WO2016095776A1 - 一种定位三维ct图像中的目标的方法和安检ct系统 - Google Patents
一种定位三维ct图像中的目标的方法和安检ct系统 Download PDFInfo
- Publication number
- WO2016095776A1 WO2016095776A1 PCT/CN2015/097274 CN2015097274W WO2016095776A1 WO 2016095776 A1 WO2016095776 A1 WO 2016095776A1 CN 2015097274 W CN2015097274 W CN 2015097274W WO 2016095776 A1 WO2016095776 A1 WO 2016095776A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dimensional
- image
- determined
- point cloud
- selection
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000007689 inspection Methods 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 9
- 230000011218 segmentation Effects 0.000 claims description 9
- 230000015654 memory Effects 0.000 claims description 8
- 238000009877 rendering Methods 0.000 claims description 5
- 238000002591 computed tomography Methods 0.000 claims description 3
- 230000000704 physical effect Effects 0.000 claims description 2
- 238000012216 screening Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 6
- 239000003550 marker Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013170 computed tomography imaging Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
- G01V5/20—Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
- G01V5/22—Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
- G01V5/226—Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays using tomography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
Definitions
- the present application relates to security inspection, and in particular to a method for locating a target in a computerized Tomographic image and a security CT system.
- the multi-energy X-ray safety inspection system is a new security inspection system developed on the basis of a single-energy X-ray safety inspection system. It not only provides the shape and content of the object to be inspected, but also provides information reflecting the effective atomic number of the object to be inspected, thereby distinguishing whether the object is organic or inorganic, and displaying it on a color monitor with different colors to help operate Personnel make judgments.
- the judge In the process of making a judgment, if a suspect is found, the judge is required to mark it with an input device such as a mouse.
- an input device such as a mouse.
- the principle of marking the suspect directly on the two-dimensional DR image is simple and mature.
- the CT security system how to quickly and accurately mark the suspect on the three-dimensional image generated by the CT data is an urgent problem to be solved.
- the present disclosure proposes a method for locating a target in a three-dimensional CT image and a security CT system, which can facilitate a user to quickly mark a suspect in a CT image.
- a method for locating an object in a three-dimensional CT image comprising the steps of: displaying a three-dimensional CT image; receiving a selection of at least one region of the three-dimensional CT image by a user at a viewing angle; Generating a set of at least one three-dimensional object in the depth direction based on the selection; determining a target object from the set.
- point cloud information representing the object to be inspected is recorded, the method further comprising the step of: obtaining point cloud information of the outer surface of different objects in the selected region by segmentation a cluster sequence; determining at least one selected region from a sequence of point cloud information clusters of different objects based on a predetermined reference.
- an object corresponding to a cluster of points having the largest number of point clouds is determined as the target object.
- the objects in the three-dimensional CT image are segmented, and at least one set of three-dimensional objects is obtained from at least one object intersecting in the depth direction of the selected region.
- the object in the set that is closest to the viewpoint is determined as the target object.
- the object in the collection is presented to the user and then the target object is determined according to the user's selection.
- an object whose physical properties of the objects in the set meet predetermined criteria is determined as the target object.
- a security CT system comprising: a CT scanning device that obtains inspection data of the object to be inspected; a memory that stores the inspection data; and a display device that displays the object to be inspected a three-dimensional CT image; an input device that inputs a selection of at least one region of the three-dimensional CT image by the user at a viewing angle; and a data processor that generates a set of at least one three-dimensional object in the depth direction based on the selection, wherein A target object is determined from the set.
- point cloud information characterizing the object to be inspected is recorded, and the data processor is configured to: obtain point cloud information of different objects in the selected region by segmentation a cluster sequence; determining at least one selected region from a sequence of point cloud information clusters of different objects based on a predetermined reference.
- the data processor is configured to segment an object in the three-dimensional CT image, and obtain at least one set of three-dimensional objects from at least one object intersecting in a depth direction of the selected region.
- the user can quickly mark the suspect in the CT image.
- FIG. 1 is a block diagram showing the structure of a security CT system according to an embodiment of the present disclosure
- Figure 2 is a block diagram showing the structure of a computer data processor as shown in Figure 1;
- FIG. 3 is a block diagram showing the structure of a controller according to an embodiment of the present disclosure
- FIG. 4 is a flowchart of a method of marking a suspect in a CT system, in accordance with an embodiment of the present disclosure
- Figure 5 is a diagram for describing the position of a non-transparent area in the first hit of the volume data in the recording ray projection
- FIG. 6 is a schematic diagram depicting a marker object having the largest number of selected points in a sequence of segmented point cloud clusters
- FIG. 7 shows a schematic diagram of a point cloud cluster obtained by segmentation in an embodiment of the present disclosure.
- references to "one embodiment”, “an embodiment”, “an” or “an” or “an” or “an” or “an” In at least one embodiment.
- the appearances of the phrase “in one embodiment”, “in the embodiment”, “the” Furthermore, the particular features, structures, or characteristics may be combined in one or more embodiments or examples in any suitable combination and/or sub-combination.
- the term “and/or” as used herein includes any and all combinations of one or more of the associated listed items.
- embodiments of the present disclosure provide a method of locating a target in a three-dimensional CT image.
- a three-dimensional CT image is displayed on the display device.
- the user is then selected for selection of at least one region of the three-dimensional CT image at a viewing angle by an input device such as a mouse.
- a set of at least one three-dimensional object in the depth direction is generated based on the selection, and the target object is determined from the set.
- the three-dimensional target object can be determined by selecting from one perspective, so that the user can quickly mark the suspect in the CT image.
- FIG. 1 is a schematic structural view of a CT system according to an embodiment of the present disclosure.
- the CT apparatus includes: a chassis 20, a carrier mechanism 40, a controller 50, and a computer data processor 60. Wait.
- the gantry 20 includes a source 10 that emits X-rays for inspection, such as an X-ray machine, and a detection and acquisition device 30.
- the carrier mechanism 40 carries the scanned area between the source 10 of the inspected baggage 20 passing through the frame 20 and the detecting and collecting device 30, while the frame 20 is rotated about the direction of advancement of the inspected baggage 70, thereby being emitted by the source 10
- the rays can pass through the inspected baggage 70 to perform a CT scan of the inspected baggage 70.
- the detecting and collecting device 30 is, for example, a detector having an integral module structure and a data collector, such as a flat panel detector, for detecting rays transmitted through the object to be inspected, obtaining an analog signal, and converting the analog signal into a digital signal, thereby outputting the output.
- the projection data of the luggage 70 for X-rays is checked.
- the controller 50 is used to control the various parts of the entire system to work synchronously.
- the computer data processor 60 is used to process the data collected by the data collector, process and reconstruct the data, and output the results.
- the radiation source 10 is placed on the side where the object to be inspected can be placed, and the detecting and collecting device 30 is placed on the other side of the checked baggage 70, including a detector and a data collector for acquiring the checked baggage.
- the data collector includes a data amplification forming circuit that can operate in a (current) integration mode or a pulse (count) mode.
- the data output cable of the detection and acquisition device 30 is coupled to the controller 50 and computer data processor 60 for storing the acquired data in computer data processor 60 in accordance with a trigger command.
- FIG. 2 shows a block diagram of the computer data processor 60 shown in FIG. 1.
- the data collected by the data collector is stored in the memory 61 via the interface unit 68 and the bus 64.
- Configuration information and a program of the computer data processor are stored in a read only memory (ROM) 62.
- a random access memory (RAM) 63 is used to temporarily store various data during the operation of the processor 66.
- a computer program for performing data processing is also stored in the memory 61.
- the internal bus 64 is connected to the above-described memory 61, read only memory 62, random access memory 63, input device 65, processor 66, display device 67, and interface unit 68.
- the instruction code of the computer program instructs the processor 66 to execute a predetermined data processing algorithm, and after obtaining the data processing result, display it on, for example, an LCD display.
- the processing result is outputted on the display device 67 of the class, or directly in the form of a hard copy such as printing.
- FIG. 3 shows a structural block diagram of a controller in accordance with an embodiment of the present disclosure.
- the controller 50 includes a control unit 51 that controls the radiation source 10, the carrier mechanism 40, and the detecting and collecting device 30 according to an instruction from the computer 60, and a trigger signal generating unit 52 for the control unit. Generated under control A trigger command for triggering the action of the ray source 10, the detecting and collecting device 30, and the carrying mechanism 40; the first driving device 53, which drives the carrying mechanism 40 according to a trigger command generated by the trigger signal generating unit 52 under the control of the control unit 51.
- the checked baggage 70 is transmitted; the second driving device 54 rotates according to the trigger command frame 20 generated by the trigger signal generating unit 52 under the control of the control unit 51.
- the projection data obtained by the detecting and collecting device 30 is stored in the computer 60 for CT tomographic image reconstruction, thereby obtaining tomographic image data of the checked baggage 70.
- the computer 60 then obtains a DR image of at least one viewing angle of the checked baggage 70 from the tomographic image data, for example by executing software, and displays it along with the reconstructed three-dimensional image to facilitate the security check by the panelist.
- the CT imaging system described above may also be a dual energy CT system, that is, the X-ray source 10 of the gantry 20 is capable of emitting both high and low energy rays, and the detection and acquisition device 30 detects projections at different energy levels.
- dual-energy CT reconstruction is performed by computer data processor 60 to obtain equivalent atomic number and electron density data for each slice of baggage inspected 70.
- FIG. 4 is a flow chart describing a method of marking a suspect in a CT system, in accordance with an embodiment of the present disclosure.
- step S401 the inspection data of the object to be inspected is read, and the three-dimensional image of the object to be inspected is displayed on the display device.
- the user is selected to select at least one region of the three-dimensional CT image at a viewing angle by an input device 65 such as a mouse. For example, the user selects an area under the current view or selects a specific area under the current view by using the mouse.
- a set of at least one three-dimensional object in the depth direction is generated based on the selection.
- the computer 60 determines at least one three-dimensionality associated with the selection in the direction in the three-dimensional image by receiving a user's selection at a certain perspective, such as the user operating the input device to tick or circle an area on the image displayed on the screen.
- Objects form a collection of objects.
- a target object is determined from the set. For example, an object in the set that satisfies a predetermined requirement is determined as a target object.
- the number of operations of the user is reduced.
- point cloud information characterizing the object under inspection is recorded, in response to the selection to give feedback related to the image containing at least one 3D virtual contraband in the 3D inspection image
- the steps include: obtaining the check by segmentation Detecting a sequence of point cloud information clusters of outer surfaces of different objects in the object; determining at least one selected region from a sequence of point cloud information clusters of different objects based on a predetermined reference; determining whether the at least one of the at least one selected region exists 3D virtual contraband image.
- an object corresponding to the point cluster having the largest number of point clouds can be determined as the target object.
- FIG. 5 is a diagram for describing the position of a non-transparent area in the first hit volume data in the recording ray projection.
- the recorded light hits the position of the non-transparent area of the volume data for the first time, and the normal vector of the position is calculated.
- the normal vector at the point of incidence is estimated using the gradient of the voxel position.
- the user's one-time marker input in most cases, is an unclosed curve. Therefore, after the curve is closed, the generated figure or concave or convex, in order to make the drawing speed as fast as possible, divide it into tessellation, decompose it into smaller convex polygons or triangles, and then combine them. Together form the final shape and get a solid fill shape.
- the image of the current angle of view is cropped using the solid fill shape as a binary mask image to obtain a point cloud in the marked area and a normal vector of the corresponding position. Each point in the point cloud is associated with a feature vector that includes the position coordinates of the point, the normal vector, and the atomic value. Then, the point cloud data is segmented by the classification algorithm in the feature space.
- clustering using only the position coordinates of the points does not solve the segmentation of the spatially attached objects. Therefore, the atomic order value can be introduced, which fully exploits the advantages of dual-energy CT in material identification, and can effectively solve the segmentation problem of the attached object.
- Fig. 6 is a diagram for describing a tagged object having the largest number of selected points in the segmented point cloud cluster sequence.
- a multi-cluster point cloud may be obtained, as shown in FIG. 7, two point cloud clusters are obtained.
- the number of points included in each cluster of point clouds is calculated separately, and the point with the largest number of points is used as the final marker object. This is because the more point clusters, the more objects that their corresponding objects are exposed in the current marker area, which is the main view body in the current marker area.
- the objects in the three-dimensional CT image may be segmented, and at least one set of three-dimensional objects is obtained from at least one object intersecting in the depth direction of the selected region.
- the object closest to the viewpoint in the set can be determined as the target object.
- the physical genus of the objects in the collection An object whose sexuality satisfies a predetermined criterion is determined as a target object. For example, an object whose average atomic number tree is within a predetermined range is determined as a target object.
- aspects of the embodiments disclosed herein may be implemented in an integrated circuit as a whole or in part, as one or more of one or more computers running on one or more computers.
- a computer program eg, implemented as one or more programs running on one or more computer systems
- implemented as one or more programs running on one or more processors eg, implemented as one or One or more programs running on a plurality of microprocessors, implemented as firmware, or substantially in any combination of the above, and those skilled in the art, in accordance with the present disclosure, will be provided with design circuitry and/or write software and / or firmware code capabilities.
- signal bearing media include, but are not limited to, recordable media such as floppy disks, hard drives, compact disks (CDs), digital versatile disks (DVDs), digital tapes, computer memories, and the like; and transmission-type media such as digital and / or analog communication media (eg, fiber optic cable, waveguide, wired communication link, wireless communication link, etc.).
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
一种定位三维CT图像中的目标的方法和安检CT系统。该方法包括:显示一幅三维CT图像;接收用户在一个视角下对所述三维CT图像的至少一个区域的选择;基于所述选择产生深度方向上的至少一个三维物体的集合;从所述集合中确定目标物体。利用上述的技术方案,能够方便用户迅速标记CT图像中的嫌疑物。
Description
本申请涉及安全检查,具体涉及一种定位三维CT(Computerized Tomographic)图像中的目标的方法和安检CT系统。
多能量X射线安全检查系统,是在单能量X射线安全检查系统的基础上开发的新型安检系统。它不仅能提供被检物的形状和内容,还能提供反映被检物品有效原子序数的信息,从而区分被检物是有机物还是无机物,并用不同的颜色在彩色监视器上显示出来,帮助操作人员进行判别。
在判图过程中,如果发现有嫌疑物,需要判图人员用鼠标之类的输入装置将其标注出来。对于DR(Digital Radiographic)类的物品机系统,直接在二维的DR图像上标记嫌疑物原理简单且有成熟的方案。对于CT类的安检系统,如何在CT数据产生的三维图像上快速、准确地标记嫌疑物,是一个亟待解决的问题。
发明内容
考虑到现有技术中的一个或者多个技术问题,本公开提出了一种定位三维CT图像中的目标的方法和安检CT系统,能够方便用户迅速标记CT图像中的嫌疑物。
在本公开的一个方面,提出了一种定位三维CT图像中的目标的方法,包括步骤:显示一幅三维CT图像;接收用户在一个视角下对所述三维CT图像的至少一个区域的选择;基于所述选择产生深度方向上的至少一个三维物体的集合;从所述集合中确定目标物体。
根据一些实施例,在所述三维CT图像的三维绘制过程中,记录表征被检查物体的点云信息,所述方法还包括步骤:通过分割来获得所选区域中不同物体外表面的点云信息簇序列;基于预定的基准从不同物体的点云信息簇序列中确定至少一个选中的区域。
根据一些实施例,将将点云数目最多的点簇对应的物体确定为目标物体。
根据一些实施例,对三维CT图像中的物体进行分割,从所选择的区域的深度方向上交叉的至少一个物体得到至少一个三维物体的集合。
根据一些实施例,将所述集合中距离视点最近的那个物体确定为目标物体。
根据一些实施例,向用户呈现所述集合中物体,然后根据用户的选择来确定目标物体。
根据一些实施例,将所述集合中物体的物理属性满足预定标准的物体确定为目标物体。
在本公开的另一方面,提出了一种安检CT系统,包括:CT扫描设备,获得所述被检查物体的检查数据;存储器,存储所述检查数据;显示设备,显示所述被检查物体的一幅三维CT图像;输入装置,输入用户在一个视角下对所述三维CT图像的至少一个区域的选择;以及数据处理器,基于所述选择产生深度方向上的至少一个三维物体的集合,其中从所述集合中确定目标物体。
根据一些实施例,在所述三维CT图像的三维绘制过程中,记录表征被检查物体的点云信息,所述数据处理器配置用于:通过分割来获得所选区域中不同物体的点云信息簇序列;基于预定的基准从不同物体的点云信息簇序列中确定至少一个选中的区域。
根据一些实施例,所述数据处理器配置用于对三维CT图像中的物体进行分割,从所选择的区域的深度方向上交叉的至少一个物体得到至少一个三维物体的集合。
利用上述的技术方案,能够方便用户迅速标记CT图像中的嫌疑物。
为了更好地理解本公开,将根据以下附图对本公开进行详细描述:
图1示出了根据本公开实施例的安检CT系统的结构示意图;
图2示出了如图1所示的计算机数据处理器的结构框图;
图3示出了根据本公开实施方式的控制器的结构框图;
图4是根据本公开的实施例的在CT系统中标记嫌疑物的方法的流程图;
图5是描述记录光线投射中第一次击中体数据中的非透明区域的位置的示意图;
图6是描述在分割的点云簇序列中,选择点数最多的作为标记物体的示意图;以及
图7示出了在本公开的实施例中分割得到的点云簇的示意图。
下面将详细描述本公开的具体实施例,应当注意,这里描述的实施例只用于举例说明,并不用于限制本公开。在以下描述中,为了提供对本公开的透彻理解,阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本公开。在其他实例中,为了避免混淆本公开,未具体描述公知的结构、材料或方法。
在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本公开至少一个实施例中。因此,在整个说明书的各个地方出现的短语“在一个实施例中”、“在实施例中”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和/或子组合将特定的特征、结构或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。
针对现有技术不能在CT数据产生的三维图像中快速标注嫌疑物的问题,本公开的实施例提供了一种定位三维CT图像中的目标的方法。首先,在显示设备上显示一幅三维CT图像。然后接收用户通过诸如鼠标之类的输入装置在一个视角下对所述三维CT图像的至少一个区域的选择。接下来,基于所述选择产生深度方向上的至少一个三维物体的集合,并且从所述集合中确定目标物体。利用上述方案,从一个视角上进行选择就能够确定三维目标物体,因此能够方便用户迅速标记CT图像中的嫌疑物。
图1是根据本公开实施方式的CT系统的结构示意图。如图1所示,根据本实施方式的CT设备包括:机架20、承载机构40、控制器50、计算机数据处理器60
等。机架20包括发出检查用X射线的射线源10,诸如X光机,以及探测和采集装置30。承载机构40承载被检查行李70穿过机架20的射线源10与探测和采集装置30之间的扫描区域,同时机架20围绕被检查行李70的前进方向转动,从而由射线源10发出的射线能够透过被检查行李70,对被检查行李70进行CT扫描。
