WO2016095269A1 - 用于监测攻击者所在位置的智能防弹设备及其监测方法 - Google Patents

用于监测攻击者所在位置的智能防弹设备及其监测方法 Download PDF

Info

Publication number
WO2016095269A1
WO2016095269A1 PCT/CN2014/095506 CN2014095506W WO2016095269A1 WO 2016095269 A1 WO2016095269 A1 WO 2016095269A1 CN 2014095506 W CN2014095506 W CN 2014095506W WO 2016095269 A1 WO2016095269 A1 WO 2016095269A1
Authority
WO
WIPO (PCT)
Prior art keywords
attacker
bullet
layer
information processing
unit
Prior art date
Application number
PCT/CN2014/095506
Other languages
English (en)
French (fr)
Inventor
张贯京
陈兴明
葛新科
张少鹏
方静芳
高伟明
克里斯基捏⋅普拉纽克
古列莎⋅艾琳娜
波达别特⋅伊万
梁昊原
Original Assignee
深圳市前海安测信息技术有限公司
深圳市易特科信息技术有限公司
深圳市贝沃德克生物技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市前海安测信息技术有限公司, 深圳市易特科信息技术有限公司, 深圳市贝沃德克生物技术研究院有限公司 filed Critical 深圳市前海安测信息技术有限公司
Publication of WO2016095269A1 publication Critical patent/WO2016095269A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H1/00Personal protection gear
    • F41H1/02Armoured or projectile- or missile-resistant garments; Composite protection fabrics

Definitions

  • the present invention relates to the field of information technology, and in particular, to an intelligent bulletproof device for monitoring an attacker's location and a monitoring method thereof.
  • the bulletproof vest is one of the common military and police equipments in modern times. It can absorb and dissipate the warhead, fragment kinetic energy, prevent penetration, and effectively protect the protected part of the attacked human body.
  • the bulletproof function of bulletproof vests is mainly reflected in the following two aspects:
  • the existing body armor can only provide the above-mentioned basic protective functions for the attacker.
  • the body position of the bullet cannot be judged after being attacked by the attacker, and the position of the attacker is monitored to provide information for the friendly army to adapt. The needs of the future battlefield.
  • the main purpose of the present invention is to solve the problem that the bulletproof vest can only provide the above-mentioned basic protective functions for the attacker in the prior art, and can not determine the source orientation of the bullet after being attacked by the attacker by the bulletproof vest, and monitor the position of the attacker. To provide information for the friendly forces to adapt to the shortcomings of future battlefield needs.
  • the present invention provides an intelligent ballistic resistant device for monitoring the location of an attacker.
  • the intelligent ballistic protection device comprises a body armor body, and further comprises a gun monitoring unit, an information processing unit and a communication unit:
  • the shooting monitoring unit, the information processing unit, and the communication unit are disposed on the body armor body;
  • the shooting monitoring unit is electrically connected to the information processing unit for detecting a direction in which the bullet hits, and transmitting the direction when the bullet is hit to the information processing unit;
  • the information processing unit is electrically connected to the communication unit, and is configured to calculate a speed at which the bullet hits according to a direction in which the bullet is hit, determine a bullet type, determine an attacker's position, and position the attacker and the bullet.
  • the breakdown condition is sent to the cloud service platform through the communication unit.
  • the smart bulletproof device further includes a positioning unit:
  • the positioning unit is electrically connected to the information processing unit, and is configured to acquire current geographic location information of the attacker, and send the geographic location information to the cloud service platform by using the communication unit.
  • the shot monitoring unit comprises a first layer resistance network and a second layer resistance network:
  • the shot monitoring unit monitors the direction in which the bullet hits through the first layer resistance network and the position of the second layer resistance network resistance change.
  • the smart bulletproof device further includes a positioning unit:
  • the positioning unit is electrically connected to the information processing unit, and is configured to acquire current geographic location information of the attacker, and send the geographic location information to the cloud service platform by using the communication unit.
  • the information processing unit is further configured to:
  • the attacker's position is calculated based on the initial velocity of the corresponding bullet type, the speed at which the bullet hits, and the climate information of the location of the attacker.
  • the smart bulletproof device further includes a positioning unit:
  • the positioning unit is electrically connected to the information processing unit, and is configured to acquire current geographic location information of the attacker, and send the geographic location information to the cloud service platform by using the communication unit.
  • the body armor body comprises a bulletproof layer and a sweat absorbing layer,
  • the shooting monitoring unit, the information processing unit and the communication unit are both disposed between the bulletproof layer and the sweat absorbing layer;
  • the first layer resistance network and the second layer resistance network of the gun monitoring unit are disposed on the outer side of the ballistic layer in sequence.
  • the smart bulletproof device further includes a positioning unit:
  • the positioning unit is electrically connected to the information processing unit, and is configured to acquire current geographic location information of the attacker, and send the geographic location information to the cloud service platform by using the communication unit.
  • the present invention provides a method of monitoring the location of an attacker.
  • the method includes the following steps:
  • the shooting monitoring unit detects the direction in which the bullet hits, and sends the direction when the bullet is hit to the information processing unit;
  • the information processing unit calculates the speed at which the bullet hits according to the direction in which the bullet is hit, determines the bullet type, and determines the location of the attacker;
  • S3 The information processing unit sends the location of the attacker to the cloud service platform through the communication unit.
  • step S1 includes the following steps:
  • the shooting monitoring unit monitors the direction when the bullet hits through the position of the first layer resistance network and the resistance change of the second layer resistance network;
  • the shooting monitoring unit sends the direction when the bullet is hit to the information processing unit.
  • the method further includes the following steps:
  • S5 The cloud service platform sends the attacker location information to other smart bulletproof devices according to the location of the attacker.
  • step S2 includes the following steps:
  • the information processing unit is configured according to a distance between the first layer resistance network of the shot monitoring unit and the second layer resistance network, and when the bullet hits the first layer resistance network and the second layer resistance network of the shot monitoring unit The time difference calculates the speed at which the bullet hits;
  • the information processing unit calculates the area damaged by the bullet according to the change of the first layer resistance network or the resistance layer value of the second layer resistance network of the shot monitoring unit, and the damaged area is different from the preset different bullet type. The damaged area is compared to determine the type of bullet;
  • the information processing unit calculates the location of the attacker according to the initial velocity of the corresponding bullet type, the speed at which the bullet hits, and the climate information of the location of the attacker.
  • the method further includes the following steps:
  • S5 The cloud service platform sends the attacker location information to other smart bulletproof devices according to the location of the attacker.
  • the method further includes the following steps:
  • the positioning unit acquires current geographic location information of the attacker, and sends the geographical location information to the cloud service platform by using the communication unit.
  • the method further includes the following steps:
  • S5 The cloud service platform sends the attacker location information to other smart bulletproof devices according to the location of the attacker.
  • the technical solution of the present invention adopts the above technical solution, the technical effect of detecting the direction of hitting the bullet by the shooting monitoring unit, and transmitting the direction when the bullet is hit to the information processing unit; the information processing unit hits according to the bullet The direction of time, calculate the speed of the bullet hit, determine the bullet type, determine the location of the attacker; the information processing unit sends the attacker's location to the cloud service platform through the communication unit. After the attacker is attacked by the bulletproof vest, the source position of the bullet is judged, and the attacker's position is monitored.
  • the cloud service platform provides information for the friendly army according to the attacker's location information, thereby adapting to the needs of the future battlefield.
  • FIG. 1 is a schematic structural view of a first preferred embodiment of an intelligent ballistic resistant device according to the present invention
  • FIG. 2 is a schematic structural view of a second preferred embodiment of the intelligent ballistic resistant device of the present invention.
  • FIG. 3 is a schematic flow chart of a first preferred embodiment of a method for monitoring an attacker's location according to the present invention
  • step S1 is a schematic flowchart of the refinement of step S1 in the first preferred embodiment of the method for monitoring an attacker's location according to the present invention
  • step S2 is a schematic flowchart of the refinement of step S2 in the first preferred embodiment of the method for monitoring an attacker according to the present invention
  • FIG. 6 is a schematic flow chart of a second preferred embodiment of a method for monitoring an attacker's location according to the present invention.
  • FIG. 7 is a schematic flow chart of a third preferred embodiment of a method for monitoring an attacker's location according to the present invention.
  • the main purpose of the present invention is to solve the problem that the bulletproof vest can only provide the above-mentioned basic protective functions for the attacker in the prior art, and can not determine the source orientation of the bullet after being attacked by the attacker by the bulletproof vest, and monitor the position of the attacker. To provide information for the friendly forces to adapt to the shortcomings of future battlefield needs.
  • the present invention provides an intelligent ballistic resistant device for monitoring the location of an attacker.
  • FIG. 1 is a schematic structural view of a first preferred embodiment of an intelligent ballistic resistant device according to the present invention
  • the smart bulletproof device includes a body armor body 1, and further includes a gunbing monitoring unit 2, an information processing unit 3, and a communication unit 4:
  • the shot monitoring unit 2, the information processing unit 3, and the communication unit 4 are disposed on the body armor body 1;
  • the body armor body 1 is a body armor in the prior art.
  • the body armor is mainly composed of a jacket and a bulletproof layer.
  • the sleeves are usually made of chemical fiber fabrics, which are usually used for sweat absorption;
  • the bulletproof layer is commonly used for metal (special steel, aluminum alloy, titanium alloy), ceramic sheet (corundum, boron carbide, silicon carbide, alumina), glass steel, nylon (PA), Kay KEVLAR, ultra high molecular weight polyethylene fiber (DOYENTRONTEX) Fiber), liquid protective materials and other materials, constitute a single or composite protective structure.
  • the bulletproof layer can absorb the kinetic energy of the warhead or the shrapnel, and has obvious protective effect on the low speed warhead or shrapnel, and can reduce the damage to the chest and abdomen of the human body under the control of a certain depression.
  • Body armor includes infantry body armor, flight officer body armor and artillery body armor. According to the appearance, it can be divided into bulletproof vests, full protective bulletproof vests, and women's bulletproof vests.
  • the embodiment of the present invention does not limit the form of the body armor body, as long as it can protect the warhead or the shrapnel from harming the human body.
  • the shot monitoring unit 2, the information processing unit 3, and the communication unit 4 are all disposed on the body armor body 1, preferably disposed between the sleeve and the bulletproof layer to avoid bullets. Or a single piece causes damage to the shooting monitoring unit 2, the information processing unit 3, and the communication unit 4.
  • the gun monitoring unit 2 is electrically connected to the information processing unit 3 for detecting the direction in which the bullet hits, and sends the direction when the bullet is hit to the information processing unit 3;
  • the direction in which the bullet is hit can reflect the position information of the attacker to a certain extent
  • the shooting monitoring unit 2 includes a first layer resistance network and a second layer resistance network: the shot monitoring unit 2
  • the direction in which the bullet hits is monitored by the position of the first layer of resistance network and the resistance of the second layer of resistance network.
  • the detection of the direction when the bullet is hit can be realized by using a two-layer resistance network. First, the position s1 of the resistance network resistance change when the bullet hits the first layer resistance network is collected, and the time t1 when the hit is recorded is recorded because of its fast speed. And there is a direction deviation.
  • the relative position when hitting the first layer resistance network is changed due to the change of speed and direction.
  • the position s2 of the network resistance change, and the time t2 at which the hit is recorded, can be judged by the position (s1 and s2) of the resistance change when hitting the two-layer resistance network to determine the source direction when the bullet hits.
  • the position s1 and the position s2, in the preferred case, respectively select the damaged intermediate position of the two-layer resistor network.
  • the information processing unit 3 is electrically connected to the communication unit 4, and is configured to calculate a speed at which a bullet hits according to a direction in which the bullet hits, determine a bullet type, determine an attacker's position, and position the attacker. And the bullet breakdown condition is sent to the cloud service platform through the communication unit 3.
  • the information processing unit 3 hits the first layer resistance of the shot monitoring unit according to the distance between the first layer resistance network of the shot monitoring unit 2 and the second layer resistance network and the bullet.
  • the time difference between the network and the second layer of resistance network calculates the speed at which the bullet hits.
  • the distance s between the two layers of resistance networks can be preset in advance, and at the same time, the first layer resistance network can be hit according to the bullet.
  • the time when the second layer of resistance network is known to the time difference between the two layers of the resistance network, the distance s between the two layers of resistance networks and the time difference (t2-t1) hitting the two layers of the resistance network are used to calculate the bullet hit.
  • the speed v1 s/(t2-t1).
  • the information processing unit 3 calculates the area damaged by the bullet according to the change of the first layer resistance network or the second layer resistance network resistance value of the shot monitoring unit 2, and the damaged area is The bullet type is determined by comparing with the damaged area of a different bullet type set in advance.
  • the resistor network is a resistor network formed by a plurality of equal-value resistors, each intersection having a corresponding resistance value, when a part of the body armor body (ie, a body part) The damaged area of the resistor network when it is broken by a bullet.
  • the change of the magnitude of the resistance of the resistor network and the detection of the position of the resistance change can be realized by those skilled in the art through the knowledge of the circuit, and will not be described herein.
  • different types of guns have different caliber sizes and different initial speeds, the local climate is different when attacking. When the attacker hits the attacker at different positions, the speed of the bullet and the damage area of the body of the bulletproof body are different.
  • Different types of guns simulate different locations to attack different parts of the same attacker, and get the size of the damaged area of the smart bulletproof equipment worn by the attacker when it is hit by the bullet, and store it in the database. Therefore, the bullet type can be known by comparing the area damaged by the bullet of the current smart bulletproof device with the damaged area previously stored in the database.
  • the information processing unit 3 calculates an attack according to the initial velocity v0 of the corresponding bullet type, the velocity v1 when the bullet is hit, the climate information of the attacker's location, and the source direction when the bullet hits.
  • the climate information includes wind speed, wind direction, air density, etc.
  • the time of flight of the bullet is calculated, according to the bullet
  • the calculation of the current location of the attacker can also be implemented by the cloud service platform, the direction when the bullet detected by the shooting unit 2 is hit, the speed at which the bullet is hit, and the body of the bulletproof body are damaged by the bullet.
  • the information such as the area is sent to the cloud service platform, and the cloud service platform comprehensively calculates the location of the attacker based on the collected information and the climate information of the currently attacked person.
  • the preferred embodiment of the present invention detects the direction in which the bullet hits by the shooting monitoring unit 2, and transmits the direction in which the bullet is hit to the information processing unit 3; the information processing unit 3 calculates the bullet based on the direction in which the bullet hits. The speed at the time of hitting, determining the bullet type, determining the location of the attacker; the information processing unit 3 transmits the location of the attacker to the cloud service platform through the communication unit. After the attacker is attacked by the intelligent bulletproof device, the source position of the bullet is judged, and the location of the attacker is monitored.
  • the cloud service platform provides information for the friendly army according to the attacker's location information, thereby adapting to the needs of the future battlefield.
  • the body armor body includes a bulletproof layer and a sweat absorbing layer, and the gun monitoring unit, the information processing unit, and the communication unit are disposed between the ballistic layer and the sweat absorbing layer;
  • the ballistic layer may be made of a pure hard material such as metal (special steel, aluminum alloy, titanium alloy), ceramic sheet (corundum, boron carbide, silicon carbide, alumina) or glass steel; or pure soft material.
  • metal special steel, aluminum alloy, titanium alloy
  • ceramic sheet corundum, boron carbide, silicon carbide, alumina
  • glass steel or pure soft material.
  • nylon (PA), Kevlar (Kevlar), ultra high molecular weight polyethylene fiber (DOYENTRONTEX Fiber), liquid protective material, etc.; can also be set to two layers, the first layer is made of hard material, and the second layer is made of soft material, which can not only ensure the ballistic performance of the bulletproof layer of the body armor body, but also the entire ballistic layer. The material is too hard to put on.
  • the shooting monitoring unit 2, the information processing unit 3, the communication unit 4, and the vital sign monitoring unit 5 are disposed between the bulletproof layer and the sweat absorbing layer, and can prevent the bullet body from being hit by the bullet body
  • the first layer resistance network and the second layer resistance network of the shot monitoring unit 2 are disposed on the outer side of the ballistic layer in sequence.
  • the outer side of the bulletproof layer can be used to monitor the position of the attacker by the above method when the bullet hits the body of the bulletproof body without hitting.
  • FIG. 2 is a schematic structural view of a second preferred embodiment of the intelligent ballistic resistant device of the present invention.
  • the smart bulletproof device further includes a positioning unit 5:
  • the positioning unit 5 is electrically connected to the information processing unit 3 for acquiring the current geographical location information of the attacker and transmitting the geographical location information to the cloud service platform through the communication unit 4.
  • the positioning unit may be a Beidou module, a GPS module, a GLONASS module, a Galileo module, etc., capable of receiving and transmitting a satellite positioning signal, acquiring current geographic location information of the attacker, and passing the geographical location information through the communication unit 4 Send to the cloud service platform, for the cloud service platform to send it to the rescue platform near the attacker, and inform the rescue platform of its specific geographical location to obtain timely rescue.
  • the present invention provides a method of monitoring the location of an attacker.
  • FIG. 3 is a schematic flowchart diagram of a first preferred embodiment of a method for monitoring an attacker's location according to the present invention
  • the method includes the following steps:
  • the shooting monitoring unit detects the direction in which the bullet hits, and sends the direction when the bullet is hit to the information processing unit;
  • FIG. 4 is a schematic flowchart of the refinement of step S1 in the first preferred embodiment of the method for monitoring the location of an attacker according to the present invention.
  • step S1 includes the following steps:
  • the shooting monitoring unit monitors the direction when the bullet hits through the position of the first layer resistance network and the resistance change of the second layer resistance network;
  • the shooting monitoring unit sends the direction when the bullet is hit to the information processing unit.
  • the direction in which the bullet is hit can reflect the attacker's position information to a certain extent
  • the shooting monitoring unit includes a first layer resistance network and a second layer resistance network: the shot monitoring unit passes the A layer of resistance network and a second layer of resistance network change the position of the resistance to monitor the direction in which the bullet hits.
  • the detection of the direction when the bullet is hit can be realized by using a two-layer resistance network. First, the position s1 of the resistance network resistance change when the bullet hits the first layer resistance network is collected, and the time t1 when the hit is recorded is recorded because of its fast speed. And there is a direction deviation.
  • the second layer network the relative position when hitting the first layer resistance network is changed due to the change of speed and direction.
  • the position s2 of the network resistance change, and the time t2 at which the hit is recorded, can be judged by the position (s1 and s2) of the resistance change when hitting the two-layer resistance network to determine the source direction when the bullet hits.
  • the position s1 and the position s2, in the preferred case, respectively select the damaged intermediate position of the two-layer resistor network.
  • the information processing unit calculates the speed at which the bullet hits according to the direction in which the bullet is hit, determines the bullet type, and determines the location of the attacker;
  • FIG. 5 is a schematic flowchart of the refinement of step S2 in the first preferred embodiment of the method for monitoring the location of an attacker according to the present invention.
  • step S2 includes the following steps:
  • the information processing unit is configured according to a distance between the first layer resistance network of the shot monitoring unit and the second layer resistance network, and when the bullet hits the first layer resistance network and the second layer resistance network of the shot monitoring unit The time difference calculates the speed at which the bullet hits;
  • the information processing unit calculates the area damaged by the bullet according to the change of the first layer resistance network or the resistance layer value of the second layer resistance network of the shot monitoring unit, and the damaged area is different from the preset different bullet type. The damaged area is compared to determine the type of bullet;
  • the information processing unit calculates the location of the attacker according to the initial velocity of the corresponding bullet type, the speed at which the bullet hits, and the climate information of the location of the attacker.
  • the information processing unit according to the distance between the first layer resistance network of the shot monitoring unit and the second layer resistance network and the first layer resistance network of the bullet hitting unit of the shot monitoring unit.
  • the time difference in the second layer of resistance network calculates the speed at which the bullet hits.
  • the distance s between the two layers of resistance networks can be preset in advance, and at the same time, the first layer resistance network can be hit according to the bullet.
  • the time when the second layer of resistance network is known is the time difference between hitting the two-layer resistance network.
  • the distance s between the two-layer resistance networks and the time difference (t2-t1) hitting the two-layer resistance network are used to calculate the time when the bullet hits.
  • Speed v1 s / (t2-t1).
  • the information processing unit calculates the area damaged by the bullet according to the change of the first layer resistance network or the second layer resistance network resistance value of the shot monitoring unit, and the damaged area and the The damaged areas of different bullet types are set for comparison to determine the bullet type.
  • the resistor network is a resistor network formed by a plurality of equal-value resistors, each intersection having a corresponding resistance value, when a part of the body armor body (ie, a body part) The damaged area of the resistor network when it is broken by a bullet.
  • the change of the magnitude of the resistance of the resistor network and the detection of the position of the resistance change can be realized by those skilled in the art through the knowledge of the circuit, and will not be described herein.
  • the local climate is different when attacking.
  • the speed of the bullet and the damage area of the body of the bulletproof body are different.
  • Different types of guns simulate different locations to attack different parts of the same attacker, and get the size of the damaged area of the smart bulletproof equipment worn by the attacker when it is hit by the bullet, and store it in the database. Therefore, the bullet type can be known by comparing the area damaged by the bullet of the current smart bulletproof device with the damaged area previously stored in the database.
  • the information processing unit calculates an attacker according to the initial velocity v0 of the corresponding bullet type, the velocity v1 when the bullet is hit, the climate information of the attacker's location, and the source direction when the bullet hits. s position.
  • the climate information includes wind speed, wind direction, air density, etc.
  • the time of flight of the bullet is calculated, according to the bullet
  • the calculation of the current location of the attacker can also be implemented by the cloud service platform, the direction when the bullet detected by the shooting monitoring unit is hit, the speed at which the bullet is hit, and the bulletproof body being damaged by the bullet.
  • the information such as the area is sent to the cloud service platform, and the cloud service platform comprehensively calculates the location of the attacker based on the collected information and the climate information of the currently attacked person.
  • S3 The information processing unit sends the location of the attacker to the cloud service platform through the communication unit.
  • FIG. 6 is a schematic flowchart diagram of a second preferred embodiment of a method for monitoring an attacker's location according to the present invention.
  • the method further includes the following steps after step S3:
  • the positioning unit acquires current geographic location information of the attacker, and sends the geographical location information to the cloud service platform by using the communication unit.
  • the positioning unit may be a Beidou module, a GPS module, a GLONASS module, a Galileo module, etc., capable of receiving and transmitting a satellite positioning signal, acquiring current geographic location information of the attacker, and the geographic location information.
  • the communication unit sends the cloud service platform to the cloud service platform for sending the cloud service platform to the rescue platform near the attacker to inform the rescue platform of the specific geographic location to obtain timely rescue.
  • FIG. 7 is a schematic flowchart diagram of a third preferred embodiment of a method for monitoring an attacker's location according to the present invention.
  • the method further includes the following steps after step S3:
  • the cloud service platform sends the attacker location information to other smart bulletproof devices according to the location of the attacker.
  • Other intelligent bulletproof device wearers adjust their position and direction according to the current attacker's position according to the current attacker's position, and on the other hand, attack the attacker in a targeted manner.
  • the cloud service platform reports the possible location of the attacker in relative orientation (eg, 07 is hit, the enemy may be at 319 meters at 4 o'clock, etc.).
  • the technical solution of the present invention adopts the above technical solution, the technical effect of detecting the direction of hitting the bullet by the shooting monitoring unit, and transmitting the direction when the bullet is hit to the information processing unit; the information processing unit hits according to the bullet The direction of time, calculate the speed of the bullet hit, determine the bullet type, determine the location of the attacker; the information processing unit sends the attacker's location to the cloud service platform through the communication unit. After the attacker is attacked by the bulletproof vest, the source position of the bullet is judged, and the attacker's position is monitored.
  • the cloud service platform provides information for the friendly army according to the attacker's location information, thereby adapting to the needs of the future battlefield.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Alarm Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

一种用于监测攻击者所在位置的智能防弹设备及其监测方法,通过枪击监测单元(2)检测子弹击中的方向,并将所述子弹击中时的方向发送至信息处理单元(3);信息处理单元(3)根据子弹击中时的方向,计算子弹击中时的速度,判断子弹类型,确定攻击者的位置;信息处理单元(3)将攻击者的位置通过通讯单元(4)发送至云服务平台。该用于监测攻击者所在位置的智能防弹设备及其监测方法,通过智能防弹设备在被攻击者受攻击之后判断子弹的来源方位,对攻击者的位置进行监测,云服务平台根据攻击者的位置信息为友军提供信息,从而适应未来战场的需求。

Description

用于监测攻击者所在位置的智能防弹设备及其监测方法
技术领域
本发明涉及信息技术领域,尤其涉及一种用于监测攻击者所在位置的智能防弹设备及其监测方法。
背景技术
防弹衣是现代常见的军警装备之一,能吸收和耗散弹头、破片动能,阻止穿透,有效保护被攻击者人体受防护的部位。防弹衣的防弹功能主要体现在以下两个方面:
(1) 防止弹片:各种爆炸物如炸弹、地雷、炮弹和手榴弹等爆炸产生的高速弹片是战场上的主要威胁之一。据统计,士兵在战场中所面临的威胁最大的就是弹片。因此,防止弹片的功能是非常重要的。
(2) 防止非贯穿性损伤:子弹在击中目标后会产生极大的冲击力,这种冲击力作用于人体所生产的伤害常常是致命的。这种伤害不呈现出贯穿性,但会造成内伤,重者危及生命。因此,防止非贯穿性损伤也是体现和检验防弹衣防弹功能的一个重要方面。
现有的防弹衣只能为被攻击者提供上述基本的防护功能,不能通过防弹衣在被攻击者受攻击之后判断子弹的来源方位,对攻击者的位置进行监测,为友军提供信息,从而适应未来战场的需求。
发明内容
本发明的主要目的在于解决现有技术中防弹衣只能为被攻击者提供上述基本的防护功能,不能通过防弹衣在被攻击者受攻击之后判断子弹的来源方位,对攻击者的位置进行监测,为友军提供信息,从而适应未来战场的需求的缺陷。
为实现上述目的,本发明提供了一种用于监测攻击者位置的智能防弹设备。
所述智能防弹设备包括防弹衣本体,还包括枪击监测单元、信息处理单元以及通讯单元:
所述枪击监测单元、所述信息处理单元以及所述通讯单元设置于所述防弹衣本体上;
所述枪击监测单元,与所述信息处理单元电连接,用于检测子弹击中的方向,并将所述子弹击中时的方向发送至所述信息处理单元;
所述信息处理单元,与所述通讯单元电连接,用于根据子弹击中时的方向,计算子弹击中时的速度,判断子弹类型,确定攻击者的位置,并将攻击者的位置以及子弹击穿情况通过所述通讯单元发送至云服务平台。
进一步地,所述智能防弹设备还包括定位单元:
所述定位单元,与所述信息处理单元电连接,用于获取被攻击者当前的地理位置信息,并将所述地理位置信息通过所述通讯单元发送至云服务平台。
优选地,所述枪击监测单元,包括第一层电阻网络和第二层电阻网络:
所述枪击监测单元通过第一层电阻网络和第二层电阻网络电阻变化的位置监测子弹击中时的方向。
进一步地,所述智能防弹设备还包括定位单元:
所述定位单元,与所述信息处理单元电连接,用于获取被攻击者当前的地理位置信息,并将所述地理位置信息通过所述通讯单元发送至云服务平台。
进一步地,所述信息处理单元,还用于:
根据所述枪击监测单元的第一层电阻网络和第二层电阻网络之间的距离以及子弹击中所述枪击监测单元的第一层电阻网络和第二层电阻网络时的时间差计算子弹击中时的速度;
根据所述枪击监测单元的第一层电阻网络或第二层电阻网络电阻值的变化计算其被子弹损毁的面积,并将所述损毁面积与预先设定的不同子弹类型的损毁面积进行比对,判断子弹类型;
根据对应子弹类型的出膛初速度、子弹击中时的速度以及被攻击者所在地的气候信息,计算攻击者的位置。
进一步地,所述智能防弹设备还包括定位单元:
所述定位单元,与所述信息处理单元电连接,用于获取被攻击者当前的地理位置信息,并将所述地理位置信息通过所述通讯单元发送至云服务平台。
优选地,所述防弹衣本体包括防弹层和吸汗层,
所述枪击监测单元、所述信息处理单元和所述通讯单元均设置于所述防弹层和吸汗层之间;
所述枪击监测单元的第一层电阻网络和第二层电阻网络按照先后顺序设置于所述防弹层的外侧。
进一步地,所述智能防弹设备还包括定位单元:
所述定位单元,与所述信息处理单元电连接,用于获取被攻击者当前的地理位置信息,并将所述地理位置信息通过所述通讯单元发送至云服务平台。
为实现上述目的,本发明提供了一种监测攻击者位置的方法。
所述方法包括如下步骤:
S1:枪击监测单元检测子弹击中的方向,并将所述子弹击中时的方向发送至信息处理单元;
S2:信息处理单元根据子弹击中时的方向,计算子弹击中时的速度,判断子弹类型,确定攻击者的位置;
S3:信息处理单元将攻击者的位置通过所述通讯单元发送至云服务平台。
进一步地,所述步骤S1包括如下步骤:
S11:枪击监测单元通过第一层电阻网络和第二层电阻网络电阻变化的位置监测子弹击中时的方向;
S12:枪击监测单元将所述子弹击中时的方向发送至信息处理单元。
进一步地,所述方法还包括如下步骤:
S5:云服务平台根据攻击者的位置,向其他智能防弹设备发送攻击者位置信息。
进一步地,所述步骤S2包括如下步骤:
S21:信息处理单元根据所述枪击监测单元的第一层电阻网络和第二层电阻网络之间的距离以及子弹击中所述枪击监测单元的第一层电阻网络和第二层电阻网络时的时间差计算子弹击中时的速度;
S22:信息处理单元根据所述枪击监测单元的第一层电阻网络或第二层电阻网络电阻值的变化计算其被子弹损毁的面积,并将所述损毁面积与预先设定的不同子弹类型的损毁面积进行比对,判断子弹类型;
S23:信息处理单元根据对应子弹类型的出膛初速度、子弹击中时的速度以及被攻击者所在地的气候信息,计算攻击者的位置。
进一步地,所述方法还包括如下步骤:
S5:云服务平台根据攻击者的位置,向其他智能防弹设备发送攻击者位置信息。
进一步地,所述方法还包括如下步骤:
S4:定位单元获取被攻击者当前的地理位置信息,并将所述地理位置信息通过所述通讯单元发送至云服务平台。
进一步地,所述方法还包括如下步骤:
S5:云服务平台根据攻击者的位置,向其他智能防弹设备发送攻击者位置信息。
本发明采用上述技术方案,带来的技术效果为:通过枪击监测单元检测子弹击中的方向,并将所述子弹击中时的方向发送至所述信息处理单元;信息处理单元根据子弹击中时的方向,计算子弹击中时的速度,判断子弹类型,确定攻击者的位置;信息处理单元将攻击者的位置通过所述通讯单元发送至云服务平台。通过防弹衣在被攻击者受攻击之后判断子弹的来源方位,对攻击者的位置进行监测,云服务平台根据攻击者的位置信息为友军提供信息,从而适应未来战场的需求。
附图说明
图1为本发明智能防弹设备第一优选实施例结构示意图;
图2为本发明智能防弹设备第二优选实施例结构示意图;
图3为本发明监测攻击者位置的方法第一优选实施例流程示意图;
图4为本发明监测攻击者位置的方法第一优选实施例中步骤S1的细化流程示意图;
图5为本发明监测攻击者位置的方法第一优选实施例中步骤S2的细化流程示意图;
图6为本发明监测攻击者位置的方法第二优选实施例流程示意图;
图7为本发明监测攻击者位置的方法第三优选实施例流程示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的主要目的在于解决现有技术中防弹衣只能为被攻击者提供上述基本的防护功能,不能通过防弹衣在被攻击者受攻击之后判断子弹的来源方位,对攻击者的位置进行监测,为友军提供信息,从而适应未来战场的需求的缺陷。
为实现上述目的,本发明提供了一种用于监测攻击者位置的智能防弹设备。
参照图1,图1为本发明智能防弹设备第一优选实施例结构示意图;
在一实施例中,如图1所示, 所述智能防弹设备包括防弹衣本体1,还包括枪击监测单元2、信息处理单元3以及通讯单元4:
所述枪击监测单元2、所述信息处理单元3以及所述通讯单元4设置于所述防弹衣本体1上;
在一实施例中,所述防弹衣本体1,为现有技术中的防弹衣,现有技术中防弹衣主要由衣套和防弹层两部分组成。衣套常用化纤织品制作,通常用于吸汗;防弹层常用金属(特种钢、铝合金、钛合金)、陶瓷片(刚玉、碳化硼、碳化硅、氧化铝)、玻璃钢、尼龙(PA)、凯夫拉(KEVLAR)、超高分子量聚乙烯纤维(DOYENTRONTEX Fiber)、液体防护材料等材料,构成单一或复合型防护结构。防弹层可吸收弹头或弹片的动能,对低速弹头或弹片有明显的防护效果,在控制一定的凹陷情况下可减轻对人体胸、腹部的伤害。防弹衣包括步兵防弹衣、飞行人员防弹衣和炮兵防弹衣等。按照外观还可分为防弹背心,全防护防弹衣,女士防弹衣等类型。本发明实施例对防弹衣本体的形式不做限定,只要能够防护弹头或弹片对人体的伤害即可。
在一实施例中,所述的枪击监测单元2、信息处理单元3以及通讯单元4均设置于所述防弹衣本体1上,优选的情况下,设置于衣套和防弹层之间,避免子弹或单片对所述枪击监测单元2、信息处理单元3以及通讯单元4造成损坏。
所述枪击监测单元2,与所述信息处理单元3电连接,用于检测子弹击中的方向,并将所述子弹击中时的方向发送至所述信息处理单元3;
在一优选实施例中,子弹击中的方向能够从一定程度上反应攻击者的位置信息,所述枪击监测单元2,包括第一层电阻网络和第二层电阻网络:所述枪击监测单元2通过第一层电阻网络和第二层电阻网络电阻变化的位置监测子弹击中时的方向。对子弹击中时的方向的检测可采用两层电阻网络来实现,首先采集子弹击中第一层电阻网络时电阻网络电阻变化的位置s1,且记录击中时的时间t1,由于其速度快,且有方向偏差,当击中第二层网络时会因为速度和方向的改变而改变与第一层电阻网络击中时的相对位置,此时,采集子弹击中第二层电阻网络时电阻网络电阻变化的位置s2,且记录击中时的时间t2,可以通过击中两层电阻网络时电阻变化的位置(s1和s2)来判断子弹击中时的来源方向。所述位置s1和位置s2在优选情况下,分别选择两层电阻网络的被损毁的中间位置。
所述信息处理单元3,与所述通讯单元4电连接,用于根据子弹击中时的方向,计算子弹击中时的速度,判断子弹类型,确定攻击者的位置,并将攻击者的位置以及子弹击穿情况通过所述通讯单元3发送至云服务平台。
在一优选实施例中,所述信息处理单元3根据所述枪击监测单元2的第一层电阻网络和第二层电阻网络之间的距离以及子弹击中所述枪击监测单元的第一层电阻网络和第二层电阻网络时的时间差计算子弹击中时的速度。在设计所述枪击监测单元2的第一层电阻网络和第二层电阻网络时,能够提前预设两层电阻网络之间的距离s,同时,能够根据子弹击中所述第一层电阻网络和第二层电阻网络时的时间获知其击中两层电阻网络的时间差,通过两层电阻网络之间的距离s以及击中两层电阻网络的时间差(t2-t1)来计算子弹击中时的速度v1=s/(t2-t1)。
在一优选实施例中,所述信息处理单元3根据所述枪击监测单元2的第一层电阻网络或第二层电阻网络电阻值的变化计算其被子弹损毁的面积,并将所述损毁面积与预先设定的不同子弹类型的损毁面积进行比对,判断子弹类型。在一实施例中,所述电阻网络为由多个等值电阻交叉构成的电阻网络,每个交叉点都有对应的阻值,当所述防弹衣本体的某个部位(即某个身体部位)被子弹击穿时电阻网络的损毁面积。本发明中电阻网络对电阻大小的变化以及电阻变化的位置的检测,本领域技术人员通过对电路知识的了解可以实现,在此不赘述。由于不同型号的枪支由于其子弹口径不同,出膛初速度不同,攻击时的当地气候不同,在不同位置击中被攻击者时子弹产生的速度以及对防弹衣本体的损毁面积不同,可预先根据不同型号的枪支,模拟不同位置对同一个被攻击者不同部位进行攻击,得到被攻击者被子弹击中时,穿着的智能防弹设备损毁面积的大小,并将其存储在数据库。因此可以根据当前智能防弹设备被子弹损毁的面积与预先存储在数据库中的损毁面积进行比对,获知子弹类型。
在一优选实施例中,所述信息处理单元3根据对应子弹类型的出膛初速度v0、子弹击中时的速度v1、被攻击者所在地的气候信息、子弹击中时的来源方向,计算攻击者的位置。气候信息包括风速、风向、空气密度等,通过模拟不同风速、风向、空气密度下对子弹方向的影响因子,来计算子弹受空气的阻力f,结合子弹受地球引力g,通过力学合成计算公式,能够计算出子弹在飞行过程中的受力大小f0,根据f0可以计算子弹在飞行过程中的加速度a。再根据子弹的出膛初速度v0、子弹击中时的速度v1以及子弹在飞行过程中的加速度a,a=(v1-v0)/t,t为计算子弹的飞行的时间,根据子弹的出膛初速度v0、子弹击中时的速度v1以及子弹的飞行的时间t,计算距离L=v0+a×t,再结合子弹击中时的来源方向确定攻击者当前位置。由于是通过模拟的方式提前设置气候信息对子弹方向的影响因子,因此计算出的攻击者位置信息会有偏差,通过模拟试验得知,偏差范围在十米~百米级。
在一实施例中,对于攻击者当前位置的计算还可以通过云服务平台来实现,将枪击监测单元2检测到的子弹击中时的方向、子弹击中时的速度、防弹衣本体被子弹损毁的面积等信息发送给云服务平台,云服务平台根据采集到的信息以及当前被攻击者的气候信息综合计算攻击者的位置。
本发明优选实施例通过枪击监测单元2检测子弹击中的方向,并将所述子弹击中时的方向发送至所述信息处理单元3;信息处理单元3根据子弹击中时的方向,计算子弹击中时的速度,判断子弹类型,确定攻击者的位置;信息处理单元3将攻击者的位置通过所述通讯单元发送至云服务平台。通过智能防弹设备在被攻击者受攻击之后判断子弹的来源方位,对攻击者的位置进行监测,云服务平台根据攻击者的位置信息为友军提供信息,从而适应未来战场的需求。
在一实施例中,所述防弹衣本体包括防弹层和吸汗层,所述枪击监测单元、所述信息处理单元和所述通讯单元均设置于所述防弹层和吸汗层之间;
所述防弹层可以采用纯硬质材料,例如金属(特种钢、铝合金、钛合金)、陶瓷片(刚玉、碳化硼、碳化硅、氧化铝)或玻璃钢等;也可采用纯软质材料,例如尼龙(PA)、凯夫拉(KEVLAR)、超高分子量聚乙烯纤维(DOYENTRONTEX Fiber)、液体防护材料等;还可以设置为两层,第一层采用硬质材料,第二层采用软质材料,能够既保证防弹衣本体的防弹层的防弹性能,又不至于整个防弹层材质太硬穿上不舒服。所述枪击监测单元2、所述信息处理单元3、所述通讯单元4和所述体征监测单元5均设置于所述防弹层和吸汗层之间,能够防止其由于弹衣本体被子弹击中而损坏。
所述枪击监测单元2的第一层电阻网络和第二层电阻网络按照先后顺序设置于所述防弹层的外侧。设置于所述防弹层的外侧能够在子弹打中防弹衣本体而没有击中时,仍然能够通过上述方法监测攻击者的位置。
参照图2,图2为本发明智能防弹设备第二优选实施例结构示意图;
在图1所示第一优选实施例基础上,所述智能防弹设备还包括定位单元5:
所述定位单元5,与所述信息处理单元3电连接,用于获取被攻击者当前的地理位置信息,并将所述地理位置信息通过所述通讯单元4发送至云服务平台。所述定位单元可以是北斗模块、GPS模块、GLONASS模块、伽利略模块等,能够接收和发送卫星定位信号,获取被攻击者当前的地理位置信息,并将所述地理位置信息通过所述通讯单元4发送至云服务平台,供所述云服务平台将其发送给被攻击者附近的救援平台,告知救援平台其具体的地理位置,以获得及时的救援。
为实现上述目的,本发明提供了一种监测攻击者位置的方法。
参照图3,图3为本发明监测攻击者位置的方法第一优选实施例流程示意图;
所述方法包括如下步骤:
S1:枪击监测单元检测子弹击中的方向,并将所述子弹击中时的方向发送至信息处理单元;
参照图4,图4为本发明监测攻击者位置的方法第一优选实施例中步骤S1的细化流程示意图;所述步骤S1包括如下步骤:
S11:枪击监测单元通过第一层电阻网络和第二层电阻网络电阻变化的位置监测子弹击中时的方向;
S12:枪击监测单元将所述子弹击中时的方向发送至信息处理单元。
在一优选实施例中,子弹击中的方向能够从一定程度上反应攻击者的位置信息,所述枪击监测单元,包括第一层电阻网络和第二层电阻网络:所述枪击监测单元通过第一层电阻网络和第二层电阻网络电阻变化的位置监测子弹击中时的方向。对子弹击中时的方向的检测可采用两层电阻网络来实现,首先采集子弹击中第一层电阻网络时电阻网络电阻变化的位置s1,且记录击中时的时间t1,由于其速度快,且有方向偏差,当击中第二层网络时会因为速度和方向的改变而改变与第一层电阻网络击中时的相对位置,此时,采集子弹击中第二层电阻网络时电阻网络电阻变化的位置s2,且记录击中时的时间t2,可以通过击中两层电阻网络时电阻变化的位置(s1和s2)来判断子弹击中时的来源方向。所述位置s1和位置s2在优选情况下,分别选择两层电阻网络的被损毁的中间位置。
S2:信息处理单元根据子弹击中时的方向,计算子弹击中时的速度,判断子弹类型,确定攻击者的位置;
参照图5,图5为本发明监测攻击者位置的方法第一优选实施例中步骤S2的细化流程示意图;所述步骤S2包括如下步骤:
S21:信息处理单元根据所述枪击监测单元的第一层电阻网络和第二层电阻网络之间的距离以及子弹击中所述枪击监测单元的第一层电阻网络和第二层电阻网络时的时间差计算子弹击中时的速度;
S22:信息处理单元根据所述枪击监测单元的第一层电阻网络或第二层电阻网络电阻值的变化计算其被子弹损毁的面积,并将所述损毁面积与预先设定的不同子弹类型的损毁面积进行比对,判断子弹类型;
S23:信息处理单元根据对应子弹类型的出膛初速度、子弹击中时的速度以及被攻击者所在地的气候信息,计算攻击者的位置。
在一优选实施例中,所述信息处理单元根据所述枪击监测单元的第一层电阻网络和第二层电阻网络之间的距离以及子弹击中所述枪击监测单元的第一层电阻网络和第二层电阻网络时的时间差计算子弹击中时的速度。在设计所述枪击监测单元的第一层电阻网络和第二层电阻网络时,能够提前预设两层电阻网络之间的距离s,同时,能够根据子弹击中所述第一层电阻网络和第二层电阻网络时的时间获知其击中两层电阻网络的时间差,通过两层电阻网络之间的距离s以及击中两层电阻网络的时间差(t2-t1)来计算子弹击中时的速度v1=s/(t2-t1)。
在一优选实施例中,所述信息处理单元根据所述枪击监测单元的第一层电阻网络或第二层电阻网络电阻值的变化计算其被子弹损毁的面积,并将所述损毁面积与预先设定的不同子弹类型的损毁面积进行比对,判断子弹类型。在一实施例中,所述电阻网络为由多个等值电阻交叉构成的电阻网络,每个交叉点都有对应的阻值,当所述防弹衣本体的某个部位(即某个身体部位)被子弹击穿时电阻网络的损毁面积。本发明中电阻网络对电阻大小的变化以及电阻变化的位置的检测,本领域技术人员通过对电路知识的了解可以实现,在此不赘述。由于不同型号的枪支由于其子弹口径不同,出膛初速度不同,攻击时的当地气候不同,在不同位置击中被攻击者时子弹产生的速度以及对防弹衣本体的损毁面积不同,可预先根据不同型号的枪支,模拟不同位置对同一个被攻击者不同部位进行攻击,得到被攻击者被子弹击中时,穿着的智能防弹设备损毁面积的大小,并将其存储在数据库。因此可以根据当前智能防弹设备被子弹损毁的面积与预先存储在数据库中的损毁面积进行比对,获知子弹类型。
在一优选实施例中,所述信息处理单元根据对应子弹类型的出膛初速度v0、子弹击中时的速度v1、被攻击者所在地的气候信息、子弹击中时的来源方向,计算攻击者的位置。气候信息包括风速、风向、空气密度等,通过模拟不同风速、风向、空气密度下对子弹方向的影响因子,来计算子弹受空气的阻力f,结合子弹受地球引力g,通过力学合成计算公式,能够计算出子弹在飞行过程中的受力大小f0,根据f0可以计算子弹在飞行过程中的加速度a。再根据子弹的出膛初速度v0、子弹击中时的速度v1以及子弹在飞行过程中的加速度a,a=(v1-v0)/t,t为计算子弹的飞行的时间,根据子弹的出膛初速度v0、子弹击中时的速度v1以及子弹的飞行的时间t,计算距离L=v0+a×t,再结合子弹击中时的来源方向确定攻击者当前位置。由于是通过模拟的方式提前设置气候信息对子弹方向的影响因子,因此计算出的攻击者位置信息会有偏差,通过模拟试验得知,偏差范围在十米~百米级。
在一实施例中,对于攻击者当前位置的计算还可以通过云服务平台来实现,将枪击监测单元检测到的子弹击中时的方向、子弹击中时的速度、防弹衣本体被子弹损毁的面积等信息发送给云服务平台,云服务平台根据采集到的信息以及当前被攻击者的气候信息综合计算攻击者的位置。
S3:信息处理单元将攻击者的位置通过所述通讯单元发送至云服务平台。
参照图6,图6为本发明监测攻击者位置的方法第二优选实施例流程示意图;
基于图3所示的第一优选实施例,进一步地,所述方法在步骤S3之后还包括如下步骤:
S4:定位单元获取被攻击者当前的地理位置信息,并将所述地理位置信息通过所述通讯单元发送至云服务平台。
在一实施例中,所述定位单元可以是北斗模块、GPS模块、GLONASS模块、伽利略模块等,能够接收和发送卫星定位信号,获取被攻击者当前的地理位置信息,并将所述地理位置信息通过所述通讯单元发送至云服务平台,供所述云服务平台将其发送给被攻击者附近的救援平台,告知救援平台其具体的地理位置,以获得及时的救援。
参照图7,图7为本发明监测攻击者位置的方法第三优选实施例流程示意图;
基于图3所示的第一优选实施例,进一步地,所述方法在步骤S3之后还包括如下步骤:
S5:云服务平台根据攻击者的位置,向其他智能防弹设备发送攻击者位置信息。其他智能防弹设备穿着者根据当前攻击者的位置,一方面根据当前攻击者的位置调整自己的位置和方向,另一方面向攻击者针对性的发起攻击。例如,云服务平台以相对方位的形式报告攻击者的可能位置(如07被击中,敌人可能位于4点钟方向319米等)。
本发明采用上述技术方案,带来的技术效果为:通过枪击监测单元检测子弹击中的方向,并将所述子弹击中时的方向发送至所述信息处理单元;信息处理单元根据子弹击中时的方向,计算子弹击中时的速度,判断子弹类型,确定攻击者的位置;信息处理单元将攻击者的位置通过所述通讯单元发送至云服务平台。通过防弹衣在被攻击者受攻击之后判断子弹的来源方位,对攻击者的位置进行监测,云服务平台根据攻击者的位置信息为友军提供信息,从而适应未来战场的需求。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (15)

  1. 一种用于监测攻击者位置的智能防弹设备,所述智能防弹设备包括防弹衣本体,其特征在于,所述智能防弹设备还包括枪击监测单元、信息处理单元以及通讯单元:
    所述枪击监测单元、所述信息处理单元以及所述通讯单元设置于所述防弹衣本体上;
    所述枪击监测单元,与所述信息处理单元电连接,用于检测子弹击中的方向,并将所述子弹击中时的方向发送至所述信息处理单元;
    所述信息处理单元,与所述通讯单元电连接,用于根据子弹击中时的方向,计算子弹击中时的速度,判断子弹类型,确定攻击者的位置,并将攻击者的位置以及子弹击穿情况通过所述通讯单元发送至云服务平台。
  2. 如权利要求1所述的智能防弹设备,其特征在于,所述智能防弹设备还包括定位单元:
    所述定位单元,与所述信息处理单元电连接,用于获取被攻击者当前的地理位置信息,并将所述地理位置信息通过所述通讯单元发送至云服务平台。
  3. 如权利要求1所述的智能防弹设备,其特征在于,所述枪击监测单元,包括第一层电阻网络和第二层电阻网络:
    所述枪击监测单元通过第一层电阻网络和第二层电阻网络电阻变化的位置监测子弹击中时的方向。
  4. 如权利要求3所述的智能防弹设备,其特征在于,所述智能防弹设备还包括定位单元:
    所述定位单元,与所述信息处理单元电连接,用于获取被攻击者当前的地理位置信息,并将所述地理位置信息通过所述通讯单元发送至云服务平台。
  5. 如权利要求3所述的智能防弹设备,其特征在于,所述信息处理单元,还用于:
    根据所述枪击监测单元的第一层电阻网络和第二层电阻网络之间的距离以及子弹击中所述枪击监测单元的第一层电阻网络和第二层电阻网络时的时间差计算子弹击中时的速度;
    根据所述枪击监测单元的第一层电阻网络或第二层电阻网络电阻值的变化计算其被子弹损毁的面积,并将所述损毁面积与预先设定的不同子弹类型的损毁面积进行比对,判断子弹类型;
    根据对应子弹类型的出膛初速度、子弹击中时的速度以及被攻击者所在地的气候信息,计算攻击者的位置。
  6. 如权利要求5所述的智能防弹设备,其特征在于,所述智能防弹设备还包括定位单元:
    所述定位单元,与所述信息处理单元电连接,用于获取被攻击者当前的地理位置信息,并将所述地理位置信息通过所述通讯单元发送至云服务平台。
  7. 如权利要求5所述的智能防弹设备,其特征在于,所述防弹衣本体包括防弹层和吸汗层,
    所述枪击监测单元、所述信息处理单元和所述通讯单元均设置于所述防弹层和吸汗层之间;
    所述枪击监测单元的第一层电阻网络和第二层电阻网络按照先后顺序设置于所述防弹层的外侧。
  8. 如权利要求7所述的智能防弹设备,其特征在于,所述智能防弹设备还包括定位单元:
    所述定位单元,与所述信息处理单元电连接,用于获取被攻击者当前的地理位置信息,并将所述地理位置信息通过所述通讯单元发送至云服务平台。
  9. 一种利用权利要求5所述的智能防弹设备监测攻击者位置的方法,其特征在于,所述方法包括如下步骤:
    S1:枪击监测单元检测子弹击中的方向,并将所述子弹击中时的方向发送至信息处理单元;
    S2:信息处理单元根据子弹击中时的方向,计算子弹击中时的速度,判断子弹类型,确定攻击者的位置;
    S3:信息处理单元将攻击者的位置通过所述通讯单元发送至云服务平台。
  10. 如权利要求9所述的确定被攻击者受伤情况的方法,其特征在于,所述步骤S1包括如下步骤:
    S11:枪击监测单元通过第一层电阻网络和第二层电阻网络电阻变化的位置监测子弹击中时的方向;
    S12:枪击监测单元将所述子弹击中时的方向发送至信息处理单元。
  11. 如权利要求10所述的确定被攻击者受伤情况的方法,其特征在于,所述方法还包括如下步骤:
    S5:云服务平台根据攻击者的位置,向其他智能防弹设备发送攻击者位置信息。
  12. 如权利要求10所述的确定被攻击者受伤情况的方法,其特征在于,所述步骤S2包括如下步骤:
    S21:信息处理单元根据所述枪击监测单元的第一层电阻网络和第二层电阻网络之间的距离以及子弹击中所述枪击监测单元的第一层电阻网络和第二层电阻网络时的时间差计算子弹击中时的速度;
    S22:信息处理单元根据所述枪击监测单元的第一层电阻网络或第二层电阻网络电阻值的变化计算其被子弹损毁的面积,并将所述损毁面积与预先设定的不同子弹类型的损毁面积进行比对,判断子弹类型;
    S23:信息处理单元根据对应子弹类型的出膛初速度、子弹击中时的速度以及被攻击者所在地的气候信息,计算攻击者的位置。
  13. 如权利要求12所述的确定被攻击者受伤情况的方法,其特征在于,所述方法还包括如下步骤:
    S5:云服务平台根据攻击者的位置,向其他智能防弹设备发送攻击者位置信息。
  14. 如权利要求9所述的确定被攻击者受伤情况的方法,其特征在于,所述方法还包括如下步骤:
    S4:定位单元获取被攻击者当前的地理位置信息,并将所述地理位置信息通过所述通讯单元发送至云服务平台。
  15. 如权利要求14所述的确定被攻击者受伤情况的方法,其特征在于,所述方法还包括如下步骤:
    S5:云服务平台根据攻击者的位置,向其他智能防弹设备发送攻击者位置信息。
PCT/CN2014/095506 2014-12-19 2014-12-30 用于监测攻击者所在位置的智能防弹设备及其监测方法 WO2016095269A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410805815.7A CN104613820B (zh) 2014-12-19 2014-12-19 用于监测攻击者所在位置的智能防弹设备及其监测方法
CN201410805815.7 2014-12-19

Publications (1)

Publication Number Publication Date
WO2016095269A1 true WO2016095269A1 (zh) 2016-06-23

Family

ID=53148382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095506 WO2016095269A1 (zh) 2014-12-19 2014-12-30 用于监测攻击者所在位置的智能防弹设备及其监测方法

Country Status (2)

Country Link
CN (1) CN104613820B (zh)
WO (1) WO2016095269A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115903621A (zh) * 2022-12-21 2023-04-04 青岛杰瑞自动化有限公司 石油勘探机器人智能安保控制方法及其系统、电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201053849Y (zh) * 2006-08-18 2008-04-30 权力 数字化单兵作战系统
US20120233751A1 (en) * 2009-11-19 2012-09-20 Gerd Hexels Piece of clothing for a human being
US20130255356A1 (en) * 2010-12-21 2013-10-03 Compagnie Europeenne De Developpement Industriel- Cedi Method for testing a device for protecting against piercing elements
FR2989160A1 (fr) * 2012-04-04 2013-10-11 Paul Boye Technologies Vetement de protection a plastron ventral integrant un equipement electronique
CN203772143U (zh) * 2013-11-01 2014-08-13 无锡慧思顿科技有限公司 具有红外隐身功能且防水透气的人体空调智能穿戴物
CN204359208U (zh) * 2014-12-19 2015-05-27 深圳市易特科信息技术有限公司 用于监测攻击者所在位置的可穿戴设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2415602A (en) * 2004-07-02 2006-01-04 Thales Uk Plc Armour
JP4961619B2 (ja) * 2006-06-13 2012-06-27 三菱電機株式会社 管制装置
EP2129991B1 (en) * 2007-03-22 2013-05-08 Protective Products Enterprises, Inc. Impact sensors and systems including impact sensors
CN202109827U (zh) * 2011-06-29 2012-01-11 东莞市世纪特卫安防有限公司 一种新型防弹衣
CN202903019U (zh) * 2012-11-01 2013-04-24 宁波大成新材料股份有限公司 模块化助浮、防弹、防刺服
CN103776308B (zh) * 2014-01-15 2017-02-15 深圳市森讯达电子技术有限公司 一种防袭刺猬衣

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201053849Y (zh) * 2006-08-18 2008-04-30 权力 数字化单兵作战系统
US20120233751A1 (en) * 2009-11-19 2012-09-20 Gerd Hexels Piece of clothing for a human being
US20130255356A1 (en) * 2010-12-21 2013-10-03 Compagnie Europeenne De Developpement Industriel- Cedi Method for testing a device for protecting against piercing elements
FR2989160A1 (fr) * 2012-04-04 2013-10-11 Paul Boye Technologies Vetement de protection a plastron ventral integrant un equipement electronique
CN203772143U (zh) * 2013-11-01 2014-08-13 无锡慧思顿科技有限公司 具有红外隐身功能且防水透气的人体空调智能穿戴物
CN204359208U (zh) * 2014-12-19 2015-05-27 深圳市易特科信息技术有限公司 用于监测攻击者所在位置的可穿戴设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115903621A (zh) * 2022-12-21 2023-04-04 青岛杰瑞自动化有限公司 石油勘探机器人智能安保控制方法及其系统、电子设备
CN115903621B (zh) * 2022-12-21 2023-12-12 青岛杰瑞自动化有限公司 石油勘探机器人智能安保控制方法及其系统、电子设备

Also Published As

Publication number Publication date
CN104613820B (zh) 2016-03-30
CN104613820A (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
AU2018203637B2 (en) An active protection system
Tham et al. Ballistic impact of a KEVLAR® helmet: Experiment and simulations
WO2012041097A1 (zh) 一种低空慢速小目标的拦截方法
US20090132098A1 (en) Method and System for Deployed Shielding Against Ballistic Threats
RU2502082C2 (ru) Способ защиты объекта от поражения его ракетой или снарядом
WO2016095269A1 (zh) 用于监测攻击者所在位置的智能防弹设备及其监测方法
US8740071B1 (en) Method and apparatus for shockwave attenuation via cavitation
CN103822541B (zh) 防弹装甲模块的层结构
WO2016090684A1 (zh) 用于监测被攻击者受伤情况的智能防弹设备及其监测方法
US8534417B2 (en) Apparatus and method for providing protective gear employing shock penetration resistant material
EP3137842B1 (en) System and method for neutralizing shaped-charge threats
Zhang et al. Simulation and experimental study of fragment penetration into armored steel plate
RU2601241C2 (ru) Способ активной защиты летательного аппарата и система для его осуществления (варианты)
US11815337B2 (en) Ballistic protective helmet
RU2629464C1 (ru) Способ защиты летательных аппаратов от ракет, оснащенных головками самонаведения с матричным фотоприемным устройством
RU2722698C1 (ru) Способ снижения заброневой травмы пассивной индивидуальной защитой человека от высокоэнергетических поражающих элементов стрелкового оружия и осколков боеприпасов
Chaichuenchob et al. The damaged analysis from ballistic threats on transparent armor
He et al. Numerical simulation on ballistic performance of ceramic composite spaced targets
RU2799726C1 (ru) Способ повышения бронестойкости элементов бронезащиты
US20090313736A1 (en) Varying thickness Helmet for reduced weight and increased protection
Chatys et al. Modeling of mechanical properties of composite structures taking into account military needs
US20140060301A1 (en) Advancement to the Effectiveness of Body Armor
RU2582463C1 (ru) Бронезащита
Johnsson et al. Shaped charge calculation models for explosive ordnance disposal operations
Binar et al. The Use of Resistant Glass in Special Agricultural Machinery and the Logistic Support Depending on Operating Temperatures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908304

Country of ref document: EP

Kind code of ref document: A1