WO2016088710A1 - Alternating-current feeding system - Google Patents
Alternating-current feeding system Download PDFInfo
- Publication number
- WO2016088710A1 WO2016088710A1 PCT/JP2015/083569 JP2015083569W WO2016088710A1 WO 2016088710 A1 WO2016088710 A1 WO 2016088710A1 JP 2015083569 W JP2015083569 W JP 2015083569W WO 2016088710 A1 WO2016088710 A1 WO 2016088710A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switch
- transformer
- phase
- turned
- section
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60M—POWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
- B60M3/00—Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
- B60M3/04—Arrangements for cutting in and out of individual track sections
Definitions
- the present invention relates to an AC power feeding system, and more particularly to a power source switching system for an electric vehicle to pass through different power source sections having substantially the same phase.
- AC electric vehicles such as the Shinkansen are single-phase, they receive AC power from an electric power company in three phases and feed the AC electric vehicle using a three-phase to single-phase converter.
- This three-phase to single-phase converter has a Scott transformer that obtains two single-phase power sources (M and T) on the secondary side, and two single-phase power sources (A and B) on the secondary side.
- a section for matching different power sources is provided directly under the substation in order to prevent short-circuits between different phases.
- a dead section is provided at the location where the different power sources are matched, and in the Shinkansen, a middle section is provided as a switching section to switch the power source.
- Patent Document 1 describes one in which a tap switching transformer is provided in order to perform phase switching of a power source without causing an instantaneous power failure in the middle section.
- Patent Document 1 is mainly applied to substations whose phases are different by 90 °, in order to apply the equipment of Patent Document 1 to a power distribution station where power supplies having substantially the same phase are matched, Switching and control switching are necessary, which increases the burden in terms of equipment and cost.
- the present invention has been devised in view of the above-described conventional problems, and one aspect thereof is substantially the same as that output from the first three-phase / single-phase conversion transformer and the second three-phase / single-phase conversion transformer.
- An AC feeding system in which a middle section of a feeding section having an inlet air section and an outlet air section at both ends is provided at a butt of a phase power supply, wherein the middle section of the feeding section is A first isolation transformer that steps down the voltage output from the first three-phase / single-phase conversion transformer, and connected in parallel with the first isolation transformer, and output from the second three-phase / single-phase conversion transformer A second insulation transformer that steps down the voltage; a step-up transformer that steps up the voltage stepped down by the first insulation transformer and the second insulation transformer and outputs the boosted voltage to a middle section; and the secondary winding of the first insulation transformer And the primary winding of the step-up transformer A first switch interposed therebetween, a second switch interposed between a secondary winding of the second isolation transformer
- the first switch is turned on and the second switch is turned off until all the pantographs of the electric vehicle pass through the inlet air section, and all the pantographs of the electric vehicle are After passing through the side air section, the second switch is turned on with the first switch turned on, and then the first switch is turned off, so that all pantographs of the electric vehicle pass through the outlet side air section. Then, turn off the second switch and turn off the first switch. Characterized in that the N.
- the first switch and the second switch are thyristor switches.
- the present invention proposes a new AC power feeding system that supplies power without an instantaneous power failure in the middle section of the power distribution section where power supplies of substantially the same phase are matched.
- FIG. 1 is a schematic diagram showing an AC feeding system according to the present embodiment.
- the AC feeding system in the present embodiment includes first and second three-phase / single-phase conversion transformers 2a and 2b, first and second three-phase / single-phase conversion transformers 2a, Middle section 4a, 4b, 4c, 4d of the substation where the voltages of different phases of 2b are matched, and the distribution section where the voltages of almost the same phase of the first and second three-phase-single phase conversion transformers 2a, 2b are matched Middle sections 4e and 4f, and circuit breakers 3a to 3h provided between the first and second three-phase / single phase conversion transformers 2a and 2b and the middle sections 4a to 4f.
- FIG. 2 is a schematic diagram showing the first and second three-phase / single-phase conversion transformers 2a and 2b in the present embodiment.
- FIG. 2 shows a Scott transformer as an example of the first and second three-phase / single-phase conversion transformers 2a and 2b.
- there are an M seat and a T seat on the secondary side of the Scott transformer 2a and the phases of the M seat and the T seat are different by 90 °.
- a trolley line T and a feeder line F are drawn from the secondary side M seat and T seat, respectively.
- the T section trolley wire T and the M seat trolley wire T are abutted against each other in the middle sections 4a, 4b, 4c, and 4d of the substation.
- the middle section in which the power sources of the T-seat and M-seat with different phases are matched is not directly related to the present invention, and thus description thereof is omitted here.
- the middle sections 4e and 4f in the feeding section are in contact with voltages of approximately the same phase at the T-seat of the first three-phase / single-phase conversion transformer 2a and the T-seat of the second three-phase / single-phase conversion transformer 2b. ing.
- FIG. 3 is a schematic explanatory view showing the middle section of the power distribution section where the power supply of the T seat and the T seat are matched.
- FIG. 3 shows a power distribution section where the power supply of the T seat and the T seat are abutted, the power distribution section where the power supply of the M seat and the M seat is abutted is the same.
- the T-seat trolley wire T and the feeder wire F drawn from the secondary winding of the first three-phase / single-phase conversion transformer 2a The primary winding of the first insulation transformer AT1 is connected to the end.
- the primary winding of the second insulation transformer AT2 is connected to the ends of the T-seat trolley wire T and feeder wire F drawn from the secondary winding of the second three-phase / single-phase conversion transformer 2b.
- the first and second insulation transformers AT1 and AT2 are each provided with a secondary winding, and the first and second insulation transformers AT1 and AT2 step down the voltage from about 30000V to about 6000V, for example. .
- Reactors L1 and L2 are connected to one ends of secondary windings of the first and second insulation transformers AT1 and AT2, respectively.
- the other ends of the reactors L1 and L2 are respectively connected to one ends of first and second switches (in this embodiment, thyristor switches: hereinafter referred to as thyristor switches) S1 and S2, and the first and second thyristors.
- the other ends of the switches S1 and S2 are connected.
- the other ends of the secondary windings of the first and second insulating transformers AT1 and AT2 are connected to each other.
- One end of a primary winding of a step-up transformer TR (for example, an autotransformer) is connected to a common connection point of the first and second thyristor switches S1 and S2, and the other ends of the first and second isolation transformers AT1 and AT2 are connected to each other.
- the other end of the primary winding of the step-up transformer TR is connected to the common connection point.
- One end of the secondary winding of the step-up transformer TR is connected to the trolley line T, and the other end of the secondary winding of the step-up transformer TR is connected to the rail line R.
- the voltage of about 6000 V is boosted to about 30000 V by the step-up transformer TR.
- First and second air sections D1 and D2 are provided at both ends of the middle section (generally about 1000 m) of the trolley wire T.
- the left T seat and the right T seat in FIG. 3 are basically in phase with each other, but a voltage difference (about 2000V to 3000V) is generated depending on the status of the electric vehicle 1.
- the first thyristor switch S1 is turned on and the second thyristor switch S2 is turned off.
- the second thyristor switch S2 When all the pantographs of the electric vehicle 1 pass through the first air section D1, the second thyristor switch S2 is turned on while the first thyristor switch S1 is kept on. Thereafter, the first thyristor switch S1 is turned off. That is, there is a time when both the first and second thyristor switches S1 and S2 are turned on.
- the time during which both the first and second thyristor switches S1 and S2 are ON is preferably as short as possible in consideration of the time during which a blackout current can flow while avoiding an instantaneous power failure.
- the time from when the second thyristor switch S2 is turned on to when the first thyristor switch S1 is turned off (that is, the time when both the thyristor switches S1 and S2 are turned on) is several ms to several tens of times. ms.
- the second thyristor switch S2 is turned off, the first thyristor switch S1 is turned on, and the process waits until the next electric vehicle 1 enters the middle section.
- the first and second thyristor switches S1 and S2 are instantaneously turned on in a state where the electric vehicle 1 is completely in the middle section. It becomes possible to suppress an instantaneous power failure of the electric vehicle 1 when passing through the middle section. Further, by suppressing the instantaneous power failure of the electric vehicle 1 when passing through the middle section, the instantaneous power failure countermeasure system when passing through the middle section of the vehicle becomes unnecessary.
- the pantograph of the electric vehicle 1 can pass through the middle section without any phase difference and voltage difference. Therefore, the acceleration change when passing through the middle section is eliminated, and the ride comfort is improved. In addition, measures to improve riding comfort are not required.
- the first and second thyristor switches S1 and S2 are switched instantaneously. If the ON state is turned on, a large enveloping current may be generated.
- the first and second reactors L1 and L2 are provided between the first and second thyristor switches S1 and S2 and the secondary windings of the first and second insulation transformers AT1 and AT2, respectively. It is possible to suppress the entangling current generated by instantaneously turning on both the first and second thyristor switches S1 and S2.
- the primary winding side and the secondary winding side are insulated by the first and second insulation transformers AT1 and AT2, the first three-phase-single-phase conversion transformer 2a and the second three-phase-single It becomes possible to prevent the circulating current flowing between the phase conversion transformers 2b.
- the withstand voltage of the first and second thyristor switches S1 and S2 is lowered (the number of series of the first and second thyristor switches S1 and S2 is reduced). can do.
- Patent Document 1 it is possible to reduce the cost as compared with a phase conversion device using a tap switching transformer.
- FIG. 2 shows a Scott transformer
- three-phase to single-phase converters may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
This alternating-current feeding system is provided with: first and second insulating transformers AT1, AT2 for stepping down voltages input from three-phase/single-phase conversion transformers 2a, 2b; a step-up transformer TR for stepping up the stepped-down voltages; and first and second switches S1, S2 inserted between the first and second insulating transformers AT1, AT2 and the step-up transformer TR. The first switch S1 is kept on and the second switch S2 off until all pantographs of an electric vehicle 1 pass through an inlet-side air section D1, the second switch S2 is turned on while the first switch S1 is kept on after all the pantographs of the electric vehicle 1 have passed through the inlet-side air section D1, and the first switch S1 is subsequently turned off. After all the pantographs of the electric vehicle 1 have passed through an outlet-side air section D2, the second switch S2 is turned off and the first switch S1 is turned on. Consequently, electric power is supplied, without entailing an instantaneous power failure, at a sectioning post where power sources which have substantially the same phase but may produce a voltage difference are connected together.
Description
本発明は、交流き電システムに係り、特に、電気車がほぼ同位相の異電源区間を通過するための電源切替システムに関する。
The present invention relates to an AC power feeding system, and more particularly to a power source switching system for an electric vehicle to pass through different power source sections having substantially the same phase.
新幹線などの交流電気車は単相であるため、電力会社から交流電源を三相で受電して三相-単相変換器を利用して交流電気車にき電している。この三相-単相変換器としては、二次側に2つの単相電源(M座とT座)を得るスコットトランスや、二次側に2つの単相電源(A座とB座)を得るウッドブリッジトランス等がある。
Since AC electric vehicles such as the Shinkansen are single-phase, they receive AC power from an electric power company in three phases and feed the AC electric vehicle using a three-phase to single-phase converter. This three-phase to single-phase converter has a Scott transformer that obtains two single-phase power sources (M and T) on the secondary side, and two single-phase power sources (A and B) on the secondary side. There are wood bridge transformers etc. to get.
このため、車両は位相の異なる電源を跨いで走行することとなり、異相短絡を防止するために変電所直下には異電源突き合わせのセクションが設けられている。在来線ではこの異電源突き合わせ箇所にデッドセクションを設け、新幹線では、切替セクションとして中セクションを設けて電源を切り替える方式をとっている。
For this reason, the vehicle travels across power sources with different phases, and a section for matching different power sources is provided directly under the substation in order to prevent short-circuits between different phases. In conventional lines, a dead section is provided at the location where the different power sources are matched, and in the Shinkansen, a middle section is provided as a switching section to switch the power source.
また、き電区分所においては、ほぼ同位相の電源が突き合わされているが、車両の在線状況によって電圧差がある事や、少しの位相の違いがあるため常時区分しておく必要があり、変電所と同様切り替える方式を取っている。
In addition, at the feeding section, power supplies with almost the same phase are matched, but there is a voltage difference depending on the presence status of the vehicle, and there is a slight phase difference, so it is necessary to always classify, The switching method is the same as for substations.
なお、特許文献1には、中セクションにおいて瞬時停電を起こすことなく電源の位相切替を行うために、タップ切替変圧器を設けたものが記載されている。
In addition, Patent Document 1 describes one in which a tap switching transformer is provided in order to perform phase switching of a power source without causing an instantaneous power failure in the middle section.
しかしながら、特許文献1は位相が90°異なる変電所への適用を主体としているため、特許文献1の設備をほぼ同位相の電源が突き合わされているき電区分所に適用するには、主回路の切替と制御の切り替えが必要となり、設備的にもコスト的にも負担が大きくなる。
However, since Patent Document 1 is mainly applied to substations whose phases are different by 90 °, in order to apply the equipment of Patent Document 1 to a power distribution station where power supplies having substantially the same phase are matched, Switching and control switching are necessary, which increases the burden in terms of equipment and cost.
以上示したようなことから、ほぼ同位相で電圧差の生じる電源が突き合わされたき電区分所の中セクションにおいて、コストを低減すると共に、瞬時停電を伴うことなく電源を供給することが課題となる。
As described above, in the middle section of a power distribution section where power sources that generate a voltage difference with substantially the same phase are matched, it is a problem to reduce the cost and supply power without an instantaneous power failure. .
本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、第1三相-単相変換変圧器と第2三相-単相変換変圧器から出力されたほぼ同位相の電源の突き合わせ箇所に、両端に入口側エアセクションと出口側エアセクションを有するき電区分所の中セクションが設けられた交流き電システムであって、前記き電区分所の中セクションは、前記第1三相-単相変換変圧器から出力された電圧を降圧する第1絶縁トランスと、前記第1絶縁トランスと並列接続され、前記第2三相-単相変換変圧器から出力された電圧を降圧する第2絶縁トランスと、前記第1絶縁トランスと前記第2絶縁トランスで降圧された電圧を昇圧して中セクションに出力する昇圧変圧器と、前記第1絶縁トランスの二次巻線と前記昇圧変圧器の一次巻線との間に介挿された第1開閉器と、前記第2絶縁トランスの二次巻線と前記昇圧変圧器の一次巻線との間に介挿された第2開閉器と、前記第1絶縁トランスの二次巻線と前記第1開閉器との間に介挿された第1リアクトルと、前記第2絶縁トランスの二次巻線と前記第2開閉器との間に介挿された第2リアクトルと、を備え、電気車の全てのパンタグラフが前記入口側エアセクションを通過するまでは、前記第1開閉器をON,前記第2開閉器をOFFとし、電気車の全てのパンタグラフが前記入口側エアセクションに通過後、前記第1開閉器をONとしたまま前記第2開閉器をONとし、その後、前記第1開閉器をOFFとし、電気車の全てのパンタグラフが前記出口側エアセクション通過後、前記第2開閉器をOFFし、前記第1開閉器をONとすることを特徴とする。
The present invention has been devised in view of the above-described conventional problems, and one aspect thereof is substantially the same as that output from the first three-phase / single-phase conversion transformer and the second three-phase / single-phase conversion transformer. An AC feeding system in which a middle section of a feeding section having an inlet air section and an outlet air section at both ends is provided at a butt of a phase power supply, wherein the middle section of the feeding section is A first isolation transformer that steps down the voltage output from the first three-phase / single-phase conversion transformer, and connected in parallel with the first isolation transformer, and output from the second three-phase / single-phase conversion transformer A second insulation transformer that steps down the voltage; a step-up transformer that steps up the voltage stepped down by the first insulation transformer and the second insulation transformer and outputs the boosted voltage to a middle section; and the secondary winding of the first insulation transformer And the primary winding of the step-up transformer A first switch interposed therebetween, a second switch interposed between a secondary winding of the second isolation transformer and a primary winding of the step-up transformer, and the first isolation transformer And a second reactor interposed between the secondary winding of the second insulating transformer and the second switch. A reactor, the first switch is turned on and the second switch is turned off until all the pantographs of the electric vehicle pass through the inlet air section, and all the pantographs of the electric vehicle are After passing through the side air section, the second switch is turned on with the first switch turned on, and then the first switch is turned off, so that all pantographs of the electric vehicle pass through the outlet side air section. Then, turn off the second switch and turn off the first switch. Characterized in that the N.
また、その一態様として、前記第1開閉器,第2開閉器はサイリスタスイッチであることを特徴とする。
Further, as one aspect thereof, the first switch and the second switch are thyristor switches.
本発明によれば、ほぼ同位相で電圧差の生じるき電区分所の中セクションにおいて、コストを低減すると共に、瞬時停電を伴うことなく電源を供給することが可能となる。
According to the present invention, it is possible to reduce the cost and supply power without causing an instantaneous power failure in the middle section of the feeder section where the voltage difference occurs in substantially the same phase.
本願発明は、ほぼ同位相の電源が突き合わされたき電区分所の中セクションにおいて、瞬時停電を伴うことなく電源を供給する新たな交流き電システムを提案するものである。
The present invention proposes a new AC power feeding system that supplies power without an instantaneous power failure in the middle section of the power distribution section where power supplies of substantially the same phase are matched.
以下、本発明に係る交流き電システムの実施形態を図1~3に基づいて詳述する。
Hereinafter, an embodiment of the AC feeding system according to the present invention will be described in detail with reference to FIGS.
[実施形態]
図1は、本実施形態における交流き電システムを示す概略図である。図1に示すように、本実施形態における交流き電システムは、第1,第2三相-単相変換変圧器2a,2bと、第1,第2三相-単相変換変圧器2a,2bの異相の電圧が突き合わされた変電所の中セクション4a,4b,4c,4dと第1,第2三相-単相変換変圧器2a,2bのほぼ同相の電圧が突き合わされたき電区分所の中セクション4e,4fと、第1,第2三相-単相変換変圧器2a,2bと各中セクション4a~4fとの間に設けられた遮断機3a~3hを有する。 [Embodiment]
FIG. 1 is a schematic diagram showing an AC feeding system according to the present embodiment. As shown in FIG. 1, the AC feeding system in the present embodiment includes first and second three-phase / single- phase conversion transformers 2a and 2b, first and second three-phase / single-phase conversion transformers 2a, Middle section 4a, 4b, 4c, 4d of the substation where the voltages of different phases of 2b are matched, and the distribution section where the voltages of almost the same phase of the first and second three-phase-single phase conversion transformers 2a, 2b are matched Middle sections 4e and 4f, and circuit breakers 3a to 3h provided between the first and second three-phase / single phase conversion transformers 2a and 2b and the middle sections 4a to 4f.
図1は、本実施形態における交流き電システムを示す概略図である。図1に示すように、本実施形態における交流き電システムは、第1,第2三相-単相変換変圧器2a,2bと、第1,第2三相-単相変換変圧器2a,2bの異相の電圧が突き合わされた変電所の中セクション4a,4b,4c,4dと第1,第2三相-単相変換変圧器2a,2bのほぼ同相の電圧が突き合わされたき電区分所の中セクション4e,4fと、第1,第2三相-単相変換変圧器2a,2bと各中セクション4a~4fとの間に設けられた遮断機3a~3hを有する。 [Embodiment]
FIG. 1 is a schematic diagram showing an AC feeding system according to the present embodiment. As shown in FIG. 1, the AC feeding system in the present embodiment includes first and second three-phase / single-
図2は、本実施形態における第1,第2三相-単相変換変圧器2a,2bを示す概略図である。図2では、第1,第2三相-単相変換変圧器2a,2bの一例としてスコット変圧器を示している。図2に示すように、スコット変圧器2aの二次側にはM座とT座があり、このM座とT座は位相が90°異なる。この二次側のM座,T座からはトロリ線T,フィーダ線Fがそれぞれ引き出されている。
FIG. 2 is a schematic diagram showing the first and second three-phase / single- phase conversion transformers 2a and 2b in the present embodiment. FIG. 2 shows a Scott transformer as an example of the first and second three-phase / single- phase conversion transformers 2a and 2b. As shown in FIG. 2, there are an M seat and a T seat on the secondary side of the Scott transformer 2a, and the phases of the M seat and the T seat are different by 90 °. A trolley line T and a feeder line F are drawn from the secondary side M seat and T seat, respectively.
図1に示すように、変電所の中セクション4a,4b,4c,4dは、T座のトロリ線Tと、M座のトロリ線Tが突き合わされている。位相の異なるT座とM座の電源が突き合わされた中セクションは本願発明と直接関係ないため、ここでの説明は省略する。
As shown in FIG. 1, the T section trolley wire T and the M seat trolley wire T are abutted against each other in the middle sections 4a, 4b, 4c, and 4d of the substation. The middle section in which the power sources of the T-seat and M-seat with different phases are matched is not directly related to the present invention, and thus description thereof is omitted here.
き電区分所における中セクション4e,4fは、第1三相-単相変換変圧器2aのT座と第2三相-単相変換変圧器2bのT座のほぼ同位相の電圧が突き合わされている。
The middle sections 4e and 4f in the feeding section are in contact with voltages of approximately the same phase at the T-seat of the first three-phase / single-phase conversion transformer 2a and the T-seat of the second three-phase / single-phase conversion transformer 2b. ing.
図3は、T座とT座の電源が突き合わされたき電区分所の中セクションを示す概略説明図である。なお、図3ではT座とT座の電源が突き合わされたき電区分所を示しているが、M座とM座の電源が突き合わされたき電区分所も同様である。
FIG. 3 is a schematic explanatory view showing the middle section of the power distribution section where the power supply of the T seat and the T seat are matched. Although FIG. 3 shows a power distribution section where the power supply of the T seat and the T seat are abutted, the power distribution section where the power supply of the M seat and the M seat is abutted is the same.
図3に示すように、き電区分所の中セクション4e,4fにおいて、第1三相-単相変換変圧器2aの二次巻線から引き出されたT座のトロリ線T,フィーダ線Fの末端には、第1絶縁トランスAT1の1次巻線が接続される。また、第2三相-単相変換変圧器2bの二次巻線から引き出されたT座のトロリ線T,フィーダ線Fの末端には、第2絶縁トランスAT2の1次巻線が接続される。第1,第2絶縁トランスAT1,AT2には、それぞれ二次巻線が設けられ、この第1,第2絶縁トランスAT1,AT2により、例えば、30000V程度の電圧から6000V程度の電圧に降圧される。
As shown in FIG. 3, in the middle sections 4e and 4f of the feeding section, the T-seat trolley wire T and the feeder wire F drawn from the secondary winding of the first three-phase / single-phase conversion transformer 2a The primary winding of the first insulation transformer AT1 is connected to the end. The primary winding of the second insulation transformer AT2 is connected to the ends of the T-seat trolley wire T and feeder wire F drawn from the secondary winding of the second three-phase / single-phase conversion transformer 2b. The The first and second insulation transformers AT1 and AT2 are each provided with a secondary winding, and the first and second insulation transformers AT1 and AT2 step down the voltage from about 30000V to about 6000V, for example. .
第1,第2絶縁トランスAT1,AT2の二次巻線の一端にはそれぞれリアクトルL1,L2を接続する。このリアクトルL1,L2の他端にはそれぞれ第1,第2開閉器(本実施形態では、サイリスタスイッチ:以下、サイリスタスイッチと称する)S1,S2の一端を接続し、この第1,第2サイリスタスイッチS1,S2の他端同士を接続する。また、第1,第2絶縁トランスAT1,AT2の二次巻線の他端同士を接続する。
Reactors L1 and L2 are connected to one ends of secondary windings of the first and second insulation transformers AT1 and AT2, respectively. The other ends of the reactors L1 and L2 are respectively connected to one ends of first and second switches (in this embodiment, thyristor switches: hereinafter referred to as thyristor switches) S1 and S2, and the first and second thyristors. The other ends of the switches S1 and S2 are connected. The other ends of the secondary windings of the first and second insulating transformers AT1 and AT2 are connected to each other.
第1,第2サイリスタスイッチS1,S2の共通接続点には昇圧変圧器TR(例えばオートトランス)の一次巻線の一端が接続され、第1,第2絶縁トランスAT1,AT2の他端同士の共通接続点には昇圧変圧器TRの一次巻線の他端が接続される。
One end of a primary winding of a step-up transformer TR (for example, an autotransformer) is connected to a common connection point of the first and second thyristor switches S1 and S2, and the other ends of the first and second isolation transformers AT1 and AT2 are connected to each other. The other end of the primary winding of the step-up transformer TR is connected to the common connection point.
昇圧変圧器TRの二次巻線における一端はトロリ線Tに接続され、昇圧変圧器TRの二次巻線における他端はレール線Rに接続される。この昇圧変圧器TRにより、例えば、6000V程度の電圧が30000V程度に昇圧される。トロリ線Tにおける中セクション(一般的には1000m程度)の両端には第1,第2エアセクションD1,D2(一般的には50m程度)が設けられる。
One end of the secondary winding of the step-up transformer TR is connected to the trolley line T, and the other end of the secondary winding of the step-up transformer TR is connected to the rail line R. For example, the voltage of about 6000 V is boosted to about 30000 V by the step-up transformer TR. First and second air sections D1 and D2 (generally about 50 m) are provided at both ends of the middle section (generally about 1000 m) of the trolley wire T.
図3の左側のT座と右側のT座は基本的にはほぼ位相が合っているが、電気車1の在線状況によっては電圧差(2000V~3000V程度)が生じている。
3 The left T seat and the right T seat in FIG. 3 are basically in phase with each other, but a voltage difference (about 2000V to 3000V) is generated depending on the status of the electric vehicle 1.
そのため、従来の交流き電システムの場合、この間を電気車1が力行のまま通過すると、パンタグラフで両座間の短絡が起こることによりアークが発生する。この状況が繰り返すことは、交流き電システムとして許容できないため、き電区分所の中セクションをパンタグラフが通過する時には同位相,同電圧とすることが必要となる。
Therefore, in the case of the conventional AC power feeding system, when the electric vehicle 1 passes through the power train while it is running, an arc is generated due to a short circuit between both seats in the pantograph. Repeating this situation is unacceptable for an AC feeder system, so it is necessary to have the same phase and voltage when the pantograph passes through the middle section of the feeder section.
本実施形態の交流き電システムにおける第1,第2サイリスタスイッチS1,S2の動作を説明する。なお、本実施形態では、電気車1が中セクションに進入,通過したことを検出する手段(例えば、軌道回路等)があるものとする。
The operation of the first and second thyristor switches S1 and S2 in the AC feeding system of this embodiment will be described. In the present embodiment, it is assumed that there is means (for example, a track circuit) that detects that the electric vehicle 1 has entered and passed through the middle section.
まず、電気車1が中セクションに進入するまでは、第1サイリスタスイッチS1をON、第2サイリスタスイッチS2をOFFとする。
First, until the electric vehicle 1 enters the middle section, the first thyristor switch S1 is turned on and the second thyristor switch S2 is turned off.
電気車1の全てのパンタグラフが第1エアセクションD1を通過したら、第1サイリスタスイッチS1をONとしたまま、第2サイリスタスイッチS2をONとする。その後、第1サイリスタスイッチS1をOFFにする。すなわち、第1,第2サイリスタスイッチS1とS2の両方がONとなる時間がある。ここで、第1,第2サイリスタスイッチS1,S2の両方がONとなっている時間は、瞬時停電を回避でき、かつ、矯落電流が流れる時間を考慮してできるだけ短い時間が好ましい。本実施形態では、第2サイリスタスイッチS2をONにしてから第1サイリスタスイッチS1をOFFにするまでの時間(すなわち、サイリスタスイッチS1とS2が両方ONとなっている時間)を数ms~数十msとしている。
When all the pantographs of the electric vehicle 1 pass through the first air section D1, the second thyristor switch S2 is turned on while the first thyristor switch S1 is kept on. Thereafter, the first thyristor switch S1 is turned off. That is, there is a time when both the first and second thyristor switches S1 and S2 are turned on. Here, the time during which both the first and second thyristor switches S1 and S2 are ON is preferably as short as possible in consideration of the time during which a blackout current can flow while avoiding an instantaneous power failure. In this embodiment, the time from when the second thyristor switch S2 is turned on to when the first thyristor switch S1 is turned off (that is, the time when both the thyristor switches S1 and S2 are turned on) is several ms to several tens of times. ms.
その後、電気車1が第2エアセクションD2を通過後、第2サイリスタスイッチS2をOFF、第1サイリスタスイッチS1をONし、次の電気車1が中セクションに進入するまで待機する。
After that, after the electric vehicle 1 passes through the second air section D2, the second thyristor switch S2 is turned off, the first thyristor switch S1 is turned on, and the process waits until the next electric vehicle 1 enters the middle section.
以上示したように、本実施形態における交流き電システムによれば、中セクションに電気車1が入りきった状態において第1,第2サイリスタスイッチS1,S2を瞬時的に両方ONにすることにより、中セクション通過時における電気車1の瞬時停電を抑制することが可能となる。また、中セクション通過時における電気車1の瞬時停電を抑制することにより、車両の中セクション通過時の瞬時停電対策システムが不要となる。
As described above, according to the AC power feeding system in the present embodiment, the first and second thyristor switches S1 and S2 are instantaneously turned on in a state where the electric vehicle 1 is completely in the middle section. It becomes possible to suppress an instantaneous power failure of the electric vehicle 1 when passing through the middle section. Further, by suppressing the instantaneous power failure of the electric vehicle 1 when passing through the middle section, the instantaneous power failure countermeasure system when passing through the middle section of the vehicle becomes unnecessary.
また、第1,第2サイリスタスイッチS1,S2を瞬時的に両方ON状態にすることにより、電気車1のパンタグラフは位相差,電圧差のない状態での中セクション通過が可能となる。そのため、中セクション通過時の加速度変化が無くなり乗り心地が向上する。また、乗り心地の向上対策が不要となる。
In addition, when both the first and second thyristor switches S1 and S2 are instantaneously turned on, the pantograph of the electric vehicle 1 can pass through the middle section without any phase difference and voltage difference. Therefore, the acceleration change when passing through the middle section is eliminated, and the ride comfort is improved. In addition, measures to improve riding comfort are not required.
また、第1絶縁トランスAT1に入力される電圧と第2絶縁トランスAT2に入力される電圧に位相差がある場合や電圧差が大きい場合には、第1,第2サイリスタスイッチS1,S2を瞬時的にON状態にすることにより、大きな矯絡電流が生じる恐れがある。本実施形態では、第1,第2サイリスタスイッチS1,S2と第1,第2絶縁トランスAT1,AT2の二次巻線との間にそれぞれ第1,第2リアクトルL1,L2を設けているため、第1,第2サイリスタスイッチS1,S2を瞬時的に両方ON状態にすることにより生じる矯絡電流を抑制することが可能となる。
When there is a phase difference between the voltage input to the first isolation transformer AT1 and the voltage input to the second isolation transformer AT2, or when the voltage difference is large, the first and second thyristor switches S1 and S2 are switched instantaneously. If the ON state is turned on, a large enveloping current may be generated. In the present embodiment, the first and second reactors L1 and L2 are provided between the first and second thyristor switches S1 and S2 and the secondary windings of the first and second insulation transformers AT1 and AT2, respectively. It is possible to suppress the entangling current generated by instantaneously turning on both the first and second thyristor switches S1 and S2.
また、第1,第2絶縁トランスAT1,AT2により、一次巻線側と二次巻線側とを絶縁しているため、第1三相-単相変換変圧器2aと第2三相-単相変換変圧器2b間に流れる循環電流を防止することが可能となる。
Further, since the primary winding side and the secondary winding side are insulated by the first and second insulation transformers AT1 and AT2, the first three-phase-single-phase conversion transformer 2a and the second three-phase-single It becomes possible to prevent the circulating current flowing between the phase conversion transformers 2b.
さらに、第1,第2絶縁トランスAT1,AT2により降圧しているため、第1,第2サイリスタスイッチS1,S2の耐圧を低く(第1,第2サイリスタスイッチS1,S2の直列数を低減)することができる。
Further, since the voltage is stepped down by the first and second isolation transformers AT1 and AT2, the withstand voltage of the first and second thyristor switches S1 and S2 is lowered (the number of series of the first and second thyristor switches S1 and S2 is reduced). can do.
また、第1,第2リアクトルL1,L2により第1,第2サイリスタスイッチS1,S2の開閉による過大な突入電流が抑制されるため、車載機器を始め突入電流対策機器が不要となる。また、突入電流が抑制されるため、き電保護システムの簡素化が可能となる。
Moreover, since the excessive inrush current due to the opening and closing of the first and second thyristor switches S1 and S2 is suppressed by the first and second reactors L1 and L2, no inrush current countermeasure devices such as in-vehicle devices are required. Further, since the inrush current is suppressed, the feeding protection system can be simplified.
第1,第2開閉器S1,S2にVCB等を用いた切替遮断機を適用することも可能であるが、列車の本数が多い東海道新幹線等では1.5年から2年での第1,第2開閉器S1,S2の交換が必要となり、コストアップの要因となる。列車本数の多い路線においては本実施形態のように、第1,第2開閉器S1,S2としてサイリスタスイッチS1,S2を適用することで、交換頻度が減少し、コストダウンを図ることが可能となる。
It is possible to apply a switching breaker using VCB or the like to the first and second switches S1 and S2, but in the Tokaido Shinkansen etc. where the number of trains is large, It is necessary to replace the second switches S1 and S2, which causes an increase in cost. On routes with a large number of trains, the replacement frequency is reduced and the cost can be reduced by applying thyristor switches S1 and S2 as the first and second switches S1 and S2 as in this embodiment. Become.
また、切替遮断器方式における極間単絡事故が無くなり、システムの信頼性が向上する。
Also, there is no inter-pole single fault in the switching circuit breaker system, improving the system reliability.
また、特許文献1のように、タップ切替変圧器を用いた位相変換装置と比較して、コストを低減することが可能となる。
Further, as in Patent Document 1, it is possible to reduce the cost as compared with a phase conversion device using a tap switching transformer.
以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。
Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.
例えば、図2では、スコット変圧器を示したが、その他の三相-単相変換器であってもよい。
For example, although FIG. 2 shows a Scott transformer, other three-phase to single-phase converters may be used.
Claims (2)
- 第1三相-単相変換変圧器と第2三相-単相変換変圧器から出力されたほぼ同位相の電源の突き合わせ箇所に、両端に入口側エアセクションと出口側エアセクションを有するき電区分所の中セクションが設けられた交流き電システムであって、
前記き電区分所の中セクションは、
前記第1三相-単相変換変圧器から出力された電圧を降圧する第1絶縁トランスと、
前記第1絶縁トランスと並列接続され、前記第2三相-単相変換変圧器から出力された電圧を降圧する第2絶縁トランスと、
前記第1絶縁トランスと前記第2絶縁トランスで降圧された電圧を昇圧して中セクションに出力する昇圧変圧器と、
前記第1絶縁トランスの二次巻線と前記昇圧変圧器の一次巻線との間に介挿された第1開閉器と、
前記第2絶縁トランスの二次巻線と前記昇圧変圧器の一次巻線との間に介挿された第2開閉器と、
前記第1絶縁トランスの二次巻線と前記第1開閉器との間に介挿された第1リアクトルと、
前記第2絶縁トランスの二次巻線と前記第2開閉器との間に介挿された第2リアクトルと、
を備え、
電気車の全てのパンタグラフが前記入口側エアセクションを通過するまでは、前記第1開閉器をON,前記第2開閉器をOFFとし、
電気車の全てのパンタグラフが前記入口側エアセクションに通過後、前記第1開閉器をONとしたまま前記第2開閉器をONとし、その後、前記第1開閉器をOFFとし、
電気車の全てのパンタグラフが前記出口側エアセクション通過後、前記第2開閉器をOFFし、前記第1開閉器をONとする交流き電システム。 Feeder having an inlet side air section and an outlet side air section at both ends at the abutting point of the almost same phase power source output from the first three phase-single phase conversion transformer and the second three phase-single phase conversion transformer An AC feeder system with a middle section of the division,
The middle section of the feeder section is
A first isolation transformer for stepping down a voltage output from the first three-phase to single-phase conversion transformer;
A second insulation transformer connected in parallel with the first insulation transformer and stepping down the voltage output from the second three-phase to single-phase conversion transformer;
A step-up transformer that steps up the voltage stepped down by the first insulation transformer and the second insulation transformer and outputs the boosted voltage to a middle section;
A first switch interposed between a secondary winding of the first insulation transformer and a primary winding of the step-up transformer;
A second switch interposed between the secondary winding of the second insulation transformer and the primary winding of the step-up transformer;
A first reactor interposed between the secondary winding of the first insulation transformer and the first switch;
A second reactor interposed between the secondary winding of the second insulation transformer and the second switch;
With
Until all the pantographs of the electric vehicle pass through the inlet side air section, the first switch is turned on, the second switch is turned off,
After all pantographs of the electric vehicle have passed through the inlet side air section, the second switch is turned on while the first switch is turned on, and then the first switch is turned off.
An AC feeding system that turns off the second switch and turns on the first switch after all the pantographs of the electric vehicle have passed through the outlet air section. - 前記第1開閉器,第2開閉器はサイリスタスイッチである請求項1記載の交流き電システム。 2. The AC feeding system according to claim 1, wherein the first switch and the second switch are thyristor switches.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-245013 | 2014-12-03 | ||
JP2014245013A JP6011602B2 (en) | 2014-12-03 | 2014-12-03 | AC feeder system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016088710A1 true WO2016088710A1 (en) | 2016-06-09 |
Family
ID=56091652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/083569 WO2016088710A1 (en) | 2014-12-03 | 2015-11-30 | Alternating-current feeding system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6011602B2 (en) |
WO (1) | WO2016088710A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106427673A (en) * | 2016-10-08 | 2017-02-22 | 中国科学院电工研究所 | Power-off-free neutral-section passing power supply device |
CN108237923A (en) * | 2016-12-27 | 2018-07-03 | 中车株洲电力机车研究所有限公司 | A kind of flexible power supply device and alternating current traction electric power system |
US10505234B2 (en) | 2011-03-14 | 2019-12-10 | Battelle Memorial Institute | Battery cell and n situ battery electrode analysis method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110091767B (en) * | 2018-01-31 | 2022-08-02 | 株洲中车时代电气股份有限公司 | Ground passing neutral section control method, control device and passing neutral section device |
CN110116658B (en) * | 2018-02-05 | 2021-09-21 | 中车株洲电力机车研究所有限公司 | Method and device for matching electronic switch ground passing phase separation vehicle network of district station |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000203316A (en) * | 1999-01-11 | 2000-07-25 | Central Japan Railway Co | Feeder switching control device |
JP2003205772A (en) * | 2001-11-09 | 2003-07-22 | Meidensha Corp | Electric power source facility for alternating-current electric-railway |
JP2007001560A (en) * | 2005-05-25 | 2007-01-11 | Meidensha Corp | Different power source switching equipment for alternating current electric railway |
-
2014
- 2014-12-03 JP JP2014245013A patent/JP6011602B2/en not_active Expired - Fee Related
-
2015
- 2015-11-30 WO PCT/JP2015/083569 patent/WO2016088710A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000203316A (en) * | 1999-01-11 | 2000-07-25 | Central Japan Railway Co | Feeder switching control device |
JP2003205772A (en) * | 2001-11-09 | 2003-07-22 | Meidensha Corp | Electric power source facility for alternating-current electric-railway |
JP2007001560A (en) * | 2005-05-25 | 2007-01-11 | Meidensha Corp | Different power source switching equipment for alternating current electric railway |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10505234B2 (en) | 2011-03-14 | 2019-12-10 | Battelle Memorial Institute | Battery cell and n situ battery electrode analysis method |
CN106427673A (en) * | 2016-10-08 | 2017-02-22 | 中国科学院电工研究所 | Power-off-free neutral-section passing power supply device |
CN106427673B (en) * | 2016-10-08 | 2018-09-25 | 中国科学院电工研究所 | Without powered off split-phase power device |
CN108237923A (en) * | 2016-12-27 | 2018-07-03 | 中车株洲电力机车研究所有限公司 | A kind of flexible power supply device and alternating current traction electric power system |
CN108237923B (en) * | 2016-12-27 | 2021-03-02 | 中车株洲电力机车研究所有限公司 | Flexible power supply device and alternating current traction power supply system |
Also Published As
Publication number | Publication date |
---|---|
JP6011602B2 (en) | 2016-10-19 |
JP2016107707A (en) | 2016-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016088710A1 (en) | Alternating-current feeding system | |
JP4396606B2 (en) | Alternating power supply switching facility for AC electric railway | |
JP2017522229A (en) | Power supply system by cable in electric railway | |
KR101411025B1 (en) | Alternating current electronic railroad power system | |
JP6003949B2 (en) | AC electric vehicle power supply equipment | |
CN105026090A (en) | Method and apparatus for soft switching welding type power | |
RU2596046C1 (en) | Alternate current traction substation for supply of traction loads 25 kv | |
JP2004314702A (en) | Ac feeding system | |
KR101523361B1 (en) | Feeding apparatus | |
CN105164769A (en) | Transformer provided with means for adjusting the in-load transformation ratio | |
US20090195076A1 (en) | System Comprising at Least Two Guideway-Related Guideway Components of a Track Guideway and a Transformer Station | |
KR101101498B1 (en) | The electric railroad autotransformer which has the voltage tap in neutral point. | |
EP3480049B1 (en) | Alternating-current electric vehicle | |
EP3396687A1 (en) | Energizing method of a transformer, and transformer connection assembly | |
RU2659671C2 (en) | ELECTRIC POWER SUPPLY SYSTEM OF 25 kV AC ELECTRIFIED RAILWAYS | |
JP6548796B1 (en) | POWER CONVERSION SYSTEM, TRAFFIC SYSTEM, AND POWER CONVERSION METHOD | |
JP2890675B2 (en) | DC power supply method | |
RU2531389C1 (en) | Line voltage control unit | |
US2310145A (en) | Single or polyphase switch arrangement | |
US1913130A (en) | Electric transformer | |
RU2739053C1 (en) | Connection method of power transformer and maintenance of substation | |
RU2017134264A (en) | ELECTRIC MULTI-SYSTEM FOR RAILWAY VEHICLE | |
KR101410772B1 (en) | Control circuit for high voltage of rail car | |
Basu et al. | Reduction of magnetizing inrush current in traction transformer | |
CN101071989B (en) | Method for operating a traction converter circuit for coupling to an electric DC voltage network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15866354 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15866354 Country of ref document: EP Kind code of ref document: A1 |