access resources and the backhaul resources is realized, and the congestion and packet loss caused by the shortage of the backhaul resources are avoided, and the waste of the access side radio resources is avoided.
  • the embodiment of the present invention further provides an anchor point, which may include the data multi-stream transmission device described above.
  • an anchor point which may include the data multi-stream transmission device described above.
  • the data multi-stream transmission device reference may be made to the description of the corresponding part above. I will not repeat them here.
  • FIG 20 is a block diagram showing the hardware structure of an anchor point according to an embodiment of the present invention.
  • the anchor point may include: a processor 1, a communication interface 2, a memory 3, and a communication bus 4;
  • the processor 1, the communication interface 2, and the memory 3 complete communication with each other through the communication bus 4;
  • the communication interface 2 can be an interface of the communication module, such as an interface of the GSM module;
  • a processor 1 for executing a program
  • a memory 3 for storing a program
  • the program can include program code, the program code including computer operating instructions.
  • the processor 1 may be a central processing unit CPU, or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • the memory 3 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the program can be specifically used to:
  • resource availability data of each data transmission path between the UE and the anchor point where the resource availability data includes resource data of a wireless backhaul link between each access node and the anchor point;
  • the multiple target data transmission paths include a correspondence established between the target access node and the anchor point by using a wireless backhaul device
  • the wireless backhaul link, the target access node is an access node that transmits service data in the at least one access node.
  • the embodiment of the present invention further provides a data multi-stream transmission system.
  • the structure of the data multi-stream transmission system can be as shown in FIG. 3, including: at least one access node 20, an anchor point 30, and a wireless backhaul device 40; Wireless backhaul link established between each access node and anchor through a wireless backhaul device Performing data transmission, and there is an anchor air interface access link between the UE and the anchor point for directly performing data transmission;
  • an anchor point may be used to acquire resource availability data of each data transmission path between the UE and the anchor point, where the resource availability data includes each access node and the anchor point.
  • Resource data of the wireless backhaul link determining a plurality of target data transmission paths according to the resource availability data of the respective data transmission paths, and transmitting the service data to the plurality of streams through the plurality of target data transmission paths.
  • the UE, the multiple target data transmission paths include a corresponding wireless backhaul link established between the target access node and the anchor point by using a wireless backhaul device, where the target access node is the at least one access An access node that transmits service data in the node;
  • the target access node is configured to send service data to the UE by using a corresponding wireless backhaul link.
  • the UE may be further configured to transmit the service data to the anchor point by using the multiple target data transmission paths, where the multiple target data transmission paths include a wireless backhaul between the target access node and the anchor point. Corresponding wireless backhaul link established by the device;
  • the anchor point may be further configured to receive the service data sent by the UE by using the multiple target data transmission paths, where the multiple target data transmission paths include a correspondence established between the target access node and the anchor point by using a wireless backhaul device. Wireless backhaul link.
  • the embodiment of the invention realizes dynamic multi-stream transmission under the macro-micro integrated network architecture and combines the backhaul resources, and provides a high-speed, high-quality data multi-stream transmission user service experience; and simultaneously realizes wireless access resources and
  • the maximum utilization of the backhaul resources avoids the congestion and packet loss caused by the shortage of the backhaul resources, and avoids the waste of the access side radio resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种数据多流传输方法、装置、锚点及系统,其中方法包括:锚点获取UE至锚点之间的各条数据传输路径的资源可用性数据,资源可用性数据包括各接入节点与锚点之间的无线回传链路的资源数据;锚点根据各条数据传输路径的资源可用性数据,确定多条目标数据传输路径,通过所述多条目标数据传输路径将业务数据多流传输至所述UE,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路;目标接入节点通过对应的无线回传链路将业务数据发送至所述UE;UE通过所述多条目标数据传输路径获取所述业务数据。本发明实施例提供了高速、高质量的数据多流传输的用户业务体验。

Description

一种数据多流传输方法、装置、锚点及系统
本申请要求于2014年12月18日提交中国专利局、申请号为201410803792.6、发明名称为“一种数据多流传输方法、装置、锚点及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,更具体地说,涉及一种数据多流传输方法、装置、锚点及系统。
背景技术
随着移动用户的增加,以及对高速业务体验的诉求,未来无线网络将通过网络分层和MSA(Multi Streaming Aggregation,多流汇聚)技术的完美结合,从而使得移动用户无论处于网络的哪个位置,都能够享受到高速且稳定的数据连接服务,实现超宽带、零等待和无处不在的移动宽带服务,带来高速、高质量的业务体验。
网络分层是指多层的网络架构,包括Host Layer(主层)和Boosting Layer(加速层),图1示出了网络分层架构的示意图,可进行参照,其中,Host Layer主要用于确保网络覆盖,主要由Macro Cell(宏站)组成,Host Layer通过建立的Host link(上位机链接系统)来为用户提供信令和基本数据的传输,提供无处不在的连接,保证可靠的基本业务,如图1中用户UE(用户设备,User Equipment)1~UE4中的Host Link。Boosting Layer则主要用于提升网络容量,可以由多种形态的网络构成,如图1中Small Cell(微站,可以是Micro Cell、Pico Cell或Femto Cell等)、WiFi AP(无线保真节点)(可以是基于IEEE 802.11b标准的无线局域网,Access Point,接入节点)等;Boosting Layer通过建立的Boosting link(加速链接系统)来为用户提供高速率的数据传输,为用户提供最佳的用户业务体验。
MSA是有机聚合Host Layer和Boosting Layer的关键技术,它通过一个集中的节点BBU Pool(Base Band Unit Pool,基带单元池)或SRC(Single Radio Controller,单一无线控制器)和多个分发节点为用户提供多流汇聚,即网络侧的数据可通过多条传输路径发送至UE,从而进一步提升了用户感受和网络容量。
图2示出了现有技术进行数据多流传输的示意图,可进行参照,UE通过基站接入蜂窝网络,基站通过与Internet(因特网)之间的无线回传设备,使得UE与Internet之间存在数据通信链路,进而使得UE接入到Internet;UE通过WiFi AP接入到WLAN(Wireless Local Area Network,无线局域网)网络,WiFi AP通过与Internet之间的无线回传设备,使得UE与Internet之间存在数据通信链路,进而使得UE接入到Internet,基站和WiFi AP可以称为是UE接入网络的接入节点。
在数据多流传输的场景下,UE可通过蜂窝网络所拥有的多个基站与Internet之间的传输路径,和/或,WLAN网络所拥有的多个WiFi AP与Internet之间的传输路径,实现数据的多流传输。在图2所示网络架构的基础上,现有技术在进行数据多流传输时,图2所示MSA业务分流/汇聚控制点将用于控制多流传输业务的分流和汇聚,且在基站接入链路资源可用,以及WiFi AP接入链路的资源可用时,就启用多条数据传输路径,实现数据至UE的多流传输。
本发明的发明人研究发现:图2所示网络架构中,蜂窝网络和WLAN网络是两张独立的网络,资源是独立的,特别地,靠近接基站或WiFi AP侧的第一段传输资源(图2中所示基站的无线回传设备,或WiFi AP的无线回传设备与Internet的无线回传设备之间的无线回传链路的资源)也是独立的,无法共享;现有技术仅在基站接入链路资源可用,以及WiFiAP接入链路的资源可用时,就启用数据的多流传输,而没有考虑基站或WiFi AP侧无线回传链路的资源是否可用,若无线回传链路的资源不足,则采用多流传输所导致的数据的传输速率将变低,导致无法提供多流传输带来的高速用户业务体验。
发明内容
有鉴于此,本发明实施例提供一种数据多流传输方法、装置、锚点及系统,以解决现有技术仅在基站接入链路资源可用,以及WiFi AP接入链路的资源可用时,就启用数据的多流传输的方式,所存在的采用多流传输所导致的数据的传输速率将变低,无法提供多流传输带来的高速用户业务体验的问题。
为实现上述目的,本发明实施例提供如下技术方案:
第一方面,本发明实施例提供一种数据多流传输系统,包括:至少一个接入节点,锚点和无线回传设备;各接入节点与所述锚点之间通过无线回传设备建立的无线回传链路进行数据传输;
其中,所述锚点,用于获取用户设备UE至所述锚点之间的各条数据传输路径的资源可用性数据,所述资源可用性数据包括各接入节点与所述锚点之间的无线回传链路的资源数据,根据所述各条数据传输路径的资源可用性数据,确定多条目标数据传输路径,通过所述多条目标数据传输路径将业务数据多流传输至所述UE,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路,所述目标接入节点为所述至少一个接入节点中传输业务数据的接入节点;
所述目标接入节点,用于通过对应的无线回传链路将业务数据发送至所述UE。
第二方面,本发明实施例提供一种数据多流传输装置,基于宏微一体化网络,所述宏微一体化网络包括:至少一个接入节点,锚点和无线回传设备;其中各接入节点与所述锚点之间通过无线回传设备建立的无线回传链路进行数据传输;所述装置应用于所述锚点,所述装置包括:
数据获取模块,用于获取用户设备UE至所述锚点之间的各条数据传输路径的资源可用性数据,所述资源可用性数据包括各接入节点与所述锚点之间的无线回传链路的资源数据;
路径确定模块,用于根据所述各条数据传输路径的资源可用性数据,确定多条目标数据传输路径;
多流传输模块,用于通过所述多条目标数据传输路径将业务数据多流 传输至所述UE;其中,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路,所述目标接入节点为所述至少一个接入节点中传输业务数据的接入节点。
第三方面,本发明实施例提供一种锚点,包括上述所述的数据多流传输装置。
第四方面,本发明实施例提供一种数据多流传输方法,基于宏微一体化网络,所述宏微一体化网络包括:至少一个接入节点,锚点和无线回传设备;其中各接入节点与所述锚点之间通过无线回传设备建立的无线回传链路进行数据传输;所述方法应用于所述锚点,所述方法包括:
获取用户设备UE至所述锚点之间的各条数据传输路径的资源可用性数据,所述资源可用性数据包括各接入节点与所述锚点之间的无线回传链路的资源数据;
根据所述各条数据传输路径的资源可用性数据,确定多条目标数据传输路径;
通过所述多条目标数据传输路径将业务数据多流传输至所述UE;其中,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路,所述目标接入节点为所述至少一个接入节点中传输业务数据的接入节点。
基于上述技术方案,本发明实施例提供的数据多流传输系统中,锚点可获取UE至所述锚点之间的各条数据传输路径的资源可用性数据,所述资源可用性数据包括各接入节点与所述锚点之间的无线回传链路的资源数据,锚点可根据所述各条数据传输路径的资源可用性数据,确定多条目标数据传输路径,通过所述多条目标数据传输路径将业务数据多流传输至所述UE,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路,所述目标接入节点为所述至少一个接入节点中传输业务数据的接入节点;进而目标接入节点通过对应的无线回传链路将业务数据发送至所述UE,使得UE通过所述多条目标数据传输路径获取所述业务数据。本发明实施例提供的数据多流传输方法,考虑了各接入节点与所述锚点之间的无线回传链路的资源数据作为选取目标 数据传输路径的依据,避免了现有技术没有考虑基站或WiFi AP侧无线回传链路的资源是否可用的情况发生,使得数据多流传输的速率得以保证。本发明实施例在宏微一体化组网架构下,结合回传资源,实现了动态的多流传输,提供了高速、高质量的数据多流传输的用户业务体验;同时实现无线接入资源和回传资源的最大化利用,避免出现回传资源紧缺导致的拥塞丢包,同时避免接入侧无线资源的浪费。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为现有技术的网络分层架构的示意图;
图2为现有技术进行数据多流传输的示意图;
图3为本发明实施例提供的实现数据多流传输方法的系统的网络架构图;
图4为本发明实施例提供的数据多流传输方法的流程图;
图5为本发明实施例提供的数据多流传输的示意图;
图6为本发明实施例提供的目标数据传输路径架构的示意图;
图7为本发明实施例提供的目标数据传输路径架构的另一示意图;
图8为本发明实施例提供的目标数据传输路径架构的再一示意图;
图9为本发明实施例提供的目标数据传输路径架构的又一示意图;
图10为本发明实施例提供的目标数据传输路径架构的又另一示意图;
图11为本发明实施例提供的目标数据传输路径架构的又再一示意图;
图12为本发明实施例提供的目标数据传输路径架构的另又一示意图;
图13为本发明实施例提供的数据多流传输方法的另一流程图;
图14为本发明实施例提供的数据多流传输方法的再一流程图;
图15为本发明实施例提供的数据多流传输装置的结构框图;
图16为本发明实施例提供的数据获取模块的结构框图;
图17为本发明实施例提供的数据多流传输装置的另一结构框图;
图18为本发明实施例提供的路径确定模块的结构框图;
图19为本发明实施例提供的多流传输模块的结构框图;
图20为本发明实施例提供的锚点的硬件结构框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
图3为本发明实施例提供的实现数据多流传输方法的系统的网络架构图,该网络架构表示的是宏微一体化网络,参照图3,该网络架构可以包括:至少一个接入节点20,锚点30和无线回传设备40;锚点30可以为宏站等具有支持连接Backhaul,支持UE的接入,支持对其它节点及链路的资源数据获取、分配和管理的功能的设备。
可选的,接入节点20可以为Small Cell(如基站等),也可以为WiFi AP等;各个接入节点20均设置有无线回传设备40,各个接入节点20通过设置的无线回传设备40可与锚点30设置的无线回传设备40构建无线回传链路;可选的,各接入节点与锚点之间可通过无线回传设备建立的无线回传链路进行数据传输;
可选的,UE与锚点之间可通过锚点空口接入链路直接进行数据传输,从而绕过接入节点;
可见,在本发明实施例中,UE与锚点之间的数据传输路径包括:
1、UE-接入节点-无线回传链路-锚点;
2、UE-锚点空口接入链路-锚点。
其中,UE-接入节点-无线回传链路-锚点的数据传输路径包括:UE-基站-无线回传链路-锚点的数据传输路径,这类数据传输路径可能有多条,如基站数量为多个的情况时,对应的无线回传链路的数量有可能是多个;及UE-WiFi AP-无线回传链路-锚点的数据传输路径,这类数据传输路径也可能有多条,如WiFi AP为多个的情况时,对应的无线回传链路的数量有可能是多个。
其中,本发明实施例中无线回传链路中采用的无线回传方式可以是点到多点(P2MP,Point-to-Multi-Point)的无线传输技术,如Sub-6GHz频段Unlicensed传输、Sub-6GHz频段Licensed传输或锚点的自回传技术(Self-backhaul);也可以是点到点(P2P,Point-to-Point)的无线传输技术,如Sub-6GHz频段、常规微波频段、或者60GHz以上高频微波传输;也可以是上述提到的各种无线传输技术的组合。当然也可以是其他的无线传输技术,如P2P光纤、P2MP光纤等都可以使用,上述所举仅为示例。
可以知道,从锚点到UE方向,多流数据传输的分发点在锚点,汇聚点在UE;从UE到锚点方向,多流数据传输的分发点在UE,汇聚点在锚点。动态多流数据传输的业务集中控制点在锚点,由锚点来统一决策和控制多流数据的传输。
基于上文描述,图4示出了本发明实施例提供的数据多流传输方法,该方法可基于图3所示的宏微一体化网络,参照图4,该方法可以包括:
步骤S100、锚点获取所述UE至所述锚点之间的各条数据传输路径的资源可用性数据,所述资源可用性数据包括各接入节点与所述锚点之间的无线回传链路资源数据;
可以知道,UE与锚点之间的数据传输路径可以包括:UE-接入节点-无线回传链路-锚点的数据传输路径,及UE-锚点空口接入链路-锚点的数据传输路径;其中UE-接入节点-无线回传链路-锚点的数据传输路径又可包括:由至少一个基站构成的UE-基站-无线回传链路-锚点的至少一条数据传输路径,和/或,由至少一个WiFi AP构成的UE-WiFi AP-无线回传链路-锚点的至少一条数据传输路径。
可选的,锚点所获取的UE至所述锚点之间的各条数据传输路径的资源可用性数据可以包括:各个接入节点与UE之间的空口接入链路资源数据,各接入节点与所述锚点之间的无线回传链路的资源数据,和UE与锚点之间的锚点空口接入链路的资源数据。
可选的,锚点也可获取到锚点与核心网之间的传输链路资源数据,得到可用带宽等资源信息,如锚点可实时检测锚点与核心网之间的传输链路资源情况,经处理后,得到可用带宽等资源信息。
可见,本发明实施例在进行数据多流传输时,将检测各接入节点与所述锚点之间的无线回传链路的资源数据,由检测的各接入节点与所述锚点之间的无线回传链路的资源数据指导后续的数据多流传输流程,从而避免现有技术没有考虑基站或WiFi AP侧无线回传链路的资源是否可用的情况发生。
步骤S110、所述锚点根据所述各条数据传输路径的资源可用性数据,确定多条目标数据传输路径,通过所述多条目标数据传输路径将业务数据多流传输至所述UE,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路,所述目标接入节点为所述至少一个接入节点中传输业务数据的接入节点;
可选的,锚点在获取了各条数据传输路径的资源可用性数据后,可决定当前是否启用数据多流传输;终端UE与锚点之间是否采用多路径传输(即多流传输),取决于多个因素,包括UE请求的业务是否需要采用多路径传输、UE是否支持多路径传输、UE与锚点之间是否存在多条传输路径、UE与锚点之间多条传输路径上的资源可用性是否与多路径传输相匹配(如UE与锚点之间多条传输路径上的资源是否能够支持多路径传输)、锚点与核心网之间的资源可用性与多路径传输相匹配(如锚点与核心网之间的资源是否能够支持多路径传输)等。
可选的,若用一个公式表示是否启用数据多流传输,则可以表示为
终端UE与锚点多路径传输(是否启用,多流传输方案)=f(UE请求业务,UE支持情况,UE与锚点之间多条传输路径的资源可用性,锚点与核心网之间资源可用性)
当出现下述条件时,终端UE不启用多路径传输:
1、终端UE不支持多路径传输;
2、UE~锚点之间只有一条满足UE业务质量的传输路径;
3、锚点~核心网之间的资源不足,不能支持UE~锚点之间的多路径传输。
当出现下述条件时,终端UE可以启用多路径传输:
1、终端UE支持多路径传输;
2、UE~锚点之间存在多条满足UE业务质量的传输路径;
3、UE~锚点之间的任一条传输路径资源不能传输UE请求的所有业务,需要通过多条传输路径来传输;
4、锚点~核心网之间的资源充足,可以满足UE~锚点之间的多路径传输。
锚点在启用数据多流传输时,可选取哪些数据传输路径进行数据的多流传输;在本发明实施例中锚点可根据UE业务请求及资源可用性情况,支持以下多流汇聚传输方案:
1、UE-接入节点-无线回传链路-锚点,其中无线回传链路可以具有多条;
2、UE-接入节点-无线回传链路-锚点+UE-锚点空口接入链路-锚点,其中无线回传链路也可以具有多条。
可以看出,无论采用何种多流汇聚传输方案,由于UE-锚点空口接入链路-锚点的数量一般只有一条,因此UE-接入节点-无线回传链路-锚点的数据传输路径在多流数据传输过程中为必要的数据传输路径。
需要说明的是,多条目标数据传输路径是指本发明实施例进行多流数据传输的路径,由于UE-接入节点-无线回传链路-锚点的数据传输路径为多流数据传输过程中的必要数据传输路径,因此多条目标数据传输路径必然包括了目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路;目标接入节点与所述锚点之间的无线回传链路,及目标接入节点与UE之间的数据链路构成了完成的数据传输路径。目标接入节点为至少一个接入节点中传输业务数据的接入节点,即本发明实施例所选用的进行多流数据传输的接入节点;目标接入节点可以为选取的目标基站和/或目标WiFi AP。
步骤S120、目标接入节点通过对应的无线回传链路将业务数据发送至所述UE。
可选的,若本发明实施例不采用UE-锚点空口接入链路-锚点的数据传输路径进行多流数据传输,则所采用的UE-接入节点-无线回传链路-锚点存在多条,本发明实施例可仅使用目标接入节点通过对应的无线回传链路将 业务数据发送至所述UE;
可选的,若本发明实施例采用UE-锚点空口接入链路-锚点的数据传输路径进行多流数据传输,则业务数据将分配至UE-接入节点-无线回传链路-锚点的数据传输路径,和UE-锚点空口接入链路-锚点的数据传输路径上进行传输;本发明实施例除目标接入节点通过对应的无线回传链路将部分业务数据发送至所述UE外,锚点也将通过锚点空口接入链路将部分业务数据直接传输至UE。
可选的,UE可通过多条的UE-接入节点-无线回传链路-锚点的数据传输路径获取业务数据;也可通过至少一条UE-接入节点-无线回传链路-锚点的数据传输路径,和UE-锚点空口接入链路-锚点的数据传输路径共同获取业务数据。
本发明实施例提供的数据多流传输方法,基于宏微一体化网络,各接入节点与所述锚点之间通过无线回传设备建立的无线回传链路进行数据传输;在进行数据多流传输时,锚点可获取所述UE至所述锚点之间的各条数据传输路径的资源可用性数据,所述资源可用性数据包括各接入节点与所述锚点之间的无线回传链路的资源数据,锚点可根据所述各条数据传输路径的资源可用性数据,确定多条目标数据传输路径,通过所述多条目标数据传输路径将业务数据多流传输至所述UE,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路,所述目标接入节点为所述至少一个接入节点中传输业务数据的接入节点;进而目标接入节点通过对应的无线回传链路将业务数据发送至所述UE,使得UE通过所述多条目标数据传输路径获取所述业务数据。本发明实施例提供的数据多流传输方法,考虑了各接入节点与所述锚点之间的无线回传链路的资源数据作为选取目标数据传输路径的依据,避免了现有技术没有考虑基站或WiFi AP侧无线回传链路的资源是否可用的情况发生,使得数据多流传输的速率得以保证。本发明实施例在宏微一体化组网架构下,结合回传资源,实现了动态的多流传输,提供了高速、高质量的数据多流传输的用户业务体验;同时实现无线接入资源和回传资源的最大化利用,避免出现回传资源紧缺导致的拥塞丢包,同时避免接入侧无线资源的浪费。
可选的,前文描述的是从锚点到UE方向的多流数据传输,多流数据传输的分发点在锚点,汇聚点在UE;本发明实施例还可支持从UE到锚点方向的多流数据传输,多流数据传输的分发点在UE,汇聚点在锚点。对应的,UE可通过所述多条目标数据传输路径将业务数据传输至锚点,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路;对应的,锚点可通过所述多条目标数据传输路径接收UE发送的业务数据,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路。
可选的,在本发明实施例中,锚点收到核心网的数据后,可在IP层进行数据的分流,将IP数据包分发到不同的传输路径上,具体的传输路径根据前述方法确定,UE收到来自多条传输路径的数据流后,进行汇聚,再传递到应用层。同理,UE应用层产生的数据流,在IP层进行多路径的分流,将IP数据包分发到不同传输路径上传输,数据流经过多条传输路径传输到锚点后,在IP层进行汇聚,再送到核心网。
锚点侧IP数据流的分流和汇聚过程中,锚点支持用户IP数据流的识别,将用户IP数据包分发到不同传输路径上传输。终端UE侧,用户IP数据流的分流,可以通过安装一个应用程序来实现,也可以通过修改操作系统,实现用户IP数据包的分流和汇聚。
可选的,IP层数据包的分流和汇聚传输,可根据可用的多条传输路径上的资源可用性,包括带宽、时延、丢包率、抖动等信息,来确定IP数据包的传输路径,具体如下:
本发明实施例可在各目标数据传输路径的资源均大于设定值时,优先将数据包分流到资源消耗较少的传输路径上;各目标数据传输路径的资源均大于设定值时,表示各目标数据传输路径均可保证用户业务体验;本发明实施例可在各目标数据传输路径均可保证用户业务体验的情况下,优先将数据包分流到资源消耗较少的传输路径上。例如,图5示出了数据多流传输示意图,参照图5,若多路传输选取了传输路径1和传输路径2为UE业务提供数据传输,则在传输路径1和传输路径2都可以提供相同的用户业务体验时,优先将用户业务数据分流到传输路径2上传输;
本发明实施例可在目标数据传输路径的资源小于设定值时,将重要的高优先级数据包分流到资源相对充足的传输路径上,将低优先级的数据包分流到资源相对紧张的传输路径上;目标数据传输路径的资源小于设定值时表示传输路径的资源紧张,在传输路径的资源紧张的情况下,本发明实施例可优先将重要的高优先级数据包分流到有质量保证的传输路径上,将低优先级的数据包分流到无法提供质量保障的传输路径上。例如,图5中,假设基站的无线回传采用专用Licensed频谱,且频谱较少,能够提供的带宽较小,能够提供质量保证,而WiFi AP的无线回传采用的是Unlicensed频谱,频谱较多,能够提供的峰值带宽较大,但不能提供质量保证。若多路传输选取了传输路径2和传输路径3为UE业务提供数据传输,当UE业务流量较大时,需要将高优先级数据分流到传输路径2上传输,而将低优先级数据分流到传输路径3上传输;
当某一条传输路径的可用资源可以满足UE业务请求时,只需选取一条传输路径传输UE的业务数据流;
若锚点与核心网之间的传输资源不足支持UE~锚点之间的多条数据流传输的流量,则不选择多流传输方案,只选择其中一条传输路径传输UE数据。
可选的,在确定目标数据传输路径时,锚点可根据UE所处于的信号覆盖区域,各个接入节点与UE之间的空口接入链路资源数据,各接入节点与所述锚点之间的无线回传链路的资源数据,和UE与锚点之间的锚点空口接入链路的资源数据,确定处于所述信号覆盖区域,链路资源(信号覆盖区域内的空口接入链路资源数据,或者无线回传链路的资源)满足预定条件的数据传输路径为目标数据传输路径;下面以接入节点包括基站和WiFi AP进行说明,基站的数量可以为至少一个,WIFI AP的数量也可以为至少一个,则本发明实施例提供的进行多流数据传输的多条目标数据传输路径可以包括下述情况:
情况1:“UE-基站-无线回传链路-锚点”+“UE-WiFi AP-无线回传链路-锚点”的多流传输;
图6示出了目标数据传输路径架构的一种可选示意图,可进行参照;依 照选取目标数据传输路径的条件(确定处于所述信号覆盖区域,链路资源满足预定条件的数据传输路径为目标数据传输路径),本发明实施例可在UE在基站和WiFi AP覆盖区域,空口接入链路资源充足,基站与锚点之间的无线回传链路资源充足,WiFi AP与锚点之间的无线回传链路资源充足,同时,UE有高速率的业务请求时;则可通过情况1所示的数据传输路径进行多流传输;图6所示为基站和WiFi AP为分离设备情况下的目标数据传输路径的架构示意图,基站与WiFi AP为分离的独立设备,分别通过各自对应的无线回传链路与锚点建立连接。无线回传链路可以是点到多点传输技术,由基站和WiFi AP共享,无线回传链路也可以是点到点传输技术,分别传输基站和WiFi AP业务流。图6为小站和WiFi AP共享点到多点的无线回传链路。
图7示出了目标数据传输路径架构的另一种可选示意图,可进行参照;图7所示为基站和WiFi AP为合一设备情况下的目标数据传输路径的架构示意图,如图7所示,基站设备内置WiFi AP功能,即基站与WiFi AP合一,通过共享的无线回传链路与锚点建立连接。
在本发明实施例中,锚点为多流传输的决策控制点,根据UE接入链路的资源可用性、无线回传链路资源可用性,结合UE业务请求所需的资源,以及锚点与核心网之间的传输资源可用性,可动态控制是否采用“UE-基站-无线回传链路-锚点”+“UE-WiFi AP-无线回传链路-锚点”的多条路径传输UE业务数据,为UE提供高速业务流数据传输。若“UE-基站-无线回传链路-锚点”或“UE-WiFi AP-无线回传链路-锚点”各自的传输路径资源可以满足UE请求的业务需求,锚点控制决策可选取仅由“UE-基站-无线回传链路-锚点”提供UE业务传输,或仅由“UE-WiFi AP-无线回传链路-锚点”提供UE业务传输。
可选的,基站与锚点之间的无线回传、WiFi AP与锚点之间的无线回传可以是一条物理链路,也可以是多条物理链路。两条物理链路的情况下可以包括Unlicensed无线回传链路和Licensed无线回传链路;采用Unlicensed无线回传链路和Licensed无线回传链路可使得无线回传链路的资源更丰富,既有提供可靠保证的Licensed传输资源,又有不保证质量的Unlicensed 传输资源。因此,锚点在进行数据传输流路径选择决策及业务调度时,可以进行更精细管理。典型应用之一就是带宽需求较小、重要的高优先级数据优先在Licensed回传链路上传输,而把流量较大、中低优先级数据分发到Unlicensed回传链路上传输。
情况2:多条“UE-基站-无线回传链路-锚点”数据传输路径的多流传输,如基站包括基站1和基站2时,可采用“UE-基站1-无线回传链路-锚点”+“UE-基站2-无线回传链路-锚点”进行多流传输;
UE在基站1和基站2的覆盖区域,UE与基站1的空口接入链路资源充足,UE与基站2的空口接入链路资源充足,基站1、基站2与锚点之间的无线回传链路资源充足,同时UE有高速率的业务请求时,本发明实施例可采用“UE-基站1-无线回传链路-锚点”+“UE-基站2-无线回传链路-锚点”的数据传输路径进行多流传输。
图8示出了目标数据传输路径架构的再一种可选示意图,可进行参照,图8中,基站1和基站2共享相同的点到多点无线回传链路,与锚点建立传输连接;图9示出了目标数据传输路径架构的又一种可选示意图,可进行参照,图9中,基站1和基站2采用独立的点到点无线回传链路,分别与锚点建立传输连接。同理,基站1、基站2与锚点之间的无线回传链路也可以是多通道链路,如Unlicensed无线回传链路加上Licensed无线回传链路两条通道,或者两条Licensed无线回传通道等。
在本发明实施例中,锚点为UE多流传输的决策控制点,动态控制是否采用“UE-基站1-无线回传链路-锚点”与“UE-基站2-无线回传链路-锚点”等多条路径传输UE的业务流数据,以提供高速用户业务体验。若“UE-基站1-无线回传链路-锚点”或“UE-基站2-无线回传链路-锚点”各自传输路径的资源可以提供UE请求业务需求,锚点可选择仅由“UE-基站1-无线回传链路-锚点”传输路径传输UE业务,或仅由“UE-基站2-无线回传链路-锚点”传输路径传输UE业务。
显然,本发明实施例虽以基站数量为2进行多条“UE-基站-无线回传链路-锚点”数据传输路径进行多流数据传输的说明,但基站数量的取值可视实际情况而定,选取基站数量为2(基站1和基站2)的描述,仅为一种可选 方式,仅为使得本发明实施例描述的采用多条“UE-基站-无线回传链路-锚点”数据传输路径进行数据多流传输的说明更易便于理解。
情况3:“UE-基站-无线回传链路-锚点”+“UE-WiFi AP-无线回传链路-锚点”+“UE-锚点空口接入链路-锚点”进行多流传输,其中“UE-基站-无线回传链路-锚点”的数据传输路径为至少一条,“UE-WiFi AP-无线回传链路-锚点”的数据传输路径为至少一条;
UE在锚点、小站、WiFi-AP的覆盖区域,“UE-基站-无线回传链路-锚点”,“UE-WiFi AP-无线回传链路-锚点”和“UE-锚点空口接入链路-锚点”中任何一条传输路径的资源都无法满足UE请求业务的传输,这时,锚点可根据各条传输路径上资源信息,动态控制是否采用多路径传输,以及采用哪些传输路径为UE提供业务传输;在各条传输路径的资源均都较少时,本发明实施例结合“UE-基站-无线回传链路-锚点”,“UE-WiFi AP-无线回传链路-锚点”和“UE-锚点空口接入链路-锚点”进行多流数据传输。
图10示出了目标数据传输路径架构的又另一种可选示意图,可进行参照,图10示出了采用“UE-基站-无线回传链路-锚点”,“UE-WiFi AP-无线回传链路-锚点”和“UE-锚点空口接入链路-锚点”三条传输路径为UE提供的多流传输组网。
显然除上述三种情况外,本发明实施例还可采用其他的数据传输路径进行数据多流传输,图11示出了目标数据传输路径架构的又再一种可选示意图,图12示出了目标数据传输路径架构的另又一种可选示意图,其中,图11所示为采用“UE-锚点空口接入链路-锚点”+“UE-基站-无线回传链路-锚点”为UE提供的多流传输组网,图12所示为采用“UE-锚点空口接入链路-锚点”+“UE-WiFi AP-无线回传链路-锚点”为UE提供的多流传输组网。值得注意的是,图10~图12所示的无线回传为点到多点传输技术,基站及WiFi AP只有一条回传链路,实际组网可以是点到点传输技术,可以是多条回传链路。
可选的,前文已述锚点所获取的UE至所述锚点之间的各条数据传输路径的资源可用性数据可以包括:各个接入节点与UE之间的空口接入链路资源数据,各接入节点与所述锚点之间的无线回传链路的资源数据,和UE与 锚点之间的锚点空口接入链路的资源数据。
可选的,在本发明实施例中,各接入节点可实时动态检测接入节点与UE之间的空口接入链路资源数据,经过预处理后,将处理后的链路资源数据上报到锚点;其中,空口接入链路资源数据可以包括:接入链路的可用带宽、拥塞情况等资源数据。对应的,接入节点为基站时,基站可实时动态检测UE与基站之间的空口接入链路资源数据,经过预处理后,实时将接入链路的可用带宽、拥塞情况等空口接入链路资源数据上报到决策点锚点;对应的,接入节点为WiFi AP时,WiFi AP可实时动态检测UE与WiFi AP之间的空口接入链路资源数据,经过预处理后,实时将接入链路的可用带宽、拥塞情况等空口接入链路资源数据上报到决策点锚点;
可选的,在本发明实施例中,各接入节点与所述锚点之间的无线回传链路的资源数据的获取方式可通过多种方式得到:一种方式是无线回传设备自身动态检测对应的无线回传链路状况,检测结果经处理后,将可用带宽、链路质量(如可用带宽、时延、抖动、丢包率等)等资源数据上报给锚点;另一种方法是通过接入节点(基站或WiFi AP)和锚点来检测接入节点和锚点之间的无线回传链路资源情况,并经预处理后,锚点可获取到预处理后的可用带宽、链路质量(如可用带宽、时延、抖动、丢包率等)等资源数据。
可选的,对于基站或WiFi AP与锚点之间共享无线回传链路的组网情况,锚点需要综合考虑基站或WiFi AP与锚点之间的无线回传资源检测结果,以准确获取可用带宽等资源信息。
可选的,在本发明实施例中,锚点可实时检测UE与锚点之间的空口接入链路资源情况,经处理后,得到可用带宽、拥塞情况等资源信息;从而获取到UE与锚点之间的锚点空口接入链路的资源数据。
锚点汇总上述各条传输路径的资源信息,综合后就可以分别得到UE~锚点之间的各条传输路径的资源可用性数据。例如,结合UE~基站之间的空口接入链路资源,和,基站与锚点之间的无线回传链路的资源,就可以得到“UE-基站-无线回传链路-锚点”这条传输路径的可用资源,如可用带宽等。同理,可以得到其它传输路径的资源情况
本发明实施例提供的数据多流传输方法具有如下优点:
在宏微一体化组网架构下,结合回传资源,实现动态多流传输,提供高速、高质量的数据多流传输,提升用户业务体验;
实现无线接入资源和回传资源的最大化利用,避免出现回传资源紧缺导致的拥塞丢包,同时避免接入侧无线资源的浪费;
从锚点到UE方向,无线回传链路可以区分哪些是WLAN业务数据,哪些是蜂窝业务数据,从而实现无线回传资源的精细化管理;
从锚点到UE方向,锚点作为业务集中控制点,可以根据无线回传链路的资源可用性情况,动态实施流量控制,或者动态选取多流传输方案,避免出现无线回传链路拥塞丢包影响用户业务体验。
下面以锚点的角度,对本发明实施例提供的数据多流传输方法进行介绍,下文描述的数据多流传输方法可与上文以宏微一体化网络角度描述的数据多流传输方法相互对应参照。
图13为本发明实施例提供的数据多流传输方法的另一流程图,该方法基于宏微一体化网络,应用于锚点,参照图13,该方法可以包括:
步骤S200、获取所述UE至所述锚点之间的各条数据传输路径的资源可用性数据,所述资源可用性数据包括各接入节点与所述锚点之间的无线回传链路的资源数据;
可选的,UE与锚点之间的数据传输路径包括:1、UE-接入节点-无线回传链路-锚点;2、UE-锚点空口接入链路-锚点;各条数据传输路径的资源可用性数据可以包括:各个接入节点与UE之间的空口接入链路资源数据,各接入节点与所述锚点之间的无线回传链路的资源数据,和UE与锚点之间的锚点空口接入链路的资源数据。
其中,获取各个接入节点与UE之间的空口接入链路资源数据的方式可以为:在各接入节点实时动态检测接入节点与UE之间的空口接入链路资源数据,对检测到的空口接入链路资源数据进行预处理后,获取各接入节点所上传的预处理后的空口接入链路资源数据;
获取各接入节点与所述锚点之间的无线回传链路的资源数据的方式可 以为:在无线回传设备动态检测对应的无线回传链路的资源数据,对检测到的资源数据进行预处理后,获取无线回传设备所上传的预处理后的资源数据;或,在接入节点和锚点检测到接入节点和锚点之间的无线回传链路的资源数据时,获取检测到的预处理后的资源数据;
获取UE与锚点之间的锚点空口接入链路的资源数据的方式可以为:锚点实时检测UE与锚点之间的空口接入链路资源数据,获取检测到的UE与锚点之间的空口接入链路资源数据。
步骤S210、根据所述各条数据传输路径的资源可用性数据,确定多条目标数据传输路径;
可选的,本发明实施例可根据UE所处于的信号覆盖区域,各个接入节点与UE之间的空口接入链路资源数据,各接入节点与所述锚点之间的无线回传链路的资源数据,和UE与锚点之间的锚点空口接入链路的资源数据,确定处于所述信号覆盖区域,链路资源满足预定条件的数据传输路径为所述目标数据传输路径。具体的,上文描述了各种情况下具体确定目标数据传输路径的条件,可进行参照。
步骤S220、通过所述多条目标数据传输路径将业务数据多流传输至所述UE;其中,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路,所述目标接入节点为所述至少一个接入节点中传输业务数据的接入节点。
可选的,本发明实施例可在各目标数据传输路径的资源均大于设定值时,将业务数据的数据包分流到资源消耗少的传输路径上;可在目标数据传输路径的资源小于设定值时,将重要的高优先级数据包分流到资源相对充足的传输路径上,将低优先级的数据包分流到资源相对紧张的传输路径上。
可选的,目标数据传输路径除包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路外,还可以包括UE与所述锚点之间的锚点空口接入链路;
可选的,目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路可以包括:基站与所述锚点之间通过无线回传设备建立的 至少一条无线回传链路;和/或,WIFI AP与所述锚点之间通过无线回传设备建立的至少一条无线回传链路。对应的,上文描述出了具体情况,可进行参照,此处不再赘述。
可选的,本发明实施例可在确定多条目标数据传输路径之前进行是否启用数据多流传输的判断;具体的,本发明实施例可根据UE请求的业务类型,UE对多流传输的支持性,UE与锚点之间的传输路径数量,UE与锚点之间多条传输路径上的资源可用性,及锚点与核心网之间的资源可用性,判断是否启用数据多流传输;并在UE请求的业务类型需要采用多路径传输,所述UE支持多路径传输,UE与锚点之间的传输路径数量为多条,UE与锚点之间多条传输路径上的资源可用性与多路径传输相匹配,且锚点与核心网之间的资源可用性与多路径传输相匹配时,启用数据多流传输,以便在启用数据多流传输后,确定所述多条目标数据传输路径。
可选的,图14示出了本发明实施例提供的数据多流传输方法的再一流程图,参照图14,该方法可以包括:
步骤S300、获取各个接入节点与UE之间的空口接入链路资源数据,各接入节点与所述锚点之间的无线回传链路的资源数据,和UE与锚点之间的锚点空口接入链路的资源数据;
步骤S310、判断是否启用数据多流传输,若是,执行步骤S320,若否,执行步骤S340、
步骤S320、确定处于UE所处于的信号覆盖区域,链路资源满足预定条件的数据传输路径为所述目标数据传输路径;
步骤S330、通过所述多条目标数据传输路径将业务数据多流传输至所述UE;
步骤S340、结束流程。
可选的,UE可通过所述多条目标数据传输路径将业务数据传输至锚点,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路;对应的,锚点可通过所述多条目标数据传输路径接收UE发送的业务数据,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传 链路。
本发明实施例提供的数据多流传输方法在宏微一体化组网架构下,结合回传资源,实现了动态的多流传输,提供了高速、高质量的数据多流传输的用户业务体验;同时实现无线接入资源和回传资源的最大化利用,避免出现回传资源紧缺导致的拥塞丢包,同时避免接入侧无线资源的浪费。
下面对本发明实施例提供的数据多流传输装置进行介绍,下文描述的数据多流传输装置可与上文以锚点角度描述的数据多流传输方法相互对应参照。
图15为本发明实施例提供的数据多流传输装置的结构框图,该装置基于宏微一体化网络,应用于锚点,参照图15,该数据多流传输装置可以包括:
数据获取模块100,用于获取所述UE至所述锚点之间的各条数据传输路径的资源可用性数据,所述资源可用性数据包括各接入节点与所述锚点之间的无线回传链路的资源数据;
路径确定模块200,用于根据所述各条数据传输路径的资源可用性数据,确定多条目标数据传输路径;
多流传输模块300,用于通过所述多条目标数据传输路径将业务数据多流传输至所述UE;其中,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路,所述目标接入节点为所述至少一个接入节点中传输业务数据的接入节点。
可选的,目标数据传输路径除包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路外,还可以包括UE与所述锚点之间的锚点空口接入链路;
可选的,目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路可以包括:基站与所述锚点之间通过无线回传设备建立的至少一条无线回传链路;和/或,WIFI AP与所述锚点之间通过无线回传设备建立的至少一条无线回传链路。对应的,上文描述出了具体情况,可进行参照,此处不再赘述。
可选的,图16示出了数据获取模块100的一种可选结构,参照图16,数据获取模块100可以包括:
第一数据获取单元110,用于获取各个接入节点与UE之间的空口接入链路资源数据;
可选的,锚点可在各接入节点实时动态检测接入节点与UE之间的空口接入链路资源数据,对检测到的空口接入链路资源数据进行预处理后,获取各接入节点所上传的预处理后的空口接入链路资源数据;
第二数据获取单元120,用于获取各接入节点与所述锚点之间的无线回传链路的资源数据;
可选的,锚点可在无线回传设备动态检测对应的无线回传链路的资源数据,对检测到的资源数据进行预处理后,获取无线回传设备所上传的预处理后的资源数据;或,在接入节点和锚点检测到接入节点和锚点之间的无线回传链路的资源数据时,获取检测到的预处理后的资源数据;
第三数据获取单元130,用于获取UE与锚点之间的锚点空口接入链路的资源数据。
可选的,第一数据获取单元可采用第一获取执行子单元,用于在各接入节点实时动态检测接入节点与UE之间的空口接入链路资源数据,对检测到的空口接入链路资源数据进行预处理后,获取各接入节点所上传的预处理后的空口接入链路资源数据;
第二数据获取单元可采用第二获取执行子单元,用于在无线回传设备动态检测对应的无线回传链路的资源数据,对检测到的资源数据进行预处理后,获取无线回传设备所上传的预处理后的资源数据;或,在接入节点和锚点检测到接入节点和锚点之间的无线回传链路的资源数据时,获取检测到的预处理后的资源数据;
第三数据获取单元可采用第三获取执行子单元,用于所述锚点实时检测UE与锚点之间的空口接入链路资源数据,获取检测到的UE与锚点之间的空口接入链路资源数据。
可选的,图17示出了本发明实施例提供的数据多流传输装置的另一结构框图,结合图15和图17所示,该数据多流传输装置还可以包括:
判断模块400,用于根据UE请求的业务类型,UE对多流传输的支持性,UE与锚点之间的传输路径数量,UE与锚点之间多条传输路径上的资源可用性,及锚点与核心网之间的资源可用性,判断是否启用数据多流传输;
启用模块500,用于在所述UE请求的业务类型需要采用多路径传输,所述UE支持多路径传输,UE与锚点之间的传输路径数量为多条,UE与锚点之间多条传输路径上的资源可用性与多路径传输相匹配,且锚点与核心网之间的资源可用性与多路径传输相匹配时,启用数据多流传输,以便在启用数据多流传输后,确定所述多条目标数据传输路径。
可选的,图18示出了本发明实施例提供的路径确定模块200的一种可选结构,参照图18,路径确定模块200可以包括:
目标路径确定单元210,用于根据UE所处于的信号覆盖区域,各个接入节点与UE之间的空口接入链路资源数据,各接入节点与所述锚点之间的无线回传链路的资源数据,和UE与锚点之间的锚点空口接入链路的资源数据,确定处于所述信号覆盖区域,链路资源满足预定条件的数据传输路径为所述目标数据传输路径。
可选的,图19示出了多流传输模块300的一种可选结构,参照图19,多流传输模块300可以包括:
第一分流单元310,用于在各目标数据传输路径的资源均大于设定值时,将业务数据的数据包分流到资源消耗少的传输路径上;
第二分流单元320,用于在目标数据传输路径的资源小于设定值时,将重要的高优先级数据包分流到资源相对充足的传输路径上,将低优先级的数据包分流到资源相对紧张的传输路径上。
本发明实施例提供的数据多流传输装置在宏微一体化组网架构下,结合回传资源,实现了动态的多流传输,提供了高速、高质量的数据多流传输的用户业务体验;同时实现无线接入资源和回传资源的最大化利用,避免出现回传资源紧缺导致的拥塞丢包,同时避免接入侧无线资源的浪费。
本发明实施例还提供一种锚点,该锚点可以包括上文所述的数据多流传输装置,对于数据多流传输装置的描述,可参照上文对应部分的描述, 此处不再赘述。
图20示出了本发明实施例提供的锚点的硬件结构框图,参照图20,锚点可以包括:处理器1,通信接口2,存储器3和通信总线4;
其中处理器1、通信接口2、存储器3通过通信总线4完成相互间的通信;
可选的,通信接口2可以为通信模块的接口,如GSM模块的接口;
处理器1,用于执行程序;
存储器3,用于存放程序;
程序可以包括程序代码,所述程序代码包括计算机操作指令。
处理器1可能是一个中央处理器CPU,或者是特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路。
存储器3可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
其中,程序可具体用于:
获取所述UE至所述锚点之间的各条数据传输路径的资源可用性数据,所述资源可用性数据包括各接入节点与所述锚点之间的无线回传链路的资源数据;
根据所述各条数据传输路径的资源可用性数据,确定多条目标数据传输路径;
通过所述多条目标数据传输路径将业务数据多流传输至所述UE;其中,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路,所述目标接入节点为所述至少一个接入节点中传输业务数据的接入节点。
本发明实施例还提供一种数据多流传输系统,该数据多流传输系统的结构可参照图3所示,包括:至少一个接入节点20,锚点30和无线回传设备40;其中,各接入节点与锚点之间通过无线回传设备建立的无线回传链路 进行数据传输,UE与所述锚点之间存在直接进行数据传输的锚点空口接入链路;
在本发明实施例中,锚点,可用于获取所述UE至所述锚点之间的各条数据传输路径的资源可用性数据,所述资源可用性数据包括各接入节点与所述锚点之间的无线回传链路的资源数据,根据所述各条数据传输路径的资源可用性数据,确定多条目标数据传输路径,通过所述多条目标数据传输路径将业务数据多流传输至所述UE,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路,所述目标接入节点为所述至少一个接入节点中传输业务数据的接入节点;
目标接入节点,可用于通过对应的无线回传链路将业务数据发送至所述UE。
可选的,UE,还可用于通过所述多条目标数据传输路径将业务数据传输至锚点,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路;
锚点,还可用于通过所述多条目标数据传输路径接收UE发送的业务数据,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路。
本发明实施例在宏微一体化组网架构下,结合回传资源,实现了动态的多流传输,提供了高速、高质量的数据多流传输的用户业务体验;同时实现无线接入资源和回传资源的最大化利用,避免出现回传资源紧缺导致的拥塞丢包,同时避免接入侧无线资源的浪费。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。

Claims (17)

  1. 一种数据多流传输系统,其特征在于,包括:至少一个接入节点,锚点和无线回传设备;各接入节点与所述锚点之间通过无线回传设备建立的无线回传链路进行数据传输;
    其中,所述锚点,用于获取用户设备UE至所述锚点之间的各条数据传输路径的资源可用性数据,所述资源可用性数据包括各接入节点与所述锚点之间的无线回传链路的资源数据,根据所述各条数据传输路径的资源可用性数据,确定多条目标数据传输路径,通过所述多条目标数据传输路径将业务数据多流传输至所述UE,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路,所述目标接入节点为所述至少一个接入节点中传输业务数据的接入节点;
    所述目标接入节点,用于通过对应的无线回传链路将业务数据发送至所述UE。
  2. 一种数据多流传输装置,其特征在于,基于宏微一体化网络,所述宏微一体化网络包括:至少一个接入节点,锚点和无线回传设备;其中各接入节点与所述锚点之间通过无线回传设备建立的无线回传链路进行数据传输;所述装置应用于所述锚点,所述装置包括:
    数据获取模块,用于获取用户设备UE至所述锚点之间的各条数据传输路径的资源可用性数据,所述资源可用性数据包括各接入节点与所述锚点之间的无线回传链路的资源数据;
    路径确定模块,用于根据所述各条数据传输路径的资源可用性数据,确定多条目标数据传输路径;
    多流传输模块,用于通过所述多条目标数据传输路径将业务数据多流传输至所述UE;其中,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路,所述目标接入节点为所述至少一个接入节点中传输业务数据的接入节点。
  3. 根据权利要求2所述的数据多流传输装置,其特征在于,所述多条目标数据传输路径还包括:所述UE与所述锚点之间的锚点空口接入链路;
    所述目标接入节点与所述锚点之间通过无线回传设备建立的对应的无 线回传链路包括:
    基站与所述锚点之间通过无线回传设备建立的至少一条无线回传链路;
    和/或,WIFI AP无线保真节点与所述锚点之间通过无线回传设备建立的至少一条无线回传链路。
  4. 根据权利要求2所述的数据多流传输装置,其特征在于,所述数据获取模块包括:
    第一数据获取单元,用于获取各个接入节点与UE之间的空口接入链路资源数据;
    第二数据获取单元,用于获取各接入节点与所述锚点之间的无线回传链路的资源数据;
    第三数据获取单元,用于获取UE与锚点之间的锚点空口接入链路的资源数据。
  5. 根据权利要求4所述的数据多流传输装置,其特征在于,所述第一数据获取单元包括:
    第一获取执行子单元,用于在各接入节点实时动态检测接入节点与UE之间的空口接入链路资源数据,对检测到的空口接入链路资源数据进行预处理后,获取各接入节点所上传的预处理后的空口接入链路资源数据;
    所述第二数据获取单元包括:
    第二获取执行子单元,用于在无线回传设备动态检测对应的无线回传链路的资源数据,对检测到的资源数据进行预处理后,获取无线回传设备所上传的预处理后的资源数据;或,在接入节点和锚点检测到接入节点和锚点之间的无线回传链路的资源数据时,获取检测到的预处理后的资源数据;
    所述第三数据获取单元包括:
    第三获取执行子单元,用于所述锚点实时检测UE与锚点之间的空口接入链路资源数据,获取检测到的UE与锚点之间的空口接入链路资源数据。
  6. 根据权利要求4或5所述的数据多流传输装置,其特征在于,还包 括:
    判断模块,用于根据UE请求的业务类型,UE对多流传输的支持性,UE与锚点之间的传输路径数量,UE与锚点之间多条传输路径上的资源可用性,及锚点与核心网之间的资源可用性,判断是否启用数据多流传输;
    启用模块,用于在所述UE请求的业务类型需要采用多路径传输,所述UE支持多路径传输,UE与锚点之间的传输路径数量为多条,UE与锚点之间多条传输路径上的资源可用性与多路径传输相匹配,且锚点与核心网之间的资源可用性与多路径传输相匹配时,启用数据多流传输,以便在启用数据多流传输后,确定所述多条目标数据传输路径。
  7. 根据权利要求2所述的数据多流传输装置,其特征在于,所述路径确定模块包括:
    目标路径确定单元,用于根据UE所处于的信号覆盖区域,各个接入节点与UE之间的空口接入链路资源数据,各接入节点与所述锚点之间的无线回传链路的资源数据,和UE与锚点之间的锚点空口接入链路的资源数据,确定处于所述信号覆盖区域,链路资源满足预定条件的数据传输路径为所述目标数据传输路径。
  8. 根据权利要求2所述的数据多流传输装置,其特征在于,所述多流传输模块包括:
    第一分流单元,用于在各目标数据传输路径的资源均大于设定值时,将业务数据的数据包分流到资源消耗少的传输路径上;
    第二分流单元,用于在目标数据传输路径的资源小于设定值时,将高优先级数据包分流到资源相对充足的传输路径上,将低优先级的数据包分流到资源相对紧张的传输路径上。
  9. 一种锚点,其特征在于,包括权利要求2-8任一项所述的数据多流传输装置。
  10. 一种数据多流传输方法,其特征在于,基于宏微一体化网络,所述宏微一体化网络包括:至少一个接入节点,锚点和无线回传设备;其中各接入节点与所述锚点之间通过无线回传设备建立的无线回传链路进行数据传输;所述方法应用于所述锚点,所述方法包括:
    获取用户设备UE至所述锚点之间的各条数据传输路径的资源可用性数据,所述资源可用性数据包括各接入节点与所述锚点之间的无线回传链路的资源数据;
    根据所述各条数据传输路径的资源可用性数据,确定多条目标数据传输路径;
    通过所述多条目标数据传输路径将业务数据多流传输至所述UE;其中,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路,所述目标接入节点为所述至少一个接入节点中传输业务数据的接入节点。
  11. 根据权利要求10所述的数据多流传输方法,其特征在于,所述多条目标数据传输路径还包括:所述UE与所述锚点之间的锚点空口接入链路;
    所述目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路包括:
    基站与所述锚点之间通过无线回传设备建立的至少一条无线回传链路;
    和/或,WIFI AP无线保真节点与所述锚点之间通过无线回传设备建立的至少一条无线回传链路。
  12. 根据权利要求10所述的数据多流传输方法,其特征在于,所述获取所述UE至所述锚点之间的各条数据传输路径的资源可用性数据包括:
    获取各个接入节点与UE之间的空口接入链路资源数据,各接入节点与所述锚点之间的无线回传链路的资源数据,和UE与锚点之间的锚点空口接入链路的资源数据。
  13. 根据权利要12所述的数据多流传输方法,其特征在于,所述获取各个接入节点与UE之间的空口接入链路资源数据包括:
    在各接入节点实时动态检测接入节点与UE之间的空口接入链路资源数据,对检测到的空口接入链路资源数据进行预处理后,获取各接入节点所上传的预处理后的空口接入链路资源数据;
    所述获取各接入节点与所述锚点之间的无线回传链路的资源数据包 括:
    在无线回传设备动态检测对应的无线回传链路的资源数据,对检测到的资源数据进行预处理后,获取无线回传设备所上传的预处理后的资源数据;或,在接入节点和锚点检测到接入节点和锚点之间的无线回传链路的资源数据时,获取检测到的预处理后的资源数据;
    所述获取UE与锚点之间的锚点空口接入链路的资源数据包括:
    所述锚点实时检测UE与锚点之间的空口接入链路资源数据,获取检测到的UE与锚点之间的空口接入链路资源数据。
  14. 根据权利要求12或13所述的数据多流传输方法,其特征在于,在所述锚点获取所述UE至所述锚点之间的各条数据传输路径的资源可用性数据之后,所述锚点根据所述各条数据传输路径的资源可用性数据,确定多条目标数据传输路径之前还包括:
    根据UE请求的业务类型,UE对多流传输的支持性,UE与锚点之间的传输路径数量,UE与锚点之间多条传输路径上的资源可用性,及锚点与核心网之间的资源可用性,判断是否启用数据多流传输;
    在所述UE请求的业务类型需要采用多路径传输,所述UE支持多路径传输,UE与锚点之间的传输路径数量为多条,UE与锚点之间多条传输路径上的资源可用性与多路径传输相匹配,且锚点与核心网之间的资源可用性与多路径传输相匹配时,启用数据多流传输,以便在启用数据多流传输后,确定所述多条目标数据传输路径。
  15. 根据权利要求10所述的数据多流传输方法,其特征在于,所述锚点根据所述各条数据传输路径的资源可用性数据,确定多条目标数据传输路径包括:
    根据UE所处于的信号覆盖区域,各个接入节点与UE之间的空口接入链路资源数据,各接入节点与所述锚点之间的无线回传链路的资源数据,和UE与锚点之间的锚点空口接入链路的资源数据,确定处于所述信号覆盖区域,链路资源满足预定条件的数据传输路径为所述目标数据传输路径。
  16. 根据权利要求10所述的数据多流传输方法,其特征在于,所述通过所述多条目标数据传输路径将业务数据多流传输至所述UE包括:
    在各目标数据传输路径的资源均大于设定值时,将业务数据的数据包分流到资源消耗少的传输路径上;
    在目标数据传输路径的资源小于设定值时,将高优先级数据包分流到资源相对充足的传输路径上,将低优先级的数据包分流到资源相对紧张的传输路径上。
  17. 根据权利要求10所述的数据多流传输方法,其特征在于,还包括:
    所述锚点通过所述多条目标数据传输路径接收UE发送的业务数据,所述多条目标数据传输路径包括目标接入节点与所述锚点之间通过无线回传设备建立的对应的无线回传链路。
PCT/CN2015/097694 2014-12-18 2015-12-17 一种数据多流传输方法、装置、锚点及系统 WO2016095831A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15869338.2A EP3226604B1 (en) 2014-12-18 2015-12-17 Data multi streaming transmission method, apparatus, anchor point, and system
US15/625,983 US10492193B2 (en) 2014-12-18 2017-06-16 Multi-stream data transmission method, apparatus, and system, and anchor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410803792.6 2014-12-18
CN201410803792.6A CN104581816A (zh) 2014-12-18 2014-12-18 一种数据多流传输方法、装置、锚点及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/625,983 Continuation US10492193B2 (en) 2014-12-18 2017-06-16 Multi-stream data transmission method, apparatus, and system, and anchor

Publications (1)

Publication Number Publication Date
WO2016095831A1 true WO2016095831A1 (zh) 2016-06-23

Family

ID=53096791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097694 WO2016095831A1 (zh) 2014-12-18 2015-12-17 一种数据多流传输方法、装置、锚点及系统

Country Status (4)

Country Link
US (1) US10492193B2 (zh)
EP (1) EP3226604B1 (zh)
CN (1) CN104581816A (zh)
WO (1) WO2016095831A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148244A (zh) * 2018-11-02 2020-05-12 北京三星通信技术研究有限公司 在中继网络中传输控制信令的方法及其配置方法和设备

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104581816A (zh) * 2014-12-18 2015-04-29 上海华为技术有限公司 一种数据多流传输方法、装置、锚点及系统
CN105072612B (zh) * 2015-07-15 2019-06-11 宇龙计算机通信科技(深圳)有限公司 一种认证接入的方法、基站及终端
CN107005904B (zh) * 2015-07-21 2019-11-12 华为技术有限公司 一种用户设备切换方法和装置
US9813468B2 (en) * 2015-09-08 2017-11-07 Microsoft Technology Licensing, Llc Wireless control of streaming computing device
CN105578534B (zh) 2016-02-03 2019-10-11 宇龙计算机通信科技(深圳)有限公司 终端化小区基于sdn控制的带宽共享方法及带宽共享装置
CN112995050A (zh) * 2016-11-17 2021-06-18 华为技术有限公司 一种多路径数据传输方法及设备
WO2019105564A1 (en) * 2017-11-30 2019-06-06 Nokia Technologies Oy Method and apparatus for backhaul in 5g networks
CN108243432B (zh) * 2018-01-09 2021-05-11 重庆邮电大学 一种无线接入与回传一体化小基站原型设计方法
CN110167093B (zh) * 2018-02-14 2021-03-12 维沃移动通信有限公司 一种回传路径的转换方法、无线中继、网络侧节点及终端
US11343749B2 (en) * 2018-03-28 2022-05-24 Sony Corporation Methods, wireless communications networks and infrastructure equipment
WO2019185381A1 (en) * 2018-03-28 2019-10-03 Sony Corporation Methods, wireless communications networks and infrastructure equipment
US11044617B2 (en) * 2018-07-11 2021-06-22 Kevin Ross Systems and methods for improving wireless mesh networks
BR112021000436A8 (pt) 2018-07-11 2023-04-25 Ahsan Naim Muhammad Primeiro nó de comunicação sem fio e sistema de comunicação
CN108566672B (zh) * 2018-07-12 2021-02-23 中国联合网络通信集团有限公司 一种数据传输方法、装置和网络系统
CN109525982B (zh) * 2018-10-30 2020-12-25 东莞理工学院 一种5g系统中的接入方法
CN115442452A (zh) 2019-01-08 2022-12-06 华为技术有限公司 一种数据传输方法及电子设备
CN110139068B (zh) * 2019-04-03 2020-11-27 视联动力信息技术股份有限公司 一种检测方法和装置
CN112217716A (zh) * 2019-07-10 2021-01-12 北京三星通信技术研究有限公司 数据包路由的方法及设备、数据包传输的控制方法及设备
CN112566277B (zh) * 2019-09-25 2023-01-31 成都鼎桥通信技术有限公司 数据回传方法及装置
CN113133056B (zh) * 2019-12-30 2023-10-24 华为技术有限公司 一种数据传输方法及装置
CN113766519B (zh) * 2020-06-04 2022-12-02 中国移动通信集团陕西有限公司 共模基站调整方法、装置、设备和计算机存储介质
CN117478707B (zh) * 2023-12-27 2024-05-07 天津数智物联科技有限公司 一种多目标能源管理数据传输方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013070161A1 (en) * 2011-11-09 2013-05-16 Telefonaktiebolaget L M Ericsson (Publ) Base station, user equipment, radio network controller and methods therein
CN103338518A (zh) * 2012-12-31 2013-10-02 上海华为技术有限公司 一种发送rrc信令的方法、基站和系统
CN104080121A (zh) * 2013-03-26 2014-10-01 中兴通讯股份有限公司 一种传输数据的方法及系统
CN104581816A (zh) * 2014-12-18 2015-04-29 上海华为技术有限公司 一种数据多流传输方法、装置、锚点及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105592500A (zh) * 2011-05-27 2016-05-18 上海华为技术有限公司 一种数据流传输方法及用户设备
EP2983427B1 (en) * 2012-03-23 2018-02-28 MediaTek Inc. Methods for physical layer multi-point carrier aggregation and multi-point feedback configuration
CN103532909B (zh) * 2012-07-04 2019-01-22 中兴通讯股份有限公司 多流业务并发传输方法、子系统、系统及多接口终端
MX343027B (es) 2012-09-07 2016-10-21 Huawei Tech Co Ltd Metodo de transmision de interfaz de aire y dispositivo y sistema relacionados.
WO2014047942A1 (zh) 2012-09-29 2014-04-03 华为技术有限公司 传输数据的方法、用户设备和网络侧设备
US9392481B2 (en) * 2013-03-15 2016-07-12 Futurewei Technologies, Inc. System and method for buffer status reporting for multi-stream aggregation
US9479230B2 (en) * 2013-05-31 2016-10-25 Blackberry Limited Systems and methods for data offload in wireless networks
EP3038401B1 (en) 2013-09-23 2018-02-14 Huawei Technologies Co., Ltd. Communication system, control device and network management server
WO2015175725A1 (en) * 2014-05-13 2015-11-19 Parallel Wireless, Inc. Multi-egress backhaul
US9572108B2 (en) * 2014-06-26 2017-02-14 Intel IP Corporation Systems, methods and devices for small cell activation and detection
CN105766052B9 (zh) * 2014-10-23 2020-05-19 华为技术有限公司 接口建立方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013070161A1 (en) * 2011-11-09 2013-05-16 Telefonaktiebolaget L M Ericsson (Publ) Base station, user equipment, radio network controller and methods therein
CN103338518A (zh) * 2012-12-31 2013-10-02 上海华为技术有限公司 一种发送rrc信令的方法、基站和系统
CN104080121A (zh) * 2013-03-26 2014-10-01 中兴通讯股份有限公司 一种传输数据的方法及系统
CN104581816A (zh) * 2014-12-18 2015-04-29 上海华为技术有限公司 一种数据多流传输方法、装置、锚点及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3226604A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148244A (zh) * 2018-11-02 2020-05-12 北京三星通信技术研究有限公司 在中继网络中传输控制信令的方法及其配置方法和设备

Also Published As

Publication number Publication date
US10492193B2 (en) 2019-11-26
CN104581816A (zh) 2015-04-29
EP3226604B1 (en) 2019-03-13
EP3226604A1 (en) 2017-10-04
EP3226604A4 (en) 2018-01-03
US20170289976A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2016095831A1 (zh) 一种数据多流传输方法、装置、锚点及系统
JP5448226B2 (ja) 複数の無線ネットワークの共存
EP2939484B1 (en) Multi-band device-to-device multicast or broadcast communication
JP5518996B2 (ja) ユニキャストチャネルを介してブロードキャストコンテンツを提供するための方法および装置
JP5199363B2 (ja) 複数のホップに対して直交的にスケジュールする方法
US20130201847A1 (en) Method and apparatus to enable ad hoc networks
TW201717694A (zh) 服務品質感知存取點和設備操縱
JP6363231B2 (ja) 進化型ノードb、モビリティマネジメントエンティティ、及びユーザ機器、並びに留意されているサービス及び留意されていないサービスをサポートする方法
WO2013152472A1 (zh) 通信方法与系统,以及接入网设备与应用服务器
JP2010532961A (ja) 通信装置およびデータ送信方法
WO2021088977A1 (zh) 一种数据传输的方法及相关设备
US10757721B2 (en) Differentiated scheduling of Xcast traffic
JP2022511163A (ja) データの送信をセルラネットワークから単方向ポイントツーマルチポイントネットワークに動的に切り替えるシステムおよび方法
WO2012149739A1 (zh) 一种传输数据的方法、设备与基站
WO2021097858A1 (zh) 一种通信方法及装置
WO2022033543A1 (zh) 一种中继通信方法及通信装置
EP3518577B1 (en) Network access entity for providing access to a communication network
JP6468560B2 (ja) 無線通信システム及びその制御方法、並びに、通信制御プログラム
WO2016029409A1 (zh) 一种数据传输方法及装置
US9635586B2 (en) Method and apparatus for using call admission control for client balancing
EP3518576B1 (en) Data flow manager for distributing data for a data stream of a user equipment, communication system and method
WO2019158034A1 (zh) 一种资源分配方法和装置
WO2014207429A1 (en) Wireless access point
WO2018171696A1 (zh) 建立连接的方法和装置
WO2015035648A1 (zh) 一种应用管理的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015869338

Country of ref document: EP