探测和采集装置30例如是具有整体模块结构的探测器及数据采集器,例如平板探测器,用于探测透射被检物品的射线,获得模拟信号,并且将模拟信号转换成数字信号,从而输出被检查行李70针对X射线的投影数据。控制器50用于控制整个系统的各个部分同步工作。计算机数据处理器60用来处理由数据采集器采集的数据,对数据进行处理并重建,输出结果。
如图1所示,射线源10置于可放置被检物体的一侧,探测和采集装置30置于被检查行李70的另一侧,包括探测器和数据采集器,用于获取被检查行李70的多角度投影数据。数据采集器中包括数据放大成形电路,它可工作于(电流)积分方式或脉冲(计数)方式。探测和采集装置30的数据输出电缆与控制器50和计算机数据处理器60连接,根据触发命令将采集的数据存储在计算机数据处理器60中。
图2示出了如图1所示的计算机数据处理器60的结构框图。如图2所示,数据采集器所采集的数据通过接口单元68和总线64存储在存储器61中。只读存储器(ROM)62中存储有计算机数据处理器的配置信息以及程序。随机存取存储器(RAM)63用于在处理器66工作过程中暂存各种数据。另外,存储器61中还存储有用于进行数据处理的计算机程序。内部总线64连接上述的存储器61、只读存储器62、随机存取存储器63、输入装置65、处理器66、显示装置67和接口单元68。
在用户通过诸如键盘和鼠标之类的输入装置65输入的操作命令后,计算机程序的指令代码命令处理器66执行预定的数据处理算法,在得到数据处理结果之后,将其显示在诸如LCD显示器之类的显示装置67上,或者直接以诸如打印之类硬拷贝的形式输出处理结果。
图3示出了根据本公开实施方式的控制器的结构框图。如图3所示,控制器50包括:控制单元51,根据来自计算机60的指令,来控制射线源10、承载机构40和探测和采集装置30;触发信号产生单元52,用于在控制单元的控制下产生用
来触发射线源10、探测和采集装置30以及承载机构40的动作的触发命令;第一驱动设备53,它在根据触发信号产生单元52在控制单元51的控制下产生的触发命令驱动承载机构40传送被检查行李70;第二驱动设备54,它根据触发信号产生单元52在控制单元51的控制下产生的触发命令机架20旋转。探测和采集装置30获得的投影数据存储在计算机60中进行CT断层图像重建,从而获得被检查行李70的断层图像数据。然后计算机60例如通过执行软件来从断层图像数据得到被检查行李70的至少一个视角下的DR图像,与重建的三维图像一起显示,方便判图员进行安全检查。根据其他实施例,上述的CT成像系统也可以是双能CT系统,也就是机架20的X射线源10能够发出高能和低能两种射线,探测和采集装置30探测到不同能量水平下的投影数据后,由计算机数据处理器60进行双能CT重建,得到被检查行李70的各个断层的等效原子序数和电子密度数据。
图4是描述根据本公开的实施例的在CT系统中标记嫌疑物的方法的流程图。
如图4所示,在步骤S401,读取被检查物体的检查数据,在显示装置上显示被检查物体的三维图像。
在步骤S402,接收用户通过诸如鼠标之类的输入装置65在一个视角下对所述三维CT图像的至少一个区域的选择。例如用户通过使用鼠标在三维图像上勾选一个当前视角下的区域或者选择当前视角下的特定区域。
在步骤S403,基于所述选择产生深度方向上的至少一个三维物体的集合。通过接收用户在某个视角下的选择,例如用户操作输入装置在屏幕上显示的图像中勾选或者圈划某个区域,计算机60在三维图像中确定与该方向上的选择相关的至少一个三维物体,形成物体集合。
在步骤S404,从所述集合中确定目标物体。例如,将该集合中满足预定要求的物体确定为目标物体。
这样,通过对所显示的3D检查图像中的一部分在一个视角上的选择来确定三维目标物体,减少了用户的操作次数。例如,在所述3D检查图像的3D绘制过程中,记录表征被检查物体的点云信息,响应于所述选择以给出与所述3D检查图像中包含至少一个3D虚拟违禁品图像相关的反馈的步骤包括:通过分割来获得被检
查物体中不同物体外表面的点云信息簇序列;基于预定的基准从不同物体的点云信息簇序列中确定至少一个选中的区域;判断所述至少一个选中的区域中是否存在所述至少一个3D虚拟违禁品图像。在这种情况下,可以将将点云数目最多的点簇对应的物体确定为目标物体。
图5是描述记录光线投射中第一次击中体数据中的非透明区域的位置的示意图。如图5所示,在光线投射过程中,记录光线第一次击中体数据非透明区域的位置,同时计算这个位置的法线向量。例如,射入点处的法线向量使用该体素位置的梯度估算。
根据一些实施例,用户的一次标记输入,绝大多数情况是一条不封闭的曲线。因此,可以将曲线封闭后,生成的图形或凹或凸,为了使图形的绘制速度尽可能快,将其分格化(tessellation)后,分解为更小的凸多边形或三角形,然后把它们组合在一起形成最终的形状,并获得实心的填充形状。使用实心的填充形状作为二值掩码图像对当前视角的图像进行裁剪,获得标记区域内的点云和对应位置的法向量。将点云中的每个点都与一个特征向量相关联,此特征向量包括点的位置坐标,法线向量和原子序数值。然后,在特征空间通过分类算法分割点云数据。
在一些实施例中,仅使用点的位置坐标进行聚类,无法解决空间上粘连物体的分割。因此,可以引入原子序数值,充分地发挥了双能CT在物质识别方面的优势,能够有效地解决粘连物体的分割问题。
图6是描述在分割的点云簇序列中,选择点数最多的作为标记物体的示意图。
通过上述分割过程,可能会获得多簇点云,如图7所示,得到了两个点云簇。在这种情况下,分别计算每簇点云所包含的点数,将点数最多的作为最终的标记物体。这是因为,点数越多的点簇,表示其对应的物体在当前的标记区域内显露的越多,为当前标记区域内的主要视见体。
在其他实施例中,可以对三维CT图像中的物体进行分割,从所选择的区域的深度方向上交叉的至少一个物体得到至少一个三维物体的集合。在这种情况下,可以将所述集合中距离视点最近的那个物体确定为目标物体。或者向用户呈现所述集合中物体,然后根据用户的选择来确定目标物体。或者将所述集合中物体的物理属
性满足预定标准的物体确定为目标物体。例如将平均原子序数树在预定范围的物体确定为目标物体。
以上的详细描述通过使用示意图、流程图和/或示例,已经阐述了定位三维CT图像中的目标的方法和安检CT系统的众多实施例。在这种示意图、流程图和/或示例包含一个或多个功能和/或操作的情况下,本领域技术人员应理解,这种示意图、流程图或示例中的每一功能和/或操作可以通过各种结构、硬件、软件、固件或实质上它们的任意组合来单独和/或共同实现。在一个实施例中,本公开的实施例所述主题的若干部分可以通过专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、或其他集成格式来实现。然而,本领域技术人员应认识到,这里所公开的实施例的一些方面在整体上或部分地可以等同地实现在集成电路中,实现为在一台或多台计算机上运行的一个或多个计算机程序(例如,实现为在一台或多台计算机系统上运行的一个或多个程序),实现为在一个或多个处理器上运行的一个或多个程序(例如,实现为在一个或多个微处理器上运行的一个或多个程序),实现为固件,或者实质上实现为上述方式的任意组合,并且本领域技术人员根据本公开,将具备设计电路和/或写入软件和/或固件代码的能力。此外,本领域技术人员将认识到,本公开所述主题的机制能够作为多种形式的程序产品进行分发,并且无论实际用来执行分发的信号承载介质的具体类型如何,本公开所述主题的示例性实施例均适用。信号承载介质的示例包括但不限于:可记录型介质,如软盘、硬盘驱动器、紧致盘(CD)、数字通用盘(DVD)、数字磁带、计算机存储器等;以及传输型介质,如数字和/或模拟通信介质(例如,光纤光缆、波导、有线通信链路、无线通信链路等)。
虽然已参照几个典型实施例描述了本公开,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本公开能够以多种形式具体实施而不脱离公开的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。
Claims (10)
- 一种定位三维CT图像中的目标的方法,包括步骤:显示一幅三维CT图像;接收用户在一个视角下对所述三维CT图像的至少一个区域的选择;基于所述选择产生深度方向上的至少一个三维物体的集合;从所述集合中确定目标物体。
- 如权利要求1所述的方法,其中在所述三维CT图像的三维绘制过程中,记录表征被检查物体外表面的点云信息,所述方法还包括步骤:通过分割来获得所选区域中不同物体的点云信息簇序列;基于预定的基准从不同物体的点云信息簇序列中确定至少一个选中的区域。
- 如权利要求2所述的方法,其中将将点云数目最多的点簇对应的物体确定为目标物体。
- 如权利要求1所述的方法,其中对三维CT图像中的物体进行分割,从所选择的区域的深度方向上交叉的至少一个物体得到至少一个三维物体的集合。
- 如权利要求4所述的方法,其中将所述集合中距离视点最近的那个物体确定为目标物体。
- 如权利要求4所述的方法,其中向用户呈现所述集合中物体,然后根据用户的选择来确定目标物体。
- 如权利要求4所述的方法,其中将所述集合中物体的物理属性满足预定标准的物体确定为目标物体。
- 一种安检CT系统,包括:CT扫描设备,获得所述被检查物体的检查数据;存储器,存储所述检查数据;显示设备,显示所述被检查物体的一幅三维CT图像;输入装置,输入用户在一个视角下对所述三维CT图像的至少一个区域的选择;以及数据处理器,基于所述选择产生深度方向上的至少一个三维物体的集合,其中从所述集合中确定目标物体。
- 如权利要求8所述的安检系统,其中在所述三维CT图像的三维绘制过程中,记录表征被检查物体的点云信息,所述数据处理器配置用于:通过分割来获得所选区域中不同物体的点云信息簇序列;基于预定的基准从不同物体的点云信息簇序列中确定至少一个选中的区域。
- 如权利要求7所述的安检系统,其中所述数据处理器配置用于对三维CT图像中的物体进行分割,从所选择的区域的深度方向上交叉的至少一个物体得到至少一个三维物体的集合。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15869283.0A EP3112909B1 (en) | 2014-12-18 | 2015-12-14 | Method for positioning target in three-dimensional ct image and security check ct system |
US15/300,709 US10297050B2 (en) | 2014-06-25 | 2015-12-14 | Methods for positioning a target in a three-dimensional CT image and CT systems for security inspection |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410795060.7 | 2014-12-18 | ||
CN201410795060.7A CN105785462B (zh) | 2014-06-25 | 2014-12-18 | 一种定位三维ct图像中的目标的方法和安检ct系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016095776A1 true WO2016095776A1 (zh) | 2016-06-23 |
Family
ID=56125925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/097274 WO2016095776A1 (zh) | 2014-06-25 | 2015-12-14 | 一种定位三维ct图像中的目标的方法和安检ct系统 |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3112909B1 (zh) |
WO (1) | WO2016095776A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111830584A (zh) * | 2020-07-21 | 2020-10-27 | 同方威视技术股份有限公司 | 自助安检系统、安检方法和物品安检设备 |
CN113112560A (zh) * | 2021-04-14 | 2021-07-13 | 杭州柳叶刀机器人有限公司 | 生理点区域标记方法与装置 |
CN113643360A (zh) * | 2020-05-11 | 2021-11-12 | 同方威视技术股份有限公司 | 目标物体定位方法、装置、设备、介质和程序产品 |
CN116449999A (zh) * | 2023-06-16 | 2023-07-18 | 中国铁道科学研究院集团有限公司电子计算技术研究所 | 包裹安检登记方法、装置、设备和存储介质 |
CN117422777A (zh) * | 2023-12-18 | 2024-01-19 | 科大讯飞(苏州)科技有限公司 | 安检机标定方法及相关方法、装置、设备和存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6721387B1 (en) * | 2001-06-13 | 2004-04-13 | Analogic Corporation | Method of and system for reducing metal artifacts in images generated by x-ray scanning devices |
US20090079738A1 (en) * | 2007-09-24 | 2009-03-26 | Swanwa Liao | System and method for locating anatomies of interest in a 3d volume |
WO2010050952A1 (en) * | 2008-10-30 | 2010-05-06 | Analogic Corporation | Detecting concealed threats |
WO2011046511A1 (en) * | 2009-10-13 | 2011-04-21 | Agency For Science, Technology And Research | A method and system for segmenting a liver object in an image |
CN102222352A (zh) * | 2010-04-16 | 2011-10-19 | 株式会社日立医疗器械 | 图像处理方法和图像处理装置 |
EP2713340A2 (en) * | 2012-09-29 | 2014-04-02 | Tsinghua University | Methods and devices for locating an object in CT imaging |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001076184A (ja) * | 1999-09-03 | 2001-03-23 | Ge Yokogawa Medical Systems Ltd | 3次元表示方法および3次元表示装置 |
US10019833B2 (en) * | 2012-03-20 | 2018-07-10 | Siemens Corporation | Luggage visualization and virtual unpacking |
-
2015
- 2015-12-14 EP EP15869283.0A patent/EP3112909B1/en active Active
- 2015-12-14 WO PCT/CN2015/097274 patent/WO2016095776A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6721387B1 (en) * | 2001-06-13 | 2004-04-13 | Analogic Corporation | Method of and system for reducing metal artifacts in images generated by x-ray scanning devices |
US20090079738A1 (en) * | 2007-09-24 | 2009-03-26 | Swanwa Liao | System and method for locating anatomies of interest in a 3d volume |
WO2010050952A1 (en) * | 2008-10-30 | 2010-05-06 | Analogic Corporation | Detecting concealed threats |
WO2011046511A1 (en) * | 2009-10-13 | 2011-04-21 | Agency For Science, Technology And Research | A method and system for segmenting a liver object in an image |
CN102222352A (zh) * | 2010-04-16 | 2011-10-19 | 株式会社日立医疗器械 | 图像处理方法和图像处理装置 |
EP2713340A2 (en) * | 2012-09-29 | 2014-04-02 | Tsinghua University | Methods and devices for locating an object in CT imaging |
Non-Patent Citations (1)
Title |
---|
See also references of EP3112909A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113643360A (zh) * | 2020-05-11 | 2021-11-12 | 同方威视技术股份有限公司 | 目标物体定位方法、装置、设备、介质和程序产品 |
CN111830584A (zh) * | 2020-07-21 | 2020-10-27 | 同方威视技术股份有限公司 | 自助安检系统、安检方法和物品安检设备 |
CN111830584B (zh) * | 2020-07-21 | 2024-01-26 | 同方威视技术股份有限公司 | 自助安检系统、安检方法和物品安检设备 |
CN113112560A (zh) * | 2021-04-14 | 2021-07-13 | 杭州柳叶刀机器人有限公司 | 生理点区域标记方法与装置 |
CN113112560B (zh) * | 2021-04-14 | 2023-10-03 | 杭州柳叶刀机器人有限公司 | 生理点区域标记方法与装置 |
CN116449999A (zh) * | 2023-06-16 | 2023-07-18 | 中国铁道科学研究院集团有限公司电子计算技术研究所 | 包裹安检登记方法、装置、设备和存储介质 |
CN117422777A (zh) * | 2023-12-18 | 2024-01-19 | 科大讯飞(苏州)科技有限公司 | 安检机标定方法及相关方法、装置、设备和存储介质 |
CN117422777B (zh) * | 2023-12-18 | 2024-04-12 | 科大讯飞(苏州)科技有限公司 | 安检机标定方法及相关方法、装置、设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
EP3112909B1 (en) | 2022-04-20 |
EP3112909A1 (en) | 2017-01-04 |
EP3112909A4 (en) | 2017-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10297050B2 (en) | Methods for positioning a target in a three-dimensional CT image and CT systems for security inspection | |
WO2015172726A1 (zh) | 图像显示方法 | |
WO2016095776A1 (zh) | 一种定位三维ct图像中的目标的方法和安检ct系统 | |
CN103900503B (zh) | 提取形状特征的方法、安全检查方法以及设备 | |
CA3022215C (en) | Systems and methods for generating projection images | |
US9390523B2 (en) | Determination of z-effective value for set of voxels using CT density image and sparse multi-energy data | |
WO2014101621A1 (zh) | 检查物体的方法、显示方法和设备 | |
US20140010437A1 (en) | Compound object separation | |
WO2016095798A1 (zh) | 一种定位三维ct图像中的目标的方法和安检系统 | |
JP2007216022A5 (zh) | ||
JP2019522775A5 (zh) | ||
WO2014048080A1 (zh) | Ct成像中定位物体的方法以及设备 | |
CN106415317B (zh) | 单光子发射计算机化断层摄影术中的多个发射能量 | |
JP2020535924A (ja) | 診断撮像における画像特徴のアノテーション | |
US20230127540A1 (en) | Out-of-view ct scan detection | |
CN105612433B (zh) | 层析x射线照相合成成像 | |
US9633428B2 (en) | Automatic occlusion region identification using radiation imaging modality | |
RU2639022C2 (ru) | Выявление буллезной эмфиземы и диффузной эмфиземы в, например, объемных изображениях компьютерной томографии легких |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15869283 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015869283 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015869283 Country of ref document: EP Ref document number: 15300709 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |