WO2016092806A1 - 給電路分岐装置及び給電路分岐方法 - Google Patents

給電路分岐装置及び給電路分岐方法 Download PDF

Info

Publication number
WO2016092806A1
WO2016092806A1 PCT/JP2015/006067 JP2015006067W WO2016092806A1 WO 2016092806 A1 WO2016092806 A1 WO 2016092806A1 JP 2015006067 W JP2015006067 W JP 2015006067W WO 2016092806 A1 WO2016092806 A1 WO 2016092806A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
power supply
path
submarine
terminal station
Prior art date
Application number
PCT/JP2015/006067
Other languages
English (en)
French (fr)
Inventor
山口 祥平
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/531,528 priority Critical patent/US10355744B2/en
Priority to JP2016563499A priority patent/JP6421824B2/ja
Priority to EP15867303.8A priority patent/EP3232578A4/en
Priority to CN201580067088.1A priority patent/CN107005269B/zh
Publication of WO2016092806A1 publication Critical patent/WO2016092806A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/44Arrangements for feeding power to a repeater along the transmission line
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc

Definitions

  • the present invention relates to a power feeding path branching device and a power feeding path branching method, and more particularly to a power feeding path branching device and a power feeding path branching method for branching a power feeding path of a submarine cable.
  • a submarine branching device is used to branch the submarine cable into a plurality of routes.
  • power is supplied to a submarine branching device or a submarine repeater installed in the middle of a submarine cable from a constant current power source of a land station.
  • FIG. 6 is a block diagram showing a configuration of a general submarine cable system 900.
  • the submarine cable system 900 includes a trunk station 1, a trunk station 2, a branch station 3, and a submarine branching device 90. Trunk stations 1 and 2 and branch station 3 are land stations.
  • the seabed branching device 90 is installed on the seabed.
  • the trunk stations 1 and 2 and the branch station 3 are connected to the submarine branching device 90 by submarine cables 51 to 53, respectively.
  • the submarine cables 51 to 53 include submarine repeaters 41 to 43 installed at predetermined intervals to amplify signals to be transmitted.
  • the submarine cables 51 to 53 are installed on the seabed such as transmission paths for transmitting signals and submarine repeaters 41 to 43.
  • the submarine branch device 90 includes a branch unit 94.
  • the branch unit 94 has a function of switching the connection of the power supply paths of the submarine cables 51 to 53 and a function of connecting the power supply paths of the submarine cables 51 to 53 to the ground and grounding them.
  • the submarine cable system 900 also has a function of switching the path of a signal to be transmitted.
  • the power feeding path switching function of the submarine cable system 900 will be described.
  • the trunk station 1 shown in FIG. 6 is provided with a constant current source of positive voltage (+ feed), and the trunk station 2 is provided with a constant current source of negative voltage ( ⁇ feed).
  • the feeding current A from the trunk station 1 flows to the trunk station 2 via the submarine cable 51, the submarine branching device 90 and the submarine cable 52.
  • the branch station 3 is a constant current source of positive voltage (+ feed), and the feed current B from the branch station 3 flows from the branch station 3 to the submarine branching device 90 via the submarine cable 53, and the branch unit 94. Connected to sea earth.
  • FIG. 7 is a block diagram showing a power feeding path when the submarine cable 51 is cut at the position of “X” in the submarine cable system 900 of FIG.
  • the branch unit 94 detects a fault in the submarine cable 51, the branch unit 94 connects the end of the submarine cable 51 accommodated in the submarine branch device 90 to the sea ground.
  • the branch unit 94 connects the power supply path of the submarine cable 52 and the power supply path of the submarine cable 53.
  • the feeding current from the branch station 3 flows to the trunk station 2 via the submarine cable 53, the submarine branching device 90, and the submarine cable 52.
  • the power supply current B of the branch station 3 needs to be equal to the power supply current A of the trunk station 2 in the power supply path shown in FIG. Communication between the trunk station 2 and the branch station 3 is maintained by supplying power to the submarine cables 52 and 53.
  • Patent Document 1 and Patent Document 2 describe a technology for switching a power feeding path.
  • the power supply paths of the submarine cables 52 and 53 that have not been connected to the submarine cable system are connected to the submarine branching device. 90 is connected.
  • a new power supply path is formed between the trunk station 2 and the branch station 3.
  • all the feed currents of the feed paths that may be connected need to be the same. That is, in FIG. 7, the feed current B of the branch station 3 needs to be equal to the feed current A.
  • Patent Documents 1 and 2 describe power supply path switching techniques, but there is no mention of means for solving such problems associated with the addition of submarine cables.
  • An object of this invention is to provide the technique for solving the subject of the difficulty of the extension of the cable resulting from restrictions of electric power feeding current, and the raise of cost.
  • the power supply path branching device includes a first terminal, a second terminal station, and a third terminal station each having a function of supplying power to a cable by a constant current source. And a power supply path branching device connected via a third cable, wherein when the first and second cables are normal, the power supply path of the first cable and the power supply path of the second cable are connected to each other.
  • a feeding path by a first current is formed between the first terminal station and the second terminal station, and when one of the first and second cables fails, the one terminal
  • the third cable by grounding the power feeding path of the third cable and grounding the power feeding path of the third cable, and the branching means for connecting the power feeding path of the other of the first and second cables to the grounding means.
  • a first terminal, a second terminal, and a third terminal each having a power feeding function to a cable by a constant current source are respectively a first cable and a second cable.
  • a power supply path branching method used in a power supply path branching apparatus connected via a third cable wherein the third terminal and the third power supply are grounded by grounding the power supply path of the third cable.
  • a power supply path by a second current is formed between the power supply path of the cable and a ground point, and when the first and second cables are normal, the power supply path of the first cable and the power supply of the second cable are supplied.
  • a power supply path by a first current is formed between the first terminal station and the second terminal station by connecting a path, and a failure of one of the first and second cables
  • the feeding path of the one cable is grounded and the first and second The first cable or the second terminal connected to the other cable by grounding the power feeding path of the other cable of the cable and the grounding point of the power feeding path of the other cable. It is characterized in that a current feeding path is formed.
  • the recording medium recording the control program of the present invention includes a first terminal, a second terminal, and a third terminal each having a power supply function to the cable by a constant current source, the first cable,
  • a non-temporary recording medium recording a control program used in a power supply path branching device connected via a second cable and a third cable, wherein the power supply of the third cable is supplied to a computer of the power supply path branching device.
  • a procedure of forming a power feeding path by a second current between the third terminal station and a grounding point of the power feeding path of the third cable by grounding the path, and normality of the first and second cables Sometimes, by connecting the power feeding path of the first cable and the power feeding path of the second cable, a power feeding path by a first current is provided between the first terminal station and the second terminal station. Forming the first and second casings; In the event of a failure of one of the cables, the power supply path of the one cable is grounded, and the power supply path of the other cable of the first and second cables is grounded to connect the cable to the other cable.
  • a program for executing a procedure for forming a feeding path by the first current between the first or second terminal station and a ground point of the feeding path of the other cable is recorded.
  • the present invention provides a power supply path branching device and a power supply path branching method that allow easy cable extension and suppress an increase in cost associated with the extension.
  • FIG. 1 is a block diagram showing a configuration of a submarine cable system 100 according to a first embodiment of the present invention.
  • the submarine cable system 100 includes a trunk station 1, a trunk station 2, a branch station 3, and a submarine branching device 10. Trunk stations 1 and 2 and branch station 3 are land stations.
  • the trunk stations 1 and 2 and the branch station 3 and the submarine branching device 10 are connected by submarine cables 51 to 53, respectively.
  • Submarine cables 51 to 53 include submarine repeaters 41 to 43 installed at predetermined intervals to amplify signals to be transmitted.
  • the submarine cables 51 to 53 include a transmission path for transmitting signals and a power supply path for supplying power to devices installed on the sea floor such as the submarine repeaters 41 to 43.
  • Power is supplied to the submarine repeaters 41 to 43 by the feeding current from the trunk stations 1 and 2 and the branch station 3.
  • a metal conductor is mainly used for the power feeding path.
  • An optical fiber may be used for the transmission line.
  • the arrow indicating the direction of the feeding current indicates the direction of the current in the description, and does not limit the direction of the current.
  • the submarine branching device 10 is installed in the water including the seabed, and switches a power feeding path and a transmission path between a plurality of submarine cables.
  • the submarine branch device 10 includes a branch unit 11 and a ground unit 12.
  • the branch unit 11 has ports P1 to P3 to which power feeding paths are connected and a function of switching the power feeding paths connected to each port.
  • the power supply path of the submarine cable 51 is connected to the port P1, and the power supply path of the submarine cable 52 is connected to the port P2.
  • the branch unit 11 can be grounded by individually connecting the power supply path connected to each port to a sea earth.
  • the earth unit 12 includes ports P4 and P5 to which a power feeding path is connected.
  • the port P4 of the earth unit 12 is connected to the port P3 of the branch unit 11.
  • the power supply path of the submarine cable 53 is connected to the port P5.
  • the earth unit 12 can also be grounded by individually connecting the power supply path connected to each port to a sea earth.
  • the submarine branching apparatus 10 also has a signal transmission path relay function and switching function between the trunk stations 1 and 2 and the branch station 3.
  • the relay function and switching function of the transmission path in the submarine branching device are known, the detailed description of these functions regarding the signal transmission path is omitted.
  • trunk station 1 and branch station 3 are positive voltage (+ feed) constant current sources
  • trunk station 2 is a negative voltage ( ⁇ feed) constant current source.
  • the feeding current A from the trunk station 1 flows to the trunk station 2 via the submarine cable 51 including the submarine repeater 41, the port P1, the port P2 of the branch unit 11, and the submarine cable 52 including the submarine repeater 42.
  • the branch station 3 is a positive voltage (+ feed) constant current source
  • the feed current B from the branch station 3 flows from the branch station 3 via the submarine cable 53 toward the submarine branching device 10.
  • the power feeding path of the submarine cable 53 is input to the port P5 of the earth unit 12 and connected to the sea earth.
  • port P3 and port P4 are connected.
  • the power supply path between the trunk stations 1 and 2 is insulated from the power supply path from the branch station 3 via the ground unit 12 to the sea ground.
  • FIG. 2 is a block diagram showing an example of a normal power feeding path of the submarine cable system 100.
  • the power feeding path of the submarine cable 53 is connected to the sea earth and is insulated from the power feeding path between the trunk stations 1 and 2. Since the power supply path from the branch station 3 is connected to the sea ground via the ground unit 12, one-end power supply with a positive potential (+) from the branch station 3 to the submarine cable 53 is possible. In this case, the feed current B of the branch station 3 does not have to be equal to the feed current A of the trunk stations 1 and 2. That is, in the configuration of FIG. 2, the branch station 3 and the submarine cable 53 can be operated with a feeding current different from that between the trunk stations 1 and 2.
  • the port P3 of the branch unit 11 and the port P4 of the earth unit 12 are connected, and each unit is connected to sea earth.
  • FIG. 3 is a block diagram showing an example of the power feeding path after switching when a failure occurs at a position marked “X” of the submarine cable 51.
  • the submarine branching device 10 controls the branch unit 11 so that the power supply path from the trunk station 1 connected to the port P1 of the branch unit 11 is connected to the ground.
  • the submarine branching device 10 further controls the branch unit 11 and the earth unit 12 so that the power supply path of the submarine cable 52 connected to the port P2 of the branch unit 11 is connected to the port P3 of the branch unit 11 and the port of the earth unit 12.
  • the submarine cable 52 is fed by the same feeding current A as when the feeding path is formed between the trunk station 1 and the trunk station 2.
  • the power supply path of the submarine cable 53 connected to the branch station 3 is not connected to the power supply paths of the submarine cables 51 and 52 as in FIG. 1 and FIG.
  • the power supply path from the trunk station 2 via the branch unit 11 and the earth unit 12 to sea earth is insulated from the power supply path from the branch station 3 via the earth unit 12 to sea earth.
  • the feed current B of the branch station 3 does not have to be equal to the feed current A of the trunk station 2. That is, even when the power supply path is switched due to a failure of the submarine cable 51, the submarine cable 53 can continue to operate with a power supply current B different from that of the submarine cable 52.
  • the configuration of FIG. 3 even when a fault occurs in the submarine cable 51, the power supply of the submarine cables 52 and 53 without a fault is maintained, so communication between the trunk station 2 and the branch station 3 is also possible. Maintained.
  • the submarine cable system 100 can include the branch station 3 and the submarine cable 53 that are designed with a feeding current B different from the feeding current A of the trunk stations 1 and 2.
  • FIG. 4 is a block diagram showing an example of the power feeding path after switching when a failure occurs at a position marked with “X” of the submarine cable 52.
  • the submarine branching device 10 controls the branch unit 11 so that the power feeding path from the trunk station 2 connected to the port P2 of the branch unit 11 is connected to the sea ground.
  • the submarine branching device 10 further controls the branch unit 11 and the earth unit 12 so that the power supply path of the submarine cable 51 connected to the port P1 of the branch unit 11 is connected to the port P3 of the branch unit 11 and the port of the earth unit 12.
  • the submarine cable 51 is fed by the same feeding current A as when the feeding path is formed between the trunk station 1 and the trunk station 2.
  • the power supply path of the submarine cable 53 connected to the branch station 3 is not connected to the power supply paths of the submarine cables 51 and 52, but is connected to the sea ground via the ground unit 12, as in FIGS.
  • the power supply path from the trunk station 1 via the branch unit 11 and the earth unit 12 to sea earth is insulated from the power supply path from the branch station 3 via the earth unit 12 to sea earth.
  • the feed current B of the branch station 3 does not have to be equal to the feed current A of the trunk station 1. That is, even when the power supply path is switched due to a failure of the submarine cable 52, the submarine cable 53 can continue to operate with a power supply current B different from that of the submarine cable 51.
  • the configuration of FIG. 4 even when a fault occurs in the submarine cable 52, the power supply of the submarine cables 51 and 53 in which no fault has occurred is maintained, so communication between the trunk station 1 and the branch station 3 is also possible. Maintained.
  • the submarine cable system 100 includes the branch station 3 and the submarine cable 53 that are designed with a feed current B different from the feed current A of the trunk stations 1 and 2. Can be mixed in the system.
  • FIG. 5 is a block diagram showing an example of the power feeding path after switching when a failure occurs at a position marked “X” of the submarine cable 52, as in FIG.
  • the configuration of FIG. 5 is different from that of FIG. 4 in that the branch station 3 is a negative voltage (-feed) constant current source.
  • the polarity and current of the power supply of the branch station 3 are the power supplies of the trunk stations 1 and 2. The polarity and current can be set independently.
  • the submarine cable system 100 operates the branch station 3 and the submarine cable 53 connected to the branch station 3 by a power supply path independent of the power supply paths of the trunk stations 1 and 2.
  • the specification of the power supply current of the branch station 3 is the power supply of the trunk stations 1 and 2. There is no need to match the current specifications.
  • the submarine cable system 100 has a branch designed with a feeding current B different from the feeding current A between the trunk stations 1 and 2 even when the feeding path is switched as shown in FIGS. Station 3 and submarine cable 53 can be mixed in the system.
  • the submarine branching device described in the present embodiment is provided with a ground unit, so that it is not necessary to change the design for matching the power supply current of the existing system to the added submarine cable. That is, the submarine cable system according to the first embodiment has an effect that the cable can be easily added and the increase in cost associated with the extension can be suppressed.
  • the configuration of the submarine branching device 10 described in the first embodiment is not limited to the submarine cable system 100, and can be widely applied to general cable communication systems. That is, the effect of the first embodiment can also be obtained by the power feeding path branching device of the second embodiment described below.
  • the power feeding path branching device of the second embodiment is a device corresponding to the seabed branching device 10 of the first embodiment.
  • reference numerals of corresponding elements in FIG. 1 are given in parentheses, and the configuration of the power supply path branching apparatus of the second embodiment will be described.
  • the power supply path branching device (10) of the second embodiment includes a first terminal station (1), a second terminal station (2), and a third terminal each having a power supply function to a cable by a constant current source.
  • the station (3) is a feeding path branching device (10) connected via a first cable (51), a second cable (52) and a third cable (53), respectively.
  • the power supply path branching device (10) includes a branch unit (11) and a ground unit (12).
  • the branch unit (11) When the first and second cables (51, 52) are normal, the branch unit (11) connects the first cable feeding path and the second cable feeding path to the first terminal station ( 1) and the second terminal station (2), a feeding path by the first current (A) is formed.
  • the branch unit (11) grounds the power feeding path of one of the first and second cables when one of the first and second cables (51 or 52) fails, and the other of the first and second cables.
  • the power supply path (52 or 51) is connected to the ground unit (12).
  • the ground unit (12) grounds the power feeding path of the third cable (53), whereby a power feeding path by the second current (B) is provided between the third terminal station (3) and the ground unit (12).
  • the ground unit (12) grounds the power supply path when the power supply path of the other cable (52 or 51) is connected from the branch unit (11).
  • the first or second terminal station (1 or 2) and the ground unit (12) connected to the other cable (52 or 51) A feeding path is formed by the first current (A).
  • the power supply path branching device having such a configuration is provided with the ground unit, so that a design change for matching the power supply current of the added cable with the power supply current of the existing system becomes unnecessary.
  • the power supply path branching device of the present embodiment also has the effect that it is easy to add cables, and it is possible to suppress an increase in cost associated with the addition.
  • the submarine branching device and the power feeding path branching device of each embodiment may include a central processing unit (Central Processing Unit) and a recording device.
  • the CPU and the recording device may be included in any element of the submarine branching device and the power supply path branching device.
  • the branch unit may include a CPU and a recording device.
  • the CPU realizes the functions of the submarine branching device and the power supply path branching device of each embodiment by executing a program recorded in the recording device.
  • a recording device is a fixed non-temporary recording medium. As the recording medium, a semiconductor memory or a fixed magnetic disk device is used, but is not limited thereto.
  • the submarine branching device and the feeder branching device described in the embodiment can be applied particularly to a submarine cable system that frequently uses a submarine branching device such as an inter-island connection.
  • a submarine branching device such as an inter-island connection.
  • the submarine branching device and power feeding path branching device it is possible to add equipment designed with a feeding current different from the feeding current of the existing submarine cable system, and the submarine cable system can be easily expanded.
  • Submarine cable system 100, 900 Submarine cable system 1, 2 Trunk station 3 Branch station 10, 90 Submarine branch device 11, 94 Branch unit 12 Earth unit 41-43 Submarine repeater 51-53 Submarine cable

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

容易な海底ケーブルの増設を可能とし、コストの上昇を抑制可能な給電路分岐装置を提供するために、給電路分岐装置は、第1の端局、第2の端局及び第3の端局がそれぞれ第1のケーブル、第2のケーブル及び第3のケーブルを介して接続され、第1及び第2のケーブルの正常時には、第1のケーブルの給電路と第2のケーブルの給電路とを接続することで第1の電流による給電路を形成し、第1及び第2のケーブルのうち一方のケーブルの障害時には一方のケーブルの給電路を接地し他方のケーブルの給電路を接地部に接続する分岐部と、第3のケーブルの給電路を接地することで第2の電流による給電路を形成し、他方のケーブルの給電路が分岐部から接続された場合には他方のケーブルの給電路を接地することで第1の電流による給電路を形成する接地部と、を備える。

Description

給電路分岐装置及び給電路分岐方法
 本発明は、給電路分岐装置及び給電路分岐方法に関し、特に、海底ケーブルの給電路を分岐するための給電路分岐装置及び給電路分岐方法に関する。
 海底ケーブルシステムでは、海底ケーブルを複数の経路へ分岐させるために海底分岐装置が用いられる。一般に、海底分岐装置や、海底ケーブルの中途に設置された海底中継器への給電は、陸上局の定電流電源から行われる。
 図6は、一般的な海底ケーブルシステム900の構成を示すブロック図である。海底ケーブルシステム900は、トランク局1、トランク局2、ブランチ局3及び海底分岐装置90を備える。トランク局1、2及びブランチ局3は陸上局である。海底分岐装置90は海底に設置される。トランク局1、2及びブランチ局3と海底分岐装置90との間は、それぞれ海底ケーブル51~53によって接続される。海底ケーブル51~53は、伝送される信号を増幅するために所定の間隔で設置された海底中継器41~43を含み、信号を伝送する伝送路及び海底中継器41~43などの海底に設置される機器に電源を供給するための給電路を備える。海底ケーブル51~53の給電路には金属導体が用いられ、伝送路には光ファイバが用いられることが多い。
 海底分岐装置90は、分岐ユニット94を備える。分岐ユニット94は、海底ケーブル51~53の給電路の接続の切替機能、及び、海底ケーブル51~53の給電路をシーアースに接続して接地する機能を備える。海底ケーブルシステム900は、伝送される信号の経路の切替機能をも備える。以下では、海底ケーブルシステム900の給電路の切替機能について説明する。
 図6に示されたトランク局1は正電圧(+給電)の定電流源を備え、トランク局2は負電圧(-給電)の定電流源を備える。トランク局1からの給電電流Aは、海底ケーブル51、海底分岐装置90及び海底ケーブル52を経由してトランク局2へ流れる。ブランチ局3は正電圧(+給電)の定電流源であり、ブランチ局3からの給電電流Bは、ブランチ局3から海底ケーブル53を経由して海底分岐装置90に向かって流れ、分岐ユニット94においてシーアースに接続される。
 図7は、図6の海底ケーブルシステム900において、海底ケーブル51が「X」印の位置で切断された場合の給電路を示すブロック図である。分岐ユニット94は、海底ケーブル51の障害を検知すると、海底分岐装置90に収容された海底ケーブル51の端部をシーアースに接続する。そして、分岐ユニット94は、海底ケーブル52の給電路と海底ケーブル53の給電路とを接続する。その結果、ブランチ局3からの給電電流は、海底ケーブル53、海底分岐装置90、海底ケーブル52を経由してトランク局2に流れる。トランク局2及びブランチ局3による給電は定電流で行われるため、図7に示される給電路では、ブランチ局3の給電電流Bはトランク局2の給電電流Aと等しい必要がある。海底ケーブル52、53への給電により、トランク局2とブランチ局3との間の通信が維持される。
 本発明に関連して、特許文献1及び特許文献2には、給電路の切替技術が記載されている。
特表平11-510350号公報 特開平09-181654号公報
 図6及び図7で説明したように、海底ケーブルシステム900では、海底ケーブル51の障害による給電路の切り替えが発生すると、それまで接続されていなかった海底ケーブル52、53の給電路が海底分岐装置90によって接続される。その結果、トランク局2とブランチ局3との間で新たな給電路が形成される。このため、接続される可能性がある給電路の給電電流は、全て同一である必要がある。すなわち、図7では、ブランチ局3の給電電流Bは給電電流Aに等しい必要がある。従って、トランク局1、2が接続された既設の海底ケーブルシステムに海底分岐装置90、ブランチ局3及び海底ケーブル53を増設する場合には、ブランチ局3の給電電流の仕様を、トランク局1、2の給電電流の仕様に合致させる必要がある。このような給電仕様の制約は、海底ケーブルの増設を困難とするとともに、給電回路の設計コストの上昇をもたらす。特許文献1、2には給電路の切替技術が記載されているが、海底ケーブルの増設に伴うこのような課題を解決する手段への言及がない。
 (発明の目的)
 本発明は、給電電流の制約に起因するケーブルの増設の困難及びコストの上昇という課題を解決するための技術を提供することを目的とする。
 本発明の給電路分岐装置は、定電流源によるケーブルへの給電機能をそれぞれ備えた第1の端局、第2の端局及び第3の端局がそれぞれ第1のケーブル、第2のケーブル及び第3のケーブルを介して接続された給電路分岐装置であって、前記第1及び第2のケーブルの正常時には、前記第1のケーブルの給電路と前記第2のケーブルの給電路とを接続することで前記第1の端局と前記第2の端局との間に第1の電流による給電路を形成し、前記第1及び第2のケーブルのうち一方のケーブルの障害時には前記一方のケーブルの給電路を接地し前記第1及び第2のケーブルのうち他方のケーブルの給電路を接地手段に接続する分岐手段と、前記第3のケーブルの給電路を接地することで前記第3の端局と前記接地手段との間に第2の電流による給電路を形成し、前記他方のケーブルの給電路が前記分岐手段から接続された場合には前記他方のケーブルの給電路を接地することで前記他方のケーブルに接続された前記第1又は第2の端局と前記接地手段との間に前記第1の電流による給電路を形成する前記接地手段と、を備える。
 本発明の給電路分岐方法は、定電流源によるケーブルへの給電機能をそれぞれ備えた第1の端局、第2の端局及び第3の端局がそれぞれ第1のケーブル、第2のケーブル及び第3のケーブルを介して接続された給電路分岐装置で用いられる給電路分岐方法であって、前記第3のケーブルの給電路を接地することで前記第3の端局と前記第3のケーブルの給電路の接地点との間に第2の電流による給電路を形成し、前記第1及び第2のケーブルの正常時には、前記第1のケーブルの給電路と前記第2のケーブルの給電路とを接続することで前記第1の端局と前記第2の端局との間に第1の電流による給電路を形成し、前記第1及び第2のケーブルのうち一方のケーブルの障害時には、前記一方のケーブルの給電路を接地し前記第1及び第2のケーブルのうち他方のケーブルの給電路を接地することで前記他方のケーブルに接続された前記第1又は第2の端局と前記他方のケーブルの給電路の接地点との間に前記第1の電流による給電路を形成する、ことを特徴とする。
 本発明の制御プログラムを記録した記録媒体は、定電流源によるケーブルへの給電機能をそれぞれ備えた第1の端局、第2の端局及び第3の端局がそれぞれ第1のケーブル、第2のケーブル及び第3のケーブルを介して接続された給電路分岐装置で用いられる制御プログラムを記録した一時的でない記録媒体であって、給電路分岐装置のコンピュータに、前記第3のケーブルの給電路を接地することで前記第3の端局と前記第3のケーブルの給電路の接地点との間に第2の電流による給電路を形成する手順、前記第1及び第2のケーブルの正常時には、前記第1のケーブルの給電路と前記第2のケーブルの給電路とを接続することで前記第1の端局と前記第2の端局との間に第1の電流による給電路を形成する手順、前記第1及び第2のケーブルのうち一方のケーブルの障害時には、前記一方のケーブルの給電路を接地し前記第1及び第2のケーブルのうち他方のケーブルの給電路を接地することで前記他方のケーブルに接続された前記第1又は第2の端局と前記他方のケーブルの給電路の接地点との間に前記第1の電流による給電路を形成する手順、を実行させるプログラムを記録する。
 本発明は、ケーブルの増設が容易であり、増設に伴うコストの上昇を抑制可能な給電路分岐装置及び給電路分岐方法を提供する。
第1の実施形態の海底ケーブルシステムの構成を示すブロック図である。 第1の実施形態の海底ケーブルシステムの通常の給電路の例を示すブロック図である。 海底ケーブルにおいて障害が発生した場合の、切り替え後の給電路の例を示すブロック図である。 海底ケーブルにおいて障害が発生した場合の、切り替え後の給電路の例を示すブロック図である。 海底ケーブルにおいて障害が発生した場合の、切り替え後の給電路の例を示すブロック図である。 一般的な海底ケーブルシステムの構成を示すブロック図である。 一般的な海底ケーブルシステムにおいて、海底ケーブルが切断された場合の給電路を示すブロック図である。
 (第1の実施形態)
 図1は、本発明の第1の実施形態の海底ケーブルシステム100の構成を示すブロック図である。海底ケーブルシステム100は、トランク局1、トランク局2、ブランチ局3及び海底分岐装置10を備える。トランク局1、2及びブランチ局3は陸上局である。トランク局1、2及びブランチ局3と海底分岐装置10との間は、それぞれ海底ケーブル51~53によって接続される。海底ケーブル51~53は、伝送される信号を増幅するために所定の間隔で設置された海底中継器41~43を含む。海底ケーブル51~53は、信号を伝送する伝送路、及び、海底中継器41~43などの海底に設置される機器に電源を供給するための給電路を備える。トランク局1、2及びブランチ局3からの給電電流により、海底中継器41~43に電源が供給される。海底ケーブル51~53では、給電路には主に金属導体が用いられる。伝送路には光ファイバが用いられてもよい。なお、各実施形態の図面において、給電電流の方向を示す矢印は説明における電流の方向を示すものであり、電流の方向を限定するものではない。
 海底分岐装置10は海底を含む水中に設置され、複数の海底ケーブル間で給電路及び伝送路を切り替える。海底分岐装置10は、分岐ユニット11及びアースユニット12を備える。分岐ユニット11は、給電路が接続されるポートP1~P3及び各ポートに接続された給電路の切替機能を備える。ポートP1には海底ケーブル51の給電路が接続され、ポートP2には海底ケーブル52の給電路が接続される。分岐ユニット11は、各ポートに接続された給電路を個別にシーアースに接続して接地できる。アースユニット12は、給電路が接続されるポートP4、P5を備える。アースユニット12のポートP4は分岐ユニット11のポートP3と接続される。ポートP5には海底ケーブル53の給電路が接続される。アースユニット12も、各ポートに接続された給電路を個別にシーアースに接続して接地できる。
 以下では海底ケーブルシステム100の給電路の切り替えについて説明する。海底分岐装置10は、トランク局1、2及びブランチ局3の間の信号の伝送路の中継機能及び切替機能をも備える。しかし、海底分岐装置における伝送路の中継機能及び切替機能は知られているため、信号の伝送路に関するこれらの機能の詳細についての説明は省略する。
 図1において、トランク局1及びブランチ局3は正電圧(+給電)の定電流源であり、トランク局2は負電圧(-給電)の定電流源である。トランク局1からの給電電流Aは、海底中継器41を含む海底ケーブル51、分岐ユニット11のポートP1、ポートP2及び海底中継器42を含む海底ケーブル52を経由してトランク局2に流れる。ブランチ局3は正電圧(+給電)の定電流源であるため、ブランチ局3からの給電電流Bは、ブランチ局3から海底ケーブル53を経由して海底分岐装置10に向かって流れる。海底ケーブル53の給電路は、アースユニット12のポートP5に入力されてシーアースに接続される。図1において、ポートP3とポートP4とは接続されている。一方、トランク局1、2間の給電路と、ブランチ局3からアースユニット12を経由してシーアースに至る給電路とは絶縁されている。
 図2は、海底ケーブルシステム100の通常の給電路の例を示すブロック図である。海底ケーブル53の給電路はシーアースと接続されるとともに、トランク局1、2間の給電路とは絶縁される。ブランチ局3からの給電路はアースユニット12を介してシーアースと接続されるため、ブランチ局3から海底ケーブル53への正電位(+)による片端給電が可能である。この場合、ブランチ局3の給電電流Bは、トランク局1、2の給電電流Aと等しい必要はない。すなわち、図2の構成では、トランク局1、2間とは異なる給電電流による、ブランチ局3及び海底ケーブル53の運用が可能となる。図2においては、分岐ユニット11のポートP3及びアースユニット12のポートP4は接続され、それぞれのユニットにおいてシーアースに接続される。
 図3は、海底ケーブル51の「X」印の個所において障害が発生した場合の、切り替え後の給電路の例を示すブロック図である。海底ケーブル51において障害が発生すると、海底分岐装置10は、分岐ユニット11のポートP1に接続されたトランク局1からの給電路をシーアースに接続するように分岐ユニット11を制御する。これにより、海底ケーブル51の給電路は他の海底ケーブルと切り離され、海底ケーブル51の修理作業が可能となる。海底分岐装置10は、さらに、分岐ユニット11及びアースユニット12を制御して、分岐ユニット11のポートP2に接続された海底ケーブル52の給電路を、分岐ユニット11のポートP3、アースユニット12のポートP4を経由してアースユニット12においてシーアースに接続する。このような接続により、海底ケーブル52に対する、トランク局2からの片端給電が可能となる。海底ケーブル52は、給電路がトランク局1とトランク局2との間で形成されていた場合と同一の給電電流Aによって給電される。一方、ブランチ局3に接続された海底ケーブル53の給電路は、図1及び図2と同様に、海底ケーブル51、52の給電路とは接続されず、アースユニット12を介してシーアースに接続される。
 図3において、トランク局2から分岐ユニット11及びアースユニット12を経由してシーアースに至る給電路と、ブランチ局3からアースユニット12を経由してシーアースに至る給電路とは絶縁されている。このため、ブランチ局3の給電電流Bは、トランク局2の給電電流Aと等しい必要はない。すなわち、海底ケーブル51の障害により給電路が切り替わった場合でも、海底ケーブル53は、引き続き、海底ケーブル52とは異なる給電電流Bで運用できる。図3の構成では、海底ケーブル51に障害が発生した場合においても、障害の発生していない海底ケーブル52、53の給電は維持されるため、トランク局2とブランチ局3との間の通信も維持される。
 すなわち、海底ケーブルシステム100は、トランク局1、2の給電電流Aとは異なる給電電流Bで設計されたブランチ局3及び海底ケーブル53を、海底ケーブルシステム100に混在させることができる。
 図4は、海底ケーブル52の「X」印の個所において障害が発生した場合の、切り替え後の給電路の例を示すブロック図である。海底ケーブル52において障害が発生すると、海底分岐装置10は、分岐ユニット11のポートP2に接続されたトランク局2からの給電路をシーアースに接続するように分岐ユニット11を制御する。これにより、海底ケーブル52の給電路は他の海底ケーブルと切り離され、海底ケーブル52の修理作業が可能となる。海底分岐装置10は、さらに、分岐ユニット11及びアースユニット12を制御して、分岐ユニット11のポートP1に接続された海底ケーブル51の給電路を、分岐ユニット11のポートP3、アースユニット12のポートP4を経由してアースユニット12においてシーアースに接続する。このような接続により、海底ケーブル51に対する、トランク局1からの片端給電が可能となる。海底ケーブル51は、給電路がトランク局1とトランク局2との間で形成されていた場合と同一の給電電流Aによって給電される。一方、ブランチ局3に接続された海底ケーブル53の給電路は、図1~図3と同様に、海底ケーブル51、52の給電路とは接続されず、アースユニット12を介してシーアースに接続される。
 図4において、トランク局1から分岐ユニット11及びアースユニット12を経由してシーアースに至る給電路と、ブランチ局3からアースユニット12を経由してシーアースに至る給電路とは絶縁されている。このため、ブランチ局3の給電電流Bは、トランク局1の給電電流Aと等しい必要はない。すなわち、海底ケーブル52の障害により給電路が切り替わった場合でも、海底ケーブル53は、引き続き、海底ケーブル51とは異なる給電電流Bで運用できる。図4の構成では、海底ケーブル52に障害が発生した場合においても、障害の発生していない海底ケーブル51、53の給電は維持されるため、トランク局1とブランチ局3との間の通信も維持される。
 すなわち、図4の構成においても、図3の構成と同様に、海底ケーブルシステム100は、トランク局1、2の給電電流Aとは異なる給電電流Bで設計されたブランチ局3及び海底ケーブル53を、システム内に混在させることができる。
 図5は、図4と同様に、海底ケーブル52の「X」印の個所において障害が発生した場合の、切り替え後の給電路の例を示すブロック図である。図5の構成は、図4と比較してブランチ局3が負電圧(-給電)の定電流源である点で相違する。図1~図4で説明したように、海底ケーブル51、52の給電路は海底ケーブル53の給電路から独立しているため、ブランチ局3の電源の極性及び電流はトランク局1、2の電源の極性及び電流とは独立に設定することができる。
 以上説明したように、本実施形態の海底ケーブルシステム100は、トランク局1、2の給電路とは独立した給電路によって、ブランチ局3及びブランチ局3に接続された海底ケーブル53を動作させる。その結果、トランク局1、2及び海底ケーブル51、52のみで構成されたシステムにブランチ局3及び海底ケーブル53を増設する場合に、ブランチ局3の給電電流の仕様をトランク局1、2の給電電流の仕様に合致させる必要がない。
 そして、海底ケーブルシステム100は、図3~図5に示されたような給電路の切り替えが生じた場合でも、トランク局1、2間の給電電流Aとは異なる給電電流Bで設計されたブランチ局3及び海底ケーブル53を、システム内に混在させることができる。
 例えば、他社製の海底ケーブルシステムに陸上局、海底分岐装置及び海底ケーブルを増設する場合には、既設の海底ケーブルシステムの給電電流による運用が可能なように増設される機器を設計する必要があった。しかし、本実施形態で説明した海底分岐装置は、アースユニットを備えることで、増設される海底ケーブルに対する、既設のシステムの給電電流を合致させるための設計変更を不要とする。すなわち、第1の実施形態の海底ケーブルシステムは、ケーブルの増設が容易であり、増設に伴うコストの上昇を抑制可能であるという効果を奏する。
 (第2の実施形態)
 第1の実施形態で説明した海底分岐装置10の構成は、海底ケーブルシステム100に限定されず、一般的なケーブル通信システムにも広く適用できる。すなわち、第1の実施形態の効果は、以下に説明する第2の実施形態の給電路分岐装置によっても得られる。第2の実施形態の給電路分岐装置は、第1の実施形態の海底分岐装置10に対応する装置である。以下では、対応する図1の要素の参照符号を括弧内に付して、第2の実施形態の給電路分岐装置の構成を説明する。
 第2の実施形態の給電路分岐装置(10)は、定電流源によるケーブルへの給電機能をそれぞれ備えた第1の端局(1)、第2の端局(2)及び第3の端局(3)がそれぞれ第1のケーブル(51)、第2のケーブル(52)及び第3のケーブル(53)を介して接続された給電路分岐装置(10)である。給電路分岐装置(10)は、分岐ユニット(11)とアースユニット(12)とを備える。
 分岐ユニット(11)は、第1及び第2のケーブル(51、52)の正常時には、第1のケーブルの給電路と第2のケーブルの給電路とを接続することで第1の端局(1)と第2の端局(2)との間に第1の電流(A)による給電路を形成する。そして、分岐ユニット(11)は、第1及び第2のケーブルのうち一方のケーブル(51又は52)の障害時には一方のケーブルの給電路を接地し第1及び第2のケーブルのうち他方のケーブル(52又は51)の給電路をアースユニット(12)に接続する。
 アースユニット(12)は、第3のケーブル(53)の給電路を接地することで第3の端局(3)とアースユニット(12)との間に第2の電流(B)による給電路を形成する。そして、アースユニット(12)は、他方のケーブル(52又は51)の給電路が分岐ユニット(11)から接続された場合には当該給電路を接地する。他方のケーブル(52又は51)の給電路が接地されることで、他方のケーブル(52又は51)に接続された第1又は第2の端局(1又は2)とアースユニット(12)との間に第1の電流(A)による給電路が形成される。
 このような構成を備える給電路分岐装置は、アースユニットを備えることで、増設されるケーブルの給電電流を既設のシステムの給電電流に合致させるための設計変更が不要となる。すなわち、本実施形態の給電路分岐装置も、ケーブルの増設が容易であり、増設に伴うコストの上昇を抑制可能であるという効果を奏する。
 また、各実施形態の海底分岐装置及び給電路分岐装置は、中央処理装置(Central Processing Unit、CPU)及び記録装置を備えていてもよい。CPU及び記録装置は、海底分岐装置及び給電路分岐装置の任意の要素に含まれてもよい。分岐ユニットが、CPU及び記録装置を備えてもよい。CPUは、記録装置に記録されたプログラムを実行することによって、各実施形態の海底分岐装置及び給電路分岐装置の機能を実現させる。記録装置は固定された一時的でない記録媒体である。記録媒体としては半導体メモリ又は固定磁気ディスク装置が用いられるが、これらには限定されない。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記の実施形態に限定されない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2014年12月10日に出願された日本出願特願2014-249983を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 実施形態で説明した海底分岐装置及び給電路分岐装置は、特に、島間接続のような海底分岐装置を多用する海底ケーブルシステムに適用できる。上述の海底分岐装置及び給電路分岐装置により、既設の海底ケーブルシステムの給電電流と異なる給電電流で設計された機器の増設が可能となり、海底ケーブルシステムの拡張が容易となる。
 100、900  海底ケーブルシステム
 1、2  トランク局
 3  ブランチ局
 10、90  海底分岐装置
 11、94  分岐ユニット
 12  アースユニット
 41~43  海底中継器
 51~53  海底ケーブル

Claims (6)

  1.  定電流源によるケーブルへの給電機能をそれぞれ備えた第1の端局、第2の端局及び第3の端局がそれぞれ第1のケーブル、第2のケーブル及び第3のケーブルを介して接続された給電路分岐装置であって、
     前記第1及び第2のケーブルの正常時には、前記第1のケーブルの給電路と前記第2のケーブルの給電路とを接続することで前記第1の端局と前記第2の端局との間に第1の電流による給電路を形成し、前記第1及び第2のケーブルのうち一方のケーブルの障害時には前記一方のケーブルの給電路を接地し前記第1及び第2のケーブルのうち他方のケーブルの給電路を接地手段に接続する分岐手段と、
     前記第3のケーブルの給電路を接地することで前記第3の端局と前記接地手段との間に第2の電流による給電路を形成し、前記他方のケーブルの給電路が前記分岐手段から接続された場合には前記他方のケーブルの給電路を接地することで前記他方のケーブルに接続された前記第1又は第2の端局と前記接地手段との間に前記第1の電流による給電路を形成する前記接地手段と、
    を備える給電路分岐装置。
  2.  前記第1の電流と前記第2の電流とが異なっていることを特徴とする、請求項1に記載された給電路分岐装置。
  3.  前記第1乃至第3のケーブルは海底ケーブルであり、前記給電路分岐装置は海底に設置される海底分岐装置であり、前記第1乃至第3の端局は陸上局であり、前記接地手段はシーアースにより前記給電路を接地する、ことを特徴とする請求項1又は2に記載された給電路分岐装置。
  4.  定電流源によるケーブルへの給電機能をそれぞれ備えた第1の端局、第2の端局及び第3の端局と、
     前記第1乃至第3の端局がそれぞれ第1のケーブル、第2のケーブル及び第3のケーブルを介して接続された、請求項1乃至3のいずれかに記載された給電路分岐装置と、
    を備えるケーブルシステム。
  5.  定電流源によるケーブルへの給電機能をそれぞれ備えた第1の端局、第2の端局及び第3の端局がそれぞれ第1のケーブル、第2のケーブル及び第3のケーブルを介して接続された給電路分岐装置で用いられる分岐方法であって、
     前記第3のケーブルの給電路を接地することで前記第3の端局と前記第3のケーブルの給電路の接地点との間に第2の電流による給電路を形成し、
     前記第1及び第2のケーブルの正常時には、前記第1のケーブルの給電路と前記第2のケーブルの給電路とを接続することで前記第1の端局と前記第2の端局との間に第1の電流による給電路を形成し、
     前記第1及び第2のケーブルのうち一方のケーブルの障害時には、前記一方のケーブルの給電路を接地し前記第1及び第2のケーブルのうち他方のケーブルの給電路を接地することで前記他方のケーブルに接続された前記第1又は第2の端局と前記他方のケーブルの給電路の接地点との間に前記第1の電流による給電路を形成する、
    ことを特徴とする給電路分岐方法。
  6.  定電流源によるケーブルへの給電機能をそれぞれ備えた第1の端局、第2の端局及び第3の端局がそれぞれ第1のケーブル、第2のケーブル及び第3のケーブルを介して接続された給電路分岐装置で用いられる制御プログラムを記録した一時的でない記録媒体であって、給電路分岐装置のコンピュータに、
     前記第3のケーブルの給電路を接地することで前記第3の端局と前記第3のケーブルの給電路の接地点との間に第2の電流による給電路を形成する手順、
     前記第1及び第2のケーブルの正常時には、前記第1のケーブルの給電路と前記第2のケーブルの給電路とを接続することで前記第1の端局と前記第2の端局との間に第1の電流による給電路を形成する手順、
     前記第1及び第2のケーブルのうち一方のケーブルの障害時には、前記一方のケーブルの給電路を接地し前記第1及び第2のケーブルのうち他方のケーブルの給電路を接地することで前記他方のケーブルに接続された前記第1又は第2の端局と前記他方のケーブルの給電路の接地点との間に前記第1の電流による給電路を形成する手順、
    を実行させるための、制御プログラムを記録した記録媒体。
PCT/JP2015/006067 2014-12-10 2015-12-07 給電路分岐装置及び給電路分岐方法 WO2016092806A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/531,528 US10355744B2 (en) 2014-12-10 2015-12-07 Feed line branching apparatus and feed line branching method
JP2016563499A JP6421824B2 (ja) 2014-12-10 2015-12-07 給電路分岐装置及び給電路分岐方法
EP15867303.8A EP3232578A4 (en) 2014-12-10 2015-12-07 Feedline branching apparatus and feedline branching method
CN201580067088.1A CN107005269B (zh) 2014-12-10 2015-12-07 馈电线分支装置以及馈电线分支方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-249983 2014-12-10
JP2014249983 2014-12-10

Publications (1)

Publication Number Publication Date
WO2016092806A1 true WO2016092806A1 (ja) 2016-06-16

Family

ID=56107026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006067 WO2016092806A1 (ja) 2014-12-10 2015-12-07 給電路分岐装置及び給電路分岐方法

Country Status (5)

Country Link
US (1) US10355744B2 (ja)
EP (1) EP3232578A4 (ja)
JP (1) JP6421824B2 (ja)
CN (1) CN107005269B (ja)
WO (1) WO2016092806A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018167585A1 (en) * 2017-03-16 2018-09-20 Tyco Electronics Subsea Communications Llc Techniques for providing adaptive power distribution using a multi-node network of power feed branching units (pfbus) and an undersea optical communication system using same
WO2020022303A1 (ja) * 2018-07-24 2020-01-30 日本電気株式会社 通信システム
WO2020054614A1 (ja) * 2018-09-10 2020-03-19 日本電気株式会社 経路切替装置および経路切替方法
WO2022044545A1 (ja) * 2020-08-25 2022-03-03 日本電気株式会社 海底光ケーブルシステム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374725B2 (en) * 2017-10-04 2019-08-06 Subcom, Llc Power delivery in submarine optical communication systems using power feed converters
US10777336B1 (en) * 2019-04-12 2020-09-15 Subcom, Llc Branching unit for power distribution
WO2020261924A1 (ja) 2019-06-24 2020-12-30 日本電気株式会社 分岐装置、及び海底ケーブルシステム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289323A (ja) * 1988-05-16 1989-11-21 Nippon Telegr & Teleph Corp <Ntt> 海底中継伝送路の給電切替方式
JPH04245816A (ja) * 1991-01-31 1992-09-02 Fujitsu Ltd 給電路切替回路
JPH04256225A (ja) * 1991-02-07 1992-09-10 Fujitsu Ltd 海底ケーブル通信システムの給電方法および給電路切替え回路
JP2001203610A (ja) * 2000-01-20 2001-07-27 Fujitsu Ltd 給電路切替装置
JP2010206635A (ja) * 2009-03-04 2010-09-16 Fujitsu Telecom Networks Ltd 海底ケーブル給電システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644787A (en) * 1970-12-14 1972-02-22 Bell Telephone Labor Inc Undersea wye connection for a submarine cable system
JPS63260324A (ja) 1987-04-17 1988-10-27 Nippon Telegr & Teleph Corp <Ntt> 海底伝送路の分岐装置
JPH0376322A (ja) 1989-08-17 1991-04-02 Fujitsu Ltd 給電路切替回路
GB2248373B (en) * 1990-07-10 1995-04-12 Fujitsu Ltd Power feed line switching circuit for submarine branching device and method of feeding power to submarine cable communication system
CA2059493C (en) 1991-01-17 1996-11-12 Yoshiyuki Inoue Feeding system and feeding method for a submarine cable communication system
US5491368A (en) * 1992-04-15 1996-02-13 Fujitsu Limited Power feed path switching circuit
US5358426A (en) * 1992-05-18 1994-10-25 The Whitaker Corporation Connector assembly for discrete wires of a shielded cable
JP3387614B2 (ja) * 1994-03-17 2003-03-17 富士通株式会社 海中分岐装置の給電切替え回路
GB9516158D0 (en) 1995-08-07 1995-10-04 Stc Submarine Systems Ltd Switching control circuit for branching units
JP3006670B2 (ja) * 1995-08-18 2000-02-07 日本電気株式会社 光海底分岐装置およびその伝送路切替方法
JP3341245B2 (ja) 1995-12-21 2002-11-05 ケイディーディーアイ株式会社 給電路切替回路
JPH11234179A (ja) * 1998-02-09 1999-08-27 Nec Corp ケーブル分岐装置
JP2002057607A (ja) * 2000-08-11 2002-02-22 Mitsubishi Electric Corp 給電路切替方法および給電路分岐装置と給電路切替システム
US8772973B2 (en) * 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
JP5682847B2 (ja) * 2011-06-30 2015-03-11 日本電気株式会社 給電路切替装置、光海底分岐装置、海底ケーブルシステムおよび給電路切替方法
EP2574968B1 (en) * 2011-09-29 2019-04-10 Alcatel Lucent Underwater connection assembly with earthing unit
CN103975534B (zh) * 2011-12-22 2016-05-11 日本电气株式会社 分支单元和电力线监视方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289323A (ja) * 1988-05-16 1989-11-21 Nippon Telegr & Teleph Corp <Ntt> 海底中継伝送路の給電切替方式
JPH04245816A (ja) * 1991-01-31 1992-09-02 Fujitsu Ltd 給電路切替回路
JPH04256225A (ja) * 1991-02-07 1992-09-10 Fujitsu Ltd 海底ケーブル通信システムの給電方法および給電路切替え回路
JP2001203610A (ja) * 2000-01-20 2001-07-27 Fujitsu Ltd 給電路切替装置
JP2010206635A (ja) * 2009-03-04 2010-09-16 Fujitsu Telecom Networks Ltd 海底ケーブル給電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3232578A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110419167B (zh) * 2017-03-16 2022-03-29 萨伯康姆有限责任公司 光学系统和用于在光学通信系统内众包功率的方法
US10110321B2 (en) 2017-03-16 2018-10-23 Tyco Electronics Subsea Communications Llc Techniques for providing adaptive power distribution using a multi-node network of power feed branching units (PFBUs) and an undersea optical communication system using same
CN110419167A (zh) * 2017-03-16 2019-11-05 萨伯康姆有限责任公司 使用馈电分支单元(pfbu)的多节点网络提供自适应配电的技术和使用其的海底光学通信系统
WO2018167585A1 (en) * 2017-03-16 2018-09-20 Tyco Electronics Subsea Communications Llc Techniques for providing adaptive power distribution using a multi-node network of power feed branching units (pfbus) and an undersea optical communication system using same
JP7134992B2 (ja) 2017-03-16 2022-09-12 サブコム,エルエルシー 給電分岐ユニット(pfbu)の多ノード・ネットワークを使用して適応型電力分配を提供するための技法、およびそれを使用する海底光通信システム
JP2020515152A (ja) * 2017-03-16 2020-05-21 サブコム,エルエルシー 給電分岐ユニット(pfbu)の多ノード・ネットワークを使用して適応型電力分配を提供するための技法、およびそれを使用する海底光通信システム
WO2020022303A1 (ja) * 2018-07-24 2020-01-30 日本電気株式会社 通信システム
JPWO2020022303A1 (ja) * 2018-07-24 2021-08-02 日本電気株式会社 通信システム
JP7151768B2 (ja) 2018-07-24 2022-10-12 日本電気株式会社 通信システム、監視装置及び監視方法
US11929791B2 (en) 2018-07-24 2024-03-12 Nec Corporation Communication system
JPWO2020054614A1 (ja) * 2018-09-10 2021-08-30 日本電気株式会社 経路切替装置および経路切替方法
WO2020054614A1 (ja) * 2018-09-10 2020-03-19 日本電気株式会社 経路切替装置および経路切替方法
WO2022044545A1 (ja) * 2020-08-25 2022-03-03 日本電気株式会社 海底光ケーブルシステム
JP7448018B2 (ja) 2020-08-25 2024-03-12 日本電気株式会社 海底光ケーブルシステム

Also Published As

Publication number Publication date
CN107005269A (zh) 2017-08-01
JPWO2016092806A1 (ja) 2017-09-14
CN107005269B (zh) 2020-11-03
EP3232578A1 (en) 2017-10-18
US10355744B2 (en) 2019-07-16
EP3232578A4 (en) 2018-05-30
US20170331516A1 (en) 2017-11-16
JP6421824B2 (ja) 2018-11-14

Similar Documents

Publication Publication Date Title
JP6421824B2 (ja) 給電路分岐装置及び給電路分岐方法
US10721001B2 (en) Submarine optical cable shore landing apparatus
CN108702177B (zh) 接地电路和接地方法
US11087902B2 (en) Branching unit for power distribution
US11556096B2 (en) Submarine branching unit and submarine branching method
AU2017201627B2 (en) Monitoring arrangement
JP2014534664A (ja) 水中接続アセンブリ
JP2002164820A (ja) 海底給電方式
JP7448018B2 (ja) 海底光ケーブルシステム
WO2023139747A1 (ja) 給電システム、分岐装置、及び給電方法
US7269353B2 (en) Branching unit for an optical transmission system
JP2024044279A (ja) 分岐装置、光海底ケーブルシステム及び給電方法
JP2006303886A (ja) 給電路を二重化した海底ケーブル通信システム
JP2691218B2 (ja) 海中分岐給電路の構成法と海中分岐給電切替回路
JPH01200832A (ja) 海中分岐装置の給電路切替回路
JP2002135175A (ja) 光海底ケーブルシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563499

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15531528

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015867303

Country of ref document: EP