KR20120012628A - Surface-modified cathode active material for a lithium secondary battery and the fabrication method thereof - Google Patents

Surface-modified cathode active material for a lithium secondary battery and the fabrication method thereof Download PDF

Info

Publication number
KR20120012628A
KR20120012628A KR1020100074707A KR20100074707A KR20120012628A KR 20120012628 A KR20120012628 A KR 20120012628A KR 1020100074707 A KR1020100074707 A KR 1020100074707A KR 20100074707 A KR20100074707 A KR 20100074707A KR 20120012628 A KR20120012628 A KR 20120012628A
Authority
KR
South Korea
Prior art keywords
active material
positive electrode
ito
electrode active
manufacturing
Prior art date
Application number
KR1020100074707A
Other languages
Korean (ko)
Other versions
KR101223482B1 (en
Inventor
임경란
김창삼
권순호
조병원
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020100074707A priority Critical patent/KR101223482B1/en
Publication of KR20120012628A publication Critical patent/KR20120012628A/en
Application granted granted Critical
Publication of KR101223482B1 publication Critical patent/KR101223482B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: A manufacturing method of a positive electrode active material is provided to manufacture LMO powder in which nano-sized ITO crystals are uniformly coated on the surface of LMO powder without cohesion, thereby manufacturing powders having simple processes and remarkably improved characteristics. CONSTITUTION: A manufacturing method of a positive electrode active material comprise: a step of forming ITO sol by mixing indium acetate and tin chloride in solvent; a step of forming a ITO layer on the surface of a positive electrode active material by mixing the ITO sol and the positive electrode active material and drying the mixture; and a step of forming positive electrode active material powder in which nano ITO particles are coated by crystallizing the ITO by high-temperature heat treating the positive electrode active material.

Description

표면 개질된 리튬 이차전지용 양극 활물질 및 그 제조방법 {SURFACE-MODIFIED CATHODE ACTIVE MATERIAL FOR A LITHIUM SECONDARY BATTERY AND THE FABRICATION METHOD THEREOF}Surface-Modified Cathode Active Material for Lithium Secondary Battery and Its Manufacturing Method {SURFACE-MODIFIED CATHODE ACTIVE MATERIAL FOR A LITHIUM SECONDARY BATTERY AND THE FABRICATION METHOD THEREOF}

본 발명은 리튬 이차전지용 양극 활물질 및 그 제조방법에 관한 것으로서, 보다 구체적으로는 양극 활물질 표면이 나노 입자 등으로 표면 개질되어 이차전지의 성능향상에 기여하는 양극 활물질 및 그 제조방법에 관한 것이다.The present invention relates to a positive electrode active material for a lithium secondary battery and a method of manufacturing the same, and more particularly, to a positive electrode active material and a method of manufacturing the surface of the positive electrode active material is surface-modified with nanoparticles, etc. to improve the performance of the secondary battery.

포터블 기기의 보급에 따라 리튬 이차전지에 대한 수요는 계속 늘어날 것으로 예상된다. 현재 가장 널리 사용되고 있는 LiCoO2, Li(CoxNiyMn(1-x-y))O2에 비하여, Mn계 양극 활물질인 리튬 망간 스피넬 산화물(LiMn2O4, 이하 LMO)은 합성이 쉽고 가격이 저렴하고 안정성이 우수하며 인체에 무해한 장점이 있으나, 이론 용량이 148 mAh/g로 리튬코발트계 산화물 (LCO)보다 낮은 문제점이 있다. 특히 고온(55℃)에서 충방전이 계속됨에 따라 용량이 급속히 떨어지는 현상으로 인하여 실제 널리 사용되지 못하고 있다. With the spread of portable devices, demand for lithium secondary batteries is expected to increase. Compared to LiCoO 2 and Li (Co x Ni y Mn (1-xy) ) O 2 which are widely used at present, lithium manganese spinel oxide (LiMn 2 O 4 , LMO), an Mn-based cathode active material, is easy to synthesize and Inexpensive, excellent stability and harmless to the human body, but the theoretical capacity of 148 mAh / g has a lower problem than lithium cobalt oxide (LCO). In particular, due to the phenomenon that the capacity is rapidly falling as the charge and discharge continues at a high temperature (55 ℃) it is not widely used.

이러한 용량 감소의 원인으로 Mn2 +의 용출, Jahn-Teller distortion of Mn3 +, 전극에서의 전해질 분해 등이 있다. 특히 이 중에서 Mn2 +이 용출되어 전해질로 들어가는 것이 주원인으로 파악되고 있다. 이러한 현상은 전지의 충방전 과정에서 전극과 전해질 사이의 계면에서 일어난다. Mn2 +와 전해질 간의 접촉을 줄이기 위한 방법으로, 양극 활물질 표면을 산화물 또는 비산화물로 코팅하는 방법이 많이 보고되어 있다. "A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery (Ionics (2009) 15, 779-784)"에 의하면, 산화물 코팅 물질로는 알루미나, MgO, ZnO, CeO2, 실리카, ZrO2, SnO2 등이, 비산화계로는 AlPO4, 금속으로는 Ag, Au, 전극물질인 LiCoO2 등이 제안되어 있으며, 카본 재료, SrF2, BiOF, Li2O-2B2O3도 시도되었다.This dose causes the elution of Mn + 2 in the reduction, Jahn-Teller distortion of Mn 3 +, there are electrolytes such as decomposition of the electrode. In particular, from being identified as the main reason it is that Mn 2 + are eluted into the electrolyte. This phenomenon occurs at the interface between the electrode and the electrolyte during the charge and discharge of the battery. As a way to reduce the contact between the Mn + 2 and the electrolyte, a method for coating the positive electrode active material surface with an oxide or non-oxide it has been reported a lot. According to "A review of recent developments in the surface modification of LiMn 2 O 4 as cathode material of power lithium-ion battery (Ionics (2009) 15, 779-784), oxide coating materials include alumina, MgO, ZnO, CeO 2 , silica, ZrO 2 , SnO 2 , AlPO 4 as a non-oxidation system, Ag, Au as a metal, LiCoO 2 as an electrode material, etc. are proposed, and carbon materials, SrF 2 , BiOF, Li 2 O— 2B 2 O 3 was also tried.

표면 개질을 통하여 LMO의 사이클 특성은 향상될 수 있다. 전도성 물질을 코팅한 경우는 전해질과의 계면 반응 외에 계면의 낮은 저항이 특성 향상에 기여하는 것으로 사료되고 있다. 한국특허 10-2008-0005995에서는 LiCoO2 계 전극물질을 슬러리로 LMO 분말 코팅에 사용하였으며, 코팅양을 0.5 ~ 12 중량%로 할 것을 제안하고 있다. 산화물이며 전도성 물질인 인듐주석산화물 (ITO)의 경우에는, US 6,534,217에서는 ITO 분말을 LMO 분말과 혼합한 후 700℃에서 열처리한 다음 분쇄하였으며, ITO의 양은 4 ~ 10 몰%를 사용하여 성능을 향상시켰다. 한국특허 10-2005-0048452에서는 ITO를 인듐 질산염과 부톡시주석의 알콜 용액을 사용하여 LMO 표면에 입히는 방법과 ITO로 코팅된 양극 활물질을 제안하고 있고, 한국특허 10-2005-0048453에서는 인듐염과 주석염의 수용액에 킬레이팅 화합물을 첨가한 용액, 또는 인듐염과 주석염의 수용액의 수산화 침전물을 양극 활물질 표면에 입히는 표면 개질 방법을 제안하고 있다.Through surface modification, the cycle characteristics of the LMO can be improved. In the case of coating a conductive material, it is considered that the low resistance of the interface contributes to the improvement of properties in addition to the interface reaction with the electrolyte. In Korean Patent 10-2008-0005995, LiCoO 2- based electrode material was used for LMO powder coating as a slurry, and a coating amount of 0.5 to 12 wt% is proposed. In the case of indium tin oxide (ITO), an oxide and a conductive material, in US 6,534,217, ITO powder was mixed with LMO powder, heat treated at 700 ° C, and then pulverized, and the amount of ITO was improved by using 4 to 10 mol%. I was. Korean Patent No. 10-2005-0048452 proposes a method of coating ITO on an LMO surface using an alcohol solution of indium nitrate and butoxytin, and a cathode active material coated with ITO. In Korean Patent 10-2005-0048453, A surface modification method is proposed in which a chelating compound is added to an aqueous solution of tin salt, or a hydroxide precipitate of an aqueous solution of indium salt and tin salt is coated on the surface of the positive electrode active material.

이와 같은 종래의 방법들의 경우에는 비교적 많은 양의 ITO 전구체를 사용하고도 양극 활물질의 표면을 균일하게 코팅할 수 없는 문제점이 있다. 따라서 효과적인 표면 개질이 이루어지지 않게 되는바, 양극 활물질 표면을 ITO로 코팅하는 간단한 공정 개발이 요구되고 있다. Such conventional methods have a problem that the surface of the positive electrode active material cannot be uniformly coated even when a relatively large amount of ITO precursor is used. Therefore, the effective surface modification is not made, it is required to develop a simple process for coating the surface of the positive electrode active material with ITO.

본 발명의 목적은 비수계 (非水係)에서 간단한 공정을 통하여 불순물 도입의 우려 없이 LMO 분말의 표면을 전기 전도도가 높은 ITO 나노 입자로 코팅하여 열적 안정성을 향상시키고, 이를 전극 소자에 이용한 전지의 특성을 향상시키는 것이다.An object of the present invention is to improve the thermal stability by coating the surface of the LMO powder with high electrical conductivity ITO nanoparticles without fear of introducing impurities through a simple process in a non-aqueous system, to improve the thermal stability, It is to improve the characteristics.

본 발명의 이차전지용 양극 활물질의 제조방법은 (1) 용매에 초산인듐과 염화주석을 혼합하여 ITO 졸을 형성하는 단계, (2) 상기 ITO 졸과 양극 활물질을 혼합하고 건조하여 상기 양극 활물질의 표면에 ITO 막을 형성하는 단계 및 (3) 단계 (2)를 거친 ITO 막이 형성된 양극 활물질을 고온열처리하여 ITO를 결정화시켜 나노 ITO 입자가 코팅된 양극 활물질 분말을 형성하는 단계를 포함하여 이루어진다.The method of manufacturing a cathode active material for a secondary battery of the present invention comprises the steps of: (1) mixing an indium acetate and tin chloride in a solvent to form an ITO sol, (2) mixing and drying the ITO sol and a cathode active material to form a surface of the cathode active material. Forming an ITO film in (3) and forming a cathode active material powder coated with nano ITO particles by crystallizing ITO by high temperature heat treatment of the cathode active material having the ITO film formed through the step (2).

본 발명의 이차전지용 양극의 제조방법은 상기의 방법으로 제조된 양극 활물질, 도전재 및 바인더를 혼합하여 슬러리를 형성하는 단계 및 상기 슬러리를 박막에 도포하고 진공 건조하여 양극을 형성하는 단계를 포함하여 이루어지고, 본 발명의 이차전지의 제조방법은 상기의 방법으로 제조된 양극과 상대 전극을 형성하는 단계 및 상기 양극 및 상대전극 사이에 전해질 및 분리판을 형성하는 단계를 포함하여 이루어진다.Method of manufacturing a positive electrode for a secondary battery of the present invention comprises the steps of forming a slurry by mixing a positive electrode active material, a conductive material and a binder prepared by the above method and applying the slurry to a thin film and vacuum drying to form a positive electrode The method of manufacturing a secondary battery according to the present invention includes forming a positive electrode and a counter electrode manufactured by the above method, and forming an electrolyte and a separator between the positive electrode and the counter electrode.

본 발명의 제조방법에 의하여, 비수계 ITO 졸을 LMO 분말과 단순히 혼합, 건조, 열처리하여, 응집이 없이 나노 크기의 ITO 결정이 LMO 분말의 표면에 고르게 코팅된 LMO 분말을 제조함으로써, 제조 공정이 간단하고 특성이 크게 향상된 분말을 얻을 수 있다.According to the production method of the present invention, the non-aqueous ITO sol is simply mixed with LMO powder, dried, and heat treated to produce LMO powder in which nano-sized ITO crystals are evenly coated on the surface of the LMO powder without aggregation. Simple and greatly improved powders can be obtained.

본 발명의 제조방법에 따르면, 리튬 이차전지의 양극 활물질의 표면을 전기전도도가 높은 물질인 ITO 나노입자로 코팅함으로써, 양극 활물질과 전해액과의 반응을 억제하여, 양극 활물질의 구조를 안정화시키며, 양극 활물질의 전자전도도를 향상시켜 이를 이용한 전지의 고율 특성, 수명 특성 및 열적 안정성을 향상시킬 수 있다. 또한 코팅 공정이 간단하고, 사용하는 ITO의 양도 적은 이점이 있다.According to the manufacturing method of the present invention, by coating the surface of the positive electrode active material of the lithium secondary battery with ITO nanoparticles of a material having high electrical conductivity, the reaction between the positive electrode active material and the electrolyte is suppressed, thereby stabilizing the structure of the positive electrode active material, the positive electrode By improving the electronic conductivity of the active material, it is possible to improve high rate characteristics, life characteristics and thermal stability of the battery using the same. In addition, there is an advantage in that the coating process is simple and the amount of ITO used is small.

도 1은 LiMn2O4 원료 분말의 전계방사형 주사현미경 (FESEM) 사진이다.
도 2는 실시예 2에서 제조된 0.5 중량%의 ITO로 코팅된 LiMn2O4 분말의 전계방사주사현미경 사진이다.
도 3은 비교예 1, 실시예 1 및 실시예 2에서 제조된 각 전지들의 실온에서의 충방전 수명특성을 나타낸 그래프이다.
도 4는 비교예 1, 실시예 2 및 실시예 3에서 제조된 각 전지들의 실온에서의 충방전 수명특성을 나타낸 그래프이다.
도 5는 실시예 2와 비교예 1에서 제조된 전지의 55 ℃에서의 충방전 수명특성을 나타낸 그래프이다.
도 6은 실시예 2와 비교예 1에서 제조된 전지의 C-rate에 따른 충방전 수명 특성을 나타낸 그래프이다.
도 7은 비교예 1, 실시예 2 및 실시예 3을 양극으로 사용한 full cell의 55℃에서의 충방전 수명 특성의 그래프이다.
1 is a field emission scanning microscope (FESEM) photograph of LiMn 2 O 4 raw material powder.
2 is a field scanning microscope photograph of LiMn 2 O 4 powder coated with 0.5% by weight of ITO prepared in Example 2. FIG.
3 is a graph showing charge and discharge life characteristics at room temperature of each of the batteries prepared in Comparative Example 1, Example 1, and Example 2. FIG.
4 is a graph showing charge and discharge life characteristics at room temperature of each of the batteries prepared in Comparative Examples 1, 2, and 3;
5 is a graph showing charge and discharge life characteristics at 55 ° C. of the batteries prepared in Example 2 and Comparative Example 1. FIG.
Figure 6 is a graph showing the charge and discharge life characteristics according to the C-rate of the battery prepared in Example 2 and Comparative Example 1.
7 is a graph of charge and discharge life characteristics at 55 ° C. of a full cell using Comparative Examples 1, 2 and 3 as the positive electrode.

본 발명의 이차전지용 양극 활물질의 제조방법은 (1) 용매에 초산인듐과 염화주석을 혼합하여 ITO 졸을 형성하는 단계, (2) 상기 ITO 졸과 양극 활물질을 혼합하고 건조하여 상기 양극 활물질의 표면에 ITO 막을 형성하는 단계 및 (3) 단계 (2)를 거친 ITO 막이 형성된 양극 활물질을 고온열처리하여 ITO를 결정화시켜 나노 ITO 입자가 코팅된 양극 활물질 분말을 형성하는 단계를 포함하여 이루어진다.The method of manufacturing a cathode active material for a secondary battery of the present invention comprises the steps of: (1) mixing an indium acetate and tin chloride in a solvent to form an ITO sol, (2) mixing and drying the ITO sol and a cathode active material to form a surface of the cathode active material. Forming an ITO film in (3) and forming a cathode active material powder coated with nano ITO particles by crystallizing ITO by high temperature heat treatment of the cathode active material having the ITO film formed through the step (2).

ITO 졸과 혼합하는 양극 활물질은 큐빅구조를 갖는 스피넬 Li[Mn2-xMx]O4 (M은 Co, Ni, Mg 또는 Al이고, 0≤x≤0.1)이거나, 큐빅구조를 갖는 스피넬 Li[Ni0.5Mn1.5-xMx]O4 (M은 Co, Ni, Mg 또는 Al이고 0≤x≤0.1)이거나, Olivine 구조를 갖는 LiMxFe1 - xPO4 (M은 Mn, Co 또는 Ni이고, 0≤x≤1) 일 수 있다.The positive electrode active material mixed with the ITO sol is spinel Li [Mn 2-x M x ] O 4 having a cubic structure (M is Co, Ni, Mg or Al, and 0 ≦ x ≦ 0.1), or spinel Li having a cubic structure. [Ni 0.5 Mn 1.5-x M x ] O 4 (M is Co, Ni, Mg or Al and 0 ≦ x ≦ 0.1) or LiM x Fe 1 - x PO 4 (M is Mn, Co or Ni, and 0 ≦ x ≦ 1).

단계 (1)은 (a) 프로피온산과 부탄올 혼합용매에 인듐 화합물 및 염화주석 화합물을 분산시키고 가열하여 제1 인듐주석 산화물 졸을 제조하는 단계, (b) 디메틸포름아미드와 부탄올 혼합용매에 인듐 화합물 및 염화주석 화합물을 분산시키고 질산을 첨가한 후, 가열 및 급속 냉각하여 제2 인듐주석 산화물 졸을 제조하는 단계 및 (c) 상기 제2 인듐주석 산화물 졸에 상기 제1 인듐주석 산화물 졸을 첨가하면서 교반하여 혼합 인듐주석 산화물 졸을 생성시키는 단계를 포함하여 이루어질 수 있다.Step (1) comprises the steps of (a) dispersing the indium compound and tin chloride compound in a propionic acid and butanol mixed solvent and heating to prepare a first indium tin oxide sol, (b) an indium compound in a dimethylformamide and butanol mixed solvent and Dispersing the tin chloride compound and adding nitric acid, followed by heating and rapid cooling to prepare a second indium tin oxide sol and (c) adding the first indium tin oxide sol to the second indium tin oxide sol while stirring To form a mixed indium tin oxide sol.

단계 (3) 이후에, (4) 상기 나노 ITO 입자가 코팅된 양극 활물질 분말을 후열처리하는 단계를 더 포함할 수도 있다.After step (3), (4) may further comprise a post-heat treatment of the positive electrode active material powder coated with the nano ITO particles.

용매로는 에탄올, 프로판올, 이소프로판올, 부탄올, 아세틸아세톤, 에틸아세테이트, 디메틸포름아미트, 에탄올아민, 프로피온산 및 에틸렌글리콜로 이루어진 군에서 선택되는 적어도 어느 하나를 사용할 수 있다.As the solvent, at least one selected from the group consisting of ethanol, propanol, isopropanol, butanol, acetylacetone, ethyl acetate, dimethylformamide, ethanolamine, propionic acid and ethylene glycol can be used.

ITO 졸은 용액 중의 ITO의 농도가 0.1 내지 4 중량%일 수 있다.ITO sol may have a concentration of ITO in the solution of 0.1 to 4% by weight.

단계 (2)에서 ITO 졸과 LMO의 혼합비율은 중량비로 1 : 10 내지 1 : 1로 혼합할 수 있다.In step (2), the mixing ratio of ITO sol and LMO may be mixed in a weight ratio of 1:10 to 1: 1.

단계 (3)의 열처리는 공기 또는 불활성 가스 분위기 하에서 400 내지 700 ℃로 이루어질 수 있고, 단계 (4)의 후열처리는 환원 분위기 하에서 200 내지 400 ℃로 이루어질 수 있다.The heat treatment of step (3) may be made at 400 to 700 ° C. under air or inert gas atmosphere, and the post heat treatment of step (4) may be made at 200 to 400 ° C. under reducing atmosphere.

한편, 본 발명의 이차전지용 양극의 제조방법은 상기의 방법으로 제조된 양극 활물질을 도전재 및 바인더와 혼합하여 슬러리를 형성하는 단계 및 상기 슬러리를 박막에 도포하고 진공 건조하여 양극을 형성하는 단계를 포함하여 이루어진다.On the other hand, the secondary battery positive electrode manufacturing method of the present invention is a step of forming a slurry by mixing the positive electrode active material prepared by the above method with a conductive material and a binder and applying the slurry to a thin film and vacuum drying to form a positive electrode It is made to include.

양극 활물질과 도전재, 바인더의 혼합 비율은 양극 활물질 70 내지 97 중량%, 상기 도전재는 2 내지 20 중량%, 상기 바인더는 1 내지 10 중량%일 수 있다.The mixing ratio of the positive electrode active material, the conductive material and the binder may be 70 to 97% by weight of the positive electrode active material, 2 to 20% by weight of the conductive material, and 1 to 10% by weight of the binder.

양극 활물질에 전기 전도성을 부여하기 위해 혼합하는 도전재는 양극 활물질의 입자 크기에 영향을 받고, 일반적으로 2 내지 20 중량%을 넣어준다. 한편, 양극 활물질 재료와 집전체 간의 접착력을 향상시키기 위한 결합제로서의 바인더는 1 내지 10 %의 중량비로 혼합한다. 실질적인 혼합은, 이들을 분산제에 넣고 교반하여 페이스트를 제조한 후, 이를 금속 재료의 집전체에 도포하고 압축한 뒤 건조하여 라미네이트 형상의 양극을 제조한다.The conductive material mixed to impart the electrical conductivity to the positive electrode active material is influenced by the particle size of the positive electrode active material, generally 2 to 20% by weight. On the other hand, the binder as a binder for improving the adhesion between the positive electrode active material and the current collector is mixed in a weight ratio of 1 to 10%. Substantial mixing involves putting them into a dispersant and stirring to prepare a paste, which is then applied to a current collector of a metal material, compressed and dried to produce a laminate-shaped positive electrode.

도전재로는 일반적으로 카본 블랙이 사용되며, 현재 도전재로 시판되고 있는 상품으로는 아세틸렌 블랙계열 (쉐브론 케미컬 社 (Chevron Chemical Company) 또는 걸프 오일 社 (Gulf Oil Company) 등), 케트젠 블랙 (Ketjen Black) EC 계열 (아르막 社 (Armak Company)), 불칸 (Vulcan) XC-72 (캐보트 사 (Cabot Company)) 및 수퍼 P (뜨리엠 社 (MMM))등이 있다.Carbon black is generally used as a conductive material, and acetylene black series (Chevron Chemical Company, Gulf Oil Company, etc.) and Ketzen Black ( Ketjen Black) EC series (Armak Company), Vulcan XC-72 (Cabot Company), and Super P (Treem (MMM)).

바인더로는 일반적으로 폴리테트라플루오르에틸렌 (PTFE), 폴리비닐리덴 플루오라이드 (PVdF) 및 그 공중합체 또는 셀룰로오즈 등이 사용되고, 페이스트 형성을 위한 분산제로는 일반적으로 아이소프로필 알코올, N-메틸피롤리돈 (NMP) 또는 아세톤 등이 사용된다.As the binder, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF) and its copolymer or cellulose are generally used. As a dispersant for forming a paste, isopropyl alcohol, N-methylpyrrolidone is generally used. (NMP) or acetone or the like is used.

또한, 본 발명의 이차전지의 제조방법은 상기의 방법으로 제조된 양극과 상대 전극을 형성하는 단계 및 상기 양극 및 상대전극 사이에 전해질 및 분리판을 형성하는 단계를 포함하여 이루어진다.
In addition, the method of manufacturing a secondary battery of the present invention comprises the steps of forming a positive electrode and a counter electrode manufactured by the above method and forming an electrolyte and a separator between the positive electrode and the counter electrode.

실시예Example

이하 실시예들을 통하여 본 발명을 보다 상세하게 설명한다. 다만, 이는 본 발명의 일 실시예들일 뿐 본 발명이 이에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, this is only one embodiment of the present invention and the present invention is not limited thereto.

실시예 1 Example 1

여기서 사용한 ITO 졸은 본 발명자들에 의하여 개발된 ITO 졸 (한국특허 10-2010-0041416)을 혼합한 것으로 혼합유기용매에 농도가 2.0 중량%인 ITO [(In0.9Sn0.1)O2-x]의 투명한 용액이다. LMO (Citic Guoan Mengguli Power Source, China, 평균입도 11.31 ㎛) 50 g을 12.5 g의 ITO 졸에 밀링으로 2시간 동안 혼합한 후 건조한 다음 520 ℃에서 3시간 동안 공기 분위기 하에서 열처리하여 ITO가 코팅된 LMO 분말을 제조하였다.The ITO sol used here is a mixture of ITO sol (Korean Patent 10-2010-0041416) developed by the present inventors, and the concentration of ITO [(In 0.9 Sn 0.1 ) O 2-x ] of 2.0 wt% in the mixed organic solvent. Is a clear solution. 50 g of LMO (Citic Guoan Mengguli Power Source, China, average particle size 11.31 μm) was mixed with 12.5 g of ITO sol by milling for 2 hours, dried, and then heat-treated at 520 ° C. for 3 hours in an air atmosphere to form ITO-coated LMO. Powder was prepared.

ITO가 코팅된 LMO 분말과 도전재인 아세틸렌 블랙, 바인더로 폴리비닐리덴플르오라이드 (PVDF)를 90 : 5 : 5의 중량비로 혼합하여 만든 슬러리를 알루미늄 박 (foil)에 두께 20 ㎛이하로 균일하게 도포하고, 120 ℃에서 진공 건조하여 양극을 제조하였다. A slurry made by mixing ITO-coated LMO powder, acetylene black as a conductive material, and polyvinylidene fluoride (PVDF) with a binder in a weight ratio of 90: 5: 5 was uniformly mixed in an aluminum foil with a thickness of 20 μm or less. It was applied and dried in vacuo at 120 ℃ to prepare a positive electrode.

제조된 양극과, 리듐호일을 상대전극, 다공성 폴리에틸렌막을 분리막으로 하고, 에틸렌 카보네이트와 디에틸 카보네이트를 같은 부피로 혼합한 용매에 LiPF6를 1 몰이 되도록 만든 전해질을 사용하여 일반적인 제조 방법에 따라 코인 전지를 제조하였다. 제조된 코인 전지는 전기화학분석 장치를 사용하여 0.5 mA/cm2, 0.5 C, 3.4 내지 4.3 V에서 전기화학분석 (충방전 특성 평가)을 실시하였다.
Coin cell according to a general manufacturing method using a prepared positive electrode, a lithium foil as a counter electrode, a porous polyethylene membrane as an separator, and an electrolyte made of 1 mol of LiPF 6 in a solvent in which ethylene carbonate and diethyl carbonate were mixed in the same volume. Was prepared. The manufactured coin cell was subjected to electrochemical analysis (charge / discharge characteristic evaluation) at 0.5 mA / cm 2 , 0.5 C, 3.4 to 4.3 V using an electrochemical analysis device.

실시예 2Example 2

실시예 1에서 제조한 ITO가 코팅된 LMO 분말을 4% H2/Ar 흐름 (Ar 기체에 H2 4% 포함)분위기 (환원 분위기) 하에서 300 ℃로 30분간 후열처리 (환원처리)하였다. 후열처리를 한 것 외에는 실시예 1과 동일한 조건이었다. 이 분말을 사용하여 실시예 1에서 기술한 방법으로 전지를 제조하여 성능 실험을 하였다.
The ITO-coated LMO powder prepared in Example 1 was subjected to post-heat treatment (reduction treatment) at 300 ° C. for 30 minutes under a 4% H 2 / Ar flow (containing H 2 4% in Ar gas) atmosphere (reduction atmosphere). The conditions were the same as those in Example 1 except that the post-heat treatment was performed. Using this powder, a battery was produced by the method described in Example 1 and subjected to performance experiments.

실시예 3Example 3

LMO에 대하여 0.8 중량% ITO에 해당하는 2 중량% 농도의 ITO 졸을 사용한 것을 제외하고는 실시예 2와 동일하다.
Same as Example 2, except that a 2% by weight ITO sol corresponding to 0.8% by weight ITO relative to LMO was used.

비교예 1Comparative Example 1

구입한 LMO 분말을 표면개질처리 없이 110 ℃ 오븐에서 건조한 후 실시예 1에서와 같은 방법으로 코인 전지를 만들어 실시예 1에서와 같은 방법으로 전지 특성을 조사하였다.
The LMO powder purchased was dried in an oven at 110 ° C. without surface modification, and coin cells were produced in the same manner as in Example 1, and the battery characteristics were examined in the same manner as in Example 1.

도 1은 LiMn2O4 원료 분말의 전계방사형 주사현미경 (FESEM) 사진이고, 도 2는 실시예 2에서 제조된 0.5 중량%의 ITO로 코팅된 LiMn2O4 분말의 전계방사주사현미경 사진이다. 도 2를 살펴보면, 도 1에서와는 달리, 약 20 nm 크기의 ITO 입자가 LMO 표면에 코팅되어있는 것을 확인할 수 있다. 즉, 0.5 중량%의 ITO로도 충분한 코팅이 이루어지는 것을 확인할 수 있다.1 is a field emission scanning microscope (FESEM) picture of the LiMn 2 O 4 raw material powder, Figure 2 is a field emission scanning microscope picture of LiMn 2 O 4 powder coated with 0.5% by weight of ITO prepared in Example 2. Looking at Figure 2, unlike in Figure 1, it can be seen that the ITO particles of about 20 nm size is coated on the surface of the LMO. That is, it can be seen that sufficient coating is achieved even with 0.5% by weight of ITO.

도 3은 비교예 1 (코팅하지 않은 경우), 실시예 1 (0.5 중량% ITO 코팅하고 520 ℃에서 열처리한 경우) 및 실시예 2 (실시예 1과 동일한 처리 후 환원 분위기 하에서 300 ℃에서 후열처리한 경우)에서 제조된 각 전지들의 실온에서의 충방전 수명특성을 나타낸 그래프이다. 코팅하지 않은 비교예 1보다 특성이 우수하며, 후열처리를 통하여 환원처리한 것이 단순 열처리한 것보다 특성이 더 우수하게 측정되었다.FIG. 3 shows Comparative Examples 1 (without coating), Example 1 (with 0.5 wt% ITO coated and heat treated at 520 ° C.) and Example 2 (post heat treatment at 300 ° C. under a reducing atmosphere after the same treatment as Example 1 It is a graph showing the charge and discharge life characteristics at room temperature of each battery manufactured in one case). The characteristics were superior to Comparative Example 1, which was not coated, and the reduction treatment through post-heat treatment was better than that of simple heat treatment.

도 4는 비교예 1 (코팅하지 않은 경우), 실시예 2 (0.5 중량% ITO 코팅, 열처리 및 후열처리한 경우) 및 실시예 3 (0.8 중량% ITO 코팅, 열처리 및 후열처리한 경우)에서 제조된 각 전지들의 실온에서의 충방전 수명특성을 나타낸 그래프이다. ITO 코팅으로 충방전 특성이 크게 향상되었음을 확인할 수 있다. 코팅하지 않은 LMO 분말은 130 사이클에서부터 전지 용량이 떨어지기 시작하여 160 정도에서는 급격히 떨어지는데 반하여, 본 발명에 따라 표면이 ITO 코팅된 것은 200 사이클에서도 높은 용량을 유지하는 것을 확인할 수 있고, ITO 함량이 0.5 질량%인 경우, 0.8 중량%인 경우보다 더 우수하게 나타났다.4 is prepared in Comparative Example 1 (without coating), Example 2 (with 0.5 wt% ITO coating, heat treated and post-heat treated) and Example 3 (with 0.8 wt% ITO coated, heat treated and post-heat treated) It is a graph showing the charge and discharge life characteristics of the batteries at room temperature. It can be seen that the charge and discharge characteristics were greatly improved by the ITO coating. In the uncoated LMO powder, the battery capacity starts to drop from 130 cycles and drops sharply at about 160, whereas the surface coated with ITO according to the present invention maintains a high capacity even at 200 cycles, and has an ITO content of 0.5. In the case of mass%, it was better than in the case of 0.8% by weight.

도 5는 실시예 2와 비교예 1에서 제조된 전지의 55 ℃에서의 충방전 수명특성을 나타낸 그래프이다. 100사이클에서 코팅한 것이 92%로, 코팅하지 않은 것의 75%보다 충방전 특성이 월등히 높은 것을 확인할 수 있다.5 is a graph showing charge and discharge life characteristics at 55 ° C. of the batteries prepared in Example 2 and Comparative Example 1. FIG. 92% coated at 100 cycles, the charge and discharge characteristics are significantly higher than 75% of the uncoated.

도 6은 실시예 2와 비교예 1에서 제조된 전지의 C-rate에 따른 충방전 수명 특성을 나타낸 그래프이다. 충전 속도가 빨라지면 용량이 떨어지는데, 코팅하지 않은 분말은 빠른 속도로 2C에서부터 떨어지기 시작하여 4C부터는 급속히 떨어지나, 코팅한 분말은 5C에서도 약 90% 정도로 향상된 특성을 보여 준다.Figure 6 is a graph showing the charge and discharge life characteristics according to the C-rate of the battery prepared in Example 2 and Comparative Example 1. As the filling speed increases, the capacity decreases. The uncoated powder starts to fall from 2C at a rapid rate and drops rapidly from 4C, but the coated powder shows about 90% improvement even at 5C.

도 7은 비교예 1, 실시예 2 및 실시예 3을 양극으로 사용한 full cell의 55℃에서의 충방전 수명 특성의 그래프이다. 도 7은 full cell 에서의 사이클 특성 비교로 코팅하지 않은 LMO 분말의 경우에는 용량 감소 속도가 빠르게 일어나다 100 사이클 이후에서는 급속히 떨어짐을 볼 수 있으나, 코팅된 것은 완만한 감소 속도를 나타내며, 0.5 중량% ITO 코팅의 경우가 0.8 중량%의 경우보다 감소 기울기가 더 완만하여 특성이 좋은 것을 확인할 수 있다.7 is a graph of charge and discharge life characteristics at 55 ° C. of a full cell using Comparative Examples 1, 2 and 3 as the positive electrode. 7 shows that the capacity reduction rate occurs rapidly in the case of LMO powder which is not coated in comparison with the cycle characteristics in the full cell, but drops rapidly after 100 cycles, but the coated one shows a gentle decrease rate, 0.5 wt% In case of ITO coating, the decreasing slope is more gentle than that in case of 0.8 wt%, and it can be confirmed that the characteristics are good.

Claims (12)

(1) 용매에 초산인듐과 염화주석을 혼합하여 ITO 졸을 형성하는 단계;
(2) 상기 ITO 졸과 양극 활물질을 혼합하고 건조하여 상기 양극 활물질의 표면에 ITO 막을 형성하는 단계; 및
(3) 단계 (2)를 거친 ITO 막이 형성된 양극 활물질을 고온열처리하여 ITO를 결정화시켜 나노 ITO 입자가 코팅된 양극 활물질 분말을 형성하는 단계
를 포함하는 이차전지용 양극 활물질의 제조방법.
(1) mixing indium acetate and tin chloride in a solvent to form an ITO sol;
(2) mixing and drying the ITO sol and the positive electrode active material to form an ITO film on the surface of the positive electrode active material; And
(3) high temperature heat treatment of the positive electrode active material having the ITO film formed through the step (2) to crystallize the ITO to form a positive electrode active material powder coated with nano ITO particles;
Method for producing a cathode active material for a secondary battery comprising a.
제1항에 있어서, 상기 양극 활물질은 큐빅구조를 갖는 스피넬 Li[Mn2 - xMx]O4 (M은 Co, Ni, Mg 또는 Al이고, 0≤x≤0.1), 큐빅구조를 갖는 스피넬 Li[Ni0 .5Mn1 .5-xMx]O4 (M은 Co, Ni, Mg 또는 Al이고 0≤x≤0.1) 또는 Olivine 구조를 갖는 LiMxFe1 -xPO4 (M은 Mn, Co 또는 Ni이고, 0≤x≤1)인 이차전지용 양극 활물질의 제조방법. The spinel of claim 1, wherein the cathode active material is a spinel Li [Mn 2 - x M x ] O 4 having a cubic structure (M is Co, Ni, Mg, or Al, and 0 ≦ x ≦ 0.1), and a spinel having a cubic structure. Li [Ni 0 .5 Mn 1 .5 -x M x] O 4 (M is Co, Ni, Mg or Al and 0≤x≤0.1) or LiM x Fe 1 -x PO 4 ( M having Olivine structure The manufacturing method of the positive electrode active material for secondary batteries whose Mn, Co or Ni, and 0 <= ≤ <1). 제1항에 있어서, 단계 (1)은,
(a) 프로피온산과 부탄올 혼합용매에 인듐 화합물 및 염화주석 화합물을 분산시키고 가열하여 제1 인듐주석 산화물 졸을 제조하는 단계;
(b) 디메틸포름아미드와 부탄올 혼합용매에 인듐 화합물 및 염화주석 화합물을 분산시키고 질산을 첨가한 후, 가열 및 급속 냉각하여 제2 인듐주석 산화물 졸을 제조하는 단계; 및
(c) 상기 제2 인듐주석 산화물 졸에 상기 제1 인듐주석 산화물 졸을 첨가하면서 교반하여 혼합 인듐주석 산화물 졸을 생성시키는 단계
를 포함하여 이루어지는 것인 이차전지용 양극 활물질의 제조방법.
The method of claim 1, wherein step (1) comprises:
(a) dispersing and heating an indium compound and a tin chloride compound in a propionic acid and butanol mixed solvent to prepare a first indium tin oxide sol;
(b) dispersing an indium compound and a tin chloride compound in a mixed solvent of dimethylformamide and butanol, adding nitric acid, and then heating and rapidly cooling to prepare a second indium tin oxide sol; And
(c) adding the first indium tin oxide sol to the second indium tin oxide sol while stirring to produce a mixed indium tin oxide sol.
Method for producing a cathode active material for a secondary battery comprising a.
제1항에 있어서, 단계 (3) 이후에,
(4) 상기 나노 ITO 입자가 코팅된 양극 활물질 분말을 후열처리하는 단계를 더 포함하는 것인 이차전지용 양극 활물질의 제조방법.
The process according to claim 1, wherein after step (3):
(4) The method of manufacturing a cathode active material for a secondary battery further comprising the step of post-heat treatment of the cathode active material powder coated with the nano ITO particles.
제1항에 있어서,
상기 용매는 에탄올, 프로판올, 이소프로판올, 부탄올, 아세틸아세톤, 에틸아세테이트, 디메틸포름아미트, 에탄올아민, 프로피온산 및 에틸렌글리콜로 이루어진 군에서 선택되는 적어도 어느 하나인 이차전지용 양극 활물질의 제조방법.
The method of claim 1,
The solvent is at least one selected from the group consisting of ethanol, propanol, isopropanol, butanol, acetylacetone, ethyl acetate, dimethylformamide, ethanolamine, propionic acid and ethylene glycol.
제1항에 있어서,
상기 ITO 졸의 ITO 농도는 0.1 내지 4 중량%인 것인 이차전지용 양극 활물질의 제조방법.
The method of claim 1,
ITO concentration of the ITO sol is 0.1 to 4% by weight of the manufacturing method of the positive electrode active material for a secondary battery.
제1항에 있어서,
단계 (2)에서 ITO 졸과 LMO의 혼합비율은 중량비로 1 : 10 내지 1 : 1인 것인 이차전지용 양극 활물질의 제조방법.
The method of claim 1,
The mixing ratio of the ITO sol and LMO in step (2) is 1: 10 to 1: 1 by weight ratio method for producing a positive electrode active material for secondary batteries.
제1항에 있어서,
단계 (3)의 열처리는 공기 또는 불활성 가스 분위기 하에서 400 내지 700 ℃로 이루어지는 것인 이차전지용 양극 활물질의 제조방법.
The method of claim 1,
The heat treatment of step (3) is a method of manufacturing a positive electrode active material for secondary batteries which is made of 400 to 700 ℃ under air or inert gas atmosphere.
제4항에 있어서,
단계 (4)의 후열처리는 환원 분위기 하에서 200 내지 400 ℃로 이루어지는 것인 이차전지용 양극 활물질의 제조방법.
The method of claim 4, wherein
The post-heat treatment of step (4) is a method for producing a positive electrode active material for secondary batteries which consists of 200 to 400 ℃ in a reducing atmosphere.
제1항 내지 제9항 중 어느 하나의 방법으로 제조된 양극 활물질, 도전재 및 바인더를 혼합하여 슬러리를 형성하는 단계; 및
상기 슬러리를 박막에 도포하고 진공 건조하여 양극을 형성하는 단계
를 포함하는 이차전지용 양극의 제조방법.
A method of manufacturing a slurry comprising: mixing a positive electrode active material, a conductive material, and a binder prepared by the method of any one of claims 1 to 9 to form a slurry; And
Applying the slurry to a thin film and vacuum drying to form an anode
Method for producing a positive electrode for a secondary battery comprising a.
제10항에 있어서,
상기 양극 활물질은 70 내지 97 중량%이고, 상기 도전재는 2 내지 20 중량%이고, 상기 바인더는 1 내지 10 중량%인 것인 이차전지용 양극의 제조방법.
The method of claim 10,
The cathode active material is 70 to 97% by weight, the conductive material is 2 to 20% by weight, the binder is a method for producing a positive electrode for secondary batteries.
제10항 또는 제11항의 방법으로 제조된 양극과 상대 전극을 형성하는 단계; 및
상기 양극 및 상대전극 사이에 전해질 및 분리판을 형성하는 단계
를 포함하는 이차전지의 제조방법.
Forming a positive electrode and a counter electrode prepared by the method of claim 10; And
Forming an electrolyte and a separator between the anode and the counter electrode
Method of manufacturing a secondary battery comprising a.
KR1020100074707A 2010-08-02 2010-08-02 Surface-modified cathode active material for a lithium secondary battery and the fabrication method thereof KR101223482B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100074707A KR101223482B1 (en) 2010-08-02 2010-08-02 Surface-modified cathode active material for a lithium secondary battery and the fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100074707A KR101223482B1 (en) 2010-08-02 2010-08-02 Surface-modified cathode active material for a lithium secondary battery and the fabrication method thereof

Publications (2)

Publication Number Publication Date
KR20120012628A true KR20120012628A (en) 2012-02-10
KR101223482B1 KR101223482B1 (en) 2013-01-17

Family

ID=45836465

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100074707A KR101223482B1 (en) 2010-08-02 2010-08-02 Surface-modified cathode active material for a lithium secondary battery and the fabrication method thereof

Country Status (1)

Country Link
KR (1) KR101223482B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267904B2 (en) 2012-04-30 2016-02-23 Samsung Sdi Co., Ltd. Device for analyzing film on surface of electrode for rechargeable lithium battery and method of analyzing film on surface of electrode for rechargeable lithium battery using same
WO2016052944A1 (en) * 2014-09-30 2016-04-07 주식회사 엘지화학 Positive electrode active material and method for manufacturing same
WO2016089177A1 (en) * 2014-12-05 2016-06-09 주식회사 엘지화학 Cathode active material, method for manufacturing same, and lithium secondary battery comprising same
WO2016089176A1 (en) * 2014-12-05 2016-06-09 주식회사 엘지화학 Cathode active material, method for preparing same, and lithium secondary battery comprising same
CN107004846A (en) * 2014-12-05 2017-08-01 株式会社Lg 化学 Positive electrode active materials, prepare its method and the lithium secondary battery comprising it
US9972841B2 (en) 2014-09-30 2018-05-15 Lg Chem, Ltd. Positive electrode active material and preparation method thereof
US10374227B2 (en) 2014-12-05 2019-08-06 Lg Chem, Ltd. Positive electrode active material, method for preparing the same and lithium secondary battery including the same
KR20230089732A (en) * 2021-12-14 2023-06-21 한남대학교 산학협력단 A method for manufacturing oxide semiconductor thin layer coated on flexible substrate using flash lamp

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030093166A (en) * 2003-11-18 2003-12-06 선양국 Cathod material for Lithium second battery of which surface is processed and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9267904B2 (en) 2012-04-30 2016-02-23 Samsung Sdi Co., Ltd. Device for analyzing film on surface of electrode for rechargeable lithium battery and method of analyzing film on surface of electrode for rechargeable lithium battery using same
WO2016052944A1 (en) * 2014-09-30 2016-04-07 주식회사 엘지화학 Positive electrode active material and method for manufacturing same
US9972841B2 (en) 2014-09-30 2018-05-15 Lg Chem, Ltd. Positive electrode active material and preparation method thereof
WO2016089177A1 (en) * 2014-12-05 2016-06-09 주식회사 엘지화학 Cathode active material, method for manufacturing same, and lithium secondary battery comprising same
WO2016089176A1 (en) * 2014-12-05 2016-06-09 주식회사 엘지화학 Cathode active material, method for preparing same, and lithium secondary battery comprising same
CN107004846A (en) * 2014-12-05 2017-08-01 株式会社Lg 化学 Positive electrode active materials, prepare its method and the lithium secondary battery comprising it
US10340517B2 (en) 2014-12-05 2019-07-02 Lg Chem, Ltd. Positive electrode active material, method for preparing the same and lithium secondary battery including the same
US10374227B2 (en) 2014-12-05 2019-08-06 Lg Chem, Ltd. Positive electrode active material, method for preparing the same and lithium secondary battery including the same
KR20230089732A (en) * 2021-12-14 2023-06-21 한남대학교 산학협력단 A method for manufacturing oxide semiconductor thin layer coated on flexible substrate using flash lamp

Also Published As

Publication number Publication date
KR101223482B1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
CN111384377B (en) Positive electrode material and preparation method and application thereof
KR101223482B1 (en) Surface-modified cathode active material for a lithium secondary battery and the fabrication method thereof
KR101473322B1 (en) Cathode active material and cathode and lithium battery containing the material
WO2017025007A1 (en) Positive electrode active material for lithium-ion secondary battery and preparation method and use thereof
EP3336062A1 (en) Spherical or spherical-like cathode material for a lithium battery, a battery and preparation method and application thereof
US20050130042A1 (en) Materials for positive electrodes of lithium ion batteries and their methods of fabrication
CA3013355A1 (en) Pre-lithiated electrode materials and cells employing the same
WO2012043783A1 (en) Positive electrode active material for use in nonaqueous electrolyte secondary cells, manufacturing method thereof, and nonaqueous electrolyte secondary cell using said positive electrode active material
WO2020258996A1 (en) Low gas-producing high capacity ternary positive electrode material
JP2009076383A (en) Non-aqueous secondary battery and its manufacturing method
US11677065B2 (en) Cathode active material of lithium secondary battery
KR20170136601A (en) A positive electrode active material for a nonaqueous electrolyte secondary battery, a method for producing the same, and a nonaqueous electrolyte secondary battery using the positive electrode active material
JP2022180465A (en) Positive electrode material for lithium secondary battery, method for manufacturing the same, positive electrode for lithium secondary battery comprising the same, and lithium secondary battery
WO2023184996A1 (en) Modified high-nickel ternary positive electrode material and preparation method therefor
JP7262419B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR101190226B1 (en) Cathode active material for a lithium secondary battery, preparation thereof, and a lithium secondary battery containing the same
KR101759332B1 (en) Positive active material for rechargeable lithium battery, method of manufacturing the same and rechargeable lithium battery including same
KR100644915B1 (en) Cathode active material for a Lithium secondary battery and a Lithium secondary battery containing the same
JP2022543762A (en) METHOD FOR MANUFACTURING POSITIVE ACTIVE MATERIAL FOR SECONDARY BATTERY
KR101553389B1 (en) Positive active material for rechargeable lithium battery, coating material for positive active material, method of manufacturing the same and rechargeable lithium battery including same
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
KR101406512B1 (en) Positive active material, method of preparing the same, and lithium secondary battery using the same
EP3489198A1 (en) Cathode active material of lithium secondary battery
KR101466448B1 (en) Method for preparing lithium metal oxide
JPWO2020171093A1 (en) Manufacturing method of positive electrode active material for lithium ion secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151229

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161226

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee