JP6011602B2 - AC feeder system - Google Patents

AC feeder system Download PDF

Info

Publication number
JP6011602B2
JP6011602B2 JP2014245013A JP2014245013A JP6011602B2 JP 6011602 B2 JP6011602 B2 JP 6011602B2 JP 2014245013 A JP2014245013 A JP 2014245013A JP 2014245013 A JP2014245013 A JP 2014245013A JP 6011602 B2 JP6011602 B2 JP 6011602B2
Authority
JP
Japan
Prior art keywords
transformer
switch
phase
turned
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014245013A
Other languages
Japanese (ja)
Other versions
JP2016107707A (en
Inventor
秀夫 渡邉
秀夫 渡邉
吉晴 小川
吉晴 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2014245013A priority Critical patent/JP6011602B2/en
Priority to PCT/JP2015/083569 priority patent/WO2016088710A1/en
Publication of JP2016107707A publication Critical patent/JP2016107707A/en
Application granted granted Critical
Publication of JP6011602B2 publication Critical patent/JP6011602B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/04Arrangements for cutting in and out of individual track sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、交流き電システムに係り、特に、電気車がほぼ同位相の異電源区間を通過するための電源切替システムに関する。   The present invention relates to an AC power feeding system, and more particularly to a power source switching system for an electric vehicle to pass through different power source sections having substantially the same phase.

新幹線などの交流電気車は単相であるため、電力会社から交流電源を三相で受電して三相−単相変換器を利用して交流電気車にき電している。この三相−単相変換器としては、二次側に2つの単相電源(M座とT座)を得るスコットトランスや、二次側に2つの単相電源(A座とB座)を得るウッドブリッジトランス等がある。   Since AC electric vehicles such as the Shinkansen are single-phase, they receive AC power from an electric power company in three phases and feed the AC electric vehicle using a three-phase to single-phase converter. As this three-phase to single-phase converter, a Scott transformer that obtains two single-phase power supplies (M and T) on the secondary side, and two single-phase power supplies (A and B) on the secondary side There are wood bridge transformers etc. to get.

このため、車両は位相の異なる電源を跨いで走行することとなり、異相短絡を防止するために変電所直下には異電源突き合わせのセクションが設けられている。在来線ではこの異電源突き合わせ箇所にデッドセクションを設け、新幹線では、切替セクションとして中セクションを設けて電源を切り替える方式をとっている。   For this reason, the vehicle travels across power sources having different phases, and a section for matching different power sources is provided immediately below the substation in order to prevent a short circuit in the different phases. In conventional lines, a dead section is provided at the location where the different power sources are matched, and in the Shinkansen, a middle section is provided as a switching section to switch the power source.

また、き電区分所においては、ほぼ同位相の電源が突き合わされているが、車両の在線状況によって電圧差がある事や、少しの位相の違いがあるため常時区分しておく必要があり、変電所と同様切り替える方式を取っている。   In addition, at the feeding section, power supplies with almost the same phase are matched, but there is a voltage difference depending on the presence status of the vehicle, and there is a slight phase difference, so it is necessary to always classify, The switching method is the same as for substations.

なお、特許文献1には、中セクションにおいて瞬時停電を起こすことなく電源の位相切替を行うために、タップ切替変圧器を設けたものが記載されている。   Japanese Patent Application Laid-Open No. H10-228707 describes a tap switching transformer for switching the phase of a power source without causing an instantaneous power failure in the middle section.

特願2014−131079号Japanese Patent Application No. 2014-131079

しかしながら、特許文献1は位相が90°異なる変電所への適用を主体としているため、特許文献1の設備をほぼ同位相の電源が突き合わされているき電区分所に適用するには、主回路の切替と制御の切り替えが必要となり、設備的にもコスト的にも負担が大きくなる。   However, since Patent Document 1 is mainly applied to substations whose phases are different by 90 °, in order to apply the equipment of Patent Document 1 to a power distribution station where power supplies having substantially the same phase are matched, Switching and control switching are necessary, which increases the burden in terms of equipment and cost.

以上示したようなことから、ほぼ同位相で電圧差の生じる電源が突き合わされたき電区分所の中セクションにおいて、コストを低減すると共に、瞬時停電を伴うことなく電源を供給することが課題となる。   As described above, in the middle section of a power distribution section where power sources that generate a voltage difference with substantially the same phase are matched, it is a problem to reduce the cost and supply power without an instantaneous power failure. .

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、第1三相−単相変換変圧器と第2三相−単相変換変圧器から出力されたほぼ同位相の電源の突き合わせ箇所に、両端に入口側エアセクションと出口側エアセクションを有するき電区分所の中セクションが設けられた交流き電システムであって、前記き電区分所の中セクションは、前記第1三相−単相変換変圧器から出力された電圧を降圧する第1絶縁トランスと、前記第1絶縁トランスと並列接続され、前記第2三相−単相変換変圧器から出力された電圧を降圧する第2絶縁トランスと、前記第1絶縁トランスと前記第2絶縁トランスで降圧された電圧を昇圧して中セクションに出力する昇圧変圧器と、前記第1絶縁トランスの二次巻線と前記昇圧変圧器の一次巻線との間に介挿された第1開閉器と、前記第2絶縁トランスの二次巻線と前記昇圧変圧器の一次巻線との間に介挿された第2開閉器と、前記第1絶縁トランスの二次巻線と前記第1開閉器との間に介挿された第1リアクトルと、前記第2絶縁トランスの二次巻線と前記第2開閉器との間に介挿された第2リアクトルと、を備え、電気車の全てのパンタグラフが前記入口側エアセクションを通過するまでは、前記第1開閉器をON,前記第2開閉器をOFFとし、電気車の全てのパンタグラフが前記入口側エアセクションに通過後、前記第1開閉器をONとしたまま前記第2開閉器をONとし、その後、前記第1開閉器をOFFとし、電気車の全てのパンタグラフが前記出口側エアセクション通過後、前記第2開閉器をOFFし、前記第1開閉器をONとすることを特徴とする。   The present invention has been devised in view of the above-described conventional problems, and one aspect thereof is substantially the same as that output from the first three-phase to single-phase conversion transformer and the second three-phase to single-phase conversion transformer. An AC feeding system in which a middle section of a feeding section having an inlet air section and an outlet air section at both ends is provided at a butt of a phase power supply, wherein the middle section of the feeding section is A first isolation transformer that steps down the voltage output from the first three-phase to single-phase conversion transformer, and connected in parallel with the first isolation transformer, and output from the second three-phase to single-phase conversion transformer A second insulation transformer that steps down the voltage; a step-up transformer that steps up the voltage stepped down by the first insulation transformer and the second insulation transformer and outputs the boosted voltage to a middle section; and the secondary winding of the first insulation transformer And the primary winding of the step-up transformer A first switch interposed between the first insulation transformer, a second switch interposed between the secondary winding of the second insulation transformer and the primary winding of the step-up transformer, and the first insulation transformer A first reactor inserted between a secondary winding and the first switch, and a second reactor inserted between a secondary winding of the second insulation transformer and the second switch Until all the pantographs of the electric vehicle pass through the inlet side air section, the first switch is turned on and the second switch is turned off, and all the pantographs of the electric vehicle are turned on the inlet side After passing through the air section, the second switch is turned on with the first switch turned on, and then the first switch is turned off. After all the pantographs of the electric vehicle have passed through the outlet side air section , Turn off the second switch and turn off the first switch. Characterized by a.

また、その一態様として、前記第1開閉器,第2開閉器はサイリスタスイッチであることを特徴とする。   As one aspect thereof, the first switch and the second switch are thyristor switches.

本発明によれば、ほぼ同位相で電圧差の生じるき電区分所の中セクションにおいて、コストを低減すると共に、瞬時停電を伴うことなく電源を供給することが可能となる。   According to the present invention, it is possible to reduce the cost and supply power without causing an instantaneous power failure in the middle section of the feeder section where a voltage difference occurs in substantially the same phase.

実施形態における交流き電システムを示す概略図。Schematic which shows the alternating current feeding system in embodiment. 実施形態における三相−単相変換変圧器を示す概略図。Schematic which shows the three phase-single phase conversion transformer in embodiment. 実施形態におけるき電区分所の中セクションを示す概略図。Schematic which shows the middle section of the feeding section in embodiment.

本願発明は、ほぼ同位相の電源が突き合わされたき電区分所の中セクションにおいて、瞬時停電を伴うことなく電源を供給する新たな交流き電システムを提案するものである。   The present invention proposes a new AC feeding system that supplies power without an instantaneous power failure in the middle section of the feeding section where the power supplies of substantially the same phase are matched.

以下、本発明に係る交流き電システムの実施形態を図1〜3に基づいて詳述する。   Hereinafter, an embodiment of an AC feeding system according to the present invention will be described in detail with reference to FIGS.

[実施形態]
図1は、本実施形態における交流き電システムを示す概略図である。図1に示すように、本実施形態における交流き電システムは、第1,第2三相−単相変換変圧器2a,2bと、第1,第2三相−単相変換変圧器2a,2bの異相の電圧が突き合わされた変電所の中セクション4a,4b,4c,4dと第1,第2三相−単相変換変圧器2a,2bのほぼ同相の電圧が突き合わされたき電区分所の中セクション4e,4fと、第1,第2三相−単相変換変圧器2a,2bと各中セクション4a〜4fとの間に設けられた遮断機3a〜3hを有する。
[Embodiment]
FIG. 1 is a schematic diagram showing an AC feeding system according to the present embodiment. As shown in FIG. 1, the AC feeding system in the present embodiment includes first and second three-phase / single-phase conversion transformers 2a and 2b, and first and second three-phase / single-phase conversion transformers 2a, Middle section 4a, 4b, 4c, 4d of the substation where the voltages of different phases of 2b are matched, and the distribution section where the voltages of almost the same phase of the first and second three-phase / single-phase conversion transformers 2a, 2b are matched Middle sections 4e and 4f, and first and second three-phase / single-phase conversion transformers 2a and 2b, and circuit breakers 3a to 3h provided between the middle sections 4a to 4f.

図2は、本実施形態における第1,第2三相−単相変換変圧器2a,2bを示す概略図である。図2では、第1,第2三相−単相変換変圧器2a,2bの一例としてスコット変圧器を示している。図2に示すように、スコット変圧器2aの二次側にはM座とT座があり、このM座とT座は位相が90°異なる。この二次側のM座,T座からはトロリ線T,フィーダ線Fがそれぞれ引き出されている。   FIG. 2 is a schematic diagram showing the first and second three-phase / single-phase conversion transformers 2a and 2b in the present embodiment. In FIG. 2, a Scott transformer is shown as an example of the first and second three-phase / single-phase conversion transformers 2a and 2b. As shown in FIG. 2, there are an M seat and a T seat on the secondary side of the Scott transformer 2a, and the phases of the M seat and the T seat are different by 90 °. A trolley line T and a feeder line F are drawn from the secondary side M seat and T seat, respectively.

図1に示すように、変電所の中セクション4a,4b,4c,4dは、T座のトロリ線Tと、M座のトロリ線Tが突き合わされている。位相の異なるT座とM座の電源が突き合わされた中セクションは本願発明と直接関係ないため、ここでの説明は省略する。   As shown in FIG. 1, the T section trolley wire T and the M seat trolley wire T are abutted in the middle sections 4a, 4b, 4c, and 4d of the substation. The middle section in which the power sources of the T-seat and M-seat with different phases are matched is not directly related to the present invention, and thus description thereof is omitted here.

き電区分所における中セクション4e,4fは、第1三相−単相変換変圧器2aのT座と第2三相−単相変換変圧器2bのT座のほぼ同位相の電圧が突き合わされている。   The middle sections 4e and 4f in the feeding section are matched with the voltages of substantially the same phase at the T seat of the first three-phase / single-phase conversion transformer 2a and the T seat of the second three-phase / single-phase conversion transformer 2b. ing.

図3は、T座とT座の電源が突き合わされたき電区分所の中セクションを示す概略説明図である。なお、図3ではT座とT座の電源が突き合わされたき電区分所を示しているが、M座とM座の電源が突き合わされたき電区分所も同様である。   FIG. 3 is a schematic explanatory view showing a middle section of the feeding section where the power supply of the T seat and the T seat are abutted. Although FIG. 3 shows a power distribution section where the power supply of the T seat and the T seat are abutted, the power distribution section where the power supply of the M seat and the M seat is abutted is the same.

図3に示すように、き電区分所の中セクション4e,4fにおいて、第1三相−単相変換変圧器2aの二次巻線から引き出されたT座のトロリ線T,フィーダ線Fの末端には、第1絶縁トランスAT1の1次巻線が接続される。また、第2三相−単相変換変圧器2bの二次巻線から引き出されたT座のトロリ線T,フィーダ線Fの末端には、第2絶縁トランスAT2の1次巻線が接続される。第1,第2絶縁トランスAT1,AT2には、それぞれ二次巻線が設けられ、この第1,第2絶縁トランスAT1,AT2により、例えば、30000V程度の電圧から6000V程度の電圧に降圧される。   As shown in FIG. 3, in the middle sections 4e and 4f of the feeding section, the T-seat trolley wire T and the feeder wire F drawn from the secondary winding of the first three-phase / single-phase conversion transformer 2a The primary winding of the first insulation transformer AT1 is connected to the end. The primary winding of the second insulation transformer AT2 is connected to the ends of the T-seat trolley wire T and the feeder wire F drawn from the secondary winding of the second three-phase / single-phase conversion transformer 2b. The The first and second insulation transformers AT1 and AT2 are each provided with a secondary winding, and the first and second insulation transformers AT1 and AT2 step down the voltage from about 30000V to about 6000V, for example. .

第1,第2絶縁トランスAT1,AT2の二次巻線の一端にはそれぞれリアクトルL1,L2を接続する。このリアクトルL1,L2の他端にはそれぞれ第1,第2開閉器(本実施形態では、サイリスタスイッチ:以下、サイリスタスイッチと称する)S1,S2の一端を接続し、この第1,第2サイリスタスイッチS1,S2の他端同士を接続する。また、第1,第2絶縁トランスAT1,AT2の二次巻線の他端同士を接続する。   Reactors L1 and L2 are connected to one ends of the secondary windings of the first and second insulation transformers AT1 and AT2, respectively. The other ends of the reactors L1 and L2 are respectively connected to one ends of first and second switches (in this embodiment, thyristor switches: hereinafter referred to as thyristor switches) S1 and S2, and the first and second thyristors. The other ends of the switches S1 and S2 are connected. The other ends of the secondary windings of the first and second insulating transformers AT1 and AT2 are connected to each other.

第1,第2サイリスタスイッチS1,S2の共通接続点には昇圧変圧器TR(例えばオートトランス)の一次巻線の一端が接続され、第1,第2絶縁トランスAT1,AT2の他端同士の共通接続点には昇圧変圧器TRの一次巻線の他端が接続される。   One end of a primary winding of a step-up transformer TR (for example, an autotransformer) is connected to a common connection point of the first and second thyristor switches S1 and S2, and the other ends of the first and second isolation transformers AT1 and AT2 are connected to each other. The other end of the primary winding of the step-up transformer TR is connected to the common connection point.

昇圧変圧器TRの二次巻線における一端はトロリ線Tに接続され、昇圧変圧器TRの二次巻線における他端はレール線Rに接続される。この昇圧変圧器TRにより、例えば、6000V程度の電圧が30000V程度に昇圧される。トロリ線Tにおける中セクション(一般的には1000m程度)の両端には第1,第2エアセクションD1,D2(一般的には50m程度)が設けられる。   One end of the secondary winding of the step-up transformer TR is connected to the trolley line T, and the other end of the secondary winding of the step-up transformer TR is connected to the rail line R. For example, the voltage of about 6000 V is boosted to about 30000 V by the step-up transformer TR. First and second air sections D1 and D2 (generally about 50 m) are provided at both ends of the middle section (generally about 1000 m) of the trolley wire T.

図3の左側のT座と右側のT座は基本的にはほぼ位相が合っているが、電気車1の在線状況によっては電圧差(2000V〜3000V程度)が生じている。   Although the left T seat and the right T seat in FIG. 3 are basically substantially in phase, a voltage difference (about 2000 V to 3000 V) is generated depending on the presence state of the electric vehicle 1.

そのため、従来の交流き電システムの場合、この間を電気車1が力行のまま通過すると、パンタグラフで両座間の短絡が起こることによりアークが発生する。この状況が繰り返すことは、交流き電システムとして許容できないため、き電区分所の中セクションをパンタグラフが通過する時には同位相,同電圧とすることが必要となる。   Therefore, in the case of the conventional AC power feeding system, when the electric vehicle 1 passes through the electric power 1 with power running between them, an arc is generated due to a short circuit between both seats in the pantograph. Repeating this situation is unacceptable for an AC feeder system, so it is necessary to have the same phase and voltage when the pantograph passes through the middle section of the feeder section.

本実施形態の交流き電システムにおける第1,第2サイリスタスイッチS1,S2の動作を説明する。なお、本実施形態では、電気車1が中セクションに進入,通過したことを検出する手段(例えば、軌道回路等)があるものとする。   The operation of the first and second thyristor switches S1 and S2 in the AC feeding system of this embodiment will be described. In the present embodiment, it is assumed that there is means (for example, a track circuit) that detects that the electric vehicle 1 has entered and passed through the middle section.

まず、電気車1が中セクションに進入するまでは、第1サイリスタスイッチS1をON、第2サイリスタスイッチS2をOFFとする。   First, the first thyristor switch S1 is turned on and the second thyristor switch S2 is turned off until the electric vehicle 1 enters the middle section.

電気車1の全てのパンタグラフが第1エアセクションD1を通過したら、第1サイリスタスイッチS1をONとしたまま、第2サイリスタスイッチS2をONとする。その後、第1サイリスタスイッチS1をOFFにする。すなわち、第1,第2サイリスタスイッチS1とS2の両方がONとなる時間がある。ここで、第1,第2サイリスタスイッチS1,S2の両方がONとなっている時間は、瞬時停電を回避でき、かつ、矯落電流が流れる時間を考慮してできるだけ短い時間が好ましい。本実施形態では、第2サイリスタスイッチS2をONにしてから第1サイリスタスイッチS1をOFFにするまでの時間(すなわち、サイリスタスイッチS1とS2が両方ONとなっている時間)を数ms〜数十msとしている。   When all the pantographs of the electric vehicle 1 pass through the first air section D1, the second thyristor switch S2 is turned on while the first thyristor switch S1 is kept on. Thereafter, the first thyristor switch S1 is turned off. That is, there is a time when both the first and second thyristor switches S1 and S2 are turned on. Here, the time during which both the first and second thyristor switches S1 and S2 are ON is preferably as short as possible in consideration of the time during which a blackout current can flow while avoiding an instantaneous power failure. In this embodiment, the time from when the second thyristor switch S2 is turned on to when the first thyristor switch S1 is turned off (that is, the time when both the thyristor switches S1 and S2 are turned on) is several ms to several tens of times. ms.

その後、電気車1が第2エアセクションD2を通過後、第2サイリスタスイッチS2をOFF、第1サイリスタスイッチS1をONし、次の電気車1が中セクションに進入するまで待機する。   Thereafter, after the electric vehicle 1 passes through the second air section D2, the second thyristor switch S2 is turned off, the first thyristor switch S1 is turned on, and the operation waits until the next electric vehicle 1 enters the middle section.

以上示したように、本実施形態における交流き電システムによれば、中セクションに電気車1が入りきった状態において第1,第2サイリスタスイッチS1,S2を瞬時的に両方ONにすることにより、中セクション通過時における電気車1の瞬時停電を抑制することが可能となる。また、中セクション通過時における電気車1の瞬時停電を抑制することにより、車両の中セクション通過時の瞬時停電対策システムが不要となる。   As described above, according to the AC power feeding system in the present embodiment, the first and second thyristor switches S1 and S2 are instantaneously turned on in a state where the electric vehicle 1 is completely in the middle section. It becomes possible to suppress an instantaneous power failure of the electric vehicle 1 when passing through the middle section. Further, by suppressing the instantaneous power failure of the electric vehicle 1 when passing through the middle section, the instantaneous power failure countermeasure system when passing through the middle section of the vehicle becomes unnecessary.

また、第1,第2サイリスタスイッチS1,S2を瞬時的に両方ON状態にすることにより、電気車1のパンタグラフは位相差,電圧差のない状態での中セクション通過が可能となる。そのため、中セクション通過時の加速度変化が無くなり乗り心地が向上する。また、乗り心地の向上対策が不要となる。   In addition, when both the first and second thyristor switches S1 and S2 are instantaneously turned on, the pantograph of the electric vehicle 1 can pass through the middle section without any phase difference and voltage difference. Therefore, the acceleration change when passing through the middle section is eliminated, and the ride comfort is improved. In addition, measures to improve riding comfort are not required.

また、第1絶縁トランスAT1に入力される電圧と第2絶縁トランスAT2に入力される電圧に位相差がある場合や電圧差が大きい場合には、第1,第2サイリスタスイッチS1,S2を瞬時的にON状態にすることにより、大きな矯絡電流が生じる恐れがある。本実施形態では、第1,第2サイリスタスイッチS1,S2と第1,第2絶縁トランスAT1,AT2の二次巻線との間にそれぞれ第1,第2リアクトルL1,L2を設けているため、第1,第2サイリスタスイッチS1,S2を瞬時的に両方ON状態にすることにより生じる矯絡電流を抑制することが可能となる。   When there is a phase difference between the voltage input to the first isolation transformer AT1 and the voltage input to the second isolation transformer AT2, or when the voltage difference is large, the first and second thyristor switches S1 and S2 are switched instantaneously. If the ON state is turned on, a large enveloping current may be generated. In the present embodiment, the first and second reactors L1 and L2 are provided between the first and second thyristor switches S1 and S2 and the secondary windings of the first and second insulation transformers AT1 and AT2, respectively. It is possible to suppress the entangling current generated by instantaneously turning on both the first and second thyristor switches S1 and S2.

また、第1,第2絶縁トランスAT1,AT2により、一次巻線側と二次巻線側とを絶縁しているため、第1三相−単相変換変圧器2aと第2三相−単相変換変圧器2b間に流れる循環電流を防止することが可能となる。   Further, since the primary winding side and the secondary winding side are insulated by the first and second insulating transformers AT1 and AT2, the first three-phase-single-phase conversion transformer 2a and the second three-phase-single It becomes possible to prevent the circulating current flowing between the phase conversion transformers 2b.

さらに、第1,第2絶縁トランスAT1,AT2により降圧しているため、第1,第2サイリスタスイッチS1,S2の耐圧を低く(第1,第2サイリスタスイッチS1,S2の直列数を低減)することができる。   Further, since the voltage is stepped down by the first and second isolation transformers AT1 and AT2, the withstand voltage of the first and second thyristor switches S1 and S2 is lowered (the number of series of the first and second thyristor switches S1 and S2 is reduced). can do.

また、第1,第2リアクトルL1,L2により第1,第2サイリスタスイッチS1,S2の開閉による過大な突入電流が抑制されるため、車載機器を始め突入電流対策機器が不要となる。また、突入電流が抑制されるため、き電保護システムの簡素化が可能となる
第1,第2開閉器S1,S2にVCB等を用いた切替遮断機を適用することも可能であるが、列車の本数が多い東海道新幹線等では1.5年から2年での第1,第2開閉器S1,S2の交換が必要となり、コストアップの要因となる。列車本数の多い路線においては本実施形態のように、第1,第2開閉器S1,S2としてサイリスタスイッチS1,S2を適用することで、交換頻度が減少し、コストダウンを図ることが可能となる。
Moreover, since the excessive inrush current due to the opening and closing of the first and second thyristor switches S1 and S2 is suppressed by the first and second reactors L1 and L2, no inrush current countermeasure devices such as in-vehicle devices are required. In addition, since the inrush current is suppressed, it is possible to simplify the feeder protection system. It is also possible to apply a switching breaker using VCB or the like to the first and second switches S1, S2. In the Tokaido Shinkansen, etc. with a large number of trains, it is necessary to replace the first and second switches S1 and S2 between 1.5 and 2 years, which causes an increase in cost. On routes with a large number of trains, the replacement frequency is reduced and the cost can be reduced by applying thyristor switches S1 and S2 as the first and second switches S1 and S2 as in this embodiment. Become.

また、切替遮断器方式における極間単絡事故が無くなり、システムの信頼性が向上する。   In addition, the single-circuit accident between the poles in the switching breaker system is eliminated, and the reliability of the system is improved.

また、特許文献1のように、タップ切替変圧器を用いた位相変換装置と比較して、コストを低減することが可能となる。   In addition, as in Patent Document 1, it is possible to reduce costs compared to a phase conversion device using a tap switching transformer.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、図2では、スコット変圧器を示したが、その他の三相−単相変換器であってもよい。   For example, FIG. 2 shows a Scott transformer, but other three-phase to single-phase converters may be used.

1…電気車
2a,2b…三相−単相変換変圧器(スコット変圧器)
3a〜3h…遮断機
4a〜4d…変電所の中セクション
4e,4f…き電区分所
AT1,AT2…第1,第2絶縁トランス(オートトランス)
L1,L2…第1,第2リアクトル
S1,S2…第1,第2開閉器(サイリスタスイッチ)
TR…昇圧変圧器
D1,D2…第1,第2エアセクション
DESCRIPTION OF SYMBOLS 1 ... Electric vehicle 2a, 2b ... Three phase-single phase conversion transformer (Scott transformer)
3a to 3h ... circuit breaker 4a to 4d ... middle section of substation 4e, 4f ... feeder section AT1, AT2 ... first and second insulation transformers (autotransformer)
L1, L2 ... 1st, 2nd reactor S1, S2 ... 1st, 2nd switch (thyristor switch)
TR: Step-up transformer D1, D2: First and second air sections

Claims (2)

第1三相−単相変換変圧器と第2三相−単相変換変圧器から出力されたほぼ同位相の電源の突き合わせ箇所に、両端に入口側エアセクションと出口側エアセクションを有するき電区分所の中セクションが設けられた交流き電システムであって、
前記き電区分所の中セクションは、
前記第1三相−単相変換変圧器から出力された電圧を降圧する第1絶縁トランスと、
前記第1絶縁トランスと並列接続され、前記第2三相−単相変換変圧器から出力された電圧を降圧する第2絶縁トランスと、
前記第1絶縁トランスと前記第2絶縁トランスで降圧された電圧を昇圧して中セクションに出力する昇圧変圧器と、
前記第1絶縁トランスの二次巻線と前記昇圧変圧器の一次巻線との間に介挿された第1開閉器と、
前記第2絶縁トランスの二次巻線と前記昇圧変圧器の一次巻線との間に介挿された第2開閉器と、
前記第1絶縁トランスの二次巻線と前記第1開閉器との間に介挿された第1リアクトルと、
前記第2絶縁トランスの二次巻線と前記第2開閉器との間に介挿された第2リアクトルと、
を備え、
電気車の全てのパンタグラフが前記入口側エアセクションを通過するまでは、前記第1開閉器をON,前記第2開閉器をOFFとし、
電気車の全てのパンタグラフが前記入口側エアセクションに通過後、前記第1開閉器をONとしたまま前記第2開閉器をONとし、その後、前記第1開閉器をOFFとし、
電気車の全てのパンタグラフが前記出口側エアセクション通過後、前記第2開閉器をOFFし、前記第1開閉器をONとすることを特徴とする交流き電システム。
Feeder having an inlet side air section and an outlet side air section at both ends at the abutting point of the substantially same phase power source output from the first three phase-single phase conversion transformer and the second three phase-single phase conversion transformer An AC feeder system with a middle section of the division,
The middle section of the feeder section is
A first isolation transformer that steps down the voltage output from the first three-phase to single-phase conversion transformer;
A second insulation transformer connected in parallel with the first insulation transformer and stepping down the voltage output from the second three-phase to single-phase conversion transformer;
A step-up transformer that steps up the voltage stepped down by the first insulation transformer and the second insulation transformer and outputs the boosted voltage to a middle section;
A first switch interposed between a secondary winding of the first insulation transformer and a primary winding of the step-up transformer;
A second switch interposed between the secondary winding of the second insulation transformer and the primary winding of the step-up transformer;
A first reactor interposed between the secondary winding of the first insulation transformer and the first switch;
A second reactor interposed between the secondary winding of the second insulation transformer and the second switch;
With
Until all the pantographs of the electric vehicle pass through the inlet side air section, the first switch is turned on, the second switch is turned off,
After all pantographs of the electric vehicle have passed through the inlet side air section, the second switch is turned on while the first switch is turned on, and then the first switch is turned off.
An AC feeding system, wherein after all the pantographs of an electric vehicle have passed through the outlet side air section, the second switch is turned off and the first switch is turned on.
前記第1開閉器,第2開閉器はサイリスタスイッチであることを特徴とする請求項1記載の交流き電システム。   2. The AC feeding system according to claim 1, wherein the first switch and the second switch are thyristor switches.
JP2014245013A 2014-12-03 2014-12-03 AC feeder system Expired - Fee Related JP6011602B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014245013A JP6011602B2 (en) 2014-12-03 2014-12-03 AC feeder system
PCT/JP2015/083569 WO2016088710A1 (en) 2014-12-03 2015-11-30 Alternating-current feeding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014245013A JP6011602B2 (en) 2014-12-03 2014-12-03 AC feeder system

Publications (2)

Publication Number Publication Date
JP2016107707A JP2016107707A (en) 2016-06-20
JP6011602B2 true JP6011602B2 (en) 2016-10-19

Family

ID=56091652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014245013A Expired - Fee Related JP6011602B2 (en) 2014-12-03 2014-12-03 AC feeder system

Country Status (2)

Country Link
JP (1) JP6011602B2 (en)
WO (1) WO2016088710A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110091767A (en) * 2018-01-31 2019-08-06 株洲中车时代电气股份有限公司 Ground method for controlling passing neutral section, control device and passing phase insulator device
CN110116658A (en) * 2018-02-05 2019-08-13 中车株洲电力机车研究所有限公司 The matched method and device of split-phase vehicle net is crossed for subregion institute's electronic switch ground

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10505234B2 (en) 2011-03-14 2019-12-10 Battelle Memorial Institute Battery cell and n situ battery electrode analysis method
CN106427673B (en) * 2016-10-08 2018-09-25 中国科学院电工研究所 Without powered off split-phase power device
CN108237923B (en) * 2016-12-27 2021-03-02 中车株洲电力机车研究所有限公司 Flexible power supply device and alternating current traction power supply system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203316A (en) * 1999-01-11 2000-07-25 Central Japan Railway Co Feeder switching control device
JP4082033B2 (en) * 2001-11-09 2008-04-30 株式会社明電舎 AC electric railway power supply equipment
JP4396606B2 (en) * 2005-05-25 2010-01-13 株式会社明電舎 Alternating power supply switching facility for AC electric railway

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110091767A (en) * 2018-01-31 2019-08-06 株洲中车时代电气股份有限公司 Ground method for controlling passing neutral section, control device and passing phase insulator device
CN110116658A (en) * 2018-02-05 2019-08-13 中车株洲电力机车研究所有限公司 The matched method and device of split-phase vehicle net is crossed for subregion institute's electronic switch ground
CN110116658B (en) * 2018-02-05 2021-09-21 中车株洲电力机车研究所有限公司 Method and device for matching electronic switch ground passing phase separation vehicle network of district station

Also Published As

Publication number Publication date
JP2016107707A (en) 2016-06-20
WO2016088710A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
JP6011602B2 (en) AC feeder system
JP6421238B2 (en) Power supply system by cable in electric railway
JP4396606B2 (en) Alternating power supply switching facility for AC electric railway
JPH11511949A (en) High voltage power converter system
KR101411025B1 (en) Alternating current electronic railroad power system
EP2695763A2 (en) Traction power converter for multisystem rail vehicle
JP6003949B2 (en) AC electric vehicle power supply equipment
JP4207640B2 (en) AC feeder system
RU2596046C1 (en) Alternate current traction substation for supply of traction loads 25 kv
KR101523361B1 (en) Feeding apparatus
TWI622244B (en) Power conversion system
KR101369337B1 (en) Active railway feeding system and method without insulation section for large power ac traction supply
JP4954279B2 (en) Apparatus comprising a runway component and a substation, and a method of supplying electrical energy from the substation to the runway component
KR101101498B1 (en) The electric railroad autotransformer which has the voltage tap in neutral point.
US10062502B2 (en) Circuit arrangement for compensation of a DC component in a transformer
EP3480049B1 (en) Alternating-current electric vehicle
CN108092505B (en) Electric multi-system for railway vehicle
JP6548796B1 (en) POWER CONVERSION SYSTEM, TRAFFIC SYSTEM, AND POWER CONVERSION METHOD
KR101903439B1 (en) A FAULT LOCATION ESTIMATION APPARATUS AND METHOD OF NEUTRAL LINE DRAW OUT TYPE MAIN TRANSFORMER AND UNBALANCED AUTOTRANSFORMER IN AC 2×25kV FEEDING SYSTEM
RU2659671C2 (en) ELECTRIC POWER SUPPLY SYSTEM OF 25 kV AC ELECTRIFIED RAILWAYS
JP2890675B2 (en) DC power supply method
EP3396687A1 (en) Energizing method of a transformer, and transformer connection assembly
KR101410772B1 (en) Control circuit for high voltage of rail car
US1913130A (en) Electric transformer
JPH02343Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160720

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160727

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R150 Certificate of patent or registration of utility model

Ref document number: 6011602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees