WO2016095236A1 - 管道结构应力和疲劳的监控方法 - Google Patents

管道结构应力和疲劳的监控方法 Download PDF

Info

Publication number
WO2016095236A1
WO2016095236A1 PCT/CN2014/094455 CN2014094455W WO2016095236A1 WO 2016095236 A1 WO2016095236 A1 WO 2016095236A1 CN 2014094455 W CN2014094455 W CN 2014094455W WO 2016095236 A1 WO2016095236 A1 WO 2016095236A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
vibration
pipeline structure
data
frequency
Prior art date
Application number
PCT/CN2014/094455
Other languages
English (en)
French (fr)
Inventor
葛龙
Original Assignee
苏州宝润电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝润电子科技有限公司 filed Critical 苏州宝润电子科技有限公司
Publication of WO2016095236A1 publication Critical patent/WO2016095236A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Definitions

  • the invention is applied to the safety monitoring of pipeline structures, and effectively prevents structural accidents and dangerous materials leakage.
  • the stress and fatigue of key weak links can be accurately obtained, and the structural fatigue and safety objectives of long-term operation under high-risk environment can be monitored.
  • Pipeline structure is an important media for energy production and transportation. Due to the special requirements of high temperature and high pressure, the safety of pipeline structure is particularly important. Due to the failure of the pipeline structure, especially the structural failure caused by vibration fatigue, safety accidents have occurred at home and abroad. A large part of the accidents have been investigated through in-depth investigations. If appropriate measures are taken, especially if they are properly monitored, many accidents can be reasonably avoided. Therefore, monitoring the operational status of the pipeline is particularly important in improving the safety of the pipeline structure. technical problem
  • the solution provided by the present invention is to use a special vibration sensing recorder for actual vibration.
  • the system module measures the acceleration or rotational acceleration of the vibration at the installed position, instead of installing the strain gauge to measure the strain using conventional methods.
  • the peer records the collected vibration data through the data acquisition module in the system, and then transmits the data to the data processing module through the system data transmission module.
  • the modal selection and superposition method are applied to calculate the corresponding stress and fatigue results at important positions, so as to achieve the structural fatigue and safety objectives for monitoring long-term operations.
  • FIG. 1 is an exemplary diagram of a pipe and a vibration monitoring system installed on a marine platform.
  • FIG. 2 is a structural flow and operation diagram of a vibration sensing recorder.
  • FIG. 3 is a schematic flow chart of a process of data acquisition, storage, and processing of a vibration monitoring system.
  • FIG. 4 is a schematic view of a modal shape.
  • the solution provided by the present invention is to perform a real vibration measurement by installing a special vibration sensing recorder.
  • the main principle is to use the acceleration and angular velocity sensors to record the seismic reading data of the installed position, and then calculate the stress and fatigue distribution of the entire pipeline structure through the modal confirmation and superposition method, so as to monitor the fatigue and safety of the entire pipeline structure.
  • FIG. 1 shows an example of a deepwater drainage system 10, which is connected to a subsea explosion-proof device 13 through a pipeline structure 12 and a subsea.
  • a cable handling system 15, a data acquisition and processing system, is installed on the offshore platform.
  • the special shock sensing recorder 16 is mounted at various locations in the pipe structure and is connected by cable 17 to a data acquisition and processing system 14 on the offshore platform.
  • FIG. 2 is a schematic diagram of the internal structure and workflow of the shock sensor 16.
  • the vibration acceleration sensor 23 and the acceleration sensor 24 record and collect the corresponding data, and then transmit it to the analog circuit module 25.
  • the data is then transmitted to the digital circuit module 26 via the analog circuit module for digitization and buffering of the data for subsequent transmission to the external network server 28.
  • the processed data of the digital circuit module is processed by the signal conversion module 27 and transmitted to the external network 28 in a specified transmission mode.
  • the power supply board 22 provides sufficient power to the analog circuit module, digital circuit module, and signal conversion module through the external power supply 2 1 to ensure that each function operates normally.
  • FIG. 3 is a flow chart showing the process of data acquisition, storage and processing of the vibration monitoring system of the present invention.
  • the modal analysis is performed on the installed piping system to obtain different response modes 35 corresponding to different frequencies.
  • pipeline related properties and operational data (such as diameter, wall thickness, water depth, pipe application tension, etc.) are required to accurately obtain the corresponding modal frequency and shape.
  • the corresponding shape of the first-order mode for the hinge boundary condition is a half sine wave
  • the second-order mode corresponding shape is the entire sine wave, and so on.
  • the shock recording sensor recorder 16 measures the vibration acceleration and the angular velocity 31 of the mounted position at a specific sampling frequency (for example, 0.01 second), and records it in the memory chip 32 of the shock sensor.
  • the data acquisition and processing system 14 reads the data stored in the memory chip through the indirect cable 17. As mentioned earlier, the data stored and read is the data in the domain space. By using the Fourier transform, the read data is converted from the ⁇ domain to the frequency domain, and the frequency at which the mounted position is excited and the amplitude of the shock are obtained 34 .
  • the measured excitation frequency and the analytical result obtained by the pre-analysis are compared and screened, and then the number and range of the corresponding modes can be determined. For example, the modes 2, 5, and 7 confirm the participation in the vibration by comparison and comparison.
  • the contribution of each modality to the entire vibration is calculated according to the amplitude of the corresponding modality.
  • the modality 2 weight is 30%
  • the modality 5 weight is 50%.
  • State 7 has a weight of 20%.
  • the superposition mode is obtained according to the weight overlap and participation in the corresponding mode, thereby obtaining the modal total correspondence 38. This allows you to calculate the corresponding curvature and stress 39 at any location in the pipe structure.
  • the stress distribution in the frequency domain is converted into the stress distribution in the ⁇ domain.
  • the fatigue damage at any critical location on the pipeline can be calculated by conventional methods such as rain flow counting to achieve the purpose of monitoring the fatigue and safety of the entire pipeline structure.
  • FIG. 4 shows a schematic diagram of modal selection and superposition.
  • the left figure shows the corresponding modalities 2, 5, 7. It is confirmed by comparison and comparison that the vibration is corresponding.
  • the modal 2 weight is 30%
  • the modal 5 weight is 50%
  • the modal 7 weight is 20%.
  • the figure on the right shows the total superposition modality based on the weight overlap and participation in the corresponding modality. Once the superimposed total modality is obtained, the corresponding curvature and stress at any location of the pipe structure, as well as the fatigue damage condition, can be calculated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种管道结构应力和疲劳的监控方法,包括振动传感记录器实时数据采集,监控在管道结构不同位置采集得到的加速度信息;对采集到的加速度数据通过傅里叶变换,把数据从时域转换到频域下,得到所安装位置受到激发的频率以及振动的振幅;测量得到的激发频率和预先分析得到的解析结果比较和筛选,由模态选择和叠加方法精确得到所在测量位置的曲率和应力;通过反傅里叶变换,把在频域下的应力分布转换为在时域下的应力分布,计算得到任何关键位置的疲劳损伤。

Description

管道结构应力和疲劳的监控方法 技术领域
[0001] 本发明应用于管道结构安全监控, 有效预防结构事故和危险物泄露。 通过采集 实吋震动数据, 精确得到重点薄弱环节的应力和疲劳, 达到监控高危环境下长 期作业的结构疲劳和安全目的。
背景技术
[0002] 管道结构是能源生产和运输的重要传媒, 由于高温高压的特殊要求, 管道结构 安全凸显的尤为重要。 由于管道结构失效, 尤其是震动疲劳引起的结构失效, 引起的安全事故在国内外都吋有发生。 其中很大一部分事故经过深入调査发现 , 如果及吋采取相应的措施, 尤其是及吋合理的监控, 很多事故是可以合理避 免的。 因此, 监控管道的作业状态在提高管道结构安全方面显得尤为重要。 技术问题
[0003] 传统的应力和疲劳监控是采用应变片监控, 就是在要检测的位置安装应变片和 数据采集和传输系统。 这种方法经常要求移除管道外壁的涂层, 同吋需要人工 的精确安装。 这在容易腐蚀、 高温高压、 以及难以进行人工安装的高危环境下 是很难实现满意的解决方案。
问题的解决方案
技术解决方案
[0004] [0004]为了解决在高温高压易腐蚀、 和无法进行人工安装的高危环境下的管道 结构安全检测, 本发明提供的解决方案是采用安装特殊的震动传感记录器进行 实吋的震动测量, 该系统模块测量所安装位置的震动的加速度或者转动加速度 , 而不是采用传统方法安装应变片测量应变。 同吋通过系统中数据采集模块把 采集的震动数据记录下来, 然后通过系统数据传输模块把数据传输到可以数据 处理模块。 在数据处理模块中, 应用模态选择和叠加的求解方法, 计算出重要 位置的对应应力和疲劳结果, 从而达到监控长期作业的结构疲劳和安全目的。 发明的有益效果 有益效果
[0005] [0005]实吋监测管道结构的震动状态, 处理震动监控数据得到对应应力和疲劳 结果, 从而达到监控长期作业的结构疲劳和安全目的。
对附图的简要说明
附图说明
[0006] 图 1是安装在海洋平台上的管道以及震动监控系统的示例图。
[0007] 图 2是震动传感记录器的结构流程和工作示意图。
[0008] 图 3是震动监控系统的数据采集、 存储和处理过程流程示意图。
[0009] 图 4是模态形状示意图。
[0010]
实施该发明的最佳实施例
本发明的最佳实施方式
[0011] 本发明提供的解决方案是采用安装特殊的震动传感记录器进行实吋的震动测量
, 主要原理是利用加速度和角速度传感器记录所安装位置的震读数据, 然后通 过模态确认和叠加的方法计算整个管道结构的应力和疲劳分布, 从而达到监控 整个管线结构疲劳和安全目的。
[0012] 图 1示例图显示的是一个深水幵采系统 10, 由一个海洋平台 11, 通过管道结构 1 2连接到海底的井头防爆装置 13。 海洋平台上安装有电缆处理系统 15, 数据采集 和处理系统 14。 如图例所示, 特制的震动传感记录器 16安装在管道结构的不同 位置, 通过电缆 17连接到海洋平台上的数据采集和处理系统 14。
[0013] 在图 2所示示例是震动传感器 16的内部结构和工作流程示意图。 震动加速度传 感器 23和加速度传感器 24记录采集对应数据后, 传输给模拟电路模块 25。 然后 数据经模拟电路模块传输给数字电路模块 26, 进行数据的数字化和缓冲以便以 后传输到外部网络服务器 28。 数字电路模块处理后的数据经过信号转换模块 27 处理后, 可以以指定的传输模式传输到外部网络 28。 电源主板 22通过外部电源 2 1给模拟电路模块、 数字电路模块和信号转换模块提供充足的电源用以保证各功 能正常运转。
[0014] 图 3展示了本发明的震动监控系统的数据采集、 存储和处理过程流程示意图。 在进行震动传感记录器的数据处理进行之前, 要先在安装好的管道系统进行模 态分析, 得到不同频率对应的不同的响应模态 35。 求解分析过程中, 需要管道 相关属性和运行数据 (比如直径、 壁厚、 水深、 管道应用张力等) 才能够准确 得到相应的模态频率和形状。 比如对于铰接边界条件的一阶模态的对应形状是 半个正弦波, 二阶模态对应形状是整个正弦波, 以此类推。
[0015]
[0016] 震动记录传感记录器 16以特定的取样频率 (比如 0.01秒) 测量所安装位置的震 动加速度和角速度 31, 并记录在震动传感器的记忆芯片 32中。 数据采集和处理 系统 14通过间接的电缆 17读取存储在记忆芯片的数据 33。 如前所述, 所存储和 读取的数据都是在吋域空间下的数据。 通过傅里叶变换, 把读取的数据从吋域 转化到频域下, 就可以得到所安装位置受到激发的频率以及震动的振幅 34。 测 量得到的激发频率和预先分析得到的解析结果 35进行比较和筛选, 进而可以确 定参加相应的模态数目和范围 36, 比如模态 2、 5、 7通过对比比较确认参加了震 动相应。 接下来根据确定参加相应的模态的振幅计算每个模态对于整个震动的 贡献 (即权重值) 37, 比如前例所示, 模态 2权重为 30%, 模态 5权重为 50%, 模 态 7权重为 20%。 在接下来的过程中, 根据权重叠加参加相应的模态得到叠加模 态, 从而得到模态总相应 38。 这样就可以计算在管道结构任何位置的对应曲率 和应力 39。 然后通过反傅里叶变换后, 把在频域下的应力分布转换为在吋域下 的应力分布。 通过常规的雨流计数等方法就可以计算管道上任何关键位置的疲 劳损伤状况, 从而达到监控整个管线结构疲劳和安全目的。
[0017] 图 4展示的是模态选择和叠加的示意图。 根据测量数据对比, 左图显示的是参 加相应的模态 2、 5、 7, 通过对比比较确认参加了震动相应。 根据测量得到的振 幅得到, 模态 2权重为 30%, 模态 5权重为 50%, 模态 7权重为 20%。 右图显示的 是根据权重叠加参加相应的模态得到总叠加模态。 得到叠加的总模态后, 就可 以计算在管道结构任何位置的对应曲率和应力, 以及疲劳损伤状况。
[0018]

Claims

权利要求书
[权利要求 1] 震动传感记录器实吋数据采集, 监控在管道结构不同位置采集得 到的加速度信息。
[权利要求 2] 对采集到的加速度数据通过傅里叶变换, 把数据从吋域转化到频 域下, 可以得到所安装位置受到激发的频率以及震动的振幅。
[权利要求 3] 测量得到的激发频率和预先分析得到的解析结果比较和筛选, 由 模态选择和叠加方法精确得到所在测量位置的曲率和应力。
[权利要求 4] 通过反傅里叶变换后, 把在频域下的应力分布转换为在吋域下的 应力分布, 计算得到任何关键位置疲劳损伤。
PCT/CN2014/094455 2014-12-17 2014-12-22 管道结构应力和疲劳的监控方法 WO2016095236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410787332.9A CN105782726A (zh) 2014-12-17 2014-12-17 管道结构应力疲劳监控新系统
CN201410787332.9 2014-12-17

Publications (1)

Publication Number Publication Date
WO2016095236A1 true WO2016095236A1 (zh) 2016-06-23

Family

ID=56125696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094455 WO2016095236A1 (zh) 2014-12-17 2014-12-22 管道结构应力和疲劳的监控方法

Country Status (2)

Country Link
CN (1) CN105782726A (zh)
WO (1) WO2016095236A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2550192A (en) * 2016-05-12 2017-11-15 Xodus Group Ltd Pipework Fatigue Lifetime Measurement
CN109348174A (zh) * 2018-10-23 2019-02-15 合肥师范学院 基于高速摄像技术的声屏障现场监测系统和监测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802223B (zh) * 2016-12-29 2018-04-03 中国人民解放军63926部队 一种用于测试流体振动对管道疲劳损伤的试验装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214006A (ja) * 2001-01-19 2002-07-31 Yokogawa Electric Corp 渦流量計
CN202033383U (zh) * 2010-12-30 2011-11-09 中国海洋石油总公司 海洋立管加速度监测信号采集装置
CN102720482A (zh) * 2012-07-12 2012-10-10 中国海洋石油总公司 高温高压高流速管道振动监测系统
CN202718667U (zh) * 2012-07-12 2013-02-06 中国海洋石油总公司 高温高压高流速管道振动监测系统
CN103049670A (zh) * 2013-01-14 2013-04-17 哈尔滨工程大学 管道激励源识别及其振动响应预测方法
CN202903472U (zh) * 2012-11-19 2013-04-24 珠海格力电器股份有限公司 管路测试系统
CN202903326U (zh) * 2012-11-14 2013-04-24 中国石油天然气股份有限公司 一种基于振弦式传感器的油气管线振动监测装置
CN103808406A (zh) * 2012-11-14 2014-05-21 中国石油天然气股份有限公司 一种基于振弦式传感器的油气管线振动监测方法和装置
CN103822773A (zh) * 2012-11-19 2014-05-28 珠海格力电器股份有限公司 管路测试方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832752B (zh) * 2010-03-17 2012-01-04 浙江大学 采用无线传感器网络技术的低功耗振弦式应变采集系统
JP2012068175A (ja) * 2010-09-25 2012-04-05 Chugoku Electric Power Co Inc:The 配管の振動検知装置
CN103398860B (zh) * 2013-07-26 2015-12-23 天津亿利科能源科技发展股份有限公司 一种基于位移传感器的海洋平台安全监测方法
CN105606384A (zh) * 2014-11-25 2016-05-25 葛龙 管道结构应力疲劳监控新系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214006A (ja) * 2001-01-19 2002-07-31 Yokogawa Electric Corp 渦流量計
CN202033383U (zh) * 2010-12-30 2011-11-09 中国海洋石油总公司 海洋立管加速度监测信号采集装置
CN102720482A (zh) * 2012-07-12 2012-10-10 中国海洋石油总公司 高温高压高流速管道振动监测系统
CN202718667U (zh) * 2012-07-12 2013-02-06 中国海洋石油总公司 高温高压高流速管道振动监测系统
CN202903326U (zh) * 2012-11-14 2013-04-24 中国石油天然气股份有限公司 一种基于振弦式传感器的油气管线振动监测装置
CN103808406A (zh) * 2012-11-14 2014-05-21 中国石油天然气股份有限公司 一种基于振弦式传感器的油气管线振动监测方法和装置
CN202903472U (zh) * 2012-11-19 2013-04-24 珠海格力电器股份有限公司 管路测试系统
CN103822773A (zh) * 2012-11-19 2014-05-28 珠海格力电器股份有限公司 管路测试方法及系统
CN103049670A (zh) * 2013-01-14 2013-04-17 哈尔滨工程大学 管道激励源识别及其振动响应预测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2550192A (en) * 2016-05-12 2017-11-15 Xodus Group Ltd Pipework Fatigue Lifetime Measurement
CN109348174A (zh) * 2018-10-23 2019-02-15 合肥师范学院 基于高速摄像技术的声屏障现场监测系统和监测方法

Also Published As

Publication number Publication date
CN105782726A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
CN102305352B (zh) 一种油气管道腐蚀状态在线监控系统及其方法
CN102507742B (zh) 一种机械复合管结合强度的评价方法
CN103234508B (zh) 高温管道周向变形测量引伸装置
GB2454220A (en) Detecting strain in structures
CN108426767B (zh) 一种基于分布式光纤传感技术的压力管路裂纹识别方法
RU2635751C2 (ru) Система и способ для инспектирования подводных трубопроводов
WO2016095236A1 (zh) 管道结构应力和疲劳的监控方法
Rebelo et al. Structural monitoring of a wind turbine steel tower—Part I: System description and calibration
GB2457277A (en) Methods and apparatuses for detecting strain in structures
CA2783089A1 (en) Damage detection in pipes and joint systems
US10481037B2 (en) Method for detecting deterioration defect of structural part
KR101711606B1 (ko) 유사도 기반 해양 구조물 손상 추정 방법
WO2019007497A1 (en) METHOD AND APPARATUS FOR NON-INTRUSIVE VIBRATION OF A CENTRALIZED SYSTEM FOR DETECTING AND MONITORING LEAKAGE OF WATER DISTRIBUTION NETWORK PIPELINES
CN105606384A (zh) 管道结构应力疲劳监控新系统
Bayik et al. Experimental modelling of a top-tensioned riser for vibration-based damage detection
CN111521126B (zh) 海管三维形态重构的光纤光栅传感监测方法
Galvagni Pipeline health monitoring
Wu et al. Electromechanical impedance instrumented wearable piezoelectric ring-type sensor for bolted connection monitoring
Zhu et al. Automatic free span assessment for subsea pipelines using static strain data
Yi-bo et al. Leakage detection and location for long range oil pipeline using negative pressure wave technique
JP4834633B2 (ja) 沸騰水型原子炉のドライヤの健全性を確認する方法
Awawdeh et al. Wireless sensing of flow-induced vibrations for pipeline integrity monitoring
JP2013002979A (ja) 強い外力を受けた構造物の変形量や耐用度の診断方法および装置
CN102997041A (zh) 一种高温压力管道结构损伤在线监测装置
Nicholas et al. Feasibility of using low‐sampled accelerometer measurements for bolt joint looseness detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908271

Country of ref document: EP

Kind code of ref document: A1