WO2016095385A1 - 触摸屏的驱动方法、触摸屏及显示装置 - Google Patents

触摸屏的驱动方法、触摸屏及显示装置 Download PDF

Info

Publication number
WO2016095385A1
WO2016095385A1 PCT/CN2015/076907 CN2015076907W WO2016095385A1 WO 2016095385 A1 WO2016095385 A1 WO 2016095385A1 CN 2015076907 W CN2015076907 W CN 2015076907W WO 2016095385 A1 WO2016095385 A1 WO 2016095385A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
signal lines
node
capacitance
group
Prior art date
Application number
PCT/CN2015/076907
Other languages
English (en)
French (fr)
Inventor
张大宇
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP15791469.8A priority Critical patent/EP3236341B1/en
Priority to US14/890,363 priority patent/US9965084B2/en
Publication of WO2016095385A1 publication Critical patent/WO2016095385A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger

Definitions

  • the present disclosure relates to a driving method of a touch screen, a touch screen, and a display device.
  • the Touch Screen Panel has gradually spread throughout people's lives.
  • the existing capacitive in-cell touch screen supports multi-touch function, has high light transmittance and low overall power consumption, and has high contact surface hardness and long service life.
  • the projected capacitive touch mainly utilizes the capacitive sensing formed by the transparent electrode on the touch screen and the human finger or the conductive object, and is converted into a coordinate file that can be judged by the touch system by controlling the operation of the integrated circuit chip.
  • the transparent electrodes that is, the touch driving electrodes and the touch sensing electrodes are arranged in a staggered manner in the X and Y axes. These transparent electrodes are connected to the sensing channels of the control chip through metal wires in the peripheral region of the touch screen. When no touch occurs, each transparent electrode has a fixed capacitance value, ie parasitic capacitance.
  • Self-capacitive touch determines the position of the touch point by sensing the change in the capacitance between each node and the ground.
  • Mutual touch is to determine the position of the touch point by sensing the change in the capacitance between the X and Y axes of each node.
  • the touch function of the capacitive in-cell touch screen is realized by a touch driving circuit in the touch screen.
  • the known touch driving circuit outputs a touch driving signal to a touch driving electrode at each time.
  • the touch driving signal controls the touch driving electrode to charge the capacitance of the corresponding node, and the touch sensing electrode senses the corresponding node.
  • the change in the capacitance value of the point determines the position of the touch point.
  • the current large-size touch display screens have a problem of excessive RC delay, that is, as the touch drive circuit charges the nodes, as the number of touch points increases,
  • the junction capacitance C will continue to increase, and the resistance value R will increase as the touch drive node distance increases. Therefore, the corresponding RC delay in the touch screen touch driving process will gradually increase.
  • the problem that the touch point cannot be correctly calculated may occur. .
  • Embodiments of the present disclosure provide a driving method of a touch screen, a touch screen, and a display device.
  • the touch screen has a plurality of touch signal lines and sensing signal lines that are interdigitated and insulated from each other, at the intersection of the touch signal lines and the sensing signal lines.
  • Forming a junction capacitance the method includes the following steps:
  • Each of the at least two touch signal lines is grouped, and the node capacitances included in each group of touch signal lines are sequentially charged;
  • the node capacitances included in the touch signal lines of the group of touch signals are sequentially discharged through the sensing signal lines. And determining the capacitance value of each node capacitor;
  • the coordinates of the touch points in the touch screen are determined according to the determined capacitance values of the respective node capacitances.
  • each of the at least two touch signal lines is a group, and the nodes included in each group of touch signal lines are sequentially arranged.
  • the charging of the capacitor may include: sequentially charging at least two of the touch signal lines adjacent to each other, and sequentially charging the node capacitances included in each group of the touch signal lines.
  • each of the at least two touch signal lines is a group, and the nodes included in each group of touch signal lines are sequentially arranged.
  • Capacitor charging can include:
  • the node capacitances included in all the touch signal lines are simultaneously charged.
  • the sensing signal lines after charging the node capacitances included in each group of touch signal lines, the sensing signal lines are sequentially
  • the node capacitances included in each touch signal line of the group of touch signal lines are discharged, and the capacitance values of the capacitors of each node may be determined to include:
  • the node capacitances of the touch signal lines in the group of the touch signal lines are sequentially and correspondingly corresponding to each of the sensing signal lines.
  • the inductive driving module is turned on, and records the number of signals output by each of the inductive driving modules when discharging the capacitors of the respective nodes, and determines the capacitance value of each node capacitor according to the number of times of the output signals.
  • determining the coordinates of the touch point in the touch screen according to the determined capacitance value of each node capacitance may include:
  • An embodiment of the present disclosure provides a touch screen including: a plurality of touch signal lines and sensing signal lines that are interdigitated and insulated from each other; a touch driving module connected to each of the touch signal lines; and each of the sensing An inductive driving module connected to the signal line; and a touch point determining module for determining coordinates of the touch point, wherein
  • the touch driving module is configured to sequentially charge the node capacitances included in each group of touch signal lines by using each of the at least two touch signal lines as a group;
  • the inductive driving module is configured to sequentially include the touch signal lines in the group of touch signal lines through the sensing signal lines after the charging of the node capacitors included in each group of the touch signal lines is completed.
  • the node capacitance is discharged, and the capacitance value of each node capacitance is determined;
  • the touch point determining module is configured to determine coordinates of the touch point on the touch screen according to the determined capacitance values of the node capacitances.
  • the touch driving module includes a plurality of touch driving sub-modules, and each of the touch driving sub-modules and the corresponding at least two phases respectively The adjacent touch signal lines are connected;
  • Each of the touch driving sub-modules is configured to charge a node capacitance included in each of the connected touch signal lines.
  • the inductive driving module includes a plurality of inductive driving submodules corresponding to each node capacitance of each of the sensing signal lines;
  • Each of the inductive driving submodules includes: a first switching unit, a discharging unit, a comparing unit, and a counting unit;
  • the input end of the first switch unit is connected to the corresponding sensing signal line, and the output end is respectively connected to the first end of the discharge unit and the first input end of the comparison unit, and the first switch unit is used Passing the sense when discharging the node capacitance connected to the corresponding sensing signal line And the signal line is connected to the node capacitor and the discharge unit, so that the node capacitance charges the discharge unit;
  • the second end of the discharge unit is connected to the low-level signal end, and the third end is connected to the output end of the counting unit;
  • the second input end of the comparison unit is connected to the reference voltage end, and the output end is connected to the input end of the counting unit, and the comparison unit is configured to control when the voltage of the discharge unit reaches the voltage of the reference voltage terminal
  • the discharge unit discharges to the ground and outputs a signal to the counting unit;
  • the output end of the counting unit is connected to the input end of the touch point determining module, and the counting unit is configured to determine the capacitance value of the node capacitance by using the number of times of the signal output by the comparing unit, and The determined capacitance value of the node capacitance is output to the touch point determining module.
  • the discharge unit includes: a discharge capacitor, a voltage dividing resistor, and a second switch unit;
  • One end of the discharge capacitor is respectively connected to an output end of the first switch unit, a first input end of the comparison unit, and one end of the voltage dividing resistor, and the other end is connected to the low level signal end;
  • the other end of the voltage dividing resistor is connected to the first end of the second switching unit
  • a second end of the second switching unit is connected to an output end of the counting unit, a third end is connected to the low level signal end, and the second switching unit is configured to discharge when the node capacitor is discharged
  • One end of the voltage dividing resistor is electrically connected to an output end of the counting unit, and one end of the voltage dividing resistor is electrically connected to the low level signal end when the discharging unit is reset.
  • the touch point determining module is configured to determine whether the determined capacitance value of each node capacitance is within a threshold range, and if not, determine The coordinate position of the node capacitor is touched, and the coordinates of the touch node capacitance are output as the coordinates of the touch point.
  • An embodiment of the present disclosure provides a display device including the above touch screen provided by an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a method for driving a touch screen, a touch screen, and a display device.
  • the touch signal lines on the touch screen are grouped, and each of the at least two touch signal lines is grouped, and the touch signal lines are sequentially applied to each group.
  • the included junction capacitance is charged. After charging the node capacitors included in each group of touch signal lines, the node capacitances of the touch signal lines in the group of touch signals are sequentially discharged through the sensing signal lines, and determined. The capacitance value of each junction capacitor.
  • each node capacitor is determined, and the coordinates of the touch point in the touch screen are determined, so that the node capacitances included in a group of touch signal lines on the touch screen are simultaneously charged in units of groups.
  • only charging the node capacitance on one touch signal line at a time can effectively save the charging time of the touch signal line on the entire touch screen, and at the same time increase the charging of each group of touch signal lines.
  • Time in turn, can increase the charging time of the node capacitance included in each touch signal line, so that the touch screen can tolerate a larger RC delay value, ensuring that the touch screen can correctly confirm the position of the touch point.
  • FIG. 1 is a flowchart of a method for driving a touch screen according to an embodiment of the present disclosure
  • FIGS. 2a and 2b are waveform diagrams showing the output signals of the inductive driving module when the node capacitances are 25 PF and 50 PF, respectively;
  • FIG. 3 is a schematic structural diagram of a touch screen according to an embodiment of the present disclosure.
  • FIG. 4 is a second schematic structural diagram of a touch screen according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of an inductive driving submodule in a touch screen according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of simultaneous charging of two adjacent touch signal lines in a touch screen according to an embodiment of the present disclosure
  • FIG. 7 and FIG. 8 are schematic diagrams showing circuit structures for charging and discharging of two adjacent touch signal lines Y1 and Y2 according to an embodiment of the present disclosure.
  • FIG. 1 is a flowchart of a driving method of a touch screen provided by an embodiment of the present disclosure.
  • the touch screen has a plurality of touch signal lines and sensing signal lines that are interdigitated and insulated from each other, and form a node capacitance at an intersection of the touch signal lines and the sensing signal lines.
  • the driving method of the touch screen may include the following work process:
  • step S101 each of the at least two touch signal lines is grouped, and the node capacitances included in each group of touch signal lines are sequentially charged;
  • step S102 after the charging of the node capacitors included in each group of touch signal lines is completed, the nodes included in the touch signal lines of the group of touch signal lines are sequentially electrically connected through the respective sensing signal lines. Capacitance discharge, and determine the capacitance value of each node capacitance;
  • step S103 the coordinates of the touch points in the touch screen are determined according to the determined capacitance values of the respective node capacitances.
  • the touch signal lines on the touch screen may be grouped, and each of the at least two touch signal lines is a group, and the knots included in each group of touch signal lines are sequentially Point capacitors for charging.
  • the node capacitances of the touch signal lines in the group of touch signals are sequentially discharged through the sensing signal lines, and determined.
  • the coordinates of the touch points in the touch screen are determined according to the determined capacitance values of the respective node capacitances. In this way, the node capacitances included in a group of touch signal lines on the touch screen are simultaneously charged in units of groups.
  • the process of sequentially charging the node capacitances included in each group of touch signal lines by using at least two touch signal lines as a group may be used.
  • the method includes: charging, by a group of each at least two touch signal lines, a node capacitance included in each group of touch signal lines, so as to divide at least two adjacent touch signal lines into one
  • the group sequentially charges the node capacitances included in each group of touch signal lines, thereby effectively saving the charging time of the touch signal lines on the entire touch screen, and simultaneously increasing the charging time of each group of touch signal lines, and further
  • the charging time of the node capacitance included in each touch signal line can be increased, so that the touch screen can tolerate a larger RC delay value, which ensures that the touch screen can correctly confirm the position of the touch point.
  • the process of charging the node capacitances included in each group of touch signal lines in turn by using at least two touch signal lines as a group may include: charging all the touch capacitors included in the touch signal lines at the same time by using all the touch signal lines of the touch screen as a group.
  • the group of touch signal lines are sequentially sequentially passed through the sensing signal lines.
  • the process of discharging the node capacitance included in each touch signal line and determining the capacitance value of each node capacitor may include: after charging each of the node capacitors included in each group of touch signal lines, The sensing signal lines sequentially turn on the node capacitances included in the respective touch signal lines of the group of touch signal lines and the corresponding inductive driving modules, and record signals output by the inductive driving modules when discharging the capacitors of the respective nodes. The number of times determines the capacitance value of each node capacitance based on the number of times the signal is output.
  • the driving method of the touch panel provided by the embodiment of the present disclosure, after charging the node capacitance included in each group of touch signal lines, the charged node capacitance needs to be discharged, so
  • the sensing signal line sequentially turns on the node capacitance included in each touch signal line of the group of touch signal lines and the corresponding inductive driving module, and discharges the capacitors of each node through the inductive driving module.
  • the number of signals output by each inductive driving module when discharging the capacitance of each node is recorded, and the capacitance value of each node capacitance is determined according to the number of output signals, that is, at the position where the touch occurs, the corresponding node capacitance Cs
  • the capacitance value changes, and the number of times the signal is output when the corresponding node capacitance Cs is discharged changes.
  • FIG. 2a and 2b are schematic diagrams showing waveforms of an output signal of an inductive driving module when the node capacitances of the embodiments of the invention are 25 PF and 50 PF, respectively.
  • the node capacitance Cs is 25 PF and 50 PF, respectively.
  • the number of signals outputted by the inductive driving module is different from the number of high levels in the waveforms shown in FIG. 2a and FIG. 2b, so each inductive driving module can
  • the capacitance value of each node is calculated according to the number of times of the output signal.
  • the driving method of the above touch screen provided by the embodiment of the present disclosure, after charging the node capacitors included in each group of touch signal lines, sequentially, the plurality of charged touch signals on the group are sequentially connected.
  • Each of the included node capacitors is discharged through respective corresponding sensing signal lines, and the capacitance value of each node capacitor is determined by the number of signals outputted by the discharging process, and the touch value in the touch screen is determined according to the determined capacitance value of each node capacitor.
  • the coordinates of the point may include: determining whether the determined capacitance value of each node capacitance is within a threshold range, and if not, determining that the coordinate position of the node capacitance is touched, and the node capacitance of the touch occurs
  • the coordinates are output as the coordinates of the touch point, that is, when the node capacitance of a touch signal line is discharged, the ordinate of the touch signal line is the ordinate of each node capacitance, and the capacitance of each node corresponds to
  • the abscissa of the sensing signal line is the abscissa of each node capacitance, so by determining whether the capacitance value of each node capacitance determined is preset Within the threshold range, the position of the touch point where the touch occurs may be determined, that is, the position of the node capacitor whose capacitance value of the node capacitor is not within the preset threshold range is the position of the touch point where the touch occurs.
  • FIG. 3 is a schematic structural diagram of a touch screen provided by an embodiment of the present disclosure. As shown in FIG. 3, the driving method of the foregoing touch screen is based on the same inventive concept.
  • the touch screen provided by the embodiment of the present disclosure may include: a plurality of touch signal lines 01 and sensing signal lines 02 that are interdigitated and insulated from each other; The touch driving module 03 connected to the control signal line 01; the inductive driving module 04 connected to each sensing signal line 02; and the touch point determining module 05 for determining the coordinates of the touch point.
  • a junction capacitance Cs is formed at the intersection of the touch signal line 01 and the sense signal line 02.
  • the touch driving module 03 is configured to sequentially charge the node capacitance Cs included in each group of the touch signal lines 01 by using each of the at least two touch signal lines 01 as a group.
  • the inductive driving module 04 is configured to sequentially charge the touch signal lines 01 of the group of touch signal lines 01 through the sensing signal lines 02 after the charging of the node capacitors Cs included in each group of the touch signal lines is completed. The included junction capacitance Cs is discharged, and the capacitance value of each node capacitance Cs is determined.
  • the touch point determining module 05 is configured to determine the coordinates of the touch point on the touch screen according to the determined capacitance values of the node capacitances Cs.
  • the touch screen provided by the embodiment of the present disclosure is configured by using the at least two touch signal lines 01 as a group, and the touch driving module 03 is configured to sequentially perform the node capacitance Cs included in each group of the touch signal lines 01. Charging; after the charging of the node capacitor Cs included in each group of the touch signal lines is completed, the inductive driving module 04 is configured to sequentially sequentially touch the touch signal lines of the group of touch signal lines 01 through the respective sensing signal lines 02. The node capacitance Cs included in 01 is discharged, and the capacitance value of each node capacitance Cs is determined; the touch point determining module 05 is configured to determine the touch point on the touch screen according to the determined capacitance value of each node capacitance Cs.
  • the coordinates of the node capacitor Cs included in the touch signal line 01 on the touch screen are simultaneously charged by the touch driving module 03 in units of groups. Compared with the conventional touch screen, only the node capacitance Cs on one touch signal line is charged at a time.
  • the touch screen provided by the embodiment can effectively save the charging time of the touch signal line 01 on the entire touch screen, and can increase each time.
  • the charging time of a set of touch signal lines 01 can further increase the charging time of the node capacitance Cs included in each touch signal line 01, so that the touch screen can tolerate a larger RC delay value, thereby ensuring that the touch screen can be correctly confirmed.
  • the location of the touch point is mapped to the touch signal line 01.
  • FIG. 4 shows a second schematic structural diagram of a touch screen provided by an embodiment of the present disclosure.
  • the touch driving mode is The block may include a plurality of touch driving sub-modules 031, and each of the touch driving sub-modules 031 is respectively connected to at least two adjacent touch signal lines 01; each touch driving sub-module 031 is used for each touch of the connection
  • the node capacitor Cs included in the control signal line 01 is charged, so that at least two adjacent touch signal lines 01 are grouped into one group, and each group of touch signal lines 01 is sequentially used by each touch driving sub-module 031.
  • the included junction capacitor Cs is charged.
  • the charging time of the touch signal line 01 on the entire touch screen can be effectively saved, and the charging time of each group of the touch signal lines 01 can be increased, and the node capacitance included in each touch signal line 01 can be increased.
  • the charging time of the Cs allows the touch screen to tolerate a larger RC delay value, ensuring that the touch screen can correctly confirm the position of the touch point.
  • the touch driving module may also include only one touch driving module, and the touch driving module is respectively connected to all the touch signal lines 01 in the touch screen.
  • the touch driving module charges all the touch capacitors Cs included in all the touch signal lines 01 in the touch screen at the same time. In this way, all the touch signal lines 01 on the entire touch screen are taken as a group, and the node capacitors Cs included in all the touch signal lines 01 are simultaneously charged by the touch driving module 03, thereby maximally saving the touch on the entire touch screen.
  • the charging time of the control signal line 01 can also maximize the charging time of each group of the touch signal lines 01, thereby increasing the charging time of the node capacitance Cs included in each of the touch signal lines 01, thereby
  • the touch screen can tolerate a larger RC delay value, ensuring that the touch screen can correctly confirm the position of the touch point.
  • the charged touch signal line 01 is sequentially discharged through the sensing signal line 02, and the touch is charged.
  • the ordinate of the touch signal line 01 is the ordinate of each node capacitance Cs included in the touch signal line 01, and the sensing signal line corresponding to each node capacitance Cs
  • the abscissa where 02 is located is the abscissa of each node capacitance Cs.
  • the capacitance value of each node capacitance Cs is determined by determining the number of signals outputted during the discharge of each node capacitance Cs, according to the determined nodes. Capacitor Cs capacitance value determines whether the position of each node capacitor Cs is touched. If the capacitance value of a node capacitor Cs after discharge is not within a preset threshold range, the position of the node capacitor Cs occurs. Touch, the coordinates of the node capacitance Cs where the touch occurs are the coordinates of the touch point where the touch occurs.
  • FIG. 5 is a schematic structural diagram of an inductive driving submodule in a touch screen provided by an embodiment of the present disclosure.
  • the inductive driving module 04 may include A plurality of inductive driving sub-modules 041 corresponding to each of the node capacitances Cs on each of the sensing signal lines 02.
  • each of the inductive driving sub-modules 041 may include a first switching unit 0411, a discharging unit 0412, a comparing unit 0413, and a counting unit 0414.
  • the input end of the first switching unit 0411 is connected to the corresponding sensing signal line 02, and the output end is connected to the first end of the discharging unit 0412 and the first input end of the comparing unit 0413, respectively.
  • the first switching unit 0411 is configured to turn on the node capacitance Cs and the discharge unit 0412 through the sensing signal line 02 when the node capacitance Cs connected to the corresponding sensing signal line 02 is discharged, so that the node capacitance Cs is opposite to the discharge unit. 0412 charging.
  • the second end of the discharge unit 0412 is connected to the low-level signal terminal Vss, and the third end is connected to the output terminal of the counting unit 0414.
  • the second input of the comparison unit 0413 is connected to the reference voltage terminal Vref, and the output terminal is connected to the input terminal of the counting unit 0414.
  • the comparison unit 0413 is for controlling the discharge unit 0412 to discharge to the ground and outputting a signal to the counting unit 0414 when the voltage of the discharge unit 0412 reaches the voltage of the reference voltage terminal Vref.
  • the output of the counting unit 0414 is connected to the input of the touch point determining module 05.
  • the counting unit 0414 is configured to determine the capacitance value of the node capacitance Cs by the number of signals output by the recording comparison unit 0413, and output the determined capacitance value of the node capacitance Cs to the touch point determination module 05.
  • the first switching unit 0411 turns on the node capacitance Cs through the sensing signal line 02 and
  • the discharge unit 0412 charges the discharge cell 0412 with the node capacitance Cs.
  • the comparison unit 0413 controls the discharge cell 0412 to discharge to the ground.
  • the discharge cell 0412 While the node capacitance Cs is discharged through the discharge cell 0412, the discharge cell 0412 outputs a signal to the counting unit 0414 every time it is discharged.
  • the counting unit 0414 can determine the capacitance value of the node capacitance Cs by recording the number of times the node capacitor Cs discharges the signal during discharge. The determined capacitance value is then output to the touch point determination module 05.
  • the touch point determining module 05 determines the coordinate position of the touch point where the touch occurs according to the determined capacitance value of the node capacitance Cs.
  • the discharge unit 0412 may include: a discharge capacitor C1, a voltage dividing resistor R0, and a second switching unit 0415.
  • One end of the discharge capacitor C1 is respectively connected to the output end of the first switch unit 0411 and the first input end of the comparison unit 0413 and one end of the voltage dividing resistor R0, and the other end is connected to the low level signal terminal Vss.
  • the other end of the voltage dividing resistor R0 is connected to the first end of the second switching unit 0415.
  • the second end of the second switching unit 0415 is connected to the output end of the counting unit 0414, and the third end is connected to the low level signal terminal Vss.
  • the second switching unit 0415 is configured to turn on one end of the voltage dividing resistor R0 and the output end of the counting unit 0414 when the node capacitance Cs is discharged, and connect one end of the voltage dividing resistor R0 with a low level signal when the discharging unit 0412 is reset.
  • the terminal Vss is turned on.
  • the first switching unit 0411 turns on one end of the node capacitor Cs and one end of the floating point capacitor C1 through the corresponding sensing signal line 02.
  • the node capacitance Cs charges the discharge capacitor C1.
  • the comparison unit 0413 outputs a signal to the counting unit 0414, repeating the above process until the node capacitance Cs is completely discharged. until.
  • the counting unit 0414 records the number of times of the signal outputted during the discharge of the node capacitance Cs, and determines the capacitance value of the node capacitance Cs.
  • the comparison unit 0413 can implement its corresponding function through a comparator CMP, and the counting unit 0414 can implement its corresponding function through a latch Latch.
  • the comparison unit 0413 and the counting unit 0414 can also be implemented by other devices that can implement their corresponding functions, which are not limited herein.
  • the touch point determining module 05 may be configured to: determine whether the determined capacitance value of each node capacitance Cs is within a threshold range, and if not, determine the node. The coordinate position of the capacitor Cs is touched, and the coordinates of the touched node capacitor Cs are output as the coordinates of the touch point, so that after the node capacitor Cs completes the discharge process, the node capacitance Cs determined by the judgment is determined. Whether the capacitance value is within a preset threshold range, the position of the touch point where the touch occurs may be determined, that is, the node value of the node capacitance Cs is not within a preset threshold range, and the touch point is touched. The position of the touch point that is controlled.
  • an embodiment of the present disclosure provides a display device, including the present disclosure.
  • the above touch screen provided by the embodiment.
  • the display device can be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a navigator, and the like. Since the principle of solving the problem is similar to that of the touch screen, the implementation of the display device can be referred to the implementation of the touch screen described above, and the repeated description is omitted.
  • FIG. 6 is a schematic diagram showing simultaneous charging of two adjacent touch signal lines in a touch screen provided by an embodiment of the present disclosure.
  • the simultaneous charging of two adjacent touch signal lines is taken as an example for description.
  • two adjacent touch driving signal lines Y1 and Y2 are grouped.
  • the node capacitance Cs included on the touch signal lines Y1 and Y2 is simultaneously charged.
  • the node capacitance Cs included on the touch signal line Y2 remains unchanged for the next period of time.
  • Each of the inductive driving sub-modules 041 discharges the node capacitance Cs on the touch signal line Y1 through the corresponding sensing signal line 02.
  • each node capacitance Cs on the touch signal line is the abscissa corresponding to each signal line Cs corresponding to each node capacitance Cs.
  • the capacitance value of each node capacitance Cs is determined according to the number of times the signal is output during the discharge of each node capacitance Cs.
  • each node capacitance Cs it is judged whether the position of each node capacitance Cs is touched, and the capacitance value of the node capacitance Cs determined after the discharge is no longer preset in the threshold range, and the position of the node capacitance Cs is touched. Controlled position.
  • the coordinates of the node capacitor Cs are the coordinates of the touch point where the touch occurs, thereby finally determining the position of the touch point where the touch occurs.
  • FIG. 7 and FIG. 8 are schematic diagrams showing circuit structures for charging and discharging of two adjacent touch signal lines Y1 and Y2 provided by an embodiment of the present disclosure.
  • the process of implementing the touch drive scan by the touch screen provided by the embodiment of the present disclosure can be described as follows: wherein the charging and discharging processes of a node capacitor on a touch signal line are taken as an example for description, and FIG. 7 and FIG. 8 can be used.
  • the circuit structure shown is implemented.
  • FIG. 7 is a circuit diagram showing a charging and discharging process of a node capacitor Cs1 on the touch signal line Y1
  • FIG. 8 is a circuit for realizing a charging and discharging process of a node capacitor Cs2 on the touch signal line Y2.
  • the switches Sw1 and Sw3 are closed, and the switches Sw2 and Sw4 are disconnected.
  • the junction capacitances Cs1 and Cs2 on the control signal lines Y1 and Y2 are simultaneously charged until the junction capacitances Cs1 and Cs2 are charged until the voltage value is the power supply voltage Vdd.
  • the switches Sw1, Sw3 and Sw4 are disconnected, and the switch Sw2 is closed.
  • the node capacitance Cs1 is charged to the discharge capacitor C1, and the discharge capacitor C1 is connected to one end of the comparator CMP, and the other end is grounded.
  • the other end of the comparator CMP is connected to the reference voltage Vref.
  • the capacitance value of the node capacitance Cs1 can be calculated by recording the high level of the output of the latch Latch. According to the determined capacitance value of the node capacitance Cs1, it is determined whether the capacitance value of the node capacitance Cs1 is within a preset threshold range. If not, the position of the node capacitance Cs1 is touched, and the coordinates of the node capacitance Cs1 are The coordinates of the touch point where the touch occurred.
  • the switches Sw1, Sw2, and Sw3 are turned off, the switch Sw4 is closed, and the node capacitance Cs2 starts to discharge through the discharge capacitor C1, and the process is the same as the node capacitance Cs1, which will not be described in detail herein.
  • the touch scanning process of the entire touch screen can be realized, because the time of the two touch scans is changed from the original charging to the two times.
  • the whole process saves about half of the charging time, and can also increase the charging time of each group of touch signal lines, thus ensuring greater RC delay tolerance of the touch screen, and finally guaranteeing
  • the touch screen can correctly confirm the position of the touch point where the touch occurs.
  • An embodiment of the present disclosure provides a method for driving a touch screen, a touch screen, and a display device.
  • the touch signal lines on the touch screen are grouped, and each of the at least two touch signal lines is grouped, and the touch signal lines are sequentially applied to each group.
  • the included junction capacitance is charged. After charging the node capacitors included in each group of touch signal lines, the node capacitances of the touch signal lines in the group of touch signals are sequentially discharged through the sensing signal lines, and determined. The capacitance value of each junction capacitor.
  • the coordinates of the touch points in the touch screen are determined according to the determined capacitance values of the respective node capacitances, so that the node capacitances included in the set of touch signal lines on the touch screen are simultaneously charged in units of groups.
  • only charging the node capacitance on one touch signal line at a time can effectively save the charging time of the entire touch screen, and at the same time increase the charging time of each group of touch signal lines, thereby increasing
  • the charging time of the node capacitance included in each touch signal line enables the touch screen to tolerate a larger RC delay value, ensuring that the touch screen can correctly confirm the position of the touch point.

Abstract

一种触摸屏的驱动方法、触摸屏及显示装置,该方法包括以下步骤:以每至少两条触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电,然后各条感应信号线依次对该组触控信号线中各条触控信号线所包含的结点电容进行放电,并确定各结点电容的电容值,根据确定出的各结点电容的电容值,确定触摸屏中触控点的坐标,这样以组为单位对触摸屏上的一组触控信号线所包含的结点电容同时充电。相对于传统的触摸屏每次只对一条触控信号线上的结点电容进行充电,该方法节省了整个触摸屏上触控信号线的充电时间,同时可以增大每一组触控信号线的充电时间,进而增加每一条触控信号线所包含的结点电容的充电时间,使得触摸屏能够容忍更大的RC延迟值。

Description

触摸屏的驱动方法、触摸屏及显示装置 技术领域
本公开涉及一种触摸屏的驱动方法、触摸屏及显示装置。
背景技术
随着显示技术的飞速发展,触摸屏(Touch Screen Panel)已经逐渐遍及人们的生活中。目前,现有的电容式内嵌(in cell)触摸屏支持多点触控功能,拥有较高的透光率和较低的整体功耗,其接触面硬度高,使用寿命较长。
例如,投射电容式触控主要利用触摸屏上的透明电极与人体手指或导电物体之间,因接触而形成的电容感应,通过控制集成电路芯片的运算,转为可供触控系统判断的坐标文件。在投射电容式触摸屏的结构中,透明电极即触控驱动电极和触控感应电极以X、Y轴交错的方式排列。这些透明电极在触摸屏的周边区域通过金属导线与控制芯片的感应通道相连。当没有触控发生时,每一个透明电极都有一个固定的电容值,即寄生电容。当发生触控时,导电物体与透明电极之间感应形成一个耦合电容,控制芯片测量到的感应电容值不再是原来固定的电容值。因此,通过测量到的电容值的变化,就可以计算出触控点的坐标位置。自容式触控是通过感应每一结点与大地之间的电容值的变化,从而确定触控点的位置。互容式触控则是通过感应每一个结点X轴与Y轴之间的电容值的变化,从而确定触控点的位置。
通常电容式内嵌触摸屏的触控功能是通过触摸屏中的触控驱动电路来实现的。已知的触控驱动电路在每一个时间对一个触控驱动电极输出一个触控驱动信号,此触控驱动信号控制触控驱动电极对相应结点的电容充电,同时触控感应电极感应相应结点的电容值的变化,从而确定触控点的位置。然而,随着触控显示屏的普及,目前大尺寸的触控显示屏会出现RC延迟过大的问题,即触控驱动电路在对结点进行充电时,随着触控点数量的增加,结点电容C会不断增大,随着触控驱动结点距离的增加电阻值R不断增大。因此,触摸屏触控驱动过程中对应的RC延迟会逐渐增大,当RC延迟增大到超过栅极集成驱动电路的扫描时间的五分之一时,就会出现无法正确计算触控点的问题。
因此,如何降低触摸屏的触控驱动RC延迟,保证触控点位置的正确确认,是本领域技术人员亟待解决的问题。
发明内容
本公开实施例提供了一种触摸屏的驱动方法、触摸屏及显示装置。
按照本公开实施例的触摸屏的驱动方法,所述触摸屏具有交叉而置且相互绝缘的多条触控信号线和感应信号线,在所述触控信号线和所述感应信号线的交叠处形成结点电容,该方法包括下列步骤:
以每至少两条所述触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电;
在对每组触控信号线所包含的结点电容充电完成后,通过各条所述感应信号线依次对该组触控信号线中各条触控信号线所包含的结点电容进行放电,并确定各结点电容的电容值;
根据确定出的各结点电容的电容值,确定在所述触摸屏中触控点的坐标。
在一种可能的实施方式中,本公开实施例提供的上述触摸屏的驱动方法中,以每至少两条所述触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电可以包括:以每相邻的至少两条所述触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电。
在一种可能的实施方式中,本公开实施例提供的上述触摸屏的驱动方法中,以每至少两条所述触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电可以包括:
以所述触摸屏具有的所有触控信号线为一组,对所有触控信号线所包含的结点电容同时进行充电。
在一种可能的实施方式中,本公开实施例提供的上述触摸屏的驱动方法中,在对每组触控信号线所包含的结点电容充电完成后,通过各条所述感应信号线依次对该组触控信号线中各条触控信号线所包含的结点电容进行放电,并确定各结点电容的电容值可以包括:
在对每组触控信号线所包含的结点电容充电完成后,通过各条所述感应信号线依次将该组触控信号线中各条触控信号线所包含的结点电容与对应的感应驱动模块导通,记录各所述感应驱动模块在对各结点电容放电时输出的信号次数,根据所述输出的信号次数确定各结点电容的电容值。
在一种可能的实施方式中,本公开实施例提供的上述触摸屏的驱动方法中,根据确定出的各结点电容的电容值,确定在所述触摸屏中触控点的坐标可以包括:
判断确定出的各结点电容的电容值是否在阈值范围内,若否,则确定该结点电容所在坐标位置发生触控,并将发生触控的结点电容的坐标作为触控点的坐标进行输出。
本公开实施例提供了一种触摸屏,包括:交叉而置且相互绝缘的多条触控信号线和感应信号线;与各所述触控信号线相连的触控驱动模块;与各所述感应信号线相连的感应驱动模块;以及用于确定触控点坐标的触控点确定模块,其中,
在所述触控信号线和所述感应信号线的交叠处形成结点电容;
所述触控驱动模块用于以每至少两条所述触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电;
所述感应驱动模块用于在对每组触控信号线所包含的结点电容充电完成后,通过各条所述感应信号线依次对该组触控信号线中各条触控信号线所包含的结点电容进行放电,并确定各结点电容的电容值;
所述触控点确定模块用于根据确定出的各结点电容的电容值,确定在所述触摸屏上触控点的坐标。
在一种可能的实施方式中,本公开实施例提供的上述触摸屏中,所述触控驱动模块包括多个触控驱动子模块,各所述触控驱动子模块分别与对应的至少两条相邻的所述触控信号线相连;
各所述触控驱动子模块用于对连接的各所述触控信号线所包含的结点电容进行充电。
在一种可能的实施方式中,本公开实施例提供的上述触摸屏中,所述感应驱动模块包括与每一条所述感应信号线上每一个结点电容一一对应的多个感应驱动子模块;
各所述感应驱动子模块包括:第一开关单元、放电单元、比较单元和计数单元;
所述第一开关单元的输入端与对应的所述感应信号线相连,输出端分别与所述放电单元的第一端和所述比较单元的第一输入端相连,所述第一开关单元用于在对与对应的感应信号线连接的结点电容进行放电时,通过所述感 应信号线导通所述结点电容与所述放电单元,使所述结点电容对所述放电单元充电;
所述放电单元的第二端与低电平信号端相连,第三端与所述计数单元的输出端相连;
所述比较单元的第二输入端与参考电压端相连,输出端与所述计数单元的输入端相连,所述比较单元用于在所述放电单元的电压达到所述参考电压端的电压时,控制所述放电单元对地放电并向所述计数单元输出一信号;
所述计数单元的输出端与所述触控点确定模块的输入端相连,所述计数单元用于通过记录的所述比较单元输出的信号次数,确定所述结点电容的电容值,并将确定的所述结点电容的电容值输出给所述触控点确定模块。
在一种可能的实施方式中,本公开实施例提供的上述触摸屏中,所述放电单元包括:放电电容、分压电阻和第二开关单元;
所述放电电容的一端分别与所述第一开关单元的输出端和所述比较单元的第一输入端以及所述分压电阻的一端相连,另一端与所述低电平信号端相连;
所述分压电阻的另一端与所述第二开关单元的第一端相连;
所述第二开关单元的第二端与所述计数单元的输出端相连,第三端与所述低电平信号端相连,所述第二开关单元用于在所述结点电容放电时将所述分压电阻的一端与所述计数单元的输出端导通,在所述放电单元重置时将所述分压电阻的一端与所述低电平信号端导通。
在一种可能的实施方式中,本公开实施例提供的上述触摸屏中,所述触控点确定模块用于判断确定出的各结点电容的电容值是否在阈值范围内,若否,则确定该结点电容所在坐标位置发生触控,并将发生触控的结点电容的坐标作为触控点的坐标进行输出。
本公开实施例提供了一种显示装置,包括本公开实施例提供的上述触摸屏。
本公开实施例提供了一种触摸屏的驱动方法、触摸屏及显示装置,对触摸屏上的触控信号线进行分组,以每至少两条触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电。在对每组触控信号线所包含的结点电容充电完成后,通过各条感应信号线依次对该组触控信号线中各条触控信号线所包含的结点电容进行放电,并确定各结点电容的电容值。根据确定 出的各结点电容的电容值,确定在触摸屏中触控点的坐标,这样以组为单位对触摸屏上的一组触控信号线所包含的结点电容同时进行充电。相对于传统的触摸屏每次只对一条触控信号线上的结点电容进行充电,可以有效节省整个触摸屏上触控信号线的充电时间,同时又可以增大每一组触控信号线的充电时间,进而可以增加每一条触控信号线所包含的结点电容的充电时间,从而使得触摸屏能够容忍更大的RC延迟值,保证了触摸屏能够正确确认触控点的位置。
附图说明
图1为本公开实施例提供的触摸屏的驱动方法的流程图;
图2a和图2b分别为发明实施例提供的结点电容为25PF和50PF时,感应驱动模块输出信号的波形示意图;
图3为本公开实施例提供的触摸屏的结构示意图之一;
图4为本公开实施例提供的触摸屏的结构示意图之二;
图5为本公开实施例提供的触摸屏中感应驱动子模块的结构示意图;
图6为本公开实施例提供的触摸屏中相邻两条触控信号线同时充电的示意图;
图7和图8分别为本公开实施例提供的相邻两条触控信号线Y1和Y2实现充电和放电的电路结构示意图。
具体实施方式
下面结合附图,对本公开实施例提供的触摸屏的驱动方法、触摸屏及显示装置的具体实施方式进行详细地说明。
图1示出了本公开实施例提供的一种触摸屏的驱动方法的流程图。该触摸屏具有交叉而置且相互绝缘的多条触控信号线和感应信号线,在触控信号线和感应信号线的交叠处形成结点电容。
如图1所示,该触摸屏的驱动方法可以包括以下工作过程:
在步骤S101中,以每至少两条触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电;
在步骤S102中,在对每组触控信号线所包含的结点电容充电完成后,通过各条感应信号线依次对该组触控信号线中各条触控信号线所包含的结点电 容进行放电,并确定各结点电容的电容值;
在步骤S103中,根据确定出的各结点电容的电容值,确定在触摸屏中触控点的坐标。
本公开实施例提供的上述触摸屏的驱动方法中,可以对触摸屏上的触控信号线进行分组,以每至少两条触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电。在对每组触控信号线所包含的结点电容充电完成后,通过各条感应信号线依次对该组触控信号线中各条触控信号线所包含的结点电容进行放电,并确定各结点电容的电容值。根据确定出的各结点电容的电容值,确定在触摸屏中触控点的坐标。这样以组为单位对触摸屏上的一组触控信号线所包含的结点电容同时进行充电。相对于传统的触摸屏每次只对一条触控信号线上的结点电容进行充电,可以有效节省整个触摸屏上触控信号线的充电时间,同时又可以增大每一组触控信号线的充电时间,进而可以增加每一条触控信号线所包含的结点电容的充电时间,从而使得触摸屏能够容忍更大的RC延迟值,保证了触摸屏能够正确确认触控点的位置。
可替换地,在本公开实施例提供的上述触摸屏的驱动方法中,以每至少两条触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电的过程可以包括:以每相邻的至少两条触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电,这样将相邻的至少两条触控信号线分为一组,依次对各组触控信号线所包含的结点电容进行充电,可以有效节省整个触摸屏上触控信号线的充电时间,同时又可以增大每一组触控信号线的充电时间,进而可以增加每一条触控信号线所包含的结点电容的充电时间,从而使得触摸屏能够容忍更大的RC延迟值,保证了触摸屏能够正确确认触控点的位置。
可替换地,在本公开实施例提供的上述触摸屏的驱动方法中,以每至少两条触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电的过程还可以包括:以触摸屏具有的所有触控信号线为一组,对所有触控信号线所包含的结点电容同时进行充电。这样将整个触摸屏上所有的触控信号线作为一组,同时对所有触控信号线所包含的结点电容同时进行充电,可以最大程度节省整个触摸屏上触控信号线的充电时间,同时也可以最大程度的增大每一组触控信号线的充电时间,进而可以增加每一条触控信号线所包含的结点电容的充电时间,从而使得触摸屏能够容忍更大的RC延迟值,保证 了触摸屏能够正确确认触控点的位置。
可替换地,在本公开实施例提供的上述触摸屏的驱动方法中,在对每组触控信号线所包含的结点电容充电完成后,通过各条感应信号线依次对该组触控信号线中各条触控信号线所包含的结点电容进行放电,并确定各结点电容的电容值的过程可以包括:在对每组触控信号线所包含的结点电容充电完成后,通过各条感应信号线依次将该组触控信号线中各条触控信号线所包含的结点电容与对应的感应驱动模块导通,记录各感应驱动模块在对各结点电容放电时输出的信号次数,根据输出的信号次数确定各结点电容的电容值。
具体地,在本公开实施例提供的上述触摸屏的驱动方法中,在对每组触控信号线所包含的结点电容充电完成后,需要对充电的结点电容进行放电,因此可以通过各条感应信号线依次将该组触控信号线中各条触控信号线所包含的结点电容与对应的感应驱动模块导通,通过感应驱动模块将各结点电容进行放电。在此过程中记录各感应驱动模块在对各结点电容放电时输出的信号次数,根据输出的信号次数确定各结点电容的电容值,即在触控发生的位置,对应的结点电容Cs的电容值就会发生变化,相应的结点电容Cs放电时输出的信号次数会发生变化。
图2a和图2b分别示出发明实施例提供的结点电容为25PF和50PF时,感应驱动模块输出信号的波形示意图。如图2a和图2b所示,结点电容Cs分别为25PF和50PF时,感应驱动模块输出的信号次数即图2a和图2b所示的波形中高电平的次数不同,因此各感应驱动模块可以根据输出信号的次数计算出各结点的电容值。
可替换地,本公开实施例提供的上述触摸屏的驱动方法中,在对每组触控信号线所包含的结点电容充电完成后,依次对该组中多条充电的触控信号线上所包含的各结点电容通过各自对应的感应信号线进行放电,通过放电过程输出的信号次数确定各结点电容的电容值,根据确定出的各结点电容的电容值,确定在触摸屏中触控点的坐标,可以包括:判断确定出的各结点电容的电容值是否在阈值范围内,若否,则确定该结点电容所在坐标位置发生触控,并将发生触控的结点电容的坐标作为触控点的坐标进行输出,即在对某一条触控信号线上的结点电容放电时,该条触控信号线所在纵坐标为各结点电容的纵坐标,各结点电容对应的感应信号线所在的横坐标为各结点电容的横坐标,这样通过判断确定出的每一个结点电容的电容值是否在预先设定的 阈值范围内,就可以判断出发生触控的触控点的位置,即结点电容的电容值不在预先设定的阈值范围内的结点电容的位置为发生触控的触控点的位置,该结点电容的坐标为发生触控的触控点的坐标。
图3示出了本公开实施例提供的触摸屏的结构示意图之一。如图3所示,与前述触摸屏的驱动方法基于同一发明构思,本公开实施例提供的触摸屏可以包括:交叉而置且相互绝缘的多条触控信号线01和感应信号线02;与各触控信号线01相连的触控驱动模块03;与各感应信号线02相连的感应驱动模块04;以及用于确定触控点坐标的触控点确定模块05。
在触控信号线01和感应信号线02的交叠处形成结点电容Cs。
触控驱动模块03用于以每至少两条触控信号线01为一组,依次对各组触控信号线01所包含的结点电容Cs进行充电。
感应驱动模块04用于在对每组触控信号线所包含的结点电容Cs充电完成后,通过各条感应信号线02依次对该组触控信号线01中各条触控信号线01所包含的结点电容Cs进行放电,并确定各结点电容Cs的电容值。
触控点确定模块05用于根据确定出的各结点电容Cs的电容值,确定在触摸屏上触控点的坐标。
具体地,本公开实施例提供的上述触摸屏,以每至少两条触控信号线01为一组,触控驱动模块03用于依次对各组触控信号线01所包含的结点电容Cs进行充电;在对每组触控信号线所包含的结点电容Cs充电完成后,感应驱动模块04用于通过各条感应信号线02依次对该组触控信号线01中各条触控信号线01所包含的结点电容Cs进行放电,并确定各结点电容Cs的电容值;触控点确定模块05用于根据确定出的各结点电容Cs的电容值,确定在触摸屏上触控点的坐标,这样以组为单位通过触控驱动模块03对触摸屏上的一组触控信号线01所包含的结点电容Cs同时进行充电。相对于传统的触摸屏每次只对一条触控信号线上的结点电容Cs进行充电,公开实施例提供的触摸屏可以有效节省整个触摸屏上触控信号线01的充电时间,同时又可以增大每一组触控信号线01的充电时间,进而可以增加每一条触控信号线01所包含的结点电容Cs的充电时间,从而使得触摸屏能够容忍更大的RC延迟值,保证了触摸屏能够正确确认触控点的位置。
图4示出本公开实施例提供的触摸屏的结构示意图之二。
如图4所示,可替换地,在本公开实施例提供的触摸屏中,触控驱动模 块可以包括多个触控驱动子模块031,各触控驱动子模块031分别与对应的至少两条相邻的触控信号线01相连;各触控驱动子模块031用于对连接的各触控信号线01所包含的结点电容Cs进行充电,这样将相邻的至少两条触控信号线01分为一组,通过各触控驱动子模块031依次对各组触控信号线01所包含的结点电容Cs进行充电。这样,可以有效节省整个触摸屏上触控信号线01的充电时间,同时又可以增大每一组触控信号线01的充电时间,进而可以增加每一条触控信号线01所包含的结点电容Cs的充电时间,从而使得触摸屏能够容忍更大的RC延迟值,保证了触摸屏能够正确确认触控点的位置。
再次返回参见图3。如图3所示,可替换地,在本公开实施例提供的触摸屏中,触控驱动模块也可以只包含一个触控驱动模块,触控驱动模块分别与触摸屏中的所有触控信号线01相连;以触摸屏具有的所有触控信号线01为一组,触控驱动模块对触摸屏中的所有触控信号线01所包含的结点电容Cs同时进行充电。这样将整个触摸屏上所有的触控信号线01作为一组,通过触控驱动模块03同时对所有触控信号线01所包含的结点电容Cs同时进行充电,从而可以最大程度节省整个触摸屏上触控信号线01的充电时间,同时也可以最大程度的增大每一组触控信号线01的充电时间,进而可以增加每一条触控信号线01所包含的结点电容Cs的充电时间,从而使得触摸屏能够容忍更大的RC延迟值,保证了触摸屏能够正确确认触控点的位置。
具体地,本公开实施例提供的上述触摸屏中,在触摸屏上所有的触控信号线01完成充电以后,通过感应信号线02依次对充电的触控信号线01进行放电,在对一条充电的触控信号线01进行放电时,该条触控信号线01所在的纵坐标为该条触控信号线01上所包含的各结点电容Cs的纵坐标,各结点电容Cs对应的感应信号线02所在的横坐标为各结点电容Cs的横坐标,在放电过程中,通过确定各结点电容Cs放电过程中输出的信号次数确定各结点电容Cs的电容值,根据确定的各结点电容Cs电容值判断各结点电容Cs所在位置是否发生触控,若放电后的某一结点电容Cs的电容值不再预先设定的阈值范围内,则该结点电容Cs所在的位置发生触控,发生触控的结点电容Cs的坐标为发生触控的触控点的坐标。
图5示出本公开实施例提供的触摸屏中感应驱动子模块的结构示意图。可替换地,在本公开实施例提供的上述触摸屏中,感应驱动模块04可以包括 与每一条感应信号线02上每一个结点电容Cs一一对应的多个感应驱动子模块041。
如图5所示,各感应驱动子模块041可以包括:第一开关单元0411、放电单元0412、比较单元0413和计数单元0414。
第一开关单元0411的输入端与对应的感应信号线02相连,输出端分别与放电单元0412的第一端和比较单元0413的第一输入端相连。第一开关单元0411用于在对与对应的感应信号线02连接的结点电容Cs进行放电时,通过感应信号线02导通结点电容Cs与放电单元0412,使结点电容Cs对放电单元0412充电。
放电单元0412的第二端与低电平信号端Vss相连,第三端与计数单元0414的输出端相连。
比较单元0413的第二输入端与参考电压端Vref相连,输出端与计数单元0414的输入端相连。比较单元0413用于在放电单元0412的电压达到参考电压端Vref的电压时,控制放电单元0412对地放电并向计数单元0414输出一信号。
计数单元0414的输出端与触控点确定模块05的输入端相连。计数单元0414用于通过记录的比较单元0413输出的信号次数,确定结点电容Cs的电容值,并将确定的结点电容Cs的电容值输出给触控点确定模块05。
具体地,本公开实施例提供的上述触摸屏中,在对每组触控信号线01所包含的结点电容Cs充电完成后,第一开关单元0411通过感应信号线02导通结点电容Cs与放电单元0412,使结点电容Cs对放电单元0412充电。当放电单元0412的电压达到参考电压端Vref的电压时,比较单元0413控制放电单元0412对地放电。通过放电单元0412充电和放电的过程,最终将相应结点电容Cs的电压完全放电。而在结点电容Cs通过放电单元0412放电的过程中,放电单元0412每放电一次,比较单元0413就会向计数单元0414输出信号一次。计数单元0414通过记录结点电容Cs放电过程中输出信号的次数,就可以确定出结点电容Cs的电容值。然后将确定出的电容值输出给触控点确定模块05。触控点确定模块05则根据确定出的结点电容Cs的电容值确定发生触控的触控点的坐标位置。
可替换地,本公开实施例提供的上述触摸屏中,如图5所示,放电单元0412可以包括:放电电容C1、分压电阻R0和第二开关单元0415。
放电电容C1的一端分别与第一开关单元0411的输出端和比较单元0413的第一输入端以及分压电阻R0的一端相连,另一端与低电平信号端Vss相连。
分压电阻R0的另一端与第二开关单元0415的第一端相连。
第二开关单元0415的第二端与计数单元0414的输出端相连,第三端与低电平信号端Vss相连。第二开关单元0415用于在结点电容Cs放电时将分压电阻R0的一端与计数单元0414的输出端导通,在放电单元0412重置时将分压电阻R0的一端与低电平信号端Vss导通。
具体地,本公开实施例提供的上述触摸屏中,在结点电容Cs进行放电时,第一开关单元0411通过对应的感应信号线02将结点电容Cs一端与放点电容C1的一端导通,从而使得结点电容Cs对放点电容C1进行充电。当放点电容C1的电压达到参考电压端Vref的电压时,放点电容就会对地放电,同时比较单元0413就会向计数单元0414输出一个信号,重复上述过程,直到结点电容Cs完全放电为止。计数单元0414记录该结点电容Cs放电过程中输出的信号次数,并确定该结点电容Cs的电容值。
一般地,如图5所示,比较单元0413可以通过一个比较器CMP来实现其相应的功能,计数单元0414可以通过一个锁存器Latch来实现其相应的功能。比较单元0413和计数单元0414也可以由其他可实现其对应的功能的器件来实现,在此不作限定。放电单元0412实现结点电容Cs完全放电的过程之后,在对下一次结点电容Cs进行放电之前需要进行重置,这样可以避免放电电容C1由于存在压差对下一次结点电容Cs进行放电产生影响。在放电单元0412重置时,第二开关单元0415将分压电阻R0的一端与低电平信号端Vss导通,使放电单元0412形成一个闭合回路,从而对放点电容C1进行完全放电。
可替换地,本公开实施例提供的上述触摸屏中,触控点确定模块05可以用于:判断确定出的各结点电容Cs的电容值是否在阈值范围内,若否,则确定该结点电容Cs所在坐标位置发生触控,并将发生触控的结点电容Cs的坐标作为触控点的坐标进行输出,这样在结点电容Cs完成放电过程以后,通过判断确定出的结点电容Cs的电容值是否在预先设定的阈值范围内,就可以判断出发生触控的触控点的位置,即结点电容Cs的电容值不在预先设定的阈值范围内的结点位置为发生触控的触控点的位置。
基于同一发明构思,本公开实施例提供了一种显示装置,包括本公开实 施例提供的上述触摸屏。该显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、导航仪等任何具有显示功能的产品或部件。由于该显示装置解决问题的原理与触摸屏相似,因此该显示装置的实施可以参见上述触摸屏的实施,重复之处不再赘述。
图6示出本公开实施例提供的触摸屏中相邻两条触控信号线同时充电的示意图。如图6所示,以相邻两条触控信号线为一组进行同时充电为例进行说明。具体地,在图6中,以相邻两条触控驱动信号线Y1和Y2为一组。在T1时间段,同时对触控信号线Y1和Y2上所包含的结点电容Cs进行充电。在下一时间段触控信号线Y2上所包含的结点电容Cs保持不变。各感应驱动子模块041通过相应的感应信号线02对触控信号线Y1上的结点电容Cs进行放电。只记录触控信号线Y1上各结点电容Cs放电后的电容值。在触控信号线Y1上各结点电容Cs放电结束后,再对触控信号线Y2上的结点电容Cs进行放电。然后只记录触控信号线Y2上各结点电容Cs放电后的电容值,以两条相邻触控信号线为一组重复上述过程,直到整个触摸屏完成触控扫描为止。这里,在实现触控信号线放电的过程中,一条充电的触控信号线上的所有结点电容Cs通过各自对应的感应信号线同时进行放电,该条触控信号线所在的纵坐标为该条触控信号线上各结点电容Cs的纵坐标,各结点电容Cs对应的各条敢用信号线所在的横坐标为各结点电容Cs的横坐标。根据各结点电容Cs放电过程中输出地信号次数,确定各结点电容Cs的电容值。根据各结点电容Cs的电容值判断各结点电容Cs所在位置是否发生触控,放电后确定的结点电容Cs的电容值不再预设阈值范围内的结点电容Cs所在位置为发生触控的位置。该结点电容Cs的坐标为发生触控的触控点的坐标,由此最后确定出发生触控的触控点的位置。
图7和图8分别示出本公开实施例提供的相邻两条触控信号线Y1和Y2实现充电和放电的电路结构示意图。本公开实施例提供的触摸屏实现触控驱动扫描的过程可以描述如下:其中,以一条触控信号线上的一个结点电容的充电和放电过程为例进行说明,可以采用图7和图8所示的电路结构实现。
具体地,图7为触控信号线Y1上实现一个结点电容Cs1的充电和放电过程的电路结构示意图,图8为触控信号线Y2上实现一个结点电容Cs2的充电和放电过程的电路结构示意图。具体实现方式可描述如下:
在第一时间段,开关Sw1和Sw3闭合,开关Sw2和Sw4断开,此时触 控信号线Y1和Y2上的结点电容Cs1和Cs2同时充电,直到结点电容Cs1和Cs2充电到电压值为电源电压Vdd为止。然后进入下一阶段,在此阶段,开关Sw1、Sw3和Sw4断开,开关Sw2闭合,此时结点电容Cs1向放电电容C1充电,放电电容C1与比较器CMP的一端相连,另一端接地,比较器CMP另一端与参考电压Vref相连。当放电电容C1的电压达到参考电压端Vref的电压时,放电电容C1就会对地放电,此时锁存器Latch就会输出一个高电平信号,重复以上过程,直到结点电容Cs1的电荷全部释放。通过记录锁存器Latch输出的高电平次数,就可以计算出结点电容Cs1的电容值。根据确定的结点电容Cs1的电容值,判断结点电容Cs1的电容值是否在预先设定的阈值范围内,若否,则结点电容Cs1所在位置发生触控,结点电容Cs1的坐标为发生触控的触控点的坐标。在此之后,开关Sw1、Sw2和Sw3断开,开关Sw4闭合,结点电容Cs2开始通过放电电容C1放电,其过程与结点电容Cs1相同,在此不作详述。接下来以两条相邻触控信号线为一组不断重复上述过程,就可以实现整个触摸屏的触控扫描过程,由于整体上触控扫描两行的时间由原来的充电两次放电两次变为充电一次放电两次,整个过程节省了大约一半的充电时间,同时也可以增大每一组触控信号线的充电时间,这样就能保证触摸屏能够有更大的RC延迟容忍度,最终保证触摸屏能够正确确认发生触控的触控点的位置。
本公开实施例提供了一种触摸屏的驱动方法、触摸屏及显示装置,对触摸屏上的触控信号线进行分组,以每至少两条触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电。在对每组触控信号线所包含的结点电容充电完成后,通过各条感应信号线依次对该组触控信号线中各条触控信号线所包含的结点电容进行放电,并确定各结点电容的电容值。根据确定出的各结点电容的电容值,确定在触摸屏中触控点的坐标,这样以组为单位对触摸屏上的一组触控信号线所包含的结点电容同时进行充电。相对于传统的触摸屏每次只对一条触控信号线上的结点电容进行充电,可以有效节省整个触摸屏的充电时间,同时又可以增大每一组触控信号线的充电时间,进而可以增加每一条触控信号线所包含的节点电容的充电时间,从而使得触摸屏能够容忍更大的RC延迟值,保证了触摸屏能够正确确认触控点的位置。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要 求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。
本申请要求于2014年12月18日递交的中国专利申请第201410802572.1号的优先权,在此全文引用该中国专利申请公开的内容作为本申请的一部分。

Claims (11)

  1. 一种触摸屏的驱动方法,所述触摸屏具有交叉而置且相互绝缘的多条触控信号线和感应信号线,在所述触控信号线和所述感应信号线的交叠处形成结点电容,该方法包括下列步骤:
    以每至少两条所述触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电;
    在对每组触控信号线所包含的结点电容充电完成后,通过各条所述感应信号线依次对该组触控信号线中各条触控信号线所包含的结点电容进行放电,并确定各结点电容的电容值;
    根据确定出的各结点电容的电容值,确定在所述触摸屏中触控点的坐标。
  2. 如权利要求1所述的方法,其中,以每至少两条所述触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电的步骤包括:
    以每相邻的至少两条所述触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电。
  3. 如权利要求1所述的方法,其中,以每至少两条所述触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电的步骤包括:
    以所述触摸屏具有的所有触控信号线为一组,对所有触控信号线所包含的结点电容同时进行充电。
  4. 如权利要求1-3任一项所述的方法,其中,在对每组触控信号线所包含的结点电容充电完成后,通过各条所述感应信号线依次对该组触控信号线中各条触控信号线所包含的结点电容进行放电,并确定各结点电容的电容值的步骤包括:
    在对每组触控信号线所包含的结点电容充电完成后,通过各条所述感应信号线依次将该组触控信号线中各条触控信号线所包含的结点电容与对应的感应驱动模块导通,记录各所述感应驱动模块在对各结点电容放电时输出的信号次数,根据所述输出的信号次数确定各结点电容的电容值。
  5. 如权利要求4所述的方法,其中,根据确定出的各结点电容的电容值,确定在所述触摸屏中触控点的坐标的步骤包括:
    判断确定出的各结点电容的电容值是否在阈值范围内,若否,则确定该结 点电容所在坐标位置发生触控,并将发生触控的结点电容的坐标作为触控点的坐标进行输出。
  6. 一种触摸屏,包括:交叉而置且相互绝缘的多条触控信号线和感应信号线;与各所述触控信号线相连的触控驱动模块;与各所述感应信号线相连的感应驱动模块;以及用于确定触控点坐标的触控点确定模块;其中,
    在所述触控信号线和所述感应信号线的交叠处形成结点电容;
    所述触控驱动模块用于以每至少两条所述触控信号线为一组,依次对各组触控信号线所包含的结点电容进行充电;
    所述感应驱动模块用于在对每组触控信号线所包含的结点电容充电完成后,通过各条所述感应信号线依次对该组触控信号线中各条触控信号线所包含的结点电容进行放电,并确定各结点电容的电容值;
    所述触控点确定模块用于根据确定出的各结点电容的电容值,确定在所述触摸屏上触控点的坐标。
  7. 如权利要求6所述的触摸屏,其中,所述触控驱动模块包括多个触控驱动子模块,各所述触控驱动子模块分别与对应的至少两条相邻的所述触控信号线相连;
    各所述触控驱动子模块用于对连接的各所述触控信号线所包含的结点电容进行充电。
  8. 如权利要求6所述的触摸屏,其中,所述感应驱动模块包括与每一条所述感应信号线上每一个结点电容一一对应的多个感应驱动子模块;
    各所述感应驱动子模块包括:第一开关单元、放电单元、比较单元和计数单元;
    所述第一开关单元的输入端与对应的所述感应信号线相连,输出端分别与所述放电单元的第一端和所述比较单元的第一输入端相连,所述第一开关单元用于在对与对应的感应信号线连接的结点电容进行放电时,通过所述感应信号线导通所述结点电容与所述放电单元,使所述结点电容对所述放电单元充电;
    所述放电单元的第二端与低电平信号端相连,第三端与所述计数单元的输出端相连;
    所述比较单元的第二输入端与参考电压端相连,输出端与所述计数单元的输入端相连,所述比较单元用于在所述放电单元的电压达到所述参考电压端的 电压时,控制所述放电单元对地放电并向所述计数单元输出一信号;
    所述计数单元的输出端与所述触控点确定模块的输入端相连,所述计数单元用于通过记录的所述比较单元输出的信号次数,确定所述结点电容的电容值,并将确定的所述结点电容的电容值输出给所述触控点确定模块。
  9. 如权利要求8所述的触摸屏,其中,所述放电单元包括:放电电容、分压电阻和第二开关单元;
    所述放电电容的一端分别与所述第一开关单元的输出端和所述比较单元的第一输入端以及所述分压电阻的一端相连,另一端与所述低电平信号端相连;
    所述分压电阻的另一端与所述第二开关单元的第一端相连;
    所述第二开关单元的第二端与所述计数单元的输出端相连,第三端与所述低电平信号端相连,所述第二开关单元用于在所述结点电容放电时将所述分压电阻的一端与所述计数单元的输出端导通,在所述放电单元重置时将所述分压电阻的一端与所述低电平信号端导通。
  10. 如权利要求6-9任一项所述的触摸屏,其中,所述触控点确定模块用于判断确定出的各结点电容的电容值是否在阈值范围内,若否,则确定该结点电容所在坐标位置发生触控,并将发生触控的结点电容的坐标作为触控点的坐标进行输出。
  11. 一种显示装置,包括如权利要求6-10任一项所述的触摸屏。
PCT/CN2015/076907 2014-12-18 2015-04-17 触摸屏的驱动方法、触摸屏及显示装置 WO2016095385A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15791469.8A EP3236341B1 (en) 2014-12-18 2015-04-17 Touch screen driving method, touch screen, and display device
US14/890,363 US9965084B2 (en) 2014-12-18 2015-04-17 Driving method of touch screen, touch screen and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410802572.1A CN104484084B (zh) 2014-12-18 2014-12-18 一种触摸屏的驱动方法、触摸屏及显示装置
CN201410802572.1 2014-12-18

Publications (1)

Publication Number Publication Date
WO2016095385A1 true WO2016095385A1 (zh) 2016-06-23

Family

ID=52758634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076907 WO2016095385A1 (zh) 2014-12-18 2015-04-17 触摸屏的驱动方法、触摸屏及显示装置

Country Status (4)

Country Link
US (1) US9965084B2 (zh)
EP (1) EP3236341B1 (zh)
CN (1) CN104484084B (zh)
WO (1) WO2016095385A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104484084B (zh) 2014-12-18 2017-09-29 合肥鑫晟光电科技有限公司 一种触摸屏的驱动方法、触摸屏及显示装置
TWI673643B (zh) * 2018-09-28 2019-10-01 大陸商北京集創北方科技股份有限公司 可改善觸控屏遠近端驅動信號均勻性的驅動方法及利用其之觸控裝置
CN116700519B (zh) * 2021-11-30 2024-04-12 荣耀终端有限公司 触控显示面板、驱动方法及触控显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253772A (zh) * 2010-05-18 2011-11-23 联咏科技股份有限公司 触碰侦测方法及相关触控装置
US20140078097A1 (en) * 2012-09-20 2014-03-20 Synaptics Incorporated Concurrent input sensing and display updating
CN104484084A (zh) * 2014-12-18 2015-04-01 合肥鑫晟光电科技有限公司 一种触摸屏的驱动方法、触摸屏及显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8093914B2 (en) * 2007-12-14 2012-01-10 Cypress Semiconductor Corporation Compensation circuit for a TX-RX capacitive sensor
EP2113827B8 (en) * 2008-04-30 2018-09-19 InnoLux Corporation Touch input device
CN102339178A (zh) * 2010-07-28 2012-02-01 义隆电子股份有限公司 改善线性响应的电容式触控板
US8605054B2 (en) * 2010-09-02 2013-12-10 Texas Instruments Incorporated Touch-sensitive interface and method using orthogonal signaling
US8711113B2 (en) * 2011-02-07 2014-04-29 3M Innovative Properties Company Modular connector for touch sensitive device
US9141239B2 (en) * 2012-02-07 2015-09-22 Zinitix Touch screen device, and driving device and driving method for touch panel using predetermined binary sequences
KR101388906B1 (ko) * 2012-05-30 2014-04-23 삼성전기주식회사 정전용량 감지 장치, 정전용량 감지 방법, 및 터치스크린 장치
CN103576999B (zh) * 2012-07-23 2016-08-03 瀚宇彩晶股份有限公司 电容式触控面板的感测装置
KR101522532B1 (ko) * 2013-08-23 2015-05-26 주식회사 동부하이텍 터치 패널을 구동하는 방법
CN104156129B (zh) * 2014-07-11 2018-05-25 京东方科技集团股份有限公司 触控基板及显示装置
CN204256714U (zh) * 2014-12-18 2015-04-08 合肥鑫晟光电科技有限公司 一种触摸屏及显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253772A (zh) * 2010-05-18 2011-11-23 联咏科技股份有限公司 触碰侦测方法及相关触控装置
US20140078097A1 (en) * 2012-09-20 2014-03-20 Synaptics Incorporated Concurrent input sensing and display updating
CN104484084A (zh) * 2014-12-18 2015-04-01 合肥鑫晟光电科技有限公司 一种触摸屏的驱动方法、触摸屏及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3236341A4 *

Also Published As

Publication number Publication date
EP3236341B1 (en) 2021-04-07
CN104484084B (zh) 2017-09-29
US20160357307A1 (en) 2016-12-08
EP3236341A4 (en) 2018-07-04
EP3236341A1 (en) 2017-10-25
CN104484084A (zh) 2015-04-01
US9965084B2 (en) 2018-05-08

Similar Documents

Publication Publication Date Title
US10657357B2 (en) Fingerprint identification panel and a method for driving the same, and display apparatus
JP5792334B2 (ja) 静電容量式パネルの制御点検出方法及び装置
KR101473541B1 (ko) 투사형 정전용량식 터치 패널을 스캐닝하기 위한 방법
JP6706660B2 (ja) 多段階フィードバックコンデンサスイッチングスキーム
US9830035B2 (en) Semiconductor device
EP2564296B1 (en) Capacitive touch system using both self and mutual capacitance
KR101440355B1 (ko) 터치 감지 기기 그리고 그 기기의 스캐닝 방법
JP5796255B2 (ja) 負のピクセルの補償
US10725591B1 (en) Passive touch detection for capacitive sense array
KR20150055573A (ko) 행렬형태로 배치된 전극패드를 이용하여 상호정전용량방식으로 터치입력을 감지하는 방법 및 이를 위한 장치
KR20120095443A (ko) 투사 정전용량식 터치 패널 스캐닝 방법, 기억 매체, 및 투사 정전용량식 터치 패널 스캐닝 장치
CN104808883A (zh) 触控显示基板、触控驱动方法和液晶显示面板
KR20150130963A (ko) 셀프-정전용량 감지 디바이스를 사용한 상호 정전용량 감지
US11119603B2 (en) Touch control chip, electronic device having the same and touch detection method therefor
CN106030476B (zh) 用于改善投射式电容触摸屏及面板的信噪比性能的设备
WO2016095385A1 (zh) 触摸屏的驱动方法、触摸屏及显示装置
US20160124540A1 (en) Chip Architecture in Improve the Sensing Latency Time in Projected Capacitance Touch
CN107807757A (zh) 触控感测单元及具有该触控感测单元的指纹触控装置
US9411480B2 (en) Controlling method and touch panel using the same for reducing resolution requirement of analog-digital converter
US10061452B2 (en) Touch display device with consolidated wires and driving method thereof
US9507454B1 (en) Enhanced linearity of gestures on a touch-sensitive surface
CN204256714U (zh) 一种触摸屏及显示装置
CN202600671U (zh) 一种新型投射电容式触摸屏
KR101717424B1 (ko) 정전용량 터치센서에서 인터레이스 방식의 스캔 방법
CN107463292A (zh) 显示面板、显示装置及显示面板的驱动方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14890363

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015791469

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015791469

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15791469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE