WO2016095217A1 - 一种数据传输的装置和方法 - Google Patents

一种数据传输的装置和方法 Download PDF

Info

Publication number
WO2016095217A1
WO2016095217A1 PCT/CN2014/094407 CN2014094407W WO2016095217A1 WO 2016095217 A1 WO2016095217 A1 WO 2016095217A1 CN 2014094407 W CN2014094407 W CN 2014094407W WO 2016095217 A1 WO2016095217 A1 WO 2016095217A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
wireless
subframes
size
subframe
Prior art date
Application number
PCT/CN2014/094407
Other languages
English (en)
French (fr)
Inventor
吴强
周永行
刘建琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480037910.5A priority Critical patent/CN106134271B/zh
Priority to PCT/CN2014/094407 priority patent/WO2016095217A1/zh
Publication of WO2016095217A1 publication Critical patent/WO2016095217A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of mobile internet of things, and in particular to an apparatus and method for data transmission.
  • the terminal needs to transmit data to the base station to implement Interact with the base station.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-advanced, LTE Advanced Evolution
  • the terminal can transmit data to the base station by using a method, where the terminal selects a redundancy version from the set of redundancy versions, obtains a starting position corresponding to the redundancy version, and selects data to be transmitted according to the starting position.
  • 288 bits of data each wireless subframe can carry 288 bits of data
  • carry the selected 288 bits of data on the wireless subframe and then carry the wireless subframe on a resource block, and send the resource block to the base station to complete The process of data transfer.
  • the redundancy version includes four redundancy versions, which are redundancy versions 0, 1, 2, and 3.
  • the default positions corresponding to the redundancy versions 0, 1, 2, and 3 are as shown in FIG. 1 .
  • embodiments of the present invention provide an apparatus and method for data transmission.
  • the technical solution is as follows:
  • the present invention provides an apparatus for data transmission, the apparatus comprising:
  • An encoding module configured to encode the first data to be transmitted to obtain the second data
  • a determining module configured to determine a plurality of wireless subframes required for transmitting the second data, and a data size that can be carried by each of the plurality of wireless subframes;
  • a selecting module configured to select third data transmitted on each of the wireless subframes from the second data according to a data size of the second data and a data size that can be carried by each of the wireless subframes
  • the data size of the third data transmitted on each of the wireless subframes is the same as the data size that can be carried by each of the wireless subframes;
  • a transmission module configured to separately transmit the third data on each of the wireless subframes.
  • the selecting module includes:
  • a first acquiring unit configured to acquire, according to a data size of the second data, a starting position of data selection of each of the wireless subframes
  • a first selecting unit configured to select, according to a starting position of the data selection of each of the wireless subframes and a data size that can be carried by each of the wireless subframes, from each of the second data The third data transmitted on the subframe.
  • the first acquiring unit includes:
  • a first calculating subunit configured to calculate, according to a data size of the second data and a data size that can be carried by each of the wireless subframes, a number of redundancy versions required to transmit the second data;
  • Obtaining a subunit configured to acquire, according to the number of the redundancy versions, a redundancy version sequence number of the third data transmitted on each of the wireless subframes;
  • a second calculating subunit configured to calculate data of each wireless subframe according to a data size of the second data, a number of redundancy versions, and a redundancy version number of the third data transmitted on each wireless subframe The starting position of the selection.
  • the second calculating subunit is configured to use, according to the data size of the second data and the second data Calculating the number of columns of the interleaver according to the number of rows of the interleaver; the number of columns of the interleaver, the data size of the second data, the number of the redundancy versions, and the transmission on each of the wireless subframes
  • the redundancy version number of the third data is calculated by the following formula (1) to calculate the starting position of the data selection of each wireless subframe:
  • N cb is the data size of the second data
  • RV num is the number of the redundancy versions
  • rv index is the redundancy of the third data transmitted on each of the wireless subframes Version number.
  • the first calculating subunit is configured to calculate a data size of the second data and each of the wireless sub The ratio of the size of the data that the frame can carry; rounding up or down the ratio as the number of redundancy versions required to transmit the second data.
  • the acquiring subunit is configured to acquire a system frame number of each of the wireless subframes; A system frame number of the subframe and the number of the redundancy versions, and a redundancy version number of each of the wireless subframes is calculated.
  • the acquiring subunit is configured to use, according to the system frame number of each wireless subframe, the number of the redundancy version Calculating the redundancy version number of each wireless subframe by the following formula (2):
  • Rv index N TTI mod RV num ;(2)
  • the rv index is a redundancy version number of each of the wireless subframes
  • the RV num is the number of the redundancy versions
  • the N TTI is a system frame number of each of the wireless subframes.
  • the selecting module includes:
  • a second acquiring unit configured to acquire, according to a data size of the second data, a starting position of data selection of each of the wireless subframes
  • a second selecting unit configured to select a starting position from a starting position of data selection of each of the wireless subframes
  • a third selecting unit configured to continuously select, according to the selected starting location and a data size that can be carried by each of the wireless subframes, from each of the second data to be transmitted on each of the wireless subframes Third data.
  • the present invention provides a method of data transmission, the method comprising:
  • the third data is transmitted on each of the wireless subframes.
  • the data may be from the second data according to a data size of the second data and a data size that can be carried by each of the wireless subframes Selecting the third data transmitted on each of the wireless subframes, including:
  • the acquiring, according to the data size of the second data, the start of data selection of each of the wireless subframes Location including:
  • the data size according to the second data, the number of redundancy versions, and the third transmission on each wireless subframe The redundancy version sequence number of the data, and calculating a starting position of the data selection of each of the wireless subframes, including:
  • N cb is the data size of the second data
  • RV num is the number of the redundancy versions
  • rv index is the redundancy of the third data transmitted on each of the wireless subframes Version number.
  • the calculating according to a data size of the second data, and a data size that can be carried by each wireless subframe
  • the number of redundancy versions required to transmit the second data including:
  • the upper or lower of the ratio is rounded up as the number of redundancy versions required to transmit the second data.
  • the obtaining, by the number of the redundancy versions, the redundancy version sequence number of each of the wireless subframes includes:
  • the calculating according to the system frame number of each of the wireless subframes and the number of the redundancy versions, The redundancy version number of the wireless subframe, including:
  • Rv index N TTI mod RV num ;(2)
  • the rv index is a redundancy version number of each of the wireless subframes
  • the RV num is the number of the redundancy versions
  • the N TTI is a system frame number of each of the wireless subframes.
  • the data size according to the second data and a data size that can be carried by each of the wireless subframes are from the second data. Selecting the third data transmitted on each of the wireless subframes, including:
  • the present invention provides an apparatus for data transmission, the apparatus comprising: a processor and a transmitter;
  • the processor is configured to encode first data to be transmitted to obtain second data
  • the processor is further configured to determine a plurality of wireless subframes required for transmitting the second data, and a data size that can be carried by each of the plurality of wireless subframes;
  • the processor is further configured to select, according to a data size of the second data and a data size that can be carried by each of the wireless subframes, the second data to be transmitted on each of the wireless subframes.
  • the third data, the data size of the third data transmitted on each of the wireless subframes is the same as the data size that can be carried by each of the wireless subframes;
  • the transmitter is further configured to transmit the third data on each of the wireless subframes.
  • the processor is further configured to acquire, according to a data size of the second data, a data selection of each of the wireless subframes Starting position
  • the processor is further configured to select, according to a starting position of the data selection of each of the wireless subframes and a data size that can be carried by each of the wireless subframes, each of the second data The third data transmitted on the wireless subframe.
  • the processor is further configured to: according to a data size of the second data, and each of the wireless subframes The size of the data carried, and calculating the number of redundancy versions required to transmit the second data;
  • the processor is further configured to acquire, according to the number of the redundancy versions, a redundancy version sequence number of the third data transmitted on each of the wireless subframes;
  • the processor is further configured to calculate data of each wireless subframe according to a data size of the second data, a number of redundancy versions, and a redundancy version number of the third data transmitted on each wireless subframe. The starting position of the selection.
  • the processor is further configured to use an interleaver according to a data size of the second data and the second data The number of rows, the number of columns of the interleaver is calculated;
  • the processor is further configured to: according to the number of columns of the interleaver, the data size of the second data, the number of the redundancy versions, and a redundancy version of the third data transmitted on each of the wireless subframes
  • the sequence number is calculated by the following formula (1) to calculate the starting position of the data selection of each wireless subframe:
  • N cb is the data size of the second data
  • RV num is the number of the redundancy versions
  • rv index is the redundancy of the third data transmitted on each of the wireless subframes Version number.
  • the processor is further configured to calculate a data size of the second data and the wireless sub-frame The ratio of the size of the data carried;
  • the processor is further configured to round up or down the ratio as a number of redundancy versions required to transmit the second data.
  • the processor is further configured to acquire a system frame number of each of the wireless subframes
  • the processor is further configured to calculate, according to the system frame number of each wireless subframe and the number of the redundancy versions, a redundancy version sequence number of each wireless subframe.
  • the processor is further configured to: according to the system frame number of each of the wireless subframes and the number of the redundancy versions Calculating the redundancy version number of each wireless subframe by the following formula (2):
  • Rv index N TTI mod RV num ;(2)
  • the rv index is a redundancy version number of each of the wireless subframes
  • the RV num is the number of the redundancy versions
  • the N TTI is a system frame number of each of the wireless subframes.
  • the processor is further configured to acquire, according to a data size of the second data, a start of data selection of each of the wireless subframes position;
  • the processor is further configured to select a starting location from a starting position of data selection of each of the wireless subframes;
  • the processor is further configured to continuously transmit and select the transmission on each of the wireless subframes from the second data according to the selected starting location and a data size that can be carried by each of the wireless subframes The third data.
  • the technical solution provided by the embodiment of the present invention has the beneficial effects of: encoding the first data to be transmitted to obtain the second data; determining a plurality of wireless subframes required for transmitting the second data, and multiple wireless sub- a data size that can be carried by each wireless subframe in the frame; selecting a third transmission on each wireless subframe from the second data according to the data size of the second data and the data size that each wireless subframe can carry Data, the data size of the third data transmitted on each wireless subframe is the same as the data size that the corresponding wireless subframe can carry; the third data is transmitted on each wireless subframe respectively. Since the present invention selects the third data transmitted on each wireless subframe from the second data according to the data size of the second data and the data size that each wireless subframe can carry, thereby being able to transmit all the information bits, Reduced coding rate and improved coding gain.
  • FIG. 1 is a schematic diagram of a starting position of data selection provided by the background art of the present invention.
  • FIG. 2 is a schematic structural diagram of an apparatus for data transmission according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart of a method for data transmission according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of an apparatus for data transmission according to Embodiment 4 of the present invention.
  • an embodiment of the present invention provides a device for data transmission, which may be a terminal or a base station, and includes: an encoding module 101, a determining module 102, a selecting module 103, and a transmitting module 104.
  • the encoding module 101 is configured to encode the first data to be transmitted to obtain the second data;
  • the encoding module 101 acquires the data to be transmitted, and uses the data to be transmitted as the first data. To improve the anti-interference capability of the first data, the first data is used. Encoding is performed to obtain the second data.
  • the encoding module 101 may encode the first data to be transmitted by using any encoding method, such as Turbo 2/3 or Turbo 1/3 encoding for the first data to be transmitted, to obtain the second data.
  • any encoding method such as Turbo 2/3 or Turbo 1/3 encoding for the first data to be transmitted, to obtain the second data.
  • the first data is Turbo 1/3 encoded to obtain the second data
  • the data size of the second data is 3000.
  • a determining module 102 configured to determine a plurality of wireless subframes required for transmitting the second data, and a data size that can be carried by each of the plurality of wireless subframes;
  • the determining module determines a plurality of wireless subframes required for transmitting the second data, and then transmits the second data on the determined wireless subframe.
  • the process of determining, by the determining module, the data size that each of the plurality of wireless subframes can carry is as follows:
  • G the number of bits available for transmission of one transport block.
  • G is a resource indicating that a transport block can occupy on the wireless subframe at the bit level, in the present invention.
  • G 288.
  • N L be equal to 2 when using transmit diversity.
  • N L is equal to the number of layers that a transport block maps to, that is, N L is equal to 1.
  • y G ⁇ modC
  • E r N L * Q m * y
  • E r represents the data size of the radio sub-frame can be carried, i.e., each radio sub-frame for the selected data size E r.
  • the data size is 288 bits, that is, the data size of each selected data is 288 bits.
  • each wireless subframe calculates the bearer that can be carried on the wireless subframe according to the above method.
  • the size of the data, and the amount of data that can be carried on each wireless subframe may be the same or different.
  • the selecting module 103 is configured to select, according to the data size of the second data and the data size that can be carried by each wireless subframe, the third data transmitted on each wireless subframe from each of the second data, on each wireless subframe.
  • the data size of the transmitted third data is the same as the data size that each wireless subframe can carry;
  • the selection module 103 includes: a first obtaining unit and a first selecting unit.
  • a first acquiring unit configured to acquire, according to a data size of the second data, a starting position of data selection of each wireless subframe
  • the second data When the second data is transmitted, the second data is carried on the wireless subframe. Therefore, the starting position of the data selection of each wireless subframe needs to be acquired by the first acquiring unit, and the data is selected according to the data of each wireless subframe. And starting from the second data, selecting the third data carried on the wireless subframe.
  • the first obtaining unit includes: a first calculating subunit, an acquiring subunit, and a second calculating subunit.
  • a first calculating subunit configured to calculate, according to a data size of the second data and a data size that can be carried by each wireless subframe, a number of redundancy versions required for transmitting the second data
  • a first calculating subunit configured to calculate a ratio of a data size of the second data to a data size that can be carried by each wireless subframe; and rounding up or down the ratio as a redundancy required for transmitting the second data The number of versions.
  • the first calculation subunit directly uses the ratio as the number of redundancy versions required to transmit the second data; if the ratio is a non-integer, the first calculation subunit adds one to the integer part of the ratio The number of redundancy versions required to transmit the second data; if the ratio is a non-integer, the integer portion of the ratio may be decremented by one as the number of redundancy versions required to transmit the second data.
  • the data size of the second data is 3000 bits
  • the data size that each wireless subframe can carry is 288 bits
  • the ratio of 3000 to 288 is 10.4
  • the integer part of 10.4 is 10.
  • 10 Add 1 to 11 as the number of redundancy versions RV num required to transmit the second data.
  • each redundancy version corresponds to a starting position of a data selection.
  • Obtaining a subunit configured to obtain, according to the number of redundancy versions, a redundancy version sequence number of the third data transmitted on each wireless subframe;
  • each redundancy version corresponding to a starting position of a data selection, and obtaining a starting position of the data selection corresponding to the selected redundancy version, according to the starting point
  • the start position selects third data transmitted on each wireless subframe from the second data. Therefore, it is necessary to acquire the redundancy version number of the third data transmitted on each wireless subframe.
  • the redundancy version number of the third data transmitted on each wireless subframe ranges from 0 to the number of redundancy versions -1.
  • the acquiring subunit is further configured to acquire a system frame number of each wireless subframe, and calculate a redundancy version number of each wireless subframe according to a system frame number and a redundancy version number of each wireless subframe.
  • the obtaining subunit is further configured to calculate, according to the system frame number and the redundancy version number of each wireless subframe, a redundancy version sequence number of each wireless subframe by using the following formula (2):
  • Rv index N TTI mod RV num ;(2)
  • rv index is the redundancy version number of each wireless subframe
  • RV num is the number of redundancy versions
  • N TTI is the system frame number of each wireless subframe.
  • the redundancy version number of the current wireless subframe is 1.
  • the redundancy version number may also be selected from the redundancy version set according to the number of times the wireless subframe is transmitted. For example, when the second data is sent for the first time, the wireless subframe selects the redundancy version 0, when the second data is sent for the second time, the wireless subframe selects the redundancy version 1, and when the second data is sent by the RV num times, the wireless sub- The frame selects the redundancy version RV num -1, and when the second data is transmitted by the RV num +1 times, the wireless subframe selects the redundancy version 0, and sequentially cycles.
  • the second calculating subunit is configured to calculate data selection of each wireless subframe according to the data size of the second data, the number of redundancy versions, and the redundancy version number of the third data transmitted on each wireless subframe. starting point.
  • a second calculating subunit specifically configured to calculate the number of columns of the interleaver according to the data size of the second data and the number of rows of the interleaver used by the second data; according to the number of columns of the interleaver, the data size of the second data, and redundancy
  • the number of remaining versions and the redundancy version number of the third data transmitted on each wireless subframe are respectively calculated by the following formula (1): the starting position of the data selection of each wireless subframe:
  • the data size of the first data is 1000
  • 1000+4 ⁇ (the number of columns of the 32* interleaver)
  • the number of columns of the interleaver is calculated to be 32.
  • the data size N cb of the second data is 3000
  • the redundancy version number RV num is 11
  • the redundancy version number rv index of each wireless subframe is 0, 1, 2, 3, 4, 5, 6, 7, respectively. 8, 9, and 10
  • the starting positions of data selection for each wireless subframe are 64, 336, 609, 882, 1154, 1427, 1699, 1972, 2245, 2517, 2790, respectively, calculated by the above formula.
  • a first selecting unit configured to select, according to a starting position of data selection of each wireless subframe and a data size that each wireless subframe can carry, selecting third data transmitted on each wireless subframe from the second data .
  • the data size of the third data transmitted on each wireless subframe is the same as the data size that the wireless subframe can carry.
  • a first selecting unit configured to start, according to a starting position of data selection of each wireless subframe, starting from a starting position of data selection of the wireless subframe in the second data, and selecting a data size that the wireless subframe can carry The third data.
  • each wireless sub-frame can carry the same data size, both of which are 288 bits, and select 288 bits from 64 bits in the second data according to the 64-bit starting position of the data selection of the first radio subframe.
  • Data that is, the first wireless subframe selects 64-351 bit data; according to the starting position 336 bits of the data selection of the second wireless subframe, 288 bits of data are selected from 336 bits of the second data, that is, The second wireless subframe selects 336-623 bit data; according to the start position 609 bits of the data selection of the third wireless subframe, 288 bits of data, that is, the third wireless, are selected from 609 bits of the second data.
  • the subframe selects 609-896 bit data; according to the starting position 882 of the data selection of the fourth wireless subframe, 288 bits of data are selected from 882 in the second data, that is, the fourth wireless subframe selects 882-1169 Bit data; according to the starting position 1154 of the data selection of the fifth wireless subframe, starting from 1154 in the second data, selecting 288-bit data, that is, selecting the 1154-1441-bit data in the fifth wireless subframe;
  • One The starting position 1427 of the data selection of the wireless subframe starting from 1427 in the second data, selecting 288-bit data, that is, the sixth wireless subframe selecting 1427-1714-bit data; selecting data according to the seventh wireless subframe
  • the starting position 1699 selects 288-bit data from 1699 in the second data, that is, the seventh wireless subframe selects 1699-1986 bit data; according to the starting position 1972 of the data selection of the eighth wireless subframe, Selecting 288-bit data from the second data in 1972, that is, the eighth wireless subframe selects
  • the tenth wireless subframe selects 2517-2804 bit data; according to the tenth The starting position 2790 of data selection of one wireless subframe selects 288-bit data from 2790 in the second data. Since the data size of the second data is 3000, 2790-2999 bit data is selected from the second data, That is, 210 bits of data, and then 78 bits of data are selected from 0, that is, 0-77 bits are selected, and the eleventh radio subframe selects 2790-3000 and 0-77 bits of data.
  • 0-2999 of the second data is selected, that is, the second data is transmitted, and the second data is not discarded, which reduces the coding rate and improves the coding gain.
  • the data size of the first wireless subframe can be 288, the starting position of the data selection is 14, the data size of the second wireless subframe can be 144, and the starting position of the data selection is 200.
  • the third data selected from the second data from the first wireless subframe is 14-301, and the third data selected from the second data in the second wireless subframe is 200-343.
  • the selection module 103 further includes: a second obtaining unit, a second selecting unit, and a third selecting unit;
  • a second acquiring unit configured to acquire, according to a data size of the second data, a starting position of data selection of each wireless subframe
  • the starting position of the data selection of each of the wireless sub-frames is the same as the starting position of the data selection of each of the wireless sub-frames, and is not described here.
  • a second selecting unit configured to select a starting position from a starting position of data selection of each wireless subframe
  • a starting position may be randomly selected from a starting position of data selection of each wireless subframe, or a starting position of data selection of a wireless subframe corresponding to the redundancy version 0 may be selected.
  • a third selecting unit configured to continuously select, according to the selected starting location and the data size that each wireless subframe can carry, the third data transmitted on each wireless subframe from the second data.
  • the starting bit position of the data selection to the last bit data of the second data is smaller than the data size that the wireless subframe can carry, selecting the starting position of the data selection from the second data to the last bit data of the second data, The data is then cycled from the first bit of the second data until the third data size is equal to the size of the data that can be carried on the selected wireless subframe.
  • the bit range of the second data is 0-2999
  • the starting position of the data selection is 2944
  • the data size that the wireless subframe can carry is 288 bits
  • the 2944-2999 If the data size is less than 55 and the data size that the wireless subframe can carry is 288, 2944-2999 and 0-231 bit data are selected from the second data.
  • the starting position of the data selection of the wireless subframe corresponding to the redundancy version 0 is selected to be 64, each The data size that the wireless subframe can carry is 288 bits, starting from 64 bits of the second data, the first wireless subframe selects 64-351 bits of data from the second data, and the second wireless subframe is from the second.
  • 352-639 is selected in the data, the third wireless subframe selects 640-927 from the second data, the fourth wireless subframe selects 928-1215 from the second data, and the fifth wireless subframe is from the second data Selecting 1216-1503, the sixth wireless subframe selects 1504-1791 from the second data, the seventh wireless subframe selects 1792-2079 from the second data, and the eighth wireless subframe selects 2080 from the second data -2367, the ninth radio subframe selects 2368-2655 from the second data, the tenth radio subframe selects 2656-2943 from the second data, and the eleventh radio subframe selects 2944- from the second data 2999 and 0-231.
  • the transmitting module 104 is configured to separately transmit the third data on each wireless subframe.
  • the transmission module includes: a modulation unit, a first bearer unit, a second bearer unit, and a transmission unit;
  • a modulating unit configured to separately perform third processing on the third data to obtain the modulated third data
  • bits of the third data are sequentially connected in order to obtain consecutive coded bits, and the successive coded bits are modulated to obtain the modulated third data.
  • any third processing may be performed on the third data, such as QPSK modulation, 16QAM or 64QAM.
  • the modulation method is not specifically limited, and the third data is modulated into the prior art. This will not be described in detail.
  • a first bearer unit configured to respectively carry the modulated third data on one wireless subframe, to obtain multiple wireless subframes carrying the third data
  • a second bearer unit configured to respectively carry each of the plurality of radio subframes of the third data on one resource block, to obtain a plurality of resource blocks that carry the third data.
  • each wireless subframe is carried on a resource block corresponding to the wireless subframe.
  • a transmission unit for sequentially transmitting a plurality of resource blocks.
  • the resource blocks carrying the third data are transmitted to the base station in sequence, or the obtained resource blocks carrying the third data are sequentially transmitted to the terminal.
  • the base station sequentially receives the resource block that is sent by the terminal and carries the third data, obtains the modulated third data from the resource block, and demodulates the modulated third data to obtain a plurality of third data, and multiple The third data is decoded to obtain the first data.
  • the terminal sequentially receives the resource block that is sent by the base station and carries the third data, and obtains the resource block from the resource block.
  • the modulated third data demodulates the modulated third data to obtain a plurality of third data, and decodes the plurality of third data to obtain the first data.
  • the base station may further send a resend request to the terminal, where the retransmission request carries an identifier of the third data that needs to be retransmitted; and the terminal receives the resend request sent by the base station, And acquiring the identifier of the third data that needs to be retransmitted in the resending request, acquiring the third data according to the identifier of the third data, and carrying the third data on the resource block corresponding to the wireless subframe, to The base station transmits the resource block.
  • the first data to be transmitted is encoded to obtain second data; determining a plurality of wireless subframes required for transmitting the second data, and each of the plurality of wireless subframes is capable of carrying Data size; according to the data size of the second data and the data size that each wireless subframe can carry, the third data transmitted on each wireless subframe is selected from the second data, and transmitted on each wireless subframe.
  • the data size of the third data is the same as the data size that the corresponding wireless subframe can carry; the third data is transmitted on each wireless subframe respectively. Since the present invention selects the third data transmitted on each wireless subframe from the second data according to the data size of the second data and the data size that each wireless subframe can carry, thereby being able to transmit all the information bits, Reduced coding rate and improved coding gain.
  • an embodiment of the present invention provides a data transmission method, where an execution entity of the method may be a terminal or a base station, where the method includes:
  • Step 201 Encoding the first data to be transmitted to obtain second data
  • Step 202 Determine a plurality of wireless subframes required for transmitting the second data, and a data size that can be carried by each of the plurality of wireless subframes.
  • Step 203 Select, according to the data size of the second data and the data size that can be carried by each wireless subframe, the third data transmitted on each wireless subframe from the second data, and the number transmitted on each wireless subframe.
  • the data size of the three data is the same as the data size that each wireless subframe can carry;
  • Step 204 Transmit third data on each wireless subframe separately.
  • the first data to be transmitted is encoded to obtain second data; determining a plurality of wireless subframes required for transmitting the second data, and each of the plurality of wireless subframes is capable of carrying Data size; according to the data size of the second data and the data size that each wireless subframe can carry, the third data transmitted on each wireless subframe is selected from the second data, and transmitted on each wireless subframe.
  • the data size of the third data is the same as the data size that the corresponding wireless subframe can carry;
  • the third data is transmitted on each wireless subframe. Since the present invention selects the third data transmitted on each wireless subframe from the second data according to the data size of the second data and the data size that each wireless subframe can carry, thereby being able to transmit all the information bits, Reduced coding rate and improved coding gain.
  • an embodiment of the present invention provides a data transmission method, where an execution entity of the method may be a terminal or a base station, where the method includes:
  • Step 301 Encoding the first data to be transmitted to obtain second data.
  • the terminal When the terminal is to transmit data to the base station, the terminal acquires the data to be transmitted, and uses the data to be transmitted as the first data. To improve the anti-interference capability of the first data, the first data is encoded to obtain the second data. or,
  • the base station When the base station transmits data to the terminal, the base station acquires the data to be transmitted, and uses the data to be transmitted as the first data. To improve the anti-interference capability of the first data, the first data is encoded to obtain the second data.
  • the first data to be transmitted may be encoded in any coding manner, and the first data to be transmitted is subjected to Turbo 2/3 or Turbo 1/3 coding to obtain the second data.
  • the first data is Turbo 1/3 encoded to obtain the second data
  • the data size of the second data is 3000.
  • Step 302 Determine a plurality of wireless subframes required for transmitting the second data, and a data size that can be carried by each of the plurality of wireless subframes;
  • the base station determines a plurality of wireless subframes required for transmitting the second data, and transmits the system frame number of the determined wireless subframe to the terminal.
  • the base station When the base station transmits the second data to the terminal, the base station directly determines a plurality of wireless subframes required for transmitting the second data, and then transmits the second data on the determined wireless subframe.
  • G the number of bits available for transmission of one transport block.
  • G is a resource indicating that a transport block can occupy on the wireless subframe at the bit level, in the present invention.
  • G 288.
  • N L be equal to 2 when using transmit diversity.
  • N L is equal to the number of layers that a transport block maps to, that is, N L is equal to 1.
  • y G ⁇ modC
  • E r N L * Q m * y
  • E r represents the data size of the radio sub-frame can be carried, i.e., each radio sub-frame for the selected data size E r.
  • the data size is 288 bits, that is, the data size of each selected data is 288 bits.
  • each wireless subframe calculates the size of data that can be carried on the wireless subframe according to the above method, and the data size that can be carried on each wireless subframe may be the same or different.
  • Step 303 Acquire a starting position of data selection of each wireless subframe according to a data size of the second data.
  • the second data When the second data is transmitted, the second data is carried on the wireless subframe. Therefore, it is necessary to acquire the starting position of the data selection of each wireless subframe, and according to the starting position of the data selection of each wireless subframe, from the first The third data that is carried on the wireless subframe is selected in the two data.
  • Step 303 can be implemented by the following steps (1) to (3), including:
  • a ratio of a data size of the second data to a data size that can be carried by each wireless subframe is calculated, and the ratio is rounded up or down as the number of redundancy versions required to transmit the second data.
  • the ratio is directly used as the number of redundancy versions required to transmit the second data; if the ratio is a non-integer, the integer portion of the ratio is incremented by one as the second data to be transmitted.
  • the number of redundancy versions required; if the ratio is a non-integer, the integer portion of the ratio may be decremented by one as the number of redundancy versions required to transmit the second data.
  • the data size of the second data is 3000 bits
  • the data size that each wireless subframe can carry is 288 bits
  • the ratio of 3000 to 288 is 10.4
  • the integer part of 10.4 is 10.
  • 10 Add 1 to 11 as the number of redundancy versions RV num required to transmit the second data.
  • each redundancy version corresponds to a starting position of a data selection.
  • each redundancy version corresponding to a starting position of a data selection, and obtaining a starting position of the data selection corresponding to the selected redundancy version, according to the starting point
  • the start position selects third data transmitted on each wireless subframe from the second data. Therefore, it is necessary to acquire the redundancy version number of the third data transmitted on each wireless subframe.
  • the redundancy version number of the third data transmitted on each wireless subframe ranges from 0 to the number of redundancy versions -1.
  • the step (2) may be: acquiring a system frame number of each wireless subframe, and calculating a redundancy version number of each wireless subframe according to the system frame number and the number of redundancy versions of each wireless subframe.
  • the redundancy version number of each wireless subframe is calculated by the following formula (2):
  • Rv index N TTI mod RV num ;(2)
  • rv index is the redundancy version number of each wireless subframe
  • RV num is the number of redundancy versions
  • N TTI is the system frame number of each wireless subframe.
  • the redundancy version number of the current wireless subframe is 1.
  • the redundancy version number may also be selected from the redundancy version set according to the number of times the wireless subframe is transmitted. For example, when the second data is sent for the first time, the wireless subframe selects the redundancy version 0, when the second data is sent for the second time, the wireless subframe selects the redundancy version 1, and when the second data is sent by the RV num times, the wireless sub- The frame selects the redundancy version RV num -1, and when the second data is transmitted by the RV num +1 times, the wireless subframe selects the redundancy version 0, and sequentially cycles.
  • Step (3) can be implemented by the following steps (3-1) to (3-2), including:
  • (3-1) calculating the number of columns of the interleaver according to the data size of the second data and the number of lines of the interleaver used for the second data
  • the second data Before transmitting the second data, the second data needs to be interleaved by the interleaver, that is, each bit stream of the second data is written into the matrix of the interleaver in rows, the matrix is replaced by the column, and each bit is read out by the column.
  • w k v k (0)
  • w KII + 2k v k (1)
  • w KII + 2k + 1 v k (2)
  • k 0, ... K II -1. Therefore, the second data emissions in the cache are shown in Table 1 below:
  • K II bit (including information bit K r ) 2K II check bit
  • the number of columns of the interleaver is calculated to be 32.
  • N cb is the data size of the second data
  • RV num is the number of redundancy versions
  • rv index is the redundancy version number of the third data transmitted on each wireless subframe.
  • the number of columns in the interleaver 32, the data size N cb of the second data is 3000, the number of redundancy versions RV num is 11, and the redundancy version number rv index of each wireless subframe is 0, 1, 2, 3, 4, 5, 6, respectively. 7, 8, 9, 10, the starting position of the data selection of each wireless subframe calculated by the above formula is 64, 336, 609, 882, 1154, 1427, 1699, 1972, 2245, 2517, 2790, respectively. .
  • Step 304 Select, according to a starting position of data selection of each wireless subframe and a data size that can be carried by each wireless subframe, selecting third data transmitted on each wireless subframe from the second data.
  • the data size of the third data transmitted on each wireless subframe is the same as the data size that the wireless subframe can carry.
  • Step 304 may be: starting from a starting position of data selection of each wireless subframe, starting from a starting position of data selection of the wireless subframe in the second data, and selecting a data size that can be carried by the wireless subframe. Three data.
  • each wireless sub-frame can carry the same data size, both of which are 288 bits, and select 288 bits from 64 bits in the second data according to the 64-bit starting position of the data selection of the first radio subframe.
  • Data that is, the first wireless subframe selects 64-351 bit data; according to the starting position 336 bits of the data selection of the second wireless subframe, 288 bits of data are selected from 336 bits of the second data, that is, The second wireless subframe selects 336-623 bit data; according to the start position 609 bits of the data selection of the third wireless subframe, 288 bits of data, that is, the third wireless, are selected from 609 bits of the second data.
  • the subframe selects 609-896 bit data; according to the starting position 882 of the data selection of the fourth wireless subframe, 288 bits of data are selected from 882 in the second data, that is, the fourth wireless subframe selects 882-1169 Bit data; according to the starting position 1154 of the data selection of the fifth wireless subframe, starting from 1154 in the second data, selecting 288-bit data, that is, selecting the 1154-1441-bit data in the fifth wireless subframe;
  • One The starting position 1427 of the data selection of the wireless subframe starting from 1427 in the second data, selecting 288-bit data, that is, the sixth wireless subframe selecting 1427-1714-bit data; selecting data according to the seventh wireless subframe
  • the starting position 1699 selects 288-bit data from 1699 in the second data, that is, the seventh wireless subframe selects 1699-1986 bit data; according to the starting position 1972 of the data selection of the eighth wireless subframe, Selecting 288-bit data from the second data in 1972, that is, the eighth wireless subframe selects
  • the tenth wireless subframe selects 2517-2804 bit data; according to the starting position 2790 of the data selection of the eleventh wireless subframe, 288 bits of data are selected starting from 2790 in the second data, due to the second According to the data size of 3000, 2790-2999 bit data, that is, 210-bit data is selected from the second data, and then 78-bit data is selected from 0, that is, 0-77 bits are selected, and the eleventh wireless The sub-frame selects 2790-3000 and 0-77 bit data.
  • 0-2999 of the second data is selected, that is, the second data is transmitted, and the second data is not discarded, which reduces the coding rate and improves the coding gain.
  • the data size of the first wireless subframe can be 288, the starting position of the data selection is 14, the data size of the second wireless subframe can be 144, and the starting position of the data selection is 200, the third data selected from the second data from the first wireless subframe is 14-301, and the third data selected from the second data in the second wireless subframe is 200-343.
  • Step 304 may be replaced by: selecting a starting position from a starting position of data selection of each wireless subframe, according to the selected starting position and the data size that each wireless subframe can carry, from the second data.
  • the medium continuous transmission selects the third data transmitted on each wireless subframe.
  • the starting bit position of the data selection to the last bit data of the second data is smaller than the data size that the wireless subframe can carry, selecting the starting position of the data selection from the second data to the last bit data of the second data, The data is then cycled from the first bit of the second data until the third data size is equal to the size of the data that can be carried on the selected wireless subframe.
  • the bit range of the second data is 0-2999
  • the starting position of the data selection is 2944
  • the data size that the wireless subframe can carry is 288 bits
  • the 2944-2999 If the data size is less than 55 and the data size that the wireless subframe can carry is 288, 2944-2999 and 0-231 bit data are selected from the second data.
  • a starting position may be randomly selected from a starting position of data selection of each wireless subframe, or a starting position of data selection of a wireless subframe corresponding to the redundancy version 0 may be selected.
  • the starting position of the data selection of the wireless subframe corresponding to the redundancy version 0 is selected to be 64, and the data size that each wireless subframe can carry is 288 bits, and then the 64 bits of the second data are Initially, the first wireless subframe selects 64-351 bit data from the second data, the second wireless subframe selects 352-639 from the second data, and the third wireless subframe selects 640- from the second data.
  • the fourth wireless subframe selects 928-1215 from the second data
  • the fifth wireless subframe selects 1216-1503 from the second data
  • the sixth wireless subframe selects 1504-1791 from the second data
  • the seventh wireless subframe selects 1792-2079 from the second data
  • the eighth wireless subframe selects 2080-2367 from the second data
  • the ninth wireless subframe selects 2368-2655 from the second data
  • tenth The wireless subframe selects 2656-2943 from the second data
  • the eleventh wireless subframe selects 2944-2999 and 0-231 from the second data.
  • Step 305 Transmit third data on each wireless subframe respectively.
  • Step 305 can be implemented by the following steps (1) to (4), including:
  • bits of the third data are sequentially connected in order to obtain consecutive coded bits, and the successive coded bits are modulated to obtain the modulated third data.
  • any modulation processing such as QPSK modulation, 16QAM can be performed on the third data.
  • the modulation method is not specifically limited in the present invention, and the third data is modulated and processed as a prior art, and will not be described in detail herein.
  • the modulated third data is carried in a wireless subframe, to obtain a plurality of wireless subframes carrying the third data
  • Each of the plurality of radio subframes of the third data is respectively carried on one resource block to obtain a plurality of resource blocks carrying the third data.
  • each wireless subframe is carried on a resource block corresponding to the wireless subframe.
  • the resource blocks carrying the third data are transmitted to the base station in sequence, or the obtained resource blocks carrying the third data are sequentially transmitted to the terminal.
  • the base station sequentially receives the resource block that is sent by the terminal and carries the third data, obtains the modulated third data from the resource block, and demodulates the modulated third data to obtain a plurality of third data, and multiple The third data is decoded to obtain the first data.
  • the terminal sequentially receives the resource block carrying the third data sent by the base station, obtains the modulated third data from the resource block, and demodulates the modulated third data to obtain a plurality of third data, and multiple The three data are decoded to obtain the first data.
  • the base station may further send a resend request to the terminal, where the retransmission request carries an identifier of the third data that needs to be retransmitted; and the terminal receives the resend request sent by the base station, And acquiring the identifier of the third data that needs to be retransmitted in the resending request, acquiring the third data according to the identifier of the third data, and carrying the third data on the resource block corresponding to the wireless subframe, to The base station transmits the resource block.
  • the first data to be transmitted is encoded to obtain second data; determining a plurality of wireless subframes required for transmitting the second data, and each of the plurality of wireless subframes is capable of carrying Data size; according to the data size of the second data and the data size that each wireless subframe can carry, the third data transmitted on each wireless subframe is selected from the second data, and transmitted on each wireless subframe.
  • the data size of the third data is the same as the data size that the corresponding wireless subframe can carry; the third data is transmitted on each wireless subframe respectively. Since the present invention selects the third data transmitted on each wireless subframe from the second data according to the data size of the second data and the data size that each wireless subframe can carry, thereby being able to transmit all the information bits, Reduced coding rate and improved coding gain.
  • an embodiment of the present invention provides a device for data transmission, which may be a terminal or a base station, where the device includes: a processor 401 and a transmitter 402;
  • the processor 401 is configured to encode first data to be transmitted to obtain second data
  • the processor 401 is further configured to determine a plurality of radio subframes required for transmitting the second data, and a data size that can be carried by each of the plurality of radio subframes;
  • the processor 401 is further configured to select, according to the data size of the second data and a data size that can be carried by each of the wireless subframes, to transmit on the each wireless subframe from the second data.
  • Third data the data size of the third data transmitted on each wireless subframe is the same as the data size that each wireless subframe can carry;
  • the transmitter 402 is further configured to transmit the third data on each of the wireless subframes.
  • the processor 401 is further configured to acquire, according to a data size of the second data, a starting position of data selection of each of the wireless subframes;
  • the processor 401 is further configured to select, according to a starting position of the data selection of each of the wireless subframes and a data size that can be carried by each of the wireless subframes, from the second data.
  • the third data transmitted on the wireless subframe.
  • the processor 401 is further configured to calculate, according to a data size of the second data and a data size that can be carried by each wireless subframe, a number of redundancy versions required for transmitting the second data;
  • the processor 401 is further configured to acquire, according to the number of the redundancy versions, a redundancy version sequence number of the third data transmitted on each of the wireless subframes;
  • the processor 401 is further configured to calculate, according to the data size of the second data, the number of redundancy versions, and the redundancy version number of the third data transmitted on each wireless subframe, the calculation of each of the wireless subframes. The starting position of the data selection.
  • the processor 401 is further configured to calculate a number of columns of the interleaver according to a data size of the second data and a number of rows of interleavers used by the second data;
  • the processor 401 is further configured to: according to the number of columns of the interleaver, the data size of the second data, the number of the redundancy versions, and the redundancy of the third data transmitted on each of the wireless subframes
  • the version number is calculated by the following formula (1) to calculate the starting position of the data selection of each wireless subframe:
  • N cb is the data size of the second data
  • RV num is the number of the redundancy versions
  • rv index is the redundancy of the third data transmitted on each of the wireless subframes Version number.
  • the processor 401 is further configured to calculate a ratio of a data size of the second data to a data size that can be carried by each of the wireless subframes;
  • the processor 401 is further configured to round up or down the ratio as the number of redundancy versions required to transmit the second data.
  • the processor 401 is further configured to acquire a system frame number of each of the wireless subframes;
  • the processor 401 is further configured to calculate, according to the system frame number of each wireless subframe and the number of the redundancy versions, a redundancy version sequence number of each wireless subframe.
  • the processor 401 is further configured to calculate, according to the system frame number of each wireless subframe and the number of the redundancy versions, a redundancy version of each wireless subframe by using the following formula (2) Serial number:
  • Rv index N TTI mod RV num ;(2)
  • the rv index is a redundancy version number of each of the wireless subframes
  • the RV num is the number of the redundancy versions
  • the N TTI is a system frame number of each of the wireless subframes.
  • the processor 401 is further configured to acquire, according to a data size of the second data, a starting position of data selection of each of the wireless subframes;
  • the processor 401 is further configured to select a starting location from a starting position of data selection of each of the wireless subframes;
  • the processor 401 is further configured to continuously cycle select from the second data on each of the wireless subframes according to the selected starting location and a data size that can be carried by each of the wireless subframes.
  • the third data transmitted.
  • the first data to be transmitted is encoded to obtain second data; determining a plurality of wireless subframes required for transmitting the second data, and each of the plurality of wireless subframes is capable of carrying Data size; according to the data size of the second data and the data size that each wireless subframe can carry, the third data transmitted on each wireless subframe is selected from the second data, and transmitted on each wireless subframe.
  • the data size of the third data is the same as the data size that the corresponding wireless subframe can carry; the third data is transmitted on each wireless subframe respectively. Since the present invention selects the third data transmitted on each wireless subframe from the second data according to the data size of the second data and the data size that each wireless subframe can carry, thereby being able to transmit all the information bits, Reduced coding rate and improved coding gain.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

本发明实施例提供了一种数据传输的装置和方法,涉及物联网领域,所述方法包括:对待传输的第一数据进行编码,得到第二数据;确定传输所述第二数据所需的多个无线子帧,以及所述多个无线子帧中的每个无线子帧能够承载的数据大小;根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据,所述每个无线子帧上传输的第三数据的数据大小与所述每个无线子帧能够承载的数据大小相同;分别在所述每个无线子帧上传输所述第三数据。该装置包括:编码模块,确定模块,选择模块和传输模块。本发明降低了编码速率,提高了编码增益。

Description

一种数据传输的装置和方法 技术领域
本发明涉及移物联网领域,特别涉及一种数据传输的装置和方法。
背景技术
在3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)LTE(Long Term Evolution,长期演进)或LTE-A(LTE-advanced,LTE高级演进)系统中,终端都需要向基站传输数据,以实现与基站交互。
目前终端可以按下方法来传输数据给基站,包括:终端从冗余版本集合中选择冗余版本,获取该冗余版本对应的起始位置,根据该起始位置,从待传输的数据中选择288比特数据(每个无线子帧可以承载288比特数据),将选择的288比特数据承载在无线子帧上,然后将无线子帧承载在一资源块上,向基站发送该资源块,以完成数据传输的过程。
其中,冗余版本集合中包括4种冗余版本,分别为冗余版本0、1、2、3,冗余版本0、1、2、3对应的起始位置如图1所示。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
由于冗余版本集合中只有四种冗余版本,且每种冗余版本对应的数据选择的起始位置是固定的,因此,无论传输多少次,待传输的数据中总会有一部分数据不能被传输,从而导致待传输的数据中一部分数据会被丢弃,导致码率很高,不能获得编码增益。
发明内容
为了解决现有技术的问题,本发明实施例提供了一种数据传输的装置和方法。所述技术方案如下:
第一方面,本发明提供了一种数据传输的装置,所述装置包括:
编码模块,用于对待传输的第一数据进行编码,得到第二数据;
确定模块,用于确定传输所述第二数据所需的多个无线子帧,以及所述多个无线子帧中的每个无线子帧能够承载的数据大小;
选择模块,用于根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据,所述每个无线子帧上传输的第三数据的数据大小与所述每个无线子帧能够承载的数据大小相同;
传输模块,用于分别在所述每个无线子帧上传输所述第三数据。
结合第一方面,在第一方面的第一种可能的实现方式中,所述选择模块,包括:
第一获取单元,用于根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置;
第一选择单元,用于根据所述每个无线子帧的数据选择的起始位置和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据。
结合第一方面的第一种可能,在第一方面的第二种可能的实现方式中,所述第一获取单元,包括:
第一计算子单元,用于根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,计算传输所述第二数据所需的冗余版本数目;
获取子单元,用于根据所述冗余版本数目,获取所述每个无线子帧上传输的第三数据的冗余版本序号;
第二计算子单元,用于根据所述第二数据的数据大小、冗余版本数目和每个无线子帧上传输的第三数据的冗余版本序号,计算所述每个无线子帧的数据选择的起始位置。
结合第一方面的第二种可能,在第一方面的第三种可能的实现方式,所述第二计算子单元,用于根据所述第二数据的数据大小和所述第二数据所用的交织器的行数,计算所述交织器的列数;根据所述交织器的列数、所述第二数据的数据大小、所述冗余版本数目和所述每个无线子帧上传输的第三数据的冗余版本序号,分别通过如下公式(1)计算所述每个无线子帧的数据选择的起始位置:
Figure PCTCN2014094407-appb-000001
其中,k0为所述每个无线子帧的数据选择的起始位置,
Figure PCTCN2014094407-appb-000002
为所述交织器的列数,Ncb为所述第二数据的数据大小,RVnum为所述冗余版本数目、rvindex 为所述每个无线子帧上传输的第三数据的冗余版本序号。
结合第一方面的第二种可能,在第一方面的第四种可能的实现方式中,所述第一计算子单元,用于计算所述第二数据的数据大小与所述每个无线子帧能够承载的数据大小的比值;将所述比值的上取整或者下取整作为传输所述第二数据所需的冗余版本数目。
结合第一方面的第二种可能,在第一方面的第五种可能的实现方式,所述获取子单元,用于获取所述每个无线子帧的系统帧号;根据所述每个无线子帧的系统帧号和所述冗余版本数目,计算所述每个无线子帧的冗余版本序号。
结合第一方面的第五种可能,在第一方面的第六种可能的实现方式,所述获取子单元,用于根据所述每个无线子帧的系统帧号和所述冗余版本数目,通过如下公式(2)计算所述每个无线子帧的冗余版本序号:
rvindex=NTTImod RVnum;(2)
其中,rvindex为所述每个无线子帧的冗余版本序号,RVnum为所述冗余版本数目,NTTI为所述每个无线子帧的系统帧号。
结合第一方面,在第一方面的第七种可能的实现方式,所述选择模块,包括:
第二获取单元,用于根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置;
第二选择单元,用于从所述每个无线子帧的数据选择的起始位置中选择一个起始位置;
第三选择单元,用于根据所述选择的起始位置和所述每个无线子帧能够承载的数据大小,从所述第二数据中连续循环选择在所述每个无线子帧上传输的第三数据。
第二方面,本发明提供了一种数据传输的方法,所述方法包括:
对待传输的第一数据进行编码,得到第二数据;
确定传输所述第二数据所需的多个无线子帧,以及所述多个无线子帧中的每个无线子帧能够承载的数据大小;
根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据,所述每个无线 子帧上传输的第三数据的数据大小与所述每个无线子帧能够承载的数据大小相同;
分别在所述每个无线子帧上传输所述第三数据。
结合第二方面,在第二方面的第一种可能的实现方式中,所述根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据,包括:
根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置;
根据所述每个无线子帧的数据选择的起始位置和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据。
结合第二方面的第一种可能,在第二方面的第二种可能的实现方式中,所述根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置,包括:
根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,计算传输所述第二数据所需的冗余版本数目;
根据所述冗余版本数目,获取所述每个无线子帧上传输的第三数据的冗余版本序号;
根据所述第二数据的数据大小、冗余版本数目和每个无线子帧上传输的第三数据的冗余版本序号,计算所述每个无线子帧的数据选择的起始位置。
结合第二方面的第二种可能,在第二方面的第三种可能的实现方式,所述根据所述第二数据的数据大小、冗余版本数目和每个无线子帧上传输的第三数据的冗余版本序号,计算所述每个无线子帧的数据选择的起始位置,包括:
根据所述第二数据的数据大小和所述第二数据所用的交织器的行数,计算所述交织器的列数;
根据所述交织器的列数、所述第二数据的数据大小、所述冗余版本数目和所述每个无线子帧上传输的第三数据的冗余版本序号,分别通过如下公式(1)计算所述每个无线子帧的数据选择的起始位置:
Figure PCTCN2014094407-appb-000003
其中,k0为所述每个无线子帧的数据选择的起始位置,
Figure PCTCN2014094407-appb-000004
为所述交织 器的列数,Ncb为所述第二数据的数据大小,RVnum为所述冗余版本数目、rvindex为所述每个无线子帧上传输的第三数据的冗余版本序号。
结合第二方面的第二种可能,在第二方面的第四种可能的实现方式中,所述根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,计算传输所述第二数据所需的冗余版本数目,包括:
计算所述第二数据的数据大小与所述每个无线子帧能够承载的数据大小的比值;
将所述比值的上取整或者下取整作为传输所述第二数据所需的冗余版本数目。
结合第二方面的第二种可能,在第二方面的第五种可能的实现方式,所述根据所述冗余版本数目获取所述每个无线子帧的冗余版本序号,包括:
获取所述每个无线子帧的系统帧号;
根据所述每个无线子帧的系统帧号和所述冗余版本数目,计算所述每个无线子帧的冗余版本序号。
结合第二方面的第五种可能,在第二方面的第六种可能的实现方式,所述根据所述每个无线子帧的系统帧号和所述冗余版本数目,计算所述每个无线子帧的冗余版本序号,包括:
根据所述每个无线子帧的系统帧号和所述冗余版本数目,通过如下公式(2)计算所述每个无线子帧的冗余版本序号:
rvindex=NTTImod RVnum;(2)
其中,rvindex为所述每个无线子帧的冗余版本序号,RVnum为所述冗余版本数目,NTTI为所述每个无线子帧的系统帧号。
结合第二方面,在第二方面的第七种可能的实现方式,所述根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据,包括:
根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置;
从所述每个无线子帧的数据选择的起始位置中选择一个起始位置;
根据所述选择的起始位置和所述每个无线子帧能够承载的数据大小,从所述第二数据中连续循环选择在所述每个无线子帧上传输的第三数据。
第三方面,本发明提供了一种数据传输的装置,所述装置包括:处理器和发射器;
所述处理器,用于对待传输的第一数据进行编码,得到第二数据;
所述处理器,还用于确定传输所述第二数据所需的多个无线子帧,以及所述多个无线子帧中的每个无线子帧能够承载的数据大小;
所述处理器,还用于根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据,所述每个无线子帧上传输的第三数据的数据大小与所述每个无线子帧能够承载的数据大小相同;
所述发射器,还用于分别在所述每个无线子帧上传输所述第三数据。
结合第三方面,在第三方面的第一种可能的实现方式中,所述处理器,还用于根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置;
所述处理器,还用于根据所述每个无线子帧的数据选择的起始位置和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据。
结合第三方面的第一种可能,在第三方面的第二种可能的实现方式中,所述处理器,还用于根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,计算传输所述第二数据所需的冗余版本数目;
所述处理器,还用于根据所述冗余版本数目,获取所述每个无线子帧上传输的第三数据的冗余版本序号;
所述处理器,还用于根据所述第二数据的数据大小、冗余版本数目和每个无线子帧上传输的第三数据的冗余版本序号,计算所述每个无线子帧的数据选择的起始位置。
结合第三方面的第二种可能,在第三方面的第三种可能的实现方式,所述处理器,还用于根据所述第二数据的数据大小和所述第二数据所用的交织器的行数,计算所述交织器的列数;
所述处理器,还用于根据所述交织器的列数、所述第二数据的数据大小、所述冗余版本数目和所述每个无线子帧上传输的第三数据的冗余版本序号,分别通过如下公式(1)计算所述每个无线子帧的数据选择的起始位置:
Figure PCTCN2014094407-appb-000005
其中,k0为所述每个无线子帧的数据选择的起始位置,
Figure PCTCN2014094407-appb-000006
为所述交织器的列数,Ncb为所述第二数据的数据大小,RVnum为所述冗余版本数目、rvindex为所述每个无线子帧上传输的第三数据的冗余版本序号。
结合第三方面的第二种可能,在第三方面的第四种可能的实现方式中,所述处理器,还用于计算所述第二数据的数据大小与所述每个无线子帧能够承载的数据大小的比值;
所述处理器,还用于将所述比值的上取整或者下取整作为传输所述第二数据所需的冗余版本数目。
结合第三方面的第二种可能,在第三方面的第五种可能的实现方式,所述处理器,还用于获取所述每个无线子帧的系统帧号;
所述处理器,还用于根据所述每个无线子帧的系统帧号和所述冗余版本数目,计算所述每个无线子帧的冗余版本序号。
结合第三方面的第五种可能,在第三方面的第六种可能的实现方式,所述处理器,还用于根据所述每个无线子帧的系统帧号和所述冗余版本数目,通过如下公式(2)计算所述每个无线子帧的冗余版本序号:
rvindex=NTTImod RVnum;(2)
其中,rvindex为所述每个无线子帧的冗余版本序号,RVnum为所述冗余版本数目,NTTI为所述每个无线子帧的系统帧号。
结合第三方面,在第三方面的第七种可能的实现方式,所述处理器,还用于根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置;
所述处理器,还用于从所述每个无线子帧的数据选择的起始位置中选择一个起始位置;
所述处理器,还用于根据所述选择的起始位置和所述每个无线子帧能够承载的数据大小,从所述第二数据中连续循环选择在所述每个无线子帧上传输的第三数据。
本发明实施例提供的技术方案的有益效果是:对待传输的第一数据进行编码,得到第二数据;确定传输第二数据所需的多个无线子帧,以及多个无线子 帧中的每个无线子帧能够承载的数据大小;根据第二数据的数据大小和每个无线子帧能够承载的数据大小,从第二数据中选择在每个无线子帧上传输的第三数据,每个无线子帧上传输的第三数据的数据大小与其对应的无线子帧能够承载的数据大小相同;分别在每个无线子帧上传输第三数据。由于本发明是根据第二数据的数据大小和每个无线子帧能够承载的数据大小,从第二数据中选择在每个无线子帧上传输的第三数据,从而能够传输全部的信息比特,降低了编码速率,提高了编码增益。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明背景技术提供的数据选择的起始位置的示意图;
图2是本发明实施例1提供的一种数据传输的装置结构示意图;
图3是本发明实施例2提供的一种数据传输的方法流程图;
图4是本发明实施例3提供的一种数据传输的方法流程图;
图5是本发明实施例4提供的一种数据传输的装置结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例1
参见图2,本发明实施例提供了一种数据传输的装置,该装置可以为终端或者基站,该装置包括:编码模块101,确定模块102,选择模块103和传输模块104。
编码模块101,用于对待传输的第一数据进行编码,得到第二数据;
当终端要向基站传输数据时,或者基站向终端传输数据时,编码模块101获取待传输的数据,将待传输的数据作为第一数据,为了提高第一数据的抗干扰能力,对第一数据进行编码,得到第二数据。
编码模块101可以对待传输的第一数据采用任一编码方式进行编码,如对待传输的第一数据进行Turbo2/3或者Turbo1/3编码,得到第二数据。
例如,待传输的第一数据的数据大小为1000,则对第一数据进行Turbo1/3编码,得到第二数据,则第二数据的数据大小为3000。
对第一数据进行Turbo1/3编码的具体过程为现有技术,在此不再详细说明。
确定模块102,用于确定传输第二数据所需的多个无线子帧,以及多个无线子帧中的每个无线子帧能够承载的数据大小;
当终端向基站传输第二数据时,或者,当基站向终端传输第二数据时,确定模块确定传输第二数据所需的多个无线子帧,然后在确定的无线子帧上传输第二数据。
其中,确定模块确定多个无线子帧中的每个无线子帧能够承载的数据大小的过程如下:
对于每个无线子帧,将一个传输块的传输总共可用的比特的个数表示为G,即G是在比特级别上表示了一个传输块在这个无线子帧上可以占有的资源,在本发明实施例中,G=288。
令G`=G/(NL*Qm),NL在采用传输分集时等于2,其他情况下,NL等于一个传输块映射到层的个数,也即NL等于1。当采用的调制方式为QPSK时,Qm=2;当采用的调制方式为16QAM时,Qm=4;当采用的调制方式为64QAM时,Qm=6。
令y=G`modC,C为码块的个数,码块的个数跟第一数据的数据大小有关,如果第一数据的数据大小在0-6144范围内时,C=1,如果第一数据的数据大小在6145-12289范围内时,C=2,如果第一数据的数据大小在12290-184334范围内时,C=3,以此类推。
令Er=NL*Qm*y,Er表示该无线子帧上能够承载的数据大小,也即每次为该无线子帧选择数据大小为Er
例如,G=288,NL=1,本发明采用的调制方式为QPSK,也即Qm=2,则G`=G/(NL*Qm)=144,第一数据的数据大小为1000,1000在0-6144范围内,则C=1;则y=G`modC=144,Er=NL*Qm*y=1*2*144=288,即该无线子帧上可以承载的数据大小为288比特,也即每次选择数据的数据大小为288比特。
需要说明的是,每个无线子帧都按以上方法计算该无线子帧上能够承载的 数据大小,并且每个无线子帧上能够承载的数据大小可能相同,也可能不同。
选择模块103,用于根据第二数据的数据大小和每个无线子帧能够承载的数据大小,从第二数据中选择在每个无线子帧上传输的第三数据,每个无线子帧上传输的第三数据的数据大小与每个无线子帧能够承载的数据大小相同;
其中,选择模块103,包括:第一获取单元和第一选择单元。
第一获取单元,用于根据第二数据的数据大小,获取每个无线子帧的数据选择的起始位置;
传输第二数据时,将第二数据承载在无线子帧上,因此,需要通过第一获取单元获取每个无线子帧的数据选择的起始位置,根据每个无线子帧的数据选择的起始位置,从第二数据中选择承载在该无线子帧上的第三数据。
其中,第一获取单元,包括:第一计算子单元,获取子单元和第二计算子单元,。
第一计算子单元,用于根据第二数据的数据大小和每个无线子帧能够承载的数据大小,计算传输第二数据所需的冗余版本数目;
第一计算子单元,用于计算第二数据的数据大小与每个无线子帧能够承载的数据大小的比值;将该比值的上取整或者下取整作为传输第二数据所需的冗余版本数目。
如果该比值为整数,则第一计算子单元直接将该比值作为传输第二数据所需的冗余版本数目;如果该比值为非整数,则第一计算子单元将该比值的整数部分加一作为传输第二数据所需的冗余版本数目;如果该比值为非整数,也可以将该比值的整数部分减一作为传输第二数据所需的冗余版本数目。
例如,第二数据的数据大小为3000比特,每个无线子帧能够承载的数据大小为288比特,则3000与288的比值为10.4,10.4的整数部分为10,在本发明实施例中将10加1也即11作为传输第二数据所需的冗余版本数目RVnum
其中,每种冗余版本对应一个数据选择的起始位置。
获取子单元,用于根据冗余版本数目,获取每个无线子帧上传输的第三数据的冗余版本序号;
在传输第二数据时,从冗余版本集合中选择冗余版本,每个冗余版本对应一个数据选择的起始位置,获取选择的冗余版本对应的数据选择的起始位置,根据该起始位置,从第二数据中选择在每个无线子帧上传输的第三数据。因此,需要获取每个无线子帧上传输的第三数据的冗余版本序号。
其中,每个无线子帧上传输的第三数据的冗余版本序号的取值范围为0~冗余版本数目-1。
其中,获取子单元,还用于获取每个无线子帧的系统帧号;根据每个无线子帧的系统帧号和冗余版本数目,计算每个无线子帧的冗余版本序号。
其中,获取子单元,还用于根据每个无线子帧的系统帧号和冗余版本数目,通过如下公式(2)计算每个无线子帧的冗余版本序号:
rvindex=NTTImod RVnum;(2)
其中,rvindex为每个无线子帧的冗余版本序号,RVnum为冗余版本数目,NTTI为每个无线子帧的系统帧号。
例如,当前无线子帧的系统帧号为23,则23与11的余数为1,则当前无线子帧的冗余版本序号为1。
在本步骤中,也可以根据发送无线子帧的次数从冗余版本集合中选择冗余版本序号。例如,第一次发送第二数据时,无线子帧选择冗余版本0,第二次发送第二数据时,无线子帧选择冗余版本1,第RVnum次发送第二数据时,无线子帧选择冗余版本RVnum-1,第RVnum+1次发送第二数据时,无线子帧选择冗余版本0,依次循环。
其中,第二计算子单元,用于根据第二数据的数据大小、冗余版本数目和每个无线子帧上传输的第三数据的冗余版本序号,计算每个无线子帧的数据选择的起始位置。
第二计算子单元,具体用于根据第二数据的数据大小和第二数据所用的交织器的行数,计算交织器的列数;根据交织器的列数、第二数据的数据大小、冗余版本数目和每个无线子帧上传输的第三数据的冗余版本序号,分别通过如下公式(1)计算每个无线子帧的数据选择的起始位置:
Figure PCTCN2014094407-appb-000007
其中,交织器的行数为固定值32,交织器的列数根据第一数据的数据大小进行设置,并且交织器的列数满足第一数据的数据大小+4<=(交织器的行数*列数)的最小值。
例如,第一数据的数据大小为1000,则1000+4<=(32*交织器的列数),则计算得到交织器的列数为32。第二数据的数据大小Ncb为3000,冗余版本数 目RVnum为11,每个无线子帧的冗余版本序号rvindex分别为0、1、2、3、4、5、6、7、8、9、10,则通过以上公式计算得到每个无线子帧的数据选择的起始位置分别为64、336、609、882、1154、1427、1699、1972、2245、2517、2790。
第一选择单元,用于根据每个无线子帧的数据选择的起始位置和每个无线子帧能够承载的数据大小,从第二数据中选择在每个无线子帧上传输的第三数据。
其中,每个无线子帧上传输的第三数据的数据大小与该无线子帧能够承载的数据大小相同。
第一选择单元,用于根据每个无线子帧的数据选择的起始位置,从第二数据中该无线子帧的数据选择的起始位置处开始,选择该无线子帧能够承载的数据大小的第三数据。
例如,每个无线子帧能够承载的数据大小相同,都为288比特,则根据第一个无线子帧的数据选择的起始位置64比特,从第二数据中的64比特处开始选择288比特数据,也即第一个无线子帧选择64-351比特数据;根据第二个无线子帧的数据选择的起始位置336比特,从第二数据中336比特处开始选择288比特数据,也即第二个无线子帧选择336-623比特数据;根据第三个无线子帧的数据选择的起始位置609比特,从第二数据中609比特处开始选择288比特数据,也即第三个无线子帧选择609-896比特数据;根据第四个无线子帧的数据选择的起始位置882,从第二数据中882处开始选择288比特数据,也即第四个无线子帧选择882-1169比特数据;根据第五个无线子帧的数据选择的起始位置1154,从第二数据中1154处开始选择288比特数据,也即第五个无线子帧选择1154-1441比特数据;根据第六个无线子帧的数据选择的起始位置1427,从第二数据中1427处开始选择288比特数据,也即第六个无线子帧选择1427-1714比特数据;根据第七个无线子帧的数据选择的起始位置1699,从第二数据中1699处开始选择288比特数据,也即第七个无线子帧选择1699-1986比特数据;根据第八个无线子帧的数据选择的起始位置1972,从第二数据中1972处开始选择288比特数据,也即第八个无线子帧选择1972-2259比特数据;根据第九个无线子帧的数据选择的起始位置2245,从第二数据中2245处开始选择288比特数据,也即第九个无线子帧选择2245-2532比特数据;根据第十个无线子帧的数据选择的起始位置2517,从第二数据中2517处开始选择288比特数据,也即第十个无线子帧选择2517-2804比特数据;根据第十 一个无线子帧的数据选择的起始位置2790,从第二数据中2790处开始选择288比特数据,由于第二数据的数据大小为3000,则从第二数据中选择2790-2999比特数据,也即210比特数据,然后从0开始再选择78比特数据,也即选择0-77比特,则第十一个无线子帧选择2790-3000和0-77比特数据。
由此可见,第二数据的0-2999都被选择了,也即第二数据都被传输了,第二数据没有被丢弃,降低了编码速率,提高了编码增益。
再如,第一个无线子帧能够承载的数据大小为288,数据选择的起始位置为14,第二个无线子帧能够承载的数据大小为144,数据选择的起始位置为200,则从第一个无线子帧从第二数据中选择的第三数据为14-301,第二个无线子帧从第二数据中选择的第三数据为200-343。
其中,选择模块103,还包括:第二获取单元,第二选择单元和第三选择单元;
第二获取单元,用于根据第二数据的数据大小,获取每个无线子帧的数据选择的起始位置;
其中,第二获取单元获取每个无线子帧的数据选择的起始位置和第一获取单元获取每个无线子帧的数据选择的起始位置相同,在此不再赘述。
第二选择单元,用于从每个无线子帧的数据选择的起始位置中选择一个起始位置;
其中,可以从每个无线子帧的数据选择的起始位置中随机选择一个起始位置,也可以选择冗余版本0对应的无线子帧的数据选择的起始位置。
第三选择单元,用于根据选择的起始位置和每个无线子帧能够承载的数据大小,从第二数据中连续循环选择在每个无线子帧上传输的第三数据。
当数据选择的起始位置到第二数据的最后一个比特数据小于该无线子帧能够承载的数据大小时,从第二数据中选择数据选择的起始位置到第二数据的最后一个比特数据,然后从第二数据的第一个比特开始循环选择数据,直到第三数据大小等于选择该无线子帧上能够承载的数据大小。
例如,第二数据的数据大小为3000,则第二数据的比特范围为0-2999,数据选择的起始位置为2944,该无线子帧能够承载的数据大小为288比特,则2944-2999的数据大小为55小于该无线子帧能够承载的数据大小为288,则从第二数据中选择2944-2999以及0-231比特数据。
例如,选择冗余版本0对应的无线子帧的数据选择的起始位置为64,每个 无线子帧能够承载的数据大小为288比特,则从第二数据的64比特处开始,第一个无线子帧从第二数据中选择64-351比特数据,第二个无线子帧从第二数据中选择352-639,第三个无线子帧从第二数据中选择640-927,第四个无线子帧从第二数据中选择928-1215,第五个无线子帧从第二数据中选择1216-1503,第六个无线子帧从第二数据中选择1504-1791,第七个无线子帧从第二数据中选择1792-2079,第八个无线子帧从第二数据中选择2080-2367,第九个无线子帧从第二数据中选择2368-2655,第十个无线子帧从第二数据中选择2656-2943,第十一个无线子帧从第二数据中选择2944-2999以及0-231。
传输模块104,用于分别在每个无线子帧上传输第三数据。
其中,传输模块包括:调制单元,第一承载单元,第二承载单元和传输单元;
调制单元,用于分别将第三数据进行调制处理,得到调制后的第三数据;
将第三数据的比特依次进行顺序连接,得到连续的编码比特,将连续的编码比特进行调制处理,得到调制后的第三数据。
在本发明中可以对第三数据进行任一调制处理,如QPSK调制、16QAM或者64QAM等,在本发明中对调制方式不做具体限定,并且对第三数据进行调制处理为现有技术,在此不再详细说明。
第一承载单元,用于分别将调制后的第三数据承载在一个无线子帧上,得到多个承载第三数据的无线子帧;
第二承载单元,用于分别将多个第三数据的无线子帧中的每个无线子帧承载在一个资源块上,得到多个承载第三数据的资源块。
终端向基站发送第二数据时,或者基站向终端发送第二数据时,不能直接发送无线子帧,需要将无线子帧承载在资源块上,也即在本步骤中,获取每个无线子帧对应的资源块,将每个无线子帧承载在该无线子帧对应的资源块上。
传输单元,用于依次传输多个资源块。
一次传输一个资源块,将得到的多个承载第三数据的资源块依次传输给基站,或者,将得到的多个承载第三数据的资源块依次传输给终端。
进一步地,基站依次接收终端发送的承载第三数据的资源块,从资源块上获取调制后的第三数据,对调制后的第三数据进行解调制,得到多个第三数据,对多个第三数据进行解码,得到第一数据。
或者,终端依次接收基站发送的承载第三数据的资源块,从资源块上获取 调制后的第三数据,对调制后的第三数据进行解调制,得到多个第三数据,对多个第三数据进行解码,得到第一数据。
如果基站确定某个第三数据在传输过程中发生损坏,则基站还可以发送重新发送请求给终端,该重新发送请求携带需要重新发送的第三数据的标识;终端接收基站发送的重新发送请求,并获取该重新发送请求中携带的需要重新发送的第三数据的标识,根据该第三数据的标识,获取该第三数据,将该第三数据承载在无线子帧对应的资源块上,向基站发送该资源块。
在本发明实施例中,对待传输的第一数据进行编码,得到第二数据;确定传输第二数据所需的多个无线子帧,以及多个无线子帧中的每个无线子帧能够承载的数据大小;根据第二数据的数据大小和每个无线子帧能够承载的数据大小,从第二数据中选择在每个无线子帧上传输的第三数据,每个无线子帧上传输的第三数据的数据大小与其对应的无线子帧能够承载的数据大小相同;分别在每个无线子帧上传输第三数据。由于本发明是根据第二数据的数据大小和每个无线子帧能够承载的数据大小,从第二数据中选择在每个无线子帧上传输的第三数据,从而能够传输全部的信息比特,降低了编码速率,提高了编码增益。
实施例2
参见图3,本发明实施例提供了一种数据传输的方法,该方法的执行主体可以为终端或者基站,其中,该方法包括:
步骤201:对待传输的第一数据进行编码,得到第二数据;
步骤202:确定传输第二数据所需的多个无线子帧,以及多个无线子帧中的每个无线子帧能够承载的数据大小;
步骤203:根据第二数据的数据大小和每个无线子帧能够承载的数据大小,从第二数据中选择在每个无线子帧上传输的第三数据,每个无线子帧上传输的第三数据的数据大小与每个无线子帧能够承载的数据大小相同;
步骤204:分别在每个无线子帧上传输第三数据。
在本发明实施例中,对待传输的第一数据进行编码,得到第二数据;确定传输第二数据所需的多个无线子帧,以及多个无线子帧中的每个无线子帧能够承载的数据大小;根据第二数据的数据大小和每个无线子帧能够承载的数据大小,从第二数据中选择在每个无线子帧上传输的第三数据,每个无线子帧上传输的第三数据的数据大小与其对应的无线子帧能够承载的数据大小相同;分别 在每个无线子帧上传输第三数据。由于本发明是根据第二数据的数据大小和每个无线子帧能够承载的数据大小,从第二数据中选择在每个无线子帧上传输的第三数据,从而能够传输全部的信息比特,降低了编码速率,提高了编码增益。
实施例3
参见图4,本发明实施例提供了一种数据传输的方法,该方法的执行主体可以为终端或者基站,其中,该方法包括:
步骤301:对待传输的第一数据进行编码,得到第二数据;
当终端要向基站传输数据时,终端获取待传输的数据,将待传输的数据作为第一数据,为了提高第一数据的抗干扰能力,对第一数据进行编码,得到第二数据。或者,
当基站向终端传输数据时,基站获取待传输的数据,将待传输的数据作为第一数据,为了提高第一数据的抗干扰能力,对第一数据进行编码,得到第二数据。
可以对待传输的第一数据采用任一编码方式进行编码,如对待传输的第一数据进行Turbo2/3或者Turbo1/3编码,得到第二数据。
例如,待传输的第一数据的数据大小为1000,则对第一数据进行Turbo1/3编码,得到第二数据,则第二数据的数据大小为3000。
对第一数据进行Turbo1/3编码的具体过程为现有技术,在此不再详细说明。
步骤302:确定传输第二数据所需的多个无线子帧,以及多个无线子帧中的每个无线子帧能够承载的数据大小;
当终端向基站传输第二数据时,基站确定传输第二数据所需的多个无线子帧,向终端发送确定的无线子帧的系统帧号。
当基站向终端传输第二数据时,基站直接确定传输第二数据所需的多个无线子帧,然后在确定的无线子帧上传输第二数据。
其中,确定多个无线子帧中的每个无线子帧能够承载的数据大小的过程如下:
对于每个无线子帧,将一个传输块的传输总共可用的比特的个数表示为G,即G是在比特级别上表示了一个传输块在这个无线子帧上可以占有的资源,在本发明实施例中,G=288。
令G`=G/(NL*Qm),NL在采用传输分集时等于2,其他情况下,NL等于一个传输块映射到层的个数,也即NL等于1。当采用的调制方式为QPSK时,Qm=2;当采用的调制方式为16QAM时,Qm=4;当采用的调制方式为64QAM时,Qm=6。
令y=G`modC,C为码块的个数,码块的个数跟第一数据的数据大小有关,如果第一数据的数据大小在0-6144范围内时,C=1,如果第一数据的数据大小在6145-12289范围内时,C=2,如果第一数据的数据大小在12290-184334范围内时,C=3,以此类推。
令Er=NL*Qm*y,Er表示该无线子帧上能够承载的数据大小,也即每次为该无线子帧选择数据大小为Er
例如,G=288,NL=1,本发明采用的调制方式为QPSK,也即Qm=2,则G`=G/(NL*Qm)=144,第一数据的数据大小为1000,1000在0-6144范围内,则C=1;则y=G`modC=144,Er=NL*Qm*y=1*2*144=288,即该无线子帧上可以承载的数据大小为288比特,也即每次选择数据的数据大小为288比特。
需要说明的是,每个无线子帧都按以上方法计算该无线子帧上能够承载的数据大小,并且每个无线子帧上能够承载的数据大小可能相同,也可能不同。
步骤303:根据第二数据的数据大小,获取每个无线子帧的数据选择的起始位置;
传输第二数据时,将第二数据承载在无线子帧上,因此,需要获取每个无线子帧的数据选择的起始位置,根据每个无线子帧的数据选择的起始位置,从第二数据中选择承载在该无线子帧上的第三数据。
其中,步骤303可以通过以下步骤(1)至(3)实现,包括:
(1):根据第二数据的数据大小和每个无线子帧能够承载的数据大小,计算传输第二数据所需的冗余版本数目;
具体地,计算第二数据的数据大小与每个无线子帧能够承载的数据大小的比值,将该比值的上取整或者下取整作为传输第二数据所需的冗余版本数目。
需要说明的是,如果该比值为整数,则直接将该比值作为传输第二数据所需的冗余版本数目;如果该比值为非整数,则将该比值的整数部分加一作为传输第二数据所需的冗余版本数目;如果该比值为非整数,也可以将该比值的整数部分减一作为传输第二数据所需的冗余版本数目。
例如,第二数据的数据大小为3000比特,每个无线子帧能够承载的数据 大小为288比特,则3000与288的比值为10.4,10.4的整数部分为10,在本发明实施例中将10加1也即11作为传输第二数据所需的冗余版本数目RVnum
其中,每种冗余版本对应一个数据选择的起始位置。
(2):根据冗余版本数目,获取每个无线子帧上传输的第三数据的冗余版本序号;
在传输第二数据时,从冗余版本集合中选择冗余版本,每个冗余版本对应一个数据选择的起始位置,获取选择的冗余版本对应的数据选择的起始位置,根据该起始位置,从第二数据中选择在每个无线子帧上传输的第三数据。因此,需要获取每个无线子帧上传输的第三数据的冗余版本序号。
其中,每个无线子帧上传输的第三数据的冗余版本序号的取值范围为0~冗余版本数目-1。
步骤(2)可以为:获取每个无线子帧的系统帧号,根据每个无线子帧的系统帧号和冗余版本数目,计算每个无线子帧的冗余版本序号。
具体地,根据每个无线子帧的系统帧号和冗余版本数目,通过如下公式(2)计算每个无线子帧的冗余版本序号:
rvindex=NTTImod RVnum;(2)
其中,rvindex为每个无线子帧的冗余版本序号,RVnum为冗余版本数目,NTTI为每个无线子帧的系统帧号。
例如,当前无线子帧的系统帧号为23,则23与11的余数为1,则当前无线子帧的冗余版本序号为1。
在本步骤中,也可以根据发送无线子帧的次数从冗余版本集合中选择冗余版本序号。例如,第一次发送第二数据时,无线子帧选择冗余版本0,第二次发送第二数据时,无线子帧选择冗余版本1,第RVnum次发送第二数据时,无线子帧选择冗余版本RVnum-1,第RVnum+1次发送第二数据时,无线子帧选择冗余版本0,依次循环。
(3):第二数据的数据大小、冗余版本数目和每个无线子帧上传输的第三数据的冗余版本序号,计算每个无线子帧的数据选择的起始位置。
步骤(3)可以通过以下步骤(3-1)至(3-2)实现,包括:
(3-1):根据第二数据的数据大小和第二数据所用的交织器的行数,计算交织器的列数
Figure PCTCN2014094407-appb-000008
在传输第二数据之前,需要通过交织器对第二数据进行交织,即将第二数据的每个比特流按行写入交织器的矩阵,对矩阵进行列置换,再按列读出每个比特流,得到比特流v0 (i),v1 (i),v2 (i),i=0,1,2,KII是进行交织后的一个码块的三个比特流中每个比特流的比特数。i=0的流包含了信息比特,将这三个比特流放入缓存中,对于缓存数据,缓存的大小Ncb=Kw=3KII,记缓存中的比特为wk,k=0,……Ncb-1。wk=vk (0),wKII+2k=vk (1),wKII+2k+1=vk (2),k=0,……KII-1。因此,在缓存中的第二数据排放如下表1所示:
表1
KII比特(含信息比特Kr) 2KII校验比特
其中,交织器的行数为固定值32,交织器的列数根据第一数据的数据大小进行设置,并且交织器的列数满足第一数据的数据大小+4<=(交织器的行数*列数)的最小值。
例如,第一数据的数据大小为1000,则1000+4<=(32*交织器的列数),则计算得到交织器的列数为32。
(3-2):根据交织器的列数、第二数据的数据大小、冗余版本数目和每个无线子帧上传输的第三数据的冗余版本序号,分别通过如下公式(1)计算每个无线子帧的数据选择的起始位置:
Figure PCTCN2014094407-appb-000009
其中,k0为每个无线子帧的数据选择的起始位置,
Figure PCTCN2014094407-appb-000010
为交织器的列数,Ncb为第二数据的数据大小,RVnum为冗余版本数目,rvindex为每个无线子帧上传输的第三数据的冗余版本序号。
例如,交织器的列数
Figure PCTCN2014094407-appb-000011
为32,第二数据的数据大小Ncb为3000,冗余版本数目RVnum为11,每个无线子帧的冗余版本序号rvindex分别为0、1、2、3、4、5、6、7、8、9、10,则通过以上公式计算得到每个无线子帧的数据选择的起始位置分别为64、336、609、882、1154、1427、1699、1972、2245、2517、2790。
步骤304:根据每个无线子帧的数据选择的起始位置和每个无线子帧能够承载的数据大小,从第二数据中选择在每个无线子帧上传输的第三数据;
其中,每个无线子帧上传输的第三数据的数据大小与该无线子帧能够承载的数据大小相同。
步骤304可以为:根据每个无线子帧的数据选择的起始位置,从第二数据中该无线子帧的数据选择的起始位置处开始,选择该无线子帧能够承载的数据大小的第三数据。
例如,每个无线子帧能够承载的数据大小相同,都为288比特,则根据第一个无线子帧的数据选择的起始位置64比特,从第二数据中的64比特处开始选择288比特数据,也即第一个无线子帧选择64-351比特数据;根据第二个无线子帧的数据选择的起始位置336比特,从第二数据中336比特处开始选择288比特数据,也即第二个无线子帧选择336-623比特数据;根据第三个无线子帧的数据选择的起始位置609比特,从第二数据中609比特处开始选择288比特数据,也即第三个无线子帧选择609-896比特数据;根据第四个无线子帧的数据选择的起始位置882,从第二数据中882处开始选择288比特数据,也即第四个无线子帧选择882-1169比特数据;根据第五个无线子帧的数据选择的起始位置1154,从第二数据中1154处开始选择288比特数据,也即第五个无线子帧选择1154-1441比特数据;根据第六个无线子帧的数据选择的起始位置1427,从第二数据中1427处开始选择288比特数据,也即第六个无线子帧选择1427-1714比特数据;根据第七个无线子帧的数据选择的起始位置1699,从第二数据中1699处开始选择288比特数据,也即第七个无线子帧选择1699-1986比特数据;根据第八个无线子帧的数据选择的起始位置1972,从第二数据中1972处开始选择288比特数据,也即第八个无线子帧选择1972-2259比特数据;根据第九个无线子帧的数据选择的起始位置2245,从第二数据中2245处开始选择288比特数据,也即第九个无线子帧选择2245-2532比特数据;根据第十个无线子帧的数据选择的起始位置2517,从第二数据中2517处开始选择288比特数据,也即第十个无线子帧选择2517-2804比特数据;根据第十一个无线子帧的数据选择的起始位置2790,从第二数据中2790处开始选择288比特数据,由于第二数据的数据大小为3000,则从第二数据中选择2790-2999比特数据,也即210比特数据,然后从0开始再选择78比特数据,也即选择0-77比特,则第十一个无线子帧选择2790-3000和0-77比特数据。
由此可见,第二数据的0-2999都被选择了,也即第二数据都被传输了,第二数据没有被丢弃,降低了编码速率,提高了编码增益。
例如,第一个无线子帧能够承载的数据大小为288,数据选择的起始位置为14,第二个无线子帧能够承载的数据大小为144,数据选择的起始位置为 200,则从第一个无线子帧从第二数据中选择的第三数据为14-301,第二个无线子帧从第二数据中选择的第三数据为200-343。
其中,步骤304可以替换为:从每个无线子帧的数据选择的起始位置中选择一个起始位置,根据选择的起始位置和每个无线子帧能够承载的数据大小,从第二数据中连续循环选择在每个无线子帧上传输的第三数据。
当数据选择的起始位置到第二数据的最后一个比特数据小于该无线子帧能够承载的数据大小时,从第二数据中选择数据选择的起始位置到第二数据的最后一个比特数据,然后从第二数据的第一个比特开始循环选择数据,直到第三数据大小等于选择该无线子帧上能够承载的数据大小。
例如,第二数据的数据大小为3000,则第二数据的比特范围为0-2999,数据选择的起始位置为2944,该无线子帧能够承载的数据大小为288比特,则2944-2999的数据大小为55小于该无线子帧能够承载的数据大小为288,则从第二数据中选择2944-2999以及0-231比特数据。
其中,可以从每个无线子帧的数据选择的起始位置中随机选择一个起始位置,也可以选择冗余版本0对应的无线子帧的数据选择的起始位置。
例如,在本步骤中,选择冗余版本0对应的无线子帧的数据选择的起始位置为64,每个无线子帧能够承载的数据大小为288比特,则从第二数据的64比特处开始,第一个无线子帧从第二数据中选择64-351比特数据,第二个无线子帧从第二数据中选择352-639,第三个无线子帧从第二数据中选择640-927,第四个无线子帧从第二数据中选择928-1215,第五个无线子帧从第二数据中选择1216-1503,第六个无线子帧从第二数据中选择1504-1791,第七个无线子帧从第二数据中选择1792-2079,第八个无线子帧从第二数据中选择2080-2367,第九个无线子帧从第二数据中选择2368-2655,第十个无线子帧从第二数据中选择2656-2943,第十一个无线子帧从第二数据中选择2944-2999以及0-231。
步骤305:分别在每个无线子帧上传输第三数据;
步骤305可以通过以下步骤(1)至(4)实现,包括:
(1):分别将第三数据进行调制处理,得到调制后的第三数据;
将第三数据的比特依次进行顺序连接,得到连续的编码比特,将连续的编码比特进行调制处理,得到调制后的第三数据。
在本发明中可以对第三数据进行任一调制处理,如QPSK调制、16QAM 或者64QAM等,在本发明中对调制方式不做具体限定,并且对第三数据进行调制处理为现有技术,在此不再详细说明。
(2):分别将调制后的第三数据承载在一个无线子帧上,得到多个承载第三数据的无线子帧;
(3):分别将多个第三数据的无线子帧中的每个无线子帧承载在一个资源块上,得到多个承载第三数据的资源块。
终端向基站发送第二数据时,或者基站向终端发送第二数据时,不能直接发送无线子帧,需要将无线子帧承载在资源块上,也即在本步骤中,获取每个无线子帧对应的资源块,将每个无线子帧承载在该无线子帧对应的资源块上。
(4):依次传输多个资源块。
一次传输一个资源块,将得到的多个承载第三数据的资源块依次传输给基站,或者,将得到的多个承载第三数据的资源块依次传输给终端。
进一步地,基站依次接收终端发送的承载第三数据的资源块,从资源块上获取调制后的第三数据,对调制后的第三数据进行解调制,得到多个第三数据,对多个第三数据进行解码,得到第一数据。
或者,终端依次接收基站发送的承载第三数据的资源块,从资源块上获取调制后的第三数据,对调制后的第三数据进行解调制,得到多个第三数据,对多个第三数据进行解码,得到第一数据。
如果基站确定某个第三数据在传输过程中发生损坏,则基站还可以发送重新发送请求给终端,该重新发送请求携带需要重新发送的第三数据的标识;终端接收基站发送的重新发送请求,并获取该重新发送请求中携带的需要重新发送的第三数据的标识,根据该第三数据的标识,获取该第三数据,将该第三数据承载在无线子帧对应的资源块上,向基站发送该资源块。
在本发明实施例中,对待传输的第一数据进行编码,得到第二数据;确定传输第二数据所需的多个无线子帧,以及多个无线子帧中的每个无线子帧能够承载的数据大小;根据第二数据的数据大小和每个无线子帧能够承载的数据大小,从第二数据中选择在每个无线子帧上传输的第三数据,每个无线子帧上传输的第三数据的数据大小与其对应的无线子帧能够承载的数据大小相同;分别在每个无线子帧上传输第三数据。由于本发明是根据第二数据的数据大小和每个无线子帧能够承载的数据大小,从第二数据中选择在每个无线子帧上传输的第三数据,从而能够传输全部的信息比特,降低了编码速率,提高了编码增益。
实施例4
参见图5,本发明实施例提供了一种数据传输的装置,该装置可以为终端或者基站,其中,该装置包括:处理器401和发射器402;
所述处理器401,用于对待传输的第一数据进行编码,得到第二数据;
所述处理器401,还用于确定传输所述第二数据所需的多个无线子帧,以及所述多个无线子帧中的每个无线子帧能够承载的数据大小;
所述处理器401,还用于根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据,所述每个无线子帧上传输的第三数据的数据大小与所述每个无线子帧能够承载的数据大小相同;
所述发射器402,还用于分别在所述每个无线子帧上传输所述第三数据。
优选的,所述处理器401,还用于根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置;
所述处理器401,还用于根据所述每个无线子帧的数据选择的起始位置和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据。
优选的,所述处理器401,还用于根据所述第二数据的数据大小和每个无线子帧能够承载的数据大小,计算传输所述第二数据所需的冗余版本数目;
所述处理器401,还用于根据所述冗余版本数目,获取所述每个无线子帧上传输的第三数据的冗余版本序号;
所述处理器401,还用于根据所述第二数据的数据大小、冗余版本数目和每个无线子帧上传输的第三数据的冗余版本序号,计算所述每个无线子帧的数据选择的起始位置。
优选的,所述处理器401,还用于根据所述第二数据的数据大小和所述第二数据所用的交织器的行数,计算所述交织器的列数;
所述处理器401,还用于根据所述交织器的列数、所述第二数据的数据大小、所述冗余版本数目和所述每个无线子帧上传输的第三数据的冗余版本序号,分别通过如下公式(1)计算所述每个无线子帧的数据选择的起始位置:
Figure PCTCN2014094407-appb-000012
其中,k0为所述每个无线子帧的数据选择的起始位置,
Figure PCTCN2014094407-appb-000013
为所述交织器的列数,Ncb为所述第二数据的数据大小,RVnum为所述冗余版本数目、rvindex为所述每个无线子帧上传输的第三数据的冗余版本序号。
优选的,处理器401,还用于计算所述第二数据的数据大小与所述每个无线子帧能够承载的数据大小的比值;
处理器401,还用于将所述比值的上取整或者下取整作为传输所述第二数据所需的冗余版本数目。
优选的,所述处理器401,还用于获取所述每个无线子帧的系统帧号;
所述处理器401,还用于根据所述每个无线子帧的系统帧号和所述冗余版本数目,计算所述每个无线子帧的冗余版本序号。
优选的,所述处理器401,还用于根据所述每个无线子帧的系统帧号和所述冗余版本数目,通过如下公式(2)计算所述每个无线子帧的冗余版本序号:
rvindex=NTTImod RVnum;(2)
其中,rvindex为所述每个无线子帧的冗余版本序号,RVnum为所述冗余版本数目,NTTI为所述每个无线子帧的系统帧号。
优选的,所述处理器401,还用于根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置;
所述处理器401,还用于从所述每个无线子帧的数据选择的起始位置中选择一个起始位置;
所述处理器401,还用于根据所述选择的起始位置和所述每个无线子帧能够承载的数据大小,从所述第二数据中连续循环选择在所述每个无线子帧上传输的第三数据。
在本发明实施例中,对待传输的第一数据进行编码,得到第二数据;确定传输第二数据所需的多个无线子帧,以及多个无线子帧中的每个无线子帧能够承载的数据大小;根据第二数据的数据大小和每个无线子帧能够承载的数据大小,从第二数据中选择在每个无线子帧上传输的第三数据,每个无线子帧上传输的第三数据的数据大小与其对应的无线子帧能够承载的数据大小相同;分别在每个无线子帧上传输第三数据。由于本发明是根据第二数据的数据大小和每个无线子帧能够承载的数据大小,从第二数据中选择在每个无线子帧上传输的第三数据,从而能够传输全部的信息比特,降低了编码速率,提高了编码增益。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (24)

  1. 一种数据传输的装置,其特征在于,所述装置包括:
    编码模块,用于对待传输的第一数据进行编码,得到第二数据;
    确定模块,用于确定传输所述第二数据所需的多个无线子帧,以及所述多个无线子帧中的每个无线子帧能够承载的数据大小;
    选择模块,用于根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据,所述每个无线子帧上传输的第三数据的数据大小与所述每个无线子帧能够承载的数据大小相同;
    传输模块,用于分别在所述每个无线子帧上传输所述第三数据。
  2. 如权利要求1所述的装置,其特征在于,所述选择模块,包括:
    第一获取单元,用于根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置;
    第一选择单元,用于根据所述每个无线子帧的数据选择的起始位置和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据。
  3. 如权利要求2所述的装置,其特征在于,所述第一获取单元,包括:
    第一计算子单元,用于根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,计算传输所述第二数据所需的冗余版本数目;
    获取子单元,用于根据所述冗余版本数目,获取所述每个无线子帧上传输的第三数据的冗余版本序号;
    第二计算子单元,用于根据所述第二数据的数据大小、冗余版本数目和每个无线子帧上传输的第三数据的冗余版本序号,计算所述每个无线子帧的数据选择的起始位置。
  4. 如权利要求3所述的装置,其特征在于,
    所述第二计算子单元,用于根据所述第二数据的数据大小和所述第二数据所用的交织器的行数,计算所述交织器的列数;根据所述交织器的列数、所述 第二数据的数据大小、所述冗余版本数目和所述每个无线子帧上传输的第三数据的冗余版本序号,分别通过如下公式(1)计算所述每个无线子帧的数据选择的起始位置:
    Figure PCTCN2014094407-appb-100001
    其中,k0为所述每个无线子帧的数据选择的起始位置,
    Figure PCTCN2014094407-appb-100002
    为所述交织器的列数,Ncb为所述第二数据的数据大小,RVnum为所述冗余版本数目、rvindex为所述每个无线子帧上传输的第三数据的冗余版本序号。
  5. 如权利要求3所述的装置,其特征在于,
    所述第一计算子单元,用于计算所述第二数据的数据大小与所述每个无线子帧能够承载的数据大小的比值;将所述比值的上取整或者下取整作为传输所述第二数据所需的冗余版本数目。
  6. 如权利要求3所述的装置,其特征在于,
    所述获取子单元,用于获取所述每个无线子帧的系统帧号;根据所述每个无线子帧的系统帧号和所述冗余版本数目,计算所述每个无线子帧的冗余版本序号。
  7. 如权利要求6所述的装置,其特征在于,
    所述获取子单元,用于根据所述每个无线子帧的系统帧号和所述冗余版本数目,通过如下公式(2)计算所述每个无线子帧的冗余版本序号:
    rvindex=NTTImod RVnum;(2)
    其中,rvindex为所述每个无线子帧的冗余版本序号,RVnum为所述冗余版本数目,NTTI为所述每个无线子帧的系统帧号。
  8. 如权利要求1所述的装置,其特征在于,所述选择模块,包括:
    第二获取单元,用于根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置;
    第二选择单元,用于从所述每个无线子帧的数据选择的起始位置中选择一 个起始位置;
    第三选择单元,用于根据所述选择的起始位置和所述每个无线子帧能够承载的数据大小,从所述第二数据中连续循环选择在所述每个无线子帧上传输的第三数据。
  9. 一种数据传输的方法,其特征在于,所述方法包括:
    对待传输的第一数据进行编码,得到第二数据;
    确定传输所述第二数据所需的多个无线子帧,以及所述多个无线子帧中的每个无线子帧能够承载的数据大小;
    根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据,所述每个无线子帧上传输的第三数据的数据大小与所述每个无线子帧能够承载的数据大小相同;
    分别在所述每个无线子帧上传输所述第三数据。
  10. 如权利要求9所述的方法,其特征在于,所述根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据,包括:
    根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置;
    根据所述每个无线子帧的数据选择的起始位置和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据。
  11. 如权利要求10所述的方法,其特征在于,所述根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置,包括:
    根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,计算传输所述第二数据所需的冗余版本数目;
    根据所述冗余版本数目,获取所述每个无线子帧上传输的第三数据的冗余版本序号;
    根据所述第二数据的数据大小、冗余版本数目和每个无线子帧上传输的第三数据的冗余版本序号,计算所述每个无线子帧的数据选择的起始位置。
  12. 如权利要求11所述的方法,其特征在于,所述根据所述第二数据的数据大小、冗余版本数目和每个无线子帧上传输的第三数据的冗余版本序号,计算所述每个无线子帧的数据选择的起始位置,包括:
    根据所述第二数据的数据大小和所述第二数据所用的交织器的行数,计算所述交织器的列数;
    根据所述交织器的列数、所述第二数据的数据大小、所述冗余版本数目和所述每个无线子帧上传输的第三数据的冗余版本序号,分别通过如下公式(1)计算所述每个无线子帧的数据选择的起始位置:
    Figure PCTCN2014094407-appb-100003
    其中,k0为所述每个无线子帧的数据选择的起始位置,
    Figure PCTCN2014094407-appb-100004
    为所述交织器的列数,Ncb为所述第二数据的数据大小,RVnum为所述冗余版本数目、rvindex为所述每个无线子帧上传输的第三数据的冗余版本序号。
  13. 如权利要求11所述的方法,其特征在于,所述根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,计算传输所述第二数据所需的冗余版本数目,包括:
    计算所述第二数据的数据大小与所述每个无线子帧能够承载的数据大小的比值;
    将所述比值的上取整或者下取整作为传输所述第二数据所需的冗余版本数目。
  14. 如权利要求11所述的方法,其特征在于,所述根据所述冗余版本数目获取所述每个无线子帧的冗余版本序号,包括:
    获取所述每个无线子帧的系统帧号;
    根据所述每个无线子帧的系统帧号和所述冗余版本数目,计算所述每个无线子帧的冗余版本序号。
  15. 如权利要求14所述的方法,其特征在于,所述根据所述每个无线子帧的系统帧号和所述冗余版本数目,计算所述每个无线子帧的冗余版本序号,包 括:
    根据所述每个无线子帧的系统帧号和所述冗余版本数目,通过如下公式(2)计算所述每个无线子帧的冗余版本序号:
    rvindex=NTTImod RVnum;(2)
    其中,rvindex为所述每个无线子帧的冗余版本序号,RVnum为所述冗余版本数目,NTTI为所述每个无线子帧的系统帧号。
  16. 如权利要求9所述的方法,其特征在于,所述根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据,包括:
    根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置;
    从所述每个无线子帧的数据选择的起始位置中选择一个起始位置;
    根据所述选择的起始位置和所述每个无线子帧能够承载的数据大小,从所述第二数据中连续循环选择在所述每个无线子帧上传输的第三数据。
  17. 一种数据传输的装置,其特征在于,所述装置包括:处理器和发射器;
    所述处理器,用于对待传输的第一数据进行编码,得到第二数据;
    所述处理器,还用于确定传输所述第二数据所需的多个无线子帧,以及所述多个无线子帧中的每个无线子帧能够承载的数据大小;
    所述处理器,还用于根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据,所述每个无线子帧上传输的第三数据的数据大小与所述每个无线子帧能够承载的数据大小相同;
    所述发射器,还用于分别在所述每个无线子帧上传输所述第三数据。
  18. 如权利要求17所述的装置,其特征在于,
    所述处理器,还用于根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置;
    所述处理器,还用于根据所述每个无线子帧的数据选择的起始位置和所述 每个无线子帧能够承载的数据大小,从所述第二数据中选择在所述每个无线子帧上传输的第三数据。
  19. 如权利要求18所述的装置,其特征在于,
    所述处理器,还用于根据所述第二数据的数据大小和所述每个无线子帧能够承载的数据大小,计算传输所述第二数据所需的冗余版本数目;
    所述处理器,还用于根据所述冗余版本数目,获取所述每个无线子帧上传输的第三数据的冗余版本序号;
    所述处理器,还用于根据所述第二数据的数据大小、冗余版本数目和每个无线子帧上传输的第三数据的冗余版本序号,计算所述每个无线子帧的数据选择的起始位置。
  20. 如权利要求19所述的装置,其特征在于,
    所述处理器,还用于根据所述第二数据的数据大小和所述第二数据所用的交织器的行数,计算所述交织器的列数;
    所述处理器,还用于根据所述交织器的列数、所述第二数据的数据大小、所述冗余版本数目和所述每个无线子帧上传输的第三数据的冗余版本序号,分别通过如下公式(1)计算所述每个无线子帧的数据选择的起始位置:
    Figure PCTCN2014094407-appb-100005
    其中,k0为所述每个无线子帧的数据选择的起始位置,
    Figure PCTCN2014094407-appb-100006
    为所述交织器的列数,Ncb为所述第二数据的数据大小,RVnum为所述冗余版本数目、rvindex为所述每个无线子帧上传输的第三数据的冗余版本序号。
  21. 如权利要求19所述的装置,其特征在于,
    所述处理器,还用于计算所述第二数据的数据大小与所述每个无线子帧能够承载的数据大小的比值;
    所述处理器,还用于将所述比值的上取整或者下取整作为传输所述第二数据所需的冗余版本数目。
  22. 如权利要求19所述的装置,其特征在于,
    所述处理器,还用于获取所述每个无线子帧的系统帧号;
    所述处理器,还用于根据所述每个无线子帧的系统帧号和所述冗余版本数目,计算所述每个无线子帧的冗余版本序号。
  23. 如权利要求22所述的装置,其特征在于,
    所述处理器,还用于根据所述每个无线子帧的系统帧号和所述冗余版本数目,通过如下公式(2)计算所述每个无线子帧的冗余版本序号:
    rvindex=NTTImod RVnum;(2)
    其中,rvindex为所述每个无线子帧的冗余版本序号,RVnum为所述冗余版本数目,NTTI为所述每个无线子帧的系统帧号。
  24. 如权利要求17所述的装置,其特征在于,
    所述处理器,还用于根据所述第二数据的数据大小,获取所述每个无线子帧的数据选择的起始位置;
    所述处理器,还用于从所述每个无线子帧的数据选择的起始位置中选择一个起始位置;
    所述处理器,还用于根据所述选择的起始位置和所述每个无线子帧能够承载的数据大小,从所述第二数据中连续循环选择在所述每个无线子帧上传输的第三数据。
PCT/CN2014/094407 2014-12-19 2014-12-19 一种数据传输的装置和方法 WO2016095217A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480037910.5A CN106134271B (zh) 2014-12-19 2014-12-19 一种数据传输的装置和方法
PCT/CN2014/094407 WO2016095217A1 (zh) 2014-12-19 2014-12-19 一种数据传输的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/094407 WO2016095217A1 (zh) 2014-12-19 2014-12-19 一种数据传输的装置和方法

Publications (1)

Publication Number Publication Date
WO2016095217A1 true WO2016095217A1 (zh) 2016-06-23

Family

ID=56125677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094407 WO2016095217A1 (zh) 2014-12-19 2014-12-19 一种数据传输的装置和方法

Country Status (2)

Country Link
CN (1) CN106134271B (zh)
WO (1) WO2016095217A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330671A (zh) * 2007-06-20 2008-12-24 北京三星通信技术研究有限公司 发送广播信息的设备和方法
KR20090067011A (ko) * 2007-12-20 2009-06-24 엘지전자 주식회사 무선통신 시스템에서 데이터 전송 방법
CN102448122A (zh) * 2011-12-30 2012-05-09 中兴通讯股份有限公司 一种确定子帧中传输块大小的方法和基站
CN102695283A (zh) * 2012-05-28 2012-09-26 华为技术有限公司 下行子帧的调度方法及基站
CN103944674A (zh) * 2014-04-04 2014-07-23 浙江大学 适合物理层无速率编码传输的数据拆分封装方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007212605B2 (en) * 2006-02-03 2010-06-17 Interdigital Technology Corporation Method and system for supporting multiple hybrid automatic repeat request processes per transmission time interval
EP2706678B1 (en) * 2011-05-03 2019-04-03 LG Electronics Inc. Method for transmitting/receiving downlink control information in wireless communication system and device therefor
CN103546235B (zh) * 2012-07-13 2017-04-19 电信科学技术研究院 时分双工系统中的上行数据发送及接收方法和设备
CN103915100B (zh) * 2013-01-07 2019-02-15 中兴通讯股份有限公司 一种编码模式切换方法和装置、解码模式切换方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330671A (zh) * 2007-06-20 2008-12-24 北京三星通信技术研究有限公司 发送广播信息的设备和方法
KR20090067011A (ko) * 2007-12-20 2009-06-24 엘지전자 주식회사 무선통신 시스템에서 데이터 전송 방법
CN102448122A (zh) * 2011-12-30 2012-05-09 中兴通讯股份有限公司 一种确定子帧中传输块大小的方法和基站
CN102695283A (zh) * 2012-05-28 2012-09-26 华为技术有限公司 下行子帧的调度方法及基站
CN103944674A (zh) * 2014-04-04 2014-07-23 浙江大学 适合物理层无速率编码传输的数据拆分封装方法

Also Published As

Publication number Publication date
CN106134271A (zh) 2016-11-16
CN106134271B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
JP7017627B2 (ja) 通信システムにおける冗長バージョン設計ソリューション
JP6108239B2 (ja) アップリンク制御情報を送信するための方法および装置
RU2470467C2 (ru) Пакетирование информации аск в системе беспроводной связи
CN103202058B (zh) 移动站装置、无线通信方法及集成电路
WO2017028001A1 (en) Determining a harq-ack response codebook in a wireless communication system
WO2016011950A1 (zh) 一种传输、存储下行数据的方法、基站及终端
US11323209B2 (en) Modem chips and receivers for performing hybrid automatic repeat request processing
WO2018223877A1 (zh) 数据传输方法和数据传输装置
US20170222759A1 (en) Device and Method of Handling Data Transmission
US20150049710A1 (en) Method and terminal for adjusting harq buffer size
US10165595B2 (en) Device and method of handling uplink transmission
US20100189039A1 (en) Derivation of lte system information retransmission redundancy versions
CN109120373B (zh) 一种信道编码方法、数据接收方法及相关设备
JP2010213067A (ja) 送信装置及びack/nack送信方法
EP3667970B1 (en) Harq re-transmission method and apparatus, and transmission device
WO2016179743A1 (zh) 一种编码装置及方法
WO2016095217A1 (zh) 一种数据传输的装置和方法
WO2020034332A1 (en) Bit selection for hybrid automatic repeat requests
CN109586843B (zh) 通信系统中冗余版本的设计方案
JP2003256246A (ja) 記憶装置および記憶方法
WO2011103717A1 (zh) 发送装置、发送方法和通信系统
JP2015201670A (ja) 通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908252

Country of ref document: EP

Kind code of ref document: A1