WO2016089177A1 - Cathode active material, method for manufacturing same, and lithium secondary battery comprising same - Google Patents

Cathode active material, method for manufacturing same, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2016089177A1
WO2016089177A1 PCT/KR2015/013267 KR2015013267W WO2016089177A1 WO 2016089177 A1 WO2016089177 A1 WO 2016089177A1 KR 2015013267 W KR2015013267 W KR 2015013267W WO 2016089177 A1 WO2016089177 A1 WO 2016089177A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
ion conductor
ceramic
electrode active
Prior art date
Application number
PCT/KR2015/013267
Other languages
French (fr)
Korean (ko)
Inventor
이동권
조승범
노준석
민병현
김배정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/531,107 priority Critical patent/US10374227B2/en
Priority to JP2017529380A priority patent/JP6472520B2/en
Priority to EP15865992.0A priority patent/EP3229295B1/en
Priority to CN201580066090.7A priority patent/CN107004841B/en
Priority claimed from KR1020150172360A external-priority patent/KR101777022B1/en
Publication of WO2016089177A1 publication Critical patent/WO2016089177A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same.
  • Lithium secondary batteries have been widely used as power sources for portable devices since they emerged in 1991 as small, light and large capacity batteries. Recently, with the rapid development of electronics, telecommunications, and computer industry, camcorders, mobile phones, notebook PCs, etc. have emerged, and they are developing remarkably, and the demand for lithium secondary battery as a power source to drive these portable electronic information communication devices increases day by day. Doing.
  • Lithium secondary batteries have a problem in that their lifespan drops rapidly as they are repeatedly charged and discharged. In particular, this problem is more serious under high temperature or high voltage. This is due to a phenomenon in which the electrolyte is decomposed or the active material is deteriorated due to moisture or other effects in the battery, and the internal resistance of the battery is increased.
  • LiCoO 2 having a layered structure. LiCoO 2 is most commonly used due to its excellent lifespan characteristics and charge and discharge efficiency. However, LiCoO 2 has a low structural stability and thus is not applicable to high capacity technology of batteries.
  • LiNiO 2 LiNiO 2
  • LiMnO 2 LiMn 2 O 4
  • LiFePO 4 Li (Ni x CoyMnz) O 2
  • LiNiO 2 has the advantage of exhibiting battery characteristics of high discharge capacity, but the synthesis is difficult by a simple solid phase reaction, there is a problem of low thermal stability and low cycle characteristics.
  • lithium manganese oxides such as LiMnO 2 or LiMn 2 O 4 have advantages in that they are excellent in thermal safety and inexpensive, but have a small capacity and low temperature characteristics.
  • LiMn 2 O 4 but a part merchandising products to low cost, since the Mn + 3 structure modification (Jahn-Teller distortion) due to the not good life property.
  • LiFePO 4 has a low price and excellent safety, and a lot of research is being made for hybrid electric vehicles (HEV), but it is difficult to apply to other fields due to low conductivity.
  • Li (NixCoyMnz) O 2 is the most recently attracting attention as an alternative cathode active material for LiCoO 2 .
  • This material is cheaper than LiCoO 2 and has advantages in that it can be used for high capacity and high voltage, but has a disadvantage in that the rate capability and the service life at high temperature are poor.
  • the positive electrode active material is formed by doping a material such as Al, Ti, Sn, Ag, or Zn into the positive electrode active material, or by dry or wet coating a conductive metal on the surface of the positive electrode active material.
  • the first technical problem to be solved by the present invention is to form a coating layer of a ceramic ion conductor having excellent lithium ion conductivity with respect to lithium composite metal oxide particles to a uniform thickness, in a battery generated due to the formation of a non-uniform coating layer It is to provide a method for producing a positive electrode active material that can minimize the reduction in capacity and improve the battery life characteristics.
  • the second technical problem to be solved by the present invention is to be produced by the above manufacturing method, to promote the movement of lithium ions on the surface of the lithium composite metal oxide particles, and at the same time can exhibit an impact absorbing effect during the pressing process during the production of the positive electrode
  • the third technical problem to be solved by the present invention is to provide a positive electrode including the positive electrode active material.
  • the fourth technical problem to be solved by the present invention is to provide a lithium secondary battery, a battery module and a battery pack including the positive electrode.
  • the lithium composite metal oxide particles are mixed with the nanosol of the ceramic-based ion conductor and heat treated, the coating layer comprising a ceramic-based ion conductor on the lithium composite metal oxide particles It provides a method for producing a positive electrode active material comprising the step of forming a.
  • particles of a lithium composite metal oxide prepared by the manufacturing method, particles of a lithium composite metal oxide; And a coating layer positioned on the lithium composite metal oxide particles and including a ceramic ion conductor.
  • a cathode including the cathode active material is provided.
  • a lithium secondary battery a battery module, and a battery pack including the positive electrode.
  • the method for producing a positive electrode active material according to the present invention utilizes a nano-sol of a ceramic ion conductor having excellent lithium ion ionicity, thereby promoting the movement of lithium ions to the surface of the lithium composite metal oxide particles and simultaneously pressing the positive electrode during the production of the positive electrode. It is possible to uniformly coat a ceramic-based ion conductor that can exhibit an impact absorption effect during the process. As a result, the cathode active material manufactured by the manufacturing method may exhibit improved lifespan characteristics with a minimized capacity reduction when the battery is applied.
  • Figure 2 shows the X-ray diffraction analysis (XRD) results of the nano-sol of the ceramic ion conductor prepared in Preparation Example 1.
  • FIG. 3 is a photograph of the surface of the cathode active material prepared in Example 1-1 using a Field-Emission Scanning Electron Microscope (FE-SEM).
  • FE-SEM Field-Emission Scanning Electron Microscope
  • Figure 4 is a photograph of the surface of the positive electrode active material prepared in Comparative Example 1-2 by FE-SEM.
  • the lithium composite metal oxide particles are mixed with a nanosol of a ceramic ion conductor and heat treated to form a coating layer including a ceramic ion conductor on the lithium composite metal oxide particles. Forming a step.
  • the ceramic ion conductor may specifically include at least one of an ion conductive ceramic and a metal ceramic.
  • the ion conductive ceramic is specifically Y, Ca, or Yttria stabilized zirconia (YSZ ) , calcia stabilized zirconia (CSZ), scandia-stabilized zirconia (SSZ), or the like.
  • Zirconia (ZrO 2 ) -based oxides doped with Sc Gd, Y or Sm doped, such as gadolinia doped ceria (GDC), samarium doped ceria (SDC), Yttria-doped ceria (YDC) Ceria (CeO 2 ) based oxides; Lanthanum strontium gallate magnesite (LSGM), lanthanum strontium manganite (LSM), or lanthanum strontium cobalt ferrite (LSCF). Species alone or mixtures of two or more may be used.
  • the YSZ is a ceramic material made of zirconium oxide (zirconia) added with yttrium oxide (yttria) to be stable at room temperature.
  • the YSZ may be part of the yttria is added by being Zr 4 + ions to be substituted for the zirconia are Y 3+. This is replaced by three O 2 ions instead of four O 2 ions, resulting in oxygen vacancy. Because of this oxygen deficiency, YSZ has O 2 -ion conductivity, and the higher the temperature, the better the conductivity.
  • YSZ is Zr (1-x) Y x O 2 -x / 2 , where 0.01 ⁇ x ⁇ 0.1, and more specifically 0.08 ⁇ x ⁇ 0.1.
  • normal temperature means the temperature range in 23 +/- 5 degreeC unless it is specifically defined.
  • the CSZ is a ceramic material made by adding calcium oxide (calcia) to zirconium oxide (zirconia) to be stable at room temperature. By adding calcia, the thermal stability of zirconia can be improved.
  • the CSZ is a mixed state of a cubic crystal structure and a tetragonal crystal structure. The tetragonal crystal structure changes to a cubic crystal structure when the temperature rises, and changes to a tetragonal crystal structure when the temperature decreases. In this process, the expansion and contraction of the volume may be repeated.
  • the SSZ is by the addition of scandium oxide (scandia) to zirconium oxide (zirconia) of a ceramic material so as to create a stable even at room temperature, specifically, the (ZrO 2) 1- 2x (Sc 2 O 3) x, (ZrO 2) 1-2x (Sc 2 O) 3x-z (Y 2 O 3 ) z or (ZrO 2 ) 1-2x- z (Sc 2 O 3 ) x (CeO 2 ) z (where 0.01 ⁇ x ⁇ 0.2, 0.01 ⁇ z ⁇ 0.1).
  • the GDC is ceria doped with gadolinium oxide (Gd 2 O 3 ), and has high ion conductivity like LSGM. Specifically, Gd 0.1 Ce 0.9 O 1.95 can be mentioned.
  • the LSGM is a lanthanum-strontium-gallium-magnesium oxide doped with Sr and Mg and having high lithium ion conductivity, and specifically, ( La x Sr 1 -x ) (Ga y Mg 1 -y ) O 3-.
  • (0.05 ⁇ x ⁇ 1 and 0.05 ⁇ y ⁇ 1, and ⁇ may be defined as a value meaning a small deviation from perfect stoichiometry) and the like.
  • the LSM is a lanthanum manganate doped with Sr in LaMnO 3 and has a manganese-based perovskite structure. Specifically LaSrMnO or La (1-x) Sr x MnO 3 (0.01 ⁇ x ⁇ 0.3), or La (1-y) Sr y Mn z O 3 - ⁇ (0.05 ⁇ y ⁇ 1, 0.95 ⁇ z ⁇ 1.15 And ⁇ can be defined as a value meaning a small deviation from the ideal stoichiometry).
  • the LSCF is a lanthanum ferrite doped with Sr and Co in LaFeO 3 , and has excellent stability at high temperature and high ion conductivity.
  • the metal ceramic is manufactured by mixing and sintering a ceramic and a metal powder, and has both characteristics of a ceramic having high heat resistance and hardness, and a metal having plastic deformation or electrical conductivity.
  • the ceramic may be the ion conductive ceramic described above, and the metal may be nickel, molybdenum, cobalt, or the like.
  • the metal ceramic may be a cermet such as nickel-yttria stabilized zirconia cermet (Ni-YSZ cermet).
  • the ceramic ion conductor may exhibit a peak of a single phase in X-ray diffraction analysis using Cu (K ⁇ -ray).
  • the ceramic ion conductor is specifically YSZ, GDC, LSGM, It may include any one selected from the group consisting of LSM, CSZ, SSZ and Ni-YSZ or a mixture of two or more thereof, and more specifically any selected from the group consisting of YSZ, GDC, LSGM, SSZ and CSZ. It may be one or a mixture of two or more thereof.
  • the ceramic ion conductor may include YSZ, and the YSZ is Zr (1-x) Y x O 2 -x / 2 ( At this time, 0.01 ⁇ x ⁇ 0.30, and more specifically 0.08 ⁇ x ⁇ 0.10).
  • Y enters the Zr site and has a superstructure, resulting in oxygen deficiency in the structure, resulting in a large amount of empty space on the surface of the cathode active material. Can occur.
  • Such void space facilitates the insertion and desorption of lithium on the surface of the positive electrode active material, and as a result, greatly increases the lithium ion conductivity on the surface of the active material particles, thereby minimizing the capacity and output reduction of the battery.
  • the ceramic ion conductor may be to include SSZ, (ZrO 2) 1- 2x (Sc 2 O 3) x, (ZrO 2 ) 1-2x (Sc 2 O) 3x-z (Y 2 O 3 ) z , (ZrO 2 ) 1-2x- z (Sc 2 O 3 ) x (CeO 2 ) z (0.01 ⁇ x ⁇ 0.2, 0.01 ⁇ z ⁇ 0.l) and mixtures thereof, and may include SSZ selected from the group consisting of a mixture thereof.
  • the ceramic ion conductor has a CaO content in the total weight of CSZ of 1 mol% to 20 mol%, more specifically, 2 mol% to 17 mol%. It may be to include a CSZ.
  • the average particle diameter (D 50 ) of the ceramic ion conductor may be 1 nm to 100 nm. Uniform dispersion in the sol is possible when having a particle size within this range. More specifically, the average particle diameter (D 50 ) of the ceramic ion conductor may be 1 nm to 50 nm, and more specifically 1 nm to 5 nm.
  • the average particle diameter (D 50 ) of the ceramic ion conductor may be defined as the particle size based on 50% of the particle size distribution.
  • the average particle diameter (D 50 ) of the particles according to an embodiment of the present invention can be measured using, for example, a laser diffraction method.
  • the laser diffraction method can measure the particle diameter of several mm from the submicron region, and high reproducibility and high resolution can be obtained.
  • the method for measuring the average particle diameter (D 50 ) of the YSZ is introduced into a commercially available laser diffraction particle size measuring apparatus (eg, Microtrac MT 3000) for nanosols of YSZ, and outputs ultrasonic waves of about 28 kHz. was irradiated with W, it is possible to calculate the average particle diameter (D 50) of from 50% based on the particle size distribution of the measuring device.
  • a commercially available laser diffraction particle size measuring apparatus eg, Microtrac MT 3000
  • the nano-sol of the ceramic ion conductor is 50ppm to about the total weight of the positive electrode active material content of the ceramic ion conductor contained in the positive electrode active material to be finally prepared It may be used in an amount such that it is 300,000 ppm, more specifically 100 ppm to 10,000 ppm.
  • the nano-sol of the ceramic ion conductor is prepared by dissolving a precursor of the metal for forming a ceramic ion conductor in a glycol solvent and then adding water to hydrate it. Can be.
  • the ceramic ion conductor is crystalline, it does not exhibit lithium ion conductivity and has very low reactivity with lithium. Therefore, it is difficult to form a uniform coating layer when coating the active material surface.
  • a hydroxide-based ceramic type having a nano-scale particle size and amorphous, having a hydroxyl group on the surface An ion conductor is formed.
  • Such a ceramic ion conductor not only exhibits lithium ion conductivity per se, but also has excellent reactivity with lithium, and enables uniform and efficient coating layer formation on a lithium composite metal oxide in an active material to be finally manufactured.
  • the glycol-based solvent that can be used in the preparation of the nanosol is a dihydric alcohol having two hydroxyl groups in the molecule, and specifically, may be ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol or polyethylene glycol, and any one of them. Or mixtures of two or more may be used.
  • the metal-containing compound for forming the ceramic ion conductor specifically, hydroxide, oxyhydroxide, alkoxide, carbonate, acetate, oxalate, citrate, nitrate, nitride, Sulfates, sulfides, halides or hydrates thereof, and the like, and any one or a mixture of two or more thereof may be used.
  • the metal for forming the ceramic ion conductor may be a metal constituting the ceramic ion conductor, specifically, rare earth elements such as Y, Sc, Gd, Sm, Ce, or La; And one or more elements selected from the group consisting of Zr, or alkaline earth metal elements such as Ca, Mg, or Sr; Transition metals such as Mg, Co or Fe; And a mixed element with one or more elements selected from the group consisting of post-transition metals such as Ga.
  • precursors of YSZ include zirconium dinitrate dihydrate (ZrO (NO 3 ) 2 ⁇ 2H 2 O) as a Zr-containing raw material and yttrium nitrate hexahydrate Y (NO 3 ) 3 ⁇ 6H as a raw material containing Y 2 O can be used.
  • additives such as a chelating agent, a pH adjusting agent or a dispersing agent are further added to increase the solubility of the precursor of the metal for forming the ceramic ion conductor and to increase the dispersibility of the ceramic ion conductor to be manufactured.
  • a chelating agent such as sodium EDTA
  • a pH adjusting agent such as sodium bicarbonate
  • a dispersing agent is further added to increase the solubility of the precursor of the metal for forming the ceramic ion conductor and to increase the dispersibility of the ceramic ion conductor to be manufactured.
  • the pH adjusting agent may be an organic acid such as acetic acid, citric acid, lactic acid, or formic acid, or a basic compound such as ammonia, and may be included in an amount such that the pH of the nanosol is 6.5 to 8.
  • the dispersant may be a polymer dispersant or a surfactant in detail, and may be included in an amount of 1 part by weight or less, or 0.1 to 0.5 part by weight, based on 100 parts by weight of the ceramic ion conductor.
  • a stirring or heat treatment process may be optionally further performed to increase the solubility.
  • the stirring may be performed according to a conventional mixing process.
  • the heat treatment process may be carried out at a temperature of 120 °C or more below the boiling point of the glycol solvent, specifically 120 °C to 300 °C, more specifically 120 °C to 200 °C, even more specifically 120 °C to It may be carried out at 180 °C.
  • a cooling process may be further performed as necessary.
  • the cooling process may be performed according to a conventional method such as natural cooling or cold wind cooling.
  • an amorphous ceramic-based ion conductor at the nanoparticle level is generated by the reaction between the precursors.
  • a hydroxide process using water may be performed on the resulting reactant containing ceramic ion conductor.
  • a mixed solvent of a solvent containing water and a hydroxyl group may be used, and the hydroxyl group-containing solvent may be specifically an alcohol (eg, methanol, ethanol, 1-propanol, 2-propanol, etc.), or a polyol (eg, ethylene glycol).
  • an alcohol eg, methanol, ethanol, 1-propanol, 2-propanol, etc.
  • a polyol eg, ethylene glycol
  • Propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butane diol, glycerin, etc. Propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butane diol, glycerin, etc.
  • the hydroxide process may exhibit excellent reactivity with respect to lithium by binding water molecules to the ceramic ion conductor, and may form a uniform and highly efficient coating layer for the lithium composite metal oxide in the active material to be finally manufactured.
  • the nano-sol of the ceramic ion conductor may include aluminum (Al), niobium (Nb), titanium (Ti), tungsten (W), and molybdenum ( Mo), chromium (Cr), copper (Cu), vanadium (V) and zinc (Zn), any one selected from the group consisting of or a mixed metal of two or more thereof; Alternatively, the nanosol of the above metal may be further included.
  • the metals may be included in the form of an oxide in the coating layer of the positive electrode active material to be finally manufactured to further improve battery characteristics.
  • Such metal may be included in an amount such that the concentration of the oxide of the metal included in the positive electrode active material to be finally produced is 50ppm to 300,000ppm, more specifically 100ppm to 10,000ppm.
  • the nanosol of the metal may be prepared by dissolving a metal precursor in a glycol-based solvent to react with a precursor of the nanosol of a ceramic ion conductor, and preparing a nanosol of the metal, followed by hydroxide addition of water.
  • Precursors of the metal are aluminum (Al), niobium (Nb), titanium (Ti), tungsten (W), molybdenum (Mo), chromium (Cr), copper (Cu), vanadium (V) and zinc (Zn). It may be any one selected from the group consisting of or a compound containing two or more of these mixed metals. Specifically, hydroxides, oxyhydroxides, alkoxides, carbonates, acetates, oxalates, citrates, nitrates, nitrides, sulfates, sulfides, halides or hydrates thereof, and the like, or any one or a mixture of two or more thereof. This can be used.
  • the lithium composite metal oxide may be a composite metal oxide of lithium with one or more metals selected from the group consisting of nickel, manganese and cobalt.
  • the lithium composite metal oxide may include a compound of Formula 1 below:
  • 0 ⁇ a ⁇ 0.33, 0 ⁇ b ⁇ 0.5, and 0 ⁇ c ⁇ 0.5, more specifically 0 ⁇ a ⁇ 0.09, and even more specifically, a 0.
  • the effect of coating the ceramic-based ion conductor on the lithium composite metal particles may be less than about 10% of the difference in lifespan characteristics compared to the case of coating a conventional metal oxide.
  • the effect of coating the ceramic-based ion conductor on the lithium composite metal particles may be 30 to 70% higher than that of other metal oxides. have.
  • the lithium composite metal oxide is LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , and lithium in that the capacity characteristics and stability of the battery can be improved
  • Nickel manganese cobalt oxide eg, Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , LiNi 0 . 5 Mn 0 . 3 Co 0 . 2 O 2 , or LiNi 0 . 8 Mn 0 . 1 Co 0 . 1 O 2, etc.
  • the average particle diameter (D 50 ) of the positive electrode active material according to an embodiment of the present invention may be 3 ⁇ m to 25 ⁇ m, more specifically may be 5 to 25 ⁇ m.
  • the average particle diameter (D 50) of the lithium-metal composite oxide particles was measured by the same method described in the average particle diameter (D 50) of the ceramic-based ion conductor.
  • the cathode active material according to an embodiment of the present invention may be primary particles of a lithium composite metal oxide, or secondary particles formed by assembling the primary particles.
  • the positive electrode active material is a primary particle of a lithium composite metal oxide
  • generation of surface impurities such as Li 2 CO 3 , LiOH, and the like caused by reaction with moisture in the air or CO 2 is reduced, and thus there is a low risk of deterioration of battery capacity and gas generation. Also, excellent high temperature stability can be exhibited.
  • the cathode active material is secondary particles in which primary particles are assembled, output characteristics may be more excellent.
  • the average particle size of the primary particles may be 10 nm to 200 nm.
  • the form of such active material particles may be appropriately determined according to the composition of the lithium composite metal oxide constituting the active material.
  • the mixing of the particles of the lithium composite metal oxide and the ceramic ion conductor nanosol is, for example, a solvent and a dispersant in a ceramic ion conductor or a precursor thereof.
  • the nanosol may be performed by surface treatment by various methods such as mixing, coating, spraying, or dipping with particles of a lithium composite metal oxide.
  • the heat treatment may be performed for 4 hours to 10 hours in the temperature range of 100 °C to 600 °C.
  • a coating layer including a ceramic ion conductor and optionally a metal oxide may be formed on the surface of the lithium composite metal oxide particles by heat treatment.
  • the method of manufacturing a cathode active material according to an embodiment of the present invention may further include the step of firing after the heat treatment.
  • the firing process may be performed for 4 hours to 10 hours in the temperature range of 500 °C to 1000 °C.
  • the oxidation of the metal is promoted, and the metal oxide selectively used in forming the ceramic-based ion conductor and the coating layer into the lithium composite metal oxide particles.
  • the metal element of may have a concentration gradient that decreases toward the inside from the surface of the lithium composite metal oxide particles.
  • the metal element may exist up to about 500 nm from the surface of the lithium composite metal oxide particle.
  • structural crystal collapse of the cathode active material may be prevented to improve structural stability and electrochemical properties.
  • the lithium composite metal oxide doped with the metal element may specifically include a compound of Formula 2 below:
  • M ' is a metal element derived from a ceramic ion conductor, specifically, Y, Zr, La, Sr, Ga, Mg, Sc, Gd, Sm, Ca, Ce, Co, Mn and Fe It may be any one selected from the group consisting of two or more mixed elements thereof, more specifically any one or two or more selected from the group consisting of Y, Zr, La, Sr, Ga, Sc, Gd, Sm and Ce It may be a mixed element, and more specifically, at least one element selected from the group consisting of Y and Zr.
  • M ′′ is derived from a metal nanosol which may be selectively included in the nanosol, and specifically, in the group consisting of Al, Nb, Ti, W, Mo, Cr, Cu, V, and Zn. Any one or two or more mixed elements selected, and more specifically, any one or two or more mixed elements selected from the group consisting of Al, Nb and Ti.
  • M 'and M may be each independently distributed in a concentration gradient gradually decreasing from the particle surface to the center in the particles of the lithium composite metal oxide.
  • concentration of the metal to be doped is distributed in a concentration gradient that gradually changes, so that there is no abrupt phase boundary region in the active material, so that the crystal structure is stabilized and thermal stability is increased.
  • concentration gradient that is distributed at a high concentration and decreases in concentration toward the particle center, it is possible to prevent a decrease in capacity while showing thermal stability.
  • the total atomic weight of each of the doping elements M' and M" included in the positive electrode active material is based on The concentration of M 'in a region within 10% by volume of the particle center (hereinafter simply referred to as' Rc 10 region') and a region within 10% by volume of the particle surface (hereinafter simply referred to as' Rs 10 region ')
  • the difference may be 10 to 90 atomic% and the difference in concentration of M ′′ may be 10 to 90 atomic%.
  • the concentration gradient structure and concentration of the doping element in the positive electrode active material particles are determined by an electron probe micro analyzer (EPMA), inductively coupled plasma-atomic emission spectrometer (ICP-). AES) or Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), and more specifically, using EPMA to move from the center of the cathode active material to the surface. While measuring the atomic ratio of each metal (atomic ratio) can be measured.
  • EPMA electron probe micro analyzer
  • ICP- inductively coupled plasma-atomic emission spectrometer
  • TOF-SIMS Time of Flight Secondary Ion Mass Spectrometry
  • a conventional wet mixing method is formed by forming a coating layer containing a ceramic ion conductor on a particle surface of a lithium composite metal oxide using a nanosol of a ceramic ion conductor.
  • the coating layer formed on the surface of the lithium composite metal oxide particles can be formed more uniformly, and by reducing the amount of solvent used, damage of the lithium composite metal oxide particles due to the solvent can be minimized. Can be.
  • the cathode active material manufactured by the manufacturing method includes specific composite particles having a single phase, that is, an amorphous ceramic-based ion conductor, thereby minimizing capacity reduction and output reduction of the secondary battery.
  • specific composite particles having a single phase that is, an amorphous ceramic-based ion conductor
  • the structural characteristics of the ceramic ion conductor it is possible to minimize the cracking phenomenon of the positive electrode active material due to the shock absorbing effect during the positive electrode process, in particular the pressing process, thereby further improving the life characteristics when applied to the secondary battery.
  • a cathode active material prepared by the above-described manufacturing method is provided.
  • the cathode active material may include particles of a lithium composite metal oxide, and a coating layer disposed on the particles of the lithium composite metal oxide and including a ceramic ion conductor.
  • the particles of the lithium composite metal oxide and the ceramic ion conductor are the same as described above.
  • the coating layer may include a single-phase ceramic ion conductor.
  • the single phase ceramic ion conductor exhibits a single phase peak upon XRD measurement.
  • the coating layer is any one or two or more selected from the group consisting of YSZ, CSZ, SSZ, GDC, LSGM, LSM and Ni-YSZ as the ceramic ion conductor. It may be to include the.
  • the coating layer is any one selected from the group consisting of YSZ, CSZ, SSZ, GDC and LSGM or a mixture of two or more thereof as a zirconia-based ceramic ion conductor. It may be.
  • the YSZ may be Zr (1-x) Y x O 2 -x / 2, 0.01 ⁇ x ⁇ 0.08, and more specifically 0.03 ⁇ x ⁇ 0.08.
  • Y may enter the Zr site to form a single phase first, and since the cathode active material structure has a superstructure, oxygen deficiency may occur in the structure to generate a lot of empty space. have.
  • the movement path of lithium in the YSZ has a lot of space for Li to escape on the surface of the positive electrode active material due to the empty space due to oxygen deficiency inside the YSZ structure.
  • the SSZ is specifically (ZrO 2) 1- 2x (Sc 2 O 3) x, (ZrO 2) 1-2x (Sc 2 O) 3x- z (Y 2 O 3) z, or (ZrO 2) 1-2x-z (Sc 2 O 3 ) x (CeO 2 ) z , where 0.01 ⁇ x ⁇ 0.2, 0.01 ⁇ z ⁇ 0.l.
  • the CSZ may be a CaO content of 2% to 17% by weight of the total CSZ weight.
  • the ceramic ion conductor may be included in the coating layer in an amount of 50 ppm to 300000 ppm, more specifically, 100 ppm to 10,000 ppm, based on the total weight of the cathode active material. have.
  • the coating layer further comprises an oxide containing at least one element of Al, Nb, Ti, Ca, W, Mo, Fe, Cr, Cu, V, and Zn.
  • the oxide containing the above element may be included in the coating layer in an amount of 50 ppm to 300000 ppm, more specifically, 100 ppm to 10,000 ppm, based on the total weight of the positive electrode active material.
  • the coating layer may be formed in a thickness range of 1 to 5000nm from the outer surface of the lithium composite metal oxide particles.
  • the coating layer has an excellent thickness uniformity by using a nanosol in the manufacture.
  • the coating layer may have a thickness uniformity of 20 nm or less.
  • the thickness uniformity means a thickness deviation between the maximum thickness value and the minimum thickness value.
  • the average particle diameter (D 50 ) of the positive electrode active material according to an embodiment of the present invention may be 3 ⁇ m to 30 ⁇ m, and also improve the rate characteristics and initial capacity characteristics of the battery according to the optimization of the specific surface area and the positive electrode mixture density In consideration of the effect, the average particle diameter (D 50 ) of the cathode active material may be more specifically 5 ⁇ m to 10 ⁇ m.
  • the cathode active material according to an embodiment of the present invention may be primary particles of a lithium composite metal oxide, or secondary particles formed by assembling the primary particles.
  • the positive electrode active material is a primary particle of a lithium composite metal oxide
  • generation of surface impurities such as Li 2 CO 3 , LiOH, and the like caused by reaction with moisture in the air or CO 2 is reduced, and thus there is a low risk of deterioration of battery capacity and gas generation. Also, excellent high temperature stability can be exhibited.
  • the cathode active material is secondary particles in which primary particles are assembled, output characteristics may be more excellent.
  • the average particle diameter of the primary particles may be 10 nm to 200 nm.
  • the form of such active material particles may be appropriately determined according to the composition of the lithium composite metal oxide constituting the active material.
  • a positive electrode including the positive electrode active material prepared by the above manufacturing method.
  • the positive electrode may be manufactured by a conventional positive electrode manufacturing method known in the art, except for using the positive electrode active material described above.
  • a slurry is prepared by mixing and stirring a solvent, a binder, a conductive material, or a dispersant in a positive electrode active material, if necessary, and then coating (coating) the positive electrode current collector and drying to form a positive electrode active material layer to dry the positive electrode. It can manufacture.
  • the positive electrode current collector is a metal having high conductivity, and may be any metal as long as the slurry of the positive electrode active material is not easily reactive in a voltage range of a battery.
  • Non-limiting examples of the positive electrode current collector include a foil made of aluminum, nickel, or a combination thereof.
  • the solvent for forming the positive electrode includes an organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or 2 It can mix and use species.
  • the amount of the solvent used is sufficient to dissolve and disperse the positive electrode active material, the binder, and the conductive material in consideration of the coating thickness of the slurry and the production yield.
  • the binder includes vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate, poly Vinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), liquor Fonned EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and polymers in which hydrogen thereof is replaced by Li, Na or Ca, or the like, or Various kinds of binder polymers such as various copolymers can be used.
  • the binder may be included in an amount of 1 to 30 wt% based on the total weight of the cathode active material layer.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, farnes black, lamp black, thermal black carbon nanotubes or carbon fibers; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskers such as fluorocarbon, zinc oxide or potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and any one or a mixture of two or more thereof may be used.
  • the conductive material may be included in an amount of 1 to 30 wt% based on the total weight of the positive electrode active material layer.
  • a lithium secondary battery including the cathode active material manufactured by the above-described manufacturing method.
  • the lithium secondary battery specifically includes a separator interposed between the positive electrode, the negative electrode, the positive electrode and the negative electrode.
  • a carbon material lithium metal, silicon, tin, or the like, in which lithium ions may be occluded and released, may be used.
  • a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical of low crystalline carbon.
  • Natural crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber.
  • High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the negative electrode current collector is generally made of a thickness of 3 ⁇ m to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, and aluminum-cadmium alloys may be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the binder and the conductive material used for the negative electrode may be used as can be commonly used in the art as the positive electrode.
  • the negative electrode may prepare a negative electrode by mixing and stirring the negative electrode active material and the additives to prepare a negative electrode active material slurry, and then applying the same to a current collector and compressing the negative electrode.
  • porous polymer films conventionally used as separators for example, polyolefins such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer, etc.
  • the porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
  • the lithium salt which can be included as an electrolyte used in the present invention can be used without limitation, those which are commonly used in a lithium secondary battery electrolyte, such as the lithium salt, the anion is F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 - may be any one
  • Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. no.
  • the lithium secondary battery having the above configuration may be manufactured by manufacturing an electrode assembly through a separator between a positive electrode and a negative electrode, placing the electrode assembly inside a case, and then injecting an electrolyte solution into the case.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles It is useful in the field of electric vehicles.
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • NiCl 2 nickel chloride
  • ethylene glycol (C 2 H 6 O 2 ) solution 20 g was dispersed in 400 g of ethylene glycol (C 2 H 6 O 2 ) solution, followed by stirring to prepare a mixed solution.
  • the mixed solution was heated at a temperature of 160 ° C. for 5 hours with stirring, cooled to 90 ° C., and water was added to prepare Ni nanosols having an average particle diameter (D 50 ) of 10 nm.
  • the precursor prepared above was placed in an alumina crucible and calcining was performed at about 860 ° C. for 6 hours in an air atmosphere.
  • the cake obtained after firing was pulverized, and then classified using a 400 mesh sieve (American Tyler standard screen scale) to carry out LiNi 0.6 Mn 0.2 Co 0.2 O 2 (average particle diameter (D 50). ): 5 m).
  • 6 Mn 0 . 2 Co 0 . 2 O 2 (average particle diameter (D 50 ): 5 ⁇ m) 50 g was mixed and mixed. The resulting mixture was heat treated at 400 ° C. for 6 hours, then induced and sieved to LiNi 0 . 6 Mn 0 . 2 Co 0 . 2 O 2 A cathode active material containing YSZ on the particle surface was prepared.
  • Example 1-1 except for using the CSZ nanosol prepared in Preparation Example 2 instead of the YSZ nanosol prepared in Preparation Example 1 was carried out in the same manner as in Example 1-1 to the cathode active material Was prepared.
  • Example 1-1 the positive electrode active material was carried out in the same manner as in Example 1-1 except for using the SSZ nanosol prepared in Preparation Example 3 instead of the YSZ nanosol prepared in Preparation Example 1. Was prepared.
  • Example 1-1 the positive electrode active material was carried out in the same manner as in Example 1-1 except for using the GDC nanosol prepared in Preparation Example 4 instead of the YSZ nanosol prepared in Preparation Example 1. Was prepared.
  • Example 1-1 except for using the LSGM nanosol prepared in Preparation Example 5 instead of the YSZ nanosol prepared in Preparation Example 1 was carried out in the same manner as in Example 1-1 to the cathode active material Was prepared.
  • Ni nanosol prepared in Preparation Example 6 further mixed so that the Ni content is 0.2% by weight relative to the total weight of the lithium composite metal oxide.
  • a positive electrode active material having a surface treatment layer containing an YSZ ceramic ion conductor and NiO (average particle diameter (D 50 ): 5 ⁇ m).
  • a positive active material (average particle diameter (D 50 ): 5 ⁇ m) was prepared in the same manner as in Example 1, except that YSZ nanosol was not added in Example 1-1.
  • a positive electrode active material was prepared in the same manner as in Example 1-1, except for using an aqueous dispersion containing an average particle diameter (D 50 ) of 50 nm YSZ powder instead of the YSZ nanosol in Example 1-1.
  • N-methyl-2 Positive electrode slurry was prepared by addition to pyrrolidone (NMP).
  • NMP pyrrolidone
  • the positive electrode slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then roll rolled to prepare a positive electrode.
  • LiPF 6 was added to a non-aqueous electrolyte solvent prepared by mixing ethylene carbonate and diethyl carbonate as a electrolyte in a volume ratio of 30:70 to prepare a 1 M LiPF 6 non-aqueous electrolyte.
  • a cell was prepared by injecting a lithium salt-containing electrolyte solution through a separator of porous polyethylene between the positive electrode and the negative electrode prepared above.
  • a lithium secondary battery was manufactured by the same method as in Example 2-1, except for using the cathode active materials prepared in Examples 1-2 to 1-6, respectively.
  • a lithium secondary battery was manufactured by the same method as Example 2, except that the cathode active materials prepared in Comparative Examples 1-1 and 1-2 were used, respectively.
  • the nanosol of the ceramic ion conductor prepared in Preparation Example 1 was observed using a transmission electron microscope (TEM), and X-ray diffraction analysis (XRD) was performed.
  • TEM transmission electron microscope
  • XRD X-ray diffraction analysis
  • the average particle diameter (D 50 ) in the nanosol is 5 nm or less, and the amorphous YSZ without a crystal pattern is prepared in the hydroxide state.
  • Example 1-1 The surface of the cathode active material prepared in Example 1-1 was observed using a Field-Emission Scanning Electron Microscope (FE-SEM), and the results are shown in FIG. 3.
  • FE-SEM Field-Emission Scanning Electron Microscope
  • YSZ nanoparticles from Figure 3 is LiNi 0 . 6 Mn 0 . 2 Co 0 . 2 O 2 It can be seen that the oxide is uniformly coated on the surface.
  • the YSZ powder is LiNi 0.6 Mn 0.2 Co 0.2 O 2 oxide It can be seen that the surface is unevenly coated.
  • XRD analysis was performed on the cathode active material prepared in Example 1-1, and the crystal structure of YSZ contained in the coating layer was confirmed. XRD analysis was also performed on ZrO 2 for comparison.
  • Measurement Zone and Step Angle / Measurement Time -10.0 degrees ⁇ 2 ⁇ ⁇ 90 degrees, 0.5 seconds, 0.024 degrees where 2 ⁇ represents the diffraction angle.
  • YSZ showed a cubic crystal structure and showed a single-phase peak where 2 ⁇ of the main peak existed at 29 to 31 degrees.
  • ZrO 2 showed a monoclinic crystal structure differently from YSZ, with a main peak between 27.5 and 28.5 degrees and a second peak between 31.1 and 31.8 degrees.
  • Lithium secondary batteries (Examples 2-1 to 2-6 and Comparative Examples 2-1 and 2) including the cathode active materials prepared in Examples 1-1 to 1-6 and Comparative Examples 1-1 and 1-2, respectively
  • the electrochemical evaluation experiment was performed as follows.
  • the cycle characteristics evaluation was performed for the lithium secondary batteries prepared in Examples 2-1 to 2-6 and Comparative Examples 2-1 and 2-2 until the constant current (CC) of 4.25V of 0.5C at 25 °C.
  • the battery was charged at a constant voltage (CV) of 4.25V and charged for the first time until the charging current became 0.05 mAh.
  • the battery was discharged until it became 3.0V with a constant current of 1C (cut-off proceeded to 0.05C). This was repeated in 1 to 50 cycles.
  • the results are shown in FIG.
  • the lithium secondary batteries (Examples 2-1 to 2-6) including the positive electrode active materials of Examples 1-1 to 1-6, in which a coating layer was formed using nanosols, may have a surface coating layer.
  • LiNi 0 . 6 Mn 0 . 2 Co 0 . 2 O 2 In the battery of Comparative Example 2-1 including the positive electrode active material of Comparative Example 1-1, in which the YSZ coating layer was not formed on the oxide surface, it can be confirmed that the capacity decreases as the number of battery cycles increases. In addition, LiNi 0 . 6 Mn 0 . 2 Co 0 . 2 O 2 When the YSZ coating layer was formed on the oxide surface, the battery of Example 2-1 including the positive electrode active material of Example 1-1 in which YSZ nanoparticles were uniformly coated, was prepared in Comparative Example 1-2 in which YSZ was unevenly coated. The capacity decrease was less than that of the battery of Comparative Example 2-2 containing the positive electrode active material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a cathode active material, a method for manufacturing the same, and a lithium secondary battery comprising the same, the cathode active material being manufactured by a manufacturing method comprising a step of forming a coating layer including a ceramic ion conductor on lithium composite metal oxide particles by mixing the lithium composite metal oxide particles with nano-sol of the ceramic ion conductor and performing heat treatment, wherein the coating layer including the ceramic ion conductor is formed, with a uniform thickness, on the surface of the lithium composite metal oxide particles, so that the cathode active material can minimize capacity reduction and improve life time characteristics when being applied to a secondary battery.

Description

양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지Cathode active material, preparation method thereof, and lithium secondary battery comprising same
관련출원과의 상호인용Citation with Related Applications
본 출원은 2014년 12월 5일자 한국특허출원 제2014-0174080호 및 2015년 12월 4일자 한국특허출원 제2015-0172360호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 2014-0174080 dated December 5, 2014 and Korean Patent Application No. 2015-0172360 dated December 4, 2015, and all the patents disclosed in the documents of the Korean patent application. The contents are included as part of this specification.
기술분야Technical Field
본 발명은 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a positive electrode active material, a method of manufacturing the same, and a lithium secondary battery including the same.
리튬 이차전지는 소형, 경량, 대용량 전지로서 1991년에 등장한 이래, 휴대기기의 전원으로서 널리 사용되었다. 최근 들어 전자, 통신, 컴퓨터 산업의 급속한 발전에 따라 캠코더, 휴대폰, 노트북 PC 등이 출현하여 눈부신 발전을 거듭하고 있으며, 이들 휴대용 전자정보통신기기들을 구동할 동력원으로서 리튬 이차전지에 대한 수요가 나날이 증가하고 있다.Lithium secondary batteries have been widely used as power sources for portable devices since they emerged in 1991 as small, light and large capacity batteries. Recently, with the rapid development of electronics, telecommunications, and computer industry, camcorders, mobile phones, notebook PCs, etc. have emerged, and they are developing remarkably, and the demand for lithium secondary battery as a power source to drive these portable electronic information communication devices increases day by day. Doing.
리튬 이차전지는 충방전을 거듭함에 따라서 수명이 급속하게 떨어지는 문제점이 있다. 특히, 고온 또는 고전압 하에서는 이러한 문제가 더욱 심각하다. 이러한 이유는 전지내부의 수분이나 기타 다른 영향으로 인해 전해질이 분해되거나 활물질이 열화되고, 또한 전지의 내부저항이 증가되어 생기는 현상 때문이다. Lithium secondary batteries have a problem in that their lifespan drops rapidly as they are repeatedly charged and discharged. In particular, this problem is more serious under high temperature or high voltage. This is due to a phenomenon in which the electrolyte is decomposed or the active material is deteriorated due to moisture or other effects in the battery, and the internal resistance of the battery is increased.
이에 따라 현재 활발하게 연구 개발되어 사용되고 있는 리튬 이차전지용 양극 활물질은 층상구조의 LiCoO2이다. LiCoO2는 수명특성 및 충방전 효율이 우수하여 가장 많이 사용되고 있지만, 구조적 안정성이 낮아 전지의 고용량화 기술에 적용되기에는 한계가 있다.Accordingly, the positive electrode active material for lithium secondary batteries, which is currently actively researched and developed, is LiCoO 2 having a layered structure. LiCoO 2 is most commonly used due to its excellent lifespan characteristics and charge and discharge efficiency. However, LiCoO 2 has a low structural stability and thus is not applicable to high capacity technology of batteries.
이를 대체하기 위한 양극 활물질로서, LiNiO2, LiMnO2, LiMn2O4, LiFePO4 또는 Li(NixCoyMnz)O2 등의 다양한 리튬 전이금속 산화물이 개발되었다. 이중, LiNiO2의 경우 높은 방전용량의 전지 특성을 나타내는 장점이 있으나, 간단한 고상반응으로는 합성이 어렵고, 열적 안정성 및 사이클 특성이 낮은 문제점이 있다. 또, LiMnO2, 또는 LiMn2O4 등의 리튬 망간계 산화물은 열적안전성이 우수하고, 가격이 저렴하다는 장점이 있지만, 용량이 작고, 고온 특성이 낮은 문제점이 있다. 특히, LiMn2O4의 경우 저가격 제품에 일부 상품화가 되어 있으나, Mn3 +로 인한 구조변형(Jahn-Teller distortion) 때문에 수명특성이 좋지 않다. 또한, LiFePO4는 낮은 가격과 안전성이 우수하여 현재 하이브리드 자동차(hybrid electric vehicle, HEV)용으로 많은 연구가 이루어지고 있으나, 낮은 전도도로 인해 다른 분야에 적용은 어려운 실정이다.As a cathode active material for replacing this, various lithium transition metal oxides such as LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4, or Li (Ni x CoyMnz) O 2 have been developed. Among them, LiNiO 2 has the advantage of exhibiting battery characteristics of high discharge capacity, but the synthesis is difficult by a simple solid phase reaction, there is a problem of low thermal stability and low cycle characteristics. In addition, lithium manganese oxides such as LiMnO 2 or LiMn 2 O 4 have advantages in that they are excellent in thermal safety and inexpensive, but have a small capacity and low temperature characteristics. In particular, in the case of LiMn 2 O 4 but a part merchandising products to low cost, since the Mn + 3 structure modification (Jahn-Teller distortion) due to the not good life property. In addition, LiFePO 4 has a low price and excellent safety, and a lot of research is being made for hybrid electric vehicles (HEV), but it is difficult to apply to other fields due to low conductivity.
이 같은 사정으로 인해, LiCoO2의 대체 양극 활물질로 최근 가장 각광받고 있는 물질은 Li(NixCoyMnz)O2 (이때, 상기 x, y, z는 각각 독립적인 산화물 조성 원소들의 원자분율로서, 0<x≤1, 0<y≤1, 0<z≤1, 0<x+y+z=1임)이다. 이 재료는 LiCoO2보다 저가격이며 고용량 및 고전압에 사용될 수 있는 장점이 있으나, 율 특성(rate capability) 및 고온에서의 수명특성이 좋지 않은 단점을 갖고 있다.Due to this situation, Li (NixCoyMnz) O 2 is the most recently attracting attention as an alternative cathode active material for LiCoO 2 . (At this time, X, y, and z are atomic fractions of independent oxide composition elements, respectively, where 0 <x ≦ 1, 0 <y ≦ 1, 0 <z ≦ 1, and 0 <x + y + z = 1. This material is cheaper than LiCoO 2 and has advantages in that it can be used for high capacity and high voltage, but has a disadvantage in that the rate capability and the service life at high temperature are poor.
이에 따라 양극 활물질의 내부에 Al, Ti, Sn, Ag 또는 Zn 등의 물질을 도핑(doping)하거나, 또는 전도성이 좋은 금속을 양극 활물질 표면에 건식 또는 습식 코팅(coating)하는 방법 등을 통해 양극 활물질의 열 안정성, 용량특성, 및 사이클특성 등을 개선하려는 많은 시도들이 이루어지고 있으나, 아직 그 개선정도는 미흡한 실정이다.Accordingly, the positive electrode active material is formed by doping a material such as Al, Ti, Sn, Ag, or Zn into the positive electrode active material, or by dry or wet coating a conductive metal on the surface of the positive electrode active material. Many attempts have been made to improve thermal stability, capacity characteristics, and cycle characteristics, but the degree of improvement is still insufficient.
본 발명이 해결하고자 하는 제1 기술적 과제는, 리튬 복합금속 산화물 입자에 대해 우수한 리튬 이온 전도성을 갖는 세라믹계 이온전도체의 코팅층을 균일한 두께로 형성함으로써, 불균일한 코팅층의 형성으로 인해 발생되는 전지에서의 용량 감소가 최소화되고, 또 전지의 수명 특성을 개선시킬 수 있는 양극 활물질의 제조방법을 제공하는 것이다.The first technical problem to be solved by the present invention is to form a coating layer of a ceramic ion conductor having excellent lithium ion conductivity with respect to lithium composite metal oxide particles to a uniform thickness, in a battery generated due to the formation of a non-uniform coating layer It is to provide a method for producing a positive electrode active material that can minimize the reduction in capacity and improve the battery life characteristics.
본 발명이 해결하고자 하는 제2 기술적 과제는, 상기 제조방법에 의해 제조되어, 리튬 복합금속 산화물 입자의 표면에 리튬이온의 이동을 촉진시키는 동시에 양극 제조시의 프레스 공정 중 충격 흡수 효과를 나타낼 수 있는 세라믹계 이온전도체의 코팅층을 포함함으로써, 전지 적용시 용량 특성 및 수명 특성을 향상시킬 수 있는 양극 활물질을 제공하는 것이다.The second technical problem to be solved by the present invention is to be produced by the above manufacturing method, to promote the movement of lithium ions on the surface of the lithium composite metal oxide particles, and at the same time can exhibit an impact absorbing effect during the pressing process during the production of the positive electrode By including the coating layer of the ceramic ion conductor, it is to provide a positive electrode active material that can improve the capacity characteristics and life characteristics when applying the battery.
본 발명이 해결하고자 하는 제3 기술적 과제는, 상기 양극 활물질을 포함하는 양극을 제공하는 것이다.The third technical problem to be solved by the present invention is to provide a positive electrode including the positive electrode active material.
본 발명이 해결하고자 하는 제4 기술적 과제는, 상기 양극을 포함하는 리튬 이차전지, 전지모듈 및 전지팩을 제공하는 것이다.The fourth technical problem to be solved by the present invention is to provide a lithium secondary battery, a battery module and a battery pack including the positive electrode.
상기 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면, 리튬 복합금속 산화물 입자를 세라믹계 이온전도체의 나노졸과 혼합하고 열처리하여, 리튬 복합금속 산화물 입자 상에 세라믹계 이온전도체를 포함하는 코팅층을 형성하는 단계를 포함하는 양극 활물질의 제조방법을 제공한다.In order to solve the above problems, according to an embodiment of the present invention, the lithium composite metal oxide particles are mixed with the nanosol of the ceramic-based ion conductor and heat treated, the coating layer comprising a ceramic-based ion conductor on the lithium composite metal oxide particles It provides a method for producing a positive electrode active material comprising the step of forming a.
또한, 본 발명의 다른 일 실시예에 따르면, 상기 제조방법에 의해 제조되며, 리튬 복합금속 산화물의 입자; 및 상기 리튬 복합금속 산화물 입자 상에 위치하며 세라믹계 이온전도체를 포함하는 코팅층을 포함하는 양극 활물질을 제공한다.In addition, according to another embodiment of the present invention, prepared by the manufacturing method, particles of a lithium composite metal oxide; And a coating layer positioned on the lithium composite metal oxide particles and including a ceramic ion conductor.
아울러, 본 발명의 또 다른 일 실시예에 따르면, 상기 양극 활물질을 포함하는 양극을 제공한다.In addition, according to another embodiment of the present invention, a cathode including the cathode active material is provided.
나아가, 본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 리튬 이차전지, 전지모듈 및 전지팩을 제공한다.Furthermore, according to another embodiment of the present invention, there is provided a lithium secondary battery, a battery module, and a battery pack including the positive electrode.
본 발명에 따른 양극 활물질의 제조방법은, 우수한 리튬 이온 이온성을 갖는 세라믹계 이온전도체의 나노졸을 이용함으로써, 리튬 복합금속 산화물 입자의 표면에 리튬 이온의 이동을 촉진시키는 동시에 양극 제조시의 프레스 공정 중 충격 흡수 효과를 나타낼 수 있는 세라믹계 이온전도체를 균일하게 코팅할 수 있다. 이로써 상기 제조방법에 의해 제조된 양극 활물질은 전지 적용시 최소화된 용량 감소와 함께 향상된 수명 특성을 나타낼 수 있다.The method for producing a positive electrode active material according to the present invention utilizes a nano-sol of a ceramic ion conductor having excellent lithium ion ionicity, thereby promoting the movement of lithium ions to the surface of the lithium composite metal oxide particles and simultaneously pressing the positive electrode during the production of the positive electrode. It is possible to uniformly coat a ceramic-based ion conductor that can exhibit an impact absorption effect during the process. As a result, the cathode active material manufactured by the manufacturing method may exhibit improved lifespan characteristics with a minimized capacity reduction when the battery is applied.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the contents of the present invention serve to further understand the technical spirit of the present invention, the present invention is limited to the matters described in such drawings. It should not be construed as limited.
도 1은 제조예 1에서 제조한 세라믹계 이온전도체의 나노졸을 투과 전자 현미경을 관찰한 사진이다.1 is a photograph of a nano-sol of a ceramic ion conductor prepared in Preparation Example 1 under a transmission electron microscope.
도 2는 제조예 1에서 제조한 세라믹계 이온전도체의 나노졸에 대한 X선 회절 분석(XRD) 결과를 나타낸 것이다.Figure 2 shows the X-ray diffraction analysis (XRD) results of the nano-sol of the ceramic ion conductor prepared in Preparation Example 1.
도 3은 실시예 1-1에서 제조한 양극 활물질의 표면을 필드 방사 주사형 전자현미경(Field-Emission Scanning Electron Microscope, FE-SEM)으로 관찰한 사진이다.FIG. 3 is a photograph of the surface of the cathode active material prepared in Example 1-1 using a Field-Emission Scanning Electron Microscope (FE-SEM). FIG.
도 4는 비교예 1-2에서 제조한 양극 활물질의 표면을 FE-SEM으로 관찰 사진이다.Figure 4 is a photograph of the surface of the positive electrode active material prepared in Comparative Example 1-2 by FE-SEM.
도 5는 실시예 2-1 내지 2-6 및 비교예 2-1, 2-2에서 제조한 리튬 이차전지의 사이클 특성을 관찰한 결과를 나타낸 그래프이다.5 is a graph showing the results of observing cycle characteristics of the lithium secondary batteries prepared in Examples 2-1 to 2-6 and Comparative Examples 2-1 and 2-2.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법은, 리튬 복합금속 산화물 입자를 세라믹계 이온전도체의 나노졸과 혼합하고 열처리하여, 리튬 복합금속 산화물 입자 상에 세라믹계 이온전도체를 포함하는 코팅층을 형성하는 단계를 포함한다. In the method of manufacturing a positive electrode active material according to an embodiment of the present invention, the lithium composite metal oxide particles are mixed with a nanosol of a ceramic ion conductor and heat treated to form a coating layer including a ceramic ion conductor on the lithium composite metal oxide particles. Forming a step.
상기 세라믹계 이온전도체의 나노졸에 있어서, 상기 세라믹계 이온전도체는 구체적으로 이온전도성의 세라믹 및 메탈세라믹(metal ceramic) 중 적어도 하나를 포함하는 것일 수 있다. In the nanosol of the ceramic ion conductor, the ceramic ion conductor may specifically include at least one of an ion conductive ceramic and a metal ceramic.
상기 이온전도성 세라믹은 구체적으로 이트리아 안정화 지르코니아(yttria stabilized zirconia, YSZ), 칼시아 안정화 지르코니아(calcia stabilized zirconia, CSZ), 스칸디아 안정화 지르코니아(scandia-stabilized zirconia, SSZ) 등과 같은, Y, Ca, 또는 Sc이 도핑된 지르코니아(ZrO2)계 산화물; 가돌리니아-도핑된 세리아(gadolinia doped ceria, GDC), 사마륨 도핑된 세리아(Samarium doped ceria, SDC), 이트리아 도핑된 세리아(Yttria-doped ceria, YDC) 등과 같은 Gd, Y 또는 Sm이 도핑된 세리아(CeO2)계 산화물; 란타늄 스트론튬 갈레이트 마그네사이트(lanthanum strontium gallate magnesite, LSGM), 란타늄 스트론튬 망가네이트(lanthanum strontium manganite, LSM) 또는 란타늄 스트론튬 코발트 페라이트(lanthanum strontium cobalt ferrite, LSCF) 등과 같은 란타늄계 산화물 등일 수 있으며, 이들 중 1종 단독으로, 또는 2종 이상의 혼합물이 사용될 수 있다. The ion conductive ceramic is specifically Y, Ca, or Yttria stabilized zirconia (YSZ ) , calcia stabilized zirconia (CSZ), scandia-stabilized zirconia (SSZ), or the like. Zirconia (ZrO 2 ) -based oxides doped with Sc; Gd, Y or Sm doped, such as gadolinia doped ceria (GDC), samarium doped ceria (SDC), Yttria-doped ceria (YDC) Ceria (CeO 2 ) based oxides; Lanthanum strontium gallate magnesite (LSGM), lanthanum strontium manganite (LSM), or lanthanum strontium cobalt ferrite (LSCF). Species alone or mixtures of two or more may be used.
또, 상기 이온전도성 세라믹에 있어서, 상기 YSZ는 산화지르코늄(지르코니아)에 산화이트륨(이트리아)을 첨가하여 상온에서도 안정하도록 만든 세라믹 재료이다. 상기 YSZ는 지르코니아에 이트리아가 첨가됨으로써 Zr4 + 이온 중 일부가 Y3+로 대체될 수 있다. 이에 따라 4개의 O2- 이온 대신 3개의 O2- 이온으로 대체되며 결과적으로 산소 결핍(oxygen vacancy)이 만들어질 수 있다. 이렇게 생성된 산소 결핍 때문에 YSZ는 O2-이온 전도성를 갖게 되며 온도가 높을수록 전도도가 좋아진다. 구체적으로 상기 YSZ는 Zr(1-x)YxO2 -x/2이며, 이때 0.01≤x≤0.1이고, 보다 구체적으로는 0.08≤x≤0.1일 수 있다. 한편, 본 발명에 있어서 상온은 특별히 정의되지 않은 한 23±5℃에서의 온도범위를 의미한다.In the ion conductive ceramics, the YSZ is a ceramic material made of zirconium oxide (zirconia) added with yttrium oxide (yttria) to be stable at room temperature. The YSZ may be part of the yttria is added by being Zr 4 + ions to be substituted for the zirconia are Y 3+. This is replaced by three O 2 ions instead of four O 2 ions, resulting in oxygen vacancy. Because of this oxygen deficiency, YSZ has O 2 -ion conductivity, and the higher the temperature, the better the conductivity. Specifically, YSZ is Zr (1-x) Y x O 2 -x / 2 , where 0.01 ≦ x ≦ 0.1, and more specifically 0.08 ≦ x ≦ 0.1. In addition, in this invention, normal temperature means the temperature range in 23 +/- 5 degreeC unless it is specifically defined.
또, 상기 CSZ는 산화지르코늄(지르코니아)에 칼슘산화물(칼시아)를 첨가하여 상온에서도 안정하도록 만든 세라믹 재료로, 칼시아를 첨가함으로써 지르코니아의 열적 안정성을 향상시킬 수 있다. 상기 CSZ는 큐빅 결정구조 및 테트라고날(tetragonal) 결정 구조가 혼재된 상태이다. 테트라고날 결정구조는 온도가 상승하면 큐빅 결정 구조로 바뀌고, 온도가 낮아지면 테트라고날 결정 구조로 변하는데, 이 같은 결정 구조가 바뀌는 과정에서 부피의 팽창 및 수축이 반복될 수 있다. In addition, the CSZ is a ceramic material made by adding calcium oxide (calcia) to zirconium oxide (zirconia) to be stable at room temperature. By adding calcia, the thermal stability of zirconia can be improved. The CSZ is a mixed state of a cubic crystal structure and a tetragonal crystal structure. The tetragonal crystal structure changes to a cubic crystal structure when the temperature rises, and changes to a tetragonal crystal structure when the temperature decreases. In this process, the expansion and contraction of the volume may be repeated.
또, 상기 SSZ는 산화지르코늄(지르코니아)에 스칸듐산화물(스칸디아)를 첨가하여 상온에서도 안정하도록 만든 세라믹 재료로, 구체적으로는 (ZrO2)1- 2x(Sc2O3)x, (ZrO2)1-2x(Sc2O)3x-z(Y2O3)z 또는 (ZrO2)1-2x- z(Sc2O3)x(CeO2)z(여기서, 0.01≤x≤0.2, 0.01≤z≤0.l 임) 등일 수 있다. Also, the SSZ is by the addition of scandium oxide (scandia) to zirconium oxide (zirconia) of a ceramic material so as to create a stable even at room temperature, specifically, the (ZrO 2) 1- 2x (Sc 2 O 3) x, (ZrO 2) 1-2x (Sc 2 O) 3x-z (Y 2 O 3 ) z or (ZrO 2 ) 1-2x- z (Sc 2 O 3 ) x (CeO 2 ) z (where 0.01≤x≤0.2, 0.01 ≤ z ≤ 0.1).
또, 상기 GDC는 가돌리늄 산화물(Gd2O3)이 도핑된 세리아로서, LSGM과 마찬가지로 높은 이온 전도도를 갖는다. 구체적으로 Gd0.1Ce0.9O1.95를 들 수 있다. In addition, the GDC is ceria doped with gadolinium oxide (Gd 2 O 3 ), and has high ion conductivity like LSGM. Specifically, Gd 0.1 Ce 0.9 O 1.95 can be mentioned.
또, 상기 LSGM은 Sr 및 Mg이 도핑되어 높은 리튬 이온 전도도를 갖는란타늄-스트론듐-갈륨-마그네슘 산화물로서, 구체적으로 (La xSr1 -x)(GayMg1 -y)O3-δ (0.05≤x<1 및 0.05≤y<1이고, δ는 이상적 화학양론(perfect stoichiometry)으로부터의 작은 편차를 의미하는 값으로 정의될 수 있다) 등일 수 있다.In addition, the LSGM is a lanthanum-strontium-gallium-magnesium oxide doped with Sr and Mg and having high lithium ion conductivity, and specifically, ( La x Sr 1 -x ) (Ga y Mg 1 -y ) O 3-. δ (0.05 ≦ x <1 and 0.05 ≦ y <1, and δ may be defined as a value meaning a small deviation from perfect stoichiometry) and the like.
또, 상기 LSM은 LaMnO3에 Sr이 도핑된 란타늄 망가네이트로서, 망간계 페로브스카이트(perovskite) 구조를 갖는다. 구체적으로는 LaSrMnO 또는 La(1-x)SrxMnO3 (0.01≤x≤0.3), 또는 La(1-y)SryMnzO3 (0.05≤y≤1, 0.95≤z≤1.15이고, δ는 이상적 화학양론으로부터의 작은 편차를 의미하는 값으로 정의될 수 있다) 등일 수 있다.In addition, the LSM is a lanthanum manganate doped with Sr in LaMnO 3 and has a manganese-based perovskite structure. Specifically LaSrMnO or La (1-x) Sr x MnO 3 (0.01≤x≤0.3), or La (1-y) Sr y Mn z O 3 (0.05≤y≤1, 0.95≤z≤1.15 And δ can be defined as a value meaning a small deviation from the ideal stoichiometry).
또, 상기 LSCF는 LaFeO3에 Sr과 Co가 도핑된 란타늄 페라이트로서, 고온에서 안정성이 우수하고, 이온 전도도가 높다.In addition, the LSCF is a lanthanum ferrite doped with Sr and Co in LaFeO 3 , and has excellent stability at high temperature and high ion conductivity.
한편, 상기 메탈세라믹은 세라믹과 금속분말을 혼합, 소결하여 제조되는 것으로, 내열성과 경도가 높은 세라믹의 특성과 소성변형이나 전기전도도를 갖는 금속의 특성을 모두 갖는다. 구체적으로 상기 메탈세라믹에 있어서 세라믹은 상기한 이온전도성 세라믹일 수 있고, 상기 금속은 니켈, 몰리브덴 또는 코발트 등일 수 있다. 보다 구체적으로는 상기 메탈세라믹은 니켈-이트리아 안정화 지르코니아 서멧(Ni-YSZ cermet) 등의 서멧일 수 있다.On the other hand, the metal ceramic is manufactured by mixing and sintering a ceramic and a metal powder, and has both characteristics of a ceramic having high heat resistance and hardness, and a metal having plastic deformation or electrical conductivity. Specifically, in the metal ceramic, the ceramic may be the ion conductive ceramic described above, and the metal may be nickel, molybdenum, cobalt, or the like. More specifically, the metal ceramic may be a cermet such as nickel-yttria stabilized zirconia cermet (Ni-YSZ cermet).
또, 본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 있어서, 상기 세라믹계 이온전도체는 Cu(Kα-선)을 이용한 X선 회절 분석시, 단일상의 피크를 나타내는 것일 수 있다. In addition, in the method of manufacturing a positive electrode active material according to an embodiment of the present invention, the ceramic ion conductor may exhibit a peak of a single phase in X-ray diffraction analysis using Cu (Kα-ray).
또, 본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 있어서, 상기 세라믹계 이온전도체는 구체적으로 YSZ, GDC, LSGM, LSM, CSZ, SSZ 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것일 수 있으며, 보다 구체적으로는 YSZ, GDC, LSGM, SSZ 및 CSZ로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것일 수 있다.In addition, in the method of manufacturing a positive electrode active material according to an embodiment of the present invention, the ceramic ion conductor is specifically YSZ, GDC, LSGM, It may include any one selected from the group consisting of LSM, CSZ, SSZ and Ni-YSZ or a mixture of two or more thereof, and more specifically any selected from the group consisting of YSZ, GDC, LSGM, SSZ and CSZ. It may be one or a mixture of two or more thereof.
또, 본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 있어서, 상기 세라믹계 이온전도체는 YSZ를 포함하는 것일 수 있으며, 상기 YSZ는 Zr(1-x)YxO2 -x/2 (이때, 0.01≤x≤0.30일 수 있고, 보다 구체적으로는 0.08≤x≤0.10)일 수 있다. 이와 같이 리튬 복합금속 산화물 입자의 표면에 YSZ의 코팅층을 형성할 경우, Y이 Zr 사이트에 들어가 슈퍼스터럭쳐(superstructure)를 가짐으로써 구조 내부에 산소결핍이 발생하여 양극활물질 표면에 빈공간이 많이 생길 수 있다. 이 같은 빈공간은 양극활물질 표면에서의 리튬의 삽입 및 탈리를 용이하게 하며, 그 결과 활물질 입자 표면에서의 리튬 이온 전도성을 크게 증가시키고, 이로써 전지의 용량 및 출력 감소를 최소화할 수 있다. In addition, in the method of manufacturing a cathode active material according to an embodiment of the present invention, the ceramic ion conductor may include YSZ, and the YSZ is Zr (1-x) Y x O 2 -x / 2 ( At this time, 0.01 ≦ x ≦ 0.30, and more specifically 0.08 ≦ x ≦ 0.10). As described above, in the case of forming the coating layer of YSZ on the surface of the lithium composite metal oxide particles, Y enters the Zr site and has a superstructure, resulting in oxygen deficiency in the structure, resulting in a large amount of empty space on the surface of the cathode active material. Can occur. Such void space facilitates the insertion and desorption of lithium on the surface of the positive electrode active material, and as a result, greatly increases the lithium ion conductivity on the surface of the active material particles, thereby minimizing the capacity and output reduction of the battery.
또, 본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 있어서, 상기 세라믹계 이온전도체는 SSZ를 포함하는 것일 수 있으며, (ZrO2)1- 2x(Sc2O3)x, (ZrO2)1-2x(Sc2O)3x-z(Y2O3)z, (ZrO2)1-2x- z(Sc2O3)x(CeO2)z(여기서, 0.01≤x≤0.2, 0.01≤z≤0.l 임) 및 이들의 혼합물로 이루어진 군에서 선택되는 SSZ를 포함하는 것일 수 있다.In addition, the method of manufacturing a positive electrode active material according to an embodiment of the present invention, the ceramic ion conductor may be to include SSZ, (ZrO 2) 1- 2x (Sc 2 O 3) x, (ZrO 2 ) 1-2x (Sc 2 O) 3x-z (Y 2 O 3 ) z , (ZrO 2 ) 1-2x- z (Sc 2 O 3 ) x (CeO 2 ) z (0.01≤x≤0.2, 0.01 ≦ z ≦ 0.l) and mixtures thereof, and may include SSZ selected from the group consisting of a mixture thereof.
또, 본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 있어서, 상기 세라믹계 이온전도체는 CSZ 총 중량 중 CaO 함량이 1몰% 내지 20몰%, 보다 구체적으로는 2몰% 내지 17몰%인 CSZ를 포함하는 것일 수 있다.In addition, in the method of manufacturing a positive electrode active material according to an embodiment of the present invention, the ceramic ion conductor has a CaO content in the total weight of CSZ of 1 mol% to 20 mol%, more specifically, 2 mol% to 17 mol%. It may be to include a CSZ.
또, 본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 있어서, 상기 세라믹계 이온전도체의 평균 입경(D50)은 1 nm 내지 100 nm일 수 있다. 상기 범위내의 입자 크기를 가질 때 졸 내에서 균일한 분산이 가능하다. 보다 구체적으로 상기 세라믹계 이온전도체의 평균 입경(D50)은 1 nm 내지 50 nm, 보다 더 구체적으로는 1 nm 내지 5 nm 일 수 있다.In addition, in the method of manufacturing a cathode active material according to an embodiment of the present invention, the average particle diameter (D 50 ) of the ceramic ion conductor may be 1 nm to 100 nm. Uniform dispersion in the sol is possible when having a particle size within this range. More specifically, the average particle diameter (D 50 ) of the ceramic ion conductor may be 1 nm to 50 nm, and more specifically 1 nm to 5 nm.
본 발명에 있어서, 상기 세라믹계 이온전도체의 평균 입경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 본 발명의 일 실시예에 따른 상기 입자의 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다. 예를 들어, 상기 YSZ의 평균 입경(D50)의 측정 방법은, YSZ의 나노졸에 대해 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입경(D50)을 산출할 수 있다.In the present invention, the average particle diameter (D 50 ) of the ceramic ion conductor may be defined as the particle size based on 50% of the particle size distribution. The average particle diameter (D 50 ) of the particles according to an embodiment of the present invention can be measured using, for example, a laser diffraction method. In general, the laser diffraction method can measure the particle diameter of several mm from the submicron region, and high reproducibility and high resolution can be obtained. For example, the method for measuring the average particle diameter (D 50 ) of the YSZ is introduced into a commercially available laser diffraction particle size measuring apparatus (eg, Microtrac MT 3000) for nanosols of YSZ, and outputs ultrasonic waves of about 28 kHz. was irradiated with W, it is possible to calculate the average particle diameter (D 50) of from 50% based on the particle size distribution of the measuring device.
또, 본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 있어서, 상기 세라믹계 이온전도체의 나노졸은 최종 제조되는 양극 활물질내 포함되는 세라믹계 이온전도체의 함량이 양극 활물질 총 중량에 대하여 50ppm 내지 300,000ppm, 보다 구체적으로는 100ppm 내지 10,000ppm이 되도록 하는 양으로 사용될 수 있다.In addition, in the method of manufacturing a positive electrode active material according to an embodiment of the present invention, the nano-sol of the ceramic ion conductor is 50ppm to about the total weight of the positive electrode active material content of the ceramic ion conductor contained in the positive electrode active material to be finally prepared It may be used in an amount such that it is 300,000 ppm, more specifically 100 ppm to 10,000 ppm.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 있어서, 상기 세라믹계 이온전도체의 나노졸은, 글리콜계 용매 중 세라믹계 이온전도체 형성용 금속의 전구체를 용해시킨 후 물을 첨가하여 수산화시킴으로써 제조될 수 있다.In the method of manufacturing a positive electrode active material according to an embodiment of the present invention, the nano-sol of the ceramic ion conductor is prepared by dissolving a precursor of the metal for forming a ceramic ion conductor in a glycol solvent and then adding water to hydrate it. Can be.
통상의 방법에 따라 나노 입자 상의 세라믹계 이온전도체 분말을 용매 중에 분산시켜 제조한 분산액의 경우, 세라믹계 이온전도체가 결정질이기 때문에 리튬 이온 전도성을 나타내지 않을 뿐더러 리튬과의 반응성이 매우 낮다. 따라서, 활물질 표면에 대한 코팅시 균일한 코팅층의 형성이 어렵다. 이에 반해 상기한 바와 같이 세라믹계 이온전도체 형성용 금속의 전구체 반응에 의해 세라믹계 이온전도체의 나노졸을 제조할 경우, 나노 수준의 입자 크기를 가지고 비정질이며, 표면에 히드록시기를 갖는 수산화물 형태의 세라믹계 이온전도체가 형성되게 된다. 이와 같은 세라믹계 이온전도체는 그 자체로 리튬 이온 전도성을 나타낼 뿐만 아니라, 리튬과의 반응성이 우수하여 최종 제조되는 활물질에서의 리튬 복합금속 산화물에 대해 균일하고, 효율 높은 코팅층 형성이 가능하다.In the case of the dispersion prepared by dispersing the ceramic ion conductor powder on the nanoparticles in a solvent according to a conventional method, since the ceramic ion conductor is crystalline, it does not exhibit lithium ion conductivity and has very low reactivity with lithium. Therefore, it is difficult to form a uniform coating layer when coating the active material surface. On the other hand, when preparing a nano-sol of a ceramic ion conductor by the precursor reaction of the metal for forming a ceramic ion conductor as described above, a hydroxide-based ceramic type having a nano-scale particle size and amorphous, having a hydroxyl group on the surface An ion conductor is formed. Such a ceramic ion conductor not only exhibits lithium ion conductivity per se, but also has excellent reactivity with lithium, and enables uniform and efficient coating layer formation on a lithium composite metal oxide in an active material to be finally manufactured.
상기 나노졸의 제조시 사용가능한 글리콜계 용매는 분자내 2개의 히드록시기를 갖는 2가 알코올로서, 구체적으로 에틸렌 글리콜, 프로필렌 글리콜, 디에틸렌 글리콜, 트리에틸렌 글리콜 또는 폴리에틸렌 글리콜 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.The glycol-based solvent that can be used in the preparation of the nanosol is a dihydric alcohol having two hydroxyl groups in the molecule, and specifically, may be ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol or polyethylene glycol, and any one of them. Or mixtures of two or more may be used.
또, 상기 세라믹계 이온전도체 형성용 금속의 전구체로는 세라믹계 이온전도체 형성용 금속 함유 화합물, 구체적으로는 수산화물, 옥시수산화물, 알콕시화물, 탄산염, 아세트산염, 옥살산염, 시트르산염, 질산염, 질화물, 황산염, 황화물, 할로겐화물 또는 이들의 수화물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또 상기 세라믹계 이온전도체 형성용 금속은 상기한 세라믹계 이온전도체를 구성하는 금속일 수 있으며, 구체적으로는 Y, Sc, Gd, Sm, Ce 또는 La 등의 희토류 원소; 및 Zr으로 이루어진 군에서 선택되는 1종 이상의 원소이거나, 또는 이들 원소와 Ca, Mg 또는 Sr 등의 알칼리 토금속 원소; Mg, Co 또는 Fe 등의 전이금속; 및 Ga 등의 전이후 금속으로 이루어진 군에서 선택되는 1종 이상의 원소와의 혼합 원소일 수 있다. 일례로, YSZ의 전구체로는 Zr 포함 원료물질로서 지르코늄 다이나이트레이트 다이하이드레이트 (ZrO(NO3)2 ·2H2O)와 Y 포함 원료물질로서 이트륨 나이트레이트 헥사하이드레이트 Y(NO3)3·6H2O가 사용될 수 있다.As the precursor of the metal for forming the ceramic ion conductor, the metal-containing compound for forming the ceramic ion conductor, specifically, hydroxide, oxyhydroxide, alkoxide, carbonate, acetate, oxalate, citrate, nitrate, nitride, Sulfates, sulfides, halides or hydrates thereof, and the like, and any one or a mixture of two or more thereof may be used. In addition, the metal for forming the ceramic ion conductor may be a metal constituting the ceramic ion conductor, specifically, rare earth elements such as Y, Sc, Gd, Sm, Ce, or La; And one or more elements selected from the group consisting of Zr, or alkaline earth metal elements such as Ca, Mg, or Sr; Transition metals such as Mg, Co or Fe; And a mixed element with one or more elements selected from the group consisting of post-transition metals such as Ga. For example, precursors of YSZ include zirconium dinitrate dihydrate (ZrO (NO 3 ) 2 · 2H 2 O) as a Zr-containing raw material and yttrium nitrate hexahydrate Y (NO 3 ) 3 · 6H as a raw material containing Y 2 O can be used.
또, 상기 나노졸의 제조시, 상기 세라믹계 이온전도체 형성용 금속의 전구체의 용해도를 높이고, 제조되는 세라믹계 이온전도체의 분산성을 높이기 위해 킬레이팅제, pH 조정제 또는 분산제 등의 첨가제가 더 첨가될 수 있다.In addition, in the preparation of the nanosol, additives such as a chelating agent, a pH adjusting agent or a dispersing agent are further added to increase the solubility of the precursor of the metal for forming the ceramic ion conductor and to increase the dispersibility of the ceramic ion conductor to be manufactured. Can be.
상기 pH 조정제는 구체적으로 아세트산, 시트르산, 유산, 포름산 등의 유기산이나, 또는 암모니아 등의 염기성 화합물일 수 있으며, 상기 나노졸의 pH가 6.5 내지 8이 되도록 하는 양으로 포함될 수 있다.Specifically, the pH adjusting agent may be an organic acid such as acetic acid, citric acid, lactic acid, or formic acid, or a basic compound such as ammonia, and may be included in an amount such that the pH of the nanosol is 6.5 to 8.
또, 상기 분산제는 구체적으로 고분자 분산제 또는 계면활성제일 수 있으며, 상기 세라믹계 이온전도체 100중량부에 대하여 1중량부 이하, 혹은 0.1 내지 0.5 중량부로 포함될 수 있다.In addition, the dispersant may be a polymer dispersant or a surfactant in detail, and may be included in an amount of 1 part by weight or less, or 0.1 to 0.5 part by weight, based on 100 parts by weight of the ceramic ion conductor.
또, 상기 나노졸의 제조시, 상기한 세라믹계 이온전도체 형성용 금속의 전구체를 글리콜계 용매 중에 용해시킬 때, 용해도를 증가시키기 위하여 교반 또는 열처리 공정이 선택적으로 더 수행될 수 있다. 상기 교반은 통상의 혼합 공정에 따라 수행될 수 있다. In addition, during the preparation of the nanosol, when dissolving the precursor of the metal for forming the ceramic-based ion conductor in a glycol-based solvent, a stirring or heat treatment process may be optionally further performed to increase the solubility. The stirring may be performed according to a conventional mixing process.
또, 상기 열처리 공정은 120 ℃ 이상 글리콜계 용매의 비점 이하의 온도에서 수행될 수 있고, 구체적으로는 120 ℃ 내지 300 ℃, 보다 구체적으로는 120 ℃ 내지 200 ℃, 보다 더 구체적으로는 120 ℃ 내지 180 ℃에서 수행될 수 있다. In addition, the heat treatment process may be carried out at a temperature of 120 ℃ or more below the boiling point of the glycol solvent, specifically 120 ℃ to 300 ℃, more specifically 120 ℃ to 200 ℃, even more specifically 120 ℃ to It may be carried out at 180 ℃.
또, 상기 열처리 공정 후에는 필요에 따라 냉각 공정이 더 수행될 수 있으며, 이때 상기 냉각 공정은 자연 냉각 또는 냉풍 냉각 등의 통상의 방법에 따라 이루어질 수 있다.In addition, after the heat treatment process, a cooling process may be further performed as necessary. In this case, the cooling process may be performed according to a conventional method such as natural cooling or cold wind cooling.
상기와 같은 세라믹계 이온전도체 형성용 금속의 전구체의 용해 공정 동안에 전구체간의 반응으로 나노 입자 수준의 비정질 세라믹계 이온전도체가 생성된다.During the dissolution process of the precursor of the metal for forming the ceramic-based ion conductor as described above, an amorphous ceramic-based ion conductor at the nanoparticle level is generated by the reaction between the precursors.
이후, 결과로 수득된 세라믹계 이온전도체 포함 반응물에 대해 물을 이용한 수산화 공정이 수행될 수 있다. 이때 물; 또는 물과 수산기 포함 용매의 혼합용매가 사용될 수 있으며, 상기 수산기 포함 용매는 구체적으로 알코올(예를 들어, 메탄올, 에탄올, 1-프로판올, 2-프로판올 등), 또는 폴리올(예를 들면, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜, 폴리에틸렌 글리콜, 부탄 디올, 글리세린 등) 등일 수 있으며, 이들 중에서 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.Subsequently, a hydroxide process using water may be performed on the resulting reactant containing ceramic ion conductor. Wherein water; Alternatively, a mixed solvent of a solvent containing water and a hydroxyl group may be used, and the hydroxyl group-containing solvent may be specifically an alcohol (eg, methanol, ethanol, 1-propanol, 2-propanol, etc.), or a polyol (eg, ethylene glycol). , Propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butane diol, glycerin, etc.), and any one or a mixture of two or more thereof may be used.
상기 수산화 공정은 세라믹계 이온전도체에 물 분자가 결합됨으로써 리튬에 대해 우수한 반응성을 나타낼 수 있고, 최종 제조되는 활물질에서의 리튬 복합금속 산화물에 대해 균일하고, 효율 높은 코팅층 형성이 가능하다.The hydroxide process may exhibit excellent reactivity with respect to lithium by binding water molecules to the ceramic ion conductor, and may form a uniform and highly efficient coating layer for the lithium composite metal oxide in the active material to be finally manufactured.
또, 본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 있어서, 상기 세라믹계 이온전도체의 나노졸에는, 알루미늄(Al), 니오븀(Nb), 티타늄(Ti), 텅스텐(W), 몰리브덴(Mo), 크롬(Cr), 구리(Cu), 바나듐(V) 및 아연(Zn)로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합 금속; 또는 상기한 금속의 나노졸이 더 포함될 수도 있다. In addition, in the method of manufacturing a cathode active material according to an embodiment of the present invention, the nano-sol of the ceramic ion conductor may include aluminum (Al), niobium (Nb), titanium (Ti), tungsten (W), and molybdenum ( Mo), chromium (Cr), copper (Cu), vanadium (V) and zinc (Zn), any one selected from the group consisting of or a mixed metal of two or more thereof; Alternatively, the nanosol of the above metal may be further included.
상기한 금속들은 최종 제조되는 양극 활물질의 코팅층층 내 산화물의 형태로 포함되어 전지 특성을 더욱 개선시킬 수 있다. 이와 같은 금속은 최종 제조되는 양극 활물질내 포함되는 상기 금속의 산화물의 농도가 50ppm 내지 300,000ppm, 보다 구체적으로는 100ppm 내지 10,000ppm이 되도록 하는 양으로 포함될 수 있다.The metals may be included in the form of an oxide in the coating layer of the positive electrode active material to be finally manufactured to further improve battery characteristics. Such metal may be included in an amount such that the concentration of the oxide of the metal included in the positive electrode active material to be finally produced is 50ppm to 300,000ppm, more specifically 100ppm to 10,000ppm.
상기 금속의 나노졸은 앞서 세라믹계 이온전도체의 나노졸의 제조에서와 마찬가지로, 글리콜계 용매 중에 금속의 전구체를 용해시켜 반응시켜 금속의 나노졸을 제조한 후, 물을 첨가하여 수산화시킴으로써 제조될 수 있다. The nanosol of the metal may be prepared by dissolving a metal precursor in a glycol-based solvent to react with a precursor of the nanosol of a ceramic ion conductor, and preparing a nanosol of the metal, followed by hydroxide addition of water. have.
상기 금속의 전구체는 알루미늄(Al), 니오븀(Nb), 티타늄(Ti), 텅스텐(W), 몰리브덴(Mo), 크롬(Cr), 구리(Cu), 바나듐(V) 및 아연(Zn)로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합 금속을 포함하는 화합물일 수 있다. 구체적으로는 수산화물, 옥시수산화물, 알콕시화물, 탄산염, 아세트산염, 옥살산염, 시트르산염, 질산염, 질화물, 황산염, 황화물, 할로겐화물 또는 이들의 수화물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.Precursors of the metal are aluminum (Al), niobium (Nb), titanium (Ti), tungsten (W), molybdenum (Mo), chromium (Cr), copper (Cu), vanadium (V) and zinc (Zn). It may be any one selected from the group consisting of or a compound containing two or more of these mixed metals. Specifically, hydroxides, oxyhydroxides, alkoxides, carbonates, acetates, oxalates, citrates, nitrates, nitrides, sulfates, sulfides, halides or hydrates thereof, and the like, or any one or a mixture of two or more thereof. This can be used.
한편, 본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 있어서, 상기 리튬 복합금속 산화물은 니켈, 망간 및 코발트로 이루어진 군에서 선택되는 1종 이상의 금속과 리튬과의 복합 금속 산화물일 수 있다. 구체적으로 상기 리튬 복합금속 산화물은 하기 화학식 1의 화합물을 포함하는 것일 수 있다:On the other hand, in the method for producing a positive electrode active material according to an embodiment of the present invention, the lithium composite metal oxide may be a composite metal oxide of lithium with one or more metals selected from the group consisting of nickel, manganese and cobalt. Specifically, the lithium composite metal oxide may include a compound of Formula 1 below:
<화학식 1><Formula 1>
Li1+aNi1-b-cMnbCocO2 Li 1 + a Ni 1-bc Mn b Co c O 2
상기 화학식 1에서, 0≤a≤0.33, 0≤b≤0.5 및 0≤c≤0.5이며, 보다 구체적으로는 0≤a≤0.09이고, 보다 더 구체적으로는 a=0일 수 있다. 상기 화학식 1에서 a가 0.33 초과인 경우, 리튬 복합금속 입자에 세라믹계 이온전도체를 코팅하는 효과가 통상의 금속산화물을 코팅하는 경우에 비해 수명 특성 효과 차이가 약 10% 이내로 현저하지 않을 수 있다. 반면 상기 화학식 1에서 a가 0.09 이하, 특히 0인 경우 리튬 복합금속 입자에 상기 세라믹계 이온전도체를 코팅하는 효과가 다른 금속산화물을 코팅한 경우에 비해 수명 특성 효과가 30 내지 70%까지 현저할 수 있다.In Formula 1, 0 ≦ a ≦ 0.33, 0 ≦ b ≦ 0.5, and 0 ≦ c ≦ 0.5, more specifically 0 ≦ a ≦ 0.09, and even more specifically, a = 0. In Formula 1, when a is greater than 0.33, the effect of coating the ceramic-based ion conductor on the lithium composite metal particles may be less than about 10% of the difference in lifespan characteristics compared to the case of coating a conventional metal oxide. On the other hand, when a is less than or equal to 0.09, particularly 0 in Formula 1, the effect of coating the ceramic-based ion conductor on the lithium composite metal particles may be 30 to 70% higher than that of other metal oxides. have.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 있어서, 상기 리튬 복합금속 산화물은 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 LiCoO2, LiMnO2, LiMn2O4, LiNiO2, 및 리튬니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, LiNi0 . 5Mn0 . 3Co0 . 2O2, 또는 LiNi0 . 8Mn0 . 1Co0 . 1O2 등)로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 둘 이상의 혼합물을 포함하는 것일 수 있으며, 보다 구체적으로는 리튬 니켈망간코발트 산화물일 수 있다.In the method of manufacturing a positive electrode active material according to an embodiment of the present invention, the lithium composite metal oxide is LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , and lithium in that the capacity characteristics and stability of the battery can be improved Nickel manganese cobalt oxide (eg, Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , LiNi 0 . 5 Mn 0 . 3 Co 0 . 2 O 2 , or LiNi 0 . 8 Mn 0 . 1 Co 0 . 1 O 2, etc.) may be any one selected from the group consisting of or a mixture of two or more thereof, more specifically lithium nickel manganese cobalt oxide.
또, 본 발명의 일 실시예에 따른 상기 양극 활물질의 평균 입경(D50)은 3㎛ 내지 25 ㎛일 수 있으며, 보다 구체적으로는 5 내지 25 ㎛일 수 있다. 본 발명에 있어서, 상기 리튬 복합금속 산화물 입자의 평균 입경(D50)은 상기 세라믹계 이온 전도체의 평균 입경(D50)에서 설명한 바와 동일한 방법으로 측정하였다.In addition, the average particle diameter (D 50 ) of the positive electrode active material according to an embodiment of the present invention may be 3 ㎛ to 25 ㎛, more specifically may be 5 to 25 ㎛. In the present invention, the average particle diameter (D 50) of the lithium-metal composite oxide particles was measured by the same method described in the average particle diameter (D 50) of the ceramic-based ion conductor.
본 발명의 일 실시예에 따른 상기 양극 활물질은 리튬 복합금속 산화물의 1차 입자일 수도 있고, 또는 상기 1차 입자가 조립되어 이루어진 2차 입자 일 수도 있다. 상기 양극 활물질이 리튬 복합금속 산화물의 1차 입자일 경우 공기 중의 수분 또는 CO2 등과의 반응에 따른 Li2CO3, LiOH 등의 표면 불순물의 생성이 감소되어 전지 용량 저하 및 가스 발생의 우려가 낮고, 또 우수한 고온 안정성을 나타낼 수 있다. 또, 상기 양극 활물질이 1차 입자가 조립된 2차 입자일 경우 출력특성이 더 우수할 수 있다. 또 2차 입자일 경우 상기 1차 입자의 평균 입경우 10nm 내지 200nm일 수 있다. 이 같은 활물질 입자 형태는 활물질을 구성하는 리튬 복합금속 산화물의 조성에 따라 적절히 결정될 수 있다.The cathode active material according to an embodiment of the present invention may be primary particles of a lithium composite metal oxide, or secondary particles formed by assembling the primary particles. When the positive electrode active material is a primary particle of a lithium composite metal oxide, generation of surface impurities such as Li 2 CO 3 , LiOH, and the like caused by reaction with moisture in the air or CO 2 is reduced, and thus there is a low risk of deterioration of battery capacity and gas generation. Also, excellent high temperature stability can be exhibited. In addition, when the cathode active material is secondary particles in which primary particles are assembled, output characteristics may be more excellent. In the case of secondary particles, the average particle size of the primary particles may be 10 nm to 200 nm. The form of such active material particles may be appropriately determined according to the composition of the lithium composite metal oxide constituting the active material.
또, 본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 있어서, 상기 리튬 복합금속 산화물의 입자와 세라믹계 이온전도체 나노졸의 혼합은, 예를 들어 세라믹계 이온전도체 또는 그 전구체에 용매 및 분산제를 첨가하여 교반시켜 콜로이드상의 세라믹계 이온전도체 나노졸을 형성한 후, 상기 나노졸을 리튬 복합금속 산화물의 입자와 혼합, 도포, 분무, 또는 침지 등의 다양한 방법으로 표면처리함으로써 수행될 수 있다. In addition, in the method of manufacturing a positive electrode active material according to an embodiment of the present invention, the mixing of the particles of the lithium composite metal oxide and the ceramic ion conductor nanosol is, for example, a solvent and a dispersant in a ceramic ion conductor or a precursor thereof. After adding and stirring to form a colloidal ceramic ion conductor nanosol, the nanosol may be performed by surface treatment by various methods such as mixing, coating, spraying, or dipping with particles of a lithium composite metal oxide.
또, 본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 있어서, 상기 열처리는 100 ℃ 내지 600 ℃의 온도 범위에서 4 시간 내지 10 시간 동안 수행될 수 있다. 상기한 온도 조건에서 실시될 때 열처리에 의해 리튬 복합금속 산화물 입자의 표면에 세라믹계 이온전도체 및 선택적으로 금속 산화물을 포함하는 코팅층을 형성될 수 있다.In addition, in the method of manufacturing a positive electrode active material according to an embodiment of the present invention, the heat treatment may be performed for 4 hours to 10 hours in the temperature range of 100 ℃ to 600 ℃. When the coating is performed under the above-described temperature conditions, a coating layer including a ceramic ion conductor and optionally a metal oxide may be formed on the surface of the lithium composite metal oxide particles by heat treatment.
또, 본 발명의 일 실시예에 따른 양극 활물질의 제조방법에는, 상기 열처리 후 소성하는 단계가 더 포함될 수 있다. In addition, the method of manufacturing a cathode active material according to an embodiment of the present invention may further include the step of firing after the heat treatment.
상기 소성 공정은 500 ℃ 내지 1000 ℃의 온도 범위에서 4 시간 내지 10 시간 동안 수행될 수 있다. 상기와 같은 온도 조건에서의 소성 공정이 추가로 수행되는 경우, 금속의 산화가 촉진되고, 또, 리튬 복합금속 산화물 입자의 내부로, 상기 세라믹계 이온전도체 및 상기 코팅층 형성시 선택적으로 사용된 금속 산화물의 금속원소가 리튬 복합금속 산화물 입자의 표면에서 내부로 갈수록 감소하는 농도 구배를 가지며 포함될 수 있다. The firing process may be performed for 4 hours to 10 hours in the temperature range of 500 ℃ to 1000 ℃. When the firing process at the above temperature conditions is further performed, the oxidation of the metal is promoted, and the metal oxide selectively used in forming the ceramic-based ion conductor and the coating layer into the lithium composite metal oxide particles. The metal element of may have a concentration gradient that decreases toward the inside from the surface of the lithium composite metal oxide particles.
이 경우 상기 금속원소는 리튬 복합금속 산화물 입자의 표면에서 내부로, 약 500nm 정도까지 존재할 수 있다. 이와 같이 리튬 복합금속 산화물 입자와 복합체를 형성할 경우, 양극 활물질의 구조적 결정 붕괴를 방지하여 구조적 안정성 및 전기 화학적 특성을 개선시킬 수 있다. In this case, the metal element may exist up to about 500 nm from the surface of the lithium composite metal oxide particle. As such, when forming a composite with the lithium composite metal oxide particles, structural crystal collapse of the cathode active material may be prevented to improve structural stability and electrochemical properties.
상기 금속원소로 도핑된 리튬 복합금속 산화물은 구체적으로 하기 화학식 2의 화합물을 포함하는 것일 수 있다:The lithium composite metal oxide doped with the metal element may specifically include a compound of Formula 2 below:
<화학식 2><Formula 2>
ALi1+aNi1-b-cMnbCoc· (1-A)M'sM"vO2 ALi 1 + a Ni 1-bc Mn b Co c (1-A) M 's M " v O 2
상기 화학식 2에서, M'는 세라믹계 이온전도체로부터 유래된 금속원소로서, 구체적으로는 Y, Zr, La, Sr, Ga, Mg, Sc, Gd, Sm, Ca, Ce, Co, Mn 및 Fe로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 둘 이상의 혼합 원소일 수 있으며, 보다 구체적으로는 Y, Zr, La, Sr, Ga, Sc, Gd, Sm 및 Ce로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합 원소일 수 있고, 보다 더 구체적으로는 Y 및 Zr로 이루어진 군으로부터 선택되는 적어도 어느 하나의 원소일 수 있다.In Formula 2, M 'is a metal element derived from a ceramic ion conductor, specifically, Y, Zr, La, Sr, Ga, Mg, Sc, Gd, Sm, Ca, Ce, Co, Mn and Fe It may be any one selected from the group consisting of two or more mixed elements thereof, more specifically any one or two or more selected from the group consisting of Y, Zr, La, Sr, Ga, Sc, Gd, Sm and Ce It may be a mixed element, and more specifically, at least one element selected from the group consisting of Y and Zr.
또, 상기 화학식 2에서, M"는 상기 나노졸에 선택적으로 포함될 수 있는 금속 나노졸로부터 유래된 것으로서, 구체적으로 Al, Nb, Ti, W, Mo, Cr, Cu, V 및 Zn으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합 원소이며, 보다 구체적으로는 Al, Nb 및 Ti로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합 원소일 수 있다.In addition, in Formula 2, M ″ is derived from a metal nanosol which may be selectively included in the nanosol, and specifically, in the group consisting of Al, Nb, Ti, W, Mo, Cr, Cu, V, and Zn. Any one or two or more mixed elements selected, and more specifically, any one or two or more mixed elements selected from the group consisting of Al, Nb and Ti.
또, 상기 화학식 2에서, 0<A<1, 0≤a≤0.33, 0≤b≤0.5, 0≤c≤0.5, 0<s≤0.2, 0≤v≤0.2이며, 보다 구체적으로는 0≤a≤0.09이고, 보다 더 구체적으로는 0.9<A<1, a=0일 수 있다.In Formula 2, 0 <A <1, 0≤a≤0.33, 0≤b≤0.5, 0≤c≤0.5, 0 <s≤0.2, 0≤v≤0.2, more specifically 0≤ a ≦ 0.09, and more specifically 0.9 <A <1, a = 0.
또, 상기 화학식 2에서, M' 및 M"은 각각 독립적으로 리튬 복합금속 산화물의 입자 내에서 입자 표면에서부터 중심으로 갈수록 점진적으로 감소하는 농도구배로 분포할 수 있다. 이와 같이 양극 활물질 입자 내 위치에 따라 도핑되는 금속의 농도가 점진적으로 변화하는 농도구배로 분포함으로써, 활물질내 급격한 상 경계 영역이 존재하지 않아 결정 구조가 안정화되고 열 안정성이 증가하게 된다. 또, 활물질 입자의 표면 측에서 도핑원소가 고농도로 분포하고, 입자 중심으로 갈수록 농도가 감소하는 농도 구배를 포함하는 경우, 열안정성을 나타내면서도 용량의 감소를 방지할 수 있다. In addition, in Formula 2, M 'and M "may be each independently distributed in a concentration gradient gradually decreasing from the particle surface to the center in the particles of the lithium composite metal oxide. As a result, the concentration of the metal to be doped is distributed in a concentration gradient that gradually changes, so that there is no abrupt phase boundary region in the active material, so that the crystal structure is stabilized and thermal stability is increased. In the case of containing a concentration gradient that is distributed at a high concentration and decreases in concentration toward the particle center, it is possible to prevent a decrease in capacity while showing thermal stability.
구체적으로, 본 발명의 일 실시예에 따른 양극 활물질에 있어서, 도핑원소 M' 및 M"의 농도가 농도구배를 나타내는 경우, 양극 활물질내 포함되는 도핑원소 M' 및 M" 각각의 총 원자량을 기준으로, 입자 중심에서부터 10부피% 이내의 영역(이하 간단히 'Rc10 영역' 이라 한다)과, 입자 표면으로부터 10부피% 이내의 영역(이하 간단히 'Rs10 영역' 이라 한다)에서의 M' 의 농도 차이는 10 내지 90원자%일 수 있고, M"의 농도 차이는 10 내지 90원자%일 수 있다.Specifically, in the positive electrode active material according to an embodiment of the present invention, when the concentration of the doping elements M 'and M "represents a concentration gradient, the total atomic weight of each of the doping elements M' and M" included in the positive electrode active material is based on The concentration of M 'in a region within 10% by volume of the particle center (hereinafter simply referred to as' Rc 10 region') and a region within 10% by volume of the particle surface (hereinafter simply referred to as' Rs 10 region ') The difference may be 10 to 90 atomic% and the difference in concentration of M ″ may be 10 to 90 atomic%.
본 발명에 있어서, 양극 활물질 입자 내에서의 도핑원소의 농도구배 구조 및 농도는 전자선 마이크로 애널라이저(Electron Probe Micro Analyzer, EPMA), 유도결합 플라스마-원자 방출 분광법(Inductively Coupled Plasma - Atomic Emission Spectrometer, ICP-AES), 또는 비행 시간형 2차 이온 질량분석기(Time of Flight Secondary Ion Mass Spectrometry, ToF-SIMS) 등의 방법을 이용하여 확인할 수 있으며, 구체적으로는 EPMA를 이용하여 양극 활물질의 중심에서부터 표면으로 이동하면서 각 금속의 원소비(atomic ratio)를 측정할 수 있다.In the present invention, the concentration gradient structure and concentration of the doping element in the positive electrode active material particles are determined by an electron probe micro analyzer (EPMA), inductively coupled plasma-atomic emission spectrometer (ICP-). AES) or Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), and more specifically, using EPMA to move from the center of the cathode active material to the surface. While measuring the atomic ratio of each metal (atomic ratio) can be measured.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법은, 세라믹계 이온전도체의 나노졸을 이용하여 리튬 복합금속 산화물의 입자 표면에 세라믹계 이온전도체를 포함하는 코팅층을 형성함으로써, 종래 습식 혼합법을 사용하는 경우에 비해 리튬 복합금속 산화물 입자 표면에 형성되는 코팅층을 보다 균일하게 형성할 수 있고, 또, 용매의 사용량을 감소시킴으로써, 용매로 인한 리튬 복합금속 산화물 입자의 데미지(damage) 발생을 최소화할 수 있다.In the method of manufacturing a positive electrode active material according to an embodiment of the present invention, a conventional wet mixing method is formed by forming a coating layer containing a ceramic ion conductor on a particle surface of a lithium composite metal oxide using a nanosol of a ceramic ion conductor. Compared to the case of use, the coating layer formed on the surface of the lithium composite metal oxide particles can be formed more uniformly, and by reducing the amount of solvent used, damage of the lithium composite metal oxide particles due to the solvent can be minimized. Can be.
또, 상기 제조방법에 의해 제조된 양극 활물질은, 단일상을 갖는 특정 복합입자, 즉 비정질의 세라믹계 이온전도체를 포함함으로써, 이차전지의 용량감소 및 출력감소를 최소화할 수 있다. 뿐만 아니라, 상기 세라믹계 이온전도체의 구조적 특징으로 인해 양극 공정, 특히 프레스 공정시 충격 흡수 효과를 가져 양극 활물질의 깨짐 현상을 최소화할 수 있고, 이로써 이차전지에 적용시 수명특성을 더욱 향상시킬 수 있다.In addition, the cathode active material manufactured by the manufacturing method includes specific composite particles having a single phase, that is, an amorphous ceramic-based ion conductor, thereby minimizing capacity reduction and output reduction of the secondary battery. In addition, due to the structural characteristics of the ceramic ion conductor, it is possible to minimize the cracking phenomenon of the positive electrode active material due to the shock absorbing effect during the positive electrode process, in particular the pressing process, thereby further improving the life characteristics when applied to the secondary battery. .
이에 따라 본 발명의 또 다른 일 실시예에 따르면, 상기한 제조방법에 의해 제조된 양극 활물질이 제공된다.Accordingly, according to another embodiment of the present invention, a cathode active material prepared by the above-described manufacturing method is provided.
구체적으로 상기 양극 활물질은 리튬 복합금속 산화물의 입자, 및 상기 리튬 복합금속 산화물의 입자 상에 위치하며, 세라믹계 이온전도체를 포함하는 코팅층을 포함할 수 있다. 이때, 상기 리튬 복합금속 산화물의 입자 및 세라믹계 이온 전도체는 앞서 설명한 바와 동일하다.Specifically, the cathode active material may include particles of a lithium composite metal oxide, and a coating layer disposed on the particles of the lithium composite metal oxide and including a ceramic ion conductor. In this case, the particles of the lithium composite metal oxide and the ceramic ion conductor are the same as described above.
본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 코팅층은 단일상의 세라믹계 이온전도체를 포함하는 것일 수 있다. 상기 단일상의 세라믹계 이온전도체는 XRD 측정시 단일상 피크를 나타낸다.In the positive electrode active material according to an embodiment of the present invention, the coating layer may include a single-phase ceramic ion conductor. The single phase ceramic ion conductor exhibits a single phase peak upon XRD measurement.
또, 본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 코팅층은 상기 세라믹계 이온전도체로서 YSZ, CSZ, SSZ, GDC, LSGM, LSM 및 Ni-YSZ로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 것을 포함하는 것일 수 있다. In addition, in the cathode active material according to an embodiment of the present invention, the coating layer is any one or two or more selected from the group consisting of YSZ, CSZ, SSZ, GDC, LSGM, LSM and Ni-YSZ as the ceramic ion conductor. It may be to include the.
또, 본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 코팅층은 지르코니아계 세라믹 이온전도체로서 YSZ, CSZ, SSZ, GDC 및 LSGM로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것일 수 있다.In addition, in the positive electrode active material according to an embodiment of the present invention, the coating layer is any one selected from the group consisting of YSZ, CSZ, SSZ, GDC and LSGM or a mixture of two or more thereof as a zirconia-based ceramic ion conductor. It may be.
또, 상기 YSZ는 Zr(1-x)YxO2 -x/2, 0.01≤x≤0.08일 수 있고, 보다 구체적으로는 0.03≤x≤0.08일 수 있다. 상기 YSZ가 포함될 경우, Y가 Zr 사이트에 들어가서 단일상을 먼저 형성할 수 있으며, 양극 활물질 구조가 슈퍼스터럭쳐(superstructure)를 가짐으로써, 구조 내부에 산소 결핍이 발생하여 빈 공간이 많이 생길 수 있다. 상기 YSZ에서 리튬의 이동통로는 상기 YSZ 구조 내부의 산소 결핍으로 인한 빈공간으로 인해 양극 활물질 표면에 Li가 빠져 나갈 수 있는 공간이 많이 생긴다. 또, YSZ에서 리튬 이온이 통과할 수 있는 경로를 찾아서 리튬이온의 이온전도도를 분석해 보면, 산소 결핍이 있는 구간에서 약 1.0eV이 에너지 차이가 나타난다. 이를 통해 산소 결핍이 있는 경로가 연결되면 리튬 이온 전도도가 매우 높아질 수 있으며, 이러한 산소 결핍으로 YSZ를 포함하는 양극 활물질을 이차 전지에 적용할 경우 용량 감소 또는 출력감소가 최소화 될 수 있다. 또, 상기 구조적으로 빈공간 형성으로 인해 양극 공정시, 특히 프레스(press) 공정시, 충격 흡수 효과를 가져 양극 활물질의 깨짐 현상이 최소화될 수 있다.In addition, the YSZ may be Zr (1-x) Y x O 2 -x / 2, 0.01 ≦ x ≦ 0.08, and more specifically 0.03 ≦ x ≦ 0.08. When the YSZ is included, Y may enter the Zr site to form a single phase first, and since the cathode active material structure has a superstructure, oxygen deficiency may occur in the structure to generate a lot of empty space. have. The movement path of lithium in the YSZ has a lot of space for Li to escape on the surface of the positive electrode active material due to the empty space due to oxygen deficiency inside the YSZ structure. In addition, when analyzing the ion conductivity of lithium ions by finding a path through which lithium ions can pass in YSZ, an energy difference of about 1.0 eV appears in an oxygen deficient section. Through this, when oxygen depletion paths are connected, lithium ion conductivity may be very high. When the cathode active material including YSZ is applied to a secondary battery due to such oxygen depletion, capacity reduction or output reduction may be minimized. In addition, due to the structurally formed void space, in the positive electrode process, particularly during the press (press) process, it has a shock absorbing effect can be minimized the cracking phenomenon of the positive active material.
또, 상기 SSZ는 구체적으로 (ZrO2)1- 2x(Sc2O3)x, (ZrO2)1-2x(Sc2O)3x- z(Y2O3)z, 또는 (ZrO2)1-2x-z(Sc2O3)x(CeO2)z(여기서, 0.01≤x≤0.2, 0.01≤z≤0.l임)일 수 있다.Also, the SSZ is specifically (ZrO 2) 1- 2x (Sc 2 O 3) x, (ZrO 2) 1-2x (Sc 2 O) 3x- z (Y 2 O 3) z, or (ZrO 2) 1-2x-z (Sc 2 O 3 ) x (CeO 2 ) z , where 0.01 ≦ x ≦ 0.2, 0.01 ≦ z ≦ 0.l.
또, 상기 CSZ 는 CSZ 총 중량 중 CaO 함량이 2 중량% 내지 17중량%인 것일 수 있다. In addition, the CSZ may be a CaO content of 2% to 17% by weight of the total CSZ weight.
또, 본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 세라믹계 이온 전도체는 양극 활물질 총 중량에 대해 50ppm 내지 300000ppm의 함량, 보다 구체적으로는 100ppm 내지 10,000ppm이 되도록 하는 양으로 코팅층 내에 포함될 수 있다.In addition, in the cathode active material according to an embodiment of the present invention, the ceramic ion conductor may be included in the coating layer in an amount of 50 ppm to 300000 ppm, more specifically, 100 ppm to 10,000 ppm, based on the total weight of the cathode active material. have.
또한, 본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 코팅층에는 Al, Nb, Ti, Ca, W, Mo, Fe, Cr, Cu, V, 및 Zn 중 하나 이상의 원소를 포함하는 산화물이 더 포함될 수 있으며, 상기한 원소를 포함하는 산화물은 양극 활물질 총 중량에 대해 50ppm 내지 300000ppm의 함량, 보다 구체적으로는 100ppm 내지 10,000ppm이 되도록 하는 양으로 코팅층 내에 포함될 수 있다.In addition, in the positive electrode active material according to an embodiment of the present invention, the coating layer further comprises an oxide containing at least one element of Al, Nb, Ti, Ca, W, Mo, Fe, Cr, Cu, V, and Zn. The oxide containing the above element may be included in the coating layer in an amount of 50 ppm to 300000 ppm, more specifically, 100 ppm to 10,000 ppm, based on the total weight of the positive electrode active material.
또, 본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 코팅층은 리튬 복합금속 산화물 입자의 외부 표면으로부터 1 내지 5000nm의 두께 범위로 형성될 수 있다. In addition, in the positive electrode active material according to an embodiment of the present invention, the coating layer may be formed in a thickness range of 1 to 5000nm from the outer surface of the lithium composite metal oxide particles.
또, 본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 코팅층은 제조시 나노졸을 이용함으로써 우수한 두께 균일도를 갖는다. 구체적으로는 상기 코팅층은 20nm 이하의 두께 균일도를 갖는 것일 수 있다. 이때 상기 두께 균일도는 최대 두께값과 최소 두께값의 두께 편차를 의미한다.In addition, in the positive electrode active material according to an embodiment of the present invention, the coating layer has an excellent thickness uniformity by using a nanosol in the manufacture. Specifically, the coating layer may have a thickness uniformity of 20 nm or less. In this case, the thickness uniformity means a thickness deviation between the maximum thickness value and the minimum thickness value.
또, 본 발명의 일 실시예에 따른 상기 양극 활물질의 평균 입경(D50)은 3㎛ 내지 30㎛일 수 있으며, 또 비표면적 및 양극 합제밀도의 최적화에 따른 전지의 율특성 및 초기용량 특성 개선효과를 고려할 때 상기 양극 활물질의 평균 입경(D50)은 보다 구체적으로 5㎛ 내지 10㎛일 수 있다.In addition, the average particle diameter (D 50 ) of the positive electrode active material according to an embodiment of the present invention may be 3㎛ to 30㎛, and also improve the rate characteristics and initial capacity characteristics of the battery according to the optimization of the specific surface area and the positive electrode mixture density In consideration of the effect, the average particle diameter (D 50 ) of the cathode active material may be more specifically 5 μm to 10 μm.
본 발명의 일 실시예에 따른 상기 양극 활물질은 리튬 복합금속 산화물의 1차 입자일 수도 있고, 또는 상기 1차 입자가 조립되어 이루어진 2차 입자 일 수도 있다. 상기 양극 활물질이 리튬 복합금속 산화물의 1차 입자일 경우 공기 중의 수분 또는 CO2 등과의 반응에 따른 Li2CO3, LiOH 등의 표면 불순물의 생성이 감소되어 전지 용량 저하 및 가스 발생의 우려가 낮고, 또 우수한 고온 안정성을 나타낼 수 있다. 또, 상기 양극 활물질이 1차 입자가 조립된 2차 입자일 경우 출력 특성이 더 우수할 수 있다. 또 2차 입자일 경우 상기 1차 입자의 평균 입경은 10nm 내지 200nm일 수 있다. 이 같은 활물질 입자 형태는 활물질을 구성하는 리튬 복합금속 산화물의 조성에 따라 적절히 결정될 수 있다. The cathode active material according to an embodiment of the present invention may be primary particles of a lithium composite metal oxide, or secondary particles formed by assembling the primary particles. When the positive electrode active material is a primary particle of a lithium composite metal oxide, generation of surface impurities such as Li 2 CO 3 , LiOH, and the like caused by reaction with moisture in the air or CO 2 is reduced, and thus there is a low risk of deterioration of battery capacity and gas generation. Also, excellent high temperature stability can be exhibited. In addition, when the cathode active material is secondary particles in which primary particles are assembled, output characteristics may be more excellent. In addition, in the case of secondary particles, the average particle diameter of the primary particles may be 10 nm to 200 nm. The form of such active material particles may be appropriately determined according to the composition of the lithium composite metal oxide constituting the active material.
본 발명의 또 다른 일 실시예에 따르면, 상기한 제조방법에 의해 제조된 양극 활물질을 포함하는 양극을 제공한다.According to another embodiment of the present invention, there is provided a positive electrode including the positive electrode active material prepared by the above manufacturing method.
상기 양극은 상기한 양극 활물질을 사용하는 것을 제외하고는 당해 기술 분야에 알려져 있는 통상적인 양극 제조 방법으로 제조할 수 있다. 예를 들면, 양극 활물질에 용매, 필요에 따라 바인더, 도전재 또는 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 양극 집전체에 도포(코팅)하고 건조하여 양극 활물질층을 형성함으로써 건조하여 양극을 제조할 수 있다.The positive electrode may be manufactured by a conventional positive electrode manufacturing method known in the art, except for using the positive electrode active material described above. For example, a slurry is prepared by mixing and stirring a solvent, a binder, a conductive material, or a dispersant in a positive electrode active material, if necessary, and then coating (coating) the positive electrode current collector and drying to form a positive electrode active material layer to dry the positive electrode. It can manufacture.
상기 양극 집전체는 전도성이 높은 금속으로, 상기 양극 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있다. The positive electrode current collector is a metal having high conductivity, and may be any metal as long as the slurry of the positive electrode active material is not easily reactive in a voltage range of a battery. Non-limiting examples of the positive electrode current collector include a foil made of aluminum, nickel, or a combination thereof.
또, 상기 양극을 형성하기 위한 용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 바인더 및 도전재를 용해 및 분산시킬 수 있는 정도이면 충분하다.In addition, the solvent for forming the positive electrode includes an organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or 2 It can mix and use species. The amount of the solvent used is sufficient to dissolve and disperse the positive electrode active material, the binder, and the conductive material in consideration of the coating thickness of the slurry and the production yield.
상기 바인더로는 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.The binder includes vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate, poly Vinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), liquor Fonned EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and polymers in which hydrogen thereof is replaced by Li, Na or Ca, or the like, or Various kinds of binder polymers such as various copolymers can be used. The binder may be included in an amount of 1 to 30 wt% based on the total weight of the cathode active material layer.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 탄소 나노 튜브 또는 탄소 섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 플루오로카본, 산화아연 또는 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.The conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery. Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, farnes black, lamp black, thermal black carbon nanotubes or carbon fibers; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskers such as fluorocarbon, zinc oxide or potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and any one or a mixture of two or more thereof may be used. The conductive material may be included in an amount of 1 to 30 wt% based on the total weight of the positive electrode active material layer.
본 발명의 또 다른 일 실시예에 따르면, 상기한 제조방법에 의해 제조된 양극 활물질을 포함하는 리튬 이차전지를 제공한다.According to another embodiment of the present invention, there is provided a lithium secondary battery including the cathode active material manufactured by the above-described manufacturing method.
상기 리튬 이차전지는 구체적으로 상기 양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함한다. The lithium secondary battery specifically includes a separator interposed between the positive electrode, the negative electrode, the positive electrode and the negative electrode.
상기 음극에 사용되는 음극 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬 금속, 규소 또는 주석 등을 사용할 수 있다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다. 또한, 상기 음극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.As the negative electrode active material used in the negative electrode, a carbon material, lithium metal, silicon, tin, or the like, in which lithium ions may be occluded and released, may be used. Preferably, a carbon material may be used, and as the carbon material, both low crystalline carbon and high crystalline carbon may be used. Soft crystalline carbon and hard carbon are typical of low crystalline carbon. Natural crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch carbon fiber. High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes. In addition, the negative electrode current collector is generally made of a thickness of 3 ㎛ to 500 ㎛. Such a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery. For example, the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, and aluminum-cadmium alloys may be used. In addition, like the positive electrode current collector, fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
상기 음극에 사용되는 바인더 및 도전재는 양극과 마찬가지로 당 분야에 통상적으로 사용될 수 있는 것을 사용할 수 있다. 음극은 음극 활물질 및 상기 첨가제들을 혼합 및 교반하여 음극 활물질 슬러리를 제조한 후, 이를 집전체에 도포하고 압축하여 음극을 제조할 수 있다. The binder and the conductive material used for the negative electrode may be used as can be commonly used in the art as the positive electrode. The negative electrode may prepare a negative electrode by mixing and stirring the negative electrode active material and the additives to prepare a negative electrode active material slurry, and then applying the same to a current collector and compressing the negative electrode.
또한, 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.In addition, as the separator, conventional porous polymer films conventionally used as separators, for example, polyolefins such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer, etc. The porous polymer film made of the polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. It is not.
본 발명에서 사용되는 전해질로서 포함될 수 있는 리튬염은 리튬 이차전지용 전해질에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다. The lithium salt which can be included as an electrolyte used in the present invention can be used without limitation, those which are commonly used in a lithium secondary battery electrolyte, such as the lithium salt, the anion is F -, Cl -, Br -, I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 - may be any one selected from the group consisting of -, CH 3 CO 2 -, SCN - , and (CF 3 CF 2 SO 2) 2 N.
본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다. Examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. no.
상기와 같은 구성을 갖는 리튬 이차전지는, 양극과 음극 사이에 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입함으로써 제조될 수 있다.The lithium secondary battery having the above configuration may be manufactured by manufacturing an electrode assembly through a separator between a positive electrode and a negative electrode, placing the electrode assembly inside a case, and then injecting an electrolyte solution into the case.
상기한 바와 같이 본 발명에 따른 양극활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차 등의 전기 자동차 분야 등에 유용하다.As described above, since the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles It is useful in the field of electric vehicles.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩을 제공한다. Accordingly, according to another embodiment of the present invention, a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.The battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
<나노졸 제조><Nanosol manufacturing>
제조예 1Preparation Example 1
400g의 에틸렌 글리콜(C2H6O2) 중에 20g의 지르코늄 다이나이트레이트 다이하이드레이트 (ZrO(NO3)2·2H2O)와 2.7g의 이트륨 나이트레이트 헥사하이드레이트 (Y(NO3)3·6H2O)를 용해시킨 후 교반하여 혼합 용액을 준비하였다. 상기 혼합 용액을 교반하면서 160℃의 온도에서 5 시간 동안 가열한 후, 90℃ 온도로 냉각하고, 물을 투입하여 평균입경(D50) 10nm의 YSZ 나노졸(Zr(1-x)YxO2 -x/2, x값=0.094, YSZ 내 Y:Zr의 중량비=9:91)을 제조하였다.20 g zirconium dinitrate dihydrate (ZrO (NO 3 ) 2 .2H 2 O) and 2.7 g yttrium nitrate hexahydrate (Y (NO 3 ) 3 in 400 g ethylene glycol (C 2 H 6 O 2 ) 6H 2 O) was dissolved and stirred to prepare a mixed solution. The mixed solution was heated at a temperature of 160 ° C. for 5 hours with stirring, and then cooled to 90 ° C., and water was added thereto to obtain YSZ nanosol (Zr (1-x) Y × O ) having an average particle diameter (D 50 ) of 10 nm. 2- x / 2 , x value = 0.094 and weight ratio of Y: Zr in YSZ = 9: 91).
제조예Production Example 2 2
상기 제조예 1에서 이트륨 나이트레이트 헥사하이드레이트 대신에 칼슘 나이트레이트 테트라하이드레이트(Ca(NO3)2·4H2O)을 0.85g의 양으로 사용하는 것을 제외하고는 상기 제조예 1에서와 동일한 방법으로 실시하여 CSZ 나노졸(CSZ 내 CaO의 함량=5몰%, Ca:Zr의 중량비=2:98)을 제조하였다.Except for using calcium nitrate tetrahydrate (Ca (NO 3 ) 2 4H 2 O) in the amount of 0.85g instead of yttrium nitrate hexahydrate in Preparation Example 1 in the same manner as in Preparation Example 1 CSZ nanosol (CaO content = 5 mol%, Ca: Zr weight ratio = 2:98) was prepared.
제조예Production Example 3 3
상기 제조예 1에서 이트륨 나이트레이트 헥사하이드레이트 대신에 스칸디움 나이트레이트 하이드레이트(Sc(NO3)3·H2O)을 2.55g의 양으로 사용하는 것을 제외하고는 상기 제조예 1에서와 동일한 방법으로 실시하여 SSZ 나노졸((ZrO2)1-2x(Sc2O3)X, x값=0.12, SSZ 내 Sc:Zr의 중량비=6:94)을 제조하였다.In the same manner as in Preparation Example 1 except for using the scandium nitrate hydrate (Sc (NO 3 ) 3 H 2 O) in the amount of 2.55g instead of yttrium nitrate hexahydrate in Preparation Example 1 SSZ nanosol ((ZrO 2 ) 1-2x (Sc 2 O 3 ) X , x value = 0.12, and a weight ratio of Sc: Zr in SSZ = 6: 94) were prepared.
제조예Production Example 4 4
상기 제조예 1에서 지르코늄 다이나이트레이트 다이하이드레이트 및 이트륨 나이트레이트 헥사하이드레이트 대신에 40g의 세륨 나이트레이트 헥사하이드레이트(Ce(NO3)3·6H2O)와 6g의 가돌리늄 나이트레이트 헥사하이드레이트(Gd(NO3)3·6H2O))를 사용하는 것을 제외하고는 상기 제조예 1에서와 동일한 방법으로 실시하여 GDC 나노졸(Gd0.1Ce0.9O1.95, GDC 내 Gd:Ce의 중량비=14:86)을 제조하였다.40 g of cerium nitrate hexahydrate (Ce (NO 3 ) 3 .6H 2 O) and 6 g of gadolinium nitrate hexahydrate (Gd (NO) instead of zirconium dinitrate dihydrate and yttrium nitrate hexahydrate in Preparation Example 1 3 ) GDC nanosol (Gd 0.1 Ce 0.9 O 1.95 , Gd: Ce weight ratio in GDC = 14:86) was carried out in the same manner as in Preparation Example 1, except that 3 · 6H 2 O)) was used. Was prepared.
제조예Production Example 5 5
상기 제조예 1에서 지르코늄 다이나이트레이트 다이하이드레이트 및 이트륨 나이트레이트 헥사하이드레이트 대신에, 10g의 란탄늄 나이트레이트 헥사하이드레이트(La(NO3)3·6H2O), 1.55g의 스트론튬 나이트레이트(Sr(NO3)2), 6g의 갈륨 나이트레이트 하이드레이트(Ga(NO3)3·H2O) 및 1.55g의 마그네슘 나이트레이트 헥사하이드레이트(Mg(NO3)2·6H2O)를 혼합 사용하는 것을 제외하고는 상기 제조예 1에서와 동일한 방법으로 실시하여 LSGM 나노졸((LaxSr1-x)(GayMg1-y)O3, x=0.75, y=0.78, LSGM 내 La:Sr:Ga:Mg의 중량비=58:12:28:2)을 제조하였다.Instead of zirconium dinitrate dihydrate and yttrium nitrate hexahydrate in Preparation Example 1, 10 g of lanthanum nitrate hexahydrate (La (NO 3 ) 3 .6H 2 O), 1.55 g of strontium nitrate (Sr ( NO 3 ) 2 ), 6 g gallium nitrate hydrate (Ga (NO 3 ) 3 H 2 O) and 1.55 g magnesium nitrate hexahydrate (Mg (NO 3 ) 2 .6H 2 O) Except for LSGM nanosol ((La x Sr 1-x ) (Ga y Mg 1-y ) O 3 , x = 0.75, y = 0.78, La: Sr in LSGM) A weight ratio of: Ga: Mg = 58: 12: 28: 2) was prepared.
제조예Production Example 6 6
400g의 에틸렌 글리콜(C2H6O2) 용액 내에 20g의 니켈 클로라이드(NiCl2)를 분산시킨 후, 교반하여 혼합 용액을 제조하였다. 상기 혼합 용액을 교반하면서 160℃의 온도에서 5 시간 동안 가열한 후, 90℃ 온도로 냉각하고, 물을 투입하여 평균입경(D50) 10nm의 Ni 나노졸을 제조하였다.20 g of nickel chloride (NiCl 2 ) was dispersed in 400 g of ethylene glycol (C 2 H 6 O 2 ) solution, followed by stirring to prepare a mixed solution. The mixed solution was heated at a temperature of 160 ° C. for 5 hours with stirring, cooled to 90 ° C., and water was added to prepare Ni nanosols having an average particle diameter (D 50 ) of 10 nm.
<리튬 복합금속 산화물의 제조><Production of Lithium Composite Metal Oxide>
제조예 7Preparation Example 7
LiOH(H2O) 89.46g, 평균 입경이 5 ㎛인 Ni0 . 6Mn0 . 2Co0 .2(OH)2 200g을 넣고 실험용 믹서의 중심부 rpm이 18000rpm의 속도로, 1분 동안 혼합하여 전구체를 제조하였다.89.46 g of LiOH (H 2 O), Ni 0 with an average particle diameter of 5 μm . 6 Mn 0 . 2 Co 0 .2 (OH) 2 is put into the center of 200g rpm for laboratory mixer to prepare a precursor by mixing at a speed of 18000rpm, 1 minute.
상기에서 제조한 전구체를 알루미나 도가니에 넣고, 약 860 ℃에서 6시간 동안 대기(Air) 분위기에서 소성을 수행하였다. 소성 후 얻은 케이크(cake)를 분쇄한 후, 400 메쉬 체(sieve)[미국의 타일러(Tlyer) 표준스크린 스케일]을 이용하여 분급을 실시하여 LiNi0.6Mn0.2Co0.2O2(평균입경(D50) : 5㎛)를 얻었다.The precursor prepared above was placed in an alumina crucible and calcining was performed at about 860 ° C. for 6 hours in an air atmosphere. The cake obtained after firing was pulverized, and then classified using a 400 mesh sieve (American Tyler standard screen scale) to carry out LiNi 0.6 Mn 0.2 Co 0.2 O 2 (average particle diameter (D 50). ): 5 m).
<양극 활물질 제조><Anode Active Material Manufacturing>
실시예 1-1Example 1-1
상기 제조예 1에서 제조한 평균입경(D50) 10nm의 YSZ 나노졸을 최종 제조되는 양극 활물질 총 중량에 대해 0.2중량%의 함량으로 포함되도록, 상기 제조예 7에서 제조한 LiNi0 . 6Mn0 . 2Co0 . 2O2(평균입경(D50): 5㎛) 50g에 넣고 혼합하였다. 결과의 혼합물을 400 ℃에서 6시간 동안 열처리한 후, 유발 및 체질하여 LiNi0 . 6Mn0 . 2Co0 . 2O2 입자 표면에 YSZ를 포함하는 양극 활물질을 제조하였다.LiNi 0 prepared in Preparation Example 7 to include YSZ nanosol having an average particle diameter (D 50 ) of 10 nm prepared in Preparation Example 1 in an amount of 0.2 wt% based on the total weight of the positive electrode active material to be manufactured . 6 Mn 0 . 2 Co 0 . 2 O 2 (average particle diameter (D 50 ): 5㎛) 50 g was mixed and mixed. The resulting mixture was heat treated at 400 ° C. for 6 hours, then induced and sieved to LiNi 0 . 6 Mn 0 . 2 Co 0 . 2 O 2 A cathode active material containing YSZ on the particle surface was prepared.
실시예Example 1-2 1-2
상기 실시예 1-1에 있어서, 제조예 1에서 제조한 YSZ 나노졸 대신에 제조예 2에서 제조한 CSZ 나노졸을 사용하는 것을 제외하고는 상기 실시예 1-1과 동일한 방법으로 실시하여 양극 활물질을 제조하였다. In Example 1-1, except for using the CSZ nanosol prepared in Preparation Example 2 instead of the YSZ nanosol prepared in Preparation Example 1 was carried out in the same manner as in Example 1-1 to the cathode active material Was prepared.
실시예Example 1-3 1-3
상기 실시예 1-1에 있어서, 제조예 1에서 제조한 YSZ 나노졸 대신에 제조예 3에서 제조한 SSZ 나노졸을 사용하는 것을 제외하고는 상기 실시예 1-1과 동일한 방법으로 실시하여 양극 활물질을 제조하였다. In Example 1-1, the positive electrode active material was carried out in the same manner as in Example 1-1 except for using the SSZ nanosol prepared in Preparation Example 3 instead of the YSZ nanosol prepared in Preparation Example 1. Was prepared.
실시예 1-4Example 1-4
상기 실시예 1-1에 있어서, 제조예 1에서 제조한 YSZ 나노졸 대신에 제조예 4에서 제조한 GDC 나노졸을 사용하는 것을 제외하고는 상기 실시예 1-1과 동일한 방법으로 실시하여 양극 활물질을 제조하였다. In Example 1-1, the positive electrode active material was carried out in the same manner as in Example 1-1 except for using the GDC nanosol prepared in Preparation Example 4 instead of the YSZ nanosol prepared in Preparation Example 1. Was prepared.
실시예 1-5Example 1-5
상기 실시예 1-1에 있어서, 제조예 1에서 제조한 YSZ 나노졸 대신에 제조예 5에서 제조한 LSGM 나노졸을 사용하는 것을 제외하고는 상기 실시예 1-1과 동일한 방법으로 실시하여 양극 활물질을 제조하였다.In Example 1-1, except for using the LSGM nanosol prepared in Preparation Example 5 instead of the YSZ nanosol prepared in Preparation Example 1 was carried out in the same manner as in Example 1-1 to the cathode active material Was prepared.
실시예 1-6Example 1-6
상기 실시예 1-1에서 YSZ 나노졸과 함께, 리튬 복합금속 산화물 총 중량에 대해 Ni 함량이 0.2중량%가 되도록 상기 제조예 6에서 제조한 Ni 나노졸을 추가로 혼합하여 사용하는 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 수행하여 LiNi0.6Mn0.2Co0.2O2 입자의 표면 측에, YSZ 세라믹계 이온전도체 및 NiO을 포함하는 표면처리층이 형성된 양극 활물질(평균입경(D50): 5㎛)을 제조하였다. Except for using the YSZ nanosol in Example 1-1, Ni nanosol prepared in Preparation Example 6 further mixed so that the Ni content is 0.2% by weight relative to the total weight of the lithium composite metal oxide. In the same manner as in Example 1-1, on the surface side of LiNi 0.6 Mn 0.2 Co 0.2 O 2 particles, a positive electrode active material having a surface treatment layer containing an YSZ ceramic ion conductor and NiO (average particle diameter (D 50 ): 5 μm).
비교예 1-1Comparative Example 1-1
상기 실시예 1-1에서 YSZ 나노졸을 투입하지 않는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여 양극 활물질(평균 입경(D50): 5㎛)을 제조하였다. A positive active material (average particle diameter (D 50 ): 5 μm) was prepared in the same manner as in Example 1, except that YSZ nanosol was not added in Example 1-1.
비교예 1-2Comparative Example 1-2
상기 실시예 1-1에서 YSZ 나노졸 대신에 평균입경(D50) 50nm YSZ 파우더 함유 수분산액을 사용하는 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 수행하여 양극 활물질을 제조하였다.A positive electrode active material was prepared in the same manner as in Example 1-1, except for using an aqueous dispersion containing an average particle diameter (D 50 ) of 50 nm YSZ powder instead of the YSZ nanosol in Example 1-1.
< 리튬 이차전지의 제조><Manufacture of Lithium Secondary Battery>
실시예 2-1Example 2-1
양극 제조Anode manufacturing
상기 실시예 1-1에서 제조한 양극 활물질 94 중량%, 도전재로 카본 블랙(carbon black) 3 중량%, 그리고 바인더로 폴리비닐리덴 플루오라이드(PVdF) 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께 약 20㎛의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.94% by weight of the positive electrode active material prepared in Example 1-1, 3% by weight of carbon black as the conductive material, and 3% by weight of polyvinylidene fluoride (PVdF) as the binder, N-methyl-2 Positive electrode slurry was prepared by addition to pyrrolidone (NMP). The positive electrode slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 μm, dried to prepare a positive electrode, and then roll rolled to prepare a positive electrode.
음극 제조Cathode manufacturing
음극 활물질로 흑연 분말 96.3 중량%, 도전재로 super-p 1.0 중량% 및 바인더로 스티렌 부타디엔 고무(SBR) 및 카르복시메틸셀룰로오스(CMC)를 1.5 중량%와 1.2 중량%를 혼합하고 용매인 NMP에 첨가하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 두께 약 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.96.3 wt% graphite powder as negative electrode active material, 1.0 wt% super-p as conductive material, and 1.5 wt% and 1.2 wt% styrene butadiene rubber (SBR) and carboxymethylcellulose (CMC) as binders were added to NMP as a solvent. To prepare a negative electrode slurry. The negative electrode slurry was applied to a thin copper (Cu) thin film, which is a negative electrode current collector having a thickness of about 10 μm, dried to prepare a negative electrode, and then roll-rolled to prepare a negative electrode.
비수성Non-aqueous 전해액 제조 Manufacture of electrolyte
전해질로서 에틸렌카보네이트 및 디에틸카보네이트를 30:70의 부피비로 혼합하여 제조된 비수전해액 용매에 LiPF6를 첨가하여 1M의 LiPF6 비수성 전해액을 제조하였다. LiPF 6 was added to a non-aqueous electrolyte solvent prepared by mixing ethylene carbonate and diethyl carbonate as a electrolyte in a volume ratio of 30:70 to prepare a 1 M LiPF 6 non-aqueous electrolyte.
리튬 이차전지 제조Lithium Secondary Battery Manufacturing
상기에서 제조한 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하고, 리튬염 함유 전해액을 주입하여, 셀을 제조하였다.A cell was prepared by injecting a lithium salt-containing electrolyte solution through a separator of porous polyethylene between the positive electrode and the negative electrode prepared above.
실시예 2-2 내지 2-6Examples 2-2 to 2-6
상기 실시예 1-2 내지 1-6에서 제조한 양극 활물질을 각각 사용하는 것을 제외하고는, 실시예 2-1에서와 동일한 방법으로 실시하여 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured by the same method as in Example 2-1, except for using the cathode active materials prepared in Examples 1-2 to 1-6, respectively.
비교예 2-1 및 2-2Comparative Examples 2-1 and 2-2
상기 비교예 1-1 및 1-2에서 제조된 양극 활물질을 각각 사용한 것을 제외하고는, 실시예 2와 동일한 방법으로 수행하여 리튬 이차전지를 제조하였다.A lithium secondary battery was manufactured by the same method as Example 2, except that the cathode active materials prepared in Comparative Examples 1-1 and 1-2 were used, respectively.
실험예 : 나노졸 분석Experimental Example: Nanosol Analysis
상기 제조예 1에서 제조한 세라믹계 이온전도체의 나노졸을 투과 전자 현미경(TEM)을 이용하여 관찰하고, 또 X선 회절 분석(XRD)을 수행하였다. The nanosol of the ceramic ion conductor prepared in Preparation Example 1 was observed using a transmission electron microscope (TEM), and X-ray diffraction analysis (XRD) was performed.
그 결과를 도 1 및 2에 나타내었다.The results are shown in FIGS. 1 and 2.
관찰 결과, 나노졸 내 평균 입경(D50)이 5nm 이하이고, 결정패턴이 없는 비정질상의 YSZ가 수산화물 상태로 제조되어 있음을 확인할 수 있다.As a result, it can be seen that the average particle diameter (D 50 ) in the nanosol is 5 nm or less, and the amorphous YSZ without a crystal pattern is prepared in the hydroxide state.
실험예 : 양극 활물질의 분석Experimental Example: Analysis of Positive Electrode Active Material
상기 실시예 1-1에서 제조한 양극 활물질의 표면을 FE-SEM(Field-Emission Scanning Electron Microscope)을 이용하여 관찰하고, 그 결과를 도 3에 나타내었다.The surface of the cathode active material prepared in Example 1-1 was observed using a Field-Emission Scanning Electron Microscope (FE-SEM), and the results are shown in FIG. 3.
도 3으로부터 YSZ 나노입자가 LiNi0 . 6Mn0 . 2Co0 . 2O2 산화물 표면에 균일하게 코팅되어 있음을 확인 할 수 있다.YSZ nanoparticles from Figure 3 is LiNi 0 . 6 Mn 0 . 2 Co 0 . 2 O 2 It can be seen that the oxide is uniformly coated on the surface.
또, 상기 실시예 1-6에서 제조한 양극활물질에 대해서도 상기와 동일한 방법으로 표면을 관찰하였다.In addition, the surface of the cathode active material prepared in Example 1-6 was observed in the same manner as described above.
그 결과, 실시예 1-6의 활물질의 경우 LiNi0 . 6Mn0 . 2Co0 . 2O2 산화물 표면에 YSZ 나노입자와 함께 NiO 입자를 포함하는 코팅층이 형성되어 있음을 확인할 수 있다.As a result, in the case of the active material of Example 1-6 LiNi 0 . 6 Mn 0 . 2 Co 0 . 2 O 2 It can be seen that a coating layer including NiO particles is formed on the oxide surface together with the YSZ nanoparticles.
또, 상기 비교예 1-2에서 제조한 양극 활물질의 표면을 FE-SEM을 이용하여 관찰하고, 그 결과를 도 4에 나타내었다.In addition, the surface of the positive electrode active material prepared in Comparative Example 1-2 was observed using FE-SEM, and the results are shown in FIG. 4.
도 4에 나타난 바와 같이, YSZ 파우더 함유 수분산액을 이용하여 코팅할 경우, 상기 실시예 1-1에서 제조한 양극 활물질에서의 코팅 표면과는 달리, YSZ 파우더가 LiNi0.6Mn0.2Co0.2O2 산화물 표면에 불균일하게 코팅되어 있음을 확인할 수 있다.As shown in Figure 4, when the coating using the aqueous dispersion containing YSZ powder, unlike the coating surface of the positive electrode active material prepared in Example 1-1, the YSZ powder is LiNi 0.6 Mn 0.2 Co 0.2 O 2 oxide It can be seen that the surface is unevenly coated.
실험예 : 양극 활물질의 분석Experimental Example: Analysis of Positive Electrode Active Material
상기 실시예 1-1에서 제조한 양극활물질에 대해 XRD 분석을 실시하고, 코팅층내 포함된 YSZ의 결정구조를 확인하였다. 이때 비교를 위하여 ZrO2에 대해서도 XRD 분석을 수행하였다. XRD analysis was performed on the cathode active material prepared in Example 1-1, and the crystal structure of YSZ contained in the coating layer was confirmed. XRD analysis was also performed on ZrO 2 for comparison.
XRD 분석은 Cu(Kα-선)을 이용하여 하기와 같은 조건에 따라 실시하였다.XRD analysis was performed using Cu (Kα-ray) according to the following conditions.
타겟: Cu(Kα-선) 흑연 단색화 장치Target: Cu (Kα-ray) Graphite Monochromator
슬릿: 발산 슬릿=0.5도, 수신슬릿=9.55mm, 산란슬릿=5.89도Slit: divergent slit = 0.5 degree, receiving slit = 9.55mm, scattering slit = 5.89 degree
측정구역 및 스텝각도/측정시간: -10.0도<2θ<90도, 0.5초, 0.024도 이때 2 θ는 회절각도를 나타낸다.Measurement Zone and Step Angle / Measurement Time: -10.0 degrees <2θ <90 degrees, 0.5 seconds, 0.024 degrees where 2θ represents the diffraction angle.
측정결과, YSZ는 입방정계 결정구조를 나타내었으며, 주 피크(main peak)의 2 θ가 29~31도에 존재하는 단일상 피크를 나타내었다. 한편, ZrO2는 YSZ와는 전혀 다르게 단사경계 졀정 구조를 나타내었으며, 27.5~28.5도 사이에서 주피크가 그리고 31.1~31.8도 사이에서 2차 피크가 존재하였다. As a result, YSZ showed a cubic crystal structure and showed a single-phase peak where 2 θ of the main peak existed at 29 to 31 degrees. On the other hand, ZrO 2 showed a monoclinic crystal structure differently from YSZ, with a main peak between 27.5 and 28.5 degrees and a second peak between 31.1 and 31.8 degrees.
실험예 : 전기화학 실험 Experimental Example: Electrochemical Experiment
<전지 사이클 특성 평가><Battery cycle characteristic evaluation>
상기 실시예 1-1 내지 1-6 및 비교예 1-1, 1-2에서 제조한 양극 활물질을 각각 포함하는 리튬 이차전지(실시예 2-1 내지 2-6 및 비교예 2-1, 2-2)에 대하여 사이클 수에 따른 용량 감소율을 알아보기 위해 하기와 같은 방법으로 전기화학 평가 실험을 수행하였다.Lithium secondary batteries (Examples 2-1 to 2-6 and Comparative Examples 2-1 and 2) including the cathode active materials prepared in Examples 1-1 to 1-6 and Comparative Examples 1-1 and 1-2, respectively In order to determine the rate of capacity reduction according to the number of cycles, the electrochemical evaluation experiment was performed as follows.
구체적으로, 사이클 특성 평가는 상기 실시예 2-1 내지 2-6및 비교예 2-1, 2-2에서 제조한 리튬 이차전지를 25 ℃에서 0.5C의 정전류(CC) 4.25V가 될 때까지 충전하고, 이후 4.25V의 정전압(CV)으로 충전하여 충전전류가 0.05mAh가 될 때까지 1회째의 충전을 행하였다. 이후 20분간 방치한 다음 1C의 정전류로 3.0V가 될 때까지 방전하였다(cut-off는 0.05C로 진행하였다). 이를 통해 1 내지 50 회의 사이클로 반복 실시하였다. 그 결과를 도 5에 나타내었다.Specifically, the cycle characteristics evaluation was performed for the lithium secondary batteries prepared in Examples 2-1 to 2-6 and Comparative Examples 2-1 and 2-2 until the constant current (CC) of 4.25V of 0.5C at 25 ℃. After charging, the battery was charged at a constant voltage (CV) of 4.25V and charged for the first time until the charging current became 0.05 mAh. After standing for 20 minutes, the battery was discharged until it became 3.0V with a constant current of 1C (cut-off proceeded to 0.05C). This was repeated in 1 to 50 cycles. The results are shown in FIG.
도 5에 나타난 바와 같이, 나노졸을 이용하여 코팅층을 형성한 실시예 1-1 내지 1-6의 양극 활물질을 포함하는 리튬 이차전지(실시예 2-1 내지 2-6)는, 표면코팅층을 형성하지 않은 비교예 1-1 및 통상의 건식 혼합법에 따라 코팅층을 형성한 비교예 1-2-의 활물질을 각각 포함하는 리튬 이차전지(비교예 2-1 및 2-2)에 비해 현저히 개선된 사이클 특성을 나타내었다.As shown in FIG. 5, the lithium secondary batteries (Examples 2-1 to 2-6) including the positive electrode active materials of Examples 1-1 to 1-6, in which a coating layer was formed using nanosols, may have a surface coating layer. Significant improvement compared to lithium secondary batteries (Comparative Examples 2-1 and 2-2) each containing the active material of Comparative Example 1-1 and Comparative Example 1-2-, in which a coating layer was formed according to a conventional dry mixing method. Cycle characteristics.
상세하게는, LiNi0 . 6Mn0 . 2Co0 . 2O2 산화물 표면에 YSZ 코팅층을 형성하지 않은 비교예 1-1의 양극 활물질을 포함하는 비교예 2-1의 전지는, 전지 사이클 횟수가 증가함에 따라 용량 감소가 크게 일어남을 확인 할 수 있다. 또, LiNi0 . 6Mn0 . 2Co0 . 2O2 산화물 표면에 YSZ 코팅층을 형성한 경우, YSZ 나노입자가 균일하게 코팅된 실시예 1-1의 양극 활물질을 포함하는 실시예 2-1의 전지는, YSZ가 불균일하게 코팅된 비교예 1-2의 양극 활물질을 포함하는 비교예 2-2의 전지에 비해 용량 감소가 더 적었다. Specifically, LiNi 0 . 6 Mn 0 . 2 Co 0 . 2 O 2 In the battery of Comparative Example 2-1 including the positive electrode active material of Comparative Example 1-1, in which the YSZ coating layer was not formed on the oxide surface, it can be confirmed that the capacity decreases as the number of battery cycles increases. In addition, LiNi 0 . 6 Mn 0 . 2 Co 0 . 2 O 2 When the YSZ coating layer was formed on the oxide surface, the battery of Example 2-1 including the positive electrode active material of Example 1-1 in which YSZ nanoparticles were uniformly coated, was prepared in Comparative Example 1-2 in which YSZ was unevenly coated. The capacity decrease was less than that of the battery of Comparative Example 2-2 containing the positive electrode active material.
이로부터 본 발명에 따른 제조방법에 의해 LiNi0 . 6Mn0 . 2Co0 . 2O2 산화물 표면에 세라믹계 이온전도체의 코팅층이 균일하게 형성된 양극 활물질을 포함하는 리튬 이차전지는, 용량 감소가 최소화되고, 그 결과로 보다 우수한 사이클 특성을 나타냄을 확인하였다.From this by LiNi 0 . 6 Mn 0 . 2 Co 0 . 2 O 2 It was confirmed that the lithium secondary battery including the positive electrode active material in which the coating layer of the ceramic ion conductor was uniformly formed on the oxide surface, the capacity reduction was minimized, and as a result, exhibited better cycle characteristics.

Claims (29)

  1. 리튬 복합금속 산화물 입자를 세라믹계 이온전도체의 나노졸과 혼합하고 열처리하여, 리튬 복합금속 산화물 입자 상에 세라믹계 이온전도체를 포함하는 코팅층을 형성하는 단계를 포함하는 양극 활물질의 제조방법.Mixing the lithium composite metal oxide particles with the nano-sol of the ceramic-based ion conductor and heat treatment, to form a coating layer comprising a ceramic-based ion conductor on the lithium composite metal oxide particles.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 세라믹계 이온전도체는 지르코니아계 세라믹, 세리아계 세라믹, 란타늄계 세라믹 및 이들의 서멧으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 양극 활물질의 제조방법.The ceramic ion conductor comprises a zirconia-based ceramics, ceria-based ceramics, lanthanum-based ceramics and any one or two or more mixtures selected from the group consisting of cermets thereof.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 세라믹계 이온전도체는 이트리아 안정화 지르코니아, 가돌리니아 도핑된 세리아, 사마륨 도핑된 세리아, 란타늄 스트론튬 코발트 페라이트, 란타늄 스트론튬 갈레이트 마그네사이트, 란타늄 스트론튬 망가네이트, 칼시아 안정화 지르코니아, 스칸디아 안정화 지르코니아 및 니켈-이트리아 안정화 지르코니아 서멧으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 양극 활물질의 제조방법.The ceramic ion conductor is yttria stabilized zirconia, gadolinia doped ceria, samarium doped ceria, lanthanum strontium cobalt ferrite, lanthanum strontium gallate magnesite, Lanthanum strontium manganate, Calcia stabilized zirconia, Scandia stabilized zirconia and Nickel-yttria stabilized zirconia cermet comprising any one or a mixture of two or more selected from the group consisting of.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 세라믹계 이온전도체는 이트리아 안정화 지르코니아, 칼시아 안정화 지르코니아, 가돌리니아 도핑된 세리아, 란타늄 스트론튬 갈레이트 마그네사이트 및 스칸디아 안정화 지르코니아로 이루어진 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 양극 활물질의 제조방법.The ceramic ion conductor includes a cathode active material comprising one or two or more selected from the group consisting of yttria stabilized zirconia, calcia stabilized zirconia, gadolinia doped ceria, lanthanum strontium gallate magnesite and scandia stabilized zirconia Manufacturing method.
  5. 제 4 항에 있어서, The method of claim 4, wherein
    상기 이트리아 안정화 지르코니아는 Zr(1-x)YxO2 -x/2 (0.01≤x≤0.30)인 것인 양극 활물질의 제조방법.The yttria stabilized zirconia is Zr (1-x) Y x O 2 -x / 2 (0.01≤x≤0.30) method of producing a positive electrode active material.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    상기 칼시아 안정화 지르코니아는 칼시아 안정화 지르코니아 총 중량에 대해 CaO를 1몰% 내지 20몰%로 포함하는 것인 양극 활물질의 제조방법.The calcia stabilized zirconia is a method for producing a positive electrode active material containing CaO in 1 mol% to 20 mol% relative to the total weight of calcia stabilized zirconia.
  7. 제 4 항에 있어서,The method of claim 4, wherein
    상기 스칸디아 안정화 지르코니아는 (ZrO2)1- 2x(Sc2O3)X, (ZrO2)1- 2x(Sc2O3)x -z(Y2O3)z 및 (Zr02)1-2x- z(Sc2O3)x(CeO2)z(0.01≤x≤0.2, 0.01≤z≤0.l)로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 양극 활물질의 제조방법.The scandia stabilized zirconia (ZrO 2) 1- 2x (Sc 2 O 3) X, (ZrO 2) 1 - 2x (Sc 2 O 3) x -z (Y 2 O 3) z , and (Zr0 2) 1- 2x- z (Sc 2 O 3 ) x (CeO 2 ) z (0.01≤x≤0.2, 0.01≤z≤0.l) comprising any one or a mixture of two or more selected from the group consisting of Manufacturing method.
  8. 제 1 항에 있어서, The method of claim 1,
    상기 세라믹계 이온전도체는 비정질인 것인 양극 활물질의 제조방법.The ceramic ion conductor is a method of manufacturing a positive electrode active material that is amorphous.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 세라믹계 이온전도체는 수산화물 형태를 갖는 것인 양극 활물질의 제조방법.The ceramic ion conductor is a method of producing a positive electrode active material having a hydroxide form.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 세라믹계 이온전도체의 평균 입경(D50)이 1 nm 내지 100 nm인 것인 양극 활물질의 제조방법.Method for producing a positive electrode active material having an average particle diameter (D 50 ) of the ceramic ion conductor is 1 nm to 100 nm.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 세라믹계 이온전도체의 나노졸은, 글리콜계 용매 중에 세라믹계 이온전도체 형성용 금속의 전구체를 용해시켜 반응시킨 후, 물을 첨가하여 제조되는 것인 양극 활물질의 제조방법.The nanosol of the ceramic ion conductor is prepared by dissolving and reacting a precursor of a metal for forming a ceramic ion conductor in a glycol solvent and then adding water to prepare a cathode active material.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 글리콜계 용매는 에틸렌 글리콜, 프로필렌 글리콜, 디에틸렌 글리콜, 트리에틸렌 글리콜 및 폴리에틸렌 글리콜로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 양극 활물질의 제조방법.The glycol solvent is a method for producing a positive electrode active material comprising any one or a mixture of two or more selected from the group consisting of ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol and polyethylene glycol.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 세라믹계 이온전도체 형성용 금속의 전구체의 용해 후 물을 첨가하기 전에, 120 ℃ 내지 글리콜계 용매의 비점 이하의 온도에서 열처리하는 공정이 더 수행되는 것인 양극 활물질의 제조방법.The method of manufacturing a positive electrode active material is further carried out a step of heat treatment at a temperature of 120 ℃ to below the boiling point of the glycol solvent before the addition of water after the dissolution of the precursor of the metal for forming a ceramic-based ion conductor.
  14. 제 1 항에 있어서,The method of claim 1,
    상기 세라믹계 이온전도체의 나노졸은, 양극 활물질 총 중량에 대하여 상기 세라믹계 이온전도체의 함량이 50ppm 내지 300,000ppm이 되도록 하는 양으로 사용되는 것인 양극 활물질의 제조방법.The nano-sol of the ceramic ion conductor is used in an amount such that the content of the ceramic ion conductor is 50ppm to 300,000ppm with respect to the total weight of the positive electrode active material.
  15. 제 1 항에 있어서,The method of claim 1,
    상기 세라믹계 이온전도체의 나노졸은, 알루미늄(Al), 니오븀(Nb), 티타늄(Ti), 텅스텐(W), 몰리브덴(Mo), 크롬(Cr), 구리(Cu), 바나듐(V) 및 아연(Zn)으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 금속을 더 포함하거나, 또는 상기한 금속을 포함하는 나노졸과 함께 혼합 사용되는 것인 양극 활물질의 제조방법.The nano-sol of the ceramic ion conductor may include aluminum (Al), niobium (Nb), titanium (Ti), tungsten (W), molybdenum (Mo), chromium (Cr), copper (Cu), vanadium (V), and Zinc (Zn) further comprises any one or two or more metals selected from the group consisting of, or is used in combination with a nanosol containing the above metals.
  16. 제 1 항에 있어서,The method of claim 1,
    상기 열처리는 100 ℃ 내지 600 ℃의 온도 범위에서 수행되는 것인 양극 활물질의 제조방법.The heat treatment is a method of producing a positive electrode active material is carried out in a temperature range of 100 ℃ to 600 ℃.
  17. 제 1 항 내지 제 16 항 중 어느 한 항에 따른 제조방법에 의해 제조되며,It is prepared by the manufacturing method according to any one of claims 1 to 16,
    리튬 복합금속 산화물의 입자; 및 상기 리튬 복합금속 산화물 입자 상에 위치하는 코팅층을 포함하고,Particles of a lithium composite metal oxide; And a coating layer on the lithium composite metal oxide particles.
    상기 코팅층은 세라믹계 이온전도체를 포함하는 것인 양극 활물질.The coating layer is a positive electrode active material containing a ceramic-based ion conductor.
  18. 제 17 항에 있어서,The method of claim 17,
    상기 리튬 복합금속 산화물은 하기 화학식 1의 화합물을 포함하는 것인 양극 활물질.The lithium composite metal oxide is a positive electrode active material comprising a compound of formula (1).
    <화학식 1><Formula 1>
    Li1+aNi1-b-cMnbCocO2 Li 1 + a Ni 1-bc Mn b Co c O 2
    (상기 화학식 1에서, 0≤a≤0.33, 0≤b≤0.5 및 0≤c≤0.5이다)(In Formula 1, 0≤a≤0.33, 0≤b≤0.5 and 0≤c≤0.5)
  19. 제 18 항에 있어서,The method of claim 18,
    상기 화학식 1에 있어서, 0≤a≤0.09인 양극 활물질.In Chemical Formula 1, 0 ≦ a ≦ 0.09.
  20. 제 17 항에 있어서,The method of claim 17,
    상기 세라믹계 이온전도체는 X선 분석시 단일상 피크를 갖는 것인 양극 활물질.The ceramic ion conductor has a single phase peak during X-ray analysis.
  21. 제 17 항에 있어서,The method of claim 17,
    상기 세라믹계 이온전도체는 비정질인 것인 것인 양극 활물질.The ceramic active material is an anode active material that is amorphous.
  22. 제 17 항에 있어서,The method of claim 17,
    상기 코팅층은 Al, Nb, Ti, W, Mo, Cr, Cu, V 및 Zn으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 금속을 포함하는 금속 산화물을 더 포함하는 것인 양극 활물질.The coating layer further comprises a metal oxide including any one selected from the group consisting of Al, Nb, Ti, W, Mo, Cr, Cu, V and Zn or two or more metals thereof.
  23. 제 17 항에 있어서,The method of claim 17,
    평균 입경(D50)이 3㎛ 내지 25 ㎛인 양극 활물질.A cathode active material having an average particle diameter (D 50 ) of 3 µm to 25 µm.
  24. 제 17 항에 따른 양극 활물질을 포함하는 양극.A positive electrode comprising the positive electrode active material according to claim 17.
  25. 제 24 항에 따른 양극을 포함하는 리튬 이차전지.Lithium secondary battery comprising a positive electrode according to claim 24.
  26. 제 25 항에 따른 리튬이차전지를 단위셀로 포함하는 전지모듈.A battery module comprising the lithium secondary battery according to claim 25 as a unit cell.
  27. 제 26 항에 따른 전지모듈을 포함하는 전지팩.A battery pack comprising a battery module according to claim 26.
  28. 제 27 항에 있어서,The method of claim 27,
    중대형 디바이스의 전원으로 사용되는 것인 전지팩.Battery pack that is used as a power source for medium and large devices.
  29. 제 28 항에 있어서,The method of claim 28,
    상기 중대형 디바이스가 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 것인 전지팩.The medium-to-large device is a battery pack that is selected from the group consisting of electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles and power storage systems.
PCT/KR2015/013267 2014-12-05 2015-12-04 Cathode active material, method for manufacturing same, and lithium secondary battery comprising same WO2016089177A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/531,107 US10374227B2 (en) 2014-12-05 2015-12-04 Positive electrode active material, method for preparing the same and lithium secondary battery including the same
JP2017529380A JP6472520B2 (en) 2014-12-05 2015-12-04 Method for producing positive electrode active material
EP15865992.0A EP3229295B1 (en) 2014-12-05 2015-12-04 Method for manufacturing a cathode active material
CN201580066090.7A CN107004841B (en) 2014-12-05 2015-12-04 Positive electrode active material, method of preparing the same, and lithium secondary battery comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0174080 2014-12-05
KR20140174080 2014-12-05
KR10-2015-0172360 2015-12-04
KR1020150172360A KR101777022B1 (en) 2014-12-05 2015-12-04 Positive electrode active material, method for preparing the same and lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
WO2016089177A1 true WO2016089177A1 (en) 2016-06-09

Family

ID=56092037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013267 WO2016089177A1 (en) 2014-12-05 2015-12-04 Cathode active material, method for manufacturing same, and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2016089177A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055900A (en) * 2018-05-21 2020-12-08 株式会社Lg化学 Positive electrode for secondary battery and secondary battery comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813014B1 (en) * 2006-10-12 2008-03-13 한국과학기술연구원 Surface-modified cathode materials with an aqueous alumina sol and a method for preparing the same
KR20120012628A (en) * 2010-08-02 2012-02-10 한국과학기술연구원 Surface-modified cathode active material for a lithium secondary battery and the fabrication method thereof
JP2012138197A (en) * 2010-12-24 2012-07-19 Asahi Glass Co Ltd Positive electrode active material for lithium ion secondary battery, positive electrode, lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary battery
KR20130016399A (en) * 2006-03-02 2013-02-14 에이지씨 세이미 케미칼 가부시키가이샤 Positive electrode active material for rechargeable battery with nonaqueous electrolyte and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130016399A (en) * 2006-03-02 2013-02-14 에이지씨 세이미 케미칼 가부시키가이샤 Positive electrode active material for rechargeable battery with nonaqueous electrolyte and method for manufacturing the same
KR100813014B1 (en) * 2006-10-12 2008-03-13 한국과학기술연구원 Surface-modified cathode materials with an aqueous alumina sol and a method for preparing the same
KR20120012628A (en) * 2010-08-02 2012-02-10 한국과학기술연구원 Surface-modified cathode active material for a lithium secondary battery and the fabrication method thereof
JP2012138197A (en) * 2010-12-24 2012-07-19 Asahi Glass Co Ltd Positive electrode active material for lithium ion secondary battery, positive electrode, lithium ion secondary battery, and method for manufacturing positive electrode active material for lithium ion secondary battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CUI, YAN ET AL.: "Improved Electrochemical Performance of La0.7Si0.3MnO3 and Carbon Co-coated LiFePO4 Synthesized by Freeze-Drying Process", ELECTROCHIMICA ACTA, vol. 55, no. 3, 2010, pages 922 - 926, XP055291511 *
FEY, GEORGE TING - KUO ET AL.: "Thermal and Electrochemical Behavior of Yttria- stabilized Zirconia coated LiCoO2 during Overcharge Tests", JOURNAL OF POWER SOURCES, vol. 189, no. 1, 2009, pages 837 - 840, XP025982812, DOI: doi:10.1016/j.jpowsour.2008.07.016 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055900A (en) * 2018-05-21 2020-12-08 株式会社Lg化学 Positive electrode for secondary battery and secondary battery comprising same
US11909029B2 (en) 2018-05-21 2024-02-20 Lg Chem, Ltd. Positive electrode having lithium transition metal oxide containing nickel, cobalt and manganese for secondary battery and secondary battery including the same

Similar Documents

Publication Publication Date Title
EP3229295B1 (en) Method for manufacturing a cathode active material
US10637056B2 (en) Method of preparing positive electrode active material for secondary battery and positive electrode active material for secondary battery prepared thereby
US10340517B2 (en) Positive electrode active material, method for preparing the same and lithium secondary battery including the same
WO2017057900A1 (en) Cathode active material for secondary battery and secondary battery comprising same
EP3062373B1 (en) Cathode active material, method for preparing same, and lithium secondary battery comprising same
WO2016068594A1 (en) Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising anode active material
WO2015012648A1 (en) Polycrystalline lithium manganese oxide particles, method for preparing same, and anode active material containing polycrystalline lithium manganese oxide particles
WO2017150945A1 (en) Precursor of positive electrode active material for secondary battery and positive electrode active material prepared using same
WO2011105832A2 (en) High-capacity positive electrode active material and lithium secondary battery comprising same
WO2021080374A1 (en) Method for preparing positive electrode active material precursor and positive electrode active material precursor
WO2016089176A1 (en) Cathode active material, method for preparing same, and lithium secondary battery comprising same
WO2022080710A1 (en) Composite transition metal precursor for cathode active material, and secondary battery cathode active material prepared therefrom
WO2018052210A1 (en) Cobalt oxide for lithium secondary battery, manufacturing method therefor, lithium cobalt oxide for lithium secondary battery formed therefrom, and lithium secondary battery having cathode including same
WO2016089177A1 (en) Cathode active material, method for manufacturing same, and lithium secondary battery comprising same
WO2022092488A1 (en) Cathode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2015047025A1 (en) Cathode active material for secondary battery, method for preparing same, and cathode for lithium secondary battery comprising same
WO2018008952A1 (en) Method for manufacturing positive electrode active material for secondary battery and positive electrode active material for secondary battery, manufactured according to same
WO2017095139A1 (en) Positive electrode active materials for secondary battery and secondary battery comprising same
WO2022211507A1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery comprising same
WO2023121155A1 (en) Positive electrode active material for rechargeable lithium battery, positive electrode including same, and rechargeable lithium battery including same
WO2023033606A1 (en) Positive electrode active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
WO2019147002A1 (en) Cathode active material for lithium secondary battery, cathode including same, and lithium secondary battery including same
WO2019083179A1 (en) Composite positive electrode active material, method for preparing same, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15531107

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015865992

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017529380

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE