WO2016091133A1 - 电发热部件的热管理装置 - Google Patents

电发热部件的热管理装置 Download PDF

Info

Publication number
WO2016091133A1
WO2016091133A1 PCT/CN2015/096540 CN2015096540W WO2016091133A1 WO 2016091133 A1 WO2016091133 A1 WO 2016091133A1 CN 2015096540 W CN2015096540 W CN 2015096540W WO 2016091133 A1 WO2016091133 A1 WO 2016091133A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
casing
cooling device
main board
insulating
Prior art date
Application number
PCT/CN2015/096540
Other languages
English (en)
French (fr)
Inventor
谢彦君
Original Assignee
宋正贤
谢彦君
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410741687.4A external-priority patent/CN104466300A/zh
Application filed by 宋正贤, 谢彦君 filed Critical 宋正贤
Priority to CN201580042143.1A priority Critical patent/CN107004914A/zh
Publication of WO2016091133A1 publication Critical patent/WO2016091133A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a thermal management structure and apparatus for components that generate heat due to energization, and more particularly to a structure and apparatus for cooling components (such as batteries, IGBT semiconductor devices) that are not expected to generate heat, or for transmission The heat generated by the electrically heated component.
  • a thermal management structure and apparatus for components that generate heat due to energization
  • a structure and apparatus for cooling components such as batteries, IGBT semiconductor devices
  • the existing battery liquid cooling system is as shown in Fig. 1. Under the driving of the water pump D, the cooling liquid flows through the heat exchanger C and the battery heat conducting plate B at the bottom of the battery pack A, and the heat inside the battery is led out, but the heat inside the battery needs The heat is transmitted in the vertical direction to the battery heat conducting plate B at the bottom of the battery through the electrodes and the electrolyte in the battery, and the heat conduction path is long, resulting in large heat transfer resistance, low heat exchange efficiency, large temperature difference in the vertical direction, and external
  • the performance of the cooling system is more demanding; and the cooling liquid inside the battery heat conducting plate B flows through the bottom of each battery pack A in turn, and the temperature of the cooling liquid flowing through the heat conducting plate B of each battery is inconsistent, thereby causing the battery pack A and the battery pack A.
  • the temperature difference between the batteries is large, and the temperature uniformity between the battery and the battery cannot be guaranteed.
  • IGBT Insulated Gate Bipolar Transistor
  • BJT bipolar transistor
  • MOS insulated gate field effect transistor
  • IGBT single-tube (or IGBT discrete devices) mostly have a surface of a bare heat sink (or metal substrate), which is a C-pole (collector) of an IGBT and is a live component.
  • IGBT single tubes are often used in high-voltage electronic control components (such as water-cooled PTC electric heater controllers, water pump controllers), often have over temperature problems, or it is a bottleneck in thermal design.
  • the existing cooling technology is to install an insulating silicone gasket or ceramic gasket under the IGBT single tube, and then fasten the IGBT single tube to the main board (or cooling plate) with a screw.
  • the heat transfer path is: the heat generated by the IGBT die is transmitted to the insulating spacer through the C pole, and then transmitted to the main board, and then transferred to the coolant. Since air gaps or gaps are inevitable at the interface of the insulating gasket, the heat transfer efficiency is low, and the cooling effect of the IGBT single tube is poor, which causes the problem of over-temperature alarm or burnout of the IGBT single tube.
  • the current IGBT single-tube liquid cooling is indirect liquid cooling type, the heat transfer path is long, and the intermediate thermal resistance is large and large, which results in low heat transfer efficiency and frequent thermal management problems.
  • the existing electric heating uses a metal base, and a PTC electric heating sheet is inserted thereon.
  • the disadvantage is that the heat transfer intermediate link is increased, the thermal resistance is increased, the thermal efficiency is low, and the power density is small.
  • the second disadvantage is that the sub-parts are added and the cost is increased.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a thermal management structure and device for an electric heating component, which improves the heat exchange efficiency between the electric heating component and the heat exchange medium (such as a cooling medium).
  • the purpose of reducing the temperature difference between the upper and lower sides of the single-section electric heating component and the temperature difference between the electric heating components is achieved.
  • the technical problem to be solved by the invention also includes how to utilize the non-insulated coolant (such as water-based antifreeze coolant) for the existing engine to solve the problems of low cooling efficiency and high cost. Unless otherwise specified, the coolant directs the electrical coolant.
  • the so-called conductive coolant in the present invention means that the coolant is a non-insulating coolant, and has a conductive function (including a weak conductive function), such as antifreeze coolant composed of water, water and ethylene glycol (referred to as antifreeze). .
  • the present invention provides a structure and apparatus for thermal management of an electric heating device in view of the problem of thermal management of the heat generated by the existing electric heating device.
  • a first aspect of the present invention provides a battery cooling apparatus including a battery unit including a battery inner core having a sealed outer layer, at least one side of the battery unit being a fluid passage, thereby The battery unit is capable of heat exchange with the fluid through the sealed outer layer. Or the fluid (coolant) can be in direct contact with the sealed outer layer for heat exchange.
  • the fluid passage may be formed by a gap between adjacent battery cells, or may be referred to as a fluid passage in the separator.
  • the fluid passage may be the same as the direction of the electrode, or perpendicular to the direction of the electrode, but may be other directions, preferably perpendicular to the direction of the electrode in the present invention.
  • the fluid flows in the left-right direction or flows in the front-rear direction.
  • the battery cooling device includes a plurality of battery cells spaced from the fluid passage.
  • the battery core has a housing with an outer surface and/or an inner surface provided with an insulating layer to form the sealed outer layer.
  • the sealed outer layer is capable of direct heat exchange with the electrically conductive coolant.
  • the sealed outer layer is a sealing film that wraps around the inner core of the battery and seals the inner core of the battery.
  • the battery thermal control device includes at least two battery cells spaced apart from the bulkhead.
  • the battery unit may be a battery pack containing a battery core or a plurality of battery cores, and each of the battery cores may be provided with a separate sealed outer layer, or one battery pack sharing a sealed outer layer.
  • the battery may be any one or more of a disposable battery and a rechargeable battery. More preferably, the battery unit preferably comprises at least one or more of a soft pack battery, a hard shell battery, more preferably at least a soft pack battery, more preferably one or more soft pack batteries.
  • the battery unit is a soft pack battery, including a soft pack battery inner core, and a sealing film enclosing the soft pack battery inner core and a soft pack battery inner core; at least the separator A portion of the surface is in direct contact with at least a portion of the outer surface of the sealing membrane, and a fluid passage is provided in the separator.
  • the contact faces between the separator and the sealing film may be continuous or spaced apart.
  • the soft pack battery inner core is preferably in a flat shape, and the flat shape preferably has values of length/thickness and width/thickness independently of at least 5, more preferably at least 10, more preferably at least 15, More preferably, it is at least 50, More preferably, it is at least 100.
  • the inner core of the soft pack battery itself may be provided with a sealing film; however, the inner core of the soft pack battery may not be provided with a sealing film, but only a basic structure capable of realizing the function of the battery.
  • the battery unit is a hard-shell battery, including a hard-shell battery inner core, and an outer casing having an inner and/or outer surface provided with an insulating layer to form an insulating outer casing, that is, the insulating outer layer.
  • the spacer comprises two flat plates, and the two flat plates are respectively in contact with a sealing film of one battery unit, and a connecting plate connected to the at least one flat plate is disposed between the two flat plates, thereby A fluid passage is formed between the two plates.
  • the spacer is a fin structure, and preferably, the fins are sequentially connected, and the connection may be "V" shape, "U” shape, trapezoidal shape, curved shape, Zigzag or the like is connected, and adjacent fins may be parallel or at an angle to form the fluid passage between adjacent fins.
  • the fin structure comprises a riser and a flat plate at both ends of the riser, the flat plate being in direct contact with the battery sealing film.
  • the fin structure comprises two sets of said flat plates, the two sets being respectively adjacent to two adjacent A sealing film of one of the battery cells is in contact with each other, and a plurality of flat plates are included in each group. More preferably, each panel is connected to only two risers.
  • the riser is not necessarily perpendicular to the flat plate, but may also be obliquely connected to the flat plate.
  • the fins may also be provided with holes.
  • the fins may be any one or more of straight fins and wavy fins, wherein the wavy fins may be curved at the bends, It may be a sharp corner (such as an acute angle, a right angle or an obtuse angle), more preferably an arc.
  • the partition between two adjacent battery cells may be a partition or a sub-separator group composed of a plurality of sub-separators, for example, a plurality of sub-separators are arranged at intervals between the two battery cells;
  • the sub-separator structure is selected from any one or more of the above-described separator structures.
  • the separator material may be any one or more of a metal material (including an alloy material) and a polymer material, and is preferably a heat conductive plate, more preferably a metal material, such as Aluminum alloy, stainless steel, etc.
  • the separator is in direct contact with the sealing film of the battery unit.
  • the sealing film of the battery unit there is no adhesive or tie layer between the separator and the sealing film.
  • the sealing film is preferably an insulating film.
  • the material of the sealing film may be any one or more of a fluoropolymer and a silicone polymer, and more preferably, the sealing film comprises an insulating layer and a metal foil on the surface of the insulating layer, such as a metal mold. It is preferably an aluminum plastic film.
  • the metal foil may be disposed only on one side of the insulating layer, or may be disposed on both sides of the insulating layer, such as only on the inner surface of the insulating layer and/or the outer surface of the insulating layer; or the insulating layer may be It is provided only on one side of the metal foil, or may be provided on both sides of the metal foil, such as an insulating layer provided on the inner surface and/or the outer surface of the metal foil.
  • the sealing film seals the battery cells around, and only the battery electrodes, or electrode connection ports, protrude from the sealing film.
  • the connection port may be any one or several of a wire, a plug, an electrode tab, and the like.
  • the insulating layer is formed by a coating process or a wrapping process or a heat shrinking process or an injection molding process or a hot pressing process.
  • the insulating layer is applied by one or a combination of spraying, brushing, roll coating, dip coating, dispensing, screen printing, roll coating, electrophoresis, and blade coating.
  • the insulating layer is made of ceramic, polymer insulating material or polymer composite insulating material doped with ceramic.
  • the ceramic material includes a ceramic powder or a ceramic insulating solution.
  • the insulating layer material is made of an insulating material immersed in a coolant.
  • the general insulating materials such as ordinary silica gel
  • cooling fluids such as antifreeze.
  • the so-called insulating material immersed in the cooling liquid means that the insulating material can maintain a good insulating function by being immersed in the cooling liquid.
  • the insulating layer is made of insulating silica gel resistant to coolant soaking, or a polyimide film coated with epoxy resin, or a polyimide film coated with Teflon, or a plastic hot melt adhesive. .
  • the battery cooling device includes a main board for assembling a battery unit, and the main board is provided with a socket through which the battery unit is inserted into the main board.
  • the portion of the battery unit that protrudes from the inside of the sealing film is inserted into the main board through the socket.
  • the sealing film forms a sealed top edge on the top of the battery inner core
  • the electrode or electrode connection port projects from the sealing top edge, and more preferably, at least part of the sealing top edge also passes The socket is inserted into the main board.
  • the sealing manner of the insulating housing and the mounting hole is soldering, or quick insertion, or snapping, or rubber ring sealing, or rubber sealing, or liquid sealing glue, or paste sealing glue fixing, or screw sealing.
  • the main board may further be provided with a plurality of vent holes, and the vent holes are connected with the battery safety valve to ensure that the battery exhaust is unobstructed at a dangerous time.
  • the main board is an aluminum alloy, or a stainless steel, or a plastic or resin material
  • the outer casing being an aluminum alloy, or a stainless steel material, or a plastic or aluminum plastic film.
  • the battery cooling device includes an outer casing for containing a cooling fluid that flows through the fluid passage.
  • the outer casing is open on one side, and the main plate is capped at the opening.
  • the outer casing comprises an upper casing and a lower casing, and the upper casing and the lower casing enclose a casing cavity.
  • the bottom of the insulating casing is suspended, or the bottom of the insulating casing is in contact with the bottom of the inner wall of the lower casing (or casing).
  • the following situation is included: if the bottom of the inner wall of the lower casing (or the outer casing) can be recessed, the bottom of the insulating casing is embedded in the depression of the bottom of the inner wall of the lower casing (or casing), Improve the mechanical strength of the entire battery cooling unit.
  • the bottom of the insulating case is in contact with the bottom of the inner wall of the lower case (or the outer case), a plurality of grooves along the flow direction are disposed on the inner bottom surface of the lower case (or the outer case), and the groove is used for the groove To increase the bottom of the battery However, the liquid flows, so that the heat exchange effect is better.
  • the battery cooling device comprises:
  • a battery having a casing, an outer surface of the casing being provided with an insulating layer to form an outer insulating casing;
  • the casing for accommodating a cooling liquid
  • the casing is composed of an upper casing and a lower casing, and the upper casing and the lower casing surround a casing cavity, and the casing is provided with a liquid inlet and a liquid outlet mouth;
  • main board for assembling a battery, wherein the main board is provided with a plurality of mounting holes;
  • the upper portion of the battery is sealingly mounted with the main board, and the lower portion of the outer insulating housing is placed in a casing cavity of the outer casing, the bottom of the outer insulating casing is suspended, or the bottom and the lower casing of the outer insulating casing The bottom of the inner wall of the body is in contact.
  • the outer casing, and preferably the bottom of the lower casing is provided with a recess, and the bottom of the battery is inserted into the recess to be fixed; or the casing, and preferably the bottom of the lower casing, is provided with a slotted hole
  • the fixing member is fixed in the slot of the slot into which the battery is inserted.
  • the inner bottom plate of the outer casing is provided with a groove in the flow direction. Providing these grooves facilitates cooling of the bottom of the battery.
  • the distance between the cells in the flow direction perpendicular to the flow direction of the coolant is successively expanded in the flow direction of the coolant. In this way, it can be ensured that the cooling effect of the upstream and downstream batteries tends to be uniform.
  • a plurality of nesting fins are disposed between the batteries. These fins can help with the fixation between the cells, the process organization and the enhanced heat transfer.
  • the upper portion of the battery unit is sealingly mounted with the main board, and the lower portion of the insulating outer layer is placed in a casing cavity of the outer casing, and the bottom of the insulating outer layer is suspended or covered with a sleeve.
  • the bottom of the inner wall of the shell cavity contacts and preferably contacts the bottom of the inner wall of the lower casing.
  • the outer casing is provided with a fluid inlet (such as a liquid inlet) and a fluid outlet (such as a liquid outlet).
  • the battery cooling device further includes a separator, at least a portion of a surface of the separator is in direct contact with at least a portion of a surface of the sealing outer layer, and the fluid is disposed in the separator aisle.
  • the fluid passage in the partition may be in direct contact with the insulating film of the battery unit or may not be in direct contact with the insulating film of the battery unit.
  • the fluid passage is in direct contact with the insulating film of the battery cell, that is, the surface of the separator which is in contact with the battery cell insulating film, and the cooling liquid is in contact with the insulating film.
  • the coolant is in direct contact with the side surface of the battery unit. Therefore, the conductive coolant can be in direct contact with the battery unit for heat exchange.
  • the outer casing is provided with a receiving chamber, and the battery unit and the partition are both disposed in the receiving chamber of the outer casing.
  • the main board is located in the accommodating chamber of the outer casing and divides the accommodating chamber into two parts, the first part accommodating the battery unit main body and the partition, and the second part is accommodated from the sealing film
  • the extended electrode and/or electrode is connected to the port portion.
  • the first portion and the second portion are physically isolated, i.e., the first portion of the chamber fluid is unable to enter the second portion of the chamber.
  • the accommodating chamber of the outer casing particularly preferably the first portion of the accommodating chamber, contains a heat exchange medium
  • the heat exchange medium may be an electrically insulating heat exchange medium (resistance The rate is greater than 10 10 ⁇ cm), and may also be a non-electrically insulating heat exchange medium.
  • the heat exchange medium is, for example, transformer oil, air, water, engine coolant, ethylene glycol/water mixture, and the like.
  • the volume ratio of water to ethylene glycol is preferably (40-65): (35-60), more preferably (45-60): (40-55), more preferably (50-55): (45- 50).
  • the batteries may be connected in series, in parallel, or a combination of the batteries between the batteries or between the batteries of the same battery unit and the batteries of different battery units.
  • the outer shape of the outer casing may be square, U-shaped, T-shaped, trapezoidal, and other irregular shapes.
  • the sequence of the battery unit and the partition plate is fixed, and the fixing method may be an existing fixing method such as tying fixing, fixing through the stud, or the like, or passing the card in the housing.
  • the piece and/or the fastening structure secures the battery unit and/or the partition within the housing.
  • the fluid passage is preferably gradually enlarged from one end to the other, and more preferably the fluid passage is gradually enlarged from one end of the fluid inlet of the outer casing to one end of the fluid outlet. It should be understood that the gradual expansion also includes a step-by-step expansion.
  • a plurality of the battery cells and the separator are included, and the number of cells in each of the battery cells may be the same or different, and more preferably, the fluid inlet of the outer casing flows to the casing In the direction of the body fluid outlet, the number of cells in the battery cell ⁇ the number of cells in the next-stage battery cell.
  • 2-3 cells are disposed in the battery unit at the fluid inlet of the outer casing, and the battery unit at the fluid outlet of the outer casing is provided with one battery.
  • the plurality of batteries are the same, the plurality of batteries are the same size, or the plurality of batteries are divided into two types, and the cross-sectional area of the first type of batteries is the cross-sectional area of the second type of batteries.
  • the first type of battery is arranged adjacent to the fluid inlet, and the second type of battery is arranged adjacent to the fluid outlet.
  • the plurality of batteries are classified into three types, the cross-sectional area of the first type of battery is 1.5 times the cross-sectional area of the second type of battery, and the cross-sectional area of the first type of battery is three times the cross-sectional area of the third type of battery.
  • the first type of battery, the second type of battery, and the third type of battery are sequentially arranged from adjacent fluid inlets to adjacent fluid outlets.
  • the fluid inlet and the fluid outlet may be different openings, in which case the fluid outlet and the fluid inlet may be changed; 2) the same opening may be used, in this case,
  • the fluid outlet and fluid inlet represent only different states of use.
  • a second aspect of the present invention provides a power device cooling device including a power device body (such as a power semiconductor electrode strip assembly body), a heat dissipation plate surface of the power device body is provided with a first insulating layer, the first insulation The layer is capable of direct heat exchange with the electrically conductive coolant.
  • the heat dissipation plate may be a heat dissipation metal substrate of a single tube of the power device, or may be an electrode strip or an electrode sheet of the power semiconductor electrode strip assembly.
  • the power device is a surface charged component.
  • the power device of the invention may comprise a semiconductor chip and an electrode strip on both sides of the semiconductor chip, the semiconductor chip comprising an IGBT chip or/and a diode chip.
  • These power device bodies usually have exposed heat sink surfaces, and the heat sink surface is usually also a charged surface.
  • the bottom surface of the IGBT single tube is a bare C pole heat sink, and the heat generated by the IGBT die mainly passes through the heat sink. Distribute.
  • the charged component is a single tube of a power device (or a single tube of a power semiconductor, such as an IGBT single tube, etc.).
  • the electrode strip of the power semiconductor electrode strip assembly is preferably a sheet-shaped electrode sheet. Further, the number of electrode sheets is two or three or five.
  • the method includes the following steps: the connecting electrode strip of the collector and the emitter is an electrode piece, and the connecting electrode strip of the gate is a bonding wire; or all the connecting electrode strips of the collector, the emitter, and the gate are electrode sheets.
  • the material of the positive and negative electrode strips/electrode sheets may be stainless steel, or aluminum alloy, or copper.
  • a second insulating layer is disposed between the electrode strips on both sides of the semiconductor chip of the power semiconductor electrode strip assembly.
  • the insulating layer is disposed by coating, or wrapping.
  • coating also referred to as coating, refers to a general term for the construction process of an adhesive or a coating.
  • the coating method may be spray coating, or dip coating, or brush coating, or roll coating, or screen printing. Among them, more It is preferred to use spray coating or dip coating.
  • the insulating material can be efficiently and uniformly attached to the surface of the heat sink by spraying or dip coating.
  • the insulating layer is made of an insulating material that is resistant to coolant immersion.
  • the so-called insulating material immersed in the coolant means that the insulating material can maintain a good electrical insulation function when immersed in the cooling liquid.
  • the insulating material immersed in the coolant is silica gel, or a plastic hot melt adhesive, or an insulating ceramic coating, such as WACKER insulated silica gel Elastosil RT 728 A/B or Zhisheng Weihua ZS-1091 high temperature insulating ceramic coating.
  • the silica gel may be added with an insulating and thermally conductive filler, such as an AlN ceramic particle filler, to increase the thermal conductivity of the insulating layer.
  • an insulating and thermally conductive filler such as an AlN ceramic particle filler
  • the power device cooling device further includes a conductive coolant.
  • the body of the power device is immersed in a cooling liquid.
  • the cooling liquid is preferably a water-based cooling liquid, and the water-based cooling liquid means that the base component of the cooling liquid is water; more preferably, the anti-freezing cooling liquid whose main components are water and ethylene glycol.
  • the antifreeze coolant commonly used in automobiles is about 50% water + about 50% ethylene glycol mixture, and other additives such as preservatives and corrosion inhibitors.
  • the power device cooling device further includes a main board, the power device body is located at one side of the main board, and an electrical connection portion of the power device body with the outside (such as a tab of the electrode strip) ) is located on one side of the main board, and performs a sealing process between the pin and the main board, such as a lower part or all of the pins of the IGBT single tube on the other side of the main board.
  • a sealing process between the pin and the main board, such as a lower part or all of the pins of the IGBT single tube on the other side of the main board.
  • the power device cooling device further includes a liquid collection chamber or an outer casing, and the liquid collection chamber or the outer casing is sealed with the main plate to form a coolant receiving cavity, the power device body Located in the coolant receiving cavity, the liquid collecting chamber or the outer casing is provided with a liquid inlet and a liquid outlet.
  • the liquid collection chamber or the outer casing may be a lower outer casing of a liquid PTC electric heater or a volute of a water pump.
  • the power device cooling device further includes a partition in which a fluid passage is disposed, at least a portion of an outer surface of the insulating outer casing of the charging member is in direct contact with at least a portion of a surface of the partition .
  • the separator can function to support a charging member having an insulating outer casing, and can also function to organize a cooling liquid flow field and improve heat exchange. More preferably, the charging member is spaced apart from the partition.
  • the above structural device is also applicable to a liquid PTC electric heater.
  • a third aspect of the present invention provides a PTC electric heating device including a PTC electrode strip assembly and a first insulating layer wrapped around an outer side of the PTC electrode strip assembly; the PTC electrode strip assembly wrapped with the first insulating layer can be electrically cooled The liquid is in direct contact with the heat exchange.
  • the PTC electrode strip assembly comprises a plurality of PTC elements and electrode strips disposed on both sides of the PTC element.
  • the first insulating layer is formed of an insulating material immersed in the coolant.
  • the PTC electric heating device comprises a PTC electric heating assembly, the PTC electric heating assembly comprising a PTC electrode strip assembly, the PTC electrode strip assembly comprising a positive electrode strip, a PTC heating sheet group, and a negative An electrode strip, wherein the PTC heating sheet group is composed of a plurality of PTC heating sheets;
  • the PTC heating sheet group is disposed between the positive electrode strip and the negative electrode strip; and the outer side of each of the positive electrode strip and the negative electrode strip is provided with a first insulating layer.
  • the PTC electrode strip assembly and the first insulating layer constitute a first integral piece; the PTC electric heater includes a fluid passage such that the fluid can exchange heat through the first insulating layer. Or the fluid is in direct contact with the first insulating layer for heat exchange.
  • the fluid channel and the first integral member are sequentially spaced apart to form a PTC electric heating group.
  • the outermost periphery of the PTC electric heating unit is a fluid passage.
  • the positive electrode strip comprises a positive electrode sheet and a positive electrode tab
  • the negative electrode strip comprises a negative electrode sheet and a negative electrode tab
  • the PTC heating sheet group is disposed between the positive electrode sheet and the negative electrode sheet
  • a first insulating layer is provided on one outer side of each of the positive electrode tab and the negative electrode tab.
  • the PTC heating element in the PTC electrode strip assembly is preferably connected to the positive and negative electrode sheets by gluing; of course, it can also be connected by pressing.
  • the PTC electric heater further includes a main board having an inner cavity; the PTC electric heating unit is disposed in the inner cavity of the main board and forms a sealing structure with the inner wall of the main board.
  • the electrical connection portion (such as the tab) on the PTC electrode strip assembly passes through the main board and forms a sealing structure with the inner wall of the main board.
  • the outer portion of the main board is wrapped with an outer casing for accommodating the main board and the PTC electric heating unit.
  • the outer casing is preferably a plastic outer casing, and preferably a plastic outer casing in the form of upper and lower enclosures.
  • the fins may be fins of various forms, such as straight fins, serrated fins, porous fins, and the like.
  • the first insulating layer material is an insulating material immersed in a heat-resistant liquid.
  • This material Insulating silica gel immersed in heat-resistant liquid, polyimide film coated with epoxy resin, and the like.
  • the heat exchange liquid used in the PTC electric heater of the present invention preferably uses a water-based coolant such as pure water or a conventional antifreeze, wherein the main component of the antifreeze is about 50% ethylene glycol + about 50% water.
  • the invention has the beneficial effects that the sandwich structure is arranged, the fluid passage is located between the electric heating components, the heat transfer efficiency is high, the power density is large, the structure is compact, the volume is small, the cost is low, and the assembly is simple.
  • FIG. 1 is a schematic structural view of a conventional battery cooling system
  • FIG. 2 is a schematic view of a battery unit of the present invention
  • FIG. 3 is a schematic view showing the structure of a battery in which the battery unit of FIG. 2 is mounted with a gasket and an insulating mat;
  • FIG. 4 is a schematic structural view showing a plurality of battery units shown in FIG. 2 mounted on a main board;
  • FIG. 5 is a schematic structural view of the battery unit shown in FIG. 4 sealed to the main board after being mounted on the main board;
  • Figure 6 is a schematic view of a jacket of the present invention.
  • Figure 7 is a sealing method of the battery
  • Figure 8 is another sealing method of the battery
  • FIG. 9 is a schematic cross-sectional structural view of a battery thermal control device according to another embodiment of the present invention.
  • Figure 10 is a schematic structural view of the battery shown in Figure 9;
  • Figure 11 is a schematic view showing the structure of several partitions in the embodiment shown in Figure 9;
  • FIG. 12 is a schematic structural view of a main board in the embodiment shown in FIG. 9;
  • FIG. 13 is a schematic cross-sectional structural view of a battery thermal control device according to another embodiment of the present invention.
  • FIG. 14 is a schematic structural view of a PTC electric heater according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural view of a semiconductor heat dissipation assembly according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural view of a semiconductor electrode strip assembly in the embodiment shown in FIG. 15;
  • FIG. 17 is a schematic structural view of an integral part of a semiconductor electrode in the embodiment shown in FIG. 15;
  • Figure 18 is a cross-sectional view showing the semiconductor electrode monolith A-A of Figure 17;
  • Figure 19 is a side view of an IGBT single tube with a surface coated with an insulating layer in one embodiment
  • Figure 20 is a schematic view showing an IGBT single-tube cooling device using the surface-coated insulating layer shown in Figure 19;
  • Figure 21 is a schematic view of an IGBT module cooling device in an embodiment.
  • a battery cooling device includes a battery 1 having a casing, and an outer surface of the casing is provided with an insulating layer to form an outer insulating casing 2 (corresponding to a sealed outer layer).
  • the outer casing may be a metal outer casing, a non-metallic outer casing or a composite material, and the composite material may be, for example, an aluminum plastic film.
  • Fig. 6 shows the structure of a casing 4 which is provided with a liquid inlet and a liquid outlet.
  • the outer casing 4 is composed of an upper casing 41 and a lower casing 42.
  • the upper casing includes a plastic film or a metal plate for sealing and protecting components such as battery electrodes and wires extending from the main board.
  • the main board 3 is used for assembling the battery 1, and the main board 3 is provided with a plurality of mounting holes.
  • the upper portion of the battery 1 is hermetically mounted to the main plate 3, and the main plate 3 is sealedly mounted with the outer casing 4 to form a cavity for accommodating the cooling liquid, and the lower portion of the outer insulating casing 2 is placed in the cavity.
  • the technical solution may be that the bottom of the outer insulating casing 2 is suspended, or the bottom of the outer insulating casing 2 is in contact with the bottom of the inner wall of the lower casing 42 (including including the outer insulating casing 2 to be disposed in the lower casing 42). In the upper depression, the depression is used to further fix the battery).
  • a plurality of grooves along the flow direction are arranged on the inner bottom surface of the lower casing, and the grooves are used to increase the flow of the coolant at the bottom of the battery, so that the heat exchange effect is better.
  • the mounting holes can be formed by stamping or by injection molding or cutting.
  • the selection surface is very wide, and various water-based coolants can be selected, preferably antifreeze liquids (for example, the main component thereof is About 50% ethylene glycol + about 50% water, and contains preservatives such as disodium hydrogen phosphate and sodium benzoate, benzotriazole rust inhibitors and pigments, etc., the freezing point of this antifreeze is less than minus 36 ° C,
  • the atmospheric pressure has a boiling point of 108 ° C, the thermal conductivity is greater than 0.4 W/m ⁇ K, and the viscosity is less than 1.4 mPa ⁇ s. Therefore, it is suitable for most climatic environments, has good thermal conductivity, good fluidity and low cost, and its application and support are very mature. It is the ideal choice for power battery coolant.
  • transformer oil As shown in the table below, the performance of insulating coolants such as transformer oil is much worse than that of antifreeze and pure water, whether it is thermal conductivity or fluidity. More deadly, transformer oil is flammable. If it is used for electric vehicle power battery cooling, there is a great safety hazard.
  • the antifreeze is non-flammable, and the outer insulating layer of the battery can also be made of a flame retardant material, such as an epoxy film coated with an epoxy film as an insulating layer, which can well protect the battery and prevent combustion from spreading.
  • the outer insulating layer material of the battery casing is selected to have an insulating material resistant to antifreeze, high and low temperature, and long life.
  • an insulating tape based on a polyimide film is used, and its temperature resistance is at least 100 ° C or higher, which can fully meet the heat resistance requirements of the battery; and an epoxy adhesive is applied on both sides of the polyimide base film.
  • the epoxy-resistant adhesive has good water and anti-freeze soaking ability, and the process is simple and reliable, and the cost is also low.
  • insulation strength is greater than 1800V
  • temperature resistance is greater than 100 ° C
  • its aging life is greater than 10 years
  • flame retardant grade is UL94V-0 grade
  • water absorption after tape curing is small; the above properties can fully meet the outer insulation of the battery casing skills requirement.
  • the insulation layer can also be set by a coating process, such as spraying or dip coating anti-freeze liquid with high and low temperature resistant organic silica gel, which will facilitate the process design of automated mass production.
  • a coating process such as spraying or dip coating anti-freeze liquid with high and low temperature resistant organic silica gel, which will facilitate the process design of automated mass production.
  • the beneficial effect is that the production efficiency is greatly improved, the mass production quality is stable and reliable, and the production cost will be greatly reduced.
  • the insulating material used can further enhance its thermal conductivity by adding a thermally conductive filler, thereby ensuring more efficient battery thermal management.
  • the outer insulating casing 2 is sealed and fixed to the mounting hole, and the sealing manner is as follows: the sealing manner of the outer insulating casing 2 and the mounting hole is welding or quick insertion or snapping or rubber ring sealing or rubber sealing gasket sealing or The liquid sealant or paste sealant is fixed or secured by a thread seal as shown in Figure 5.
  • the seal is pressed by a rubber seal or a rubber gasket, and a screw seal as shown in Fig. 5 is fixed.
  • the electrodes on the battery 1 are in the form of a bolt, and the electric insulating pads 12 and the sealing ring 11 are respectively disposed on the two electrodes (if the sealing ring has the electrical insulating function at the same time, only the sealing ring is needed)
  • the two electrodes of the battery 1 pass through the mounting hole of the main board 3 and then the nut is fixed, and the upper end sealing surface of the battery 1 (sealing the positive and negative electrodes or the positive and negative electrode posts) 5, A safety fit is formed between the safety valve 13) and the main plate 3.
  • the battery 1 is sealed in such a manner that the positive and negative electrode posts 5 and the safety valve 13 (or the exhaust valve) are sealed by the seal ring 11 and isolated from the coolant.
  • This sealing method not only ensures a reliable insulation seal between the positive and negative electrodes and the conductive coolant (such as a sealing pressure of 2-5 bar or more), but also allows as much as possible of the body 1 of the battery 1 to be immersed in the coolant to reach the most The cooling effect is good, and at the same time, the internal gas of the battery 1 is effectively prevented from being exhausted through the safety valve 13, the end sealing surface and the vent hole on the main board 3, thereby ensuring the safety and reliability of the battery pack.
  • the present invention includes various sealing methods, and is not limited to a specific sealing method.
  • the distance between each pair of mounting holes on the main board 3 can be arbitrarily set, that is, the distance between the batteries 1 can be arbitrarily set, so that the battery pack is compact in structure while achieving efficient and uniform cooling of all the batteries, that is, the battery pack has Great volumetric power density.
  • the manner in which the upper end of the battery 1 is sealed by screwing is also advantageous for after-sales maintenance.
  • the battery 1 can be easily removed and then assembled easily. This design is convenient for repeated assembly and disassembly, and the materials can be reused.
  • the main board 3 is an aluminum alloy or a stainless steel or a plastic or resin material
  • the outer insulating case is an aluminum alloy or a stainless steel material or a plastic or aluminum plastic film
  • the outer insulating case is square or circular.
  • a plurality of batteries 1 are arranged in a neat arrangement with the main board 3, or a plurality of batteries 1 are arranged in a staggered manner to be sealed with the main board 3.
  • This embodiment is not only suitable for efficiently and uniformly discharging the heat generated by the power battery 1 to the battery 1, but also for introducing external heat into the battery 1 (i.e., heating the battery 1).
  • the battery 1 is plural, and the plurality of batteries 1 have the same size; or the plurality of batteries 1 are equally divided into two types, and the cross-sectional area of the first type of batteries is two of the cross-sectional areas of the second type of batteries. Times, and the first type of battery is arranged adjacent to the liquid inlet, and the second type of battery is arranged adjacent to the liquid outlet; or the plurality of batteries 1 are equally divided into three types, and the cross-sectional area of the first type of battery is The cross-sectional area of the first type of battery is three times three times, and the cross-sectional area of the first type of battery is three times that of the third type of battery.
  • the first type of battery is arranged in order from the position adjacent to the liquid inlet. Class 2 batteries and Class 3 batteries.
  • This immersion cooling can be used not only for square batteries, but also for round batteries.
  • each mounting hole of the main board 3 is the same as the size of the outer insulating housing 2 of each type of battery. adapt.
  • the cooling temperature around the battery 1 of the first row is the lowest, the temperature of the battery 1 is the lowest, and the cooling effect is good, so that the cross-sectional area of the battery 1 is reduced in batches, and the radial transmission of the battery 1 can be reduced.
  • the thermal resistance reduces the temperature difference between the inner and outer cooling liquids of the battery 1 core, and the center temperature of all the batteries 1 inside the outer casing 4 can be balanced by reducing the cross-sectional area of the downstream battery 1 of the cooling liquid to maintain the battery. 1
  • the performance of the product itself is optimal.
  • the inlet and outlet of the cooling liquid can also be switched periodically (1 hour or 1 day) to maintain the temperature distribution of the battery 1 before and after the flow path. Evenly.
  • the spacing between the batteries 1 is uniform, the spacing is between 2mm and 5mm, and the distance between the battery 1 and the side wall adjacent to the side wall is between 5mm and 7mm; the spacing between the batteries 1 may also be non-equal spacing. .
  • the present invention provides the following technical solution for battery cooling: immersing the battery in the antifreeze coolant, and the spacing between the cells perpendicular to the flow direction of the coolant gradually increases along the flow direction of the coolant, and the battery flows along the direction of the coolant flow.
  • the cross-sectional area is gradually reduced, the batteries are arranged in a misaligned direction along the flow direction of the coolant, and technical solutions such as import and export are periodically switched.
  • the heat exchange efficiency between the battery and the coolant is higher (or the heat exchange temperature difference is smaller, or the battery is resistant to the coolant temperature), and the temperature between the batteries is more uniform (such as the temperature difference can be Up to ⁇ 1 ° C), the temperature between the upper and lower parts of the battery is more uniform.
  • the allowable temperature of the battery coolant can be appropriately increased to provide conditions for the synergy between battery coolant cooling and motor electronic coolant cooling, which greatly simplifies the electric vehicle cooling system.
  • the inner surface of the outer casing of the battery may be provided with an insulating layer to form an insulating outer casing.
  • an insulating layer is disposed in the outer casing of the battery, and then the usual battery cell assembly is performed to form a battery with an insulative outer casing; the following is performed as described in the first embodiment. Battery cooling unit assembly.
  • Figure 9 shows a thermal control device for a soft pack battery, comprising a housing (or outer casing) 4, the housing 4 of the housing 4 is provided with a main board 3, and the main board 3 divides the housing 4 housing chamber into two section.
  • a plurality of batteries 1 are disposed in a lower portion of the accommodating chamber, and a partition 6 is disposed between adjacent batteries 1, and a fluid passage 61 is provided in the partition 6.
  • the (soft pack) battery 1 includes a battery inner core 10 and a sealing film 20 wrapped around the battery inner core 10.
  • the sealing film 20 is an aluminum plastic film
  • the middle of the aluminum plastic film is an aluminum foil
  • the inner and outer surfaces of the aluminum foil are respectively provided with an insulating plastic. (corresponding to the insulating layer in the first embodiment).
  • the sealing film 20 forms a sealed side 202 at the side of the battery 1 and a sealed top edge 201 at the top position to seal the battery 1.
  • the seal can be a method of heat sealing.
  • the electrode tab 5 extends from the sealing film for connection to an external electrical lead.
  • Figure 11-1 shows a baffle in the form of a flat tube, including two upper and lower planes.
  • the upper and lower planes are in direct contact with the sealing film 10 and are thermally conductive materials.
  • a fluid passage is formed between the upper and lower planes, and the fluid passage may be partitioned into a plurality of passages by the reinforcing ribs.
  • Figure 11-2 shows a zigzag fin spacer comprising a plurality of toothed cells, the internal rows of the same row of toothed cells communicating to form a fluid passage, the adjacent toothed cells being staggered between the front and rear.
  • the top and bottom planes of the toothed unit are in direct contact with the sealing film.
  • the fluid passage 61 is perpendicular to the direction of the electrode.
  • perforations may be provided on each of the panels to communicate the respective fluid passages.
  • the fin spacer since the fluid passage directly contacts the battery, the fin spacer does not have to be a heat conductive material, but is preferably a heat conductive material.
  • the main board is provided with a plurality of sockets, the electrode tabs 5 project from the sockets, and the sockets are sealed with the electrode tabs 5, in this embodiment, the sealed top side of the battery 201 is inserted into the socket together and sealed.
  • the sockets can be evenly distributed, as shown in Figure 12-1, but can also be arranged according to the area according to the situation, as shown in Figure 12-2, forming multiple socket areas.
  • the housing 4 is provided with a fluid inlet and a fluid outlet (not shown), and the fluid can be used as a heat exchange medium such as water, glycol/water (e.g., volume ratio 50/50) mixture, engine coolant, and the like.
  • the fluid passage 61 is gradually enlarged from one end of the fluid inlet to one end of the fluid outlet.
  • the present invention can also replace the battery of Fig. 10 with a battery unit composed of a plurality of batteries. As shown in Fig. 13, two batteries 1 are arranged side by side between the partitions.
  • the number of batteries may be different between the respective battery cells, such as two batteries are disposed in the battery unit at one end of the fluid inlet, and one battery is disposed in the battery unit at one end of the fluid outlet.
  • the fin spacer can exist only as a support plate, and does not need to be a heat conductive plate, which can greatly simplify the preparation of the battery thermal control device, or to further enhance the heat exchange effect, the fin separation
  • the plate can also be a thermally conductive material.
  • the battery is fixed by the motherboard socket.
  • the main board may also be provided with a partition socket, the plug is provided with a plug, or the position between the partition and the battery is ligated or studed. Fix it.
  • the battery used in this embodiment is a soft pack battery, its mechanical strength and rigidity are both poor. If it is directly applied to an electric vehicle power battery, it is impossible to meet the anti-vibration requirement.
  • the conventional method uses a cooling plate (see CN102163758A) to be laminated with a soft pack battery and fixed by strapping or bolting on the outside. While the present invention adds spacers, the separators play a significant role; and preferably, a coolant-resistant adhesive is used to bond the separators to the soft pack cells.
  • the mechanical strength inside the power battery pack can be improved, and on the other hand, the contact thermal resistance between the partition plate and the soft pack can be reduced, which is advantageous for the heat to be more efficiently transmitted to the partition plate and dissipated into the heat exchange liquid.
  • the power battery pack achieves a very large effect: on the one hand, due to the separation and support of the serrated fins to the soft pack battery, the battery pack as a whole The anti-vibration intensity is improved; on the other hand, the coolant flow field is enhanced by the serrated fins, the heat exchange is enhanced, and the coolant directly contacts the soft pack battery for heat exchange, and the battery pack can output power with a larger current without overheating. Its power density has been significantly improved.
  • the battery unit and the partition are spaced apart from each other to form one or more "sandwich" structures, the partitions separate the battery cells, and form a fluid passage between the battery cells, preferably, in the fluid passage
  • the medium can exchange heat directly with the battery unit.
  • the invention has the following beneficial effects: the insulating layer of the battery cooling device or the thermal control device is made of an insulating material resistant to the coolant, so that the heat can be directly contacted with the cooling liquid, so that the insulating layer and the insulating layer No additional waterproofing layer or casing is required between the coolants, further ensuring efficient heat management of the battery and reducing costs.
  • the beneficial effects of the present invention also include that since the insulating layer is disposed on the battery case of the present invention, a water-based coolant having good flow and heat exchange properties can be selected.
  • water-based coolants are electrically conductive media, their overall thermal properties, such as flow, thermal conductivity and temperature suitability, are optimal and are also less expensive than insulating coolants such as transformer oil.
  • the invention directly immerses the battery in the antifreeze or water, and can perform efficient heat exchange.
  • the invention also has the following beneficial effects: for a battery provided with a safety valve, by installing a mounting hole and a vent hole on the main board, the positive and negative electrodes of the battery are tightened through the mounting hole with a nut, and the battery safety valve communicates with the vent hole, the battery The upper part and the main board are tightly sealed by a rubber seal or a rubber gasket.
  • This structural design allows the spacing between the batteries to be arbitrarily designed to ensure reliable cooling of the battery and to ensure compact and efficient batteries.
  • the assembly and disassembly of the battery is very convenient and quick, and can be repeatedly removed without loss of material.
  • the present invention also provides various preferred measures, such as non-equal spacing between batteries, misalignment design, non-equal cross-section design, recesses at the bottom of the outer casing, grooves, fins between the batteries, regular switching of the inlet and outlet. And other measures to further ensure efficient and uniform heat exchange of each battery, and the mechanical reliability and compactness of the battery cooling device.
  • the technical solution of the battery cooling device of the invention can be applied to the fields of transportation, communication, energy storage of power generation equipment, energy storage of electric equipment, and the like.
  • the shape of the cross section of the outer casing is not limited to a rectangular shape, and may be other types of outer casings such as a T shape and a U shape.
  • the PTC electrode strip assembly includes a positive electrode strip, a negative electrode strip, and a plurality of PTC elements sandwiched between the positive and negative electrodes.
  • Each of the upper and lower electrode strips has a tab 5 electrically connected to the outside.
  • all outer surfaces except the tabs were coated with an insulating silica gel impregnated with a coolant as an insulating layer 2 (similar to an outer insulating casing). That is, the coolant-resistant insulating layer 2 is applied around the top, the upper portion, and the bottom of the PTC electrode strip assembly to form a PTC electric heating core.
  • the insulating layer 2 material is made of insulating silica gel immersed in a cooling liquid. The silica gel is immersed in the cooling liquid to maintain good electrical insulation.
  • the plastic outer casing 4 is composed of an upper casing 41 and a lower casing 42, which are provided with a liquid inlet and a liquid outlet (not shown) in a direction perpendicular to Fig. 14.
  • the PTC electric heating core is placed in the cavity of the lower housing 42 of the plastic housing 4.
  • the main board 3 forms a reliable seal with the upper edge of the lower casing 42 (such as a rubber seal ring and a bolt and nut fastening connection).
  • the upper casing 41 is then overlaid on the main plate 3 and sealed tightly.
  • the liquid PTC electric heater device of the present invention is formed.
  • the PTC electric heater of this embodiment from a heat generating component (PTC element) to a heat transfer medium (coolant)
  • the heat transfer path is shorter and more efficient.
  • the present embodiment provides a semiconductor cooling device including a semiconductor heat dissipating assembly, which is formed by alternately stacking two sets of semiconductor electrode monoliths and three sets and the semiconductor electrode monolith. a zigzag fin; the fin portion surface is in direct contact with the outer surface of the semiconductor electrode monolith portion, and a cooling liquid passage is disposed in the fin; wherein the semiconductor electrode monolith is composed of a semiconductor electrode assembly and And a first insulating layer disposed outside the semiconductor electrode assembly, wherein the semiconductor electrode assembly comprises a semiconductor chip and three electrode sheets disposed on upper and lower sides of the semiconductor chip.
  • an electrode strip in which the tabs and the electrode sheets are integrated is also used.
  • an IGBT chip 506 and a diode chip 507 are respectively disposed on the upper surface of the lower electrode sheet 551, and the lower electrode sheet 551 is electrically connected to the collector of the IGBT chip 506 through the second solder layer 505b.
  • the first solder layer 505a and the negative electrode of the diode chip 507 are electrically connected;
  • the upper left electrode sheet 521 is electrically connected to the emitter of the IGBT chip 506 through the fourth solder layer 502b, and is electrically connected to the positive electrode of the diode chip 507 through the third solder layer 502a.
  • the upper right electrode sheet 531 is electrically connected to the gate of the IGBT chip 506 through the fifth solder layer 503a.
  • the second insulating layer 504 is also required to be separated between the electrode sheets 521 and 531 on the upper and lower sides of the upper side. If the spacing between the upper and lower electrode sheets is small and the creepage resistance distance is insufficient, the second insulating layer 504 is applied between the upper and lower electrode sheets except the chips 506 and 507 to ensure reliable insulation between the upper and lower electrode sheets.
  • the second insulating layer 504 may be an insulating silica gel. Thereby, the semiconductor electrode assembly is formed.
  • the semiconductor electrode assembly has three electrical connections to the outside, namely three tabs 522, 532, 552.
  • all the exposed surfaces are coated with a first insulating layer 501b, and the material of the first insulating layer 501b is an insulating material resistant to coolant immersion, such as coolant resistance.
  • Soaked insulating silica gel, or insulating ceramic coating impregnated with coolant such as WACKER insulated silica gel Elastosil RT 728 A/B, Zhisheng Weihua ZS-1091 high temperature insulating ceramic coating, etc.; thus, forming a semiconductor electrode as a whole Piece 102.
  • a zigzag fin 6 as shown in FIG. 11-2 is further introduced, and two sets of the above-mentioned semiconductor electrode monolith 102 and three sets of fins 6 are alternately laminated and pressed to form a semiconductor heat dissipation assembly as shown in FIG.
  • the fins 6 include an open coolant channel, and the fins 6 simultaneously support the two side semiconductor electrode monoliths 102 and enhance heat exchange, and the coolant directly contacts the first insulating layer 501b.
  • This embodiment includes a housing (not shown) having two halves (or two halves)
  • the outer casing is configured to receive the semiconductor heat dissipation assembly.
  • the tabs of the electrode strip extend outside the outer casing to be electrically connected to the outside, and the electrode strip and the outer casing are sealed.
  • the liquid inlet and the liquid outlet are disposed on the outer casing.
  • the embodiment provides an IGBT single tube.
  • the IGBT single tube has an exposed heat dissipation plate 605 (or a metal substrate), and the heat dissipation plate 605 is electrically connected to the collector (C pole) of the IGBT die.
  • the heat dissipation plate 605 is also a heat dissipation layer, and heat generated by the IGBT die is mainly radiated outward through the heat dissipation plate 605.
  • the three pins 601 of the IGBT single tube are wrapped, and then the body 604 of the IGBT single tube is completely impregnated (ie, dip coated) into the coolant-impregnated insulating silica gel to uniformly coat the insulating layer 662; preferably, only The lower portion of the pin 601 is wrapped, and the upper portion of the pin 601 is not wrapped, and is insulated from the body 604 of the IGBT single tube.
  • An IGBT single tube whose surface is coated with an insulating layer as shown in FIG. 19 is formed.
  • the exposed surface of the heat dissipation plate 605 (and the ear portion) of the IGBT single tube uniformly adheres to the insulating silica gel immersed in the coolant, and the silicone has strong adhesion, good sealing waterproofness, and high insulation strength. As shown in FIG.
  • the pin in the application of the IGBT single-tube cooling device, the pin is electrically connected to the outside and operates to generate heat, and the body 604 of the IGBT single tube which performs the above insulation treatment can be completely immersed in the cooling liquid 608 (the cooling liquid is Cooling mainly in the antifreeze solution composed of water and ethylene glycol, the pin 601 is extended on the main board 607, and sealed at the contact between the pin 601 and the main board 607 (for example, sealed with a paste silicone) ).
  • the cooling liquid is Cooling mainly in the antifreeze solution composed of water and ethylene glycol
  • the heat transfer path of the IGBT single-tube cooling device is such that the heat generated by the IGBT die is transferred to the insulating layer 662 through the heat dissipation plate 605, and then directly transmitted to the cooling liquid 608 through the insulating layer 662. Additionally, other faces of the body 604 may also transfer heat directly to the coolant 608.
  • the heat transfer path is shorter, and since the insulating layer 662 is coated, the adhesion between the insulating layer 662 and the heat dissipation plate 605 is good, and the existence of the air gap is avoided, so that there is almost no contact thermal resistance;
  • the layer 662 is made of an insulating material immersed in a coolant, and the insulating layer 662 is directly immersed in the cooling liquid 608, and the overall heat transfer resistance is smaller, and the heat transfer efficiency is very high.
  • the charging member of this embodiment is an IGBT electrode strip assembly, and the IGBT electrode strip assembly includes a semiconductor chip and electrode strips on both sides of the semiconductor chip.
  • the outer surface of the IGBT electrode strip assembly is provided with an insulating material immersed in a cooling liquid as the insulating layer 2; thus, the charged component having an insulating outer surface can be
  • the conductive coolant is in direct contact with the heat exchange.
  • an IGBT module cooling device similar to that shown in FIG. 14 or shown in FIG. 21 is formed.

Abstract

一种电发热部件的热管理结构和装置,该装置提高了电发热部件与换热介质(如冷却介质)之间的换热效率,达到了减小单节电发热部件的上下温差,及电发热部件之间温差的目的。

Description

电发热部件的热管理装置 技术领域
本发明涉及一种因通电而导致发热的部件的热管理结构和装置,尤其涉及一种结构和装置,用于对不期望发热的部件(如电池、IGBT半导体器件)进行降温,或者用于传输电加热部件产生的热量。
背景技术
现有电池液冷却系统如图1所示,在水泵D的驱动下冷却液体流经换热器C和电池包A底部的电池导热板B,将电池内部的热量导出,但电池内部的热量需要通过电池内的电极和电解质将热量沿竖直方向传递到电池底部的电池导热板B上,热传导路径长,导致传热热阻大、换热效率低、竖直方向的温差较大、对外部冷却系统性能要求较苛刻;且电池导热板B内部的冷却液体是依次流过每个电池包A底部,流经每个电池导热板B的冷却液体温度不一致,从而导致电池包A与电池包A之间的温差较大,无法保证电池与电池之间的温度的均匀性。
IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管),是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
目前,IGBT单管(或称IGBT分立器件)大多具有裸露的散热板(或称金属基板)表面,该散热板表面是IGBT的C极(集电极),为带电部件。IGBT单管常用于高电压电控部件(如水冷式PTC电加热器的控制器、水泵控制器),经常出现过温问题,或者其是热设计的一个瓶颈所在。现有的冷却技术是,在IGBT单管下面设置一个绝缘硅胶垫片或陶瓷垫片,然后用螺丝将IGBT单管紧固于主板(或称冷却板)上。传热路径是:IGBT管芯所发的热量通过C极传给绝缘垫片,然后再传给主板,然后再传递给冷却液。由于绝缘垫片界面上难免存在气隙或空隙,故其传热效率较低,IGBT单管的冷却效果较差,导致常出现IGBT单管过温报警或烧坏的问题。
另外,还有一种塑封的IGBT单管,其散热板表面被塑封,但由于塑封层较厚,导热能力较差,且塑料与主板之间也易产生较大的接触热阻,故其冷却效果 也不理想。
由此可见,目前的IGBT单管液冷均为间接液冷式,其传热路径较长,中间热阻较多且较大,故导致传热效率低,热管理问题频现。
另外,现有电加热采用金属基座,再在上面插入PTC电加热片。主要存在两个缺陷,缺点一是增加了传热中间环节,热阻增加,热效率低、功率密度小;缺点二是增加了子零件,增加了成本。
发明内容
本发明要解决的技术问题是:克服现有技术的不足,提供一种电发热部件的热管理结构和装置,提高了电发热部件与换热介质(如冷却介质)之间的换热效率,达到了减小单节电发热部件的上下温差、及电发热部件之间温差的目的。本发明要解决的技术问题还包括:如何利用现有发动机用的非绝缘冷却液(如水基防冻冷却液),解决现有冷却效率不高,成本高等问题。本发明若未特定指明,所说的冷却液均指导电冷却液。本发明所谓的导电冷却液,是指该冷却液为非绝缘冷却液,具有导电的功能(包括微弱导电的功能),比如水、水与乙二醇组成的防冻冷却液(简称防冻液)等。
针对现有电发热器件所产生的热量存在的热管理的问题,本发明提供了一种针对电发热器件进行热管理的结构和装置。
本发明第一个方面是提供一种电池冷却装置,包括电池单元,所述电池单元包括电池内芯,所述电池内芯具有密封外层,所述电池单元的至少一侧为流体通道,从而电池单元能够通过密封外层与流体进行热交换。或者说流体(冷却液)能够与密封外层直接接触换热。
所述流体通道可以是由相邻电池单元之间的间隙形成,也可以是指隔板中流体通道。所述流体通道可以是与电极方向相同,或垂直于电极方向,但也可以是其他方向,本发明中优选为垂直于电极方向。优选地,所述流体左右方向流动或前后方向流动。
在一种优选实施例中,所述电池冷却装置包括多个电池单元,电池单元与流体通道间隔设置。
在一种优选实施例中,所述电池内芯具有外壳,外壳的外表面和/或内表面设有绝缘层形成所述密封外层。所述密封外层能够与导电冷却液直接接触换热。
在一种优选实施例中,所述密封外层为包裹在电池内芯外部并将电池内芯密封的密封膜。
在一种优选实施例中,所述电池热控制装置包括至少两个电池单元,电池单元与隔板间隔设置。
所述电池单元可以是含有一个电池内芯或含有多个电池内芯的电池组,并且可以是每个电池内芯均设有单独的密封外层,或者一个电池组共用一个密封外层。
所述电池可以是一次性电池、可充电电池中的任意一种或几种。更优选地,所述电池单元优选为至少包括软包电池、硬壳电池中的任意一种或几种,更优选为至少包括软包电池,更优选为一个或多个软包电池。
在一种优选实施例中,所述电池单元为软包电池,包括软包电池内芯、以及软包电池内芯外部包裹的将软包电池内芯密封的密封膜;所述隔板的至少部分表面与所述密封膜至少部分外表面直接接触,并且隔板内设有流体通道。
所述隔板与所述密封膜之间的接触面可以是连续的或者间隔排布。
其中,所述软包电池内芯优选为扁平形状,所述扁平形状优选为长度/厚度和宽度/厚度的值分别独立地至少为5,更优选为至少为10,更优选为至少为15,更优选为至少为50,更优选为至少为100。
其中,所述软包电池内芯本身可以设有密封膜;但是所述软包电池内芯也可以不设有密封膜,而仅仅为能够实现电池功能的基本结构。
在一种优选实施例中,所述电池单元为硬壳电池,包括硬壳电池内芯、以及外壳,外壳的内和/或外表面设有绝缘层形成绝缘外壳,即所述绝缘外层。
在一种更优选实施例中,所述隔板包括两个平板,两个平板分别与一个电池单元的密封膜接触,两个平板之间设有连接在至少一个平板上的连接板,从而在两个平板之间形成流体通道。
在另一种更优选实施例中,所述隔板为翅片结构,优选地,翅片之间依次连接,所述连接方式可以是“V”形、“U”形、梯形、弧形、锯齿形等连接,并且相邻翅片之间可以是平行或形成一角度,从而在相邻翅片之间形成所述流体通道。
其中,更优选地,所述翅片结构包括竖板以及竖板两端的平板,所述平板与电池密封膜直接接触。
更优选地,所述翅片结构包括两组所述的平板,所述两组分别与相邻的两个 电池单元中的一个电池单元的密封膜接触,各组中包括多个平板。更优选地,各个平板只连接两个竖板。
所述竖板并不必然与所述平板垂直,也可以是倾斜连接在平板上。
在一种更优选实施例中,所述翅片上还可以设有孔。
在另一种更优选实施例中,所述翅片可以是直板翅片、波浪形翅片中的任意一种或几种,其中,所述波浪形翅片在弯曲处可以是弧形、也可以是形成尖角(如锐角、直角或钝角),更优选为弧形。
其中,相邻两个电池单元之间的隔板可以是一个隔板或者是多个子隔板组成的子隔板组,例如,多个子隔板在两个电池单元之间间隔排布;所述子隔板结构选自上述隔板结构中的任意一种或几种。
在本发明的更优选实施例中,所述隔板材质可以是金属材料(包括合金材料)、聚合物材料中的任意一种或几种,并优选为导热板,更优选为金属材料,如铝合金、不锈钢等。
在一种优选实施例中,所述隔板与电池单元的密封膜之间直接接触。例如,隔板与所述密封膜之间无任何粘结剂或粘结层。
其中,所述密封膜优选为绝缘膜。其中,所述密封膜材质可以是含氟聚合物、有机硅聚合物中的任意一种或几种,更优选为所述密封膜包括绝缘层、绝缘层表面的金属箔,如金属塑模,并优选为铝塑膜。
所述金属箔可以是仅设置在绝缘层的一个侧面,或者也可以设于绝缘层的两个侧面,如仅设于绝缘层内表面和/或绝缘层外表面;或者所述绝缘层可以是仅设置在金属箔一个侧面,或者也可以设于金属箔的两个侧面,如绝缘层设于金属箔的内表面和/或外表面。
更优选地,所述密封膜将所述电池单元四周密封,仅电池电极、或电极连接端口从所述密封膜中伸出。所述连接端口可以是导线、插头、电极极耳等任意一种或几种。
优选地,所述绝缘层采用涂覆工艺或包裹工艺或热缩工艺制成或注模成型制成或热压工艺制成。优选地,所述绝缘层涂覆方式为喷涂、刷涂、辊涂、浸涂、点胶、丝网印、滚涂、电泳、以及刮涂中的一种或数种的组合。
优选地,所述绝缘层材质为陶瓷、或高分子绝缘材料、或掺杂有陶瓷的高分子复合绝缘材料。所述陶瓷材质包括由陶瓷粉末形成或由陶瓷绝缘溶液形成。
优选地,所述绝缘层材质选用耐冷却液浸泡的绝缘材料。一般的绝缘材料(如普通硅胶)应用于冷却液(如防冻液)存在技术障碍,不能够长期耐防冻液浸泡,比如会出现溶胀现象,从而导致绝缘硅胶结构和绝缘功能失效。本发明所谓耐冷却液浸泡的绝缘材料,是指该绝缘材料浸泡于冷却液中仍然能保持良好的绝缘功能。
优选地,所述绝缘层材质为耐冷却液浸泡的绝缘硅胶、或者涂覆有环氧树脂的聚酰亚胺薄膜、或者涂覆有特氟龙的聚酰亚胺薄膜、或者塑料热熔胶。
在一种优选实施例中,所述电池冷却装置包括主板,用于装配电池单元,所述主板上设有插口,所述电池单元通过所述插口插入到主板上。在一种优选实施例中,所述电池单元从密封膜内伸出的部分通过所述插口插入到主板上。
更优选地,所述密封膜在所述电池内芯顶部形成密封顶边,所述电极或者电极连接端口从所述密封顶边伸出,更优选地,所述密封顶边的至少部分也通过所述插口插入到主板上。
其中,所述绝缘外壳与安装孔的密封方式为焊接、或者快插、或者卡接、或者橡胶圈密封、或者橡胶密封垫、或者液状密封胶、或者膏状密封胶固定、或螺纹密封固定。
优选地,所述主板上还可以开设有若干排气孔,该排气孔与电池安全阀连通,保障在危险时刻电池排气通畅。
在一种优选实施例中,所述主板为铝合金、或不锈钢、或塑料或树脂材料,所述外壳为铝合金、或不锈钢材料、或塑料或铝塑膜。
在一种优选实施例中,所述电池冷却装置包括外套壳,用于容纳冷却液,冷却液流过流体通道。
更优选地,所述外套壳一侧开口,所述主板封盖在所述开口处。
其中,所述外套壳包括上壳体和下壳体,上壳体和下壳体围成套壳空腔。
优选地,所述绝缘外壳的底部悬空,或者所述绝缘外壳的底部与下壳体(或外套壳)的内壁底部接触。上述方案中,包括如下情况:若下壳体(或外套壳)的内壁底部可以开设有凹陷,将所述绝缘外壳的底部嵌入于下壳体(或外套壳)的内壁底部的凹陷中,以提高整个电池冷却装置的机械强度。进一步的,若所述绝缘外壳的底部与下壳体(或外套壳)的内壁底部接触,则在下壳体(或外套壳)内部底面上设置若干沿流动方向的凹沟,所述凹沟用于增加电池底部冷 却液流动,这样换热效果更好。
其中,一种优选实施例中,电池冷却装置,包括:
电池,所述电池具有外壳,所述外壳的外表面设有绝缘层形成外绝缘外壳;
外套壳,用以容纳冷却液,所述外套壳由上壳体、下壳体构成,所述上壳体、下壳体围成套壳空腔,所述外套壳设置有进液口及出液口;
主板,用以装配电池,所述主板开设有若干个安装孔;
所述电池上部与所述主板密封安装,所述外绝缘外壳的下部置于外套壳的套壳空腔中,所述外绝缘外壳的底部悬空,或者,所述外绝缘外壳的底部与下壳体的内壁底部接触。
优选地,所述外套壳、并优选为下壳体底部设置凹陷,所述电池底部插入所述凹陷内被固定;或者,所述壳体、并优选为下壳体底部设置有带插槽孔的固定件,所述电池插入所述固定件的插槽孔内被固定。
优选地,所述外套壳内部底板上沿流动方向设置有凹沟。设置这些凹沟有利于所述电池底部的冷却。
优选地,沿冷却液的流动方向上,所述电池在垂直于冷却液流动方向上之间的间距逐次扩大。这样,可以保障上下游电池冷却效果趋于一致。
优选地,所述电池之间设置有若干嵌套翅片。这些翅片可有助于电池之间的固定、流程组织以及强化换热。
在一种优选实施例中,所述电池单元上部与所述主板密封安装,所述绝缘外层的下部置于外套壳的套壳空腔内,所述绝缘外层的底部悬空、或者与套壳空腔内壁底部接触,并优选为与下壳体的内壁底部接触。
其中,所述外套壳设置有流体入口(如进液口)和流体出口(如出液口)。
在一种优选实施例中,所述电池冷却装置还包括隔板,所述隔板的至少部分表面与所述密封外层的至少部分表面直接接触,并且所述隔板内设置有所述流体通道。
在本发明的一种优选实施例中,所述隔板内流体通道可以与电池单元的绝缘膜直接接触,也可以不与电池单元的绝缘膜直接接触。其中,所谓流体通道与电池单元的绝缘膜直接接触,也即是在隔板与电池单元绝缘膜接触的那面,冷却液与绝缘膜接触。另外,即使流体通道不与绝缘膜直接接触,冷却液与电池单元的侧面直接接触。所以,导电冷却液能够与电池单元直接接触换热。
在一种实施例中,所述外套壳内部设有容纳腔室,所述电池单元与隔板均置于所述外套壳的容纳腔室内。
更优选地,所述主板位于所述外套壳的容纳腔室内,并将所述容纳腔室隔开成为两个部分,第一部分容纳电池单元主体以及隔板,第二部分容纳从所述密封膜伸出的电极和/或电极连接端口部分。
更优选地,所述第一部分和第二部分之间物理隔绝,即第一部分腔室内流体不能够进入第二部分腔室。
本发明的更优选实施例中,所述外套壳的容纳腔室内、尤其优选为所述容纳腔室的第一部分内,含有换热介质,所述换热介质可以是电绝缘换热介质(电阻率大于1010Ω·cm),也可以是非电绝缘换热介质。
所述换热介质举例如:变压器油、空气、水、发动机冷却液、乙二醇/水混合液等。其中,水和乙二醇体积比例优选为(40-65)∶(35-60),更优选为(45-60)∶(40-55),更优选为(50-55)∶(45-50)。
本发明上述内容中,所述电池单元之间、或者同一电池单元的电池之间、不同电池单元的电池之间可以是串联设置、并联设置、或二者的结合。
在本发明的一种优选实施例中,所述外套壳纵截面形状可以是方形、U形、T形、梯形、以及其他不规则形状。
在本发明的一种优选实施例中,所述电池单元与隔板组成的序列进行固定,固定方法可以是绑扎固定、贯穿螺柱固定等现有固定方式,或也可以是在壳体内通过卡件和/或扣合结构将电池单元和/或隔板固定于壳体内。
在本发明的一种优选实施例中,所述流体通道优选为从一端向另一端逐步扩大,并更优选为所述流体通道从外套壳的流体入口一端向流体出口一端逐步扩大。应当理解的是,所述逐步扩大也包括逐级扩大的情况。
在本发明的一种优选实施例中,包括多个所述电池单元和隔板,并且各个电池单元中的电池数量可以相同或不同,更优选为,在所述外套壳流体入口流向所述壳体流体出口的方向上,所述电池单元中电池数量≥下一级电池单元中的电池数量。例如,在外套壳流体入口处的电池单元中设置2-3个电池,外套壳流体出口处电池单元设置1个电池。
在本发明的一种优选实施例中,所述电池为复数个,所述复数个电池尺寸相同,或者复数个电池分为两类,第一类电池横截面积是第二类电池横截面积的2 倍,且第一类电池排列于临近所述流体入口的位置,第二类电池排列于临近所述流体出口的位置。或者所述复数个电池分为三类,第一类电池的横截面积是第二类电池横截面积的1.5倍,第一类电池的横截面积是第三类电池横截面积的3倍,所述第一类电池、第二类电池和第三类电池依次从临近流体进口向临近流体出口的位置排列。
本发明上述内容中,所述流体入口和流体出口:1)可以是不同的开口,这种情况下,流体出口和流体入口可以进行变换;2)也可以是同一个开口,这种情况下,所述流体出口和流体入口仅仅代表不同的使用状态。
本发明第二个方面是提供一种功率器件冷却装置,包括功率器件本体(如功率半导体电极条组件本体),所述功率器件本体的散热板表面设置有第一绝缘层,所述第一绝缘层能够与导电冷却液直接接触换热。所述散热板可以是功率器件单管的散热金属基板,也可以是指功率半导体电极条组件的电极条或电极片。
其中,表面设置绝缘层之前,所述的功率器件是一种表面带电的带电部件。
其中,发明所述功率器件可以是包括半导体芯片和位于半导体芯片两侧的电极条,所述的半导体芯片包括IGBT芯片或/和二极管芯片。
这些功率器件本体上通常具有裸露的散热板表面,这些散热板表面通常也是带电表面,比如IGBT单管的底面是裸露C极散热板,IGBT的管芯所发的热量主要通过该散热板向外散发。
或者,进一步的,所述的带电部件为功率器件单管(或称功率半导体单管,如IGBT单管等)。
其中,功率半导体电极条组件的电极条优选为片状的电极片。进一步的,电极片的数量为2个或3个或5个。其中包括如下情况:集电极和发射极的连接电极条为电极片,栅极的连接电极条为健合线;或者,所有集电极、发射极、以及栅极的连接电极条均为电极片。正负电极条/电极片的材料可以是不锈钢、或者铝合金、或者铜。
进一步的,功率半导体电极条组件的位于半导体芯片两侧的电极条之间设置有第二绝缘层。
其中,所述绝缘层的设置方法为涂覆、或包裹。本发明所谓涂覆,也可称涂敷,是指胶粘剂或涂料施工工艺的一种统称。
所述涂覆方法可以是喷涂、或浸涂、或刷涂、或辊涂、或丝网印。其中,更 为优选为采用喷涂或浸涂。绝缘材料通过喷涂或浸涂的方式能够高效均匀地附着于所述散热板表面上。
在一种优选实施例中,所述绝缘层的材质为耐冷却液浸泡的绝缘材料。所谓耐冷却液浸泡的绝缘材料,是指该绝缘材料浸泡在冷却液中仍能保持良好的电绝缘功能。其中,所述耐冷却液浸泡的绝缘材料为硅胶、或者塑料热熔胶、或者绝缘陶瓷涂料,比如瓦克绝缘硅胶Elastosil RT 728 A/B、或志盛威华ZS-1091耐高温绝缘陶瓷涂料。
进一步的,所述硅胶可添加绝缘导热填料,如AlN陶瓷粒子填料,可提高绝缘层的导热系数。
进一步的,所述功率器件冷却装置还包括导电冷却液。所述功率器件的本体浸泡于冷却液中。其中,所述冷却液优选为水基冷却液,所谓水基冷却液是指该冷却液的基体成分为水;更为优选为主要成分是水和乙二醇的防冻冷却液。比如汽车上常用的防冻冷却液为约50%水+约50%的乙二醇混合液,另还有其他一些防腐剂、缓蚀剂等添加剂。
在一种优选实施例中,所述功率器件冷却装置还包括主板,所述功率器件本体位于所述主板的一侧,所述功率器件本体上与外界的电连接部(如电极条的极耳)位于所述主板的一侧,并在所述管脚与所述主板之间进行密封处理,如IGBT单管的管脚下部或全部位于所述主板的另一侧。这样,当管脚与外部进行电连接并工作发热时,主板下方充满冷却液,该单管本体全部浸泡在冷却液中进行高效冷却,单管的管脚与冷却液隔离确保电绝缘。
在一种优选实施例中,所述功率器件冷却装置还包括集液腔或外套壳,所述集液腔或所述外套壳与所述主板密封构成冷却液容纳空腔,所述功率器件本体位于所述冷却液容纳空腔中,所述集液腔或所述外套壳上设置有进液口和出液口。比如,所述集液腔或所述外套壳可以是液体PTC电加热器的下外壳体或水泵的蜗壳。
在一种优选实施例中,所述功率器件冷却装置还包括隔板,隔板内设置有流体通道,所述带电部件的绝缘外壳的至少部分外表面与所述隔板的至少部分表面直接接触。所述隔板可起到支撑具有绝缘外壳的带电部件的作用,也可起到组织冷却液流场和提高换热的作用。更优选地,所述带电部件与隔板间隔设置。
以上结构装置也适用于液体PTC电加热器。
本发明第三个方面是提供一种PTC电加热装置,包括PTC电极条组件和包裹于PTC电极条组件外侧的第一绝缘层;该包裹有第一绝缘层的PTC电极条组件能够与导电冷却液直接接触换热。
其中,PTC电极条组件包括若干PTC元件和设置于PTC元件两侧的电极条。
其中,第一绝缘层由耐冷却液浸泡的绝缘材料形成。
在一种优选实施例中,PTC电加热装置包括PTC电加热组体,所述PTC电加热组体包括PTC电极条组件,所述的PTC电极条组件包括正电极条、PTC发热片组、负电极条,所述PTC发热片组由若干PTC发热片组成;
所述的PTC发热片组设置在正电极条和负电极条之间;所述正电极条和负电极条各自外部的一侧设有第一绝缘层。
所述PTC电极条组件、第一绝缘层组成第一整体件;所述PTC电制热器包括流体通道,从而流体能够通过第一绝缘层进行热交换。或者说流体与第一绝缘层直接接触换热。
其中,优选地,所述流体通道与所述第一整体件依次间隔设置形成PTC电加热组体。
进一步的,优选为所述PTC电加热组体的最外围为流体通道。
其中所述正电极条包括正电极片、正极极耳;其中所述负电极条包括负电极片、负极极耳;所述的PTC发热片组设置在正电极片和负电极片之间;所述正电极片和负电极片各自外部的一侧设有第一绝缘层。
其中,PTC电极条组件中的PTC发热片优选通过胶粘的方式与正负电极片连接;当然,也可采用压紧的方式连接。
进一步的,所述的PTC电制热器还包括主板,该主板具有内空腔;所述的PTC电加热组体设置在主板的内空腔中,并且与主板内壁之间形成密封结构。或者,所述的PTC电极条组件上的与外界的电连接部(如极耳)穿过主板,并且与主板内壁之间形成密封结构。
进一步的,所述主板的外部包裹有用于容纳主板与PTC电加热组体的外壳。所述外壳优选塑料外壳,且优选采用上下合围形式的塑料外壳。
进一步的,所述流体通道中设置有若干翅片,以强化换热性能。所述翅片可以是各种形式的翅片,比如光直翅片、锯齿翅片、多孔翅片等。
进一步的,所述第一绝缘层材料为耐换热液体浸泡的绝缘材料。这种材料 有耐换热液体浸泡的绝缘硅胶、外部涂覆有环氧树脂的聚酰亚胺薄膜,等等。
本发明PTC电制热器所用的换热液体优选采用水基冷却液,比如纯水或者常用的防冻液,其中防冻液的主体组分为约50%乙二醇+约50%水。
本发明的有益效果:采用三明治式结构排列,流体通道位于电发热部件之间,传热效率高、功率密度大、结构紧凑、体积小,成本低,并且装配简单。
附图说明
图1为现有电池冷却系统结构示意图;
图2为本发明一种电池单元示意图;
图3为图2所示电池单元安装密封垫、绝缘垫的电池结构示意图;
图4为多个图2所示电池单元安装在主板上的结构示意图;
图5为图4所示电池单元安装到主板上之后与主板密封连接的结构示意图;
图6为本发明一种外套壳示意图;
图7是电池的一种密封方式;
图8是电池的另一种密封方式;
图9为本发明另一种实施例中电池热控制装置剖面结构示意图;
图10为图9所示电池结构示意图;
图11为图9所示实施例中几种隔板结构示意图;
图12为图9所示实施例中主板结构示意图;
图13为本发明另一种实施例中电池热控制装置剖面结构示意图;
图14为本发明一种实施例中PTC电加热器结构示意图;
图15为本发明一种实施例中半导体散热组体结构示意图;
图16为图15所示实施例中半导体电极条组件结构示意图;
图17为图15所示实施例中半导体电极整体件结构示意图;
图18为图17所示半导体电极整体件A-A面剖视图;
图19为一种实施例中表面涂覆绝缘层的IGBT单管侧视图;
图20为采用图19所示的表面涂覆绝缘层的IGBT单管冷却装置示意图;
图21一种实施例中IGBT模块冷却装置示意图。
具体实施方式
实施例1
如图2至图6所示,一种电池冷却装置,包括:电池1,电池1具有外壳,外壳的外表面设有绝缘层形成外绝缘外壳2(相当于密封外层)。外壳可以采用金属外壳、非金属外壳或者复合材料材料,复合材料例如可以选用铝塑膜。
图6给出了一种外套壳4的结构,外套壳4设置有进液口及出液口。优选地,外套壳4由上壳体41、下壳体42构成。其中上壳体包括塑料膜或金属板,用于密封保护伸出于主板之上的电池电极和导线等部件。
主板3,用以装配电池1,主板3开设有若干个安装孔。电池1上部与主板3密封安装,主板3与外套壳4密封安装并形成空腔,所述空腔用以容纳冷却液,外绝缘外壳2的下部置于所述空腔中。其中的技术方案可以是:外绝缘外壳2的底部悬空,或者,所述外绝缘外壳2的底部与下壳体42的内壁底部接触(其中,包括将外绝缘外壳2嵌入到设置在下壳体42上的凹陷中,所述凹陷用于进一步固定电池)。进一步的,在下壳体内部底面上设置若干沿流动方向的凹沟,所述凹沟用于增加电池底部冷却液流动,这样换热效果更好。安装孔可以通过冲压形成,也可以经过注塑或切割形成。
在本实施例中,对冷却液(或称换热介质)没有电绝缘方面的限制,故其选择面非常广,可以选择各种水基冷却液,优选为防冻液(比如,其主体成分为约50%乙二醇+约50%水,并含有磷酸氢二钠和苯甲酸钠之类的防腐剂、苯丙三氮唑防锈剂和颜料等),这种防冻液冰点小于零下36℃,常压沸点108℃,导热系数大于0.4W/m·K,粘度小于1.4mPa·s,故其适用于大多数气候环境,导热性好、流动性好且成本低廉,其应用和配套非常成熟,是作为动力电池冷却液最理想的选择。
如下表,无论是导热性还是流动性,变压器油等绝缘冷却液的性能与防冻液和纯水相比差很多。更致命的是,变压器油是可燃烧的,若用于电动车动力电池冷却,存在很大的安全隐患。而防冻液是不可燃的,而且电池外绝缘层还可采用为阻燃性物质,如涂覆环氧胶的聚酰亚胺薄膜做绝缘层,就能很好地保护电池,防止燃烧扩散。
Figure PCTCN2015096540-appb-000001
在本实施例中,电池外壳的外绝缘层材料选择具有耐防冻液、耐高低温和长寿命特征的绝缘材料。比如采用以聚酰亚胺薄膜为基膜的绝缘胶带,其耐温至少在100℃以上,完全可以满足电池的耐热要求;在聚酰亚胺基膜两侧涂覆环氧粘接胶,环氧粘接胶的耐水和耐防冻液的浸泡能力是很好的,而且其工艺是简单可靠的,成本也是较低的。其性能如下:绝缘强度大于1800V,耐温大于100℃,其老化寿命大于10年,阻燃等级在UL94V-0级,胶带固化成型后吸水率小;以上性能完全可以满足电池外壳对外绝缘层的技术要求。
实际大批量生产中,也可通过涂覆工艺来设置绝缘层,比如喷涂或浸涂耐防冻液耐高低温的有机硅胶,这将有利于自动化大批量生产的工艺设计。其有益效果是生产效率大幅度提高,且批量生产质量稳定可靠,生产成本将大幅度降低。
所用的绝缘材料可以通过添加导热填料来进一步提升其导热性,从而保证电池热管理更高效。
在本实施例中,外绝缘外壳2与安装孔密封固定,固定密封方式为:外绝缘外壳2与安装孔的密封方式为焊接或者快插或者卡接或者橡胶圈密封或者橡胶密封垫片密封或者液状密封胶或者膏状密封胶固定或者采用如图5所示的螺纹密封固定。其中优选通过橡胶密封圈或橡胶密封垫片压紧密封,再加上如图5所示的螺纹密封固定。
如图3至图5所示,电池1上的电极呈螺栓状,在两电极上分别套装电绝缘垫12和密封圈11(若密封圈同时具备电绝缘功能,则仅需密封圈即可),并且在电池1的上端具有一个安全阀13,电池1的两电极穿过主板3上的安装孔连接螺母然后固定住,电池1的上端部密封面(密封正负电极或正负电极极柱5、 安全阀13)与主板3之间形成密封配合。
如图7和图8所示,对电池1的密封方式:将正负电极极柱5、安全阀13(或称排气阀)通过密封圈11密封起来,并与冷却液隔离。
这种密封方式既能保证正负电极与导电冷却液之间的可靠绝缘密封(比如密封压力可达2-5bar以上),又能让电池1的本体尽量多的部分浸泡在冷却液中到达最佳的冷却效果,同时还保障了危险时候电池1内部气体通过安全阀13、端部密封面和主板3上的排气孔有效地排出有害气体,从而保障电池组的安全可靠。当然,密封方式也有很多种,本发明包括各种密封方式,不局限于某种具体的密封方式。
另外,主板3上的各对安装孔之间的距离可以任意设置,即电池1之间的距离可以任意设置,故在实现所有电池高效均匀冷却的同时保障了电池组结构紧凑,即电池组具备很大的体积功率密度。
这种电池1上端部通过螺纹紧固密封的方式还有利于售后维护。当电池组中某单个电池1出现故障的时候,可以很方便地拆卸下该电池1,然后又可以很方便地装配上去。这种设计方便了反复多次拆装,物料可重复利用。
主板3为铝合金或不锈钢或塑料或树脂材料,所述外绝缘外壳为铝合金或不锈钢材料或塑料或铝塑膜,所述外绝缘外壳为方形或圆形。
若干个电池1整齐排列与主板3密封安装,或者,若干个电池1错开排列与主板3密封安装。
本实施例不仅适用于将动力电池1产生的热量高效均匀地导出电池1,也适用于将外部的热量导入电池1(即对电池1进行加热)。
在优选的实施例中,电池1为复数个,复数个电池1的尺寸相同;或复数个电池1平均分为两类,第一类电池的横截面积是第二类电池横截面积的二倍,且第一类电池排列于邻近进液口的位置,第二类电池排列于邻近出液口的位置;或复数个电池1平均分为三类,第一类电池的横截面积是第二类电池横截面积的二分之三倍、第一类电池的横截面积是第三类电池横截面积的三倍,从邻近进液口的位置开始依次排列有第一类电池、第二类电池和第三类电池。
该浸泡式冷却不仅可用于方形电池,也适用于圆形电池。
主板3的各个安装孔的尺寸与对应的每一类电池的外绝缘外壳2的尺寸相 适应。
根据冷却液体的流向可知第一排的电池1周围的冷却温度最低,电池1的温度最低,冷却效果好,因此分批的减小电池1的横截面积,可减小电池1的径向传热热阻,减小电池1芯内部与外部冷却液体之间的温度差,通过减小冷却液体下游电池1横截面积的方式可使外套壳4内部所有电池1的中心温度平衡,以保持电池1本身的性能达到最佳效果,在实际运行时,也可通过定期(1小时或1天)将冷却液体的进液口和出液口进行切换,以保持流道前后的电池1温度分布更均匀。电池1之间的间距为均匀的,间距为2mm-5mm之间,邻近侧壁的电池1与侧壁之间的距离为5mm-7mm之间;电池1之间的间距也可是非等间距的。
综上,本发明提供了如下电池冷却的技术方案:将电池浸泡在防冻冷却液里,垂直于冷却液流动方向的电池之间的间距沿冷却液流动方向逐步扩大,沿冷却液流动方向上电池的横截面积逐步减小,沿冷却液流动方向上电池错位排列,定期切换进口和出口等技术方案。这些技术方案可以单独使用,也可以综合使用。这些技术方案可达到如下技术效果:电池与冷却液之间的换热效率更高(或换热温差更小,或者说电池耐冷却液温度提高),电池之间的温度更均匀(如温差可达±1℃以内),电池上下部之间的温度更均匀。这些技术效果将使得电池使用寿命更长,长期运行后电池的衰减量更小,状态更均一。电池冷却液允许的温度能够适当地提高,从而为电池冷却液冷却与电机电子冷却液冷却的协同提供了条件,这将大大简化电动车冷却系统。
另外,在本实施例中,也可以是电池的外壳的内表面设有绝缘层形成绝缘外壳。本实施例在电池单体成型之前,先在电池的外壳内设置绝缘层,然后再进行通常的电池单体组装,从而形成带内绝缘外壳的电池;接下来进行如实施例1上述内容所述的电池冷却装置组装。
实施例2
图9给出了一种软包电池的热控制装置,包括壳体(或称外套壳)4,壳体4的容纳腔室内设有主板3,主板3将壳体4容纳腔室分成两个部分。
在容纳腔室的下面的部分,置有多个电池1,相邻电池1之间设有隔板6,隔板6内设有流体通道61。
参照图10,(软包)电池1包括电池内芯10和电池内芯10外部包裹的密封膜20,密封膜20为铝塑膜,铝塑膜中间为铝箔,铝箔内外表面分别设有绝缘塑料(相当于实施例1中的绝缘层)。密封膜20在电池1的侧边位置形成密封侧边202,在顶部位置形成密封顶边201,从而将电池1密封。所述密封可以是热封的方法。电极极耳5从密封膜中伸出,用于连接外部电导线。
参照图11,本实施例中可以采用多种形状和类型的隔板:
图11-1给出了一种扁管形式的隔板,包括上下两个平面。上下两个平面与密封膜10直接接触,并且为导热材料。上下两个平面之间形成流体通道,并且所述流体通道可以通过加强筋隔成多个通道。
图11-2给出了一种锯齿形翅片隔板,包括多个齿形单元,同一列齿形单元内部连通形成流体通道,相邻齿形单元之间前后交错排布。齿形单元的顶部和底部平面与密封膜直接接触。
隔板6在设置时,流体通道61垂直于电极方向。
翅片隔板或者扁管形式的隔板中,各面板上均可以设置有穿孔,从而将各个流体通道连通。
对于上述翅片隔板,由于流体通道直接接触电池,因此,翅片隔板并不必须是导热材料,但优选为导热材料。
参照图12,本发明中,主板设有多个插口,电极极耳5从所述插口内伸出,并且所述插口与电极极耳5之间密封,本实施例中,电池的密封顶边201一同插入到插口中,并进行密封。
插口可以是均匀分布,如图12-1,但是也可以根据情况按照区域进行排布,如图12-2,形成多个插口区。
壳体4设有流体入口和流体出口(图中未显示),流体可以作为换热介质,如水、乙二醇/水(如体积比50/50)混合液、发动机冷却液等。并且,本实施例中,流体通道61从流体入口一端向流体出口一端逐步扩大。
上述实施例给出的是隔板之间仅设置一个电池的情况,但是本发明也可以用多个电池组成的电池单元来替换图10中的电池。如图13所示,隔板之间设置有两个并排设置的电池1。
另外,本发明中,各个电池单元之间,电池数量也可以不同,如在流体入口一端的电池单元中设置两个电池,在流体出口一端的电池单元中设置一个电池。
本发明中,由于流体通道直接与电池接触,翅片隔板可以仅作为支撑板存在,而无需是导热板,可以大大简化电池热控制装置的制备,或者为了进一步增强换热效果,翅片隔板也可以是导热材料。
通过主板插口将电池固定,另外,为了固定隔板,主板上也可以设有隔板插口,隔板上设有插头,或者通过绑扎、螺柱贯穿等方式,将隔板和电池之间的位置进行固定。
由于本实施例采用的电池为软包电池,其本身的机械强度和刚度都较差,若直接应用于电动汽车动力电池上,则不可能满足抗振动要求。传统方法采用冷却板(见CN102163758A)与软包电池层叠并在外部加绑带或贯穿螺栓的方式固定。而本发明增加隔板之后,隔板发挥了极大的作用;并优选地,采用耐冷却液的胶粘剂将隔板和软包电池之间粘接起来。这样,一方面可以提高动力电池包内部的机械强度,另一方面可以减小隔板和软包之间接触热阻,有利于热量更高效地传递到隔板上并散发到换热液体中。故通过软包电池与隔板(更优选为锯齿翅片)的组合之后,动力电池包取得了非常大的效果:一方面由于锯齿翅片对软包电池的分隔和支撑作用,电池包整体的抗振强度提高了;另一方面通过锯齿翅片组织冷却液流场、强化换热,且冷却液直接与软包电池接触换热,电池包可以以更大的电流对外输出功率而不会过热,其功率密度得到了显著提升。
所述实施例2中,将电池单元与隔板相互间隔设置形成一个或多个“三明治”结构,隔板将电池单元隔开,并且在电池单元之间形成流体通道,优选地,流体通道内的介质可以与电池单元直接换热。相比于上述现有技术,本发明结构简单,成本低廉,换热效果更好。
通过上述实施例1或2的设计,本发明具有如下有益效果:该电池冷却装置或热控制装置的绝缘层选用耐冷却液的绝缘材料,故可与冷却液直接接触换热,从而绝缘层与冷却液之间不需要额外的防水层或套管,进一步保障了电池高效的热管理且降低了成本。
本发明的有益效果还包括,由于本发明将绝缘层设置在电池外壳上,故可选用流动和换热性能好的水基冷却液。虽然水基冷却液是导电的介质,但其流动性、导热性和温度适用性等综合热性能是最佳的,其成本也比绝缘冷却液(如变压器油)便宜。本发明将电池直接浸泡在防冻液或水里,可进行高效换热。
本发明还具有如下有益效果:对于设置有安全阀的电池,通过在主板上开设安装孔和排气孔,电池正负电极穿过安装孔用螺母拧紧,电池安全阀与排气孔连通,电池上部与主板之间通过橡胶密封圈或橡胶密封垫片压紧密封。这种结构设计,使得电池之间的间距可以任意设计,既保障电池可靠冷却,又保障电池之间紧凑高效。电池的装配和拆卸非常方便快捷,而且可反复多次拆装而不损耗材料。
另外,本发明还提供了多种优选措施,如电池之间非等间距设计、错位设计、非等截面设计、在外套壳底部设置凹陷、凹沟、电池之间设置翅片、进出口定期切换等措施,进一步保障各电池换热高效、均匀,电池冷却装置的机械可靠性和紧凑性。
本发明的电池冷却装置技术方案可以应用于交通领域、通讯领域、发电设备储能、用电设备储能等领域。可以适用于各种电池,如铅酸电池、镍氢电池、锂离子电池、锂硫电池、金属空气电池等。外套壳截面的形状不拘泥于矩形,也可是T型、U型等其他形式的外套壳。
实施例3
参照图14,PTC电极条组件包括正电极条、负电极条以及夹于正负电极之间的若干PTC元件。正负电极条上部各有一个与外界电连接的极耳5。如图14所示,在PTC电极条组件上,除极耳之外的所有外表面均涂覆耐冷却液浸泡的绝缘硅胶作为绝缘层2(类似外绝缘外壳)。即PTC电极条组件四周、上部和底部均涂覆了该耐冷却液的绝缘层2,从而形成PTC电加热芯体。绝缘层2材料采用耐冷却液浸泡的绝缘硅胶,这种硅胶浸泡于冷却液中能仍然保持良好的电绝缘功能。
然后,将该PTC电加热芯体的各个极耳5穿过塑料主板3(如图12所示的主板)的安装孔伸出于主板3之上,并在极耳5与安装孔之间做好密封(如采用绝缘密封胶进行密封)。塑料外壳4由上壳体41和下壳体42组成,下壳体42在垂直于图14的方向上设置有进液口和出液口(图上未示出)。将PTC电加热芯体置于塑料外壳4的下壳体42的空腔内。主板3与下壳体42上部边沿四周形成可靠的密封(如用橡胶密封圈加螺栓螺母紧固连接密封)。然后将上壳体41覆盖于主板3之上并紧固密封。这样即形成本发明的液体PTC电加热器装置。
本实施例的PTC电加热器,从发热部件(PTC元件)到传热介质(冷却液) 的热传递路径更短更高效。
实施例4
本实施例给出了一种半导体冷却装置,该半导体冷却装置包括半导体散热组体,所述半导体散热组体由二组半导体电极整体件和三组与所述半导体电极整体件相互交替层叠设置的锯齿形翅片组成;所述翅片部分表面与所述半导体电极整体件部分外表面直接接触,并且所述翅片内设有冷却液通道;其中,所述半导体电极整体件由半导体电极组件和设置于所述半导体电极组件外侧的第一绝缘层构成,其中,所述半导体电极组件包括半导体芯片和三个设置于所述半导体芯片上下两侧的电极片。本实施方式中,也采用极耳与电极片集成在一起的电极条。
图15-17中所示,下侧电极片551上表面分别布置有一个IGBT芯片506和一个二极管芯片507,下侧电极片551通过第二焊锡层505b与IGBT芯片506的集电极电连接,通过第一焊锡层505a和二极管芯片507的负极电连接;上侧左电极片521通过第四焊锡层502b与IGBT芯片506的发射极电连接,通过第三焊锡层502a和二极管芯片507的正极电连接;上侧右电极片531通过第五焊锡层503a与IGBT芯片506的栅极电连接。上侧左右两边的电极片521、531之间也需用第二绝缘层504隔离。若上下电极片之间的间距很小,抗爬电距离不足,则需在上下电极片之间除芯片506、507之外的地方涂覆第二绝缘层504以确保上下电极片之间可靠绝缘,其中第二绝缘层504可采用绝缘硅胶。由此,即形成了半导体电极组件。
该半导体电极组件两侧有三个与外界的电连接部,即三个极耳522、532、552。上述半导体电极组件上,除三个极耳处之外,其余所有外露表面均涂覆第一绝缘层501b,该第一绝缘层501b所用的材料是耐冷却液浸泡的绝缘材料,比如耐冷却液浸泡的绝缘硅胶,或者耐冷却液浸泡的绝缘陶瓷涂料等,这些材料有瓦克绝缘硅胶Elastosil RT 728 A/B、志盛威华ZS-1091耐高温绝缘陶瓷涂料等;由此,从而形成半导体电极整体件102。
本实施例还引入如图11-2所示锯齿型翅片6,将两组上述半导体电极整体件102和三组翅片6交替层叠压紧,形成如图15所示的半导体散热组体,其中翅片6中包含有开放式冷却液通道,翅片6同时起支撑两侧半导体电极整体件102作用和起强化换热作用,冷却液直接与第一绝缘层501b接触。
本实施例包括外壳(未示出),该外壳由左右两半部分(或前后两半部分) 组成,外壳用于容纳半导体散热组体,电极条的极耳延伸于外壳之外以便与外界电连接,电极条与外壳之间做密封处理,外壳上设置有进液口和出液口。
实施例5
本实施例提供一种IGBT单管,如图19所示,该IGBT单管具有裸露的散热板605(或称金属基板),该散热板605与IGBT管芯的集电极(C极)电连通,同时该散热板605也是散热层,IGBT管芯所发的热量主要通过该散热板605向外散发。将IGBT单管的三个管脚601包裹好,然后将IGBT单管的本体604全部浸渍(即浸涂)于耐冷却液浸泡的绝缘硅胶中,以便均匀涂覆绝缘层662;优选地,仅将管脚601的下部包裹好,而管脚601的上部不包裹,并与IGBT单管的本体604一起做绝缘处理。形成如图19所示的表面涂覆有绝缘层的IGBT单管。
上述IGBT单管的散热板605(以及耳部)外露表面均匀附着有耐冷却液浸泡的绝缘硅胶,该硅胶附着力强,密封防水性好,且绝缘强度高。如图20所示,在IGBT单管冷却装置应用中,管脚与外部进行电连接并工作发热,可将做好上述绝缘处理的IGBT单管的本体604全部浸泡于冷却液608(冷却液为主要由水与乙二醇组成的防冻液)中进行冷却,将管脚601伸出于主板607之上,并在管脚601与主板607之间接触处做密封处理(如用膏状硅胶密封)。
该IGBT单管冷却装置的传热路径是:IGBT管芯所发的热量通过散热板605传递到绝缘层662上,然后通过绝缘层662直接传递给冷却液608。另外,本体604的其他几面也可以直接传热给冷却液608。由此可见,其传热路径更短,而且由于绝缘层662采用涂覆的方式,绝缘层662与散热板605的附着性好,避免了气隙的存在,故几乎没有接触热阻;而且绝缘层662选用耐冷却液浸泡的绝缘材料,绝缘层662直接浸泡在冷却液608中,其整体传热热阻更小,传热效率非常高。
同样,MOSFET单管等其他功率器件单管也可做类似上述的绝缘处理,并采用相同的冷却装置。
实施例6
本实施例的带电部件为IGBT电极条组件,IGBT电极条组件包括半导体芯片和位于半导体芯片两侧的电极条。所述IGBT电极条组件外表面设置有耐冷却液浸泡的绝缘材料作为绝缘层2;这样,具有绝缘外表面的所述带电部件能够与 导电冷却液直接接触换热。然后组成类似图14所示的或图21所示的IGBT模块冷却装置。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (37)

  1. 一种电池冷却装置,其特征在于,包括电池单元,所述电池单元包括电池内芯,所述电池内芯具有密封外层,所述电池单元的至少一侧为流体通道,从而电池单元能够通过密封外层与流体进行热交换。
  2. 根据权利要求1所述的所述电池冷却装置,其特征在于,所述电池内芯具有外壳,外壳的外表面和/或内表面设有绝缘层形成所述密封外层;所述密封外层能够与导电冷却液直接接触换热。
  3. 根据权利要求1所述的所述电池冷却装置,其特征在于,所述电池冷却装置还包括外套壳,所述电池单元置于所述外套壳内,所述外套壳内用于容纳冷却液。
  4. 根据权利要求3所述的所述电池冷却装置,其特征在于,所述外套壳上设置有冷却液的进液口和出液口。
  5. 根据权利要求3所述的所述电池冷却装置,其特征在于,所述电池冷却装置还包括主板,所述主板上开设有若干安装孔,所述安装孔用于装配电池;所述电池上部与所述主板密封安装,所述主板与所述外套壳密封安装并形成空腔,所述空腔用以容纳冷却液,所述密封外层的下部置于所述空腔中。
  6. 根据权利要求5所述的所述电池冷却装置,其特征在于,所述密封外层与安装孔的密封方式为焊接或者快插或者卡接或者橡胶圈密封或者橡胶密封垫片密封或者液状密封胶或者膏状密封胶固定或者螺纹密封固定或者热封。
  7. 根据权利要求3所述的所述电池冷却装置,其特征在于,所述外套壳内容纳有导电冷却液,密封外层与导电冷却液直接接触换热。
  8. 根据权利要求3所述的所述电池冷却装置,其特征在于,所述外套壳用以容纳冷却液,所述外套壳由上壳体、下壳体构成,所述上壳体、下壳体围成套壳空腔。
  9. 根据权利要求1或8所述的所述电池冷却装置,其特征在于,所述密封外层的底部悬空,或者,所述密封外层的底部与下壳体的内壁底部接触。
  10. 根据权利要求8所述的所述电池冷却装置,其特征在于,所述下壳体底部设置凹陷,所述电池单元底部插入所述凹陷内被固定;或者,所述下壳体底部设置有带插槽孔的固定件,所述电池单元插入所述固定件的插槽孔内被固定。
  11. 根据权利要求3所述的所述电池冷却装置,其特征在于,所述外套壳内部底 板上沿流动方向设置有凹沟。
  12. 根据权利要求1所述的所述电池冷却装置,其特征在于,包括:
    ——电池,所述电池具有外壳,所述外壳的外表面设有绝缘层形成外绝缘外壳;
    ——外套壳,用以容纳冷却液,所述外套壳由上壳体、下壳体构成,所述上壳体、下壳体围成套壳空腔,所述外套壳设置有进液口及出液口;
    ——主板,用以装配电池,所述主板开设有若干个安装孔;
    ——所述电池上部与所述主板密封安装,所述外绝缘外壳的下部置于外套壳的套壳空腔中,所述外绝缘外壳的底部悬空,或者,所述外绝缘外壳的底部与下壳体的内壁底部接触。
  13. 根据权利要求2所述的所述电池冷却装置,其特征在于,所述绝缘层采用涂覆工艺或包裹工艺或热缩工艺制成或注模成型。
  14. 根据权利要求13所述的所述电池冷却装置,其特征在于,所述绝缘层涂覆方式为喷涂、刷涂、辊涂、浸涂、点胶、丝网印、滚涂、电泳、以及刮涂中的一种或数种的组合。
  15. 根据权利要求2所述的所述电池冷却装置,其特征在于,所述绝缘层材质为陶瓷、或高分子绝缘材料、或掺杂有陶瓷的高分子复合绝缘材料。
  16. 根据权利要求15所述的所述电池冷却装置,其特征在于,所述绝缘层材质为耐冷却液浸泡的绝缘硅胶、或者涂覆有环氧树脂的聚酰亚胺薄膜、或者涂覆有特氟龙的聚酰亚胺薄膜、或者塑料热熔胶。
  17. 根据权利要求12所述的所述电池冷却装置,其特征在于,所述电池单元为复数个,复数个所述电池单元的尺寸相同;或者,
    复数个电池单元平均分为两类,第一类电池单元的横截面积是第二类电池横截面积的2倍,且第一类电池单元排列于邻近所述进液口的位置,第二类电池单元排列于邻近所述出液口的位置;或者,
    所述复数个所述电池单元平均分为三类,所述第一类电池单元的横截面积是第二类电池单元横截面积的1.5倍、第一类电池单元的横截面积是第三类电池单元横截面积的3倍,从邻近所述进液口的位置开始依次排列有第一类电池单元、第二类电池单元和第三类电池单元;
    所述主板的各个安装孔的尺寸与对应的每一类电池的绝缘外壳的尺寸相适应。
  18. 根据权利要求1所述的所述电池冷却装置,其特征在于,所述电池冷却装置还包含有用于增加耐机械振动强度的电池单元固定装置。
  19. 根据权利要求1所述的所述电池冷却装置,其特征在于,沿冷却液的流动方向上,所述电池单元在垂直于冷却液流动方向上之间的间距逐次扩大。
  20. 根据权利要求1所述的所述电池冷却装置,其特征在于,所述电池单元之间设置有若干嵌套翅片。
  21. 根据权利要求1所述的所述电池冷却装置,其特征在于,包括:电池单元、隔板;电池单元包括电池内芯以及、电池内芯外部包裹的将电池内芯密封的绝缘膜,所述隔板的至少部分表面与所述绝缘膜至少部分外表面直接接触,并且隔板内设有流体通道;所述绝缘膜能够与导电冷却液直接接触换热。
  22. 根据权利要求21所述的所述电池冷却装置,其特征在于,所述电池热控制装置还包括外套壳,所述外套壳内部设有容纳腔室,所述电池单元与隔板均置于所述外套壳的容纳腔室内。
  23. 根据权利要求21或22所述的所述电池冷却装置,其特征在于,所述绝缘膜将所述电池单元四周密封,仅电池电极、或电极连接端口从所述绝缘膜中伸出;电池热控制装置还包括主板,所述主板上设有插口,所述电池从绝缘膜内伸出的部分通过所述插口插入到主板上。
  24. 根据权利要求23所述的所述电池冷却装置,其特征在于,所述主板位于所述外套壳的容纳腔室内,并将所述容纳腔室隔开成为两个部分,第一部分容纳电池单元主体以及隔板,第二部分容纳从所述绝缘膜伸出的电极和/或电极连接端口部分,所述第一部分和第二部分之间物理隔绝。
  25. 根据权利要求21所述的所述电池冷却装置,其特征在于,所述电池热控制装置还包含有导电冷却液,导电冷却液与电池单元直接接触换热。
  26. 一种功率器件冷却装置,其特征在于,所述功率器件冷却装置包括功率器件本体,所述功率器件本体的散热板表面设置有第一绝缘层,所述第一绝缘层能够与导电冷却液直接接触换热。
  27. 根据权利要求26所述的功率器件冷却装置,其特征在于,所述的功率器件为功率半导体电极条组件,或功率半导体单管;其中,功率半导体电极条组件包括:半导体芯片和位于半导体芯片两侧的电极条。
  28. 根据权利要求27所述的功率器件冷却装置,其特征在于,所述电极条包含有片状的电极片,电极片的数量为2个或3个或5个。
  29. 根据权利要求27所述的功率器件冷却装置,其特征在于,功率半导体电极条组件的位于半导体芯片两侧的电极条之间设置有第二绝缘层。
  30. 根据权利要求26所述的功率器件冷却装置,其特征在于,还包括主板,所述功率器件本体位于所述主板的一侧,所述功率器件本体上的与外界的电连接部位于所述主板的另一侧,并在所述电连接部与所述主板之间进行密封处理。
  31. 根据权利要求30所述的功率器件冷却装置,其特征在于,所述功率器件冷却装置还包括集液腔或外套壳,所述集液腔或所述外套壳与所述主板密封构成冷却液容纳空腔,所述功率器件本体位于所述冷却液容纳空腔中,所述集液腔或所述外套壳上设置有进液口和出液口。
  32. 根据权利要求26所述的功率器件冷却装置,其特征在于,所述功率器件冷却装置还包括冷却液,所述冷却液为水基冷却液。
  33. 一种PTC电加热装置,其特征在于,包括PTC电极条组件和包裹于PTC电极条组件外侧的第一绝缘层;该包裹有第一绝缘层的PTC电极条组件能够与导电冷却液直接接触换热;
    其中,PTC电极条组件包括若干PTC元件和设置于PTC元件两侧的电极条。
  34. 根据权利要求33所述的PTC电加热装置,其特征在于,还包括主板,该主板具有内空腔;所述的PTC电极条组件上的与外界的电连接部穿过主板,并且与主板内壁之间形成密封结构。
  35. 根据权利要求33所述的PTC电加热装置,其特征在于,所述PTC电加热装置还包括冷却液,所述冷却液为水基冷却液。
  36. 根据权利要求33所述的PTC电加热装置,其特征在于,所述PTC电加热装置还包括集液腔或外套壳,所述集液腔或所述外套壳与所述主板密封构成冷却液容纳空腔,所述功率器件本体位于所述冷却液容纳空腔中,所述集液腔或所述外套壳上设置有进液口和出液口。
  37. 根据权利要求2所述的所述电池冷却装置,或者权利要求26所述的功率器件冷却装置,或者权利要求33所述的PTC电加热装置,其特征在于,所述绝缘层由耐冷却液浸泡的绝缘材料形成。
PCT/CN2015/096540 2014-12-08 2015-12-07 电发热部件的热管理装置 WO2016091133A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580042143.1A CN107004914A (zh) 2014-12-08 2015-12-07 电发热部件的热管理装置

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN201410741687.4A CN104466300A (zh) 2014-12-08 2014-12-08 一种电池冷却装置
CN201410741687.4 2014-12-08
CN201510155647.6 2015-04-03
CN201510155647 2015-04-03
CN201510441885.3 2015-07-26
CN201510441885 2015-07-26
CN201510441821 2015-07-26
CN201510441821.3 2015-07-26
CN201510463628 2015-08-02
CN201510463628.X 2015-08-02
CN201510547557.1 2015-08-31
CN201510547557 2015-08-31
CN201510637724.1 2015-10-07
CN201510637724 2015-10-07

Publications (1)

Publication Number Publication Date
WO2016091133A1 true WO2016091133A1 (zh) 2016-06-16

Family

ID=56106705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096540 WO2016091133A1 (zh) 2014-12-08 2015-12-07 电发热部件的热管理装置

Country Status (1)

Country Link
WO (1) WO2016091133A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946695A (zh) * 2017-12-25 2018-04-20 北京国能电池科技有限公司 电池包冷水板结构
CN108054420A (zh) * 2017-12-26 2018-05-18 广州小鹏汽车科技有限公司 一种电池液冷管安装装置及方法
CN108400269A (zh) * 2018-05-14 2018-08-14 常州格力博有限公司 电池包
CN108598301A (zh) * 2017-12-29 2018-09-28 北京国能电池科技有限公司 电池箱
CN108736099A (zh) * 2018-05-23 2018-11-02 华霆(合肥)动力技术有限公司 液冷装置和电源设备
CN111066171A (zh) * 2017-09-04 2020-04-24 罗伯特·博世有限公司 具有隔离层的电池组电池
CN111244359A (zh) * 2020-03-17 2020-06-05 中车资阳机车有限公司 一种大功率混合动力机车集成式动力电池系统
CN111600092A (zh) * 2019-02-21 2020-08-28 江苏金阳光新能源科技有限公司 一种超宽温域高安全性锂离子动力电池系统
CN111725443A (zh) * 2020-07-01 2020-09-29 广东工业大学 一种硅胶复合材料的制备方法及电池热管理系统
CN112968007A (zh) * 2021-02-03 2021-06-15 重庆大学 功率半导体结构及断路器转移支路组件
CN113271039A (zh) * 2021-04-19 2021-08-17 江苏大学 一种温差发电器温度及其非等距传热结构的参数确定方法
CN114006103A (zh) * 2021-11-02 2022-02-01 上海兰钧新能源科技有限公司 一种浸没式液冷电池系统
CN116809348A (zh) * 2023-06-28 2023-09-29 鸿星科技(集团)股份有限公司 一种使晶振晶片悬空的点胶方法、石英晶体振荡器
TWI822115B (zh) * 2022-06-15 2023-11-11 新盛力科技股份有限公司 具有熱傳導構造的電池模組
CN108054420B (zh) * 2017-12-26 2024-04-30 广州小鹏汽车科技有限公司 一种电池液冷管安装装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157715A (zh) * 2011-03-16 2011-08-17 东莞新能源科技有限公司 电池组
CN102339963A (zh) * 2011-09-28 2012-02-01 重庆长安汽车股份有限公司 一种可控温度动力电池模块组
CN202550023U (zh) * 2012-01-16 2012-11-21 微宏动力系统(湖州)有限公司 安全电池组
CN202695679U (zh) * 2012-08-06 2013-01-23 捷星新能源科技(苏州)有限公司 电池组加热散热装置
US20130260195A1 (en) * 2012-04-02 2013-10-03 Shijin Long Oil-cooled lithium battery module
CN104466300A (zh) * 2014-12-08 2015-03-25 江苏港星方能超声洗净科技有限公司 一种电池冷却装置
CN204333162U (zh) * 2014-12-08 2015-05-13 江苏港星方能超声洗净科技有限公司 一种电池冷却装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157715A (zh) * 2011-03-16 2011-08-17 东莞新能源科技有限公司 电池组
CN102339963A (zh) * 2011-09-28 2012-02-01 重庆长安汽车股份有限公司 一种可控温度动力电池模块组
CN202550023U (zh) * 2012-01-16 2012-11-21 微宏动力系统(湖州)有限公司 安全电池组
US20130260195A1 (en) * 2012-04-02 2013-10-03 Shijin Long Oil-cooled lithium battery module
CN202695679U (zh) * 2012-08-06 2013-01-23 捷星新能源科技(苏州)有限公司 电池组加热散热装置
CN104466300A (zh) * 2014-12-08 2015-03-25 江苏港星方能超声洗净科技有限公司 一种电池冷却装置
CN204333162U (zh) * 2014-12-08 2015-05-13 江苏港星方能超声洗净科技有限公司 一种电池冷却装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111066171A (zh) * 2017-09-04 2020-04-24 罗伯特·博世有限公司 具有隔离层的电池组电池
CN107946695A (zh) * 2017-12-25 2018-04-20 北京国能电池科技有限公司 电池包冷水板结构
CN108054420A (zh) * 2017-12-26 2018-05-18 广州小鹏汽车科技有限公司 一种电池液冷管安装装置及方法
CN108054420B (zh) * 2017-12-26 2024-04-30 广州小鹏汽车科技有限公司 一种电池液冷管安装装置及方法
CN108598301A (zh) * 2017-12-29 2018-09-28 北京国能电池科技有限公司 电池箱
CN108400269B (zh) * 2018-05-14 2024-01-05 格力博(江苏)股份有限公司 电池包
CN108400269A (zh) * 2018-05-14 2018-08-14 常州格力博有限公司 电池包
CN108736099A (zh) * 2018-05-23 2018-11-02 华霆(合肥)动力技术有限公司 液冷装置和电源设备
CN111600092A (zh) * 2019-02-21 2020-08-28 江苏金阳光新能源科技有限公司 一种超宽温域高安全性锂离子动力电池系统
CN111244359A (zh) * 2020-03-17 2020-06-05 中车资阳机车有限公司 一种大功率混合动力机车集成式动力电池系统
CN111244359B (zh) * 2020-03-17 2024-04-16 中车资阳机车有限公司 一种大功率混合动力机车集成式动力电池系统
CN111725443A (zh) * 2020-07-01 2020-09-29 广东工业大学 一种硅胶复合材料的制备方法及电池热管理系统
CN112968007A (zh) * 2021-02-03 2021-06-15 重庆大学 功率半导体结构及断路器转移支路组件
CN113271039A (zh) * 2021-04-19 2021-08-17 江苏大学 一种温差发电器温度及其非等距传热结构的参数确定方法
CN114006103A (zh) * 2021-11-02 2022-02-01 上海兰钧新能源科技有限公司 一种浸没式液冷电池系统
TWI822115B (zh) * 2022-06-15 2023-11-11 新盛力科技股份有限公司 具有熱傳導構造的電池模組
CN116809348A (zh) * 2023-06-28 2023-09-29 鸿星科技(集团)股份有限公司 一种使晶振晶片悬空的点胶方法、石英晶体振荡器

Similar Documents

Publication Publication Date Title
WO2016091133A1 (zh) 电发热部件的热管理装置
US20120183823A1 (en) Battery module
KR101526667B1 (ko) 친환경 차량의 배터리모듈 간접 냉각 및 가열 장치
US20170294693A1 (en) Heat sink and power battery system
US20110097617A1 (en) Battery Set with Heat Conducting Jelly
JP2013526766A (ja) コンパクト構造及び優れた安定性を有する冷却部材、並びにそれを有するバッテリーモジュール
WO2018021084A1 (ja) 冷却機能付き導電部材
CN107275559B (zh) 电池组装置
KR101711979B1 (ko) 이차 전지 및 그 모듈
CN210640338U (zh) 电池热控制装置
CN108923099A (zh) 一种新型动力电池模组及其装配工艺
CN107871914B (zh) 车辆电池冷却系统
WO2016095804A1 (zh) 电发热装置
EP3904817A1 (en) Temperature control assembly and battery pack using the same
CN210489777U (zh) 电池热控制装置
CN114709544A (zh) 一种电池包及用电设备
CN115000568A (zh) 电芯模组和动力电池总成
CN202713643U (zh) 一种ptc电热元件、电加热装置以及电动车
CN106848343A (zh) 电发热部件的热管理装置
CN104681749B (zh) 电池、电池组以及车辆
CN212033099U (zh) 电池箱及动力电池
CN110690529A (zh) 一种快速散热电池模组
CN219086077U (zh) 热管理部件和电池包
WO2024037655A1 (zh) 电池模组上盖结构、电池模组及电池包
CN220382189U (zh) 保温电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 201510637724.1

Country of ref document: CN

Date of ref document: 20170608

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 201510441821.3

Country of ref document: CN

Date of ref document: 20170608

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 201510155647.6

Country of ref document: CN

Date of ref document: 20170608

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 201510441885.3

Country of ref document: CN

Date of ref document: 20170608

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 201410741687.4

Country of ref document: CN

Date of ref document: 20170608

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 201510547557.1

Country of ref document: CN

Date of ref document: 20170608

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 201510463628.X

Country of ref document: CN

Date of ref document: 20170608

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

122 Ep: pct application non-entry in european phase

Ref document number: 15867695

Country of ref document: EP

Kind code of ref document: A1