WO2016090940A1 - 智能机器人及用于其的传感器组件和障碍物检测方法 - Google Patents

智能机器人及用于其的传感器组件和障碍物检测方法 Download PDF

Info

Publication number
WO2016090940A1
WO2016090940A1 PCT/CN2015/086691 CN2015086691W WO2016090940A1 WO 2016090940 A1 WO2016090940 A1 WO 2016090940A1 CN 2015086691 W CN2015086691 W CN 2015086691W WO 2016090940 A1 WO2016090940 A1 WO 2016090940A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving unit
ultrasonic
sensor
intelligent robot
unit
Prior art date
Application number
PCT/CN2015/086691
Other languages
English (en)
French (fr)
Inventor
余庆镐
沈锣坤
Original Assignee
江苏美的清洁电器股份有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510127843.2A external-priority patent/CN106154278B/zh
Application filed by 江苏美的清洁电器股份有限公司, 美的集团股份有限公司 filed Critical 江苏美的清洁电器股份有限公司
Priority to EP15866484.7A priority Critical patent/EP3112897B1/en
Priority to CA2968253A priority patent/CA2968253A1/en
Priority to US15/118,725 priority patent/US20170049290A1/en
Publication of WO2016090940A1 publication Critical patent/WO2016090940A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/86Combinations of sonar systems with lidar systems; Combinations of sonar systems with systems not using wave reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/874Combination of several spaced transponders or reflectors of known location for determining the position of a receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Definitions

  • the present invention relates to the field of electrical appliances, and in particular to a sensor assembly for an intelligent robot, an obstacle detection method for the intelligent robot, and an intelligent robot.
  • the intelligent vacuum cleaner is a kind of intelligent robot in the family.
  • the user pays attention to the product intelligence. If the product can meet the intelligent needs of the user as much as possible, it can win more consumers for the enterprise. Create profits.
  • the present invention aims to solve at least one of the above technical problems at least to some extent.
  • Another object of the present invention is to provide an intelligent robot.
  • Still another object of the present invention is to provide an obstacle detecting method for an intelligent robot.
  • an embodiment of the present invention provides a sensor assembly for an intelligent robot, the sensor assembly including a first type of sensor, the first type of sensor including M first transmitting units and N first a receiving unit, the M first transmitting units and the N first receiving units are respectively set at a preset angle, M and N are positive integers; the second type of sensors, the second type of sensors include a light source and M+ N-1 second receiving units, the second receiving unit being located between the first transmitting unit and the first receiving unit.
  • a sensor assembly for an intelligent robot is interleaved by a first type of sensor and a second type of sensor, that is, a second receiving unit is added between the first type of sensor and the first receiving unit and the first transmitting unit It can reduce the blind zone when the intelligent robot performs obstacle detection, thereby improving the obstacle avoidance performance of the intelligent robot and reducing the collision.
  • the first type of sensor may be an ultrasonic sensor.
  • the M first transmitting units and the N first receiving units respectively include: first ultrasonic receiving a unit, the first ultrasonic receiving unit is located at a front side of the intelligent robot; a first ultrasonic transmitting unit and a second ultrasonic transmitting unit, wherein the first ultrasonic transmitting unit and the second ultrasonic transmitting unit are respectively located at the first Two sides of the ultrasonic receiving unit, and the first ultrasonic transmitting unit and the second ultrasonic transmitting unit and the first ultrasonic receiving unit have a first angle; the second ultrasonic receiving unit and the third ultrasonic receiving unit The second ultrasonic receiving unit and the third ultrasonic receiving unit are respectively located outside the first ultrasonic transmitting unit and the second ultrasonic transmitting unit, and the second ultrasonic receiving unit and the first ultrasonic transmitting unit are second. The angle between the third ultrasonic receiving unit and the second ultrasonic transmitting unit is at the second angle.
  • first angle is equal to the second angle.
  • the second type of sensor is an IR (Infrared Radiation) sensor
  • the M+N-1 second receiving units include: a first infrared receiving unit, where the first infrared receiving unit is located Between an ultrasonic receiving unit and the first ultrasonic transmitting unit; a second infrared receiving unit, the second infrared receiving unit is located between the first ultrasonic receiving unit and the second ultrasonic transmitting unit; a receiving unit, the third infrared receiving unit is located between the first ultrasonic transmitting unit and the second ultrasonic receiving unit; a fourth infrared receiving unit, the fourth infrared receiving unit is located at the second ultrasonic transmitting unit And the third ultrasonic receiving unit.
  • IR Infrared Radiation
  • the second type of sensor is a PSD (Position Sensitive Detector) sensor
  • the M+N-1 second receiving units include: a first light energy receiving unit, the first light energy receiving unit Located between the first ultrasonic receiving unit and the first ultrasonic transmitting unit; a second optical energy receiving unit, the second optical energy receiving unit is located at the first ultrasonic receiving unit and the second ultrasonic transmitting unit a third light energy receiving unit, the third light energy receiving unit being located between the first ultrasonic transmitting unit and the second ultrasonic receiving unit; a fourth light energy receiving unit, the fourth light energy A receiving unit is located between the second ultrasonic transmitting unit and the third ultrasonic receiving unit.
  • a PSD Position Sensitive Detector
  • the second type of sensor comprises an IR sensor and a PSD sensor
  • the M+N-1 second receiving units comprise: a fifth infrared receiving unit, wherein the fifth infrared receiving unit is located in the first ultrasonic receiving unit Between the first ultrasonic transmitting unit and the sixth ultrasonic receiving unit, the sixth infrared receiving unit is located between the first ultrasonic receiving unit and the second ultrasonic transmitting unit; and a fifth optical energy receiving unit, The fifth light energy receiving unit is located between the first ultrasonic transmitting unit and the second ultrasonic receiving unit; a sixth light energy receiving unit, wherein the sixth light energy receiving unit is located in the second ultrasonic transmitting unit Between the third ultrasonic receiving unit and the third ultrasonic receiving unit.
  • another embodiment of the present invention provides an intelligent robot comprising the sensor assembly proposed in the above embodiments.
  • the sensor assembly of the above embodiment can detect the obstacle and reduce the dead zone during the detection, and the obstacle avoidance performance of the intelligent robot is improved, thereby reducing the collision.
  • a further embodiment of the present invention provides an obstacle detecting method for an intelligent robot, wherein the intelligent robot includes a sensor group including a first type sensor and a second type sensor
  • the detecting method includes: receiving, by the first type sensor and the second type of sensor, a reflection signal of an object in a running direction of the intelligent robot, respectively; and determining, according to the reflected signal, whether the object obstructs the The operation of the intelligent robot.
  • the detection dead zone can be reduced, thereby improving the obstacle avoidance performance of the intelligent robot. Reduce collisions.
  • the first type of sensor is an ultrasonic sensor
  • the second sensor comprises an IR sensor and/or a PSD sensor.
  • FIG. 1 is a schematic diagram of a sensor assembly for an intelligent robot in accordance with one embodiment of the present invention
  • FIG. 2 is a schematic diagram of a first type of sensor in a sensor assembly for an intelligent robot in accordance with another embodiment of the present invention
  • FIG. 3 is a schematic diagram of a sensor assembly for an intelligent robot in accordance with yet another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a sensor assembly for an intelligent robot in accordance with still another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a sensor assembly for an intelligent robot according to still another embodiment of the present invention.
  • FIG. 6 is a block diagram of an intelligent robot in accordance with one embodiment of the present invention.
  • FIG. 7 is a flow chart of an obstacle detection method for an intelligent robot in accordance with one embodiment of the present invention.
  • Sensor assembly 100 first type sensor 10 and second type sensor 20, first transmitting unit 101 and first receiving unit 102, second receiving unit 201, first ultrasonic receiving unit 1021, first ultrasonic transmitting unit 1011, second The ultrasonic transmitting unit 1012, the second ultrasonic receiving unit 1022, the third ultrasonic receiving unit 1023, the first infrared receiving unit 2011, the second infrared receiving unit 2012, the third infrared receiving unit 2013, and the fourth infrared receiving unit 2014, the first light The energy receiving unit 2001, the second light energy receiving unit 2002, the third light energy receiving unit 2003, and the fourth light energy receiving unit 2004, the fifth infrared receiving unit 2101, the sixth infrared receiving unit 2102, and the fifth light energy receiving unit 2103 And a sixth light energy receiving unit 2104; capable robot 200.
  • the structure of the first feature described below "on" the second feature may include embodiments in which the first and second features are formed in direct contact, and may include additional features formed between the first and second features. Embodiments such that the first and second features may not be in direct contact.
  • a sensor assembly for an intelligent robot, and an intelligent robot having the same, and an obstacle detecting method for the intelligent robot according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
  • FIG. 1 is a schematic diagram of a sensor assembly for an intelligent robot in accordance with one embodiment of the present invention.
  • a sensor assembly 100 for an intelligent robot of an embodiment of the present invention includes a first type of sensor 10 and a second type of sensor 20.
  • the first type of sensor 10 includes M first transmitting units 101 and N first receiving units 102, and the M first transmitting units 101 and the N first receiving units 102 are respectively set at a preset angle A, M and N. Is a positive integer. That is, as shown in FIG. 1, the M first transmitting units 101 are interleaved with the N first receiving units 102.
  • the preset angle A between each of the first transmitting unit 101 and the first receiving unit 102 may be equal or unequal.
  • the second type of sensor 20 includes a light source (not shown) and M+N-1 second receiving units 201.
  • the light source may be located inside the second type sensor 20 or disposed on the intelligent robot housing for output.
  • the light is irradiated onto the object to be tested around the intelligent robot, and the second receiving unit 201 receives the reflected light of the object to be tested.
  • the second receiving unit 201 is located between the first transmitting unit 101 and the first receiving unit 102.
  • the intelligent robot is interleaved by the first type of sensor 10 and the second type of sensor 20, which can increase the area of the obstacle detection area, reduce the detection blind spot, and improve the barrier performance of the intelligent robot.
  • the first type of sensor 10 may be an ultrasonic sensor, and the ultrasonic sensor has little effect on color compared to the IR sensor.
  • the ultrasonic sensor includes a first ultrasonic wave receiving unit 1021, a first ultrasonic wave transmitting unit 1011, a second ultrasonic wave transmitting unit 1012, a second ultrasonic wave receiving unit 1022, and a third ultrasonic wave receiving unit 1023.
  • the first ultrasonic receiving unit 1021 is located on the front side of the intelligent robot, and can receive the ultrasonic signal reflected by the object in front of the intelligent robot.
  • the first ultrasonic transmitting unit 1011 and the second ultrasonic transmitting unit 1012 are respectively located at two sides of the first ultrasonic receiving unit 1021, and the first ultrasonic transmitting unit 1021 and the second ultrasonic transmitting unit 1022 and the first ultrasonic receiving unit 1011 are first clamped.
  • Angle A1 The second ultrasonic receiving unit 1022 and the third ultrasonic receiving unit 1023 are respectively located outside the first ultrasonic transmitting unit 1011 and the second ultrasonic transmitting unit 1012, and the second ultrasonic receiving unit 1022 and the first ultrasonic transmitting unit 1011 have a second angle A2.
  • the third ultrasonic wave receiving unit 1023 and the second ultrasonic wave transmitting unit 1022 have a second angle A2, wherein the first angle A1 and the second angle A2 may be equal.
  • the ultrasonic sensor can detect objects in different directions by setting the two emitting units and the three receiving units at an appropriate angle. For example, the position of the object can be determined according to the strength of the ultrasonic signal received by the three receiving units, and the intelligent robot can be controlled to operate according to the position of the object.
  • the ultrasonic signal received by the third ultrasonic receiving unit 1023 is greater than the ultrasonic signal received by the second ultrasonic receiving unit 1022, and is greater than the ultrasonic signal received by the first ultrasonic receiving unit 1021, and the ultrasonic signals received by the three receiving units are greater than the pre- When the ultrasonic signal is set, it can be judged that the object is in the direction of the third ultrasonic receiving unit 1023, and the intelligent robot can be controlled to avoid the collision of the object to avoid collision.
  • a second type of sensor 20 such as an IR sensor and/or a PSD sensor, is disposed between the first transmitting unit 101 and the first receiving unit 102 of the ultrasonic sensor to detect the dead zone.
  • the second type of sensor 20 may be an IR sensor.
  • the M+N-1 second receiving units 201 may include a first infrared receiving unit 2011, a second infrared receiving unit 2012, and a third. Infrared receiving unit 2013 and fourth infrared receiving unit 2014.
  • the first infrared receiving unit 2011 is located between the first ultrasonic receiving unit 1021 and the first ultrasonic transmitting unit 1011.
  • the second infrared receiving unit 2012 is located between the first ultrasonic receiving unit 1021 and the second ultrasonic transmitting unit 1012.
  • the third infrared receiving unit 2013 is located between the first ultrasonic transmitting unit 1011 and the second ultrasonic receiving unit 1022.
  • the fourth infrared receiving unit 2014 is located between the second ultrasonic transmitting unit 1012 and the third ultrasonic receiving unit 1023.
  • the IR sensor performs detection while the ultrasonic sensor is detecting.
  • the light source of the IR sensor emits light to the object around the intelligent robot, and is received by the infrared receiving unit disposed between the receiving unit and the transmitting unit of the ultrasonic sensor, and can pass the IR sensor even when encountering a quadrangular obstacle.
  • the infrared receiving unit receives the light reflected from the corner portion of the obstacle, thereby determining the position of the obstacle.
  • the second type of sensor 20 may be a PSD sensor.
  • the M+N-1 second receiving units 201 include a first light energy receiving unit 2001, a second light energy receiving unit 2002, and a second The three light energy receiving unit 2003 and the fourth light energy receiving unit 2004.
  • the first light energy receiving unit 2001 is located between the first ultrasonic wave receiving unit 1021 and the first ultrasonic wave transmitting unit 1011.
  • the second light energy receiving unit 2002 is located between the first ultrasonic wave receiving unit 1021 and the second ultrasonic wave transmitting unit 1012.
  • the third light energy receiving unit 2003 is located between the first ultrasonic wave transmitting unit 1011 and the second ultrasonic wave receiving unit 1022.
  • the fourth light energy receiving unit 2004 is located between the second ultrasonic wave transmitting unit 1012 and the third ultrasonic wave receiving unit 1023.
  • the PSD sensor performs detection while the ultrasonic sensor is detecting.
  • the light source of the PSD sensor emits light to the object around the intelligent robot, and is received by the light energy receiving unit disposed between the receiving unit and the transmitting unit of the ultrasonic sensor, and can pass the PSD sensor even when encountering a quadrangular obstacle.
  • the light receiving unit receives the light reflected from the corner portion of the obstacle, thereby determining the position of the obstacle.
  • the blind spot of the intelligent robot obstacle detection can be reduced, and the obstacle avoidance performance of the intelligent robot can be improved.
  • the second type of sensor 20 may include an IR sensor and a PSD sensor.
  • the M+N-1 second receiving units 201 include a fifth infrared receiving unit 2101 and a sixth infrared. The receiving unit 2102, the fifth light energy receiving unit 2103, and the sixth light energy receiving unit 2104.
  • the fifth infrared receiving unit 2101 is located between the first ultrasonic receiving unit 1021 and the first ultrasonic transmitting unit 1011.
  • the sixth infrared receiving unit 2102 is located at the first ultrasonic receiving unit 1021 and the second ultrasonic transmitting unit Between 1012.
  • the fifth light energy receiving unit 2103 is located between the first ultrasonic wave transmitting unit 1011 and the second ultrasonic wave receiving unit 1022.
  • the sixth light energy receiving unit 2104 is located between the second ultrasonic wave transmitting unit 1012 and the third ultrasonic wave receiving unit 1023. It can be understood that the receiving unit of the IR sensor and the receiving unit of the PSD sensor can also be disposed between the first receiving unit 102 and the first transmitting unit 101 in other orders.
  • the ultrasonic sensor performs detection
  • the detection of the blind spot of the ultrasonic sensor is realized by the IR sensor and the PSD sensor, thereby reducing the blind spot and improving the detection performance.
  • the sensor assembly for an intelligent robot is interleaved by the first type of sensor and the second type of sensor, that is, between the first type of sensor and the first receiving unit and the first transmitting unit.
  • the addition of the second receiving unit can reduce the blind zone when the intelligent robot performs the obstacle detection, thereby improving the obstacle avoidance performance of the intelligent robot and reducing the collision.
  • Another embodiment of the present invention provides an intelligent robot.
  • FIG. 6 is a block diagram of an intelligent robot proposed in accordance with another embodiment of the present invention.
  • the intelligent robot 200 of the embodiment of the present invention includes the sensor assembly 100 of the above embodiment.
  • the sensor assembly of the above embodiment can detect the obstacle and reduce the dead zone during the detection, and the obstacle avoidance performance of the intelligent robot is improved, thereby reducing the collision.
  • the intelligent robot includes a sensor group including a first type sensor and a second type sensor.
  • the obstacle detection method for an intelligent robot includes the following steps:
  • the first type of sensor may be an ultrasonic sensor
  • the second sensor may comprise an IR sensor and/or a PSD sensor.
  • the intelligent robot is controlled to avoid the obstacle from running in the direction to avoid collision.
  • the detection dead zone can be reduced, thereby improving the obstacle avoidance performance of the intelligent robot. Reduce collisions.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Abstract

一种用于智能机器人的传感器组件(100),以及一种用于智能机器人的障碍物检测方法,包括:第一类传感器(10),第一类传感器(10)包括M个第一发射单元(101)和N个第一接收单元(102),M个第一发射单元(101)与N个第一接收单元(102)分别以预设角度设置,M和N为正整数;第二类传感器(20),第二类传感器(20)包括光源和M+N-1个第二接收单元(201),第二接收单元(201)位于第一发射单元(101)与第一接收单元(102)之间。该用于智能机器人的传感器组件(100),用于智能机器人的障碍物检测,可以减少盲区,提高智能机器人的避障性能。

Description

智能机器人及用于其的传感器组件和障碍物检测方法 技术领域
本发明涉及电器技术领域,特别涉及一种用于智能机器人的传感器组件,以及用于智能机器人的障碍物检测方法,和智能机器人。
背景技术
随着智能机器人技术的发展,越来越多的智能机器人进入到用户家庭,大大提高人们生活的舒适性和便利性。其中,智能吸尘器是家庭中智能机器人的一种,用户在选择和购买智能吸尘器时,注重产品智能化,如果产品能够尽可能地满足用户的智能化需求,可以争取更多的消费者,为企业创造利润。
目前,家庭智能机器人检测障碍物时,无法覆盖所有区域或者因为颜色的影响,存在很多盲区。因而在盲区时,容易造成智能机器人做出误动作或发生碰撞。
发明内容
本发明旨在至少在一定程度上解决上述的技术问题之一。
为此,本发明的一个目的在于提出一种用于智能机器人的传感器组件,该传感器组件用于智能机器人的障碍物检测,可以减少盲区。提高智能机器人的壁障性能。
本发明的另一个目的在于提出一种智能机器人。
本发明的再一个目的在于提出一种用于智能机器人的障碍物检测方法。
为达到上述目的,本发明的一方面实施例提出一种用于智能机器人的传感器组件,该传感器组件包括第一类传感器,所述第一类传感器包括M个第一发射单元和N个第一接收单元,所述M个第一发射单元与所述N个第一接收单元分别以预设角度设置,M和N为正整数;第二类传感器,所述第二类传感器包括光源和M+N-1个第二接收单元,所述第二接收单元位于所述第一发射单元与所述第一接收单元之间。
根据本发明实施例的用于智能机器人的传感器组件,通过第一类传感器和第二类传感器交错设置,即在第一类传感器和第一接收单元和第一发射单元之间增加第二接收单元,可以减少智能机器人进行障碍物检测时的盲区,从而提高智能机器人的避障性能,减少发生碰撞。
其中,所述第一类传感器可以为超声波传感器。
具体地,所述M个第一发射单元和N个第一接收单元分别包括:第一超声波接收 单元,所述第一超声波接收单元位于所述智能机器人的正面;第一超声波发射单元和第二超声波发射单元,所述第一超声波发射单元和所述第二超声波发射单元分别位于所述第一超声波接收单元的两侧,且所述第一超声波发射单元和所述第二超声波发射单元与所述第一超声波接收单元呈第一夹角;第二超声波接收单元和第三超声波接收单元,所述第二超声波接收单元和所述第三超声波接收单元分别位于所述第一超声波发射单元和第二超声波发射单元外侧,且所述第二超声波接收单元与所述第一超声波发射单元呈第二夹角,所述第三超声波接收单元与所述第二超声波发射单元呈所述第二夹角。
其中,所述第一夹角与所述第二夹角相等。
具体地,所述第二类传感器为IR(Infrared Radiation,红外线)传感器,所述M+N-1个第二接收单元包括:第一红外接收单元,所述第一红外接收单元位于所述第一超声波接收单元和所述第一超声波发射单元之间;第二红外接收单元,所述第二红外接收单元位于所述第一超声波接收单元和所述第二超声波发射单元之间;第三红外接收单元,所述第三红外接收单元位于所述第一超声波发射单元和所述第二超声波接收单元之间;第四红外接收单元,所述第四红外接收单元位于所述第二超声波发射单元和所述第三超声波接收单元之间。
或者,所述第二类传感器为PSD(Position Sensitive Detector,位置敏感器件)传感器,所述M+N-1个第二接收单元包括:第一光能接收单元,所述第一光能接收单元位于所述第一超声波接收单元与所述第一超声波发射单元之间;第二光能接收单元,所述第二光能接收单元位于所述第一超声波接收单元与所述第二超声波发射单元之间;第三光能接收单元,所述第三光能接收单元位于所述第一超声波发射单元与所述第二超声波接收单元之间;第四光能接收单元,所述第四光能接收单元位于所述第二超声波发射单元与所述第三超声波接收单元之间。
或者,所述第二类传感器包括IR传感器和PSD传感器,所述M+N-1个第二接收单元包括:第五红外接收单元,所述第五红外接收单元位于所述第一超声波接收单元与所述第一超声波发射单元之间;第六红外接收单元,所述第六红外接收单元位于所述第一超声波接收单元与所述第二超声波发射单元之间;第五光能接收单元,所述第五光能接收单元位于所述第一超声波发射单元与所述第二超声波接收单元之间;第六光能接收单元,所述第六光能接收单元位于所述第二超声波发射单元与所述第三超声波接收单元之间。
为达到上述目的,本发明的另一方面实施例提出一种智能机器人,包括上述方面实施例提出的传感器组件。
根据本发明实施例的智能机器人,通过上述实施例的传感器组件可以进行障碍物的检测,并减少检测时的盲区,智能机器人的避障性能提高,进而可以减少发生碰撞。
为达到上述目的,本发明的再一方面实施例提出一种用于智能机器人的障碍物检测方法,其中,所述智能机器人包括传感器组,所述传感器组包括第一类传感器和第二类传感器,所述检测方法包括:分别通过所述第一类传感器和所述第二类传感器接收所述智能机器人运行方向上的物体的反射信号;以及根据所述反射信号判断所述物体是否妨碍所述智能机器人的运行。
根据本发明实施例的用于智能机器人的障碍物检测方法,通过第一类传感器和第二类传感器分别检测智能机器人运行方向上的物体,可以减少检测盲区,从而提高智能机器人的避障性能,减少发生碰撞。
其中,所述第一类传感器为超声波传感器,所述第二传感器包括IR传感器和/或PSD传感器。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明的一个实施例的用于智能机器人的传感器组件的示意图;
图2为根据本发明的另一个实施例的用于智能机器人的传感器组件中的第一类传感器的示意图;
图3为根据本发明的又一个实施例的用于智能机器人的传感器组件的示意图;
图4为根据本发明的再一个实施例的用于智能机器人的传感器组件的示意图;
图5为根据本发明的又一个实施例的用于智能机器人的传感器组件的示意图;
图6为根据本发明的一个实施例的智能机器人的框图;以及
图7为根据本发明的一个实施例的用于智能机器人的障碍物检测方法的流程图。
附图标记
传感器组件100:第一类传感器10和第二类传感器20,第一发射单元101与第一接收单元102,第二接收单元201,第一超声波接收单元1021、第一超声波发射单元1011、第二超声波发射单元1012、第二超声波接收单元1022、第三超声波接收单元1023,第一红外接收单元2011、第二红外接收单元2012、第三红外接收单元2013和第四红外接收单元2014,第一光能接收单元2001、第二光能接收单元2002、第三光能接收单元2003和第四光能接收单元2004,第五红外接收单元2101、第六红外接收单元2102、第五光能接收单元2103和第六光能接收单元2104;能机器人200。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。另外,以下描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
在本发明的描述中,需要说明的是,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
参照下面的描述和附图,将清楚本发明的实施例的这些和其他方面。在这些描述和附图中,具体公开了本发明的实施例中的一些特定实施方式,来表示实施本发明的实施例的原理的一些方式,但是应当理解,本发明的实施例的范围不受此限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
下面参照附图描述根据本发明的一个实施例的用于智能机器人的传感器组件,和具有该传感器组件的智能机器人,以及用于智能机器人的障碍物检测方法。
首先对本发明实施例的用于智能机器人的传感器组件进行说明。图1为根据本发明的一个实施例的用于智能机器人的传感器组件的示意图。
如图1所示,本发明实施例的用于智能机器人的传感器组件100包括第一类传感器10和第二类传感器20。
其中,第一类传感器10包括M个第一发射单元101和N个第一接收单元102,M个第一发射单元101与N个第一接收单元102分别以预设角度A设置,M和N为正整数。也就是说,如图1所示,M个第一发射单元101与N个第一接收单元102交错设 置,其中,每个第一发射单元101与第一接收单元102之间的预设角度A可以相等或者不相等。
其中,第二类传感器20包括光源(图中未标示)和M+N-1个第二接收单元201,光源可以位于第二类传感器20内部,或者设置于智能机器人壳体上,用于输出光线照射于智能机器人周围的待测物体上,进而由第二接收单元201接收待测物体的反射光。第二接收单元201位于第一发射单元101与第一接收单元102之间。
智能机器人通过第一类传感器10与第二类传感器20交错设置,可以增加障碍物检测的区域范围,减少检测盲点,提高智能机器人的壁障性能。
具体地,在本发明的一个实施例中,第一类传感器10可以为超声波传感器,相较于IR传感器,超声波传感器对颜色的影响不大。
进一步地,如图2所示,超声波传感器包括第一超声波接收单元1021、第一超声波发射单元1011、第二超声波发射单元1012、第二超声波接收单元1022、第三超声波接收单元1023。
其中,第一超声波接收单元1021位于智能机器人的正面,可以接收智能机器人前方物体反射的超声波信号。第一超声波发射单元1011和第二超声波发射单元1012分别位于第一超声波接收单元1021的两侧,且第一超声波发射单元1021和第二超声波发射单元1022与第一超声波接收单元1011呈第一夹角A1。第二超声波接收单元1022和第三超声波接收单元1023分别位于第一超声波发射单元1011和第二超声波发射单元1012外侧,且第二超声波接收单元1022与第一超声波发射单元1011呈第二夹角A2,第三超声波接收单元1023与第二超声波发射单元1022呈第二夹角A2,其中,第一夹角A1与第二夹角A2可以相等。
超声波传感器通过两个发射单元和三个接收单元以适当角度的设置即可实现不同方向的物体的检测。例如可以根据三个接收单元接收的超声波信号的强弱判断物体的位置,进而可以控制智能机器人根据物体的位置运行。例如在第三超声波接收单元1023接收的超声波信号大于第二超声波接收单元1022接收的超声波信号,且大于第一超声波接收单元1021接收的超声波信号,同时三个接收单元接收到的超声波信号均大于预设超声信号时,则可以判断物体在第三超声波接收单元1023方向,则可以控制智能机器人避开物体方向以免发生碰撞。
采用超声波传感器检测障碍物时,第一发射单元101和第一接收单元102之间会存在盲区。例如,智能机器人通过超声波传感器检测障碍物时,如果遇到形状为四角形的障碍物时,如果智能机器人正好面对障碍物的角,则无法检测到,在本发明的实施例中,可以通过在超声传感器的第一发射单元101和第一接收单元102之间设置第二类传感器20例如IR传感器和/或PSD传感器,来对盲区进行检测。
例如,第二类传感器20可以为IR传感器,进一步地,如图3所示,M+N-1个第二接收单元201可以包括第一红外接收单元2011、第二红外接收单元2012、第三红外接收单元2013和第四红外接收单元2014。
其中,第一红外接收单元2011位于第一超声波接收单元1021和第一超声波发射单元1011之间。第二红外接收单元2012位于第一超声波接收单元1021和第二超声波发射单元1012之间。第三红外接收单元2013位于第一超声波发射单元1011和第二超声波接收单元1022之间。第四红外接收单元2014位于第二超声波发射单元1012和第三超声波接收单元1023之间。
在超声波传感器进行检测的同时,IR传感器进行检测。IR传感器的光源发射出光线照射至智能机器人周围的物体,通过前述设置于超声波传感器接收单元和发射单元之间的红外接收单元接收,即使在遇到四角形的障碍物时,也可以通过IR传感器的红外接收单元接收到障碍物的角部位反射的光线,进而确定障碍物的位置。
另外,第二类传感器20可以为PSD传感器,进一步地,如图4所示,M+N-1个第二接收单元201包括第一光能接收单元2001、第二光能接收单元2002、第三光能接收单元2003和第四光能接收单元2004。
其中,第一光能接收单元2001位于第一超声波接收单元1021与第一超声波发射单元1011之间。第二光能接收单元2002位于第一超声波接收单元1021与第二超声波发射单元1012之间。第三光能接收单元2003位于第一超声波发射单元1011与第二超声波接收单元1022之间。第四光能接收单元2004位于第二超声波发射单元1012与第三超声波接收单元1023之间。
在超声波传感器进行检测的同时,PSD传感器进行检测。PSD传感器的光源发射出光线照射至智能机器人周围的物体,通过前述设置于超声波传感器接收单元和发射单元之间的光能接收单元接收,即使在遇到四角形的障碍物时,也可以通过PSD传感器的光能接收单元接收到障碍物的角部位反射的光线,进而确定障碍物的位置。
可以看出,通过将第一类传感器10例如超声波传感器和第二类传感器20例如IR传感器或PSD传感器进行交错设置,可以减少智能机器人障碍物检测的盲点,提高智能机器人的避障性能。
作为另外一个实施例,第二类传感器20可以包括IR传感器和PSD传感器,进一步地,如图5所示,M+N-1个第二接收单元201包括第五红外接收单元2101、第六红外接收单元2102、第五光能接收单元2103和第六光能接收单元2104。
其中,第五红外接收单元2101位于第一超声波接收单元1021与第一超声波发射单元1011之间。第六红外接收单元2102位于第一超声波接收单元1021与第二超声波发射单元 1012之间。第五光能接收单元2103位于第一超声波发射单元1011与第二超声波接收单元1022之间。第六光能接收单元2104位于第二超声波发射单元1012与第三超声波接收单元1023之间。可以理解的是,IR传感器的接收单元和PSD传感器的接收单元也可以以其他顺序设置于第一接收单元102和第一发射单元101之间。
进而通过将超声波传感器和IR传感器以及PSD传感器交错设置,在超声波传感器进行检测时,同时通过IR传感器和PSD传感器实现对超声波传感器检测盲区的检测,从而可以减少盲区点,提高检测性能。
综上所述,根据本发明实施例的用于智能机器人的传感器组件,通过第一类传感器和第二类传感器交错设置,即在第一类传感器和第一接收单元和第一发射单元之间增加第二接收单元,可以减少智能机器人进行障碍物检测时的盲区,从而提高智能机器人的避障性能,减少发生碰撞。
基于上述传感器组件,本发明的另一方面实施例提出一种智能机器人。
图6为根据本发明的另一方面实施例提出的一种智能机器人的框图。如图6所示,本发明实施例的智能机器人200包括上述实施例的传感器组件100。
根据本发明实施例的智能机器人,通过上述实施例的传感器组件可以进行障碍物的检测,并减少检测时的盲区,智能机器人的避障性能提高,进而可以减少发生碰撞。
下面参照附图描述根据本发明的再一方面实施例提出一种用于智能机器人的障碍物检测方法。其中,智能机器人包括传感器组,传感器组包括第一类传感器和第二类传感器。
图7为根据本发明的一个实施例的用于智能机器人的障碍物检测方法的流程图。如图7所示,本发明实施例的用于智能机器人的障碍物检测方法包括以下步骤:
S1,分别通过第一类传感器和第二类传感器接收智能机器人运行方向上的物体的反射信号。
其中,第一类传感器可以为超声波传感器,第二传感器可以包括IR传感器和/或PSD传感器。
S2,根据反射信号判断物体是否妨碍智能机器人的运行。
例如根据物体的反射信号的强弱,判断物体距离的远近,是否阻碍智能机器人的运行,也就是要判断障碍物的方向,进而控制智能机器人避开障碍物方向运行,以免发生碰撞。
根据本发明实施例的用于智能机器人的障碍物检测方法,通过第一类传感器和第二类传感器分别检测智能机器人运行方向上的物体,可以减少检测盲区,从而提高智能机器人的避障性能,减少发生碰撞。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同限定。

Claims (10)

  1. 一种用于智能机器人的传感器组件,其特征在于,包括:
    第一类传感器,所述第一类传感器包括M个第一发射单元和N个第一接收单元,所述M个第一发射单元与所述N个第一接收单元分别以预设角度设置,M和N为正整数;
    第二类传感器,所述第二类传感器包括光源和M+N-1个第二接收单元,所述第二接收单元位于所述第一发射单元与所述第一接收单元之间。
  2. 如权利要求1所述的用于智能机器人的传感器组件,其特征在于,所述第一类传感器为超声波传感器。
  3. 如权利要求2所述的用于智能机器人的传感器组件,其特征在于,所述M个第一发射单元和N个第一接收单元分别包括:
    第一超声波接收单元,所述第一超声波接收单元位于所述智能机器人的正面;
    第一超声波发射单元和第二超声波发射单元,所述第一超声波发射单元和所述第二超声波发射单元分别位于所述第一超声波接收单元的两侧,且所述第一超声波发射单元和所述第二超声波发射单元与所述第一超声波接收单元呈第一夹角;
    第二超声波接收单元和第三超声波接收单元,所述第二超声波接收单元和所述第三超声波接收单元分别位于所述第一超声波发射单元和第二超声波发射单元外侧,且所述第二超声波接收单元与所述第一超声波发射单元呈第二夹角,所述第三超声波接收单元与所述第二超声波发射单元呈所述第二夹角。
  4. 如权利要求3所述的用于智能机器人的传感器组件,其特征在于,所述第一夹角与所述第二夹角相等。
  5. 如权利要求3所述的用于智能机器人的传感器组件,其特征在于,所述第二类传感器为IR传感器,所述M+N-1个第二接收单元包括:
    第一红外接收单元,所述第一红外接收单元位于所述第一超声波接收单元和所述第一超声波发射单元之间;
    第二红外接收单元,所述第二红外接收单元位于所述第一超声波接收单元和所述第二超声波发射单元之间;
    第三红外接收单元,所述第三红外接收单元位于所述第一超声波发射单元和所述第二超声波接收单元之间;
    第四红外接收单元,所述第四红外接收单元位于所述第二超声波发射单元和所述第三超声波接收单元之间。
  6. 如权利要求3所述的用于智能机器人的传感器组件,其特征在于,所述第二类传感器为PSD传感器,所述M+N-1个第二接收单元包括:
    第一光能接收单元,所述第一光能接收单元位于所述第一超声波接收单元与所述第一超声波发射单元之间;
    第二光能接收单元,所述第二光能接收单元位于所述第一超声波接收单元与所述第二超声波发射单元之间;
    第三光能接收单元,所述第三光能接收单元位于所述第一超声波发射单元与所述第二超声波接收单元之间;
    第四光能接收单元,所述第四光能接收单元位于所述第二超声波发射单元与所述第三超声波接收单元之间。
  7. 如权利要求3所述的用于智能机器人的传感器组件,其特征在于,所述第二类传感器包括IR传感器和PSD传感器,所述M+N-1个第二接收单元包括:
    第五红外接收单元,所述第五红外接收单元位于所述第一超声波接收单元与所述第一超声波发射单元之间;
    第六红外接收单元,所述第六红外接收单元位于所述第一超声波接收单元与所述第二超声波发射单元之间;
    第五光能接收单元,所述第五光能接收单元位于所述第一超声波发射单元与所述第二超声波接收单元之间;
    第六光能接收单元,所述第六光能接收单元位于所述第二超声波发射单元与所述第三超声波接收单元之间。
  8. 一种智能机器人,其特征在于,包括如权利要求1-7任一项所述的传感器组件。
  9. 一种用于智能机器人的障碍物检测方法,其特征在于,所述智能机器人包括传感器组,所述传感器组包括第一类传感器和第二类传感器,所述检测方法包括:
    分别通过所述第一类传感器和所述第二类传感器接收所述智能机器人运行方向上的物体的反射信号;以及
    根据所述反射信号判断所述物体是否妨碍所述智能机器人的运行。
  10. 如权利要求9所述的用于智能机器人的障碍物检测方法,其特征在于,所述第一类传感器为超声波传感器,所述第二传感器包括IR传感器和/或PSD传感器。
PCT/CN2015/086691 2014-12-12 2015-08-11 智能机器人及用于其的传感器组件和障碍物检测方法 WO2016090940A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15866484.7A EP3112897B1 (en) 2014-12-12 2015-08-11 Intelligent robot, and sensor assembly and obstacle detection method for same
CA2968253A CA2968253A1 (en) 2014-12-12 2015-08-11 Intelligent robot, and sensor assembly and obstacle detection method for same
US15/118,725 US20170049290A1 (en) 2014-12-12 2015-08-11 Intelligent robot, and sensor assembly and obstacle detection method for the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410766395.6 2014-12-12
CN201410766395 2014-12-12
CN201510127843.2A CN106154278B (zh) 2014-12-12 2015-03-23 智能机器人及用于其的传感器组件和障碍物检测方法
CN201510127843.2 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016090940A1 true WO2016090940A1 (zh) 2016-06-16

Family

ID=56106602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086691 WO2016090940A1 (zh) 2014-12-12 2015-08-11 智能机器人及用于其的传感器组件和障碍物检测方法

Country Status (2)

Country Link
EP (1) EP3112897B1 (zh)
WO (1) WO2016090940A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102390039B1 (ko) * 2020-03-10 2022-04-25 엘지전자 주식회사 로봇 청소기 및 그 제어 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621291A (en) * 1994-03-31 1997-04-15 Samsung Electronics Co., Ltd. Drive control method of robotic vacuum cleaner
US6493612B1 (en) * 1998-12-18 2002-12-10 Dyson Limited Sensors arrangement
WO2003062937A1 (en) * 2002-01-23 2003-07-31 Aktiebolaget Electrolux Position determination method
CN101916110A (zh) * 2010-08-11 2010-12-15 方正 一种清扫机器人和清扫机器人的行走控制方法
CN202445997U (zh) * 2011-11-11 2012-09-26 冠华兴塑胶五金(深圳)有限公司 避免碰撞的自动吸尘器
CN103479307A (zh) * 2012-06-07 2014-01-01 三星电子株式会社 障碍物感测模块和包括该障碍物感测模块的清洁机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621291A (en) * 1994-03-31 1997-04-15 Samsung Electronics Co., Ltd. Drive control method of robotic vacuum cleaner
US6493612B1 (en) * 1998-12-18 2002-12-10 Dyson Limited Sensors arrangement
WO2003062937A1 (en) * 2002-01-23 2003-07-31 Aktiebolaget Electrolux Position determination method
CN101916110A (zh) * 2010-08-11 2010-12-15 方正 一种清扫机器人和清扫机器人的行走控制方法
CN202445997U (zh) * 2011-11-11 2012-09-26 冠华兴塑胶五金(深圳)有限公司 避免碰撞的自动吸尘器
CN103479307A (zh) * 2012-06-07 2014-01-01 三星电子株式会社 障碍物感测模块和包括该障碍物感测模块的清洁机器人

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3112897A4 *

Also Published As

Publication number Publication date
EP3112897A1 (en) 2017-01-04
EP3112897A4 (en) 2018-04-18
EP3112897B1 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
US20170049290A1 (en) Intelligent robot, and sensor assembly and obstacle detection method for the same
CN108303697B (zh) 一种障碍物的超声波检测方法、装置及系统
US8415609B2 (en) Safety photoelectric switch
JP2006318444A (ja) 障害物回避機能を有する移動ロボットとその制御方法
WO2019056788A1 (zh) 红外测障方法、装置及机器人
US10222251B2 (en) Electro-optic liquid sensor enabling in-liquid testing having a light source providing a plurality of intensities for assessing an operational state of the sensor
WO2019223501A1 (zh) 开关门提醒装置及开关门提醒方法
JP2014526034A (ja) センサによるロバスト且つ高速な存在検出方法
RU2016105528A (ru) Автомобильный рефлекторный оптический датчик
US9031693B2 (en) Cleaning robot and system utilizing the same
US20220244352A1 (en) Indirect radar detection
WO2016090940A1 (zh) 智能机器人及用于其的传感器组件和障碍物检测方法
KR20220136430A (ko) 검출 방법 및 장치
US20170227631A1 (en) Vehicle position detecting method and vehicle position detecting system
KR102569543B1 (ko) 장애물 감지 시스템 및 장애물 감지 방법
Ishrat et al. Smart fan for human tracking
US8451689B2 (en) Ultrasonic apparatus with an adjustable horn
US10139490B2 (en) Fault tolerant power liftgate obstruction detection system
CN105824025A (zh) 一种基于立体式声呐阵列的机器人避障系统
EP3702807A1 (en) Composite motion detection system and method for use thereof
JP2018205187A5 (zh)
US8422336B2 (en) Operating method for an ultra-sound sensor
US20240126264A1 (en) Moving environment system
JP2016191617A (ja) 障害物判定装置
TWM414618U (en) Optical touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866484

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015866484

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15118725

Country of ref document: US

Ref document number: 2015866484

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2968253

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE