WO2016088787A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2016088787A1
WO2016088787A1 PCT/JP2015/083837 JP2015083837W WO2016088787A1 WO 2016088787 A1 WO2016088787 A1 WO 2016088787A1 JP 2015083837 W JP2015083837 W JP 2015083837W WO 2016088787 A1 WO2016088787 A1 WO 2016088787A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
light
layer
display device
crystal display
Prior art date
Application number
PCT/JP2015/083837
Other languages
English (en)
French (fr)
Inventor
浩太郎 保田
伸卓 岩橋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016562647A priority Critical patent/JP6321210B2/ja
Publication of WO2016088787A1 publication Critical patent/WO2016088787A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a liquid crystal display device. More particularly, the present invention relates to a liquid crystal display device having high luminance and an adjusted oblique color change.
  • LCDs liquid crystal display devices
  • LCDs flat panel displays
  • FHD Next-generation high-definition
  • NTSC National Television System Committee
  • EBU European Broadcasting Union
  • a liquid crystal display device having a basic configuration in which a backlight, a backlight side polarizing plate, a liquid crystal cell, and a display side polarizing plate are provided in this order for power saving, between the backlight and the backlight side polarizing plate.
  • the reflective polarizing element is an optical element that transmits only light oscillating in a specific polarization direction among light incident while oscillating in all directions, and reflects light oscillating in other polarization directions.
  • As the core component of low-power LCDs due to the increase in mobile devices and low power consumption of home appliances, it is expected to solve the low light efficiency of LCDs and increase the brightness (degree of brightness per unit area of light source). ing.
  • Patent Document 1 discloses a reflective polarizing plate having a structure in which a layer formed by fixing a ⁇ / 4 plate and a cholesteric liquid crystal phase is laminated, and a cholesteric liquid crystal phase having three or more layers having different cholesteric liquid crystal phase pitches.
  • a technique for improving the light utilization rate of the backlight by light recycling by widening the reflection band by the layer formed by fixing the light is described.
  • JP-A-1-133003 Japanese Patent No. 3518660
  • the problem to be solved by the present invention is to provide a liquid crystal display device in which front luminance is high and oblique color change is suppressed.
  • a liquid crystal display device including a display side polarizing plate, a liquid crystal cell, a backlight side polarizing plate, and a backlight unit in this order, Including a brightness enhancement film between the backlight side polarizing plate and the backlight unit,
  • the brightness enhancement film includes a ⁇ / 4 plate and a reflective polarizer in this order from the backlight side polarizing plate side,
  • the reflective polarizer includes a light reflection layer formed by fixing at least one cholesteric liquid crystal phase,
  • a liquid crystal display device in which the chromaticity a * of image light during white display of the liquid crystal display device is ⁇ 3 ⁇ a * ⁇ 14 in all azimuth angles of polar angles 0 ° to 60 °.
  • One or more selected from the group consisting of the display-side polarizing plate and the backlight-side polarizing plate is a polarizing plate having a hue chromaticity of a * > 0 when transmitted through a C light source.
  • the reflective polarizer includes a light reflecting layer that reflects blue light and green light, and a red light reflecting layer that reflects red light. Display device.
  • the liquid crystal display device according to [4], wherein the layer reflecting blue light and green light is a broadband light reflecting layer.
  • the red light reflection layer is a light reflection layer that further reflects infrared light.
  • the reflective polarizer includes a light reflecting layer that reflects green light and red light, and a blue light reflecting layer that reflects blue light. Display device.
  • the liquid crystal display device wherein the layer reflecting green light and red light is a broadband light reflecting layer.
  • the reflective polarizer includes a layer formed from a polymerizable liquid crystal composition containing a rod-like liquid crystal compound,
  • the spiral pitch of the cholesteric liquid crystal phase of the layer formed from a polymerizable liquid crystal composition containing a rod-like liquid crystal compound continuously changes in the film thickness direction of the layer.
  • Liquid crystal display device [10] The liquid crystal display device according to any one of [1] to [9], wherein the reflective polarizer includes a layer formed from a polymerizable liquid crystal composition including a discotic liquid crystal compound.
  • the liquid crystal display device according to any one of [1] to [10], wherein the ⁇ / 4 plate is a layer formed from a polymerizable liquid crystal composition containing a discotic liquid crystal compound.
  • the reflective polarizer includes a layer that changes a polarization state of light on a side opposite to the ⁇ / 4 plate side, and the layer that changes the polarization state of light satisfies the following conditions [1] to [ The liquid crystal display device according to any one of 11]. 0 ⁇
  • the backlight unit is Blue light having an emission center wavelength in a wavelength band of 430 to 500 nm; Green light having an emission center wavelength in a wavelength band of 500 to 600 nm, A light source that emits red light having at least part of a peak of emission intensity in a wavelength band of 600 to 700 nm; [1] to [1] to [1] to [1], wherein the backlight unit includes a reflecting member that converts and reflects a polarization state of light emitted from the light source and reflected by the brightness enhancement film or the optical sheet member, 12].
  • the liquid crystal display device according to any one of [12].
  • the liquid crystal display device wherein the full widths at half maximum of the blue light, green light, and red light are all 100 nm or less.
  • the light source is a light source having a blue light emitting diode that emits the blue light and a fluorescent material that emits the green light and the red light when the blue light of the blue light emitting diode is incident. 13] or the liquid crystal display device according to [14].
  • the fluorescent material is a quantum dot member.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the “half width” of a peak means the width of the peak at a peak height of 1/2.
  • the reflection center wavelength and half width of the light reflection layer can be obtained as follows. When the transmission spectrum of the light reflection layer is measured using a spectrophotometer UV3150 (Shimadzu Corporation), a peak of decrease in transmittance is observed in the selective reflection region.
  • the wavelength value on the short wave side is ⁇ 1 (nm) and the wavelength value on the long wave side is ⁇ 2 (nm).
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and retardation in the thickness direction at wavelength ⁇ , respectively.
  • the unit is nm.
  • Re ( ⁇ ) is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments) by allowing light of wavelength ⁇ nm to be incident in the normal direction of the film.
  • the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
  • Rth ( ⁇ ) is calculated by the following method. This measuring method is also partially used for measuring the average tilt angle on the alignment layer side of the discotic liquid crystal molecules in the optically anisotropic layer, which will be described later, and the average tilt angle on the opposite side.
  • Rth ( ⁇ ) is Re ( ⁇ ) with the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotation axis) (in the absence of a slow axis, in-plane with the film) Measure the light at a wavelength of ⁇ nm from each tilted direction in steps of 10 degrees from the normal direction to 50 ° on one side with respect to the film normal direction.
  • KOBRA 21ADH or WR is calculated based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value.
  • Re ( ⁇ ) represents a retardation value in a direction inclined by an angle ⁇ from the normal direction.
  • nx represents the refractive index in the slow axis direction in the plane
  • ny represents the refractive index in the direction orthogonal to nx in the plane
  • nz is the direction orthogonal to nx and ny.
  • d is the film thickness.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is ⁇ 50 ° with respect to the normal direction of the film, using Re ( ⁇ ) described above as the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotary axis).
  • Re ( ⁇ ) described above as the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotary axis).
  • 11 points of light having a wavelength of ⁇ nm are incident in 10 ° steps from 1 ° to + 50 °, and the measured retardation value, average refractive index assumption and input film thickness value are used as the basis.
  • KOBRA 21ADH or WR Calculated by KOBRA 21ADH or WR.
  • the values in the polymer handbook (John Wiley & Sons, Inc.) and catalogs of various optical films can be used. If the average refractive index is not known, it can be measured with an Abbe refractometer.
  • the average refractive index values of main optical films are exemplified below: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Polystyrene (1.59).
  • KOBRA 21ADH or WR calculates nx, ny, and nz.
  • Nz (nx ⁇ nz) / (nx ⁇ ny) is further calculated from the calculated nx, ny, and nz.
  • Rth of the light reflecting layer formed by fixing the cholesteric liquid crystal phase can be expressed by the following formula.
  • Rth of the first light reflection layer and the second light reflection layer is a value calculated using the following formula, and the first light reflection layer and the second light reflection at the wavelength ⁇ nm are adopted.
  • the Rth of the layer is described as Rth ( ⁇ ).
  • a method for obtaining Rth of the cholesteric liquid crystal layer a method using a polarization ellipso can be applied.
  • a method using a polarization ellipso can be applied.
  • M.M. Kimura et al. Jpn. J. et al. Appl. Phys. 48 (2009) When the ellipsometry method is used as described in 03B021, the thickness, pitch, twist angle, etc. of the cholesteric liquid crystal layer can be obtained, and the value of Rth can be obtained therefrom.
  • visible light means light having a wavelength of 380 nm to 780 nm.
  • a measurement wavelength is 550 nm.
  • blue light is light having a wavelength of 380 to 499 nm
  • green light is light having a wavelength of 500 to 599 nm
  • red light is light having a wavelength of 600 to 780 nm.
  • Infrared light is light of 780 to 850 nm.
  • the angle for example, an angle such as “90 °”
  • the relationship for example, “orthogonal”, “parallel”, “crossing at 45 °”, etc.
  • the range of allowable error is included.
  • the angle is within the range of strict angle ⁇ 10 °, and the error from the strict angle is preferably 5 ° or less, and more preferably 3 ° or less.
  • the “absorption axis” and “transmission axis” of a polarizer or a polarizing plate mean directions that form an angle of 90 ° with each other.
  • the “slow axis” of a retardation film or the like means a direction in which the refractive index is maximized.
  • numerical values, numerical ranges, and qualitative expressions for example, “equivalent”, “equal”, etc.) indicating optical characteristics of each member such as a retardation region, a retardation film, and a liquid crystal layer are used.
  • front means a direction normal to the image display surface of the liquid crystal display device.
  • a reflective polarizer and a polarizer are used separately.
  • the liquid crystal display device includes a display side polarizing plate, a liquid crystal cell, a backlight side polarizing plate, and a backlight unit in this order.
  • the liquid crystal display device of the present invention has a brightness enhancement film between the backlight side polarizing plate and the backlight unit.
  • One embodiment of a liquid crystal display device has a liquid crystal cell in which a liquid crystal layer is sandwiched between substrates on which electrodes are provided on at least one opposite side, and the liquid crystal cell is arranged between two polarizing plates. It is.
  • the liquid crystal display device includes a liquid crystal cell in which liquid crystal is sealed between upper and lower substrates, and can display an image by changing the alignment state of the liquid crystal by applying a voltage.
  • the liquid crystal display device of the present invention includes, for example, a color filter substrate, a thin layer transistor substrate, a lens film, a diffusion sheet, a hard coat layer, an antireflection layer, a low reflection layer, an antiglare layer, and the like (or in place thereof), Other members such as a forward scattering layer, a primer layer, an antistatic layer, and an undercoat layer may be included.
  • FIG. 3 shows an example of the configuration of the liquid crystal display device.
  • the liquid crystal display device 51 includes a backlight unit 31, an optical sheet member 21 (a laminated body of the reflective polarizer 11 and the backlight side polarizing plate 1), a thin layer transistor substrate 41, a liquid crystal cell 42, and a color filter substrate. 43 and the display side polarizing plate 44 are laminated in this order.
  • the structure of a brightness improvement film is an example, for example, the brightness improvement film applied to a liquid crystal display device is not limited to the example as described in FIG.
  • the configuration of the liquid crystal cell is not particularly limited, and a liquid crystal cell having a general configuration can be adopted.
  • the liquid crystal cell includes, for example, a pair of substrates arranged opposite to each other and a liquid crystal layer sandwiched between the pair of substrates, and may include a color filter layer, if necessary.
  • the driving mode of the liquid crystal cell is not particularly limited, and is twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), optically compensated bend cell (OCB). Various modes such as can be used.
  • the chromaticity a * of image light at the time of white display is ⁇ 3 ⁇ a * ⁇ 14 at all polar angles of 0 ° to 60 °.
  • the polar angle means an angle with respect to the image display direction of the normal line of the image display surface of the liquid crystal display device, and is an angle of 0 ° or more and 90 ° or less.
  • the azimuth angle means an angle expressed by setting a rotation angle around the normal line of the image display surface to 0 ° in a specific direction, and is an angle between 0 ° and less than 360 °.
  • image light means light emitted from the image display surface of a liquid crystal display device, and emits light in the backlight unit.
  • At least the backlight side polarizing plate, the brightness enhancement film, the liquid crystal cell, and the display It means light emitted from the image display surface of the liquid crystal display device via the side polarizing plate.
  • the chromaticity a * is a chromaticity represented by coordinates in the CIE1976 (L * a * b * ) color space, which is an international standard.
  • the CIE1976 (L * a * b * ) color space is also adopted in Japanese Industrial Standard JIS 8781-4 created based on ISO 11664-4.
  • the chromaticity a * can be obtained with a measuring instrument such as EZ-Contrast 160 manufactured by ELDIM, which is also used in the following examples. Redness increases as the value of the chromaticity a * is larger than 0, can be considered as the value of the chromaticity a * is increasing greenness as less than 0.
  • the present inventors use the brightness enhancement film in the process of improving the brightness of the liquid crystal display device using a brightness enhancement film including a light reflection layer formed by fixing a cholesteric liquid crystal phase as described below. It was found that the results of sensory evaluation were poor when the image of the liquid crystal display device was observed from an oblique direction. As a result of intensive studies, the configuration was adjusted so that the chromaticity a * was ⁇ 3 ⁇ a * ⁇ 14, and a liquid crystal display device having good sensory evaluation results was obtained. Although not bound by any theory, the color produced by the use of the brightness enhancement film is green, and the color tends to be unpleasant for the observer, so that the sensory evaluation result is good by bringing the color to red. It is thought that it became. By setting the chromaticity a * to be ⁇ 3 ⁇ a * ⁇ 14, it is difficult to identify a change in color even if there is a slight change in b *. It is done.
  • the chromaticity a * at all polar angles from 0 ° to 60 ° is preferably ⁇ 2 ⁇ a * ⁇ 12, more preferably ⁇ 1 ⁇ a * ⁇ 11, and 0 ⁇ a *. More preferably, it is ⁇ 10. Further, the difference between the maximum value and the minimum value of the chromaticity a * at all polar angles of 0 ° to 60 ° is preferably 15 or less, more preferably 12 or less, and 10 or less. Further preferred. In particular, at all polar angles of 60 °, the chromaticity a * is preferably ⁇ 3 or more, more preferably ⁇ 2 or more, further preferably ⁇ 1 or more, and 0 or more. It is particularly preferred.
  • a method of adjusting the configuration of the liquid crystal display device so that the chromaticity a * in all azimuth angles of polar angles 0 ° to 60 ° is ⁇ 3 ⁇ a * ⁇ 14 is not particularly limited. There are two types of methods.
  • the first method can be performed by controlling one or more colors selected from a display side polarizing plate and a backlight side polarizing plate.
  • a display side polarizing plate and a backlight side polarizing plate For example, it is preferable to perform the above color control using a polarizing plate whose absorbance is lower in the wavelength range of red light than in the wavelength range of blue light and the wavelength range of green light.
  • the polarizing plate is configured to transmit green complementary color, which is a color generated by using the brightness enhancement film, and can realize the chromaticity a * of ⁇ 3 ⁇ a * ⁇ 14 as the image light of the liquid crystal display device. It is.
  • the absorbance of the polarizing plate in the red light wavelength region is 90% or less, 80% or less, with respect to the average value of the blue light wavelength region absorption maximum and the green light wavelength region absorption maximum. Alternatively, it may be 70% or less.
  • Such a color control can be achieved by adjusting the amount of iodine ions used in the production of a polarizing plate using a polarizer obtained by adsorbing and orienting iodine on a polymer film described later.
  • the concentration of potassium potassium is set higher than usual in the cleaning process using potassium potassium during the preparation of the polarizing plate, iodine ions in the polarizing plate decrease, and absorption on the long wavelength side (red) is more than that of the normal polarizing plate. It is possible to reduce.
  • the color control may be performed with the display side polarizing plate, the backlight side polarizing plate, or both.
  • the second method can be performed by controlling the emission color of the backlight unit.
  • the red light emission intensity of the backlight unit may be adjusted to be larger than the red light emission intensity of the normal backlight unit.
  • green which is a color generated by using the brightness enhancement film
  • the red light emission intensity of the backlight unit may be adjusted to 110%, 120%, 130% or more of the green light emission intensity.
  • the adjustment method for example, in a backlight unit, a blue light emitting diode, a wavelength conversion member including a fluorescent material that emits green light and a fluorescent material that emits red light when blue light from the blue light emitting diode is incident are provided. In the case of using the light source having, it is possible to increase the fluorescent material emitting red light more than usual.
  • the brightness enhancement film has a ⁇ / 4 plate and a reflective polarizer.
  • the reflective polarizer includes at least one light reflecting layer formed by fixing a cholesteric liquid crystal phase.
  • An example of the layer structure of the brightness enhancement film is shown in FIG.
  • the light reflecting layer formed by fixing the cholesteric liquid crystal phase contained in the reflective polarizer in the brightness enhancement film has at least one of right circularly polarized light and left circularly polarized light (circularly polarized light in the first polarization state) having a reflection center wavelength.
  • the reflected circularly polarized light in the second polarization state is randomized in its direction and polarization state by a reflection member (also referred to as a light guide or an optical resonator), which will be described later, and is recycled. Again, part of the light is reflected as circularly polarized light in the first polarization state and the remaining part is transmitted as circularly polarized light in the second polarization state, thereby increasing the light utilization rate on the backlight side and increasing the brightness of the liquid crystal display device. Can be improved.
  • the light emitted from the reflective polarizer that is, the polarization state of the transmitted light and the reflected light of the reflective polarizer can be measured, for example, by measuring the polarization with an Axoscan from Axometrics.
  • the brightness enhancement film has a ⁇ / 4 plate.
  • the ⁇ / 4 plate has an in-plane retardation Re ( ⁇ ) at a specific wavelength ⁇ nm.
  • Re ( ⁇ ) ⁇ / 4
  • the ⁇ / 4 plate functions as a layer for converting circularly polarized light obtained by passing through the reflective polarizer into linearly polarized light.
  • the ⁇ / 4 plate preferably satisfies at least one of the following formulas (A) to (C), and more preferably satisfies all of the following formulas (A) to (C).
  • Re ( ⁇ ) represents retardation in the in-plane direction (unit: nm) at the wavelength ⁇ nm.)
  • Rth (550) of the ⁇ / 4 plate is preferably ⁇ 120 to 120 nm, more preferably ⁇ 80 to 80 nm, and particularly preferably ⁇ 70 to 70 nm.
  • the ⁇ / 4 plate may be a single layer or a laminate of two or more layers, and is preferably a laminate of two or more layers.
  • the ⁇ / 4 layer is a liquid crystal compound (discotic liquid crystal) formed by polymerizing a retardation film (optically substantially uniaxial or substantially biaxial), a nematic liquid crystal layer, or a liquid crystal monomer that exhibits a smectic liquid crystal layer.
  • the retardation film has one or more layers including at least one of a rod-like liquid crystal and a cholesteric liquid crystal.
  • the retardation film it is possible to select a retardation film stretched in the direction perpendicular to the conveyance direction or the conveyance direction during production of the support, and a retardation film stretched by 45 degrees with respect to the conveyance direction.
  • a phase difference film obtained by stretching a cyclic polyolefin resin (norbornene-based resin) or the like capable of producing an optical sheet member by so-called roll-to-roll, or a transparent film is subjected to orientation treatment, and the treated surface is conveyed in the direction of production.
  • a film having a layer in which a liquid crystal compound is oriented in a 45-degree direction is preferable.
  • ⁇ / 4 plate of the brightness enhancement film There are no particular restrictions on the material used for the ⁇ / 4 plate of the brightness enhancement film.
  • Various polymer films such as cellulose acylate, polycarbonate polymer, polyester polymer such as polyethylene terephthalate and polyethylene naphthalate, acrylic polymer such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymer (AS resin), etc. Styrene polymers and the like can be used.
  • Polyolefins such as polyethylene and polypropylene, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers, polyethersulfone polymers , Polyetheretherketone polymers, polyphenylene sulfide polymers, vinylidene chloride polymers, vinyl alcohol polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene polymers, epoxy polymers, or polymers obtained by mixing the aforementioned polymers
  • One or two or more polymers are selected from the above, and a polymer film is produced using the polymer as a main component, and can be used for producing an optical film in a combination that satisfies the above characteristics. Kill.
  • the ⁇ / 4 plate may be an optically anisotropic support having the desired ⁇ / 4 function by itself, or having an optically anisotropic layer on a support made of a polymer film. May be.
  • the optical anisotropic support is achieved by a method of stretching a polymer film uniaxially or biaxially. You can get a body.
  • the type of the polymer there is no particular limitation on the type of the polymer, and those having excellent transparency are preferably used. Examples thereof include materials used for the above-mentioned ⁇ / 4 plate, cellulose acylate films (for example, cellulose triacetate film (refractive index 1.48), cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propio).
  • polyolefins such as polyethylene and polypropylene
  • polyester resin films such as polyethylene terephthalate and polyethylene naphthalate
  • polyether sulfone films polyacrylic resin films such as polymethyl methacrylate, polyurethane resin films, polyester films, polycarbonate films , Polysulfone film, polyether film, polymethylpentene film, polyetherketone film, (meth) acrylic Nitrile film, polyolefin, a polymer having an alicyclic structure (norbornene resin (ARTON, trade name, manufactured by JSR Corp.), amorphous polyolefin (ZEONEX, trade name, produced by Nippon Zeon Co., Ltd.)), and the like.
  • ARTON trade name, manufactured by JSR Corp.
  • ZEONEX trade name, produced by Nippon Zeon Co., Ltd.
  • triacetyl cellulose, polyethylene terephthalate, and polymers having an alicyclic structure are preferable, and triace
  • the angle formed by the slow axis direction of the ⁇ / 4 plate and the absorption axis direction of the polarizing plate is 30 to 60 °, preferably 35 to 55 °, and preferably 40 to 50 °. Is more preferable, and 45 ° is particularly preferable.
  • the angle between the slow axis direction of the ⁇ / 4 plate and the longitudinal direction is 30 to 60 °. Preferably there is.
  • the polymer orientation axis is continuously stretched in the direction of 30 to 60 ° with respect to the longitudinal direction.
  • Any known method can be adopted as long as it is inclined to a desired angle.
  • the stretching machine used for the oblique stretching is not particularly limited, and a conventionally known tenter stretching machine that can add feed force, pulling force, or take-up force at different speeds in the horizontal or vertical direction can be used.
  • the tenter type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but is not particularly limited as long as a long film can be continuously obliquely stretched. These types of stretching machines can be used.
  • Examples of the oblique stretching method include, for example, JP-A-50-83482, JP-A-2-113920, JP-A-3-182701, JP-A-2000-9912, JP-A-2002-86554, The methods described in JP 2002-22944 A and International Publication No. 2007/111313 can be used.
  • the ⁇ / 4 plate has an optically anisotropic layer or the like on a support made of a polymer film
  • a desired ⁇ / 4 function is given by laminating another layer on the support.
  • the constituent material of the optically anisotropic layer is not particularly limited, and may be a polymer formed from a composition containing a liquid crystal compound and exhibiting optical anisotropy expressed by molecular orientation of the liquid crystal compound. It may be a layer having optical anisotropy expressed by stretching a film and orienting a polymer in the film, or may have both layers.
  • it can be constituted by one or two or more biaxial films, or can be constituted by combining two or more uniaxial films such as a combination of a C plate and an A plate.
  • it can also be configured by combining one or more biaxial films and one or more uniaxial films.
  • the ⁇ / 4 plate preferably includes at least one layer formed from a composition containing a liquid crystal compound. That is, the ⁇ / 4 plate is preferably a laminate of a polymer film (support) and an optically anisotropic layer formed from a composition containing a liquid crystal compound.
  • a polymer film having a small optical anisotropy may be used, or a polymer film exhibiting an optical anisotropy by a stretching process or the like may be used.
  • the support preferably has a light transmittance of 80% or more. Specific examples of the support will be described later.
  • the type of liquid crystal compound used for forming the optically anisotropic layer is not particularly limited.
  • the optically anisotropic layer is a layer formed by fixing the liquid crystal compound by polymerization or the like, and thus becomes a layer. After that, it is no longer necessary to show liquid crystallinity.
  • the polymerizable liquid crystal compound may be a polyfunctional polymerizable liquid crystal or a monofunctional polymerizable liquid crystal compound.
  • the liquid crystal compound may be a discotic liquid crystal compound or a rod-shaped liquid crystal compound. In the present invention, a discotic liquid crystal compound is more preferable.
  • the composition for producing the ⁇ / 4 plate preferably does not contain a chiral agent.
  • the molecules of the liquid crystal compound are fixed in any alignment state of vertical alignment, horizontal alignment, hybrid alignment, and tilt alignment.
  • the disk surface of the disk-like liquid crystal compound is substantially perpendicular to the film surface (optically anisotropic layer surface), or a rod-like liquid crystal It is preferable that the long axis of the compound is substantially horizontal with respect to the film surface (optically anisotropic layer surface).
  • substantially perpendicular to the discotic liquid crystal compound means that the average angle between the film surface (optically anisotropic layer surface) and the disc surface of the discotic liquid crystal compound is in the range of 70 ° to 90 °. To do. 80 ° to 90 ° is more preferable, and 85 ° to 90 ° is still more preferable. That the rod-like liquid crystal compound is substantially horizontal means that the angle formed by the film surface (optically anisotropic layer surface) and the director of the rod-like liquid crystal compound is in the range of 0 ° to 20 °. 0 ° to 10 ° is more preferable, and 0 ° to 5 ° is still more preferable.
  • the optically anisotropic layer described above comprises a coating liquid containing a liquid crystal compound such as a rod-like liquid crystal compound or a disk-like liquid crystal compound, and, if desired, a polymerization initiator, an alignment control agent and other additives, which are described later, on a support. It can be formed by coating. It is preferable to form an alignment layer on the support and apply the above-described coating solution to the surface of the alignment layer.
  • the reflective polarizer includes at least one light reflecting layer formed by fixing a cholesteric liquid crystal phase.
  • the reflective polarizer preferably includes two or more layers of light reflecting layers, and the reflective polarizer preferably includes two to four layers of light reflecting layers, and more preferably includes two to three layers. It is preferable to include two layers.
  • the light reflecting layer closest to the ⁇ / 4 plate side is referred to as the first light reflecting layer, and the light reflecting layer is in order from the ⁇ / 4 plate side.
  • the first light reflection layer, the second light reflection layer, the third light reflection layer, and the like are called.
  • the reflective polarizer preferably has a function of reflecting blue light, green light, and red light.
  • the reflective polarizer preferably includes a light reflecting layer that reflects blue light, green light, and red light, respectively, or at least one broadband light reflecting layer.
  • the broadband light reflecting layer is a layer that reflects at least one color light of blue light, green light, and red light, and also reflects light in a wavelength region that exceeds the wavelength region of this one color. That means.
  • a layer that reflects blue light and green light in one layer, a layer that reflects green light and red light in one layer, or a layer that reflects blue light, green light, and red light in one layer may be used. .
  • a reflective polarizer configured so that the Rth of the light reflection layer included in two or more layers is reversed, or a reflection polarizer whose reflection band is extended to the infrared light region Is also preferable.
  • the principle of improving the color tone by extending the reflection band to the infrared region is shown below. Even if the reflection band of the cholesteric liquid crystal layer covers red, green, and blue with respect to the front incident light, the reflection band shifts to the short-wave side for oblique light, so the red reflection layer is green for oblique light. For reflection, the green reflection layer becomes blue reflection, and the blue reflection layer becomes ultraviolet reflection.
  • the infrared reflection layer reflects red against oblique light, so that the balance of red, green and blue is maintained even in the oblique direction, and the color changes. Can be improved.
  • a reflective polarizer which is one of the first preferred embodiments of the reflective polarizer and has two light reflective layers will be described below.
  • the light reflection layer that reflects blue light and green light has a reflection peak having a reflection center wavelength in a wavelength band of 380 to 599 nm and a half-value width of 220 nm or less.
  • the reflection center wavelength of the light reflecting layer that reflects blue light and green light is preferably in the wavelength band of 430 to 590 nm, and more preferably in the wavelength band of 430 to 580 nm.
  • the half-value width of the reflectance peak of the light reflecting layer that reflects blue light and green light is preferably 300 nm or less, more preferably the half-value width of this reflectance peak is 250 nm or less.
  • the half width of the peak is more preferably 220 nm or less, the half width of the reflectance peak is particularly preferably 210 nm or less, and the half width of the reflectance peak is most preferably 200 nm or less.
  • the light reflecting layer that reflects blue light and green light preferably has no reflectance peak in the wavelength band of 600 to 750 nm.
  • the light reflecting layer reflecting blue and green preferably has an average reflectance of 600 to 750 nm of 5% or less.
  • the reflective layer that reflects blue light and green light preferably has a film thickness d of 0.5 to 10 ⁇ m, and more preferably 1.0 ⁇ m or more and less than 9 ⁇ m.
  • the red light reflecting layer has a reflection peak having a reflection center wavelength in a wavelength band of 600 to 750 nm and a half width of 200 nm or less.
  • the reflection center wavelength of the red light reflection layer is preferably in the wavelength band of 610 to 690 nm, and more preferably in the wavelength band of 610 to 660 nm.
  • the full width at half maximum of the reflectance peak of the red light reflecting layer is preferably 200 nm or less, more preferably the full width at half maximum of this reflectance peak is 190 nm or less, and the full width at half maximum of this reflectance peak is 180 nm or less.
  • the red light reflection layer preferably has no reflectance peak in the wavelength bands of 380 to 499 nm and 500 to 599 nm.
  • the red light reflecting layer preferably has an average reflectance of 380 to 499 nm and 500 to 599 nm of 5% or less.
  • One of the first light reflection layer and the second light reflection layer of the reflective polarizer is a blue light reflection layer having a reflectance peak with a reflection center wavelength of 380 to 499 nm and a half-value width of 120 nm or less, One of them is a light reflecting layer that reflects green light and red light having a reflectance peak having a reflection center wavelength of 500 to 750 nm and a half width of 300 nm or less.
  • the blue light reflection layer has a reflection peak having a reflection center wavelength in a wavelength band of 380 to 499 nm and a half width of 120 nm or less.
  • the reflection center wavelength of the blue light reflection layer is preferably in the wavelength band of 430 to 480 nm, and more preferably in the wavelength band of 430 to 470 nm.
  • the full width at half maximum of the reflectance peak of the blue light reflecting layer is preferably 120 nm or less, more preferably the half width of this reflectance peak is 110 nm or less, and the half width of this reflectance peak is 100 nm or less. It is particularly preferred that
  • the blue light reflecting layer preferably does not have a reflectance peak in the wavelength band of 500 to 750 nm.
  • the blue light reflecting layer preferably has an average reflectance of 500 to 750 nm of 5% or less.
  • the blue light reflecting layer preferably has a film thickness d of 0.5 to 3.0 ⁇ m, more preferably 1.0 to 2.6 ⁇
  • the light reflection layer that reflects green light and red light has a reflection peak having a reflection center wavelength in a wavelength band of 500 to 750 nm and a half-value width of 300 nm or less.
  • the reflection center wavelength of the light reflection layer that reflects green light and red light is preferably in the wavelength band of 520 to 690 nm, and more preferably in the wavelength band of 520 to 660 nm.
  • the half-value width of the reflectance peak of the light reflecting layer that reflects green light and red light is preferably 300 nm or less, more preferably the half-value width of the reflectance peak is 290 nm or less. It is particularly preferable that the half width of the peak is 280 nm or less.
  • the light reflecting layer that reflects green light and red light preferably has no reflectance peak in the wavelength band of 380 to 499 nm.
  • the light reflection layer that reflects green light and red light preferably has an average reflectance of 380 to 499 nm of 5% or less.
  • the light reflecting layer that reflects green light and red light preferably has a film thickness d of 0.8 to 10 ⁇ m, and more preferably 1.5 ⁇ m or more and less than 9 ⁇ m.
  • a reflective polarizer which is a red light reflective layer having a reflectance peak, wherein the sign of Rth (550) of the first light reflective layer is opposite to the sign of Rth (550) of the second light reflective layer. It is.
  • the light reflection layer formed by fixing the cholesteric liquid crystal phase exhibits selective reflection having a reflection center wavelength ⁇ based on the helical period of the cholesteric liquid crystal phase.
  • the light reflection layer formed by fixing the cholesteric liquid crystal phase selectively reflects either the right circularly polarized light or the left circularly polarized light and transmits the other circularly polarized light in the wavelength region exhibiting selective reflection.
  • the average refractive index n is (no + ne) / 2 described above.
  • the polymerizable liquid crystal composition for forming the light reflecting layer contains a liquid crystal compound.
  • the polymerizable liquid crystal composition for forming the light reflecting layer includes a chiral agent, an alignment controller, a polymerization initiator, an alignment aid, and the like. Other components may be contained.
  • the light reflection layer can be obtained by applying the polymerizable liquid crystal composition to another layer such as a ⁇ / 4 plate, another light reflection layer, a temporary support, or an alignment layer, and then curing the coating film.
  • liquid crystal compound examples include a rod-like liquid crystal compound and a disk-like liquid crystal compound.
  • the rod-like liquid crystal compound include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used.
  • high-molecular liquid crystalline molecules can also be used.
  • the polymerizable rod-like liquid crystal compound examples include those described in Makromol. Chem. 190, 2255 (1989), Advanced Materials, 5, 107 (1993), US Pat. Nos. 4,683,327, 5,622,648 and 5,770,107, WO 95/22586, 95/24455. Publication Nos. 97/00600, 98/23580, 98/52905, JP-A 1-272551, 6-16616, 7-110469, 11-80081 The compounds described in JP-A-2001-328973 and the like can be used. Further, as the rod-like liquid crystal compound, for example, those described in JP-A-11-513019 and JP-A-2007-279688 can be preferably used.
  • discotic liquid crystal compound for example, those described in JP-A-2007-108732 and JP-A-2010-244038 can be preferably used, but are not limited thereto. Although the preferable example of a disk shaped liquid crystal compound is shown below, this invention is not limited to these.
  • any one or more of the light reflecting layers is a layer formed from a polymerizable liquid crystal composition containing a rod-like liquid crystal compound, and any one of the other A layer formed from a polymerizable liquid crystal composition containing a discotic liquid crystal compound is preferred.
  • the rod-like liquid crystal compound substantially acts as a positive Rth for light having a wavelength other than the wavelength range exhibiting selective reflection, and the discotic liquid crystal compound acts as a negative Rth substantially.
  • Such two light reflection layers are preferably a first light reflection layer and a second light reflection layer.
  • a chiral agent is a compound for adjusting the helical period of a cholesteric liquid crystalline compound, and is also called a chiral agent.
  • various known chiral agents for example, liquid crystal device handbook, chapter 3-4-3, TN, chiral agent for STN, 199 pages, edited by Japan Society for the Promotion of Science, 42nd Committee, 1989) ) Can be used.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound or a planar asymmetric compound containing no asymmetric carbon atom can also be used as the chiral agent.
  • Examples of the axial asymmetric compound or the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group.
  • the rod-shaped liquid crystal compound used in combination also has a polymerizable group, it is derived from the rod-shaped liquid crystal compound by a polymerization reaction between the chiral agent having a polymerizable group and the polymerizable rod-shaped liquid crystal compound.
  • a polymer having a repeating unit derived from a chiral agent is derived from the rod-shaped liquid crystal compound.
  • the polymerizable group possessed by the chiral agent having a polymerizable group is preferably the same group as the polymerizable group possessed by the polymerizable rod-like liquid crystal compound. Therefore, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Particularly preferred.
  • the above chiral agent may be a liquid crystal compound.
  • the chiral agent exhibiting a strong twisting force include, for example, JP 2010-181852 A, JP 2003-287623 A, JP 2002-80851 A, JP 2002-80478 A, and JP 2002-302487 A.
  • the chiral agent etc. which are described in gazette are mentioned, It can use preferably for this invention.
  • isosorbide compounds having a corresponding structure can be used for the isosorbide compounds described in these publications, and isosorbide compounds having a corresponding structure can be used for the isomannide compounds described in these publications. It can also be used.
  • Orientation control agent examples include compounds exemplified in [0092] and [0093] of JP-A No. 2005-99248, and [0076] to [0078] and [0082] of JP-A No. 2002-129162. To [0085], the compounds exemplified in JP-A-2005-99248, [0094] and [0095], and JP-A-2005-99248, [0096]. Are included.
  • the orientation control agent compounds described in [0082] to [0090] of JP-A No. 2014-119605 can also be used.
  • polymerization initiator examples include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics.
  • An acyloin compound (described in US Pat. No. 2,722,512), a polynuclear quinone compound (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of a triarylimidazole dimer and p-aminophenyl ketone (US Pat.
  • the polymerizable liquid crystal composition may contain a solvent.
  • a solvent of the composition for forming each light reflection layer an organic solvent is preferably used.
  • organic solvents include amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg , Chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone, cyclohexanone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
  • the application of the polymerizable liquid crystal composition is carried out by using a suitable liquid crystal composition such as a roll coating method, a gravure printing method, a spin coating method, etc. It can be performed by a method of developing by a method. Furthermore, it can be performed by various methods such as a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method.
  • a coating film can be formed by discharging a liquid crystal composition from a nozzle using an inkjet apparatus. Thereafter, the polymerizable liquid crystal composition is cured to fix the alignment state of the molecules of the liquid crystal compound.
  • Curing is preferably carried out by a polymerization reaction of a polymerizable group introduced into a liquid crystal molecule.
  • the coating film may be dried by a known method after the application of the polymerizable liquid crystal composition and before the polymerization reaction for curing. For example, it may be dried by standing or may be dried by heating.
  • the liquid crystal compound molecules in the polymerizable liquid crystal composition only need to be aligned in the steps of applying and drying the polymerizable liquid crystal composition.
  • the coating film may be dried and the solvent may be removed to obtain a cholesteric liquid crystal phase. Further, heating at a transition temperature to the cholesteric liquid crystal phase may be performed.
  • the cholesteric liquid crystal phase can be stably formed by heating to the temperature of the isotropic phase and then cooling to the cholesteric liquid crystal phase transition temperature.
  • the liquid crystal phase transition temperature of the aforementioned polymerizable liquid crystal composition is preferably in the range of 10 to 250 ° C., more preferably in the range of 10 to 150 ° C., from the viewpoint of production suitability and the like.
  • a cooling step or the like may be required to lower the temperature to a temperature range exhibiting a liquid crystal phase.
  • a high temperature is required to make the isotropic liquid state higher than the temperature range once exhibiting the liquid crystal phase, which is disadvantageous from waste of thermal energy, deformation of the substrate, and alteration.
  • the polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator.
  • a photopolymerization reaction is preferred. It is preferable to use ultraviolet rays for light irradiation for polymerization of liquid crystalline molecules.
  • the irradiation energy is preferably 20 mJ / cm 2 to 50 J / cm 2 , and more preferably 100 to 800 mJ / cm 2 .
  • light irradiation may be performed under heating conditions.
  • ultraviolet irradiation may be performed under heating conditions.
  • the oxygen concentration in the atmosphere is related to the degree of polymerization, if the desired degree of polymerization is not reached in the air and the film strength is insufficient, the oxygen concentration in the atmosphere is reduced by a method such as nitrogen substitution. It is preferable.
  • a preferable oxygen concentration is preferably 10% or less, more preferably 7% or less, and most preferably 3% or less.
  • the reaction rate of the curing reaction (for example, polymerization reaction) that proceeds by irradiation with ultraviolet rays is 70% or more from the viewpoint of maintaining the mechanical strength of the layer and suppressing unreacted substances from flowing out of the layer. Preferably, it is 80% or more, more preferably 90% or more.
  • a method of increasing the irradiation amount of ultraviolet rays to be irradiated and polymerization under a nitrogen atmosphere or heating conditions are effective.
  • polymerization temperature, and pushing a reaction further by thermal polymerization reaction, and the method of irradiating an ultraviolet-ray again can also be used.
  • the reaction rate can be measured by comparing the absorption intensity of the infrared vibration spectrum of a reactive group (for example, a polymerizable group) before and after the reaction proceeds.
  • the optical properties based on the orientation of the liquid crystal compound molecules of the polymerizable liquid crystal composition for example, the optical properties of the cholesteric liquid crystal phase are retained in the layer, and the cured ⁇ / 4 plate or light reflection
  • the liquid crystal composition of the layer no longer needs to exhibit liquid crystallinity.
  • the liquid crystal composition may have a high molecular weight due to a curing reaction and may no longer have liquid crystallinity.
  • the cholesteric liquid crystal phase is fixed by the above-described curing, and the light reflection layer is formed.
  • the state in which the liquid crystal phase is “fixed” is the most typical and preferred mode in which the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained.
  • this layer has no fluidity and is oriented by an external field or external force. It shall mean a state in which the fixed orientation form can be kept stable without causing a change in form.
  • the brightness enhancement film may include an alignment layer.
  • the alignment layer is used to align the molecules of the liquid crystal compound in the polymerizable composition when the ⁇ / 4 plate or the light reflection layer is formed.
  • the alignment layer is used in the formation of the ⁇ / 4 plate or the light reflection layer, and the brightness enhancement film may or may not include the alignment layer.
  • the alignment layer can be provided by means such as a rubbing treatment of an organic compound (preferably a polymer), oblique vapor deposition of an inorganic compound such as SiO, or formation of a layer having microgrooves. Furthermore, an alignment layer in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known. Depending on the underlying material such as the support, the ⁇ / 4 plate, or the light reflection layer, the support may be functioned as an alignment layer by direct alignment treatment (for example, rubbing treatment) without providing an alignment layer. it can. An example of such a lower layer support is PET.
  • the lower light reflecting layer may behave as an alignment layer, and the liquid crystal compound for producing the upper light reflecting layer may be aligned.
  • the upper liquid crystal compound can be aligned without providing an alignment layer or without performing a special alignment process (for example, rubbing process).
  • a rubbing-treated alignment layer and a photo-alignment layer used by rubbing the surface as preferred examples will be described.
  • Examples of the polymer that can be used for the rubbing treatment oriented layer include, for example, a methacrylate copolymer, a styrene copolymer, a polyolefin, polyvinyl alcohol, and the like described in paragraph No. [0022] of JP-A-8-338913.
  • Examples include modified polyvinyl alcohol, poly (N-methylolacrylamide), polyester, polyimide, vinyl acetate copolymer, carboxymethylcellulose, and polycarbonate.
  • Silane coupling agents can be used as the polymer.
  • Water-soluble polymers eg, poly (N-methylolacrylamide), carboxymethylcellulose, gelatin, polyvinyl alcohol, modified polyvinyl alcohol
  • gelatin, polyvinyl alcohol and modified polyvinyl alcohol are more preferred, and polyvinyl alcohol and modified polyvinyl alcohol are most preferred.
  • the aforementioned composition is applied to the rubbing-treated surface of the alignment layer to align the molecules of the liquid crystal compound. After that, if necessary, the alignment layer polymer and the polyfunctional monomer contained in the optically anisotropic layer are reacted, or the alignment layer polymer is crosslinked using a crosslinking agent, thereby the optical anisotropy described above.
  • a layer can be formed.
  • the film thickness of the alignment layer is preferably in the range of 0.1 to 10 ⁇ m.
  • the surface of the alignment layer, temporary support, ⁇ / 4 plate, or light reflection layer to which the polymerizable liquid crystal composition is applied may be rubbed as necessary.
  • the rubbing treatment can be generally performed by rubbing the surface of a film containing a polymer as a main component with paper or cloth in a certain direction.
  • a general method of rubbing is described in, for example, “Liquid Crystal Handbook” (issued by Maruzen, October 30, 2000).
  • the rubbing density (L) is quantified by the following formula (A).
  • Formula (A) L Nl (1 + 2 ⁇ rn / 60v)
  • N is the number of rubbing
  • l is the contact length of the rubbing roller
  • r is the radius of the roller
  • n is the number of rotations (rpm) of the roller
  • v is the stage moving speed (second speed).
  • the rubbing frequency should be increased, the contact length of the rubbing roller should be increased, the radius of the roller should be increased, the rotation speed of the roller should be increased, and the stage moving speed should be decreased, while the rubbing density should be decreased. To do this, you can reverse this.
  • the description in Japanese Patent No. 4052558 can also be referred to as conditions for the rubbing process.
  • Photo-alignment layer A large number of documents describe the photo-alignment material used for the photo-alignment layer formed by light irradiation.
  • the photo-alignment layer formed from the above material is irradiated with linearly polarized light or non-polarized light to produce a photo-alignment layer.
  • linearly polarized light irradiation is an operation for causing a photoreaction in a photo-alignment material.
  • the wavelength of light used varies depending on the photo-alignment material used, and is not particularly limited as long as it is a wavelength necessary for the photoreaction.
  • the peak wavelength of light used for light irradiation is 200 nm to 700 nm, and more preferably ultraviolet light having a peak wavelength of light of 400 nm or less.
  • the light source used for light irradiation is a commonly used light source such as a tungsten lamp, a halogen lamp, a xenon lamp, a xenon flash lamp, a mercury lamp, a mercury xenon lamp, a carbon arc lamp, or various lasers (eg, semiconductor laser, helium). Neon laser, argon ion laser, helium cadmium laser, YAG laser), light emitting diode, cathode ray tube, and the like.
  • a method using a polarizing plate eg, iodine polarizing plate, dichroic dye polarizing plate, wire grid polarizing plate
  • reflection using a prism-based element eg, Glan-Thompson prism
  • a prism-based element eg, Glan-Thompson prism
  • Brewster angle A method using a type polarizer or a method using light emitted from a laser light source having polarization can be employed.
  • a method of irradiating light from the top surface or the back surface to the alignment layer surface perpendicularly or obliquely with respect to the alignment layer is employed.
  • the incident angle of light varies depending on the photo-alignment material, but is, for example, 0 to 90 ° (vertical), preferably 40 to 90.
  • the non-polarized light is irradiated obliquely.
  • the incident angle is 10 to 80 °, preferably 20 to 60, particularly preferably 30 to 50 °.
  • the irradiation time is preferably 1 minute to 60 minutes, more preferably 1 minute to 10 minutes.
  • ⁇ Preparation of broadband light reflection layer> Examples of a method for broadening the light reflection layer formed by fixing the cholesteric liquid crystal phase include use of a high ⁇ n liquid crystal compound and a pitch gradient method.
  • ⁇ n is the birefringence of the liquid crystal compound as described above.
  • the liquid crystal compound used in the light reflection layer formed by fixing the cholesteric liquid crystal phase is practically about 0.06 ⁇ ⁇ n ⁇ 0.5 (the high ⁇ n liquid crystal material described in JP 2011-510915 A can be used). Yes, corresponding to 15 to 150 nm in half width.
  • examples of the high ⁇ n liquid crystal compound include compounds described in Japanese Patent No. 3999400, Japanese Patent No. 4053782, Japanese Patent No. 4947676, and the like, but are not limited thereto.
  • the method of paragraph [0112] of Japanese Patent No. 40537882 and paragraph [0142] of Japanese Patent No. 4947676 can be referred to for the method of measuring ⁇ n.
  • a pitch gradient method that can realize a wide half-value width can be used by gradually changing the number of pitches in the cholesteric spiral direction instead of a single pitch.
  • the pitch is the pitch length P of the helical structure in the cholesteric liquid crystal phase, and means the thickness of the molecular layer when the orientation direction of the molecular layer of the liquid crystal compound is rotated 360 degrees.
  • ⁇ n is preferably 0.16 or more, more preferably 0.2 or more, still more preferably 0.3 or more, and particularly preferably the current situation. It is about 0.5 which is the upper limit of ⁇ n of the liquid crystal that has been industrialized. However, if further high ⁇ n liquid crystal is developed in the future, it can be applied to the present invention in principle and can be made thinner.
  • the film thickness of the wideband pitch gradient layer is preferably 6 ⁇ m or more, and more preferably 8 ⁇ m or more.
  • the film thickness is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, further preferably 4 ⁇ m or more, and 5 ⁇ m or more. Is particularly preferred.
  • the ⁇ n dispersion of the liquid crystal preferably has a small dispersion at each wavelength.
  • ⁇ n (450/550 ratio) ⁇ 1.6, more preferably ⁇ n (450/550 ratio) ⁇ 1.4, more preferably ⁇ n (450/550 ratio) ⁇ 1.2, particularly preferably ⁇ n. (450/550 ratio) ⁇ 1.1.
  • a wide half-value width can be realized by gradually changing the pitch in the spiral direction (normal film thickness direction) of the cholesteric liquid crystal phase.
  • the pitch continuously changes in the film thickness direction.
  • the pitch continuously increases or decreases continuously from one surface of the layer to the other surface.
  • the concentration of a compound that does not form a spiral in the thickness direction of the liquid crystal layer is continuously changed in the thickness direction of the liquid crystal layer, or the concentration of the chiral agent is continuously changed in the thickness direction of the liquid crystal layer.
  • a chiral agent with a photoisomerization moiety use a chiral agent with a photoisomerization moiety, and change the HTP (helical twisting power) of the chiral agent by isomerizing the photoisomerization part of the chiral agent with UV irradiation etc. when forming the light reflection layer.
  • this photoisomerization moiety a vinylene group, an azo group, or the like is preferable.
  • the pitch gradient method those described in (Nature 378, 467-469 1995), Japanese Patent No. 4990426, Japanese Patent Application Laid-Open No. 2005-265896, and the like can be applied.
  • the compound which does not form a helix and has a fluorinated alkyl group as described in Japanese Patent No. 4570377 can also be used.
  • the brightness enhancement film may have a retardation element, for example, to compensate for the phase difference of light incident obliquely on the 1 ⁇ 4 plate from the backlight unit side.
  • the retardation element has Rth in the range of ⁇ 20 nm to ⁇ 1000 nm, preferably ⁇ 50 nm to ⁇ 500 nm.
  • the description in paragraphs 0045 to 0051 of Japanese Patent No. 4570377 can be referred to.
  • the brightness enhancement film may include a support.
  • a support body can function as a layer which supports the layer formed from the composition containing a liquid crystal compound.
  • the light reflection layer may be formed using the ⁇ / 4 plate itself as a support, or the light reflection layer may be formed using the entire ⁇ / 4 plate formed on the support as a support. You may form.
  • the brightness enhancement film may not include a support for forming the light reflecting layer.
  • the light reflecting layer is formed by using glass or a transparent film as a support for forming the light reflecting layer. After that, only the light reflection layer may be peeled off from the support during film formation to form a brightness enhancement film.
  • the support that is peeled off from the light reflecting layer in this way may be referred to as a temporary support.
  • the ⁇ / 4 plate and the adhesive layer (and / or the adhesive material)
  • multilayer film it is set as a brightness improvement film by bonding the 1st and 2nd light reflection layer which peels with an contact bonding layer.
  • a film in which a ⁇ / 4 plate and a first light reflection layer are formed in this order on a support, and a film in which a second light reflection layer is formed on a support, these first light reflection layers are used.
  • a brightness enhancement film by providing and bonding an adhesive layer (and / or an adhesive material) between the first light reflecting layer and the second light reflecting layer.
  • the support may or may not be peeled off after bonding.
  • a film in which a ⁇ / 4 plate and a first light reflecting layer are formed in this order on a support and a film in which a third light reflecting layer and a second light reflecting layer are formed in this order on a support are used.
  • a brightness enhancement film by providing and bonding an adhesive layer (and / or an adhesive material) between the first light reflecting layer and the second light reflecting layer.
  • the Re of the support is preferably 0 to 50 nm, more preferably 0 to 30 nm, more preferably 0 to 30 nm when the support does not have a function as a part or all of the ⁇ / 4 plate. More preferably, it is 10 nm.
  • the above range is preferable because light leakage of reflected light can be reduced to a level where it is not visually recognized.
  • the retardation (Rth) in the thickness direction of the support is preferably selected depending on the combination with the optically anisotropic layer provided above or below it. Thereby, it is possible to reduce the light leakage of the reflected light and the coloring when observed from an oblique direction.
  • the Rth of the support is, for example, preferably from ⁇ 40 to 120 nm, more preferably from 0 to 80 nm, still more preferably from 20 to 60 nm.
  • Examples of the material of the polymer film used as the support include materials used for the above-mentioned ⁇ / 4 plate, cellulose acylate films (for example, cellulose triacetate film (refractive index 1.48), cellulose diacetate film, cellulose Acetate butyrate film, cellulose acetate propionate film), polyolefin such as polyethylene and polypropylene, polyester resin film such as polyethylene terephthalate and polyethylene naphthalate, polyethersulfone film, polyacrylic resin film such as polymethyl methacrylate, polyurethane Resin film, polyester film, polycarbonate film, polysulfone film, polyether film, polymethylpentene film, polyester film Ether ketone film, (meth) acrylonitrile film, polyolefin, polymer having alicyclic structure (norbornene resin (Arton: trade name, manufactured by JSR Corporation, amorphous polyolefin (ZEONEX: trade name, manufactured by ZEON Corporation)) Of these
  • the thickness of the transparent support may be about 5 ⁇ m to 150 ⁇ m, preferably 5 ⁇ m to 80 ⁇ m, and more preferably 20 ⁇ m to 60 ⁇ m.
  • the transparent support may be composed of a plurality of laminated layers. A thinner one is preferable for suppressing external light reflection, but if it is thinner than 5 ⁇ m, the strength of the film tends to be low, which tends to be undesirable.
  • surface treatment eg, glow discharge treatment, corona discharge treatment, ultraviolet light (UV) Treatment, flame treatment.
  • An adhesive layer undercoat layer may be provided on the transparent support.
  • the average particle diameter of the transparent support or the long transparent support is 10 to 100 nm in order to provide slippage in the transport process or to prevent the back surface and the surface from sticking after winding. It is preferable to use a polymer layer in which 5% to 40% of a solid content of inorganic particles is mixed and formed on one side of the support by coating or co-casting with the support.
  • the support is a temporary support
  • a glass plate may be used, for example, Corning glass 7059 can be used.
  • any of the plastic films exemplified as the support can be used, but it is preferable that the light reflecting layer formed by fixing the cholesteric liquid crystal phase can be peeled off and transferred.
  • a long cellulose acylate film (TD80UL (manufactured by FUJIFILM Corporation)) of 100 meters or more may be used.
  • TD80UL manufactured by FUJIFILM Corporation
  • the use of a long cellulose acylate film in this manner enables the production of an optical sheet member by so-called roll-to-roll, and is more preferable from the viewpoint of manufacturing suitability.
  • the long film to be used is not limited to this as long as the cholesteric liquid crystal layer can be transferred.
  • Adhesive layer (adhesive layer), adhesive>
  • An adhesive layer may be included between each member constituting the brightness enhancement film and the optical sheet member described later.
  • an adhesive layer is included between the ⁇ / 4 plate and the reflective polarizer, between the light reflecting layers in the reflective polarizer, between the polarizing plate or the polarizer and the ⁇ / 4 plate, and the like. Also good.
  • the pressure-sensitive adhesive that can be used in the present invention include, but are not limited to, acrylic pressure-sensitive adhesives and polyvinyl alcohol-based adhesives.
  • Examples of the adhesive include a boron compound aqueous solution, an epoxy compound curable adhesive that does not contain an aromatic ring in the molecule, as disclosed in JP-A-2004-245925, and 360 described in JP-A-2008-174667.
  • An active energy ray-curable adhesive comprising, as essential components, a photopolymerization initiator having a molar extinction coefficient of 400 or more at a wavelength of 450 nm and an ultraviolet curable compound, a (meth) acrylic adhesive described in JP-A-2008-174667 (A) (meth) acrylic compound having 2 or more (meth) acryloyl groups in the molecule in 100 parts by mass of the total amount of the compound, and (b) having a hydroxyl group in the molecule, and only having a polymerizable double bond (Meth) acrylic compound having one and (c) phenol ethylene oxide modified acrylate or nonylphenol ethylene oxide The active energy ray-curable adhesive containing a modified acrylate, and
  • the optical sheet member described later preferably has a refractive index difference of 0.15 or less, more preferably 0.10 or less, between the reflective polarizer and the layer adjacent to the polarizing plate side of the reflective polarizer. Is particularly preferably 0.05 or less.
  • the layer adjacent to the polarizing plate side of the above-described reflective polarizer include the above-described adhesive layer.
  • Such a method for adjusting the refractive index of the adhesive layer is not particularly limited, but for example, a method described in JP-A-11-223712 can be used. Among the methods described in JP-A-11-223712, the following embodiments are particularly preferable.
  • Examples of the pressure-sensitive adhesive used for the above-mentioned adhesive layer include resins such as polyester resins, epoxy resins, polyurethane resins, silicone resins, and acrylic resins. You may use these individually or in mixture of 2 or more types.
  • an acrylic resin is preferable because it is excellent in reliability such as water resistance, heat resistance, and light resistance, has good adhesion and transparency, and can easily adjust the refractive index to be compatible with a liquid crystal display.
  • acrylic pressure-sensitive adhesive acrylic acid and its esters, methacrylic acid and its esters, acrylamide, homopolymers of acrylic monomers such as acrylonitrile, or their copolymers, and at least one of the above acrylic monomers, Examples thereof include copolymers with aromatic vinyl monomers such as vinyl acetate, maleic anhydride, and styrene.
  • main monomers such as ethylene acrylate, butyl acrylate, and 2-ethylhexyl acrylate that exhibit adhesiveness
  • monomers such as vinyl acetate, acrylonitrile, acrylamide, styrene, methacrylate, and methyl acrylate that are cohesive components
  • adhesion Functional group containing methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, hydroxypropyl methacrylate, dimethylaminoethyl methacrylate, dimethylaminoethyl methacrylate, acrylamide, methylol acrylamide, glycidyl methacrylate, maleic anhydride, etc.
  • a sheet-like photo-curing type adhesive (Toho Gosei Group Research Annual Report, TREND No. 14, published on January 1, 2011) can also be used for the adhesive layer. Like an adhesive, it is easy to bond between optical films, is crosslinked and cured with ultraviolet rays (UV), and improves storage elastic modulus, adhesive strength and heat resistance, which is preferable.
  • UV ultraviolet rays
  • a separately produced ⁇ / 4 plate and a light reflecting layer may be bonded together with an adhesive, and at least one light reflecting layer is placed on the surface of the ⁇ / 4 plate or another light reflecting layer. It may be formed by direct application. By forming by direct coating, it is possible to provide a brightness enhancement film having better flexibility. It is also preferable that all the light reflection layers are formed by being directly applied to the surface of the ⁇ / 4 plate or the other light reflection layer.
  • the method for producing the brightness enhancement film is, for example, by applying a polymerizable liquid crystal composition to the surface of a ⁇ / 4 plate, which is a polymer film, and curing the coating film to form a light reflecting layer (first light reflecting layer). Including doing.
  • a polymerizable liquid crystal composition is further applied to the surface of the laminate of the ⁇ / 4 plate and the first light reflection layer produced as described above, the coating film is cured, and the light reflection layer (second light (Reflection layer) may be formed, and the coating film may be further cured to form a light reflection layer (third light reflection layer).
  • the temporary support may or may not be peeled off thereafter.
  • the brightness enhancement film may be produced by a method including producing a ⁇ / 4 plate by applying a composition containing a liquid crystal compound on a support and curing the coating film.
  • a ⁇ / 4 plate and a light reflection layer may be sequentially formed on the support by coating and curing.
  • a laminate having a ⁇ / 4 plate on the support, and a laminate having a light reflection layer on the temporary support May be bonded so that the ⁇ / 4 plate and the light reflecting layer are adjacent to each other.
  • a laminate having a ⁇ / 4 plate on a support, and a laminate having a second light reflecting layer and a first light reflecting layer in this order from the temporary support on the temporary support The four plates and the first light reflecting layer may be bonded so as to be adjacent to each other. Thereafter, the temporary support may or may not be peeled off.
  • a method of superimposing a liquid crystal layer through an alignment layer can also be employed.
  • the optical sheet member has a brightness enhancement film and a polarizing plate.
  • An example of the layer structure of the optical sheet member is shown in FIG.
  • the angle formed between the slow axis of the ⁇ / 4 plate and the absorption axis of the polarizer is 30 to 60 °, and the polarizing plate, the ⁇ / 4 plate, and the reflective polarizer are in direct contact in this order, or an adhesive layer It is preferable to laminate via.
  • the slow axis means a direction in which the refractive index is maximized.
  • the optical sheet member may have a polarizing plate protective film.
  • the reflective polarizer may be provided directly on the polarizer or via an adhesive.
  • the ⁇ / 4 plate may also serve as a polarizing plate protective film, and the polarizing plate protective film may also serve as a part of the ⁇ / 4 plate realized by lamination.
  • these protective films as the protective film disposed on the side opposite to the liquid crystal cell, a thermoplastic resin excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like is used.
  • thermoplastic resins include cellulose resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) acrylic resins, cyclic Examples thereof include polyolefin resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
  • cellulose resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) acrylic resins, cyclic Examples thereof include polyolefin resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
  • a polarizing plate may consist only of a polarizer, it is preferable that a polarizing plate is comprised with the polarizing plate and the polarizing plate protective film which protects the at least single side
  • the polarizer it is preferable to use a polymer film in which iodine is adsorbed and oriented.
  • the polymer film is not particularly limited, and various types can be used.
  • polyvinyl alcohol-based films, polyethylene terephthalate-based films, ethylene / vinyl acetate copolymer-based films, partially saponified films of these, hydrophilic polymer films such as cellulose-based films, polyvinyl alcohol dehydrated products and polychlorinated Examples include polyene-based oriented films such as vinyl dehydrochlorinated products.
  • Polyvinyl alcohol or a derivative thereof is used as the material for the polyvinyl alcohol film.
  • Derivatives of polyvinyl alcohol include polyvinyl formal, polyvinyl acetal and the like, olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, alkyl esters thereof, acrylamide and the like. Can be mentioned.
  • the polymerization degree of the polymer that is the material of the polymer film is generally 500 to 10,000, preferably in the range of 1000 to 6000, and more preferably in the range of 1400 to 4000. Furthermore, in the case of a saponified film, the degree of saponification is preferably 75 mol% or more, more preferably 98 mol% or more, for example, from the viewpoint of solubility in water, and more preferably 98.3 to 99.8 mol. % Is more preferable.
  • the aforementioned polymer film (unstretched film) is at least subjected to uniaxial stretching treatment and iodine dyeing treatment according to a conventional method. Furthermore, a boric acid treatment or a washing treatment can be performed. Further, the polymer film (stretched film) subjected to the above-described treatment is dried according to a conventional method to become a polarizer.
  • the thickness of the polarizer is usually 5 to 80 ⁇ m, preferably 5 to 50 ⁇ m, more preferably 5 to 25 ⁇ m.
  • the single transmittance when measured with a single polarizer is preferably 43% or more, and more preferably in the range of 43.3 to 45.0%.
  • the orthogonal transmittance measured by superposing two polarizers described above so that the absorption axes of the two polarizers are 90 ° to each other is smaller, and practically 0.00 % Or more and 0.050% or less is preferable, and 0.030% or less is more preferable.
  • the degree of polarization is preferably 99.90% or more and 100% or less for practical use, and particularly preferably 99.93% or more and 100% or less. Even when measured as a polarizing plate, it is preferable to obtain optical characteristics substantially equivalent to this.
  • This polarizer can be obtained by the methods described in JP-A-2006-293275, JP-A-2009-98653, JP-A-2001-350021, and JP-A-2001-141926.
  • the polarizing plate used for color control as described above preferably has a polarizing plate hue chromaticity of a * > 0, and a * > 1 when the C light source is transmitted. More preferably, a * > 2 is even more preferable. This is because the chromaticity of the display device is brought close to red.
  • the upper limit value is not particularly limited, and may be 20, 15, 13, 10, or 8, for example.
  • the C light source is “auxiliary illuminant C” described in JIS Z 8720: 2012, and has a color temperature of 6774 Kelvin.
  • thermoplastic resin excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like is used.
  • thermoplastic resins include cellulose resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) acrylic resins, cyclic Examples thereof include polyolefin resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
  • Cellulose resin is an ester of cellulose and fatty acid.
  • Specific examples of the cellulose ester resin include triacetyl cellulose, diacetyl cellulose, tripropyl cellulose, dipropyl cellulose, and the like. Among these, triacetyl cellulose is particularly preferable.
  • Many products of triacetylcellulose are commercially available, which is advantageous in terms of availability and cost. Examples of commercially available products of triacetylcellulose include trade names “UV-50”, “UV-80”, “SH-80”, “TD-80U”, “TD-TAC”, “ UZ-TAC ”and“ KC Series ”manufactured by Konica.
  • cyclic polyolefin resin examples are preferably norbornene resins.
  • the cyclic olefin-based resin is a general term for resins that are polymerized using a cyclic olefin as a polymerization unit, and is described in, for example, JP-A-1-240517, JP-A-3-14882, JP-A-3-122137, and the like. Resin.
  • cyclic olefin ring-opening (co) polymers examples include cyclic olefin addition polymers, cyclic olefins and ⁇ -olefins such as ethylene and propylene (typically random copolymers), And the graft polymer which modified these with unsaturated carboxylic acid or its derivative (s), and those hydrides, etc. are mentioned.
  • Specific examples of the cyclic olefin include norbornene monomers.
  • cyclic polyolefin resins Various products are commercially available as cyclic polyolefin resins. Specific examples include the product names “ZEONEX” and “ZEONOR” manufactured by ZEON CORPORATION, the product name “ARTON” manufactured by JSR Corporation, the product name “TOPAS” manufactured by TICONA, and the product rules manufactured by Mitsui Chemicals, Inc. “APEL” may be mentioned.
  • any appropriate (meth) acrylic resin can be adopted as the (meth) acrylic resin.
  • poly (meth) acrylate such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester- (Meth) acrylic acid copolymers, (meth) methyl acrylate-styrene copolymers (MS resin, etc.), polymers having an alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer, And methyl methacrylate- (meth) acrylate norbornyl copolymer).
  • Preferable examples include C1-6 alkyl poly (meth) acrylates such as poly (meth) acrylate methyl. More preferred is a methyl methacrylate resin containing methyl methacrylate as a main component (50 to 100% by mass, preferably 70 to 100% by mass).
  • the (meth) acrylic resin examples include, for example, (Meth) acrylic resin having a ring structure in the molecule described in Acrypet VH and Acrypet VRL20A manufactured by Mitsubishi Rayon Co., Ltd., and JP-A-2004-70296. And a high Tg (meth) acrylic resin system obtained by intramolecular crosslinking or intramolecular cyclization reaction.
  • (Meth) acrylic resin having a lactone ring structure can also be used as the (meth) acrylic resin. It is because it has high mechanical strength by high heat resistance, high transparency, and biaxial stretching.
  • the thickness of the protective film can be appropriately set, but is generally about 1 to 80 ⁇ m from the viewpoints of workability such as strength and handling, and thin layer properties. 1 to 60 ⁇ m is particularly preferable, 5 to 40 ⁇ m is more preferable, and 5 to 25 ⁇ m is still more preferable.
  • the brightness enhancement film or the optical sheet member can be used in combination with a backlight unit in a liquid crystal display device.
  • the backlight unit includes at least a blue light having an emission center wavelength in a wavelength band of 430 to 500 nm, a green light having an emission center wavelength in a wavelength band of 500 to 600 nm, and a peak of emission intensity in a wavelength band of 600 to 700 nm. What is necessary is just to provide the light source which light-emits red light which has one part.
  • the above-described backlight unit includes a reflecting member that converts and reflects the polarization state of light emitted from the above-described light source and reflected by the above-described brightness enhancement film or the above-described optical sheet member at the rear of the above-described light source. It is also preferable.
  • the backlight may be of an edge light type or a direct type using a light guide plate or a reflection plate as a constituent member, but the backlight unit emits light from the light source at the rear of the light source. It is preferable to provide a reflecting member that converts and reflects the polarization state of the light reflected by the optical sheet member.
  • a reflecting member that converts and reflects the polarization state of the light reflected by the optical sheet member.
  • the light source of the backlight includes a blue light emitting diode that emits the blue light described above, and a wavelength that includes the fluorescent material that emits the green light and the red light when the blue light of the blue light emitting diode is incident. It is preferable to have a conversion member.
  • the blue light emitting diode that emits the blue light described above, the green light emitting diode that emits the green light described above, and the red light emitting diode that emits the red light described above may be used.
  • the light source of the backlight may be a white light source such as a white LED (Light Emitting Diode).
  • the liquid crystal display device of the present invention includes a blue light emitting diode that emits the blue light and a fluorescent material that emits the green light and the red light when the blue light of the blue light emitting diode is incident. It is a quantum dot member (for example, a quantum dot sheet or a bar-shaped quantum dot bar), and the quantum dot member is preferably disposed between the optical sheet member and the blue light source. Such a quantum dot member is not particularly limited, and a known member can be used.
  • QDEF Quantum Dot Enhancement Film, manufactured by Nanosys
  • the preferred emission center wavelengths of the light of each color emitted from the backlight unit are as follows.
  • Blue light preferably has an emission center wavelength in the wavelength band of 440 to 470 nm.
  • the green light preferably has an emission center wavelength in the wavelength band of 520 to 570 nm.
  • Red light preferably has an emission center wavelength in the wavelength band of 600 to 640 nm.
  • the full widths at half maximum of the blue light, the green light, and the red light are 100 nm or less.
  • the blue light emitted from the backlight unit preferably has an emission intensity peak with a half-value width of 80 nm or less, more preferably an emission intensity peak with a half-value width of 70 nm or less, and a half-value width of 30 nm or less. It is particularly preferable to have a peak of emission intensity as follows.
  • the green light emitted from the backlight unit preferably has an emission intensity peak with a half-value width of 80 nm or less, more preferably an emission intensity peak with a half-value width of 70 nm or less, and a half-value width of 60 nm or less.
  • the red light emitted from the backlight unit preferably has an emission intensity peak with a half-value width of 80 nm or less, more preferably an emission intensity peak with a half-value width of 70 nm or less, and a half-value width of 60 nm or less. It is particularly preferable to have a peak of emission intensity as follows.
  • the center wavelength-emission center wavelength is preferably within ⁇ 50 nm and more preferably within ⁇ 25 nm for blue and green light.
  • 0 to 75 nm is preferable from the viewpoint of suppressing oblique color change, more preferably 0 to 50 nm, and still more preferably 10 to 30 nm.
  • the front chromaticity of the backlight unit is preferably a * > 8, more preferably a * > 12. It is more preferable that a * > 16, and it is further preferable that a * > 20. This is to bring the chromaticity of the display device to the red direction.
  • the upper limit value is not particularly limited, and may be 50, 30, or 20, for example.
  • the backlight unit preferably further includes a known diffusion plate, diffusion sheet, prism sheet (for example, BEF), and a light guide.
  • a known diffusion plate for example, BEF
  • prism sheet for example, BEF
  • a light guide for example, a known diffusion plate, diffusion sheet, prism sheet (for example, BEF), and a light guide.
  • Other members are also described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, and the like.
  • the backlight unit includes two prism sheets whose prism directions are substantially parallel to each other. This is because the front luminance of the liquid crystal display device can be further improved.
  • the direction in which the prisms of the two prism sheets are substantially parallel means that the angle formed by the prisms of the two prism sheets is within ⁇ 5 °.
  • the prism sheet has a plurality of protrusions (in the present specification, these protrusions are also referred to as prisms) extending in one direction within the surface of the prism sheet.
  • the directions in which the plurality of prisms arranged in are extended are parallel.
  • the direction of the prism refers to the extending direction of a plurality of prisms arranged in a row.
  • the front luminance can be increased by using two prism sheets whose prism directions are substantially parallel to each other, rather than two prism sheets whose prism directions are substantially perpendicular to each other.
  • the same effect can be acquired also when combining any of the above-mentioned light sources.
  • ⁇ Method of bonding optical sheet member to liquid crystal display device> As a method for bonding the brightness enhancement film or the optical sheet member to the liquid crystal display device, a known method can be used. In addition, a roll-to-panel manufacturing method can be used, which is preferable for improving productivity and yield.
  • the roll-to-panel manufacturing method is described in JP-A-2011-48381, JP-A-2009-175653, JP-A-4628488, JP-B-4729647, WO2012 / 014602, WO2012 / 014571, and the like. It is not limited.
  • ⁇ Layer that changes the polarization state of light It is preferable to dispose a layer that changes the polarization state of light between the outermost light reflecting layer of the brightness enhancement film and the backlight unit.
  • the layer that changes the polarization state of the light functions as a layer that changes the polarization state of the light reflected from the light reflection layer, can improve the brightness, reduce the color change, and reduce coating unevenness. is there.
  • Examples of the layer that changes the polarization state of light include a polymer layer having a refractive index higher than that of the air layer.
  • the polymer layer having a refractive index higher than that of the air layer examples include a hard coat (HC) treatment layer, an antiglare ( Various low reflection layers such as AG) treatment layer and low reflection (AR) treatment layer, triacetyl cellulose (TAC) film, acrylic resin film, cycloolefin polymer (COP) resin film, stretched PET film and the like.
  • HC hard coat
  • AR low reflection
  • TAC triacetyl cellulose
  • acrylic resin film acrylic resin film
  • COP cycloolefin polymer
  • stretched PET film stretched PET film and the like.
  • the layer that changes the polarization state of light may also serve as a support.
  • the relationship between the average refractive index of the layer that changes the polarization state of the light reflected from the light reflecting layer and the average refractive index of the outermost light reflecting layer is as follows:
  • ⁇ 0.4 is more preferable 0 ⁇
  • the layer that changes the polarization state of light may be integrated with the brightness enhancement film, or may be provided separately from the brightness enhancement film.
  • a cellulose ester support T1 for a ⁇ / 4 plate was prepared.
  • cellulose ester solution A-1 The following composition was put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose ester solution A-1.
  • Composition of cellulose ester solution A-1 ⁇ -Cellulose acetate (acetylation degree 2.86) 100 parts by mass-Methylene chloride 320 parts by mass-Methanol 83 parts by mass-1-butanol 3 parts by mass-Triphenyl phosphate 7.6 parts by mass-Biphenyl diphenyl phosphate 3.8 Mass part ⁇
  • matting agent dispersion B-1 The following composition was charged into a disperser and stirred to dissolve each component to prepare a matting agent dispersion B-1.
  • ⁇ Composition of Matting Agent Dispersion B-1
  • Silica particle dispersion (average particle size 16 nm) "AEROSIL R972", Nippon Aerosil Co., Ltd. 10.0 parts by mass-Methylene chloride 72.8 parts by mass-Methanol 3.9 parts by mass-Butanol 0.5 parts by mass-Cellulose ester solution
  • A-1 10.3 parts by mass ⁇
  • UV absorber solution C-1 (Preparation of UV absorber solution C-1) The following composition was put into another mixing tank and stirred while heating to dissolve each component to prepare an ultraviolet absorber solution C-1.
  • ⁇ Composition of UV absorber solution C-1 ⁇ UV absorber (UV-1 below) 10.0 parts by weight UV absorber (UV-2 below) 10.0 parts by weight Methylene chloride 55.7 parts by weight Methanol 10 parts by weight Butanol 1.3 parts by weight ⁇ Cellulose ester solution A-1 12.9 parts by mass ⁇
  • the cast dope film was dried on the drum by applying a drying air of 34 ° C. at 150 m 3 / min, and peeled off from the drum with a residual solvent of 150%. During peeling, 15% stretching was performed in the transport direction (longitudinal direction). Thereafter, the film is conveyed while being held by a pin tenter (pin tenter described in FIG. 3 of JP-A-4-1009) at both ends in the width direction (direction perpendicular to the casting direction) and stretched in the width direction. No processing was performed. Furthermore, it dried further by conveying between the rolls of the heat processing apparatus, and manufactured the cellulose acylate support body T1. The produced long cellulose acylate support T1 had a residual solvent amount of 0.2%, a thickness of 60 ⁇ m, and Re and Rth at 550 nm of 0.8 nm and 40 nm, respectively.
  • the solvent was kept at 85 ° C. for 2 minutes to evaporate the solvent, and then heat-aged at 100 ° C. for 4 minutes to obtain a uniform alignment state.
  • the discotic compound was aligned perpendicular to the support plane.
  • this coating film was kept at 80 ° C. and irradiated with ultraviolet rays using a high-pressure mercury lamp in a nitrogen atmosphere to produce a ⁇ / 4 plate.
  • norbornene resin trade name: ZEONOR1020, Nippon Zeon
  • the extrusion flow path of the extruder containing the norbornene-based resin is branched into two, and the norbornene-based resin extruded from the branched flow path is the styrene-maleic anhydride copolymer extruded from another extruder.
  • the polymer was sandwiched to form a three-layer laminate inside the extrusion die.
  • a filter is disposed at the communication port of the two extruders to the extrusion die so that the above-described norbornene resin and styrene-maleic anhydride copolymer are passed through the filter and then extruded into the extrusion die.
  • a laminate having a three-layer structure was obtained.
  • the thickness unevenness of this laminate was measured using a scanning thickness meter. The measurement was performed by continuously scanning in the longitudinal direction of the laminate.
  • the obtained laminate had an average thickness of 300 ⁇ m, and the thickness unevenness was 2.5% with respect to the above-mentioned thickness average.
  • the laminate is sequentially fed into a uniaxial stretching device in the longitudinal direction parallel to the conveying direction of zone heating and a tenter stretching device (uniaxial stretching in the lateral direction perpendicular to the conveying direction) to sequentially perform biaxial stretching.
  • a retardation element I was produced.
  • the stretching temperature was 140 ° C. for both the above-described longitudinal stretching and lateral stretching, and the stretching ratio was 1.8 times for longitudinal stretching and 1.5 times for lateral stretching.
  • the average thickness of the obtained retardation element I was 120 ⁇ m, and the refractive index and retardation were measured using an automatic birefringence measuring apparatus KOBRA-21SDH (manufactured by Oji Scientific Instruments).
  • the retardation was 10 nm for Re and ⁇ 300 nm for Rth.
  • ⁇ Formation of optical laminate E> As an alignment layer, Sunever SE-130 (Nissan Chemical Co., Ltd.) was dissolved in N-methylpyrrolidone. The above solution was bar-coated on Corning glass 7059 with the concentration and coating amount adjusted to a dry film thickness of 0.5 ⁇ m. The coating film was heated at 100 ° C. for 5 minutes, and further heated at 250 ° C. for 1 hour. Thereafter, the surface was rubbed to obtain an alignment layer. Subsequently, a solute having the following composition was dissolved in MEK to prepare a coating solution for forming the light reflection layer E containing a discotic liquid crystal compound.
  • this coating film was kept at 45 ° C., and irradiated with ultraviolet rays using a high-pressure mercury lamp in a nitrogen atmosphere to produce an optical laminate E including a light reflection layer E.
  • the film thickness of the light reflection layer E was 2.4 ⁇ m.
  • a terminal fluorinated alkyl group-containing polymer (compound A) having an optically active site was obtained by the procedure described in Japanese Patent No. 4570377 [0065]. Specifically, Compound A was obtained as follows.
  • An alignment film coating solution consisting of 10 parts by weight of polyvinyl alcohol and 371 parts by weight of water was applied to a glass 7059 manufactured by Corning Co., Ltd. on one side of the glass and dried to form an alignment film having a thickness of 1 ⁇ m.
  • a rubbing treatment was performed on the alignment film continuously in a direction parallel to the longitudinal direction of the glass.
  • a composition having the following composition was applied using a bar coater, dried at room temperature for 10 seconds, heated in an oven at 100 ° C. for 2 minutes (alignment aging), and further irradiated with ultraviolet rays for 30 seconds.
  • An optical laminate A having a light reflection layer A having a thickness of 5.0 ⁇ m was produced.
  • Composition for forming the light reflection layer A ----------- Compound 8 8.2 parts by mass
  • Compound 9 0.3 parts by mass Terminally fluorinated alkyl group-containing polymer having optically active site (Compound A) 1.9 parts by mass Methyl ethyl ketone 24.0 parts by mass ⁇
  • the cross section of the light reflecting layer A composed of the cholesteric liquid crystal layer was observed with a scanning electron microscope, it had a structure having a helical axis in the normal direction of the layer and continuously changing the cholesteric pitch.
  • the cholesteric pitch when the cross section of the cholesteric liquid crystal layer is observed with a scanning electron microscope, the width in the layer normal direction of the light portion and the dark portion repeated twice (brightness, darkness, and darkness) is counted as one pitch.
  • the result calculated from the measured cholesteric pitch is that the cholesteric reflection wavelength near the x plane is 410 nm, and the cholesteric wavelength near the y plane is The reflection wavelength of was 700 nm.
  • the thickness of the cholesteric liquid crystal layer was 3.5 ⁇ m, and the amount of polymer (compound A) added, the aging temperature, and the ultraviolet irradiation conditions were changed, as in the optical laminate A.
  • Optical laminated bodies C1, C2, and C3 having light reflecting layers C1, C2, and C3 were produced.
  • the cross sections of the optical laminates C1, C2, and C3 were observed with a scanning electron microscope, all had a helical axis in the layer normal direction and a structure in which the cholesteric pitch was continuously changed in the thickness direction. It was.
  • the transmittance of the cholesteric liquid crystal layer was measured in the same manner as in the optical laminate A.
  • C1 had a reflection wavelength of 500 to 680 nm
  • C2 had a reflection wavelength of 500 to 700 nm
  • C3 had a reflection wavelength of 530 to 700 nm.
  • a ⁇ / 4 plate, each light reflection layer, or retardation element I was used in the combinations shown in Table 1, and each was bonded to each other with an adhesive material to produce a brightness enhancement film.
  • the optical laminated body was transferred from the support glass using an adhesive material, and only the light reflecting layer composed of a cholesteric liquid crystal layer was used as the configuration of the brightness enhancement film.
  • the ⁇ / 4 plate was bonded with a light reflecting layer and an adhesive on the liquid crystal layer side.
  • ⁇ Preparation of ⁇ / 4 plate integrated light reflection layer TC1> After passing the triacetyl cellulose film through a dielectric heating roll having a temperature of 60 ° C. and raising the film surface temperature to 40 ° C., an alkaline solution having the composition shown below was applied to the band surface of the film using a bar coater. The coating was carried out for 10 seconds under a steam far-infrared heater manufactured by Noritake Company Limited, which was applied at an amount of 14 ml / m 2 and heated to 110 ° C. Subsequently, 3 ml / m 2 of pure water was applied using the same bar coater. Next, washing with a fountain coater and draining with an air knife were repeated three times, and then transported to a drying zone at 70 ° C. for 10 seconds to dry, thereby producing an alkali saponified triacetyl cellulose film.
  • An alignment film coating solution (A) having the following composition was continuously applied with a # 14 wire bar on the surface of the triacetylcellulose film which had been subjected to alkali saponification treatment.
  • the alignment film was formed by drying with warm air of 60 ° C. for 60 seconds and further with warm air of 100 ° C. for 120 seconds.
  • the degree of saponification of the modified polyvinyl alcohol used was 96.8%.
  • composition of coating liquid for alignment film (A) ⁇ Denatured polyvinyl alcohol 10 parts by weight Water 308 parts by weight Methanol 70 parts by weight Isopropanol 29 parts by weight Photopolymerization initiator (Irgacure 2959, manufactured by BASF) 0.8 parts by weight ⁇ ⁇
  • the above-prepared alignment film was continuously rubbed. At this time, the longitudinal direction of the long film and the transport direction were parallel, and the angle formed by the longitudinal direction of the film and the rotation axis of the rubbing roller was about 45 °.
  • a solute having the following composition was dissolved in MEK to prepare a coating solution.
  • the coating solution was bar-coated on the alignment layer by adjusting the concentration and coating amount so that the dry film thickness was 1.0 ⁇ m.
  • the coating film was heat-aged at 80 ° C. for 1 minute to obtain a uniform alignment state. Thereafter, this coating film was kept at 75 ° C. and irradiated with ultraviolet rays using a high-pressure mercury lamp in a nitrogen atmosphere to form a ⁇ / 4 plate on the triacetyl cellulose film to produce a ⁇ / 4 plate T ⁇ 1. .
  • the retardation of the obtained film was measured, all were 128 nm.
  • a light reflecting layer D was formed as a light reflecting layer formed by fixing a cholesteric liquid crystal phase using a discotic liquid crystal compound as a cholesteric liquid crystal material by the following method.
  • a solute having the following composition was dissolved in MEK to prepare a coating solution for forming the light reflection layer D containing a discotic liquid crystal compound.
  • This coating solution is bar-coated on the above-mentioned ⁇ / 4 plate with the concentration and coating amount adjusted so that the dry film thickness is 2.4 ⁇ m, and aging is performed at 110 ° C. for 1 minute. Thus, a uniform alignment state was obtained.
  • the coating film is kept at 45 ° C., and irradiated with ultraviolet rays using a high-pressure mercury lamp in a nitrogen atmosphere, and the light reflection layer D having a reflection band of 630 to 710 is directly applied onto the ⁇ / 4 plate T ⁇ 1.
  • a ⁇ / 4 plate integrated light reflection layer TC1 was produced.
  • ⁇ Preparation of optical laminate B> Among the production of the optical laminate A, a long cellulose acylate film (TD80UL (manufactured by Fuji Film Co., Ltd.) is used as a support, the film thickness of the cholesteric liquid crystal layer is 3.5 ⁇ m, and a polymer (compound A) is added.
  • An optical laminate B was prepared in the same manner as the optical laminate A except that the amount, aging temperature, and ultraviolet irradiation conditions were changed. When the cross section of this optical laminated body B was observed with the scanning electron microscope, it had the structure which had the helical axis in the layer normal direction, and the cholesteric pitch changed continuously in the thickness direction. Further, the transmittance of the cholesteric liquid crystal layer was measured in the same manner as in the optical laminate A, and as a result, it had a reflection wavelength of 410 to 580 nm.
  • ⁇ Preparation of brightness enhancement film (for optical sheet member 6)>
  • the ⁇ / 4 plate-integrated light reflection layer TC1 and the optical laminate B were roll-to-roll bonded with an acrylic UV curable adhesive to produce a brightness enhancement film.
  • the optical laminate B was transferred from a cellulose acylate film, and only the cholesteric liquid crystal layer (light reflection layer B) was used.
  • ⁇ Preparation of Polarizing Plate 1 (Uncolored Polarizing Plate)> A 75 ⁇ m thick polyvinyl alcohol film (Kuraray Co., Ltd., 9 ⁇ 75RS) is continuously conveyed by a guide roll, immersed in a 30 ° C. water bath to swell 1.5 times, and stretched to double the length. After setting it as a draw ratio, it was immersed in a dyeing bath (30 ° C.) containing iodine and potassium iodide for dyeing treatment and drawing treatment to obtain a draw ratio of 3 times. The obtained film was crosslinked in an acidic bath (60 ° C.) to which boric acid and potassium iodide were added and stretched to a draw ratio of 6.5 times and dried at 50 ° C.
  • polarizing plate 2 red colored polarizing plate
  • a 75 ⁇ m thick polyvinyl alcohol film (Kuraray Co., Ltd., 9 ⁇ 75RS) is continuously conveyed by a guide roll, immersed in a 30 ° C. water bath to swell 1.5 times, and stretched to double the length. After setting it as a draw ratio, it was immersed in a dyeing bath (30 ° C.) containing iodine and potassium iodide for dyeing treatment and drawing treatment to obtain a draw ratio of 3 times.
  • the obtained film was crosslinked in an acidic bath (60 ° C.) to which boric acid and potassium iodide were added and stretched to a draw ratio of 6.5 times and dried at 50 ° C.
  • polarizing plate 1B was produced without adhering one of the triacetyl cellulose films adhered to both surfaces in the production of the polarizing plate 1.
  • Optical sheet members 1 to 6 and 11 were manufactured by bonding any one of the polarizing plate 1, the polarizing plate 2 and the polarizing plate 1B to the brightness enhancement film in the combinations shown in Table 1.
  • the ⁇ / 4 plate of the brightness enhancement film was bonded to one of the triacetyl cellulose film surfaces of the polarizing plate at the time of bonding.
  • a ⁇ / 4 plate triacetyl cellulose film surface
  • each said member was prepared as a long thing, and each was bonded together by the roll toe roll on both surfaces of the polarizer.
  • wavelength conversion sheet 2 strong red light
  • the quantum dot material R when the blue light of the blue light emitting diode is incident, green light having a center wavelength of 535 nm, a half width of 40 nm, a center wavelength of 630 nm, A wavelength conversion sheet 2 (quantum dot materials (G, R)) that emits red light with a half-value width of 45 nm was formed.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

本発明により、表示側偏光板(44)と液晶セル(42)とバックライト側偏光板(1)とバックライトユニット(31)とをこの順で含む液晶表示装置(51)であって、上記バックライト側偏光板(1)と上記バックライトユニット(31)との間に輝度向上フィルム(11)を含み、上記輝度向上フィルム(11)は、上記バックライト側偏光板(1)側から、λ/4板(12)と反射偏光子(13)とをこの順で含み、上記反射偏光子(13)は、少なくとも一層のコレステリック液晶相を固定してなる光反射層(14a、14b)を含み、上記液晶表示装置(51)の白表示時の画像光の色度a*が、極角0°~60°の全方位角度において、-3<a*<14である液晶表示装置(51)が提供される。本発明の液晶表示装置(51)は、正面輝度が高いとともに斜め色味変化が抑制されている。

Description

液晶表示装置
 本発明は、液晶表示装置に関する。より詳しくは、本発明は、輝度が高く、斜め色味変化が調整された液晶表示装置に関する。
 液晶表示装置(以下、LCDとも言う)などのフラットパネルディスプレイは、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。大型サイズLCDにおいては、現行のTV規格(FHD、NTSC(National Television System Committee)比72%≒EBU(European Broadcasting Union)比100%)の次世代ハイビジョン(4K2K、EBU比100%以上)の開発も進められており、省電力化、高精細化、色再現性向上のための開発は、タブレットPCやスマートフォンなどの小型サイズLCDのみならず、大型LCDにおいてもますます求められている。
 省電力化のために、バックライト、バックライト側偏光板、液晶セル、表示側偏光板がこの順で設けられた基本構成を有する液晶表示装置において、バックライトとバックライト側偏光板との間に反射偏光素子を設けることが提案されている。反射偏光素子は、あらゆる方向に振動しながら入射する光のうち、特定の偏光方向に振動する光のみ透過させて、他の偏光方向に振動する光は反射する光学素子である。モバイル機器の増加と家電製品の低消費電力化に伴う低電力LCDの核心部品として、LCDの低い光効率を解決して輝度(光源の単位面積当たりの明るさの程度)を高めることが期待されている。
 反射偏光素子の一例として、特許文献1には、λ/4板とコレステリック液晶相を固定してなる層を積層した構成の反射偏光板、コレステリック液晶相のピッチの異なる3層以上のコレステリック液晶相を固定してなる層による反射帯域の広帯域化により、光リサイクルでバックライトの光利用率を向上させる技術が記載されている。
 一方、上記のような画素の高精細度化にともない、液晶表示装置における構成要素の貼り合せ精度による電極画素とブラックマトリックスとのズレの影響が生じやすいため、マルチドメイン方式を採用せずに、光利用率を上げることも検討されている。
特開平1-133003号公報 特許3518660号公報
 しかし、λ/4板とコレステリック液晶相を固定してなる層を積層した構成の反射偏光板を液晶表示装置に組み込んだときには、コレステリック液晶相及びλ/4板の光学的特性に起因する、斜め方向から見た際の色味変化(色味ムラとも言う)が発生しやすいことが知られている。また、特に高精細度化した液晶表示装置では、上記のようにマルチドメイン方式が採用されない場合もあり、液晶駆動状態での方位依存性がより問題となりやすく、色味補正する技術が求められる。
 本発明の解決しようとする課題は、正面輝度が高いとともに斜め色味変化が抑制された液晶表示装置を提供することである。
 そこで、本発明者らは、輝度向上フィルムの構成についてさらに検討を重ね、本発明を完成させた。
 すなわち、本発明は下記の[1]~[16]を提供するものである。
[1]表示側偏光板と液晶セルとバックライト側偏光板とバックライトユニットとをこの順で含む液晶表示装置であって、
上記バックライト側偏光板と上記バックライトユニットとの間に輝度向上フィルムを含み、
上記輝度向上フィルムは、上記バックライト側偏光板側から、λ/4板と反射偏光子とをこの順で含み、
上記反射偏光子は、少なくとも一層のコレステリック液晶相を固定してなる光反射層を含み、
上記液晶表示装置の白表示時の画像光の色度a*が、極角0°~60°の全方位角度において、-3<a*<14である液晶表示装置。
[2]上記表示側偏光板および上記バックライト側偏光板からなる群より選択される1つ以上が、C光源を透過させた時の色相色度が、a*>0である偏光板である、[1]に記載の液晶表示装置。
[3]上記バックライトユニットの正面色度がa*>8である、[1]または[2]に記載の液晶表示装置。
[4]上記反射偏光子が、青色光および緑色光を反射する光反射層と、赤色光を反射する赤色光反射層とを含む[1]~[3]のいずれか一項に記載の液晶表示装置。
[5]上記の青色光および緑色光を反射する層が、広帯域光反射層である[4]に記載の液晶表示装置。
[6]上記赤色光反射層が、更に赤外光反射する光反射層である、[4]または[5]に記載の液晶表示装置。
[7]上記反射偏光子が、緑色光および赤色光を反射する光反射層と、青色光を反射する青色光反射層とを含む[1]~[3]のいずれか一項に記載の液晶表示装置。
[8]上記の緑色光および赤色光を反射する層が、広帯域光反射層である、[7]に記載の液晶表示装置。
[9]上記反射偏光子が、棒状液晶化合物を含む重合性液晶組成物から形成された層を含み、
棒状液晶化合物を含む重合性液晶組成物から形成された上記層のコレステリック液晶相の螺旋ピッチが上記層の膜厚方向で連続的に変化している請求項1~8のいずれか一項に記載の液晶表示装置。
[10]上記反射偏光子が、円盤状液晶化合物を含む重合性液晶組成物から形成された層を含む[1]~[9]のいずれか一項に記載の液晶表示装置。
[11]上記λ/4板が円盤状液晶化合物を含む重合性液晶組成物から形成された層である[1]~[10]のいずれか一項に記載の液晶表示装置。
[12]上記反射偏光子の上記λ/4板側とは反対側に光の偏光状態を変化させる層を含み、上記の光の偏光状態を変化させる層は下記条件を満たす[1]~[11]のいずれか一項に記載の液晶表示装置。
0<|光の偏光状態を変化させる層の平均屈折率-最外層の光反射層の平均屈折率|<0.8
[13]上記バックライトユニットが、
430~500nmの波長帯域に発光中心波長を有する青色光と、
500~600nmの波長帯域に発光中心波長を有する緑色光と、
600~700nmの波長帯域に発光強度のピークの少なくとも一部を有する赤色光
とを発光する光源を備え;
上記バックライトユニットが上記光源の後部に、上記光源から発光されて上記輝度向上フィルムまたは上記光学シート部材で反射された光の偏光状態の変換および反射をする反射部材を備える、[1]~[12]のいずれか一項に記載の液晶表示装置。
[14]上記青色光、緑色光および赤色光の半値幅がいずれも100nm以下である、[13]に記載の液晶表示装置。
[15]上記光源が、上記青色光を発光する青色発光ダイオードと、上記青色発光ダイオードの上記青色光が入射したときに上記緑色光と上記赤色光を発光する蛍光材料を有する光源である、[13]または[14]に記載の液晶表示装置。
[16]上記蛍光材料が量子ドット部材である、[15]に記載の液晶表示装置。
 本発明によれば、輝度が高く、斜め色味変化が抑制された液晶表示装置を提供することができる。
輝度向上フィルムの層構成の例を示す図である。 光学シート部材の層構成の1態様である。 本発明の液晶表示装置の例の概略断面図である。
 以下、本発明を詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書中、ピークの「半値幅」とは、ピーク高さ1/2でのピークの幅のことを言う。 
 光反射層の反射中心波長と半値幅は下記のように求めることができる。
 分光光度計UV3150(島津製作所)を用いて光反射層の透過スペクトルを測定すると、選択反射領域に透過率の低下ピークがみられる。この最も大きいピーク高さの1/2の高さの透過率となる2つの波長のうち、短波側の波長の値をλ1(nm)、長波側の波長の値をλ2(nm)とすると、反射中心波長と半値幅は下記式で表すことができる。
反射中心波長=(λ1+λ2)/2
半値幅=(λ2-λ1)
 本明細書において、Re(λ)、Rth(λ)は、各々、波長λにおける面内のレターデーション、及び厚さ方向のレターデーションを表す。単位はいずれもnmである。Re(λ)はKOBRA 21ADH、又はWR(王子計測機器(株)製)において、波長λnmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルターをマニュアルで交換するか、または測定値をプログラム等で変換して測定することができる。測定されるフィルムが、1軸又は2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)が算出される。なお、この測定方法は、後述する光学異方性層中の円盤状液晶分子の配向層側の平均チルト角、その反対側の平均チルト角の測定においても一部利用される。
 Rth(λ)は、Re(λ)を、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50°まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADH、又はWRが算出する。なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合には、フィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値、及び入力された膜厚値を基に、以下の式(A)、及び式(B)よりRthを算出することもできる。
Figure JPOXMLDOC01-appb-M000001
 なお、上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値を表す。また、式(A)におけるnxは、面内における遅相軸方向の屈折率を表し、nyは、面内においてnxに直交する方向の屈折率を表し、nzは、nx及びnyに直交する方向の屈折率を表す。dは膜厚である。
Rth=((nx+ny)/2-nz)×d・・・・・・・・・・式(B)
 測定されるフィルムが、1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法により、Rth(λ)は算出される。Rth(λ)は、前述のRe(λ)を、面内の遅相軸(KOBRA 21ADH、又はWRにより判断される)を傾斜軸(回転軸)として、フィルム法線方向に対して-50°から+50°まで10°ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。また、上記の測定において、平均屈折率の仮定値は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについては、アッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADH又はWRはnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx-nz)/(nx-ny)が更に算出される。
 コレステリック液晶相を固定してなる光反射層においては、液晶本来の常光屈折率noと異常光屈折率neを用いると、面内の屈折率の平均値は
(nx+ny)/2=(no+ne)/2
で表される。
 また、膜厚方向の屈折率はnoとなるため、コレステリック液晶相を固定してなる光反射層のRthは下記式で表せる。輝度向上フィルムの、第一の光反射層および第二の光反射層のRthは下記式を用いて計算した値を採用し、波長λnmのときの第一の光反射層および第二の光反射層のRthをRth(λ)と記載する。
Rth={(no+ne)/2-no}×d={(ne-no)/2}×d
 なお、ne及びnoはアッベ屈折計にて測定することができる。
 また、コレステリック液晶層のRthを得る方法として、偏光エリプソを用いた方法を適用することもできる。
 例えば、M. Kimura et al. Jpn. J. Appl. Phys. 48 (2009) 03B021に記載されているようにエリプソ測定法を用いれば、コレステリック液晶層の厚さ、ピッチ、捩れ角等が得られ、そこからRthの値を得ることができる。
 本明細書では、「可視光」とは、波長380nm~780nmの光を意味する。また、本明細書では、測定波長について特に付記がない場合は、測定波長は550nmである。
 本明細書において、青色光とは380~499nmの波長の光であり、緑色光とは500~599nmの波長の光であり、赤色光とは600~780nmの光である。また、赤外光とは、780~850nmの光である。
 また、本明細書において、角度(例えば「90°」等の角度)、及びその関係(例えば「直交」、「平行」、及び「45°で交差」等)については、本発明が属する技術分野において許容される誤差の範囲を含むものとする。例えば、厳密な角度±10°未満の範囲内であることなどを意味し、厳密な角度との誤差は、5°以下であることが好ましく、3°以下であることがより好ましい。
 本明細書において、偏光子または偏光板の「吸収軸」と「透過軸」とは、互いに90°の角度をなす方向を意味する。
 本明細書において、位相差フィルム等の「遅相軸」は、屈折率が最大となる方向を意味する。
 また、本明細書において、位相差領域、位相差フィルム、及び液晶層等の各部材の光学特性を示す数値、数値範囲、及び定性的な表現(例えば、「同等」、「等しい」等の表現)については、液晶表示装置やそれに用いられる部材について一般的に許容される誤差を含む数値、数値範囲及び性質を示していると解釈されるものとする。
 また、本明細書で「正面」とは、液晶表示装置の画像表示面に対する法線方向を意味する。
 本明細書において反射偏光子と偏光子とは区別して用いられる。
<液晶表示装置>
 液晶表示装置は、表示側偏光板と液晶セルとバックライト側偏光板とバックライトユニットとをこの順で有する。本発明の液晶表示装置は輝度向上フィルムを、バックライト側偏光板とバックライトユニットとの間に有している。
 液晶表示装置の一実施形態は、対向する少なくとも一方に電極を設けた基板間に液晶層を挟持した液晶セルを有し、この液晶セルは2枚の偏光板の間に配置して構成されている構成である。液晶表示装置は、上下基板間に液晶が封入された液晶セルを備え、電圧印加により液晶の配向状態を変化させて画像の表示を行うことができる。さらに必要に応じて、偏光板保護フィルムや、視野角補償のための位相差フィルムを有していてもよい。視野角補償のための位相差フィルムは偏光子のそれぞれと液晶セルとの間にふくまれていればよい。また、本発明の液晶表示装置は、例えば、カラーフィルター基板、薄層トランジスタ基板、レンズフィルム、拡散シート、ハードコート層、反射防止層、低反射層、アンチグレア層等とともに(又はそれに替えて)、前方散乱層、プライマー層、帯電防止層、下塗り層等の他の部材を含んでいてもよい。
 図3に、液晶表示装置の構成の一例を示した。図3では、液晶表示装置51は、バックライトユニット31、光学シート部材21(反射偏光子11とバックライト側偏光板1との積層体)、薄層トランジスタ基板41、液晶セル42、カラーフィルター基板43、表示側偏光板44がこの順で積層される。
 なお、図3において、輝度向上フィルムの構成は一例であり、例えば、液晶表示装置に適用する輝度向上フィルムは図3に記載の例に限定されない。
 液晶セルの構成については特に制限はなく、一般的な構成の液晶セルを採用することができる。液晶セルは、例えば、対向配置された一対の基板と、この一対の基板間に挟持された液晶層とを含み、必要に応じて、カラーフィルター層などを含んでいてもよい。液晶セルの駆動モードについても特に制限はなく、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等の種々のモードを利用することができる。
<液晶表示装置の画像光の色度a*
 本発明の液晶表示装置は白表示時の画像光の色度a*が、極角0°~60°の全方位角度において、-3<a*<14である。
 本明細書において、極角は液晶表示装置の画像表示面の法線の画像表示方向に対する角度を意味し、0°以上90°以下の角度である。方位角は画像表示面の法線を中心とする回転角を特定の方向を0°として表される角度を意味し、0°以上360°未満の角度である。また、本明細書において、画像光とは、液晶表示装置の画像表示表面から出射する光を意味し、バックライトユニット内で発光し、少なくともバックライト側偏光板、輝度向上フィルム、液晶セル、表示側偏光板を経由して液晶表示装置の画像表示表面から出射する光を意味する。
 色度a*は、国際規格であるCIE1976(L*a*b*)色空間における座標で表される色度である。CIE1976(L*a*b*)色空間はISO 11664-4を基に作成された日本工業規格JIS8781-4においても採用されている。色度a*は、以下の実施例でも用いているELDIM社製のEZ-Contrast160などの測定機で求めることができる。色度a*の値が0より大きくなるほど赤味が増し、色度a*の値が0より小さくなるほど緑味が増すと考えることができる。
 本発明者らは、後述のようなコレステリック液晶相を固定してなる光反射層を含む輝度向上フィルムを用いて、液晶表示装置の輝度向上を図っていた過程で、上記輝度向上フィルムを用いると液晶表示装置の画像につき、特に斜めから観察した際に、官能評価の結果が不良となることを見出した。そして、鋭意研究の結果、上記色度a*が-3<a*<14であるように構成を調整して、官能評価の結果が良好である液晶表示装置を得たものである。いかなる理論に拘泥するものではないが、輝度向上フィルムの利用で生じる色味は緑であり、観察者が不快としやすい色となるため、その色を赤に寄せることにより官能評価の結果が良好となったと考えられる。上記色度a*が-3<a*<14であるようにすることにより、b*に若干の変化があっても色味の変化が識別しにくいため、斜め色味変化が解消したとも考えられる。
 上記の極角0°~60°の全方位角度における色度a*は-2<a*<12であることが好ましく、-1<a*<11であることがより好ましく、0<a*<10であることがさらに好ましい。また、上記極角0°~60°の全方位角度における色度a*の最大値と最小値の差は15以下であることが好ましく12以下であることがより好ましく、10以下であることがさらに好ましい。
 また、特に、極角60°の全方位角度において色度a*が-3以上であることが好ましく、-2以上であることがより好ましく、-1以上であることがさらに好ましく、0以上であることが特に好ましい。
 極角0°~60°の全方位角度における色度a*が-3<a*<14であるようにするための、液晶表示装置の構成の調整方法は特に限定されないが、例えば、以下の2種類の方法が挙げられる。
 1つ目の方法として、表示側偏光板およびバックライト側偏光板から選択される1つ以上の色の制御により行うことができる。例えば、吸光度が、赤色光の波長域において、青色光の波長域および緑色光の波長域よりも低い偏光板を用いて上記の色の制御を行うことが好ましい。偏光板が輝度向上フィルムの利用で生じる色味である緑の補色を透過させる構成となり、液晶表示装置の画像光として-3<a*<14の上記色度a*を実現することができるからである。偏光板の赤色光の波長域の吸収極大の吸光度を、青色光の波長域吸収極大の吸光度および緑色光の波長域の吸収極大の吸光度の平均値に対して、90%以下、80%以下、または70%以下などとすることが例として挙げられる。このような色の制御は、後述のポリマーフィルムにヨウ素が吸着配向されたものを偏光子とする偏光板においては、例えば、製造の際に用いるヨウ素イオンの量を調整することにより可能となる。例えば、偏光板作製時のヨウ素カリウムによる洗浄工程で、ヨウ素カリウムの濃度を通常より濃くしておくと、偏光板内のヨウ素イオンが減少し、長波長側(赤)の吸収を通常偏光板より減少させることが可能である。色の制御は表示側偏光板で行ってもよく、バックライト側偏光板で行ってもよく、両方で行ってもよい。
 2つ目の方法として、バックライトユニットの発光色の制御により行うことができる。例えば、バックライトユニットの赤色光の発光強度が通常のバックライトユニットの赤色光の発光強度よりも大きくなるように調整すればよい。この構成で輝度向上フィルムの利用で生じる色味である緑を補色することができる。例えば、バックライトユニットの赤色光の発光強度が緑色光の発光強度の110%以上、120%以上、130%以上などとなるように調整すればよい。この調整方法としては、例えば、バックライトユニットにおいて、青色発光ダイオードと、青色発光ダイオードの青色光が入射したときに緑色光を発光する蛍光材料と赤色光を発光する蛍光材料を含む波長変換部材を有する光源を用いる場合において、赤色光を発光する蛍光材料を通常よりも多くすることなどが挙げられる。
<輝度向上フィルム>
 輝度向上フィルムは、λ/4板と、反射偏光子とを有する。反射偏光子はコレステリック液晶相を固定してなる光反射層を少なくとも1層含む。輝度向上フィルムの層構成の例
を図1に示す。
 輝度向上フィルムを液晶表示装置に組み込んだとき、輝度向上フィルムは、以下のメカニズムで液晶表示装置の輝度を向上させる。
 輝度向上フィルム中の反射偏光子に含まれるコレステリック液晶相を固定してなる光反射層は、右円偏光または左円偏光の少なくとも一方(第一の偏光状態の円偏光)をその反射中心波長の近傍の波長帯域において反射し、他方(第二の偏光状態の円偏光)を透過させる。反射された第二の偏光状態の円偏光は、後述の反射部材(導光器、光共振器と言われることもある)によってその方向および偏光状態をランダム化され再循環され、反射偏光子によって再度第一の偏光状態の円偏光として一部が反射され、第二の偏光状態の円偏光として残りの一部が透過することによりバックライト側での光利用率を高め、液晶表示装置の明るさを向上させることができる。
 反射偏光子から出射される光、すなわち反射偏光子の透過光および反射光の偏光状態は、例えばAxometrics社のAxoscanで偏光測定することで計測することができる。
<λ/4板>
 輝度向上フィルムは、λ/4板を有する。
 λ/4板は特定の波長λnmにおける面内レターデーションRe(λ)が
  Re(λ)=λ/4
を満たす光学異方性層のことをいう。λ/4板は輝度向上フィルムにおいて、反射偏光子を透過して得られる円偏光を直線偏光に変換するための層として機能する。
 λ/4板は、下記式(A)~(C)を少なくともひとつ満たすことが好ましく、下記式(A)~(C)を全て満たすことがさらに好ましい。
式(A) 450nm/4-35nm<Re(450)<450nm/4+35nm
式(B) 550nm/4-35nm<Re(550)<550nm/4+35nm
式(C) 630nm/4-35nm<Re(630)<630nm/4+35nm
(式(A)~(C)中、Re(λ)は波長λnmにおける面内方向のレターデーション(単位:nm)を表す。)
 λ/4板はRthを調節することで、斜め方位から見た場合に発生する光反射層の厚さ方向の位相差をキャンセルすることも可能となる。
 λ/4板のRth(550)は-120~120nmであることが好ましく、-80~80nmであることがより好ましく、-70~70nmであることが特に好ましい。
 λ/4板の製造方法としては、例えば、特開平8-271731号公報に記載の方法を用いることができる。λ/4板は、単層であっても、2層以上の積層体であってもよく、2層以上の積層体であることが好ましい。特に、λ/4層は、位相差フィルム(光学的に略一軸性または略二軸性)、ネマチック液晶層またはスメクチック液晶層を発現する液晶モノマーを重合して形成した液晶性化合物(円盤状液晶、棒状液晶、コレステリック液晶)の少なくともひとつを含む1層以上の位相差フィルムであることがより好ましい。位相差フィルムに関しては、支持体の製造時の搬送方向延伸あるいは搬送方向と垂直方向への延伸、及び搬送方向に対し45度延伸した位相差フィルムを選択することができ、製造性を考慮すると、いわゆるロールトゥロールでの光学シート部材作製が可能な環状ポリオレフィン樹脂(ノルボルネン系樹脂)などを45度延伸した位相差フィルムや、透明フィルム上を配向処理し、処理表面に、フィルムの製造時搬送方向に対し、液晶化合物を45度方位に配向させた層を有するフィルムが好ましい。このとき、Rthが正の透明基板を使用した場合は、配向した状態でRthが負となる円盤状液晶化合物を使用することが好ましい。
 以下、λ/4板の材料、製造方法について詳細に説明する。
 輝度向上フィルムが有するλ/4板に用いられる材料について特に制限はない。種々のポリマーフィルム、例えば、セルロースアシレート、ポリカーボネート系ポリマー、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー等を利用することができる。また、ポリエチレン、ポリプロピレン等のポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、塩化ビニリデン系ポリマー、ビニルアルコール系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、又は前述のポリマーを混合したポリマー等から1種又は2種以上のポリマーを選択し、主成分として用いてポリマーフィルムを作製し、上記特性を満足する組合せで、光学フィルムの作製に利用することができる。
 λ/4板は、支持体自体で目的のλ/4機能を有する光学異方性支持体であってもよいし、ポリマーフィルムからなる支持体上に光学異方性層等を有するものであってもよい。
 λ/4板が、支持体自体で目的のλ/4機能を有する光学異方性支持体である場合、例えば高分子フィルムを一軸または二軸等で延伸処理する方法などにより光学異方性支持体を得ることができる。その高分子の種類については特に限定はなく、透明性に優れるものが好ましく用いられる。その例としては、上述のλ/4板に用いられる材料や、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系樹脂フィルム、ポリエーテルスルホンフィルム、ポリメチルメタクリレート等のポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム、ポリオレフィン、脂環式構造を有するポリマー(ノルボルネン系樹脂(アートン:商品名、JSR社製)、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製))、などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、脂環式構造を有するポリマーが好ましく、特にトリアセチルセルロースが好ましい。
 後述のように、λ/4板の遅相軸方向と偏光板の吸収軸方向とのなす角は30~60°であり、35~55°であることが好ましく、40~50°であることがより好ましく、45°になることが特に好ましい。偏光板はロールトゥロールで作製する場合には、通常は長手方向(搬送方向)が吸収軸方向となるため、λ/4板の遅相軸方向と長手方向のなす角は30~60°であることが好ましい。遅相軸方向と長手方向のなす角が30~60°のλ/4板の製造方法としては、その長手方向に対して30~60°の方向に連続的に延伸して、ポリマーの配向軸を所望の角度に傾斜させるものであれば特に制約されず、公知の方法を採用することができる。また、斜め延伸に用いる延伸機は特に制限されず、横または縦方向に左右異なる速度の送り力若しくは引張り力または引取り力を付加できるようにした従来公知のテンター延伸機を使用することができる。また、テンター式延伸機には、横一軸延伸機、同時二軸延伸機などがあるが、長尺のフィルムを連続的に斜め延伸処理することができるものであれば、特に制約されず、種々のタイプの延伸機を使用することができる。
 斜め延伸の方法としては、例えば、特開昭50-83482号公報、特開平2-113920号公報、特開平3-182701号公報、特開2000-9912号公報、特開2002-86554号公報、特開2002-22944号公報、国際公開第2007/111313号に記載された方法を用いることができる。
 λ/4板が、ポリマーフィルムからなる支持体上に光学異方性層等を有している場合、支持体上に他の層を積層させることで所望のλ/4機能を持たせる。光学異方性層の構成材料については特に制限されず、液晶化合物を含有する組成物から形成され、この液晶化合物の分子の配向によって発現された光学異方性を示す層であっても、ポリマーフィルムを延伸してフィルム中の高分子を配向させて発現させた光学異方性を有する層であっても、双方の層を有していてもよい。すなわち、1枚又は2枚以上の二軸性フィルムによって構成することができるし、またCプレートとAプレートとの組合せ等、一軸性フィルムを2枚以上組合せることでも構成することができる。勿論、1枚以上の二軸性フィルムと1枚以上の一軸性フィルムとを組み合わせることによっても構成することもできる。
 λ/4板は、液晶化合物を含有する組成物から形成された層を少なくとも一層含んでいることが好ましい。即ち、λ/4板はポリマーフィルム(支持体)と液晶化合物を含有する組成物から形成された光学異方性層との積層体であることが好ましい。
 支持体には光学異方性が小さいポリマーフィルムを用いてもよいし、延伸処理などにより光学異方性を発現させたポリマーフィルムを用いてもよい。支持体は光透過率が80%以上であることが好ましい。支持体の具体例については後述する。
 また、光学異方性層の形成に用いられる液晶化合物の種類については特に制限されない。例えば、低分子液晶化合物を液晶状態においてネマチック配向またはスメクチック配向に形成後、光架橋や熱架橋によって固定化して得られる光学異方性層や、高分子液晶化合物を液晶状態においてネマチック配向またはスメクチック配向に形成後、冷却することによって当該配向を固定化して得られる光学異方性層を用いることもできる。なお本発明では、光学異方性層に液晶化合物が用いられる場合であっても、光学異方性層は、この液晶化合物が重合等によって固定されて形成された層であり、層となった後はもはや液晶性を示す必要はない。重合性液晶化合物は、多官能性重合性液晶でもよいし、単官能性重合性液晶化合物でもよい。また、液晶化合物は、円盤状液晶化合物でもよいし、棒状液晶化合物でもよい。本発明においては、円盤状液晶化合物がより好ましい。
 液晶化合物を含有する組成物から形成されたλ/4板の作製のための材料および作製方法としては、後述の光反射層の作製を参照することができる。ただし、λ/4板の作製のための組成物は、キラル剤を含まないことが好ましい。
 前述の光学異方性層において、液晶化合物の分子は、垂直配向、水平配向、ハイブリッド配向及び傾斜配向のいずれかの配向状態に固定化されていることが好ましい。視野角依存性が対称である位相差板を作製するためには、円盤状液晶化合物の円盤面がフィルム面(光学異方性層面)に対して実質的に垂直であるか、又は、棒状液晶化合物の長軸がフィルム面(光学異方性層面)に対して実質的に水平であることが好ましい。円盤状液晶化合物が実質的に垂直とは、フィルム面(光学異方性層面)と円盤状液晶化合物の円盤面とのなす角度の平均値が70°~90°の範囲内であることを意味する。80°~90°がより好ましく、85°~90°が更に好ましい。棒状液晶化合物が実質的に水平とは、フィルム面(光学異方性層面)と棒状液晶化合物のダイレクターとのなす角度が0°~20°の範囲内であることを意味する。0°~10°がより好ましく、0°~5°が更に好ましい。
 前述の光学異方性層は、棒状液晶化合物又は円盤状液晶化合物等の液晶化合物と、所望により、後述する重合開始剤や配向制御剤や他の添加剤を含む塗布液を、支持体上に塗布することで形成することができる。支持体上に配向層を形成し、この配向層表面に前述の塗布液を塗布して形成することが好ましい。
<反射偏光子>
 輝度向上フィルムにおいて、反射偏光子はコレステリック液晶相を固定してなる光反射層を少なくとも1層含む。反射偏光子は光反射層を2層位以上含んでいることも好ましく、反射偏光子は光反射層を2~4層含んでいることがより好ましく、2~3層含んでいることがよりさらに好ましく、2層含んでいることが特に好ましい。
 本明細書において、反射偏光子の2層以上の光反射層について言及される場合、λ/4板側に最も近い光反射層を第一の光反射層と呼び、λ/4板側から順番に第一の光反射層、第二の光反射層、第三の光反射層等と呼ぶ。
 輝度向上フィルムにおいて、反射偏光子は、青色光、緑色光および赤色光を反射する機能を有していることが好ましい。反射偏光子は青色光、緑色光および赤色光をそれぞれ反射する光反射層を含むか、または、広帯域光反射層を少なくとも一層含むことが好ましい。本発明において、広帯域光反射層とは、青色光、緑色光および赤色光のうち、少なくとも1色の光を反射し、さらにこの1色の波長領域を超えた波長領域の光も反射する層のことをいう。例えば、青色光と緑色光を1層で反射する層や、緑色光と赤色光を1層で反射する層や、青色光と緑色光と赤色光とを1層で反射する層であればよい。
 さらに、斜め色味変化を改善する手段として、二層以上含まれる光反射層のRthが逆となるように構成された反射偏光子や、反射帯域が赤外光領域まで広げられた反射偏光子も好ましい。
 反射帯域を赤外光領域まで広げ、色味を改善する原理を以下に示す。
 コレステリック液晶層の反射帯域は、正面入射光に対して赤緑青を網羅していても、斜め光に対しては反射帯域が短波側にずれるため、斜め光に対しては、赤反射層は緑反射に、緑反射層は青反射に、青反射層は紫外反射となってしまう。
 そのため、正面は赤緑青バランスよく反射されるので、色味変化は小さいが、斜め方向は赤の反射成分が減少し、赤緑青のバランスが崩れて色味変化が悪化してしまう。
 これを防ぐため、正面において赤外域を反射可能な層を入れておくと、斜め光に対して赤外反射層が赤反射することで、斜めにおいても赤緑青のバランスが保たれ、色味変化を改善することができる。
 反射偏光子の第一の好ましい態様の一つであって、光反射層を2層有する反射偏光子の例を、以下に説明する。
 第一の光反射層、第二の光反射層のうち、いずれか一つが反射中心波長380~599nmかつ半値幅220nm以下である反射率のピークを有する青色光および緑色光を反射する光反射層であり、いずれか一つが反射中心波長600~750nm、半値幅200nm以下である反射率のピークを有する赤色光反射層であることが好ましい。
 青色光および緑色光を反射する光反射層は、380~599nmの波長帯域に反射中心波長を有し、半値幅が220nm以下である反射率のピークを有する。
 青色光および緑色光を反射する光反射層の反射中心波長は、430~590nmの波長帯域にあることが好ましく、430~580nmの波長帯域にあることがより好ましい。
 青色光および緑色光を反射する光反射層の反射率のピークの半値幅は300nm以下であることが好ましく、この反射率のピークの半値幅が250nm以下であることがより好ましく、この反射率のピークの半値幅が220nm以下であることが更に好ましく、反射率のピークの半値幅が210nm以下であることが特に好ましく、反射率のピークの半値幅が200nm以下であることが最も好ましい。
 青色光および緑色光を反射する光反射層は、600~750nmの波長帯域に反射率のピークを有さないことが好ましい。また、青色および緑色を反射する光反射層は、600~750nmの平均反射率が5%以下であることが好ましい。
 青色光および緑色光を反射する反射層は、膜厚dが0.5~10μmであることが好ましく、1.0μm以上9μm未満であることがより好ましい。
 赤色光反射層は、600~750nmの波長帯域に反射中心波長を有し、半値幅が200nm以下である反射率のピークを有する。
 赤色光反射層の反射中心波長は、610~690nmの波長帯域にあることが好ましく、610~660nmの波長帯域にあることがより好ましい。
 赤色光反射層の反射率のピークの半値幅は200nm以下であることが好ましく、この反射率のピークの半値幅が190nm以下であることがより好ましく、この反射率のピークの半値幅が180nm以下であることが特に好ましい。
 赤色光反射層は、380~499nmおよび500~599nmの波長帯域に反射率のピークを有さないことが好ましい。また、赤色光反射層は、380~499nmおよび500~599nmの平均反射率が5%以下であることが好ましい。
 反射偏光子の第一の好ましい態様の別の一つであって、光反射層を2層有する反射偏光子の例を、以下に説明する。
反射偏光子の第一の光反射層、第二の光反射層のうち、いずれか一つが反射中心波長380~499nmかつ半値幅120nm以下である反射率のピークを有する青色光反射層であり、いずれか一つが反射中心波長500~750nm、半値幅300nm以下である反射率のピークを有する緑色光および赤色光を反射する光反射層である。
 青色光反射層は、380~499nmの波長帯域に反射中心波長を有し、半値幅が120nm以下である反射率のピークを有する。
 青色光反射層の反射中心波長は、430~480nmの波長帯域にあることが好ましく、430~470nmの波長帯域にあることがより好ましい。
 青色光反射層の反射率のピークの半値幅は120nm以下であることが好ましく、この反射率のピークの半値幅が110nm以下であることがより好ましく、この反射率のピークの半値幅が100nm以下であることが特に好ましい。
 青色光反射層は、500~750nmの波長帯域に反射率のピークを有さないことが好ましい。また、青色光反射層は、500~750nmの平均反射率が5%以下であることが好ましい。
 青色光反射層は、膜厚dが0.5~3.0μmであることが好ましく、1.0~2.6μmであることがより好ましい。
 緑色光および赤色光を反射する光反射層は、500~750nmの波長帯域に反射中心波長を有し、半値幅が300nm以下である反射率のピークを有する。
 緑色光および赤色光を反射する光反射層の反射中心波長は、520~690nmの波長帯域にあることが好ましく、520~660nmの波長帯域にあることがより好ましい。
 緑色光および赤色光を反射する光反射層の反射率のピークの半値幅は300nm以下であることが好ましく、この反射率のピークの半値幅が290nm以下であることがより好ましく、この反射率のピークの半値幅が280nm以下であることが特に好ましい。
 緑色光および赤色光を反射する光反射層は、380~499nmの波長帯域に反射率のピークを有さないことが好ましい。また、緑色光および赤色光を反射する光反射層は、380~499nmの平均反射率が5%以下であることが好ましい。
 緑色光および赤色光を反射する光反射層は、膜厚dが0.8~10μmであることが好ましく、1.5μm以上9μm未満であることがより好ましい。
 反射偏光子の第一の好ましい態様のさらに別の一つであって、光反射層を3層有する反射偏光子の例を、以下に説明する。
 第一の光反射層、第二の光反射層および第三の光反射層のうち、いずれか一つが反射中心波長380~499nmかつ半値幅100nm以下である反射率のピークを有する青色光反射層であり、いずれか一つが反射中心波長500~599nm、半値幅200nm以下である反射率のピークを有する緑色光反射層であり、いずれか一つが反射中心波長600~750nm、半値幅150nm以下である反射率のピークを有する赤色光反射層であり、前述の第一の光反射層のRth(550)と前述の第二の光反射層のRth(550)の符号が逆である、反射偏光子である。
<光反射層>
 コレステリック液晶相を固定してなる光反射層はコレステリック液晶相の螺旋周期に基づく反射中心波長λを有する選択反射を示す。コレステリック液晶相を固定してなる光反射層は選択反射を示す波長域において、右円偏光または左円偏光のいずれか一方を選択的に反射させ、他方の円偏光を透過させる。反射中心波長λは、コレステリック液晶相における螺旋構造のピッチP(螺旋の周期)に依存し、コレステリック液晶層の平均屈折率nとλ=n×Pの関係に従う。平均屈折率nは上記の(no+ne)/2である。選択反射の半値幅ΔλはΔλが液晶化合物の複屈折Δnと上記ピッチPに依存し、Δλ=Δn×Pの関係に従う。
 (重合性液晶組成物)
 光反射層を形成するための重合性液晶組成物は、液晶化合物を含む、光反射層を形成するための重合性液晶組成物は、キラル剤、配向制御剤、重合開始剤、配向助剤などのその他の成分を含有していてもよい。
 光反射層は、重合性液晶組成物を、λ/4板、他の光反射層、仮支持体、配向層などの他の層に塗布後、塗布膜を硬化して得ることができる。
 (液晶化合物)
 液晶化合物としては、棒状液晶化合物および円盤状液晶化合物が挙げられる。
 棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性分子だけではなく、高分子液晶性分子も用いることができる。
 棒状液晶化合物を重合によって配向を固定することがより好ましく、重合性棒状液晶化合物としては、Makromol. Chem., 190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号公報、同5622648号公報、同5770107号公報、WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および特開2001-328973号公報などに記載の化合物を用いることができる。さらに棒状液晶化合物としては、例えば、特表平11-513019号公報や特開2007-279688号公報に記載のものも好ましく用いることができる。
  円盤状液晶化合物としては、例えば、特開2007-108732号公報や特開2010-244038号公報に記載のものを好ましく用いることができるが、これらに限定されない。
 以下に、円盤状液晶化合物の好ましい例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000002
 反射偏光子に二層以上の光反射層が含まれる場合、いずれか一つ以上の光反射層が棒状液晶化合物を含む重合性液晶組成物から形成された層であり、他のいずれか1つ以上円盤状液晶化合物を含む重合性液晶組成物から形成された層であることが好ましい。棒状液晶化合物は、選択反射を示す波長域以外の波長の光に対しては実質的にRthが正として作用し、円盤状液晶化合物は、実質的にRthが負として作用する。複数含まれる光反射層のうちの2つの光反射層のRthの符号を逆にすると、位相差を補償し、斜め色味変化を改善することが可能である。このような二層の光反射層は、第一の光反射層および第2の光反射層であることが好ましい。上記の棒状液晶化合物と円盤状液晶化合物とを利用した構成とすることで、位相差を補償し、斜め色味変化を改善できる。
 (キラル剤)
 キラル剤は、コレステリック液晶性化合物の螺旋周期を調整するための化合物であり、カイラル剤とも言う。本発明においては、公知の種々のキラル剤(例えば、液晶デバイスハンドブック、第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第一42委員会編、1989に記載)を用いることができる。キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物あるいは面性不斉化合物もキラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤が重合性基を有するとともに、併用する棒状液晶化合物も重合性基を有する場合は、重合性基を有するキラル剤と重合性棒状液晶合物との重合反応により、棒状液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性基を有するキラル剤が有する重合性基は、重合性棒状液晶化合物が有する重合性基と、同種の基であることが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基又はアジリジニル基であることが好ましく、不飽和重合性基であることがさらに好ましく、エチレン性不飽和重合性基であることが特に好ましい。
 また、上述のキラル剤は、液晶化合物であってもよい。
 強い捩れ力を示すキラル剤としては、例えば、特開2010-181852号公報、特開2003-287623号公報、特開2002-80851号公報、特開2002-80478号公報、特開2002-302487号公報に記載のキラル剤などが挙げられ、本発明に好ましく用いることができる。さらに、これらの公開公報に記載されているイソソルビド化合物類については対応する構造のイソマンニド化合物類を用いることもでき、これらの公報に記載されているイソマンニド化合物類については対応する構造のイソソルビド化合物類を用いることもできる。
(配向制御剤)
 配向制御剤の例には、特開2005-99248号公報の[0092]及び[0093]中に例示されている化合物、特開2002-129162号公報の[0076]~[0078]及び[0082]~[0085]中に例示されている化合物、特開2005-99248号公報の[0094]及び[0095]中に例示されている化合物、特開2005-99248号公報の[0096]中に例示されている化合物が含まれる。
 配向制御剤としては、特開2014-119605号公報の[0082]~[0090]に記載の化合物を用いることもできる。
(重合開始剤)
 重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報記載)等が挙げられる。
(溶媒)
 重合性液晶組成物は、溶媒を含んでいてもよい。各光反射層を形成するための組成物の溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N、N-ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン、シクロヘキサノン)、エーテル(例、テトラヒドロフラン、1、2-ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
(重合性液晶組成物の塗布および硬化)
 重合性液晶組成物の塗布は、重合性液晶組成物を溶媒により溶液状態としたり、加熱による溶融液等の液状物としたものを、ロールコーティング方式やグラビア印刷方式、スピンコート方式などの適宜な方式で展開する方法などにより行うことができる。さらにワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、等の種々の方法によって行うことができる。また、インクジェット装置を用いて、液晶組成物をノズルから吐出して、塗布膜を形成することもできる。
 その後重合性液晶組成物の硬化により、液晶化合物の分子の、配向状態を維持して固定する。硬化は、液晶性分子に導入した重合性基の重合反応により実施することが好ましい。
 重合性液晶組成物の塗布後であって、硬化のための重合反応前に、塗布膜は、公知の方法で乾燥してもよい。例えば放置によって乾燥してもよく、加熱によって乾燥してもよい。
重合性液晶組成物の塗布および乾燥の工程で、重合性液晶組成物中の液晶化合物分子が配向していればよい。
 例えば 重合性液晶組成物が、溶媒を含む塗布液として調製されている態様では、塗布膜を乾燥し、溶媒を除去することで、コレステリック液晶相の状態にすることができる場合がある。また、コレステリック液晶相への転移温度での加熱を行ってもよい。例えば、一旦等方性相の温度まで加熱し、その後、コレステリック液晶相転移温度まで冷却する等によって、安定的にコレステリック液晶相の状態にすることができる。前述の重合性液晶組成物の液晶相転移温度は、製造適性等の面から10~250℃の範囲内であることが好ましく、10~150℃の範囲内であることがより好ましい。10℃未満であると液晶相を呈する温度範囲にまで温度を下げるために冷却工程等が必要となることがある。また200℃を超えると、一旦液晶相を呈する温度範囲よりもさらに高温の等方性液体状態にするために高温を要し、熱エネルギーの浪費、基板の変形、変質等からも不利になる。
 重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2~50J/cm2であることが好ましく、100~800mJ/cm2であることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
 硬化反応を促進するため、加熱条件下で紫外線照射を実施してもよい。特に光反射層の形成の際、紫外線照射時の温度は、コレステリック液晶相が乱れないように、コレステリック液晶相を呈する温度範囲に維持することが好ましい。
 また、雰囲気の酸素濃度は重合度に関与するため、空気中で所望の重合度に達せず、膜強度が不十分の場合には、窒素置換等の方法により、雰囲気中の酸素濃度を低下させることが好ましい。好ましい酸素濃度としては、10%以下が好ましく、7%以下がさらに好ましく、3%以下が最も好ましい。紫外線照射によって進行される硬化反応(例えば重合反応)の反応率は、層の機械的強度の保持等や未反応物が層から流出するのを抑える等の観点から、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがよりさらに好ましい。反応率を向上させるためには照射する紫外線の照射量を増大する方法や窒素雰囲気下あるいは加熱条件下での重合が効果的である。また、一旦重合させた後に、重合温度よりも高温状態で保持して熱重合反応によって反応をさらに推し進める方法や、再度紫外線を照射する方法を用いることもできる。反応率の測定は反応性基(例えば重合性基)の赤外振動スペクトルの吸収強度を、反応進行の前後で比較することによって行うことができる。
 重合性液晶組成物の液晶化合物分子の配向に基づく光学的性質、例えば、コレステリック液晶相の光学的性質は、層中において保持されていれば十分であり、硬化後のλ/4板または光反射層の液晶組成物はもはや液晶性を示す必要はない。例えば、液晶組成物が、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。
 光反射層の形成においては、上記の硬化により、コレステリック液晶相が固定されて、光反射層が形成される。ここで、液晶相を「固定化した」状態は、コレステリック液晶相となっている液晶化合物の配向が保持された状態が最も典型的、且つ好ましい態様である。それだけには限定されず、具体的には、通常0℃~50℃、より過酷な条件下では-30℃~70℃の温度範囲において、この層に流動性が無く、また外場や外力によって配向形態に変化を生じさせることなく、固定化された配向形態を安定に保ち続けることができる状態を意味するものとする。
 コレステリック液晶相を固定してなる光反射層の製造方法としては、他に、例えば、特開平1-133003号公報、特許3416302号、特許3363565号、特開平8-271731号公報に記載の方法を参照してもよい。
<配向層>
 輝度向上フィルムは配向層を含んでいてもよい。配向層はλ/4板または光反射層の形成の際、重合性組成物中の液晶化合物の分子を配向させるために用いられる。
 配向層はλ/4板または光反射層の形成の際に用いられ、輝度向上フィルムにおいては、配向層が含まれていてもいなくてもよい。
 配向層は、有機化合物(好ましくはポリマー)のラビング処理、SiOなどの無機化合物の斜方蒸着、マイクログルーブを有する層の形成等の手段で設けることができる。さらには、電場の付与、磁場の付与、或いは光照射により配向機能が生じる配向層も知られている。
 支持体、λ/4板または光反射層などの下層の材料によっては、配向層を設けなくても、支持体を直接配向処理(例えば、ラビング処理)することで、配向層として機能させることもできる。そのような下層となる支持体の一例としては、PETを挙げることができる。
 また、光反射層の上に直接光反射層を積層する場合、下層の光反射層が配向層として振舞い上層の光反射層の作製のための液晶化合物を配向させることができる場合もある。このような場合、配向層を設けなくても、また、特別な配向処理(例えば、ラビング処理)を実施しなくても上層の液晶化合物を配向することができる。
 以下、好ましい例として表面をラビング処理して用いられるラビング処理配向層および光配向層を説明する。
(ラビング処理配向層)
 ラビング処理配向層に用いることができるポリマーの例には、例えば特開平8-338913号公報明細書中段落番号[0022]記載のメタクリレート系共重合体、スチレン系共重合体、ポリオレフィン、ポリビニルアルコール及び変性ポリビニルアルコール、ポリ(N-メチロールアクリルアミド)、ポリエステル、ポリイミド、酢酸ビニル共重合体、カルボキシメチルセルロース、ポリカーボネート等が含まれる。シランカップリング剤をポリマーとして用いることができる。水溶性ポリマー(例、ポリ(N-メチロールアクリルアミド)、カルボキシメチルセルロース、ゼラチン、ポリビニルアルコール、変性ポリビニルアルコール)が好ましく、ゼラチン、ポリビニルアルコール及び変性ポリビニルアルコールが更に好ましく、ポリビニルアルコール及び変性ポリビニルアルコールが最も好ましい。
 配向層のラビング処理面に前述の組成物を塗布して、液晶化合物の分子を配向させる。その後、必要に応じて、配向層ポリマーと光学異方性層に含まれる多官能モノマーとを反応させるか、あるいは、架橋剤を用いて配向層ポリマーを架橋させることで、前述の光学異方性層を形成することができる。
 配向層の膜厚は、0.1~10μmの範囲にあることが好ましい。
-ラビング処理-
 重合性液晶組成物が塗布される配向層、仮支持体、λ/4板、または光反射層の表面は、必要に応じてラビング処理をしてもよい。ラビング処理は、一般にはポリマーを主成分とする膜の表面を、紙や布で一定方向に擦ることにより実施することができる。ラビング処理の一般的な方法については、例えば、「液晶便覧」(丸善社発行、平成12年10月30日)に記載されている。
 ラビング密度を変える方法としては、「液晶便覧」(丸善社発行)に記載されている方法を用いることができる。ラビング密度(L)は、下記式(A)で定量化されている。
式(A) L=Nl(1+2πrn/60v)
式(A)中、Nはラビング回数、lはラビングローラーの接触長、rはローラーの半径、nはローラーの回転数(rpm)、vはステージ移動速度(秒速)である。
 ラビング密度を高くするためには、ラビング回数を増やす、ラビングローラーの接触長を長く、ローラーの半径を大きく、ローラーの回転数を大きく、ステージ移動速度を遅くすればよく、一方、ラビング密度を低くするためには、この逆にすればよい。また、ラビング処理の際の条件としては、特許4052558号の記載を参照することもできる。
(光配向層)
 光照射により形成される光配向層に用いられる光配向材料としては、多数の文献等に記載がある。例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号、特許第4151746号に記載のアゾ化合物、特開2002-229039号公報に記載の芳香族エステル化合物、特開2002-265541号公報、特開2002-317013号公報に記載の光配向性単位を有するマレイミドおよび/またはアルケニル置換ナジイミド化合物、特許第4205195号、特許第4205198号に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報、特許第4162850号に記載の光架橋性ポリイミド、ポリアミド、またはエステルが好ましい例として挙げられる。特に好ましくは、アゾ化合物、光架橋性ポリイミド、ポリアミド、またはエステルである。
 上記材料から形成した光配向層に、直線偏光または非偏光照射を施し、光配向層を製造する。
 本明細書において、「直線偏光照射」とは、光配向材料に光反応を生じせしめるための操作である。用いる光の波長は、用いる光配向材料により異なり、その光反応に必要な波長であれば特に限定されるものではない。好ましくは、光照射に用いる光のピーク波長が200nm~700nmであり、より好ましくは光のピーク波長が400nm以下の紫外光である。
 光照射に用いる光源は、通常使われる光源、例えばタングステンランプ、ハロゲンランプ、キセノンランプ、キセノンフラッシュランプ、水銀ランプ、水銀キセノンランプ、カーボンアークランプ等のランプ、各種のレーザー(例、半導体レーザー、ヘリウムネオンレーザー、アルゴンイオンレーザー、ヘリウムカドミウムレーザー、YAGレーザー)、発光ダイオード、陰極線管などを挙げることができる。
 直線偏光を得る手段としては、偏光板(例、ヨウ素偏光板、二色色素偏光板、ワイヤーグリッド偏光板)を用いる方法、プリズム系素子(例、グラントムソンプリズム)やブリュースター角を利用した反射型偏光子を用いる方法、または偏光を有するレーザー光源から出射される光を用いる方法が採用できる。また、フィルターや波長変換素子等を用いて必要とする波長の光のみを選択的に照射してもよい。
 照射する光は、直線偏光の場合、配向層に対して上面、または裏面から配向層表面に対して垂直、または斜めから光を照射する方法が採用される。光の入射角度は、光配向材料によって異なるが、例えば、0~90°(垂直)、好ましくは40~90である。
 非偏光を利用する場合には、斜めから非偏光を照射する。その入射角度は、10~80°、好ましくは20~60、特に好ましくは30~50°である。
 照射時間は好ましくは1分~60分、さらに好ましくは1分~10分である。
<広帯域光反射層の作製>
 コレステリック液晶相を固定してなる光反射層を広帯域にする方法としては、高Δn液晶化合物の使用や、ピッチグラジエント法が挙げられる。
 Δnは、上述のように液晶化合物の複屈折であり、例えば棒状液晶化合物の場合、その化合物の短軸および長軸方向それぞれの屈折率の値の差である。
 コレステリック液晶相を固定してなる光反射層に用いる液晶化合物は、0.06≦Δn≦0.5程度が実用的(特表2011-510915号公報に記載の高Δn液晶材料を使用できる)であり、半値幅で15nmから150nmに相当する。また、高Δn液晶化合物としては、特許3999400号公報、特許4053782号公報、特許4947676号公報等に記載の化合物が挙げられるが、本発明に対してはこれらに限定されない。Δnの測定方法は、特許4053782号公報の段落〔0112〕や、特許4947676号公報の段落〔0142〕等の方法を参照できる。
 半値幅200nm以下を制御して作製する場合、単一のピッチではなく、コレステリックの螺旋方向でピッチ数が徐々に変化することで、広い半値幅を実現できるピッチグラジエント法を用いることができる。ピッチとは上記のコレステリック液晶相における螺旋構造のピッチ長Pであり、液晶化合物の分子層の配向方向が360度回転したときの分子層の厚さをいう。
 半値幅拡大及び、ピッチグラジエントでの膜厚低減(薄手化)の観点で、Δnは、好ましくは0.16以上、より好ましくは0.2以上、更に好ましくは0.3以上、特に好ましくは現状工業化されている液晶のΔn上限である0.5程度である。ただし、今後、さらなる高Δn液晶が開発されれば、原理的に本発明に適用可能であり、より薄手化が可能である。
 輝度性能の観点で、Δnが0.156である液晶化合物を用いる場合であって、ピッチグラジエント帯域400~600nmを少なくとも有する場合は、広帯域ピッチグラジエント層の膜厚は6μm以上が好ましく、8μm以上がより好ましく、10μm以上が更に好ましくはである。Δnが0.3である液晶化合物を用いる場合であって、ピッチグラジエント帯域400~600nmを少なくとも有する場合は、膜厚は2μm以上が好ましく、3μm以上がより好ましく、4μm以上が更に好ましく、5μm以上が特に好ましい。
 液晶のΔn分散について各波長での分散が少ないことが好ましいことが知られている。好ましくはΔn(450/550比)≦1.6、より好ましくは、Δn(450/550比)≦1.4、更に好ましくはΔn(450/550比)≦1.2以下、特に好ましくはΔn(450/550比)≦1.1である。
 ピッチグラジエント法では、コレステリック液晶相の螺旋方向(通常膜厚方向)でピッチを徐々に変化させることで、広い半値幅を実現できる。ピッチグラジエント法を適用した光反射層においては、ピッチは、膜厚方向で連続的に変化していることが好ましい。また、ピッチグラジエント法を適用した光反射層においては、層の片面から他方の面に向かって、ピッチが連続的に増加しているか、または連続的に減少していることが好ましい。ピッチグラジエント法は、液晶層の厚さ方向で螺旋を形成しない化合物濃度を液晶層の厚さ方向で連続的に変化させる、またはキラル剤の濃度を液晶層の厚さ方向で連続的に変化させる、または、光異性化部分を有するキラル剤を用い、光反射層形成時に、キラル剤の光異性化部分をUV照射などで異性化させることで、キラル剤のHTP(ヘリカルツイスティングパワー)を変化させることにより達成される。この光異性化部分としては、ビニレン基や、アゾ基などが好ましい。
 ピッチグラジエント法は(Nature 378、467-469 1995)や特許4990426号公報、特開2005-265896公報などの記載のものが適用できる。また、特許4570377号に記載の、螺旋を形成せずフッ化アルキル基を有する化合物を利用することもできる。
<位相差素子>
 輝度向上フィルムは、例えば、バックライトユニット側から1/4板に斜めから入射する光の位相差を補償するために、位相差素子を有していてもよい。位相差素子は、Rthが、-20nm~-1000nm、好ましくは-50nm~-500nmの範囲である。位相差素子については、特許4570377号の段落0045~0051の記載が参照できる。
<支持体>
 輝度向上フィルムは、支持体を含んでいてもよい。支持体は液晶化合物を含有する組成物から形成された層を支持する層として機能できる。
 輝度向上フィルムではλ/4板そのものを支持体として用いて光反射層を形成してもよく、また、支持体上に形成されたλ/4板の全体を支持体として用いて光反射層を形成してもよい。
 輝度向上フィルムは、光反射層を製膜する際の支持体を含んでいなくてもよく、例えばガラスや透明フィルムを光反射層を製膜する際の支持体として用いて光反射層を形成した後、光反射層のみを製膜時の支持体から剥離して輝度向上フィルムとしてもよい。本明細書において、このように光反射層と剥離される支持体を仮支持体ということがある。なお、第一および第二の光反射層を形成した後、第一および第二の光反射層のみを仮支持体から剥離する場合、λ/4板と接着層(および/または粘着材)が積層されたフィルムを用い、剥離する第一および第二の光反射層を、接着層で貼合することで輝度向上フィルムとすることが好ましい。
 また、支持体にλ/4板および第一の光反射層をこの順に形成したフィルムと、支持体に第二の光反射層を形成したフィルムとを用い、これらの、第一の光反射層と第二の光反射層の間に接着層(および/または粘着材)を設けて貼合することで輝度向上フィルムとすることも好ましい。このとき、接着後に支持体を剥離してもしなくてもよい。同様に支持体にλ/4板および第一の光反射層をこの順に形成したフィルムと、支持体に第三の光反射層第二の光反射層をこの順に形成したフィルムとを用い、これらの第一の光反射層と第二の光反射層の間に接着層(および/または粘着材)を設けて貼合することで輝度向上フィルムとすることも好ましい。
 支持体のReは、支持体がλ/4板の一部または全部としての機能を有していない場合は、0~50nmであることが好ましく、0~30nmであることがより好ましく、0~10nmであることがさらに好ましい。上記の範囲であると、反射光の光漏れを視認されない程度まで低減できるため好ましい。
 また、支持体の厚さ方向のレターデーション(Rth)はその上または下に設けられる光学異方性層との組み合わせによって選択することが好ましい。それによって、斜め方向から観察したときの反射光の光漏れ、及び色味付きを低減することができる。支持体のRthは、例えば、-40~120nmが好ましく、より好ましくは0~80nm、更に好ましくは20~60nmである。
 支持体として用いられるポリマーフィルムの材料の例には、上述のλ/4板に用いられる材料や、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム(屈折率1.48)、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系樹脂フィルム、ポリエーテルスルホンフィルム、ポリメチルメタクリレート等のポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム、ポリオレフィン、脂環式構造を有するポリマー(ノルボルネン系樹脂(アートン:商品名、JSR社製、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製))、などが挙げられる。このうちトリアセチルセルロース、ポリエチレンテレフタレート、脂環式構造を有するポリマーが好ましく、特にトリアセチルセルロースが好ましい。
 透明支持体の厚さは5μm~150μm程度のものを用いることができるが、好ましくは5μm~80μmであり、20μm~60μmであることがより好ましい。また、透明支持体は複数枚の積層からなっていてもよい。外光反射の抑制には薄い方が好ましいが、5μmより薄いと、フィルムの強度が弱くなり、好ましくない傾向がある。透明支持体とその上に設けられる層(接着層、垂直配向層あるいは位相差層)との接着を改善するため、透明支持体に表面処理(例、グロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理)を実施してもよい。透明支持体の上に、接着層(下塗り層)を設けてもよい。また、透明支持体や長尺の透明支持体には、搬送工程でのすべり性を付与したり、巻き取った後の裏面と表面の貼り付きを防止するために、平均粒径が10~100nm程度の無機粒子を固形分質量比で5%~40%混合したポリマー層を支持体の片側に塗布や支持体との共流延によって形成したものを用いることが好ましい。
 支持体が仮支持体であるときは、ガラス板を用いてもよい、例えば、コーニング社製ガラス7059を用いることができる。仮支持体としては、支持体として例示したいずれのプラスチックフィルムを用いることもできるが、コレステリック液晶相を固定してなる光反射層を剥離、転写できることが好ましい。仮支持体としては、例えば100メートル以上の長尺セルロースアシレートフィルム(TD80UL(富士フイルム株式会社製))を使用してもよい。このように長尺のセルロースアシレートフィルムを使用することは、いわゆるロールトゥロールでの光学シート部材作製を可能とし、製造適性の観点からより好ましい。使用する長尺のフィルムは、コレステリック液晶層を転写することが可能であれば、これに限定されない。
<接着層(粘着剤層)、接着剤>
 本明細書において、「接着」は「粘着」も含む概念で用いられる。
 輝度向上フィルムおよび後述の光学シート部材を構成する各部材の間には、接着層が含まれていてもよい。例えば、λ/4板と反射偏光子との間、また、反射偏光子における光反射層の間、偏光板または偏光子とλ/4板との間等には、接着層が含まれていてもよい。
 接着層に用いられる粘着剤としては、例えば、動的粘弾性測定装置で測定した貯蔵弾性率G’と損失弾性率G”との比(tanδ=G”/G’)が0.001~1.5である物質のことを表し、いわゆる、粘着剤やクリープしやすい物質等が含まれる。本発明に用いることのできる粘着剤としては、例えば、アクリル系粘着剤や、ポリビニルアルコール系接着剤が挙げられるが、これに限定されない。
 また、接着剤としては、ホウ素化合物水溶液、特開2004-245925号公報に示されるような、分子内に芳香環を含まないエポキシ化合物の硬化性接着剤、特開2008-174667号公報記載の360~450nmの波長におけるモル吸光係数が400以上である光重合開始剤と紫外線硬化性化合物とを必須成分とする活性エネルギー線硬化型接着剤、特開2008-174667号公報記載の(メタ)アクリル系化合物の合計量100質量部中に(a)分子中に(メタ)アクリロイル基を2以上有する(メタ)アクリル系化合物と、(b)分子中に水酸基を有し、重合性二重結合をただ1個有する(メタ)アクリル系化合物と、(c)フェノールエチレンオキサイド変性アクリレートまたはノニルフェノールエチレンオキサイド変性アクリレートとを含有する活性エネルギー線硬化型接着剤などが挙げられる。
 後述の光学シート部材は、反射偏光子と、反射偏光子の偏光板側に隣接する層との屈折率の差が0.15以下であることが好ましく、0.10以下であることがより好ましく、0.05以下であることが特に好ましい。上述の反射偏光子の偏光板側に隣接する層としては、上述の接着層を挙げることができる。
 このような接着層の屈折率の調整方法としては特に制限はないが、例えば特開平11-223712号公報に記載の方法を用いることができる。特開平11-223712号公報に記載の方法の中でも、以下の態様が特に好ましい。
 上述の接着層に用いられる粘着剤の例としては、ポリエステル系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、シリコーン系樹脂、アクリル系樹脂等の樹脂をあげることができる。これらは単独もしくは2種以上混合して使用しても良い。特に、アクリル系樹脂は、耐水性、耐熱性、耐光性等の信頼性に優れ、接着力、透明性が良く、更に、屈折率を液晶ディスプレイに適合するように調整し易い等から好ましい。アクリル系粘着剤としては、アクリル酸及びそのエステル、メタクリル酸及びそのエステル、アクリルアミド、アクリルニトリル等のアクリルモノマーの単独重合体もしくはこれらの共重合体、更に、上述のアクリルモノマーの少なくとも1種と、酢酸ビニル、無水マレイン酸、スチレン等の芳香族ビニルモノマーとの共重合体をあげることができる。特に、粘着性を発現するエチレンアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート等の主モノマー、凝集力成分となる酢酸ビニル、アクリルニトリル、アクリルアミド、スチレン、メタクリレート、メチルアクリレートなどのモノマー、さらに接着力向上や、架橋化起点を付与するメタクリル酸、アクリル酸、イタコン酸、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、ジメチルアミノエチルメタクリレート、ジメチルアミノエチルメタクリレート、アクリルアミド、メチロールアクリルアミド、グリシジルメタクリレート、無水マレイン酸等の官能基含有モノマーからなる共重合体で、Tg(ガラス転移点)が-60℃~-15℃の範囲にあり、重量平均分子量が20万~100万の範囲にあるものが好ましい。
 シート状光硬化型粘接着剤(東亞合成グループ研究年報 TREND第14号 2011年1月1日発行のものに記載)を接着層に用いることもできる。粘着剤のように光学フィルム同士の貼合が簡便で、紫外線(UV)で架橋・硬化し、貯蔵弾性率、接着力及び耐熱性が向上するものであり、好ましい。
<輝度向上フィルムの作製方法>
 輝度向上フィルムの作製方法としては、別途作製したλ/4板および光反射層を接着剤により貼り合わせてもよく、少なくとも1つの光反射層がλ/4板表面または他の光反射層表面に直接塗布されて形成されていてもよい。直接塗布により形成することによっては、より優れた屈曲性を有する輝度向上フィルムの提供が可能となる。すべての光反射層がλ/4板表面または他の光反射層表面に直接塗布されて形成されていることも好ましい。
 輝度向上フィルムの作製方法は、例えば、ポリマーフィルムであるλ/4板の表面に、重合性液晶組成物を塗布し、塗布膜を硬化して光反射層(第一の光反射層)を形成することを含む。上記のように作製されたλ/4板と第一の光反射層との積層体の表面にさらに、重合性液晶組成物を塗布し、塗布膜を硬化して光反射層(第二の光反射層)を形成してもよく、さらに塗布膜を硬化して光反射層(第三の光反射層)を形成してもよい。または支持体(仮支持体)上に形成された光反射層(第二の光反射層)を接着層を用いて積層してもよい。仮支持体はその後剥離してもしなくてもよい。輝度向上フィルムは、支持体上に液晶化合物を含む組成物を塗布して、塗布膜を硬化することによりλ/4板を作製することを含む方法で作製してもよい。支持体上にλ/4板、光反射層を順次塗布硬化により作製してもよく、支持体上にλ/4板を有する積層体と、仮支持体上に光反射層を有する積層体とを、λ/4板および光反射層が隣接するように接着させてもよい。例えば、支持体上にλ/4板を有する積層体と、仮支持体上に第二の光反射層および第一の光反射層を仮支持体側からこの順で有する積層体とを、λ/4板および第一の光反射層が隣接するように接着させてもよい。その後仮支持体は剥離してもしなくてもよい。
 液晶化合物を含む組成物から形成されるλ/4板、およびコレステリック液晶相を固定してなる光反射層の形成の際は、配向層を介した液晶層の重畳方式なども採ることができる。
<光学シート部材>
 光学シート部材は、輝度向上フィルムと偏光板とを有している。光学シート部材の層構成の一例を図2に示す。λ/4板の遅相軸と偏光子の吸収軸とのなす角が30~60°であり、偏光板、λ/4板および反射偏光子がこの順で直接接触して、または、接着層を介して積層することが好ましい。遅相軸とは、屈折率が最大となる方向を意味する。
 光学シート部材は、偏光板保護フィルムを有していてもよい。偏光子と反射偏光子との間に偏光板保護フィルムを有さない場合は、偏光子に直接または接着剤を介して、反射偏光子が設けられていてもよい。λ/4板が偏光板保護膜を兼ねていてもよく、また、偏光板保護膜が積層で実現するλ/4板の一部を兼ねてもいてもよい。
 この保護フィルムのうち、液晶セルと反対側に配置される保護フィルムとしては、透明性、機械的強度、熱安定性、水分遮断性、等方性等に優れる熱可塑性樹脂が用いられる。この様な熱可塑性樹脂の具体例としては、トリアセチルセルロース等のセルロース樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、(メタ)アクリル樹脂、環状ポリオレフィン樹脂(ノルボルネン系樹脂)、ポリアリレート樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂、及びこれらの混合物が挙げられる。
<偏光板>
 偏光板は、偏光子のみからなるものであってもよいが、偏光板は偏光子及びその少なくとも片面を保護する偏光板保護フィルムで構成されていることが好ましい。偏光子およびその両側に配置された二枚の偏光板保護フィルム(以下、保護フィルムとも言う)からなることも好ましい
(偏光子)
 偏光子としては、ポリマーフィルムにヨウ素が吸着配向されたものを用いることが好ましい。ポリマーフィルムとしては、特に限定されず各種のものを使用できる。例えば、ポリビニルアルコール系フィルム、ポリエチレンテレフタレート系フィルム、エチレン・酢酸ビニル共重合体系フィルムや、これらの部分ケン化フィルム、セルロース系フィルム等の親水性高分子フィルムに、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、偏光子としてのヨウ素による染色性に優れたポリビニルアルコール系フィルムを用いることが好ましい。
 ポリビニルアルコール系フィルムの材料には、ポリビニルアルコールまたはその誘導体が用いられる。ポリビニルアルコールの誘導体としては、ポリビニルホルマール、ポリビニルアセタール等が挙げられる他、エチレン、プロピレン等のオレフィン、アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸そのアルキルエステル、アクリルアミド等で変性したものが挙げられる。
 前述のポリマーフィルムの材料であるポリマーの重合度は、一般に500~10,000であり、1000~6000の範囲であることが好ましく、1400~4000の範囲にあることがより好ましい。更に、ケン化フィルムの場合、そのケン化度は、例えば、水への溶解性の点から、75モル%以上が好ましく、より好ましくは98モル%以上であり、98.3~99.8モル%の範囲にあることがより好ましい。
 前述のポリマーフィルム(未延伸フィルム)は、常法に従って、一軸延伸処理、ヨウ素染色処理が少なくとも施される。さらには、ホウ酸処理や洗浄処理などを施すことができる。また前述の処理の施されたポリマーフィルム(延伸フィルム)は、常法に従って乾燥処理されて偏光子となる。
 偏光子の厚さとしては、通常は5~80μm、好ましくは5~50μm、より好ましくは、5~25μmである。
 偏光子の光学特性としては、偏光子単体で測定したときの単体透過率が43%以上であることが好ましく、43.3~45.0%の範囲にあることがより好ましい。また、上述の偏光子を2枚用意し、2枚の偏光子の吸収軸が互いに90°になるように重ね合わせて測定する直交透過率は、より小さいことが好ましく、実用上、0.00%以上0.050%以下が好ましく、0.030%以下であることがより好ましい。偏光度としては、実用上、99.90%以上100%以下であることが好ましく、99.93%以上100%以下であることが特に好ましい。偏光板として測定した際にもほぼこれと同等の光学特性が得られるものが好ましい。
 この偏光子は、特開2006-293275号公報、特開2009-98653号公報、特開2001-350021号公報、特開2001-141926号公報に記載の手法により、得ることができる。
 また、上記のような色の制御のために用いられる偏光板は、C光源を透過させた時の、偏光板色相色度が、a*>0であることが好ましく、a*>1であることがより好ましく、a*>2であることが更に好ましい。表示装置の色度を赤に寄せるためである。上限値は特に限定されないが、例えば20、15、13、10、または8であればよい。ここで、C光源とは、JIS Z 8720:2012に記載の「補助イルミナントC」であり、色温度が6774ケルビンのものを指す。
(偏光板保護フィルム)
 偏光板保護フィルムとしては、透明性、機械的強度、熱安定性、水分遮断性、等方性等に優れる熱可塑性樹脂が用いられる。この様な熱可塑性樹脂の具体例としては、トリアセチルセルロース等のセルロース樹脂、ポリエステル樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリオレフィン樹脂、(メタ)アクリル樹脂、環状ポリオレフィン樹脂(ノルボルネン系樹脂)、ポリアリレート樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂、及びこれらの混合物が挙げられる。
 セルロース樹脂は、セルロースと脂肪酸のエステルである。このようセルロースエステル系樹脂の具体例としでは、トリアセチルセルロース、ジアセチルセルロース、トリプロピルセルロース、ジプロピルセルロース等が挙げられる。これらのなかでも、トリアセチルセルロースが特に好ましい。トリアセチルセルロースは多くの製品が市販されており、入手容易性やコストの点でも有利である。トリアセチルセルロースの市販品の例としては、富士フイルム株式会社製の商品名「UV-50」、「UV-80」、「SH-80」、「TD-80U」、「TD-TAC」、「UZ-TAC」や、コニカ社製の「KCシリーズ」等が挙げられる。
 環状ポリオレフィン樹脂の具体的としては、好ましくはノルボルネン系樹脂である。環状オレフィン系樹脂は、環状オレフィンを重合単位として重合される樹脂の総称であり、例えば、特開平1-240517号公報、特開平3-14882号公報、特開平3-122137号公報等に記載されている樹脂が挙げられる。具体例としては、環状オレフィンの開環(共)重合体、環状オレフィンの付加重合体、環状オレフィンとエチレン、プロピレン等のα-オレフィンとその共重合体(代表的にはランダム共重合体)、及び、これらを不飽和カルボン酸やその誘導体で変性したグラフト重合体、ならびに、それらの水素化物等が挙げられる。環状オレフィンの具体例としては、ノルボルネン系モノマーが挙げられる。
 環状ポリオレフィン樹脂としては、種々の製品が市販されている。具体例としては、日本ゼオン株式会社製の商品名「ゼオネックス」、「ゼオノア」、JSR株式会社製の商品名「アートン」、TICONA社製の商品名「トーパス」、三井化学株式会社製の商品律「APEL」が挙げられる。
 (メタ)アクリル系樹脂としては、任意の適切な(メタ)アクリル系樹脂を採用し得る。例えば、ポリメタクリル酸メチル等のポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル-スチレン共重合体(MS樹脂等)、脂環族炭化水素基を有する重合体(例えば、メタクリル酸メチル-メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体等)が挙げられる。好ましくは、ポリ(メタ)アクリル酸メチル等のポリ(メタ)アクリル酸C1-6アルキルが挙げられる。より好ましくはメタクリル酸メチルを主成分(50~100質量%、好ましくは70~100質量%)とするメタクリル酸メチル系樹脂が挙げられる。
 (メタ)アクリル系樹脂の具体例として、例えば、三菱レイヨン株式会社製のアクリペットVHやアクリペットVRL20A、特開2004-70296号公報に記載の分子内に環構造を有する(メタ)アクリル系樹脂、分子内架橋や分子内環化反応により得られる高Tg(メタ)アクリル樹脂系が挙げられる。
 (メタ)アクリル系樹脂として、ラクトン環構造を有する(メタ)アクリル系樹脂を用いることもできる。高い耐熱性、高い透明性、二軸延伸することにより高い機械的強度を有するからである。
 保護フィルムの厚さは適宜に設定し得るが、一般的には強度や取扱い等の作業性、薄層性等の点より1~80μm程度である。特に1~60μmが好ましく、5~40μmがより好ましく、5~25μmが更に好ましい。
<バックライトユニット>
 輝度向上フィルムまたは光学シート部材は、液晶表示装置において、バックライトユニットと組み合わせて用いることができる。バックライトユニットは、430~500nmの波長帯域に発光中心波長を有する青色光と、500~600nmの波長帯域に発光中心波長を有する緑色光と、600~700nmの波長帯域に発光強度のピークの少なくとも一部を有する赤色光とを発光する光源を備えていればよい。
 上述のバックライトユニットは、上述の光源の後部に、上述の光源から発光されて上述の輝度向上フィルムまたは上述の光学シート部材で反射された光の偏光状態の変換および反射をする反射部材を備えることも好ましい。
バックライトの構成としては、導光板や反射板などを構成部材とするエッジライト方式であっても、直下型方式であっても構わないが、バックライトユニットが光源の後部に、光源から発光されて光学シート部材で反射された光の偏光状態の変換および反射をする反射部材を備えることが好ましい。このような反射部材としては特に制限は無く、公知のものを用いることができ、特許3416302号公報、特許3363565号公報、特許4091978号公報、特許3448626号公報などに記載されており、これらの公報の内容は本発明に組み込まれる。
 バックライトの光源は、上述の青色光を発光する青色発光ダイオードと、上述の青色発光ダイオードの上述の青色光が入射したときに上述の緑色光と上述の赤色光を発光する蛍光材料を含む波長変換部材を有することが好ましい。
 なお、バックライトの光源としては、上述の青色光を発光する青色発光ダイオードと、上述の緑色光を発光する緑色発光ダイオードと、上述の赤色光を発光する赤色発光ダイオードとを用いてもよい。
 バックライトの光源は、白色LED(Light Emitting Diode:発光ダイオード)などの白色光源であってもよい。
 蛍光材料としては、イットリウム・アルミニウム・ガーネット系の黄色蛍光体やテルビウム・アルミニウム・ガーネット系の黄色蛍光体等がある。蛍光材料の蛍光波長は、蛍光体の粒子径を変更することによって、制御することができる。
 本発明の液晶表示装置は、上述の青色光を発光する青色発光ダイオードと、上述の青色発光ダイオードの上述の青色光が入射したときに上述の緑色光と上述の赤色光を発光する蛍光材料が量子ドット部材(例えば、量子ドットシートやバー形状の量子ドットバー)であり、量子ドット部材が光学シート部材と青色光源の間に配置されたことが好ましい。このような量子ドット部材としては特に制限は無く、公知のものを用いることができるが、例えば特開2012-169271号公報、SID’12 DIGEST p.895、などに記載されており、これらの文献の内容は本発明に組み込まれる。また、このような量子ドットシートとしては、QDEF(Quantum Dot Enhancement Film、ナノシス社製)を用いることができる。
 バックライトユニットが発光する各色の光の好ましい発光中心波長は以下のとおりである。青色光は、発光中心波長が440~470nmの波長帯域にあることが好ましい。緑色光は、発光中心波長が520~570nmの波長帯域にあることが好ましい。赤色光は、発光中心波長が600~640nmの波長帯域にあることが好ましい。
 上述の青色光、上述の緑色光および上述の赤色光の半値幅がいずれも100nm以下であることが好ましい。
 バックライトユニットが発光する青色光が、半値幅が80nm以下である発光強度のピークを有することが好ましく、半値幅が70nm以下である発光強度のピークを有することがより好ましく、半値幅が30nm以下である発光強度のピークを有することが特に好ましい。
 バックライトユニットが発光する緑色光が、半値幅が80nm以下である発光強度のピークを有することが好ましく、半値幅が70nm以下である発光強度のピークを有することがより好ましく、半値幅が60nm以下である発光強度のピークを有することが特に好ましい。
 バックライトユニットが発光する赤色光が、半値幅が80nm以下である発光強度のピークを有することが好ましく、半値幅が70nm以下である発光強度のピークを有することがより好ましく、半値幅が60nm以下である発光強度のピークを有することが特に好ましい。
 バックライトユニットの青色光、緑色光及び赤色光の発光中心波長(発光強度のピークを与える波長)と、輝度向上フィルムにおける各色の反射中心波長(反射率のピークを与える波長)との差(反射中心波長-発光中心波長)は、本発明者の研究の結果、青及び緑色光に関しては、±50nm以内であることが好ましく、±25nm以内であることがより好ましい。
 一方、赤色光に関しては0~75nmであることが斜め色味変化を抑制する観点で好ましく、0~50nmであることがより好ましく、10~30nmであることが更に好ましい。
 また、上記のようにバックライトユニットの発光色の制御を行う場合においては、バックライトユニットの正面色度は、a*>8であることが好ましく、a*>12であることがより好ましく、a*>16であることが更に好ましく、a*>20であることが更に好ましい。表示装置の色度を赤方向に寄せるためである。上限値は特に限定されないが、例えば50、30、または20などであればよい。
 バックライトユニットは、その他、公知の拡散板や拡散シート、プリズムシート(例えば、BEFなど)、導光器を備えていることも好ましい。その他の部材についても、特許3416302号公報、特許3363565号公報、特許4091978号公報、特許3448626号公報などに記載されている。
 バックライトユニットに、プリズムの向きが互いに実質的に平行である2枚のプリズムシートを備えることも好ましい。液晶表示装置の正面輝度をさらに向上させることができるからである。2枚のプリズムシートのプリズムの向きが実質的に平行とは、2枚のプリズムシートのプリズムのなす角が±5°以内であることをいう。なお、プリズムシートは、プリズムシートの面内の一方の方向に延在された突起(本明細書において、この突起のことをプリズムとも言う)が列状に複数配置されたものであり、列状に配置された複数のプリズムが延在された方向は平行である。プリズムの向きとは、列状に配置された複数のプリズムの延在方向のことを言う。プリズムの向きが互いに実質的に垂直である2枚のプリズムシートを用いるよりもプリズムの向きが互いに実質的に平行である2枚のプリズムシートを用いる方が正面輝度を高くできる。なお、上述のいずれの光源を組み合わせた場合でも、同様の効果を得ることができる。
<光学シート部材の液晶表示装置への貼合方法>
 輝度向上フィルムや光学シート部材を液晶表示装置へと貼合する方法としては、公知の方法を用いることができる。また、ロールtoパネル製法を用いることもでき、生産性、歩留まりを向上する上で好ましい。ロールtoパネル製法は特開2011-48381号公報、特開2009-175653号公報、特許4628488号公報、特許4729647号公報、WO2012/014602号、WO2012/014571号等に記載されているが、これらに限定されない。
 <光の偏光状態を変化させる層>
 輝度向上フィルムの最外層の光反射層とバックライトユニットとの間には、光の偏光状態を変化させる層を配置することが、好ましい。光の偏光状態を変化させる層が光反射層から反射された光の偏光状態を変化させる層として機能し、輝度を向上させ、色味変化を小さくし、塗布ムラを緩和することができるからである。光の偏光状態を変化させる層の例としては、空気層より屈折率が高いポリマー層が挙げられ、空気層より屈折率が高いポリマー層の例としては、ハードコート(HC)処理層、アンチグレア(AG)処理層、低反射(AR)処理層などの各種低反射層、トリアセチルセルロース(TAC)フィルム、アクリル樹脂フィルム、シクロオレフィンポリマー(COP)樹脂フィルム、延伸PETフィルム等が挙げられる。光の偏光状態を変化させる層は支持体を兼ねていてもよい。光反射層から反射された光の偏光状態を変化させる層の平均屈折率と、最外層の光反射層の平均屈折率の関係は、
0<|光の偏光状態を変化させる層の平均屈折率-最外層の光反射層の平均屈折率|<0.8であることが好ましく、
0<|光の偏光状態を変化させる層の平均屈折率-最外層の光反射層の平均屈折率|<0.4であることがさらに好ましく
0<|光の偏光状態を変化させる層の平均屈折率-最外層の光反射層の平均屈折率|<0.2がより好ましい。
 光の偏光状態を変化させる層は輝度向上フィルムと一体化していてもよく、輝度向上フィルムとは別に設けられていてもよい。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<λ/4板の作製>
 まず、λ/4板のためのセルロースエステル支持体T1を作製した。
(セルロースエステル溶液A-1の調製)
 下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースエステル溶液A-1を調製した。
――――――――――――――――――――――――――――――――――
セルロースエステル溶液A-1の組成
――――――――――――――――――――――――――――――――――
・セルロースアセテート(アセチル化度2.86)     100質量部
・メチレンクロライド                  320質量部
・メタノール                       83質量部
・1-ブタノール                      3質量部
・トリフェニルフォスフェート              7.6質量部
・ビフェニルジフェニルフォスフェート          3.8質量部
――――――――――――――――――――――――――――――――――
(マット剤分散液B-1の調製)
 下記の組成物を分散機に投入し、攪拌して各成分を溶解し、マット剤分散液B-1を調製した。
――――――――――――――――――――――――――――――――――
マット剤分散液B-1の組成
――――――――――――――――――――――――――――――――――
 ・シリカ粒子分散液(平均粒径16nm)
  "AEROSIL R972"、日本アエロジル(株)製10.0質量部
 ・メチレンクロライド                72.8質量部
 ・メタノール                     3.9質量部
 ・ブタノール                     0.5質量部
 ・セルロースエステル溶液A-1           10.3質量部
――――――――――――――――――――――――――――――――――
 (紫外線吸収剤溶液C-1の調製)
 下記の組成物を別のミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、紫外線吸収剤溶液C-1を調製した。
――――――――――――――――――――――――――――――――――
紫外線吸収剤溶液C-1の組成
――――――――――――――――――――――――――――――――――
 ・紫外線吸収剤(下記UV-1)           10.0質量部
 ・紫外線吸収剤(下記UV-2)           10.0質量部
 ・メチレンクロライド                55.7質量部
 ・メタノール                      10質量部
 ・ブタノール                     1.3質量部
 ・セルロースエステル溶液A-1           12.9質量部
――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000003
(セルロースエステル支持体T1の作製)
 セルロースアシレート溶液A-1を94.6質量部、マット剤分散液B-1を1.3質量部とした混合物に、セルロースアシレート100質量部当たり、紫外線吸収剤(UV-1)および紫外線吸収剤(UV-2)がそれぞれ1.0質量部となるように、紫外線吸収剤溶液C-1を加え、加熱しながら充分に攪拌して各成分を溶解し、ドープを調製した。得られたドープを30℃に加温し、流延ギーサーを通して直径3mのドラムである鏡面ステンレス支持体上に流延した。支持体の表面温度は-5℃に設定し、塗布幅は1470mmとした。流延したドープ膜をドラム上で34℃の乾燥風を150m3/分で当てることにより乾燥させ、残留溶剤が150%の状態でドラムより剥離した。剥離の際、搬送方向(長手方向)に15%の延伸を行った。その後、フィルムの幅方向(流延方向に対して直交する方向)の両端をピンテンター(特開平4-1009号公報の図3に記載のピンテンター)で把持しながら搬送し、幅手方向には延伸処理を行わなかった。さらに、熱処理装置のロール間を搬送することによりさらに乾燥し、セルロースアシレート支持体T1を製造した。作製した長尺状のセルロースアシレート支持体T1の残留溶剤量は0.2%で、厚みは60μmで、550nmにおけるReとRthはそれぞれ0.8nm、40nmであった。
(λ/4板の液晶層の作製)
 クラレ社製ポバールPVA-103を純水に溶解した。上記溶液の濃度および塗布量を、乾燥膜厚が0.5μmになるように調整し、上記で作製したセルロースアシレート支持体T1上にバー塗布した。その後、塗布膜を100℃で5分間加熱した。さらにこの表面をラビング処理して配向層を得た。
 続いて下記の組成の溶質を、MEK(メチルエチルケトン)に溶解し、塗布液を調製した。この塗布液を濃度および塗布量が乾燥膜厚が1μmになるように調整して、上記の配向層上にバー塗布した。その後、溶媒を85℃、2分間保持して溶媒を気化させた後に100℃で4分間加熱熟成を行って、均一な配向状態を得た。なお、円盤状化合物は支持体平面に対して垂直配向していた。
 その後この塗布膜を80℃に保持し、これに窒素雰囲気下で高圧水銀灯を用いて紫外線照射してλ/4板を作製した。
――――――――――――――――――――――――――――――――――
液晶層作製用の塗布液の溶質組成
――――――――――――――――――――――――――――――――――
円盤状液晶化合物1              35質量部
円盤状液晶化合物2              35質量部
配向助剤(化合物3)              1質量部
配向助剤(化合物4)              1質量部
重合開始剤(化合物5)             3質量部
――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000004
<位相差素子Iの作製>
 負の固有複屈折値を有する材料としてスチレン-無水マレイン酸共重合体(「ダイラークD332」、ノバケミカル社製、Tg=131℃)、透明樹脂材料としてノルボルネン系樹脂(商品名:ZEONOR1020、日本ゼオン社製、Tg=105℃)を用いた。まず、2つの押出し機が押出しダイに一体に組み合わされた押出しダイのそれぞれの押出し機に、溶融状態のノルボルネン系樹脂及びスチレン-無水マレイン酸共重合体をそれぞれ格納した。上述のノルボルネン系樹脂を格納した押出し機の押出し流路は2つに分岐していて、分岐した流路から押出されたノルボルネン系樹脂は、他の押出し機から押出されたスチレン-無水マレイン酸共重合体を挟持して、押出しダイ内部で3層構成の積層体を形成するように構成した。また、2つの押出し機の押出しダイへの連通口にはフィルタが配置されていて、上述のノルボルネン系樹脂及びスチレン-無水マレイン酸共重合体をフィルタに通してから、押出しダイ内部に押出すようにし、3層構造を有する積層体を得た。この積層体の厚さむらを、走査式厚さ計を用いて測定した。測定は積層体の長手方向に連続的走査して行った。得られた積層体は厚さ平均300μmであり、厚さむらは上述の厚さ平均に対して2.5%であった。
 次いで、この積層体をゾーン加熱の搬送方向と平行である縦方向への一軸延伸装置とテンター延伸(搬送方向と垂直である横方向へ一軸延伸)装置に順次送り込んで逐次二軸延伸を行うことにより位相差素子Iを作製した。延伸温度は前述の縦延伸、横延伸のいずれも140℃、延伸倍率は縦延伸が1.8倍、横延伸は1.5倍とした。
 得られた位相差素子Iの平均厚さは120μm、自動複屈折測定装置KOBRA-21SDH(王子計測機器社製)を用いて屈折率、レターデーションを測定したところ、面方向の屈折率はnx=1.5732、ny=1.5731、厚さ方向の屈折率はnz=1.5757であった。レターデーションは、Reが10nm、Rthが-300nmであった。
<光学積層体Eの形成>
 配向層としてサンエバーSE-130(日産化学社製)をN-メチルピロリドンに溶解した。上記溶液を、濃度および塗布量を乾燥膜厚が0.5μmになるように調整して、コーニング社製ガラス7059上にバー塗布した。塗布膜を100℃で5分間加熱し、さらに250℃で1時間加熱した。その後この表面をラビング処理して配向層を得た。
 続いて下記の組成の溶質を、MEKに溶解し、円盤状液晶化合物を含む光反射層E形成用の塗布液を調製した。この塗布液を、濃度および塗布量を膜厚2.4μmになるように調整して、上記の配向層上にバー塗布して、溶媒を70℃、2分間保持して溶媒を気化させた後に100℃で4分間加熱熟成を行って、均一な配向状態を得た。
 その後この塗布膜を45℃に保持し、これに窒素雰囲気下で高圧水銀灯を用いて紫外線照射して、光反射層Eを含む光学積層体Eを作製した。光反射層Eの膜厚は、2.4μmであった。AXOMETRIX社のAXOSCANを用いてコレステリックのピッチを計測した結果、反射波長は450nm~510nmであった。
――――――――――――――――――――――――――――――――――
光反射層E形成用の塗布液の溶質組成
――――――――――――――――――――――――――――――――――
円盤状液晶化合物1            56質量部
円盤状液晶化合物2            14質量部
配向助剤(化合物3)            1質量部
配向助剤(化合物4)            1質量部
重合開始剤(化合物5)           3質量部
キラル剤(化合物6)          2.5質量部
――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000005
<光学積層体Aの作製>
 まず、特許4570377号公報[0065]に記載の手順で、光学活性部位を有する末端フッ化アルキル基含有重合体(化合物A)を得た。具体的には、以下のように化合物Aを得た。
 コンデンサー、温度計、攪拌機及び滴下ロートを備えた四つ口フラスコに、フッ素系溶媒AK-225(旭硝子社製、1,1,1,2,2‐ペンタフルオロ‐3,3‐ジクロロプロパン:1,1,2,2,3‐ペンタフルオロ‐1,3‐ジクロロプロパン=1:1.35(モル比)の混合溶媒))50質量部、下記構造の光学活性を有する反応性キラル剤(化合物7、式中*は光学活性部位を示す)5.22質量部を仕込み、反応容器を45℃に調温し、次いで過酸化ジペルフルオロ-2-メチル-3-オキサヘキサノイル/AK225の10質量%溶液6.58質量部を5分かけて滴下した。滴下終了後、45℃、5時間、窒素気流中で反応させ、その後生成物を5mlに濃縮し、ヘキサンで再沈澱を行い、乾燥することにより光学活性部位を有する末端フッ化アルキル基含有重合体(化合物A)3.5質量部(収率60%)を得た。
 得られた重合体の分子量をGPCを用いTHF(テトラヒドロフラン)を展開溶剤として測定したところ、Mn=4,000(Mw/Mn=1.77)であり、フッ素含有量を測定したところフッ素含有量は5.89質量%であった。
Figure JPOXMLDOC01-appb-C000006
 コーニング社製ガラス7059に、ポリビニルアルコール10質量部、水371質量部からなる配向膜塗布液をこのガラスの片面に塗布、乾燥し、厚さ1μmの配向膜を形成した。次いで、このガラスの長手方向に対し平行方向に連続的に配向膜上にラビング処理を実施した。
 配向膜の上に、下記組成の組成物をバーコーターを用いて塗布し、10秒間室温にて乾燥後、100℃のオーブン中で2分間加熱(配向熟成)し、さらに30秒間紫外線照射し、厚さ5.0μmの光反射層Aを有する光学積層体Aを作製した。
――――――――――――――――――――――――――――――――――
光反射層A形成用組成物
――――――――――――――――――――――――――――――――――
化合物8                        8.2質量部
化合物9                        0.3質量部
光学活性部位を有する末端フッ化アルキル基含有重合体(化合物A)
                            1.9質量部
メチルエチルケトン                  24.0質量部
――――――――――――――――――――――――――――――――――
 このコレステリック液晶層からなる光反射層Aの断面を走査型電子顕微鏡で観察したところ、層法線方向に螺旋軸を有し、コレステリックピッチが連続的に変化した構造を有していた。ここで、コレステリックピッチについて、コレステリック液晶層の断面を走査型電子顕微鏡で観察した際に、明部と暗部の繰り返し二回分(明暗明暗)の層法線方向の幅を1ピッチとカウントする。
 コレステリックピッチが小さい面側をx面、大きい面側をy面と定義すると、計測されたコレステリックのピッチから計算した結果は、x面側付近のコレステリックの反射波長が410nm、y面側近傍のコレステリックの反射波長が700nmであった。
Figure JPOXMLDOC01-appb-C000007
<光学積層体C1、C2、C3の作製>
 光学積層体Aの作製のうち、コレステリック液晶層の膜厚を3.5μmとし、重合体(化合物A)添加量、熟成温度、紫外線照射条件を変化させた以外は、光学積層体Aと同様にそれぞれ光反射層C1、C2、C3を有する光学積層体C1、C2、C3を作製した。
 この光学積層体C1、C2、C3の断面を走査型電子顕微鏡で観察したところ、いずれも層法線方向に螺旋軸を有し、厚さ方向にコレステリックピッチが連続的に変化した構造を有していた。
 また、光学積層体Aと同様にコレステリック液晶層の透過率を計測した結果、C1は500~680nm、C2は500~700nm、C3は530~700nmの反射波長を有していた。
<輝度向上フィルム(光学シート部材1~5、11対応)の作製>
 λ/4板、各光反射層または位相差素子Iを表1に示す組み合わせで用い、それぞれ互いに粘着材で貼合し、輝度向上フィルムを作製した。なお、光学積層体は粘着材を用いて支持体ガラスから転写しコレステリック液晶層からなる光反射層のみを輝度向上フィルムの構成として用いた。λ/4板は液晶層側で光反射層と粘着剤で貼合した。
<λ/4板一体型光反射層TC1の作製>
 トリアセチルセルロースフィルムを、温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムのバンド面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/m2で塗布し、110℃に加熱した(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/m2塗布した。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したトリアセチルセルロースフィルムを作製した。
──────────────────────────────────
アルカリ溶液組成
──────────────────────────────────
 水酸化カリウム                    4.7質量部
 水                         15.8質量部
 イソプロパノール                  63.7質量部
 界面活性剤SF-1:C1429O(CH2CH2O)20H     1.0質量部
 プロピレングリコール                14.8質量部
──────────────────────────────────
 トリアセチルセルロースフィルムのアルカリ鹸化処理を行った面に、下記組成の配向膜塗布液(A)を#14のワイヤーバーで連続的に塗布した。60℃の温風で60秒、更に100℃の温風で120秒乾燥し、配向膜を形成した。使用した変性ポリビニルアルコールの鹸化度は96.8%であった。
──────────────────────────────────
配向膜塗布液(A)の組成
――――――――――――――――――――――――――――――――――
下記の変性ポリビニルアルコール              10質量部
水                           308質量部
メタノール                        70質量部
イソプロパノール                     29質量部
光重合開始剤(イルガキュアー2959、BASF社製)  0.8質量部
――――――――――――――――――――――――――――――――――
Figure JPOXMLDOC01-appb-C000008
 上記作製した配向膜に連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向とラビングローラーの回転軸とのなす角度を略45°とした。
 続いて下記の組成の溶質を、MEKに溶解し、塗布液を調製した。この塗布液を、濃度および塗布量を乾燥膜厚が1.0μmになるように調整して、上記の配向層上にバー塗布した。塗布膜を、80℃で1分間加熱熟成を行って、均一な配向状態を得た。その後、この塗布膜を75℃に保持し、これに窒素雰囲気下で高圧水銀灯を用いて紫外線照射して、トリアセチルセルロースフィルムの上にλ/4板を形成しλ/4板Tλ1を作製した。得られたフィルムのレターデーションを測定すると、いずれも128nmであった。
──────────────────────────────────
λ/4板の液晶層形成用塗布液の溶質組成
──────────────────────────────────
円盤状液晶化合物1                    80質量部
円盤状液晶化合物2                    20質量部
配向助剤1                       0.9質量部
配向助剤2                      0.08質量部
界面活性剤1                    0.075質量部
重合開始剤                         3質量部
重合性モノマー                      10質量部
──────────────────────────────────
Figure JPOXMLDOC01-appb-C000009
上記化合物中 a/b=98/2の記載において、aは98質量%、bは2質量%であることを示す。
Figure JPOXMLDOC01-appb-C000010
 上述のλ/4板Tλ1の上に、下記の方法でコレステリック液晶材料として円盤状液晶化合物を用いたコレステリック液晶相を固定してなる光反射層として、光反射層Dを形成した。
 下記の組成の溶質を、MEKに溶解し、円盤状液晶化合物を含む光反射層D形成用の塗布液を調製した。この塗布液を、濃度および塗布量を乾燥膜厚が2.4μmになるように濃度を調整して、上記のλ/4板の上にバー塗布して、110℃で1分間加熱熟成を行って、均一な配向状態を得た。その後、この塗布膜を45℃に保持し、これに窒素雰囲気下で高圧水銀灯を用いて紫外線照射して、λ/4板Tλ1上に反射帯域が630~710である光反射層Dを直接塗布した、λ/4板一体型光反射層TC1を作製した。
──────────────────────────────────
光反射層D形成用組成物
──────────────────────────────────
円盤状液晶化合物1                   80質量部
円盤状液晶化合物2                   20質量部
界面活性剤1                    0.45質量部
重合開始剤1                       3質量部
カイラル剤(化合物6)                3.5質量部
──────────────────────────────────
<光学積層体Bの作製>
 光学積層体Aの作製のうち、支持体として長尺のセルロースアシレートフィルム(TD80UL(富士フィルム社製)を利用し、コレステリック液晶層の膜厚を3.5μmとし、重合体(化合物A)添加量、熟成温度、紫外線照射条件を変化させた以外は、光学積層体Aと同様に光学積層体Bを作製した。
 この光学積層体Bの断面を走査型電子顕微鏡で観察したところ、層法線方向に螺旋軸を有し、厚さ方向にコレステリックピッチが連続的に変化した構造を有していた。
 また、光学積層体Aと同様にコレステリック液晶層の透過率を計測した結果、410~580nmの反射波長を有していた。
<輝度向上フィルム(光学シート部材6対応)の作製>
 表1に示す構成で、λ/4板一体型光反射層TC1と光学積層体Bを、アクリル性UV硬化接着剤でロールトゥロール貼合し、輝度向上フィルムを作製した。なお、光学積層体Bはセルロースアシレートフィルムから転写し、コレステリック液晶層(光反射層B)のみを用いた。
<偏光板1(無着色偏光板)の作製>
 厚さ75μmの長尺ポリビニルアルコールフィルム(クラレ社製、9X75RS)をガイドロールにて連続搬送し、30℃の水浴中に浸漬させて1.5倍に膨潤させ、かつ延伸処理して2倍の延伸倍率とした後、ヨウ素とヨウ化カリウム配合の染色浴(30℃)に浸漬して染色処理すると共に延伸処理して3倍の延伸倍率とした。得られたフィルムをホウ酸とヨウ化カリウムを添加した酸性浴(60℃)中で架橋処理すると共に延伸処理して6.5倍の延伸倍率とし、50℃で5分間乾燥させて偏光フィルムを得た。その際ヨウ化カリウムの濃度を1%とした。その両面にポリビニルアルコール系接着層を介し厚さ80μmのトリアセチルセルロースフィルムを接着して偏光板1を得た。
 この偏光板1について、日本分光(株)製自動偏光フィルム測定装置VAP-7070を用いて測定したC光源における色相色度は、a*=-1.5であった。
<偏光板2(赤色着色偏光板)の作製>
 厚さ75μmの長尺ポリビニルアルコールフィルム(クラレ社製、9X75RS)をガイドロールにて連続搬送し、30℃の水浴中に浸漬させて1.5倍に膨潤させ、かつ延伸処理して2倍の延伸倍率とした後、ヨウ素とヨウ化カリウム配合の染色浴(30℃)に浸漬して染色処理すると共に延伸処理して3倍の延伸倍率とした。得られたフィルムをホウ酸とヨウ化カリウムを添加した酸性浴(60℃)中で架橋処理すると共に延伸処理して6.5倍の延伸倍率とし、50℃で5分間乾燥させて偏光フィルムを得た。その際ヨウ化カリウムの濃度を3%とした。その両面にポリビニルアルコール系接着層を介し厚さ80μmのトリアセチルセルロースフィルムを接着して偏光板2を得た。
 この偏光板2について、日本分光(株)製自動偏光フィルム測定装置VAP-7070を用いて測定したC光源における色相色度は、a*=0.5であった。
<偏光板1Bの作製>
 偏光板1Bは、 偏光板1の作製において、両面に接着されているトリアセチルセルロースフィルムのうち、一方を接着しないで作製した。この偏光板1Bについて、日本分光(株)製自動偏光フィルム測定装置VAP-7070を用いて測定したC光源における色相色度は、a*=-1.5であった。
<光学シート部材1~6の作製>
 表1に示す組み合わせで、偏光板1、偏光板2、偏光板1Bのいずれかの一つを、上記輝度向上フィルムと貼り合わせて、光学シート部材1~6、11を製造した。光学シート部材1~5、11の製造の際、貼り合わせの際記輝度向上フィルムのλ/4板が偏光板の一方のトリアセチルセルロースフィルム面と接着されるようにした。光学シート部材6の製造の際は、トリアセチルセルロースフィルムを接着されていない偏光子の面側にλ/4板(トリアセチルセルロースフィルム面)を貼り合わせた。
 なお、上記各部材は長尺のものとして用意され、偏光子の両面にロールトゥロールでそれぞれ貼り合わされた。
<波長変換シート1の形成>
 特開2012-169271号公報を参考に、青色発光ダイオードの青色光が入射したときに中心波長535nm、半値幅40nmの緑色光と、中心波長630nm、半値幅40nmの赤色光の蛍光発光をする波長変換シート1(量子ドット材料(G,R))を形成した。
<波長変換シート2(強赤色光)の形成>
 波長変換シート1において、量子ドット材料Rを増量する以外は、同じ方法を使用して、青色発光ダイオードの青色光が入射したときに中心波長535nm、半値幅40nmの緑色光と、中心波長630nm、半値幅45nmの赤色光の蛍光発光をする波長変換シート2(量子ドット材料(G,R))を形成した。
<液晶表示装置の製造>
 市販の液晶表示装置(パナソニック社製、商品名TH-L42D2)を分解し、表示側偏光板を上記偏光板1に変更し、バックライトユニットを以下のRGB狭帯域バックライトユニットに変更した。さらに、バックライト側偏光板として、表2に示すように、光学シート部材1~6、11、偏光板1または偏光板2を用いて、バックライトユニットを以下のRGB狭帯域バックライトユニットに変更し、実施例1~6、比較例1、参考例1~4の液晶表示装置を製造した。
 上記RGB狭帯域バックライトユニットとしては、光源として青色発光ダイオード(日亜B-LED、主波長465nm、半値幅20nm)を備え、また、光源の前部に表2に示すように、前述の波長変換シート1または2を備えるものを用いた。
 測定機(EZ-Contrast160、ELDIM社製)を用いて、上記RGB狭帯域バックライトユニットの正面色味を評価したところ、波長変換シート1との組み合わせではa*=6、波長変換シート2との組み合わせではa*=9であった。
<液晶表示装置の評価>
 得られた各実施例、比較例、および参考例の液晶表示装置を、25℃60%RHに制御された部屋で1週間放置したのち、以下のように評価した。結果を表2に示す。
(斜め色味評価)
 測定機(EZ-Contrast160、ELDIM社製)を用いて、白表示で色味を評価した。色度a**は、極角0度~60度、全方位角度でのデータを使用した。
(官能評価)
 液晶表示装置の、極角0度~60度、全方位角度を目視にて観察し、以下の基準で評価した。
5:色相変化が小さく、表示性能上問題ない。
4:色相変化が多少あるが、表示性能上問題ない。
3:色相変化があり、表示性能上気になるが問題ない。
2:色相変化が大きく、表示性能上問題である。
1:色相変化が非常に大きく、表示性能上非常に問題である。
 表2に示す結果から、偏光板2を用いた参考例2においては、 偏光板1を用いた参考例1よりも、全体の色味が赤方向(a*増加方向)に移動していることが分かる。また、波長変換シート2を用いた参考例3においては、波長変換シート1を用いた参考例1よりも、全体の色味が赤方向(a*増加方向)に移動していることが分かる。偏光板2および波長変換シート2を用いた参考例4においては、全体の色味がさらに赤方向(a*増加方向)に移動していることが分かる。輝度向上フィルムを含む光学シート部材を用いた例である比較例1および実施例1~5のうち、比較例1は色味が緑方向に移動し、官能評価の結果が悪化しているが、偏光板2および/または波長変換シート2により全体の色味を赤方向(a*増加方向に調整した実施例1~5においては、官能評価の結果が良好である。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
1   バックライト側偏光板
10  支持体
11  輝度向上フィルム
12  λ/4板
13  反射偏光子
14a 第一の光反射層
14b 第二の光反射層
14c 第三の光反射層
15  偏光子
16  偏光板保護フィルム
20  接着層(接着剤)
21  光学シート部材
31  バックライトユニット
41  薄層トランジスタ基板
42  液晶セル
43  カラーフィルター基板
44  表示側偏光板
51  液晶表示装置

Claims (16)

  1. 表示側偏光板と液晶セルとバックライト側偏光板とバックライトユニットとをこの順で含む液晶表示装置であって、
    前記バックライト側偏光板と前記バックライトユニットとの間に輝度向上フィルムを含み、
    前記輝度向上フィルムは、前記バックライト側偏光板側から、λ/4板と反射偏光子とをこの順で含み、
    前記反射偏光子は、少なくとも一層のコレステリック液晶相を固定してなる光反射層を含み、
    前記液晶表示装置の白表示時の画像光の色度a*が、極角0°~60°の全方位角度において、-3<a*<14である液晶表示装置。
  2. 前記表示側偏光板および前記バックライト側偏光板からなる群より選択される1つ以上が、C光源を透過させた時の色相色度がa*>0である偏光板である、請求項1に記載の液晶表示装置。
  3. 前記バックライトユニットの正面色度がa*>8である、請求項1または2に記載の液晶表示装置。
  4. 前記反射偏光子が、青色光および緑色光を反射する光反射層と、赤色光を反射する赤色光反射層とを含む請求項1~3のいずれか一項に記載の液晶表示装置。
  5. 前記の青色光および緑色光を反射する層が、広帯域光反射層である請求項4に記載の液晶表示装置。
  6. 前記赤色光反射層が、更に赤外光反射する光反射層である、請求項4または5に記載の液晶表示装置。
  7. 前記反射偏光子が、緑色光および赤色光を反射する光反射層と、青色光を反射する青色光反射層とを含む請求項1~3のいずれか一項に記載の液晶表示装置。
  8. 前記の緑色光および赤色光を反射する層が、広帯域光反射層である、請求項7に記載の液晶表示装置。
  9. 前記反射偏光子が、棒状液晶化合物を含む重合性液晶組成物から形成された層を含み、
    棒状液晶化合物を含む重合性液晶組成物から形成された前記層のコレステリック液晶相の螺旋ピッチが前記層の膜厚方向で連続的に変化している請求項1~8のいずれか一項に記載の液晶表示装置。
  10. 前記反射偏光子が、円盤状液晶化合物を含む重合性液晶組成物から形成された層を含む請求項1~9のいずれか一項に記載の液晶表示装置。
  11. 前記λ/4板が円盤状液晶化合物を含む重合性液晶組成物から形成された層である請求項1~10のいずれか一項に記載の液晶表示装置。
  12. 前記反射偏光子の前記λ/4板側とは反対側に光の偏光状態を変化させる層を含み、前記の光の偏光状態を変化させる層は下記条件を満たす請求項1~11のいずれか一項に記載の液晶表示装置。
    0<|光の偏光状態を変化させる層の平均屈折率-最外層の光反射層の平均屈折率|<0.8
  13. 前記バックライトユニットが、
    430~500nmの波長帯域に発光中心波長を有する青色光と、
    500~600nmの波長帯域に発光中心波長を有する緑色光と、
    600~700nmの波長帯域に発光強度のピークの少なくとも一部を有する赤色光
    とを発光する光源を備え;
    前記バックライトユニットが前記光源の後部に、前記光源から発光されて前記輝度向上フィルムまたは前記光学シート部材で反射された光の偏光状態の変換および反射をする反射部材を備える、請求項1~12のいずれか一項に記載の液晶表示装置。
  14. 前記青色光、緑色光および赤色光の半値幅がいずれも100nm以下である、請求項13に記載の液晶表示装置。
  15. 前記光源が、前記青色光を発光する青色発光ダイオードと、前記青色発光ダイオードの前記青色光が入射したときに前記緑色光と前記赤色光を発光する蛍光材料を有する光源である、請求項13または14に記載の液晶表示装置。
  16. 前記蛍光材料が量子ドット部材である、請求項15に記載の液晶表示装置。
PCT/JP2015/083837 2014-12-03 2015-12-02 液晶表示装置 WO2016088787A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016562647A JP6321210B2 (ja) 2014-12-03 2015-12-02 液晶表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-245111 2014-12-03
JP2014245111 2014-12-03

Publications (1)

Publication Number Publication Date
WO2016088787A1 true WO2016088787A1 (ja) 2016-06-09

Family

ID=56091728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083837 WO2016088787A1 (ja) 2014-12-03 2015-12-02 液晶表示装置

Country Status (2)

Country Link
JP (1) JP6321210B2 (ja)
WO (1) WO2016088787A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009784A1 (ja) * 2020-07-10 2022-01-13 Agc株式会社 ハーフミラーと選択反射フィルムとを組み合わせてなる光学的構造
WO2022075475A1 (ja) * 2020-10-09 2022-04-14 富士フイルム株式会社 積層光学フィルムおよび画像表示装置
WO2024101246A1 (ja) * 2022-11-09 2024-05-16 Toppanホールディングス株式会社 液晶表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166140A (ja) * 1999-12-08 2001-06-22 Nitto Denko Corp 偏光部材、面光源及び液晶表示装置
JP2005037657A (ja) * 2003-07-14 2005-02-10 Nippon Zeon Co Ltd 光学積層体、その製造方法及び輝度向上フィルム
JP2007272252A (ja) * 2001-10-12 2007-10-18 Sharp Corp 液晶表示装置
JP2010093132A (ja) * 2008-10-09 2010-04-22 Sharp Corp 半導体発光装置およびそれを用いた画像表示装置、液晶表示装置
JP2011145705A (ja) * 2011-04-11 2011-07-28 Nippon Zeon Co Ltd 円偏光分離シート及びその製法、並びにそれを用いた液晶表示装置
JP2013218954A (ja) * 2012-04-11 2013-10-24 Sony Corp 発光装置、表示装置および照明装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8023080B2 (en) * 2004-08-03 2011-09-20 Industrial Technology Research Institute High transmittance brightness enhanced optical element for LCD by wholly coating process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166140A (ja) * 1999-12-08 2001-06-22 Nitto Denko Corp 偏光部材、面光源及び液晶表示装置
JP2007272252A (ja) * 2001-10-12 2007-10-18 Sharp Corp 液晶表示装置
JP2005037657A (ja) * 2003-07-14 2005-02-10 Nippon Zeon Co Ltd 光学積層体、その製造方法及び輝度向上フィルム
JP2010093132A (ja) * 2008-10-09 2010-04-22 Sharp Corp 半導体発光装置およびそれを用いた画像表示装置、液晶表示装置
JP2011145705A (ja) * 2011-04-11 2011-07-28 Nippon Zeon Co Ltd 円偏光分離シート及びその製法、並びにそれを用いた液晶表示装置
JP2013218954A (ja) * 2012-04-11 2013-10-24 Sony Corp 発光装置、表示装置および照明装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009784A1 (ja) * 2020-07-10 2022-01-13 Agc株式会社 ハーフミラーと選択反射フィルムとを組み合わせてなる光学的構造
WO2022075475A1 (ja) * 2020-10-09 2022-04-14 富士フイルム株式会社 積層光学フィルムおよび画像表示装置
WO2024101246A1 (ja) * 2022-11-09 2024-05-16 Toppanホールディングス株式会社 液晶表示装置

Also Published As

Publication number Publication date
JP6321210B2 (ja) 2018-05-09
JPWO2016088787A1 (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
US10663800B2 (en) Optical sheet member and image display device using same
JP6321052B2 (ja) 輝度向上フィルム、光学シート部材および液晶表示装置
US9829615B2 (en) Luminance-enhancing film, optical sheet member, and liquid crystal display device
JP6441899B2 (ja) 組成物、光反射膜、輝度向上フィルム、バックライトユニット及び液晶表示装置
US10001673B2 (en) Optical sheet member and image display device employing same
JP6730416B2 (ja) 光学フィルムおよび液晶表示装置、ならびに光学フィルムの製造方法
JP6262351B2 (ja) フィルム、フィルムの製造方法、輝度向上フィルム、光学シート部材および液晶表示装置
JP6303006B2 (ja) 輝度向上フィルムの転写材料、転写材料の作製方法、輝度向上フィルム、転写材料を用いた光学シート部材の製造方法、および光学シート部材
JP6490824B2 (ja) 光学フィルム、輝度向上フィルム、輝度向上フィルム付きバックライトユニット及び液晶表示装置
JP2017068111A (ja) 偏光板および液晶表示装置
JP6321210B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562647

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865599

Country of ref document: EP

Kind code of ref document: A1