WO2016093397A1 - 솔라셀 모듈을 구비한 온실 - Google Patents

솔라셀 모듈을 구비한 온실 Download PDF

Info

Publication number
WO2016093397A1
WO2016093397A1 PCT/KR2014/012197 KR2014012197W WO2016093397A1 WO 2016093397 A1 WO2016093397 A1 WO 2016093397A1 KR 2014012197 W KR2014012197 W KR 2014012197W WO 2016093397 A1 WO2016093397 A1 WO 2016093397A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical member
greenhouse
solar cell
wavelength region
Prior art date
Application number
PCT/KR2014/012197
Other languages
English (en)
French (fr)
Inventor
장민준
Original Assignee
장민준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장민준 filed Critical 장민준
Priority to PCT/KR2014/012197 priority Critical patent/WO2016093397A1/ko
Publication of WO2016093397A1 publication Critical patent/WO2016093397A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Definitions

  • the present invention relates to a greenhouse, and more particularly, to a greenhouse having a solar cell module for generating power using light of idle wavelengths unnecessary for plant cultivation.
  • a greenhouse having a solar cell module capable of simultaneously performing photovoltaic power generation and plant cultivation is disclosed.
  • Korean Patent Laid-Open Publication No. 2013-0016781 discloses a solar cell module and a solar cell module that heat the greenhouse based on thermal energy generated in a process of generating electrical energy inside the greenhouse.
  • a greenhouse integrated photovoltaic device having a tracking module for moving a battery module is disclosed.
  • the greenhouse having the conventional solar cell module described above has the following problems.
  • the light of the effective wavelength range which should be irradiated toward the plants grown in the greenhouse, is used for power generation by being irradiated to the solar cell module or reflected outside the greenhouse by the solar cell module.
  • the loss of light in the effective effective wavelength range occurs.
  • the present invention has been made to solve the above-mentioned problems, and is a greenhouse having a solar cell module capable of generating power using light in an idle wavelength region while being irradiated to a plant cultivation region without losing light in an effective wavelength region.
  • the purpose is to provide.
  • a greenhouse having a solar cell module according to the present invention for achieving the above object includes a frame forming a support structure and a light transmitting member supported by the frame, and having a cultivation space in which plants are grown.
  • the light in the idle wavelength region and the light in the effective wavelength region are installed on the light propagation path so that the light B in the idle wavelength region, which is not utilized for plant cultivation, is irradiated to the solar cell.
  • a solar module including a second optical member configured to separate A) from each other, and an effective wavelength region of light A installed in the greenhouse structure and separated by the second optical member To be irradiated in the cultivation space provided with a solar cell module comprising a third optical member that is configured to control the irradiation range of the light (A) of the effective wavelength range.
  • the greenhouse having the above-described solar cell module is supported by the frame and disposed above the cultivation space, and the inclination angle of the solar cell module according to the change in the position of the sun so that the solar cell module can track the sun.
  • a solar tracking device including a driving unit configured to adjust a rotation angle and a rotation angle, and a control unit controlling the driving unit.
  • the electronic device may further include a third optical member driver configured to tilt or rotate the third optical member in response to a change in an inclination angle and a rotation angle of the solar cell module.
  • the driving unit supports a rotation angle adjusting unit configured to rotate about a rotation axis, the first optical member, and coupled to the rotation angle adjusting unit to rotate about the rotation axis together with the rotation angle adjusting unit,
  • An inclination angle adjuster configured to adjust an inclination angle of the first optical member with respect to a plane orthogonal to a rotation axis, wherein the second optical member is adjusted to be disposed on a traveling path of light collected by the first optical member
  • the solar cell may be coupled to the unit, and the solar cell may be coupled to the inclination angle adjusting unit so as to be disposed on a path of the light B in the idle wavelength region separated by the second optical member.
  • the first optical member may include a condenser lens.
  • the second optical member may include an optical filter that reflects the light B in the idle wavelength region from sunlight and irradiates the solar cell and transmits the light A in the effective wavelength region.
  • the third optical member may include a condenser lens.
  • the third optical member may include a reflecting mirror.
  • the second optical member may include a band pass filter for transmitting a 450 nm band, a band pass filter for transmitting a 660 nm band, or a band pass filter for transmitting a 730 nm band.
  • the second optical member may be a band pass filter that allows light of two or more frequency bands among the 450 nm band, the 660 nm band, and the 730 nm band to pass.
  • the greenhouse equipped with the solar cell module according to the present invention has the following effects.
  • the temperature of the plant cultivation region can be minimized to be unnecessarily increased by the irradiation of light in the idle wavelength region.
  • FIG. 1 is a schematic diagram of one embodiment of a greenhouse with a solar cell module according to the invention.
  • FIG. 2 is a schematic diagram of the solar module shown in FIG. 1.
  • 3 is a view for explaining the operation of the third optical member.
  • Figure 4 is a schematic diagram showing a part of another embodiment of a greenhouse with a solar cell module according to the present invention.
  • FIG. 5 is a view for explaining the operation of the third optical member shown in FIG.
  • FIG. 6 is a perspective view showing a part of another embodiment of a greenhouse having a solar cell module according to the present invention.
  • FIG. 7 is a side view schematically showing a part of the embodiment shown in FIG. 6.
  • FIG. 1 is a schematic diagram of one embodiment of a greenhouse with a solar cell module according to the invention
  • FIG. 2 is a schematic diagram of the solar module shown in FIG. 1.
  • one embodiment of a greenhouse having a solar cell module according to the present invention is a greenhouse structure 10, a solar cell module 20, a solar tracking device 30, and a third optical member 29. ).
  • the greenhouse structure 10 includes a frame 11 forming a support structure and a light transmissive member 12 supported by the frame 11.
  • the light transmissive member 12 may be a material that transmits sunlight, such as glass, transparent plastic, transparent vinyl, and separates the external environment from the inside of the greenhouse structure 10.
  • a cultivation space 13 in which plants are grown is formed below the inside of the greenhouse structure 10.
  • the solar cell module 20 includes a first optical member 23 for condensing sunlight incident through the housing 21, a solar cell 22, and a light transmissive member 12.
  • the second optical member 24 is configured to separate sunlight from light B in the idle wavelength region and light A in the effective wavelength region.
  • Light in the effective wavelength range means light in the effective wavelength range used for plant cultivation
  • light in the idle wavelength range means light belonging to a wavelength range outside the effective wavelength range.
  • the blue light of the wavelength 450 nm band, the red light of the 660 nm band, and the light of the 730 nm band correspond to the light of the effective wavelength range (A), and the green light reflected by the plant.
  • Near infrared light of 750 nm or more that transmits or generates heat may correspond to light B in the idle wavelength region.
  • the housing 21 forms an outer shape of the solar cell module 20, and serves to support the plurality of solar cells 22, the first optical member 23, and the second optical member 24.
  • the solar cells 22 may be installed on a circuit board (not shown) fixed to the side wall 211 of the housing 21 or the separation walls 212 forming the unit cells.
  • the solar cell 22 is made of a semiconductor material that can effectively absorb light of a specific wavelength and convert it into electricity.
  • a crystalline silicon single junction is about 400 nm to about 1150 nm
  • an amorphous silicon single junction is about 300 nm to about 720 nm
  • ribbon silicon is about 350 nm to about 1150 nm
  • CIGS copper indium gallium selenide
  • CdTe is from about 400 nm to about 895 nm
  • the GaAs multi-junction effectively absorbs light in the wavelength range of about 350 nm to about 1750 nm.
  • the manufactured solar cell 22 can be selected.
  • the first optical member 23 is installed on the upper surface of the housing 21.
  • the first optical member 23 serves to collect sunlight.
  • a condenser lens such as a Fresnel lens or a convex lens may be used.
  • the second optical member 24 is installed on the traveling path of the light collected by the first optical member 23, and the collected light receives the light B in the idle wavelength region and the light A in the effective wavelength region. It separates each other and transmits the light B in the idle wavelength region to the solar cell 22.
  • the second optical member 24 includes an optical filter installed diagonally inside the housing 21.
  • the optical filter passes the light A in the effective wavelength region among the collected sunlight and reflects the light B in the idle wavelength region toward the solar cell 22.
  • the second optical member 24 is installed within the focal length of the first optical member 23. Therefore, the light B in the idle wavelength region reflected by the second optical member 24 is collected in the solar cell 22.
  • the light A in the effective wavelength region passing through the second optical member 24 is emitted after the focal point passes. Light A in the emitted effective wavelength region travels toward the lower surface of the housing 21.
  • the solar tracking device 30 is a device for improving the power generation efficiency of the solar cell module 20.
  • the solar tracking device 30 adjusts the inclination angle ⁇ and the rotation angle ⁇ of the solar cell module 20 so that the solar cell module 20 is always perpendicular to the solar light regardless of the change in the altitude and azimuth angle of the sun. do. That is, the rotation angle ⁇ of the solar cell module 20 is adjusted so that the solar cell module 20 faces east, south, and west in accordance with the change of the time of the day, and at the same time, the inclination angle ( ⁇ ) is adjusted so that the solar cell module 20 always faces the sun.
  • the angle of inclination ⁇ increases as the sun's altitude is lower, for example, 0 when the sun's altitude is 90 degrees.
  • the solar tracking device 30 may include a rotation angle adjustment unit for rotating the solar cell module 20 in the east-west direction and an inclination angle adjustment unit for rotating the solar cell module 20 in the north-south direction according to the change in the altitude of the sun.
  • the solar tracking device 30 automatically rotates only in the east-west direction, and there is a double-axis type in which the rotation in the north-south direction is automatically controlled both in the east-west direction and the north-south direction.
  • a coordinate calculation method that operates according to the coordinates calculated by the program based on the tracking method and an optical sensor method that operates in accordance with the signal output detected by the optical sensor from time to time.
  • the light sensor method has a problem that it is impossible to operate when the weather is cloudy.
  • the solar tracking device 30 includes a support unit on which the solar cell module 20 is installed, a drive unit configured to adjust the inclination angle and the rotation angle of the support unit, and a control unit controlling the drive unit.
  • the support part is made of a transparent material or a region through which the light A in the effective wavelength region passes, so that the light A in the effective wavelength region passed through the solar cell module 20 can pass therethrough.
  • the third optical member 29 serves to control the irradiation range of the light A in the effective wavelength region which proceeds while being separated and separated by the second optical member 24.
  • FIG. 3 is a view for explaining the role of the third optical member.
  • light A in the effective wavelength range is diverged again after being focused on by the first optical member 23, and thus, when the third optical member 29 is not present, a wide range is obtained.
  • the third optical member 29 in the form of a condenser lens, such as a Fresnel lens or a convex lens, is installed, the third optical member 29 may emit light A in the effective wavelength region. By reducing the divergence angle of), the light A in the effective wavelength region can be minimized from escaping out of the greenhouse.
  • a condenser lens such as a Fresnel lens or a convex lens
  • Figure 4 is a schematic diagram showing a part of another embodiment of a greenhouse having a solar cell module according to the present invention
  • Figure 5 is a view for explaining the operation of the reflection mirror shown in FIG.
  • the present embodiment uses the condenser lens 49 and the reflection mirror 41 as the third optical member 40, and the reflection mirror 41. It further comprises a third optical member driver 45 configured to tilt ().
  • the greenhouse equipped with the solar cell module according to the present embodiment changes the path of the light A in the effective wavelength range, and the sun has a low altitude due to the influence of seasons or time, so that the light in the effective wavelength range A is outside the greenhouse. Even when the radiation is emitted, the light A in the effective wavelength range is configured to be irradiated as much as possible to the cultivation space 13 of the greenhouse.
  • the greenhouse equipped with the solar cell module according to the present embodiment can have a great effect when used for the cultivation of plants that grow well in a sunshine-rich environment.
  • the solar cell module 20 includes a housing 21, a solar cell 22, a first optical member 23 for condensing sunlight, and a second optical member 24. do.
  • a condensing lens 49 through which light A in the effective wavelength region passes is provided, and a reflection mirror is provided on one side of the condensing lens 49.
  • 41 is rotatably installed.
  • the third optical member driver 45 is coupled to the rotating shaft of the reflective mirror 41 to rotate the reflective mirror 41.
  • the third optical member drive unit is interlocked with the inclination angle adjusting unit of the sun tracking device 30. That is, it is preferable to configure the third optical member driver so that the rotation angle ⁇ of the reflection mirror also increases as the inclination angle ⁇ of the sun tracking device 30 increases.
  • the tilt angle control unit of the solar tracking device 30 and the third optical member drive unit may be mechanically connected to each other by a gear or the like, or the tilt angle control unit and the third optical member drive unit may be interlocked through the control unit of the solar tracking device 30. Can be.
  • FIG. 6 is a perspective view showing a part of another embodiment of a greenhouse having a solar cell module according to the present invention
  • Figure 7 is a side view schematically showing a part of the embodiment shown in FIG. This embodiment is different in the structure of the solar tracking device and the solar module and the embodiment shown in Figures 1 and 4, with reference to Figures 6 and 7, only this portion will be described in detail.
  • the sun tracking device includes a rotation angle adjustment unit 41 and an inclination angle adjustment unit 45.
  • the rotation angle adjusting unit 41 is a plate having a substantially semi-circular shape that rotates about the rotation shaft 49 of the support plate 44 installed on the frame 11.
  • the rotation angle adjusting unit 41 adjusts the rotation angle ⁇ of the first optical member 23 such that the first optical member 23 of the solar cell module 20 faces east, south, and west in order.
  • the rotation angle adjusting unit 41 rotates by the motor 51 and the gear set 43 installed on the support plate 44.
  • a pair of posts 42 are coupled to the rotation angle adjusting unit 41.
  • Tilt angle adjustment portion 45 is in the form of a circular ring.
  • the first optical member 23 is installed inside the circular ring.
  • the inclination angle adjuster 45 is installed to be rotatable to the pair of posts 42.
  • the inclination angle adjuster 45 adjusts the inclination angle ⁇ formed by the first optical member 23 and the plane perpendicular to the rotation axis 49 of the rotation angle adjuster 41 according to the change in the altitude of the sun. Since the inclination angle adjustment unit 45 is coupled to the rotation angle adjustment unit 41 by a pair of posts 42, when the rotation angle adjustment unit 41 rotates, the inclination angle adjustment unit 45 also rotates together.
  • the second support bar 50 for fixing the second optical member 24 is coupled to the inclination angle adjuster 45.
  • the second optical member 24 is disposed on the traveling path of the light collected by the first optical member 23 by the second support bar 50.
  • the second optical member 24 is fixed to the end of the second support bar 50.
  • a tooth 55 is formed in the middle portion of the second support bar 50. This tooth 55 meshes with the gear set 54 of the motor 53 provided in the rotation angle adjusting section 41. Therefore, when the motor 53 rotates, the inclination angle adjuster 45 rotates with respect to the rotation angle adjuster 41.
  • first support bar 46 for fixing the solar cell 22 is coupled to the inclination angle adjuster 45.
  • the end 47 of the first support bar 46 forms a C shape to facilitate fixing the solar cell 22.
  • the solar cell 22 is disposed on the traveling path of the light B in the idle wavelength region separated by the second optical member 24 by the first support bar 46.
  • the first optical member 23 is used. Even if the rotation angle or the inclination angle of the second optical member 24 is always changed, the second optical member 24 is always disposed on the traveling path of the focused light, and the solar cell 22 is always on the traveling path of the light B in the idle wavelength range. Is placed.
  • Light A in the effective wavelength region passing through the second optical member 24 is irradiated to the culture space 13 through the opening 48 of the support plate 44.
  • the third optical member may be installed in the opening 48 of the support plate 44.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 온실에 관한 것으로서, 더욱 상세하게는 식물의 재배에 불필요한 유휴 파장의 빛을 이용하여 발전을 하는 솔라셀 모듈을 구비한 온실에 관한 것이다. 본 발명에 따른 솔라셀 모듈을 구비한 온실은 지지구조를 이루는 프레임과 그 프레임에 의해서 지지되는 광투과성 부재를 포함하며, 그 내부에 식물이 재배되는 재배공간을 구비한 온실 구조물과, 상기 온실 구조물의 내부에 설치되며, 솔라셀(solar cell)과, 상기 광투과성 부재를 통해서 입사된 태양광을 집광시키도록 구성된 제1광학부재와 그 제1광학부재에 의해서 집광된 빛의 진행경로 상에 설치되며 상기 집광된 빛 중에서 식물 재배에 활용되지 않는 유휴 파장 영역의 빛(B)이 상기 솔라셀에 조사되도록, 유휴 파장 영역의 빛(B)과 유효 파장 영역의 빛(A)을 서로 분리시키도록 구성된 제2광학부재를 포함하는 솔라셀 모듈과, 상기 온실 구조물의 내부에 설치되며, 상기 제2광학부재에 의해서 분리된 유효 파장 영역의 빛(A)이 상기 재배공간에 조사되도록 상기 유효 파장 영역의 빛(A)의 조사 범위를 제어하도록 구성된 제3광학부재를 포함하는 솔라셀 모듈을 구비한다. 본 발명에 따른 솔라셀 모듈을 구비한 온실은 태양광 중에서 유휴 파장 영역의 빛을 분리한 후 솔라셀에 조사하여 전기에너지로 변환한 후 다시 사용할 수 있으므로 에너지를 절감할 수 있다.

Description

솔라셀 모듈을 구비한 온실
본 발명은 온실에 관한 것으로서, 더욱 상세하게는 식물의 재배에 불필요한 유휴 파장의 빛을 이용하여 발전을 하는 솔라셀 모듈을 구비한 온실에 관한 것이다.
공개특허공보 제2013-0021308호 온실에 태양전지모듈을 설치함으로써, 태양광발전 및 식물재배를 동시에 수행할 수 있는 태양전지모듈을 구비한 온실이 개시되어 있다.
또한, 공개특허공보 제2013-0016781호에는 온실의 내부에 태양전지모듈 및 태양전지모듈이 전기에너지를 발생시키는 과정에서 발생되는 열에너지를 바탕으로 온실을 난방하는 난방모듈 및 태양의 위치변화에 따라 태양전지모듈을 이동시키는 트래킹 모듈을 구비한 온실 일체형 태양광 발전 장치가 개시되어 있다.
<선행기술문헌>
공개특허공보 제2013-0021308호
공개특허공보 제2013-0016781호
상술한 종래의 태양전지모듈을 구비한 온실은 다음과 같은 문제가 있었다.
첫째, 온실에서 재배되는 식물을 향해서 조사되어야 하는, 식물의 생장에 도움이 되는 유효 파장 영역의 빛이 태양전지모듈에 조사되어 발전에 사용되거나, 태양전지모듈에 의해서 온실외부로 반사되므로 식물 생장에 필요한 유효 파장 영역의 빛의 손실이 발생한다.
둘째, 식물 생장에 도움이 되지 않는 유휴 파장 영역의 빛이 식물 재배공간에 조사되어 식물 재배공간의 온도를 필요이상으로 상승시켜, 별도의 냉방이 필요할 수 있다. 식물의 생장에는 청색 광과 적색 광이 주로 필요하며, 녹색 광을 불필요하다. 식물이 청색 광과 적색 광을 흡수하고, 녹색 광은 반사하기 때문이다(이러한 이유로 식물이 녹색으로 보인다).
본 발명은 상술한 문제점을 개선하기 위한 것으로서, 유효 파장 영역의 빛이 손실되지 않고, 식물 재배 영역에 조사되는 동시에, 유휴 파장 영역의 빛을 이용하여 발전을 할 수 있는 솔라셀 모듈을 구비한 온실을 제공하는 것을 목적으로 한다.
상술한 목적을 달성하기 위한 본 발명에 따른 솔라셀 모듈을 구비한 온실은 지지구조를 이루는 프레임과 그 프레임에 의해서 지지되는 광투과성 부재를 포함하며, 그 내부에 식물이 재배되는 재배공간을 구비한 온실 구조물과, 상기 온실 구조물의 내부에 설치되며, 솔라셀(solar cell)과, 상기 광투과성 부재를 통해서 입사된 태양광을 집광시키도록 구성된 제1광학부재와 그 제1광학부재에 의해서 집광된 빛의 진행경로 상에 설치되며 상기 집광된 빛 중에서 식물 재배에 활용되지 않는 유휴 파장 영역의 빛(B)이 상기 솔라셀에 조사되도록, 유휴 파장 영역의 빛(B)과 유효 파장 영역의 빛(A)을 서로 분리시키도록 구성된 제2광학부재를 포함하는 솔라셀 모듈과, 상기 온실 구조물의 내부에 설치되며, 상기 제2광학부재에 의해서 분리된 유효 파장 영역의 빛(A)이 상기 재배공간에 조사되도록 상기 유효 파장 영역의 빛(A)의 조사 범위를 제어하도록 구성된 제3광학부재를 포함하는 솔라셀 모듈을 구비한다.
상술한 솔라셀 모듈을 구비한 온실은 상기 프레임에 의해서 지지되어, 상기 재배공간의 상부에 배치되며, 상기 솔라셀 모듈이 태양을 트랙킹할 수 있도록 태양의 위치의 변화에 따라 상기 솔라셀 모듈의 경사각과 회전각도를 조절하도록 구성된 구동부와 상기 구동부를 제어하는 제어부를 포함하는 태양 추적 장치와, 상기 솔라셀 모듈의 경사각과 회전각도가 변화하여도 상기 유효 파장 영역의 빛이 재배공간에 조사되도록, 상기 솔라셀 모듈의 경사각과 회전각도 변화에 연동하여 상기 제3광학부재를 기울이거나 회전시키도록 구성된 제3광학부재 구동부를 더 포함할 수 있다.
상기 구동부는, 회전축을 중심으로 회전하도록 구성된 회전각도 조절부와, 상기 제1광학부재를 지지하며, 상기 회전각도 조절부에 결합되어 상기 회전각도 조절부와 함께 상기 회전축을 중심으로 회전하며, 상기 회전축에 직교하는 평면에 대한 상기 제1광학부재의 경사각을 조절하도록 구성된 경사각 조절부를 구비하며, 상기 제2광학부재는 상기 제1광학부재에 의해서 집광된 빛의 진행경로 상에 배치되도록 상기 경사각 조절부에 결합되며, 상기 솔라셀은 상기 제2광학부재에 의해서 분리된 유휴 파장 영역의 빛(B)의 진행경로 상에 배치되도록 상기 경사각 조절부에 결합될 수 있다.
또한, 상기 제1광학부재는 집광렌즈를 포함할 수 있다.
또한, 상기 제2광학부재는 태양광 중에서 유휴 파장 영역의 빛(B)은 반사시켜서 상기 솔라셀에 조사하며, 유효 파장 영역의 빛(A)은 투과시키는 광학필터를 포함할 수 있다.
또한, 상기 제3광학부재는 집광렌즈를 포함할 수 있다. 또한, 상기 제3광학부재는 반사 거울을 포함할 수 있다.
상기 제2광학부재는 450㎚ 대역을 투과시키는 대역필터, 660㎚ 대역을 투과시키는 대역필터 또는 730㎚ 대역을 투과시키는 대역필터를 포함할 수 있다. 또한, 상기 제2광학부재는 450㎚ 대역, 660㎚ 대역 및 730㎚ 대역 중 둘 이상의 주파수 대역의 빛을 통과시키는 대역필터일 수도 있다.
본 발명에 따른 솔라셀 모듈을 구비한 온실은 다음과 같은 효과가 있다.
첫째, 태양광 중에서 유휴 파장 영역의 빛을 분리한 후 솔라셀에 조사하여 전기에너지로 변환한 후 다시 사용할 수 있으므로 에너지를 절감할 수 있다.
둘째, 식물 재배 영역의 온도가 유휴 파장 영역의 빛의 조사에 의해서 불필요하게 상승하는 것을 최소화할 수 있다.
셋째, 제3광학 수단을 통해서 유효 파장 영역의 빛이 식물 재배 영역으로 유도되므로 유효 파장 영역의 빛의 손실을 최소화할 수 있다.
도 1은 본 발명에 따른 솔라셀 모듈을 구비한 온실의 일실시예의 개략도이다.
도 2는 도 1에 도시된 솔라셀 모듈의 개략도이다.
도 3은 제3광학부재의 작용을 설명하기 위한 도면이다.
도 4는 본 발명에 따른 솔라셀 모듈을 구비한 온실의 다른 실시예의 일부를 나타낸 개략도이다.
도 5는 도 4에 도시된 제3광학부재의 작용을 설명하기 위한 도면이다.
도 6은 본 발명에 따른 솔라셀 모듈을 구비한 온실의 다른 실시예의 일부를 나타낸 사시도이다.
도 7은 도 6에 도시된 실시예의 일부를 개략적으로 나타낸 측면도이다.
이하, 본 발명에 발명의 바람직한 실시예를 첨부된 도면들에 의거하여 상세하게 설명한다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 발명에 따른 솔라셀 모듈을 구비한 온실의 일실시예의 개략도이며, 도 2는 도 1에 도시된 솔라셀 모듈의 개략도이다. 도 1과 2를 참고하면, 본 발명에 따른 솔라셀 모듈을 구비한 온실의 일실시예는 온실 구조물(10), 솔라셀 모듈(20), 태양 추적 장치(30) 및 제3광학부재(29)를 포함한다.
온실 구조물(10)은 지지구조를 이루는 프레임(11)과 그 프레임(11)에 의해서 지지되는 광투과성 부재(12)를 포함한다. 광투과성 부재(12)로는 유리, 투명한 플라스틱, 투명한 비닐 등 태양광은 투과시키고, 외부환경과 온실 구조물(10) 내부를 분리할 수 있는 재질이 사용될 수 있다. 온실 구조물(10)의 내부의 아래쪽에는 식물이 재배되는 재배공간(13)이 형성된다.
도 2를 참고하면, 솔라셀 모듈(20)은 하우징(21), 솔라셀(solar cell, 22), 광투과성 부재(12)를 통해서 입사된 태양광을 집광시키는 제1광학부재(23), 태양광을 유휴 파장 영역의 빛(B)과 유효 파장 영역의 빛(A)을 서로 분리시키도록 구성된 제2광학부재(24)를 포함한다.
유효 파장 영역의 빛(A)이란 식물 재배에 활용되는 유효한 파장 범위의 빛을 의미하며, 유휴 파장 영역의 빛(B)이란 유효한 파장 범위를 벗어나는 파장 범위에 속하는 빛을 의미한다. 식물 재배용 온실의 경우에는, 식물이 광합성에 사용하는 파장 450 ㎚ 대역의 청색광과 660 ㎚ 대역의 적색광 및 730 ㎚ 대역의 빛이 유효 파장 영역의 빛(A)에 해당하며, 식물이 반사하는 녹색광과 투과하거나 열을 발생시키는 750 ㎚ 이상의 근 적외선이 유휴 파장 영역의 빛(B)에 해당할 수 있다.
하우징(21)은 솔라셀 모듈(20)의 외형을 형성하며, 복수의 솔라셀(22)과 제1광학부재(23) 및 제2광학부재(24)를 지지하는 역할을 한다.
솔라셀(22)들은 하우징(21)의 측벽(211) 또는 단위 셀들을 형성하는 분리벽(212) 들에 고정된 회로기판(미도시)에 설치될 수 있다.
솔라셀(22)은 특정한 파장의 빛을 효과적으로 흡수하여 전기로 전환시킬 수 있는 반도체 재료로 제작된다. 예를 들어, 결정질 규소 단일 접합부는 약 400 ㎚ 내지 약 1150 ㎚, 무정형 규소 단일 접합부는 약 300 ㎚ 내지 약 720 ㎚, 리본 규소는 약 350 ㎚ 내지 약 1150 ㎚, CIGS(구리 인듐 갈륨 셀레나이드)는 약 350 ㎚ 내지 약 1100 ㎚, CdTe는 약 400 ㎚ 내지 약 895 ㎚, GaAs 다중-접합부는 약 350 ㎚ 내지 약 1750 ㎚ 파장 범위의 빛을 효과적으로 흡수한다.
일반적인 식물 재배의 경우를 예로 들면, 550 ㎚ 대 주변의 녹색광과 750 ㎚ 이상의 근적외선이 유휴 파장 영역의 빛(B)에 해당하므로, 이 영역의 빛에너지를 전기에너지로 효과적으로 변환할 수 있는 반도체 재료로 제작된 솔라셀(22)을 선택할 수 있다.
제1광학부재(23)는 하우징(21)의 상면에 설치된다. 제1광학부재(23)는 태양광은 집광시키는 역할을 한다. 제1광학부재(23)로는 프리넬 렌즈 또는 볼록 렌즈와 같은 집광렌즈가 사용될 수 있다.
제2광학부재(24)는 제1광학부재(23)에 의해서 집광된 빛의 진행경로 상에 설치되며, 집광된 빛을 유휴 파장 영역의 빛(B)과 유효 파장 영역의 빛(A)을 서로 분리시키고 유휴 파장 영역의 빛(B)을 솔라셀(22)에 전달하는 역할을 한다.
제2광학부재(24)는 하우징(21)의 내부에 대각선으로 설치되는 광학필터를 포함한다. 광학필터는 집광된 태양광 중에서 유효 파장 영역의 빛(A)은 통과시키고, 유휴 파장 영역의 빛(B)은 솔라셀(22)을 향해서 반사시킨다. 제2광학부재(24)는 제1광학부재(23)의 초점거리 안에 설치된다. 따라서 제2광학부재(24)에서 반사된 유휴 파장 영역의 빛(B)은 솔라셀(22)에서 모인다. 그리고 제2광학부재(24)를 통과한 유효 파장 영역의 빛(A)은 초점을 지난 후 발산된다. 발산된 유효 파장 영역의 빛(A)은 하우징(21) 하면을 향해 진행한다.
태양 추적 장치(30)는 솔라셀 모듈(20)의 발전효율을 향상시키기 위한 장치이다. 태양 추적 장치(30)는 태양의 고도 및 방위각의 변화에 관계없이 솔라셀 모듈(20)이 항상 태양광과 수직을 이루도록 솔라셀 모듈(20)의 경사각(α)및 회전각도(β)를 조절한다. 즉, 하루 중 시간의 변화에 따라서 솔라셀 모듈(20)이 동쪽, 남쪽, 서쪽 순으로 향하도록 솔라셀 모듈(20)의 회전각도(β)를 조절하고, 동시에 태양의 고도 변화에 따라서 경사각(α)을 조절하여, 솔라셀 모듈(20)이 항상 태양을 향하도록 한다. 경사각(α)은 태양의 고도가 낮을 수록 증가하며, 예를 들어, 태양의 고도가 90도 인 경우에는 0이 된다.
태양 추적 장치(30)는 솔라셀 모듈(20)을 동서 방향으로 회전시키는 회전각도 조절부와 태양의 고도변화에 따라 솔라셀 모듈(20)을 남북 방향으로 회전시키는 경사각 조절부를 구비할 수 있다.
태양 추적 장치(30)는 동서 방향의 회전만 자동으로 하고, 남북 방향의 회전은 계절 변화에 따라서 수동으로 조절하는 단축식과 동서 방향과 남북 방향의 회전 모두 자동으로 하는 양축식이 있다. 또한, 추적방식을 기준으로 프로그램에 의하여 계산된 좌표에 따라서 작동하는 좌표 계산방식과 수시로 광센서에 의하여 검출된 신호출력에 따라서 작동하는 광센서방식이 있다. 광센서 방식은 날씨가 흐린 경우 작동이 불가능하다는 문제가 있다.
태양 추적 장치(30)는 솔라셀 모듈(20)이 설치되는 지지부와 지지부의 경사각과 회전각도를 조절하도록 구성된 구동부와 구동부를 제어하는 제어부를 포함한다. 지지부는 솔라셀 모듈(20)을 통과한 유효 파장 영역의 빛(A)이 통과할 수 있도록, 투명한 재질로 이루어지거나, 유효 파장 영역의 빛(A)이 통과하는 영역이 개방되어 있다.
태양 추적 장치(30)의 다양한 구조는 널리 알려져 있으므로, 자세한 설명은 생략한다.
제3광학부재(29)는 제2광학부재(24)에 의해서 분리된 후 발산되면서 진행하는 유효 파장 영역의 빛(A)을 조사 범위를 제어하는 역할을 한다.
도 3은 제3광학부재의 역할을 설명하기 위한 도면이다. 도 3의 (a)에 도시된 바와 같이, 유효 파장 영역의 빛(A)은 제1광학부재(23)에 의해서 초점에 모인 후 다시 발산되므로, 제3광학부재(29)가 없으면, 넓은 범위로 퍼진다. 따라서 솔라셀 모듈(20)이 설치되지 않았을 때 재배공간(13)으로 조사되었을 유효 파장 영역의 빛(A)의 상당 부분이 온실의 외부로 빠져나갈 수 있다.
도 3의 (b)에 도시된 바와 같이, 프리넬 렌즈 또는 볼록 렌즈와 같은 집광렌즈 형태의 제3광학부재(29)를 설치하면, 제3광학부재(29)가 유효 파장 영역의 빛(A)의 발산각을 줄여서 유효 파장 영역의 빛(A)이 온실 외부로 빠져나가는 것을 최소화할 수 있다.
도 4는 본 발명에 따른 솔라셀 모듈을 구비한 온실의 다른 실시예의 일부를 나타낸 개략도이며, 도 5는 도 4에 도시된 반사거울의 작용을 설명하기 위한 도면이다.
본 실시예는, 도 4와 5에서 알 수 있듯이, 도 1에 도시된 실시예와 달리 제3광학부재(40)로 집광렌즈(49)와 반사거울(41)을 사용하며, 반사거울(41)를 기울이도록 구성된 제3광학부재 구동부(45)를 더 포함한다.
본 실시예에 따른 솔라셀 모듈을 구비한 온실는 유효 파장 영역의 빛(A)의 경로를 변경하여, 계절이나 시간의 영향으로 태양의 고도가 낮아 온실의 외부로 상당량의 유효 파장 영역의 빛(A)이 발산되는 때에도 유효 파장 영역의 빛(A)이 온실의 재배공간(13)으로 최대한 많이 조사될 수 있도록 구성된다. 본 실시예에 따른 솔라셀 모듈을 구비한 온실는 일조량이 많은 환경에서 잘 자라는 식물의 재배에 사용될 때 큰 효과를 볼 수 있다.
도 4와 5에 도시된 바와 같이, 솔라셀 모듈(20)은 하우징(21), 솔라셀(22), 태양광을 집광시키는 제1광학부재(23), 제2광학부재(24)를 포함한다. 하우징(21)의 제1광학부재(23)가 설치된 면의 반대면에는 유효 파장 영역의 빛(A)이 통과하는 집광렌즈(49)가 설치되며, 그 집광렌즈(49)의 일측에는 반사거울(41)이 회전가능하게 설치된다. 제3광학부재 구동부(45)는 반사거울(41)의 회전축에 결합하여, 반사거울(41)을 회전시킨다.
도 5에 도시된 바와 같이, 집광렌즈(49)를 통과한 유효 파장 영역의 빛(A)은 반사거울(41)에 의해서 재배공간(13)을 향해 반사된다. 도 5에서 예상할 수 있듯이, 태양의 고도가 낮을수록 반사거울의 회전각도(θ)가 증가한다. 태양의 고도가 90°이면, 회전각도(θ)가 0이 된다.
제3광학부재 구동부는 태양 추적 장치(30)의 경사각 조절부와 연동되는 것이 바람직하다. 즉, 태양 추적 장치(30)의 경사각(α)이 커질 수록 반사거울의 회전각도(θ)도 증가하도록 제3광학부재 구동부를 구성하는 것이 바람직하다. 태양 추적 장치(30)의 경사각 조절부와 제3광학부재 구동부를 기어 등으로 기계적으로 연결시켜 연동시키거나, 태양 추적 장치(30)의 제어부를 통해서 경사각 조절부와 제3광학부재 구동부를 연동시킬 수 있다.
도 6은 본 발명에 따른 솔라셀 모듈을 구비한 온실의 다른 실시예의 일부를 나타낸 사시도이며, 도 7은 도 6에 도시된 실시예의 일부를 개략적으로 나타낸 측면도이다. 본 실시예는 도 1과 4에 도시된 실시예와 태양 추적 장치 및 솔라셀 모듈의 구조에 있어서 차이가 있으므로, 도 6과 7을 참고하여, 이 부분에 대해서만 상세히 설명한다.
도 6에 도시된 바와 같이, 본 실시예에 따른 태양 추적 장치는 회전각도 조절부(41)와 경사각 조절부(45)를 포함한다.
회전각도 조절부(41)는 프레임(11)에 설치되는 지지판(44)의 회전축(49)을 중심으로 회전하는 대체로 반원형태인 플레이트이다. 회전각도 조절부(41)는 솔라셀 모듈(20)의 제1광학부재(23)가 동쪽, 남쪽, 서쪽 순으로 향하도록 제1광학부재(23)의 회전각도(β)를 조절한다. 회전각도 조절부(41)은 지지판(44)에 설치된 모터(51)와 기어세트(43)에 의해서 회전한다.
회전각도 조절부(41)에는 한 쌍의 포스트(42)가 결합된다.
경사각 조절부(45)는 원형 링 형태이다. 원형 링 안쪽에는 제1광학부재(23)가 설치된다. 경사각 조절부(45)는 한 쌍의 포스트(42)에 회전 가능하도록 설치된다. 경사각 조절부(45)는 태양의 고도 변화에 따라서 회전각도 조절부(41)의 회전축(49)에 직교하는 평면과 제1광학부재(23)가 이루는 경사각(α)을 조절하는 역할을 한다. 경사각 조절부(45)는 한 쌍의 포스트(42)에 의해서 회전각도 조절부(41)에 결합되어 있으므로, 회전각도 조절부(41)가 회전하면 경사각 조절부(45)도 함께 회전한다.
경사각 조절부(45)에는 제2광학부재(24)를 고정시키기 위한 제2지지바(50)가 결합된다. 제2지지바(50)에 의해서 제2광학부재(24)는 제1광학부재(23)에 의해서 집광된 빛의 진행경로 상에 배치된다. 제2지지바(50)의 끝단에는 제2광학부재(24)가 고정된다. 제2지지바(50)의 중간 부분에는 톱니(55)가 형성되어 있다. 이 톱니(55)는 회전각도 조절부(41)에 설치되어 있는 모터(53)의 기어세트(54)와 맞물린다. 따라서 모터(53)가 회전하면 경사각 조절부(45)가 회전각도 조절부(41)에 대해서 회전한다.
또한, 경사각 조절부(45)에는 솔라셀(22)을 고정시키기 위한 제1지지바(46)가 결합된다. 제1지지바(46)의 끝단(47)은 솔라셀(22)을 고정시키기 용이하도록 ㄷ자 형태를 이룬다. 제1지지바(46)에 의해서 솔라셀(22)은 제2광학부재(24)에 의해서 분리된 유휴 파장 영역의 빛(B)의 진행경로 상에 배치된다.
제2광학부재(24)와 솔라셀(22)이 제2지지바(50)과 제1지지바(46)에 의해서 각각 경사각 조절부(45)에 고정되어 있으므로, 제1광학부재(23)의 회전각도나 경사각이 변화하여도, 제2광학부재(24)는 항상 집광된 빛의 진행경로 상에 배치되며, 솔라셀(22)은 항상 유휴 파장 영역의 빛(B)의 진행경로 상에 배치된다.
제2광학부재(24)를 통과한 유효 파장 영역의 빛(A)는 지지판(44)의 개구(48)를 통해서 재배공간(13)에 조사된다. 제3광학부재는 지지판(44)의 개구(48)에 설치할 수 있다.
이상에서 설명된 실시예는 본 발명의 바람직한 실시예를 설명한 것에 불과하고, 본 발명의 권리범위는 설명된 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상과 특허청구범위 내에서 이 분야의 당업자에 의하여 다양한 변경, 변형 또는 치환이 가능할 것이며, 그와 같은 실시예들은 본 발명의 범위에 속하는 것으로 이해되어야 한다.
[부호의 설명]
10: 온실 구조물 11: 프레임
12: 광투과성 부재 13: 재배공간
20: 솔라셀 모듈 21: 하우징
22: 솔라셀 23: 제1광학부재
24: 제2광학부재 29: 제3광학부재
30, 40: 태양 추적 장치 41: 회전각도 조절부
45: 경사각 조절부

Claims (10)

  1. 지지구조를 이루는 프레임과 그 프레임에 의해서 지지되는 광투과성 부재를 포함하며, 그 내부에 식물이 재배되는 재배공간을 구비한 온실 구조물과,
    상기 온실 구조물의 내부에 설치되며, 솔라셀(solar cell)과, 상기 광투과성 부재를 통해서 입사된 태양광을 집광시키도록 구성된 제1광학부재와 그 제1광학부재에 의해서 집광된 빛의 진행경로 상에 설치되며 상기 집광된 빛 중에서 식물 재배에 활용되지 않는 유휴 파장 영역의 빛(B)이 상기 솔라셀에 조사되도록, 유휴 파장 영역의 빛(B)과 유효 파장 영역의 빛(A)을 서로 분리시키도록 구성된 제2광학부재를 포함하는 솔라셀 모듈과,
    상기 온실 구조물의 내부에 설치되며, 상기 제2광학부재에 의해서 분리된 유효 파장 영역의 빛(A)이 상기 재배공간에 조사되도록 상기 유효 파장 영역의 빛(A)의 조사 범위를 제어하도록 구성된 제3광학부재를 포함하는 솔라셀 모듈을 구비한 온실.
  2. 제1항에 있어서,
    상기 프레임에 의해서 지지되어, 상기 재배공간의 상부에 배치되며, 상기 솔라셀 모듈이 태양을 트랙킹할 수 있도록 태양의 위치의 변화에 따라 상기 솔라셀 모듈의 경사각과 회전각도를 조절하도록 구성된 구동부와 상기 구동부를 제어하는 제어부를 포함하는 태양 추적 장치와,
    상기 솔라셀 모듈의 경사각과 회전각도가 변화하여도 상기 유효 파장 영역의 빛이 재배공간에 조사되도록, 상기 솔라셀 모듈의 경사각과 회전각도 변화에 연동하여 상기 제3광학부재를 기울이거나 회전시키도록 구성된 제3광학부재 구동부를 더 포함하는 솔라셀 모듈을 구비한 온실.
  3. 제2항에 있어서,
    상기 구동부는,
    회전축을 중심으로 회전하도록 구성된 회전각도 조절부와,
    상기 제1광학부재를 지지하며, 상기 회전각도 조절부에 결합되어 상기 회전각도 조절부와 함께 상기 회전축을 중심으로 회전하며, 상기 회전축에 직교하는 평면에 대한 상기 제1광학부재의 경사각을 조절하도록 구성된 경사각 조절부를 구비하며,
    상기 제2광학부재는 상기 제1광학부재에 의해서 집광된 빛의 진행경로 상에 배치되도록 상기 경사각 조절부에 결합되며,
    상기 솔라셀은 상기 제2광학부재에 의해서 분리된 유휴 파장 영역의 빛(B)의 진행경로 상에 배치되도록 상기 경사각 조절부에 결합되는 솔라셀 모듈을 구비한 온실.
  4. 제1항에 있어서,
    상기 제1광학부재는 집광렌즈를 포함하는 솔라셀 모듈을 구비한 온실.
  5. 제1항에 있어서,
    상기 제2광학부재는 태양광 중에서 유휴 파장 영역의 빛(B)은 반사시켜서 상기 솔라셀에 조사하며, 유효 파장 영역의 빛(A)은 투과시키는 광학필터를 포함하는 솔라셀 모듈을 구비한 온실.
  6. 제1항에 있어서,
    상기 제3광학부재는 집광렌즈를 포함하는 솔라셀 모듈을 구비한 온실.
  7. 제1항에 있어서,
    상기 제3광학부재는 반사 거울을 포함하는 솔라셀 모듈을 구비한 온실.
  8. 제1항에 있어서,
    상기 제2광학부재는 450㎚ 대역을 투과시키는 대역필터를 포함하는 솔라셀 모듈을 구비한 온실.
  9. 제1항에 있어서,
    상기 제2광학부재는 660㎚ 대역을 투과시키는 대역필터를 포함하는 솔라셀 모듈을 구비한 온실.
  10. 제1항에 있어서,
    상기 제2광학부재는 730㎚ 대역을 투과시키는 대역필터를 포함하는 솔라셀 모듈을 구비한 온실.
PCT/KR2014/012197 2014-12-11 2014-12-11 솔라셀 모듈을 구비한 온실 WO2016093397A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/012197 WO2016093397A1 (ko) 2014-12-11 2014-12-11 솔라셀 모듈을 구비한 온실

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/012197 WO2016093397A1 (ko) 2014-12-11 2014-12-11 솔라셀 모듈을 구비한 온실

Publications (1)

Publication Number Publication Date
WO2016093397A1 true WO2016093397A1 (ko) 2016-06-16

Family

ID=56107568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012197 WO2016093397A1 (ko) 2014-12-11 2014-12-11 솔라셀 모듈을 구비한 온실

Country Status (1)

Country Link
WO (1) WO2016093397A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019125882A1 (en) * 2017-12-19 2019-06-27 Opti-Harvest, Inc. Methods and devices for stimulating growth of grape vines, grape vine replants or agricultural crops
WO2022056481A1 (en) * 2020-09-14 2022-03-17 Wanjun Gao Water and energy efficient agriculture habitat system
WO2023006524A1 (en) 2021-07-28 2023-02-02 Voltiris Sa Device and method for sunlight-based power generation
USD1028646S1 (en) 2021-04-30 2024-05-28 Opti-Harvest, Inc. Canopy unit for light harvesting

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130020377A (ko) * 2011-08-19 2013-02-27 한국전자통신연구원 온실 작물 재배 제어 시스템 및 방법 및 방법
US8418401B2 (en) * 2009-03-18 2013-04-16 Lite-On Green Technologies, Inc. Photovoltaic greenhouse structure
JP2013535959A (ja) * 2010-07-07 2013-09-19 威升開発股▲ふん▼有限公司 温室用ソーラエネルギモジュール
KR101338333B1 (ko) * 2013-05-20 2013-12-06 주식회사 이건창호 태양 전지 모듈을 구비한 유리 온실
KR101450149B1 (ko) * 2013-06-21 2014-10-13 주식회사 엔에스넷 태양 추적이 가능한 일체형 태양광 전송 장치
KR20150007905A (ko) * 2013-06-14 2015-01-21 장민준 솔라셀 모듈을 구비한 온실

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8418401B2 (en) * 2009-03-18 2013-04-16 Lite-On Green Technologies, Inc. Photovoltaic greenhouse structure
JP2013535959A (ja) * 2010-07-07 2013-09-19 威升開発股▲ふん▼有限公司 温室用ソーラエネルギモジュール
KR20130020377A (ko) * 2011-08-19 2013-02-27 한국전자통신연구원 온실 작물 재배 제어 시스템 및 방법 및 방법
KR101338333B1 (ko) * 2013-05-20 2013-12-06 주식회사 이건창호 태양 전지 모듈을 구비한 유리 온실
KR20150007905A (ko) * 2013-06-14 2015-01-21 장민준 솔라셀 모듈을 구비한 온실
KR101450149B1 (ko) * 2013-06-21 2014-10-13 주식회사 엔에스넷 태양 추적이 가능한 일체형 태양광 전송 장치

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019125882A1 (en) * 2017-12-19 2019-06-27 Opti-Harvest, Inc. Methods and devices for stimulating growth of grape vines, grape vine replants or agricultural crops
WO2022056481A1 (en) * 2020-09-14 2022-03-17 Wanjun Gao Water and energy efficient agriculture habitat system
USD1028646S1 (en) 2021-04-30 2024-05-28 Opti-Harvest, Inc. Canopy unit for light harvesting
WO2023006524A1 (en) 2021-07-28 2023-02-02 Voltiris Sa Device and method for sunlight-based power generation

Similar Documents

Publication Publication Date Title
KR101509741B1 (ko) 솔라셀 모듈을 구비한 온실
Luque et al. Photovoltaic concentration at the onset of its commercial deployment
US4454371A (en) Solar energy concentrator system
WO2016093397A1 (ko) 솔라셀 모듈을 구비한 온실
US9709771B2 (en) Light concentrator alignment system
US20130120844A1 (en) Concentrating daylight collector
US20180219510A1 (en) Distributed light condensation/splitting-based comprehensive solar energy utilization system
JP2005142373A (ja) 集光型太陽光発電装置
WO2012008659A1 (ko) 태양 추적장치 및 이를 이용한 태양 추적방법
Song et al. Development of a fiber daylighting system based on the parallel mechanism and direct focus detection
US20110209743A1 (en) Photovoltaic cell apparatus
CN108075008A (zh) 太阳能电池模块
CN102216699B (zh) 能量采集器的太阳能跟踪装置
JP3818651B2 (ja) 太陽光発電システム
WO2013168944A1 (ko) 광원의 유휴 파장 영역의 빛을 이용하는 발전장치
JP2000227573A (ja) 太陽光発電用集光装置
KR100540199B1 (ko) 태양광 발전용 집광장치
CN106774452A (zh) 光伏设备及在该光伏设备上捕获太阳辐射和发电的方法
CN105674587A (zh) 一种反射聚光太阳能发电站
JP2009081278A (ja) 太陽電池、集光型太陽光発電モジュール、集光型太陽光発電ユニット、および太陽電池製造方法
KR20110123922A (ko) 태양광 집광기
EP4177968A1 (en) Optomechanical system to regulate light transmission and electricity production
Leiner et al. CPV membranes made by roll-to-roll printing: A feasible approach?
CN105242389A (zh) 光能输出装置
TWI549419B (zh) 導光發電裝置與方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907985

Country of ref document: EP

Kind code of ref document: A1