WO2016088629A1 - Damper - Google Patents

Damper Download PDF

Info

Publication number
WO2016088629A1
WO2016088629A1 PCT/JP2015/083142 JP2015083142W WO2016088629A1 WO 2016088629 A1 WO2016088629 A1 WO 2016088629A1 JP 2015083142 W JP2015083142 W JP 2015083142W WO 2016088629 A1 WO2016088629 A1 WO 2016088629A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
pressure
pressure side
passage
extension
Prior art date
Application number
PCT/JP2015/083142
Other languages
French (fr)
Japanese (ja)
Inventor
和隆 稲満
崇志 寺岡
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2016088629A1 publication Critical patent/WO2016088629A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics

Definitions

  • This invention relates to a shock absorber.
  • the shock absorber is interposed between the vehicle body and the axle of the vehicle and is used to suppress vehicle body vibration.
  • the shock absorber is slidably inserted into the cylinder and includes a piston that divides the cylinder into a rod-side extension side chamber and a piston-side pressure side chamber, and is provided in the piston so that the extension-side chamber and the pressure-side chamber communicate with each other.
  • a first passage that opens to the tip of the rod and a second passage that opens to the side of the rod and communicates the extension side chamber and the pressure side chamber, and a pressure chamber attached to the tip of the rod and connected to the second passage Includes a housing formed therein, a free piston that is slidably inserted into the pressure chamber and divides the pressure chamber into an expansion side pressure chamber and a pressure side pressure chamber, and a coil spring that urges the free piston. That is, the expansion side pressure chamber communicates with the expansion side chamber through the second passage, and the compression side pressure chamber communicates with the compression side chamber through the second passage.
  • the shock absorber since the pressure chamber is partitioned into the expansion side pressure chamber and the compression side pressure chamber by the free piston, the expansion side chamber and the compression side chamber are not directly communicated with each other through the second passage. However, when the free piston moves, the volume ratio between the expansion side pressure chamber and the compression side pressure chamber changes, and the liquid in the pressure chamber enters and exits the expansion side chamber and the compression side chamber according to the amount of movement of the free piston. For this reason, the shock absorber operates as if the extension side chamber and the pressure side chamber communicate with each other through the second passage.
  • P is the differential pressure between the expansion side chamber and the compression side chamber during the expansion operation of the shock absorber
  • Q is the flow rate of the liquid flowing out from the expansion side chamber
  • the differential pressure P and the first passage The coefficient which is the relationship with the flow rate Q1 of the liquid passing through the cylinder is C1, the differential pressure between the extension side chamber and the extension side pressure chamber is P1, and the differential pressure P1 and the flow rate Q2 of the liquid flowing from the extension side chamber into the extension side pressure chamber
  • the coefficient that is the relationship between the pressure side chamber and the pressure side pressure chamber is P2
  • the coefficient that is the relationship between the differential pressure P2 and the flow rate Q2 of the liquid flowing out from the pressure side pressure chamber to the pressure side chamber is C3.
  • the transmission gain is substantially C1
  • the transmission gain is changed so as to gradually decrease from C1 to C1 ⁇ (C2 + C3) / (C1 + C2 + C3), and F> Fb. It is constant in the area. That is, in the frequency characteristic of the transfer function of the differential pressure P with respect to the flow rate Q, the transfer gain increases in the low frequency range, and the transfer gain decreases in the high frequency range.
  • a large damping force can be generated for low frequency vibration input, while a small damping force can be generated for high frequency vibration input.
  • a high damping force can be reliably generated in a scene where the input vibration frequency is low, such as when the vehicle is turning, and a low damping force is used in a scene where the input vibration frequency is high such that the vehicle passes through the unevenness of the road surface. It can be reliably generated and the riding comfort in the vehicle can be improved (for example, refer to JP2006-336816A, JP2008-21559A).
  • JP 2006-336816A and JP 2008-215459A disclose a shock absorber in which a frequency sensitive part is attached to the tip of a rod in order to obtain the above-described attenuation characteristics.
  • the frequency sensitive unit includes a free piston, a pressure chamber, a second passage, and a coil spring.
  • the frequency sensitive portion is disposed so as to protrude in the axial direction from the piston toward the pressure side chamber. Therefore, when trying to secure the stroke length of the shock absorber, the length from the vehicle body side attachment portion for attaching the shock absorber to the vehicle body to the axle side attachment portion for attaching the shock absorber to the axle (hereinafter referred to as the basic length). ) Becomes longer, and the mountability on the vehicle may be deteriorated.
  • an object of the present invention is to provide a shock absorber capable of improving the mountability to a vehicle by shortening the basic length while ensuring the stroke length.
  • a cylinder a piston that is slidably inserted into the cylinder and divides the cylinder into an extension side chamber and a pressure side chamber, one end connected to the piston and the other end
  • a rod that extends outside the cylinder
  • a tank that is attached to the outside of the cylinder
  • a reservoir that is formed in the tank and compensates for the change in the cylinder volume corresponding to the volume of the rod
  • the reservoir and the pressure side chamber A first main passage communicating the extension side chamber and the pressure side chamber, a second main passage communicating the pressure side chamber and the reservoir, and a pressure chamber formed in the tank
  • a free piston that is movably inserted into the pressure chamber and divides the pressure chamber into an expansion side pressure chamber and a pressure side pressure chamber, and a displacement of the free piston with respect to the pressure chamber.
  • a shock absorber includes a spring element that generates a biasing force to be controlled, an extension side passage that communicates the extension side pressure chamber and the reservoir, and a pressure side passage that communicates the pressure side pressure chamber and the pressure side chamber. Is done.
  • FIG. 1 is a front view of a shock absorber according to an embodiment of the present invention, partially cut away.
  • FIG. 2 is an enlarged view of the main part of FIG.
  • a shock absorber D includes a cylinder 1 and a cylinder 1 that is slidably inserted into the cylinder 1 into an extension side chamber L1 and a pressure side chamber L2.
  • the partitioning piston 2 one end connected to the piston 2 and the other end extending to the outside of the cylinder 1, the tank 10 attached to the outside of the cylinder 1, and the inside of the tank 10 formed for the rod protruding and retracting volume
  • a reservoir T that compensates for changes in the volume in the cylinder
  • a base member 3 that partitions the reservoir T and the compression side chamber L2, a first main passage R1 that is formed in the piston 2 and communicates with the expansion side chamber L1 and the compression side chamber L2, and a base
  • the shock absorber D is interposed between the vehicle body and the axle of the vehicle and is used to suppress vehicle body vibration.
  • the shock absorber D is interposed between a vehicle body side attachment portion (not shown) connected to the vehicle body side, an axle side attachment portion J connected to the axle side, and the vehicle body side attachment portion and the axle side attachment portion J.
  • the shock absorber main body D1 has a cylindrical cylinder 1 arranged vertically, a piston 2 slidably inserted into the cylinder 1, and a lower end in FIG.
  • the rod 6 whose upper end extends outside the cylinder 1, the annular head member 11 that closes the upper opening of the cylinder 1 in FIG. 1 and supports the rod 6 slidably, and the bottom of the cylinder 1 in FIG. 1.
  • a bottomed cylindrical bottom member 12 that closes the side opening, a tank 10 provided outside the cylinder 1, one end connected to the bottom member 12, and the other end connected to the tank 10 to connect the inside of the cylinder 1 and the tank 10.
  • the joint pipe 13 communicating with the inside, the sliding partition wall 14 slidably inserted into the tank 10, and the base member 3 and the housing provided on the joint pipe 13 side of the sliding partition wall 14 in the tank 10. It comprises a ring 5, and the fixed rod 8 connecting the base member 3 and the housing 5, a.
  • a vehicle body side mounting portion (not shown) is fixed to an upper end portion in FIG. 1 of the rod 6 extending outside the cylinder 1, and an axle side mounting portion J is fixed to the bottom portion of the bottom member 12. For this reason, when vibration is input, the piston 2 moves together with the rod 6 in the cylinder 1 in the axial direction, and the shock absorber D expands and contracts.
  • the shock absorber D is not limited to the upright type, and is an inverted type in which the cylinder 1 is connected to the vehicle body side via the vehicle body side mounting member and the rod 6 is connected to the axle side via the axle side mounting member J. It may be a mold.
  • an extension side chamber L1 on the rod 6 side defined by the piston 2 and a pressure side chamber L2 on the piston 2 side are formed.
  • the extension side chamber L1 and the compression side chamber L2 are filled with a liquid such as hydraulic oil.
  • a reservoir T that is separated from the pressure side chamber L2 by the base member 3 is formed in the tank 10.
  • the reservoir T is partitioned by a sliding partition wall 14 into an in-tank working chamber L3 on the joint pipe 13 side and an air chamber G on the opposite side.
  • the in-tank working chamber L3 is filled with the same liquid as the liquid filling the expansion side chamber L1 and the compression side chamber L2, while the gas chamber G is filled with compressed gas.
  • the piston 2 that partitions the extension side chamber L1 and the compression side chamber L2 is formed in an annular shape, and is held by a nut 7 on the outer periphery of the lower end portion of the rod 6 inserted into the cylinder 1 in FIG.
  • the piston 2 is provided with a first main passage R1 that communicates the extension side chamber L1 and the pressure side chamber L2.
  • the first main passage R1 includes an extension side piston passage 2a and a pressure side piston passage 2b.
  • the lower end of the extension side piston passage 2a in FIG. 1 is an extension consisting of a leaf valve stacked below the piston 2 in FIG. 1 is opened and closed by the side valve V1, and the upper end of the pressure side piston passage 2b in FIG.
  • a pressure side valve V2 comprising a leaf valve stacked above the piston 2 in FIG.
  • the extension side valve V1 and the pressure side valve V2 are both formed in an annular shape.
  • the lower end in FIG. 1 of the rod 6 is inserted into the inner peripheral side of the extension side valve V1 and the pressure side valve V2.
  • the expansion side valve V1 and the pressure side valve V2 are laminated on the piston 2 in a state where the inner peripheral side is fixed to the rod 6 and the outer peripheral side deflection is allowed.
  • the expansion side valve V1 stacked on the piston 2 is bent and opened by the differential pressure between the expansion side chamber L1 and the compression side chamber L2 when the shock absorber D is extended, opens the expansion side piston passage 2a, and is compressed from the expansion side chamber L1. Resistance is given to the flow of the liquid moving to the chamber L2.
  • the expansion side valve V1 closes the expansion side piston passage 2a.
  • the extension side piston passage 2a is a one-way passage.
  • the pressure side valve V2 stacked on the piston 2 is opposite to the expansion side valve V1, and the flow of the liquid that moves from the pressure side chamber L2 to the expansion side chamber L1 by opening the pressure side piston passage 2b when the shock absorber D is contracted. Give resistance.
  • the pressure side valve V2 closes the pressure side piston passage 2b.
  • the pressure side piston passage 2b is a one-way passage.
  • the expansion side valve V1 and the pressure side valve V2 have different pressure flow characteristics (pressure characteristics with respect to the flow rate). Specifically, when the piston speed when the shock absorber D is expanded and contracted is the same, the resistance imparted to the fluid by the expansion side valve V1 is set to be larger than the resistance imparted to the fluid by the compression side valve V2. The side damping force is larger than the compression side damping force. The basic damping force of the shock absorber D is generated by the expansion side valve V1 and the compression side valve V2.
  • the number of stacked leaf valves and the thickness of the leaf valves constituting the extension side valve V1 and the pressure side valve V2 can be arbitrarily changed according to the required damping characteristics.
  • a leaf valve that is a thin annular plate as the extension side valve V1 and the pressure side valve V2
  • the axial length when the extension side valve V1 and the pressure side valve V2 are stacked on the piston 2 is shortened. It becomes easy to ensure the stroke length of the device D.
  • the extension side valve V1 and the pressure side valve V2 may be valves other than the leaf valve.
  • the base member 3 that partitions the in-tank working chamber L3 of the reservoir T and the compression side chamber L2 in the cylinder 1 is formed in an annular shape. Is retained.
  • the fixed rod 8 is connected to the shaft main body 8a to which the base member 3 is attached to the outer periphery and the lower end of the shaft main body 8a in FIG.
  • the shaft body 8a is inserted into the inner peripheral side of the base member 3 from the screw portion 8c side, and the hooked nut 9 is screwed onto the outer periphery of the screw portion 8c protruding from the base member 3, so that the hook portion 8b and The base member 3 is sandwiched and fixed between the attached nuts 9.
  • the fixed rod 8 is formed with a pressure side passage R4 penetrating the fixed rod 8 in the axial direction.
  • the pressure side passage R4 communicates a pressure side chamber L41 and a pressure side chamber L2, which will be described later, formed in the housing 5 through the inside of the joint pipe 13 and the bottom member 12.
  • the pressure side passage R4 shown in FIG. 2 does not show a valve element serving as a resistance.
  • a damping force generating element such as a throttle may be provided in the pressure side passage R4.
  • the base member 3 is provided with a second main passage R2 that connects the in-tank working chamber L3 and the pressure side chamber L2 through the inside of the joint pipe 13 and the bottom member 12.
  • the second main passage R2 includes an extension-side base passage 3a and a pressure-side base passage 3b.
  • the lower end of the extension-side base passage 3a in FIG. 2 is an extension consisting of a leaf valve stacked below the base member 3 in FIG. 2 is closed by the side valve V3, and the upper end of the pressure side base passage 3b in FIG. 2 is opened and closed by a pressure side valve V4 formed of a leaf valve stacked above the base member 3 in FIG.
  • Both the expansion side valve V3 and the compression side valve V4 are formed in an annular shape.
  • the shaft body 8a of the fixed rod 8 is inserted into the inner peripheral side of the extension side valve V3 and the pressure side valve V4.
  • the expansion side valve V3 and the pressure side valve V4 are stacked on the base member 3 in a state where the inner peripheral side is fixed to the fixed rod 8 and the outer peripheral side is allowed to bend.
  • the expansion side valve V3 stacked on the base member 3 is bent and opened by the differential pressure between the compression side chamber L2 and the in-tank working chamber L3 when the shock absorber D is extended, and the expansion side base passage 3a is opened to open the inside of the tank. Resistance is given to the flow of the liquid moving from the working chamber L3 to the pressure side chamber L2.
  • the expansion side valve V3 closes the expansion side base passage 3a.
  • the extension side base passage 3a is a one-way passage.
  • the pressure side valve V4 stacked on the base member 3 moves from the pressure side chamber L2 to the in-tank working chamber L3 by opening the pressure side base passage 3b when the shock absorber D is contracted, contrary to the expansion side valve V3.
  • the pressure side valve V4 closes the pressure side base passage 3b.
  • the pressure side base passage 3b is a one-way passage.
  • the extension side valve V3 and the pressure side valve V4 laminated on the base member 3 have the same pressure flow characteristics. Specifically, when the piston speed when the shock absorber D is expanded and contracted is the same, the resistance applied to the fluid by the expansion side valve V3 and the resistance applied to the fluid by the compression side valve V4 are set to be the same. Is done. The expansion side valve V3 and the compression side valve V4 generate additional damping force when the shock absorber D is expanded or contracted.
  • the number of laminated leaf valves and the thickness of the leaf valves constituting the extension side valve V3 and the pressure side valve V4 can be arbitrarily changed according to the required damping characteristics.
  • a leaf valve that is a thin annular plate as the expansion side valve V3 and the pressure side valve V4
  • the axial length when the expansion side valve V3 and the pressure side valve V4 are laminated on the base member 3 is shortened.
  • the axial length of the tank 10 can be shortened.
  • the extension side valve V3 and the pressure side valve V4 may be valves other than the leaf valve.
  • a pressure chamber L4 is defined by the housing 5 in the tank working chamber L3.
  • a free piston 4 is slidably inserted in the pressure chamber L4 and a spring element S is provided.
  • the pressure chamber L4 is divided by the free piston 4 into an upper extension pressure chamber L40 in FIG. 2 and a lower pressure side pressure chamber L41 in FIG.
  • the spring element S includes coil springs S1 and S2 disposed above and below the free piston 4 in FIG. The spring element S causes the urging force that suppresses the displacement in proportion to the amount of displacement of the free piston 4 with respect to the pressure chamber L4 to act on the free piston 4.
  • the housing 5 that divides the pressure chamber L4 on the inside includes an opening 5a that is fixed to the flange portion 9a of the flanged nut 9, a cylindrical large inner diameter portion 5b that extends upward from the opening 5a in FIG.
  • a cylindrical small inner diameter portion 5c having an inner diameter smaller than the inner diameter portion 5b and extending upward from the large inner diameter portion 5b in FIG. 2 and a top portion 5d for closing the upper opening in FIG. 2 of the small inner diameter portion 5c.
  • the housing 5 is comprised from one component.
  • the housing 5 is not limited to the above configuration, and may be formed by combining a plurality of components.
  • the housing 5 may be attached to the joint pipe 13 side of the base member 3.
  • the central portion of the top portion 5 d of the housing 5 protrudes toward the inside of the housing 5.
  • a fixed orifice 5e that communicates between the tank internal working chamber L3 and the expansion side pressure chamber L40 is provided at the central portion.
  • the large inner diameter portion 5 b is provided with a variable orifice 5 f that communicates with the in-tank working chamber L 3 and the expansion side pressure chamber L 40 and is opened and closed by the free piston 4. That is, the expansion side passage R3 that connects the in-tank working chamber L3 and the expansion side pressure chamber L40 of the reservoir T is constituted by the fixed orifice 5e and the variable orifice 5f.
  • the pressure side passage R4 formed in the fixed rod 8 communicates the pressure side pressure chamber L41 and the pressure side chamber L2 through the inside of the joint pipe 13 and the bottom member 12.
  • the in-tank working chamber L3 and the expansion side pressure chamber L40 are communicated by the expansion side passage R3, and the pressure side chamber L2 and the pressure side pressure chamber L41 are communicated by the pressure side passage R4.
  • the volume of the expansion side pressure chamber L40 and the volume of the compression side pressure chamber L41 change as the free piston 4 is displaced in the housing 5. Therefore, in the shock absorber D, the flow path composed of the expansion side passage R3, the expansion side pressure chamber L40, the pressure side pressure chamber L41, and the pressure side passage R4 apparently connects the in-tank working chamber L3 and the pressure side chamber L2. Yes. That is, the in-tank working chamber L3 and the pressure side chamber L2 are communicated not only by the second main passage R2 including the extension side base passage 3a and the pressure side base passage 3b but also by this apparent flow passage.
  • the free piston 4 that divides the expansion side pressure chamber L40 and the compression side pressure chamber L41 is formed in a top cylinder shape including a top portion 4a and a cylinder portion 4b extending downward from the outer periphery of the top portion 4a in FIG.
  • the free piston 4 is slidably inserted into the large inner diameter portion 5 b of the housing 5. Since the housing 5 is disposed so that the axis of the large inner diameter portion 5b into which the free piston 4 is inserted and the axis of the cylinder 1 are parallel, the width of the shock absorber D in the left-right direction in FIG. Can be reduced.
  • annular groove 4c is formed along the circumferential direction, and a hole 4d penetrating in the axial direction from the top 4a of the free piston 4 to the annular groove 4c is formed.
  • Coil springs S1 and S2 are interposed between the top 4a of the free piston 4 and the top 5d of the housing 5, and between the top 4a of the free piston 4 and the flange 9a of the flanged nut 9.
  • the free piston 4 is positioned at a predetermined neutral position in the pressure chamber L4 and elastically supported by the spring element S including the coil springs S1 and S2.
  • the upper end portion of the coil spring S1 in FIG. 2 is inserted into the small inner diameter portion 5c of the housing 5, and the lower end portion of the coil spring S1 in FIG. 2 is formed inside the hole 4d of the top portion 4a of the free piston 4. Inserted into the annular recess 4e.
  • the upper end portion of the coil spring S2 in FIG. 2 is inserted into the cylindrical portion 4b of the free piston 4, and the lower end portion of the coil spring S2 in FIG. 2 is an annular shape formed on the flange portion 9a of the hooked nut 9. It is inserted into the recess 9b.
  • the annular groove 4c of the free piston 4 and the variable orifice 5f face each other, and the in-tank working chamber L3 and the expansion side pressure chamber L40 include the variable orifice 5f, the annular groove 4c, and It communicates through the hole 4d.
  • the free piston 4 is displaced to the stepped surface 5g formed at the boundary portion between the large inner diameter portion 5b and the small inner diameter portion 5c in the housing 5 or the stroke end contacting the flange portion 9a of the flanged nut 9, the variable orifice 5 f is completely covered by the sliding portion of the free piston 4. As a result, the communication between the in-tank working chamber L3 and the expansion side pressure chamber L40 is blocked.
  • the flow area of the variable orifice 5f is It gradually decreases as the displacement of the free piston 4 increases. For this reason, according to the amount of displacement from the neutral position of the free piston 4, the resistance when the liquid passes through the extension side passage R3 gradually increases. Before the free piston 4 reaches the stroke end, the variable orifice 5f is completely closed by the opposed sliding portion, and the tank working chamber L3 communicates with the expansion side pressure chamber L40 only by the fixed orifice 5e. At this time, the resistance when the liquid passes through the extension side passage R3 becomes maximum.
  • the extension side chamber L1 is compressed by the piston 2 and the compression side chamber L2 is expanded, so that the liquid for the rod withdrawal volume is insufficient in the cylinder 1. For this reason, the pressure in the expansion chamber L1 increases and the pressure in the compression chamber L2 decreases, and the differential pressure between the expansion chamber L1 and the compression chamber L2 and between the compression chamber L2 and the in-tank working chamber L3. Occurs.
  • the liquid in the expansion side chamber L1 opens the expansion side valve V1 stacked on the piston 2, passes through the expansion side piston passage 2a, and moves to the compression side chamber L2.
  • the expansion side valve V3 in which the liquid in the tank working chamber L3 is stacked on the base member 3 is opened passes through the expansion side base passage 3a, and moves to the compression side chamber L2.
  • the liquid in the tank working chamber L3 moves to the pressure side chamber L2 through an apparent flow path including the extension side passage R3, the extension side pressure chamber L40, the pressure side pressure chamber L41, and the pressure side passage R4.
  • the sliding partition wall 14 is pushed downward in FIG.
  • the expansion of the air chamber G compensates for the change in the cylinder internal volume corresponding to the rod withdrawal volume.
  • the compression side chamber L ⁇ b> 2 is compressed by the piston 2 and the expansion side chamber L ⁇ b> 1 expands, and the liquid corresponding to the rod entry volume becomes redundant in the cylinder 1.
  • the pressure in the expansion side chamber L1 increases at the same time as the pressure in the compression side chamber L2, and the pressure difference between the expansion side chamber L1 and the compression side chamber L2 and between the compression side chamber L2 and the in-tank working chamber L3. Occurs.
  • the liquid in the pressure side chamber L2 opens the pressure side valve V2 stacked on the piston 2, passes through the pressure side piston passage 2b, and moves to the expansion side chamber L1.
  • the pressure side valve V4 in which the liquid in the pressure side chamber L2 is stacked on the base member 3 is opened passes through the pressure side base passage 3b, and moves to the in-tank working chamber L3.
  • the liquid in the pressure side chamber L2 moves to the in-tank working chamber L3 through an apparent flow path including the expansion side passage R3, the expansion side pressure chamber L40, the pressure side pressure chamber L41, and the pressure side passage R4.
  • the sliding partition wall 14 is pushed upward in FIG. 1, and the air chamber G is compressed. In this way, by compressing the air chamber G, a change in the cylinder internal volume corresponding to the rod entry volume is compensated.
  • the shock absorber D has an extension side piston passage 2a and a pressure side piston passage 2b that constitute a first main passage R1, and an extension side base passage 3a and a pressure side base passage 3b that constitute a second main passage R2. Generates damping force due to resistance when passing. That is, the expansion side valves V1 and V3 stacked on the piston 2 and the base member 3 are damping force generating elements that generate the expansion side damping force during the expansion operation of the shock absorber D, and the compression side valves V2 and V4 are buffering. It is a damping force generating element that generates a compression side damping force when the container D is contracted.
  • the pressure side chamber L2 and the in-tank working chamber L3 pass through an apparent flow path including an extension side passage R3, an extension side pressure chamber L40, a pressure side pressure chamber L41, and a pressure side passage R4.
  • the total flow rate of the liquid flowing through the apparent flow path and the second main passage R2 corresponds to the rod retracting volume. For this reason, when the flow rate of the liquid passing through the apparent flow path changes, the flow rate of the liquid passing through the second main passage R2 changes. That is, the damping force of the shock absorber D changes by changing the flow rate of the liquid passing through the apparent flow path.
  • the amplitude of the shock absorber D at the time of low frequency vibration input is larger than the amplitude of the shock absorber D at the time of high frequency vibration input.
  • the amplitude is large, so that the flow rate of the liquid flowing between the compression side chamber L2 and the tank internal chamber L3 increases in one expansion / contraction cycle.
  • the displacement amount of the free piston 4 increases substantially in proportion to this flow rate.
  • the free piston 4 is biased by the spring element S, when the displacement amount of the free piston 4 increases, the biasing force from the spring element S received by the free piston 4 also increases.
  • the amplitude is smaller than that when the low frequency vibration is input.
  • the amount of displacement becomes smaller.
  • the pressure in the expansion side pressure chamber L40 and the pressure in the pressure side pressure chamber L41 become substantially the same pressure, and the differential pressure between the in-tank working chamber L3 and the expansion side pressure chamber L40 and the pressure side chamber L2
  • the pressure difference in the pressure side pressure chamber L41 becomes larger than that at the time of low frequency vibration input, and the flow rate of the liquid passing through the apparent flow path increases compared to that at the time of low frequency vibration input.
  • the differential pressure between the tank working chamber L3 and the pressure side chamber L2 during the expansion operation of the shock absorber D is P
  • the flow rate of the liquid flowing out from the tank working chamber L3 is Q
  • the coefficient which is the relationship between the differential pressure P and the flow rate Q1 of the liquid passing through the second main passage R2 is C1
  • the differential pressure between the tank working chamber L3 and the expansion side pressure chamber L40 is P1
  • the differential pressure P1 and the tank The coefficient which is the relationship with the flow rate Q2 of the liquid flowing from the internal working chamber L3 into the expansion side pressure chamber L40 is C2
  • the differential pressure between the pressure side chamber L2 and the pressure side pressure chamber L41 is P2
  • the differential pressure P2 and the pressure side pressure chamber L41 is the differential pressure P2 and the pressure side pressure chamber L41.
  • C3 is a coefficient which is a relationship with the flow rate Q2 of the liquid flowing out from the pressure side chamber L2, and A is a cross-sectional area which is a pressure receiving area of the free piston 4, and X is a displacement of the free piston 4 with respect to the pressure chamber R4.
  • the spring constant of S is K
  • Gain characteristic with respect to frequency of the frequency transfer function of the differential pressure P relative to the flow rate Q are characteristics indicated in the conventional example also by the formula (2).
  • the shock absorber D can generate a large damping force with respect to vibrations in the low frequency range, and can reduce the damping force with respect to vibrations in the high frequency range. The change can be made dependent on the input vibration frequency.
  • the damping force of the shock absorber D can be made to depend on the input vibration frequency. Further, the damping characteristics of the shock absorber D are set by appropriately changing the coefficients C1, C2, C3, the spring constant K of the spring element S, and the pressure receiving area A of the free piston 4 as in the conventional shock absorber.
  • the restriction (fixed orifice 5e or variable orifice 5f) provided in the extension side passage R3 or the pressure side passage R4 may not be provided depending on the settings of the coefficients C1, C2, C3, the spring constant K, and the pressure receiving area A of the free piston 4. Also good.
  • the shock absorber D includes a frequency sensitive portion F1 including the free piston 4, the pressure chamber L4, the extension side passage R3, the pressure side passage R4, and the spring element S, so that the change in damping force depends on the input vibration frequency. Can be made.
  • the frequency sensitive part F1 is arrange
  • the sliding partition wall 14 that divides the in-tank working chamber L3 and the air chamber G has a recess 14a on the in-tank working chamber L3 side.
  • the shock absorber D When the shock absorber D is fully extended and the sliding partition wall 14 is displaced downward in FIG. 1, the upper end of the housing 5 in FIG. 1 enters the recess 14a.
  • the axial direction length of the tank 10 can be shortened by providing the recessed part 14a in the sliding partition 14.
  • the pressure flow characteristics of the expansion side valve V1 and the pressure side valve V2 stacked on the piston 2 are changed, and the pressure flow characteristics of the expansion side valve V3 and the pressure side valve V4 stacked on the base member 3 are made the same.
  • the extension side damping force is made larger than the compression side damping force. This improves the ride comfort of the vehicle.
  • an extension side valve provided on a piston is provided in a shock absorber in which a pressure chamber constituting a frequency sensitive portion is communicated with an extension side chamber and a pressure side chamber. If the expansion side damping force is made larger than the compression side damping force by changing the pressure flow characteristics of the compression side valve, the damping force reducing effect by the frequency sensitive part may not be sufficiently exhibited. More specifically, when the shock absorber repeatedly expands and contracts at a high frequency, the pressure in the extension side chamber tends to be higher than the pressure in the compression side chamber.
  • the pressure in the expansion side pressure chamber through which the pressure in the expansion side chamber propagates is higher than the pressure in the pressure side pressure chamber through which the pressure in the compression side chamber propagates, and the free piston is displaced toward the pressure side pressure chamber side. It becomes a state.
  • the free piston is biased and displaced in this way, the amount of displacement of the free piston toward the pressure side pressure chamber becomes small. As a result, there is a possibility that the damping force reduction effect by the frequency sensitive part cannot be sufficiently exhibited.
  • the shock absorber D configured as described above, even if there is a difference between the extension side damping force and the compression side damping force, the pressure flow characteristics of the extension side valve V3 and the compression side valve V4 stacked on the base member 3 are the same. Thus, it is possible to suppress the displacement of the free piston 4 from being biased to one of the expansion side pressure chamber L40 side and the pressure side pressure chamber L41 side. For this reason, even when the extension side damping force is set larger than the compression side damping force and the high frequency vibration is continuously inputted, the displacement amount of the free piston 4 can be secured, and the damping force as described above is obtained. A reduction effect can be exhibited.
  • the rod 6 is connected to the vehicle body side
  • the cylinder 1 is connected to the axle side
  • the frequency sensitive portion F1 is disposed under the spring of the vehicle.
  • the shock absorber D includes a cylinder 1, a piston 2 that is slidably inserted into the cylinder 1, and divides the cylinder 1 into an extension side chamber L 1 and a compression side chamber L 2, and one end connected to the piston 2 and the other end Rod 6 extending outside the cylinder 1, a tank 10 attached to the outside of the cylinder 1, a reservoir T that is formed in the tank 10 to compensate for a change in the cylinder volume corresponding to the rod protruding and retracting volume, and the reservoir T and the pressure side chamber Formed in the tank 10 is a base member 3 that divides L2, a first main passage R1 that communicates the expansion side chamber L1 and the compression side chamber L2, a second main passage R2 that communicates the compression side chamber L2 and the reservoir T, and The pressure chamber L4, the free piston 4 that is movably inserted into the pressure chamber L4 and divides the pressure chamber L4 into the expansion side pressure chamber L40 and the pressure side pressure chamber L41, and the pressure chamber L4 of the free piston 4
  • the frequency sensitive portion F1 including the free piston 4, the pressure chamber L4, the extension side passage R3, the pressure side passage R4, and the spring element S is provided in the tank 10 disposed outside the cylinder 1. .
  • the basic length M of the shock absorber D can be shortened, and the mountability to the vehicle can be improved.
  • the second main passage R2 includes an extension side base passage 3a and a pressure side base passage 3b communicating the reservoir T and the pressure side chamber L2, and is opened during the extension operation in the middle of the extension side base passage 3a.
  • An expansion valve V3 that allows the flow of fluid from the reservoir T to the pressure side chamber L2 is provided, and the flow of fluid from the pressure side chamber L2 to the reservoir T is opened in the compression side base passage 3b during compression operation.
  • An allowable pressure side valve V4 is provided.
  • the expansion side valve V3 and the pressure side valve V4 have the same pressure flow characteristics.
  • the resistance given to the liquid flow from the reservoir T to the pressure side chamber L2 through the second main passage R2 is the same as the resistance given to the liquid flow from the pressure side chamber L2 to the reservoir T. be able to. For this reason, the bias
  • shock absorber D includes a sliding partition wall 14 that is slidably inserted into the tank 10 and partitions the reservoir T into an in-tank working chamber L3 and an air chamber G.
  • a second main passage R2 is connected to the in-tank working chamber L3, and a compressed gas is sealed in the air chamber G.
  • the tank working chamber L3 since the tank working chamber L3 is pressurized in the air chamber G through the sliding partition wall 14, the liquid traveling from the tank working chamber L3 to the pressure side chamber L2 through the second main passage R2. Even if resistance is given to the flow by the expansion side valve V3, it is possible to suppress the pressure side chamber L2 from becoming negative pressure when the shock absorber D is extended. For this reason, the pressure flow characteristics of the expansion side valve V3 and the pressure side valve V4 laminated on the base member 3 can be made the same.
  • a first main passage R1 is formed in the piston 2 of the shock absorber D configured as described above, and an extension side valve V1 and a pressure side valve V2 for opening and closing the first main passage R1 are stacked.
  • the first main passage R1 that communicates the expansion side chamber L1 and the pressure side chamber L2 is provided outside the cylinder 1, and the expansion side valve V1 and the pressure side valve V2 that open and close the first main passage R1 are provided in the cylinder 1. It is good also as a structure provided outside. In this case, the basic length M of the shock absorber D can be further shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

This damper D is provided with: a piston 2 that divides the inside of a cylinder 1 into an expansion-side chamber L1 and a pressure-side chamber L2; a reservoir T that is formed in a tank 10 that is attached to the outside of the cylinder 1; a base member 3 that divides the reservoir T and the pressure-side chamber L2; a first main channel R1 that connects the expansion-side chamber L1 and the pressure-side chamber L2; a second main channel R2 that connects the pressure-side chamber L2 and the reservoir T; a free piston 4 that divides a pressure chamber L4 formed in the tank 10 into an expansion-side pressure chamber L40 and a pressure-side pressure chamber L41; a spring element S that suppresses displacement of the free piston 4; an expansion-side channel R3 that connects the expansion-side pressure chamber L40 and the reservoir T; and a pressure-side channel R4 that connects the pressure-side pressure chamber L41 and the pressure-side chamber L2.

Description

緩衝器Shock absorber
 この発明は、緩衝器に関するものである。 This invention relates to a shock absorber.
 緩衝器は、車両の車体と車軸との間に介装され、車体振動を抑制するために用いられる。緩衝器は、シリンダと、シリンダ内に摺動自在に挿入されシリンダ内をロッド側の伸側室とピストン側の圧側室とに区画するピストンと、ピストンに設けられて伸側室と圧側室とを連通する第1通路と、ロッドの先端に開口するとともにロッドの側部に開口し伸側室と圧側室とを連通する第2通路と、ロッドの先端に取り付けられ、第2通路に接続される圧力室が内部に形成されるハウジングと、圧力室内に摺動自在に挿入され圧力室を伸側圧力室と圧側圧力室とに区画するフリーピストンと、フリーピストンを附勢するコイルばねと、を備える。すなわち、伸側圧力室は第2通路を通じて伸側室に連通されるとともに、圧側圧力室は第2通路を通じて圧側室に連通される。 The shock absorber is interposed between the vehicle body and the axle of the vehicle and is used to suppress vehicle body vibration. The shock absorber is slidably inserted into the cylinder and includes a piston that divides the cylinder into a rod-side extension side chamber and a piston-side pressure side chamber, and is provided in the piston so that the extension-side chamber and the pressure-side chamber communicate with each other. A first passage that opens to the tip of the rod and a second passage that opens to the side of the rod and communicates the extension side chamber and the pressure side chamber, and a pressure chamber attached to the tip of the rod and connected to the second passage Includes a housing formed therein, a free piston that is slidably inserted into the pressure chamber and divides the pressure chamber into an expansion side pressure chamber and a pressure side pressure chamber, and a coil spring that urges the free piston. That is, the expansion side pressure chamber communicates with the expansion side chamber through the second passage, and the compression side pressure chamber communicates with the compression side chamber through the second passage.
 上記構成の緩衝器では、圧力室がフリーピストンによって伸側圧力室と圧側圧力室とに区画されているため、伸側室と圧側室とは、第2通路を通じて直接的に連通されてはいない。しかしながら、フリーピストンが移動すると伸側圧力室と圧側圧力室の容積比が変化し、フリーピストンの移動量に応じて圧力室内の液体が伸側室と圧側室とに出入りする。このため、緩衝器は、伸側室と圧側室とが第2通路を通じて連通されているかのように作動する。 In the shock absorber configured as described above, since the pressure chamber is partitioned into the expansion side pressure chamber and the compression side pressure chamber by the free piston, the expansion side chamber and the compression side chamber are not directly communicated with each other through the second passage. However, when the free piston moves, the volume ratio between the expansion side pressure chamber and the compression side pressure chamber changes, and the liquid in the pressure chamber enters and exits the expansion side chamber and the compression side chamber according to the amount of movement of the free piston. For this reason, the shock absorber operates as if the extension side chamber and the pressure side chamber communicate with each other through the second passage.
 ここで、圧側室の圧力を基準として、緩衝器の伸長作動時における伸側室と圧側室との差圧をPとし、伸側室から流出する液体の流量をQとし、差圧Pと第1通路を通過する液体の流量Q1との関係である係数をC1とし、伸側室と伸側圧力室内の差圧をP1とし、差圧P1と伸側室から伸側圧力室内に流入する液体の流量Q2との関係である係数をC2とし、圧側室と圧側圧力室の差圧をP2とし、差圧P2と圧側圧力室から圧側室に流出する液体の流量Q2との関係である係数をC3とし、フリーピストンの受圧面積である断面積をAとし、フリーピストンの圧力室に対する変位をXとし、コイルばねのばね定数をKとして、流量Qに対する差圧Pの伝達関数を求めると、式(1)が得られる。なお、式(1)中、sはラプラス演算子を示している。 Here, on the basis of the pressure in the compression side chamber, P is the differential pressure between the expansion side chamber and the compression side chamber during the expansion operation of the shock absorber, Q is the flow rate of the liquid flowing out from the expansion side chamber, and the differential pressure P and the first passage The coefficient which is the relationship with the flow rate Q1 of the liquid passing through the cylinder is C1, the differential pressure between the extension side chamber and the extension side pressure chamber is P1, and the differential pressure P1 and the flow rate Q2 of the liquid flowing from the extension side chamber into the extension side pressure chamber The coefficient that is the relationship between the pressure side chamber and the pressure side pressure chamber is P2, and the coefficient that is the relationship between the differential pressure P2 and the flow rate Q2 of the liquid flowing out from the pressure side pressure chamber to the pressure side chamber is C3. When the cross-sectional area, which is the pressure receiving area of the piston, is A, the displacement of the free piston with respect to the pressure chamber is X, and the spring constant of the coil spring is K, the transfer function of the differential pressure P with respect to the flow rate Q is obtained. can get. In equation (1), s represents a Laplace operator.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 さらに、上記式(1)で示された伝達関数中のラプラス演算子sにjωを代入して、周波数伝達関数G(jω)の絶対値を求めると、以下の式(2)が得られる。 Further, substituting jω for the Laplace operator s in the transfer function shown in the above equation (1) to obtain the absolute value of the frequency transfer function G (jω) yields the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記各式から理解できるように、緩衝器の流量Qに対する差圧Pの伝達関数の周波数特性は、Fa=K/{2・π・A2・(C1+C2+C3)}とFb=K/{2・π・A2・(C2+C3)}の2つの折れ点周波数を有する。また、F<Faの領域において、伝達ゲインは、略C1となり、Fa≦F≦Fbの領域においてはC1からC1・(C2+C3)/(C1+C2+C3)まで漸減するように変化して、F>Fbの領域においては一定となる。すなわち、流量Qに対する差圧Pの伝達関数の周波数特性は、低周波数域では伝達ゲインが大きくなり、高周波数域では伝達ゲインが小さくなる。 As can be understood from the above equations, the frequency characteristics of the transfer function of the differential pressure P with respect to the flow rate Q of the buffer are Fa = K / {2 · π · A 2 · (C1 + C2 + C3)} and Fb = K / {2 · It has two breakpoint frequencies of π · A 2 · (C2 + C3)}. In the region of F <Fa, the transmission gain is substantially C1, and in the region of Fa ≦ F ≦ Fb, the transmission gain is changed so as to gradually decrease from C1 to C1 · (C2 + C3) / (C1 + C2 + C3), and F> Fb. It is constant in the area. That is, in the frequency characteristic of the transfer function of the differential pressure P with respect to the flow rate Q, the transfer gain increases in the low frequency range, and the transfer gain decreases in the high frequency range.
 したがって、この緩衝器では、低周波数の振動の入力に対しては大きな減衰力を発生し、他方、高周波数の振動の入力に対しては小さな減衰力を発生することができる。このため、車両が旋回中等の入力振動周波数が低い場面においては高い減衰力を確実に発生可能であるとともに、車両が路面の凹凸を通過するような入力振動周波数が高い場面においては低い減衰力を確実に発生させて、車両における乗り心地を向上させることができる(例えば、JP2006-336816A,JP2008-215459A参照)。 Therefore, with this shock absorber, a large damping force can be generated for low frequency vibration input, while a small damping force can be generated for high frequency vibration input. For this reason, a high damping force can be reliably generated in a scene where the input vibration frequency is low, such as when the vehicle is turning, and a low damping force is used in a scene where the input vibration frequency is high such that the vehicle passes through the unevenness of the road surface. It can be reliably generated and the riding comfort in the vehicle can be improved (for example, refer to JP2006-336816A, JP2008-21559A).
 JP2006-336816AやJP2008-215459Aには、上述の減衰特性を得るために、ロッドの先端部に周波数感応部が取り付けられた緩衝器が開示されている。周波数感応部は、フリーピストン、圧力室、第2通路及びコイルばねを備える。周波数感応部は、ピストンから圧側室側に向けて軸方向に突出して配置される。このため、緩衝器のストローク長を確保しようとすると、緩衝器を車体に取り付けるための車体側取付部から、緩衝器を車軸に取り付けるための車軸側取付部までの長さ(以下、基本長という)が長くなり、車両への搭載性が悪化するおそれがある。 JP 2006-336816A and JP 2008-215459A disclose a shock absorber in which a frequency sensitive part is attached to the tip of a rod in order to obtain the above-described attenuation characteristics. The frequency sensitive unit includes a free piston, a pressure chamber, a second passage, and a coil spring. The frequency sensitive portion is disposed so as to protrude in the axial direction from the piston toward the pressure side chamber. Therefore, when trying to secure the stroke length of the shock absorber, the length from the vehicle body side attachment portion for attaching the shock absorber to the vehicle body to the axle side attachment portion for attaching the shock absorber to the axle (hereinafter referred to as the basic length). ) Becomes longer, and the mountability on the vehicle may be deteriorated.
 そこで、本発明は、ストローク長を確保しながら基本長を短くして車両への搭載性を向上させることが可能な緩衝器を提供することを目的とする。 Therefore, an object of the present invention is to provide a shock absorber capable of improving the mountability to a vehicle by shortening the basic length while ensuring the stroke length.
 本発明のある態様によれば、シリンダと、前記シリンダ内に摺動自在に挿入されて前記シリンダ内を伸側室と圧側室とに区画するピストンと、一端が前記ピストンに連結されるとともに他端が前記シリンダ外に延びるロッドと、前記シリンダの外側に取り付けられるタンクと、前記タンク内に形成されて前記ロッドの出没体積分の前記シリンダ内容積変化を補償するリザーバと、前記リザーバと前記圧側室とを区画するベース部材と、前記伸側室と前記圧側室とを連通する第一主通路と、前記圧側室と前記リザーバとを連通する第二主通路と、前記タンク内に形成される圧力室と、前記圧力室内に移動自在に挿入されて前記圧力室を伸側圧力室と圧側圧力室とに区画するフリーピストンと、前記フリーピストンの前記圧力室に対する変位を抑制する附勢力を発生するばね要素と、前記伸側圧力室と前記リザーバとを連通する伸側通路と、前記圧側圧力室と前記圧側室とを連通する圧側通路と、を備える緩衝器が提供される。 According to an aspect of the present invention, a cylinder, a piston that is slidably inserted into the cylinder and divides the cylinder into an extension side chamber and a pressure side chamber, one end connected to the piston and the other end A rod that extends outside the cylinder, a tank that is attached to the outside of the cylinder, a reservoir that is formed in the tank and compensates for the change in the cylinder volume corresponding to the volume of the rod, and the reservoir and the pressure side chamber A first main passage communicating the extension side chamber and the pressure side chamber, a second main passage communicating the pressure side chamber and the reservoir, and a pressure chamber formed in the tank A free piston that is movably inserted into the pressure chamber and divides the pressure chamber into an expansion side pressure chamber and a pressure side pressure chamber, and a displacement of the free piston with respect to the pressure chamber. A shock absorber is provided that includes a spring element that generates a biasing force to be controlled, an extension side passage that communicates the extension side pressure chamber and the reservoir, and a pressure side passage that communicates the pressure side pressure chamber and the pressure side chamber. Is done.
図1は、本発明の実施形態に係る緩衝器を部分的に切欠いて示した正面図である。FIG. 1 is a front view of a shock absorber according to an embodiment of the present invention, partially cut away. 図2は、図1の主要部を拡大して示した図である。FIG. 2 is an enlarged view of the main part of FIG.
 以下、本発明の実施形態について、添付図面を参照して説明する。いくつかの図面を通して付された同じ符号は、同じ部品を示す。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The same reference numerals used throughout the several drawings indicate the same parts.
 図1及び図2に示すように、本発明の実施形態に係る緩衝器Dは、シリンダ1と、シリンダ1内に摺動自在に挿入されてシリンダ1内を伸側室L1と圧側室L2とに区画するピストン2と、一端がピストン2に連結されるとともに他端がシリンダ1外に延びるロッド6と、シリンダ1の外側に取り付けられるタンク10と、タンク10内に形成されてロッド出没体積分のシリンダ内容積変化を補償するリザーバTと、リザーバTと圧側室L2とを区画するベース部材3と、ピストン2に形成され伸側室L1と圧側室L2とを連通する第一主通路R1と、ベース部材3に形成され圧側室L2とリザーバTとを連通する第二主通路R2と、タンク10内に形成される圧力室L4と、圧力室L4内に移動自在に挿入されて圧力室L4を伸側圧力室L40と圧側圧力室L41とに区画するフリーピストン4と、フリーピストン4の圧力室L4に対する変位を抑制する附勢力を発生するばね要素Sと、伸側圧力室L40とリザーバTとを連通する伸側通路R3と、圧側圧力室L41と圧側室L2とを連通する圧側通路R4と、を備える。 As shown in FIGS. 1 and 2, a shock absorber D according to an embodiment of the present invention includes a cylinder 1 and a cylinder 1 that is slidably inserted into the cylinder 1 into an extension side chamber L1 and a pressure side chamber L2. The partitioning piston 2, one end connected to the piston 2 and the other end extending to the outside of the cylinder 1, the tank 10 attached to the outside of the cylinder 1, and the inside of the tank 10 formed for the rod protruding and retracting volume A reservoir T that compensates for changes in the volume in the cylinder, a base member 3 that partitions the reservoir T and the compression side chamber L2, a first main passage R1 that is formed in the piston 2 and communicates with the expansion side chamber L1 and the compression side chamber L2, and a base A second main passage R2 formed in the member 3 for communicating the pressure side chamber L2 and the reservoir T, a pressure chamber L4 formed in the tank 10, and a pressure chamber L4 is movably inserted to extend the pressure chamber L4. Side pressure chamber 40 and the pressure-side pressure chamber L41, the spring element S that generates a biasing force that suppresses the displacement of the free piston 4 with respect to the pressure chamber L4, and the extension side pressure chamber L40 and the reservoir T that communicate with each other. A side passage R3, and a pressure side passage R4 that communicates the pressure side pressure chamber L41 and the pressure side chamber L2.
 この緩衝器Dは、車両の車体と車軸との間に介装され、車体振動を抑制するために用いられる。緩衝器Dは、車体側に連結される車体側取付部(図示せず)と、車軸側に連結される車軸側取付部Jと、車体側取付部と車軸側取付部Jの間に介装される緩衝器本体D1と、を備える。 The shock absorber D is interposed between the vehicle body and the axle of the vehicle and is used to suppress vehicle body vibration. The shock absorber D is interposed between a vehicle body side attachment portion (not shown) connected to the vehicle body side, an axle side attachment portion J connected to the axle side, and the vehicle body side attachment portion and the axle side attachment portion J. A shock absorber body D1.
 緩衝器本体D1は、縦置きに配置される筒状のシリンダ1と、シリンダ1内に摺動自在に挿入されるピストン2と、図1中の下端がピストン2に連結されるとともに図1中の上端がシリンダ1外に延びるロッド6と、シリンダ1の図1中の上側開口部を塞ぐとともにロッド6を摺動自在に軸支する環状のヘッド部材11と、シリンダ1の図1中の下側開口部を塞ぐ有底筒状のボトム部材12と、シリンダ1外に設けられるタンク10と、一端がボトム部材12に接続されるとともに他端がタンク10に接続されてシリンダ1内とタンク10内とを連通するジョイントパイプ13と、タンク10内に摺動自在に挿入される摺動隔壁14と、タンク10内における摺動隔壁14よりもジョイントパイプ13側に設けられるベース部材3及びハウジング5と、ベース部材3とハウジング5とを連結する固定ロッド8と、を備える。 The shock absorber main body D1 has a cylindrical cylinder 1 arranged vertically, a piston 2 slidably inserted into the cylinder 1, and a lower end in FIG. The rod 6 whose upper end extends outside the cylinder 1, the annular head member 11 that closes the upper opening of the cylinder 1 in FIG. 1 and supports the rod 6 slidably, and the bottom of the cylinder 1 in FIG. 1. A bottomed cylindrical bottom member 12 that closes the side opening, a tank 10 provided outside the cylinder 1, one end connected to the bottom member 12, and the other end connected to the tank 10 to connect the inside of the cylinder 1 and the tank 10. The joint pipe 13 communicating with the inside, the sliding partition wall 14 slidably inserted into the tank 10, and the base member 3 and the housing provided on the joint pipe 13 side of the sliding partition wall 14 in the tank 10. It comprises a ring 5, and the fixed rod 8 connecting the base member 3 and the housing 5, a.
 シリンダ1外に延びるロッド6の図1中の上端部には車体側取付部(図示せず)が固定され、ボトム部材12の底部には車軸側取付部Jが固定される。このため、振動が入力されると、ロッド6と共にピストン2がシリンダ1内を軸方向に移動して、緩衝器Dが伸縮作動する。なお、緩衝器Dは、正立型に限定されず、シリンダ1が車体側取付部材を介して車体側に連結されるとともにロッド6が車軸側取付部材Jを介して車軸側に連結される倒立型であってもよい。 A vehicle body side mounting portion (not shown) is fixed to an upper end portion in FIG. 1 of the rod 6 extending outside the cylinder 1, and an axle side mounting portion J is fixed to the bottom portion of the bottom member 12. For this reason, when vibration is input, the piston 2 moves together with the rod 6 in the cylinder 1 in the axial direction, and the shock absorber D expands and contracts. The shock absorber D is not limited to the upright type, and is an inverted type in which the cylinder 1 is connected to the vehicle body side via the vehicle body side mounting member and the rod 6 is connected to the axle side via the axle side mounting member J. It may be a mold.
 シリンダ1内には、ピストン2で区画されるロッド6側の伸側室L1と、ピストン2側の圧側室L2と、が形成される。伸側室L1と圧側室L2とは作動油等の液体で満たされている。また、タンク10内には、ベース部材3で圧側室L2と区画されるリザーバTが形成される。リザーバTは、摺動隔壁14でジョイントパイプ13側のタンク内作用室L3と、反対側の気室Gとに区画される。タンク内作用室L3は、伸側室L1及び圧側室L2を満たす液体と同じ液体によって満たされる一方、気室Gには圧縮された気体が封入されている。 In the cylinder 1, an extension side chamber L1 on the rod 6 side defined by the piston 2 and a pressure side chamber L2 on the piston 2 side are formed. The extension side chamber L1 and the compression side chamber L2 are filled with a liquid such as hydraulic oil. In addition, a reservoir T that is separated from the pressure side chamber L2 by the base member 3 is formed in the tank 10. The reservoir T is partitioned by a sliding partition wall 14 into an in-tank working chamber L3 on the joint pipe 13 side and an air chamber G on the opposite side. The in-tank working chamber L3 is filled with the same liquid as the liquid filling the expansion side chamber L1 and the compression side chamber L2, while the gas chamber G is filled with compressed gas.
 伸側室L1と圧側室L2とを区画するピストン2は、環状に形成されており、シリンダ1内に挿入されるロッド6の図1中の下端部外周にナット7で保持されている。ピストン2には、伸側室L1と圧側室L2とを連通する第一主通路R1が設けられる。第一主通路R1は、伸側ピストン通路2aと圧側ピストン通路2bとからなり、伸側ピストン通路2aの図1中の下端はピストン2の図1中の下方に積層されるリーフバルブからなる伸側バルブV1で開閉され、圧側ピストン通路2bの図1中の上端はピストン2の図1中の上方に積層されるリーフバルブからなる圧側バルブV2で開閉される。伸側バルブV1及び圧側バルブV2は、共に環状に形成される。伸側バルブV1及び圧側バルブV2の内周側にはロッド6の図1中の下端部が挿入される。伸側バルブV1及び圧側バルブV2は、内周側がロッド6に対して固定されるとともに外周側の撓みが許容された状態でピストン2に積層されている。 The piston 2 that partitions the extension side chamber L1 and the compression side chamber L2 is formed in an annular shape, and is held by a nut 7 on the outer periphery of the lower end portion of the rod 6 inserted into the cylinder 1 in FIG. The piston 2 is provided with a first main passage R1 that communicates the extension side chamber L1 and the pressure side chamber L2. The first main passage R1 includes an extension side piston passage 2a and a pressure side piston passage 2b. The lower end of the extension side piston passage 2a in FIG. 1 is an extension consisting of a leaf valve stacked below the piston 2 in FIG. 1 is opened and closed by the side valve V1, and the upper end of the pressure side piston passage 2b in FIG. 1 is opened and closed by a pressure side valve V2 comprising a leaf valve stacked above the piston 2 in FIG. The extension side valve V1 and the pressure side valve V2 are both formed in an annular shape. The lower end in FIG. 1 of the rod 6 is inserted into the inner peripheral side of the extension side valve V1 and the pressure side valve V2. The expansion side valve V1 and the pressure side valve V2 are laminated on the piston 2 in a state where the inner peripheral side is fixed to the rod 6 and the outer peripheral side deflection is allowed.
 ピストン2に積層される伸側バルブV1は、緩衝器Dの伸長作動時に伸側室L1と圧側室L2の差圧によって撓んで開弁し、伸側ピストン通路2aを開放して伸側室L1から圧側室L2へ移動する液体の流れに抵抗を与える。緩衝器Dの収縮作動時には、伸側バルブV1は、伸側ピストン通路2aを閉塞する。このように、伸側ピストン通路2aは一方通行の流路である。また、ピストン2に積層される圧側バルブV2は、伸側バルブV1とは反対に、緩衝器Dの収縮作動時に圧側ピストン通路2bを開放して圧側室L2から伸側室L1に移動する液体の流れに抵抗を与える。緩衝器Dの伸長作動時には、圧側バルブV2は、圧側ピストン通路2bを閉塞する。このように、圧側ピストン通路2bは一方通行の流路である。 The expansion side valve V1 stacked on the piston 2 is bent and opened by the differential pressure between the expansion side chamber L1 and the compression side chamber L2 when the shock absorber D is extended, opens the expansion side piston passage 2a, and is compressed from the expansion side chamber L1. Resistance is given to the flow of the liquid moving to the chamber L2. During the contraction operation of the shock absorber D, the expansion side valve V1 closes the expansion side piston passage 2a. Thus, the extension side piston passage 2a is a one-way passage. The pressure side valve V2 stacked on the piston 2 is opposite to the expansion side valve V1, and the flow of the liquid that moves from the pressure side chamber L2 to the expansion side chamber L1 by opening the pressure side piston passage 2b when the shock absorber D is contracted. Give resistance. During the extension operation of the shock absorber D, the pressure side valve V2 closes the pressure side piston passage 2b. Thus, the pressure side piston passage 2b is a one-way passage.
 さらに、伸側バルブV1と圧側バルブV2とは、異なる圧力流量特性(流量に対する圧力の特性)を有する。具体的には、緩衝器Dが伸縮作動する際のピストン速度が同じ場合、伸側バルブV1により流体に付与される抵抗は、圧側バルブV2により流体に付与される抵抗よりも大きく設定され、伸側減衰力の方が圧側減衰力よりも大きい。緩衝器Dの基本的な減衰力は伸側バルブV1と圧側バルブV2とによって発生される。 Furthermore, the expansion side valve V1 and the pressure side valve V2 have different pressure flow characteristics (pressure characteristics with respect to the flow rate). Specifically, when the piston speed when the shock absorber D is expanded and contracted is the same, the resistance imparted to the fluid by the expansion side valve V1 is set to be larger than the resistance imparted to the fluid by the compression side valve V2. The side damping force is larger than the compression side damping force. The basic damping force of the shock absorber D is generated by the expansion side valve V1 and the compression side valve V2.
 伸側バルブV1及び圧側バルブV2を構成するリーフバルブの積層枚数や厚みは、要求される減衰特性に応じて任意に変更することができる。伸側バルブV1及び圧側バルブV2として、薄い環状板であるリーフバルブを採用することで、伸側バルブV1及び圧側バルブV2がピストン2に積層された際の軸方向長さが短くなるため、緩衝器Dのストローク長を確保し易くなる。なお、伸側バルブV1及び圧側バルブV2は、リーフバルブ以外のバルブであってよい。 The number of stacked leaf valves and the thickness of the leaf valves constituting the extension side valve V1 and the pressure side valve V2 can be arbitrarily changed according to the required damping characteristics. By adopting a leaf valve that is a thin annular plate as the extension side valve V1 and the pressure side valve V2, the axial length when the extension side valve V1 and the pressure side valve V2 are stacked on the piston 2 is shortened. It becomes easy to ensure the stroke length of the device D. The extension side valve V1 and the pressure side valve V2 may be valves other than the leaf valve.
 リザーバTのタンク内作用室L3とシリンダ1内の圧側室L2とを区画するベース部材3は、環状に形成されており、タンク10内に配置される固定ロッド8の外周に鍔付ナット9で保持されている。具体的には、図2に示すように、固定ロッド8は、ベース部材3が外周に取り付けられる軸本体8aと、軸本体8aの図2中の下端部に連結されて軸本体8aよりも外周側に張り出す鍔部8bと、軸本体8aの図2中の上端部に連結されて、外周に螺子溝が形成される螺子部8cと、を備える。軸本体8aは、螺子部8c側からベース部材3の内周側に挿通され、ベース部材3から突出した螺子部8cの外周に鍔付ナット9が螺合されることで、鍔部8bと鍔付ナット9との間にベース部材3を挟んで固定する。固定ロッド8には、固定ロッド8を軸方向に貫通する圧側通路R4が形成される。圧側通路R4は、ジョイントパイプ13及びボトム部材12の内側を通じて、ハウジング5内に形成される後述の圧側圧力室L41と圧側室L2とを連通する。なお、図2に示される圧側通路R4には、抵抗となる弁要素が図示されていない。圧側通路R4には、絞り等の減衰力発生要素が設けられてもよい。 The base member 3 that partitions the in-tank working chamber L3 of the reservoir T and the compression side chamber L2 in the cylinder 1 is formed in an annular shape. Is retained. Specifically, as shown in FIG. 2, the fixed rod 8 is connected to the shaft main body 8a to which the base member 3 is attached to the outer periphery and the lower end of the shaft main body 8a in FIG. A flange portion 8b that protrudes to the side, and a screw portion 8c that is connected to the upper end portion in FIG. 2 of the shaft main body 8a and has a screw groove formed on the outer periphery. The shaft body 8a is inserted into the inner peripheral side of the base member 3 from the screw portion 8c side, and the hooked nut 9 is screwed onto the outer periphery of the screw portion 8c protruding from the base member 3, so that the hook portion 8b and The base member 3 is sandwiched and fixed between the attached nuts 9. The fixed rod 8 is formed with a pressure side passage R4 penetrating the fixed rod 8 in the axial direction. The pressure side passage R4 communicates a pressure side chamber L41 and a pressure side chamber L2, which will be described later, formed in the housing 5 through the inside of the joint pipe 13 and the bottom member 12. In addition, the pressure side passage R4 shown in FIG. 2 does not show a valve element serving as a resistance. A damping force generating element such as a throttle may be provided in the pressure side passage R4.
 ベース部材3には、ジョイントパイプ13及びボトム部材12の内側を通じて、タンク内作用室L3と圧側室L2とを連通する第二主通路R2が設けられる。第二主通路R2は、伸側ベース通路3aと圧側ベース通路3bからなり、伸側ベース通路3aの図2中の下端はベース部材3の図2中の下方に積層されるリーフバルブからなる伸側バルブV3で閉塞され、圧側ベース通路3bの図2中の上端はベース部材3の図2中の上方に積層されるリーフバルブからなる圧側バルブV4で開閉される。伸側バルブV3及び圧側バルブV4は、共に環状に形成される。伸側バルブV3及び圧側バルブV4の内周側には固定ロッド8の軸本体8aが挿入される。伸側バルブV3及び圧側バルブV4は、内周側が固定ロッド8に対して固定されるとともに外周側の撓みが許容された状態でベース部材3に積層されている。 The base member 3 is provided with a second main passage R2 that connects the in-tank working chamber L3 and the pressure side chamber L2 through the inside of the joint pipe 13 and the bottom member 12. The second main passage R2 includes an extension-side base passage 3a and a pressure-side base passage 3b. The lower end of the extension-side base passage 3a in FIG. 2 is an extension consisting of a leaf valve stacked below the base member 3 in FIG. 2 is closed by the side valve V3, and the upper end of the pressure side base passage 3b in FIG. 2 is opened and closed by a pressure side valve V4 formed of a leaf valve stacked above the base member 3 in FIG. Both the expansion side valve V3 and the compression side valve V4 are formed in an annular shape. The shaft body 8a of the fixed rod 8 is inserted into the inner peripheral side of the extension side valve V3 and the pressure side valve V4. The expansion side valve V3 and the pressure side valve V4 are stacked on the base member 3 in a state where the inner peripheral side is fixed to the fixed rod 8 and the outer peripheral side is allowed to bend.
 ベース部材3に積層される伸側バルブV3は、緩衝器Dの伸長作動時に圧側室L2とタンク内作用室L3の差圧によって撓んで開弁し、伸側ベース通路3aを開放してタンク内作用室L3から圧側室L2へ移動する液体の流れに抵抗を与える。緩衝器Dの収縮作動時には、伸側バルブV3は、伸側ベース通路3aを閉塞する。このように、伸側ベース通路3aは一方通行の流路である。また、ベース部材3に積層される圧側バルブV4は、伸側バルブV3とは反対に、緩衝器Dの収縮作動時に圧側ベース通路3bを開放して圧側室L2からタンク内作用室L3に移動する液体の流れに抵抗を与える。緩衝器Dの伸長作動時には、圧側バルブV4は、圧側ベース通路3bを閉塞する。このように、圧側ベース通路3bは一方通行の流路である。 The expansion side valve V3 stacked on the base member 3 is bent and opened by the differential pressure between the compression side chamber L2 and the in-tank working chamber L3 when the shock absorber D is extended, and the expansion side base passage 3a is opened to open the inside of the tank. Resistance is given to the flow of the liquid moving from the working chamber L3 to the pressure side chamber L2. During the contraction operation of the shock absorber D, the expansion side valve V3 closes the expansion side base passage 3a. Thus, the extension side base passage 3a is a one-way passage. Also, the pressure side valve V4 stacked on the base member 3 moves from the pressure side chamber L2 to the in-tank working chamber L3 by opening the pressure side base passage 3b when the shock absorber D is contracted, contrary to the expansion side valve V3. Provides resistance to liquid flow. During the extension operation of the shock absorber D, the pressure side valve V4 closes the pressure side base passage 3b. Thus, the pressure side base passage 3b is a one-way passage.
 ベース部材3に積層される伸側バルブV3と圧側バルブV4とは、同じ圧力流量特性を有する。具体的には、緩衝器Dが伸縮作動する際のピストン速度が同じ場合、伸側バルブV3により流体に付与される抵抗と圧側バルブV4により流体に付与される抵抗とは同じになるように設定される。伸側バルブV3と圧側バルブV4とは、緩衝器Dの伸縮作動時に付加的な減衰力を発生する。 The extension side valve V3 and the pressure side valve V4 laminated on the base member 3 have the same pressure flow characteristics. Specifically, when the piston speed when the shock absorber D is expanded and contracted is the same, the resistance applied to the fluid by the expansion side valve V3 and the resistance applied to the fluid by the compression side valve V4 are set to be the same. Is done. The expansion side valve V3 and the compression side valve V4 generate additional damping force when the shock absorber D is expanded or contracted.
 伸側バルブV3及び圧側バルブV4を構成するリーフバルブの積層枚数や厚みは、要求される減衰特性に応じて任意に変更することができる。伸側バルブV3及び圧側バルブV4として、薄い環状板であるリーフバルブを採用することで、伸側バルブV3及び圧側バルブV4がベース部材3に積層された際の軸方向長さが短くなるため、タンク10の軸方向長さを短くすることができる。なお、伸側バルブV3及び圧側バルブV4は、リーフバルブ以外のバルブであってもよい。 The number of laminated leaf valves and the thickness of the leaf valves constituting the extension side valve V3 and the pressure side valve V4 can be arbitrarily changed according to the required damping characteristics. By adopting a leaf valve that is a thin annular plate as the expansion side valve V3 and the pressure side valve V4, the axial length when the expansion side valve V3 and the pressure side valve V4 are laminated on the base member 3 is shortened. The axial length of the tank 10 can be shortened. The extension side valve V3 and the pressure side valve V4 may be valves other than the leaf valve.
 固定ロッド8の螺子部8cに螺合される鍔付ナット9の鍔部9aには、ベース部材3の反対側から有頂筒状のハウジング5の開口部5aが加締めにより固定される。タンク内作用室L3内にはハウジング5によって圧力室L4が区画される。圧力室L4内には、フリーピストン4が摺動自在に挿入されるとともに、ばね要素Sが設けられる。圧力室L4は、フリーピストン4で図2中の上側の伸側圧力室L40と、図2中の下側の圧側圧力室L41と、に区画される。ばね要素Sは、フリーピストン4の図2中の上下に配置されるコイルばねS1,S2からなる。ばね要素Sは、フリーピストン4の圧力室L4に対する変位量に比例して変位を抑制する附勢力をフリーピストン4に作用させている。 The opening 5a of the cylindrical housing 5 is fixed to the flange portion 9a of the flanged nut 9 screwed to the screw portion 8c of the fixed rod 8 by caulking from the opposite side of the base member 3. A pressure chamber L4 is defined by the housing 5 in the tank working chamber L3. A free piston 4 is slidably inserted in the pressure chamber L4 and a spring element S is provided. The pressure chamber L4 is divided by the free piston 4 into an upper extension pressure chamber L40 in FIG. 2 and a lower pressure side pressure chamber L41 in FIG. The spring element S includes coil springs S1 and S2 disposed above and below the free piston 4 in FIG. The spring element S causes the urging force that suppresses the displacement in proportion to the amount of displacement of the free piston 4 with respect to the pressure chamber L4 to act on the free piston 4.
 内側に圧力室L4を区画するハウジング5は、鍔付ナット9の鍔部9aに固定される開口部5aと、開口部5aから図2中の上側に延びる筒状の大内径部5bと、大内径部5bよりも小さい内径を有し大内径部5bから図2中の上側に延びる筒状の小内径部5cと、小内径部5cの図2中の上側開口を塞ぐ頂部5dと、を備える。このように、ハウジング5は、一つの部品から構成される。ハウジング5は、上記構成に限定されず、複数の部品を組み合わせることで形成されてもよい。また、ハウジング5は、ベース部材3のジョイントパイプ13側に取り付けられていてもよい。 The housing 5 that divides the pressure chamber L4 on the inside includes an opening 5a that is fixed to the flange portion 9a of the flanged nut 9, a cylindrical large inner diameter portion 5b that extends upward from the opening 5a in FIG. A cylindrical small inner diameter portion 5c having an inner diameter smaller than the inner diameter portion 5b and extending upward from the large inner diameter portion 5b in FIG. 2 and a top portion 5d for closing the upper opening in FIG. 2 of the small inner diameter portion 5c. . Thus, the housing 5 is comprised from one component. The housing 5 is not limited to the above configuration, and may be formed by combining a plurality of components. The housing 5 may be attached to the joint pipe 13 side of the base member 3.
 ハウジング5の頂部5dの中心部分は、ハウジング5の内側に向けて突出している。この中心部分には、タンク内作用室L3と伸側圧力室L40とを連通する固定オリフィス5eが設けられる。さらに、大内径部5bには、タンク内作用室L3と伸側圧力室L40とを連通し、フリーピストン4で開閉される可変オリフィス5fが設けられる。つまり、リザーバTのタンク内作用室L3と伸側圧力室L40とを連通する伸側通路R3は、固定オリフィス5eと可変オリフィス5fとにより構成される。また、上述のように、固定ロッド8に形成される圧側通路R4は、ジョイントパイプ13及びボトム部材12の内側を通じて、圧側圧力室L41と圧側室L2とを連通している。 The central portion of the top portion 5 d of the housing 5 protrudes toward the inside of the housing 5. A fixed orifice 5e that communicates between the tank internal working chamber L3 and the expansion side pressure chamber L40 is provided at the central portion. Further, the large inner diameter portion 5 b is provided with a variable orifice 5 f that communicates with the in-tank working chamber L 3 and the expansion side pressure chamber L 40 and is opened and closed by the free piston 4. That is, the expansion side passage R3 that connects the in-tank working chamber L3 and the expansion side pressure chamber L40 of the reservoir T is constituted by the fixed orifice 5e and the variable orifice 5f. Further, as described above, the pressure side passage R4 formed in the fixed rod 8 communicates the pressure side pressure chamber L41 and the pressure side chamber L2 through the inside of the joint pipe 13 and the bottom member 12.
 このように、タンク内作用室L3と伸側圧力室L40とが伸側通路R3によって連通され、圧側室L2と圧側圧力室L41とが圧側通路R4によって連通される。ここで、伸側圧力室L40の容積と圧側圧力室L41の容積とは、フリーピストン4がハウジング5内で変位することによって変化する。このため、緩衝器Dでは、伸側通路R3、伸側圧力室L40、圧側圧力室L41及び圧側通路R4からなる流路は、見かけ上、タンク内作用室L3と圧側室L2とを連通している。つまり、タンク内作用室L3と圧側室L2とは、伸側ベース通路3aと圧側ベース通路3bとからなる第二主通路R2の他にも、この見かけ上の流路によっても連通される。 In this way, the in-tank working chamber L3 and the expansion side pressure chamber L40 are communicated by the expansion side passage R3, and the pressure side chamber L2 and the pressure side pressure chamber L41 are communicated by the pressure side passage R4. Here, the volume of the expansion side pressure chamber L40 and the volume of the compression side pressure chamber L41 change as the free piston 4 is displaced in the housing 5. Therefore, in the shock absorber D, the flow path composed of the expansion side passage R3, the expansion side pressure chamber L40, the pressure side pressure chamber L41, and the pressure side passage R4 apparently connects the in-tank working chamber L3 and the pressure side chamber L2. Yes. That is, the in-tank working chamber L3 and the pressure side chamber L2 are communicated not only by the second main passage R2 including the extension side base passage 3a and the pressure side base passage 3b but also by this apparent flow passage.
 伸側圧力室L40と圧側圧力室L41とを区画するフリーピストン4は、頂部4aと、頂部4aの外周部から図2中の下方に延びる筒部4bと、を備える有頂筒状に形成される。フリーピストン4は、ハウジング5の大内径部5b内に摺動自在に挿入される。ハウジング5は、フリーピストン4が挿入される大内径部5bの軸心線とシリンダ1の軸心線とが平行となるように配置されるため、緩衝器Dの図1中の左右方向の幅を小さくすることができる。なお、緩衝器D全体が図1中の上下方向に振動することによって、フリーピストン4がハウジング5に対して上下方向に振動してしまうことを避けるために、シリンダ1の軸心線と大内径部5bの軸心線とが交差するようにハウジング5を配置してもよい。 The free piston 4 that divides the expansion side pressure chamber L40 and the compression side pressure chamber L41 is formed in a top cylinder shape including a top portion 4a and a cylinder portion 4b extending downward from the outer periphery of the top portion 4a in FIG. The The free piston 4 is slidably inserted into the large inner diameter portion 5 b of the housing 5. Since the housing 5 is disposed so that the axis of the large inner diameter portion 5b into which the free piston 4 is inserted and the axis of the cylinder 1 are parallel, the width of the shock absorber D in the left-right direction in FIG. Can be reduced. In addition, in order to avoid that the free piston 4 vibrates in the vertical direction with respect to the housing 5 when the entire shock absorber D vibrates in the vertical direction in FIG. You may arrange | position the housing 5 so that the axial center line of the part 5b may cross | intersect.
 フリーピストン4の外周には、周方向に沿う環状溝4cが形成されるとともに、フリーピストン4の頂部4aから環状溝4cにかけて軸方向に貫通する孔4dが形成される。また、フリーピストン4の頂部4aとハウジング5の頂部5dとの間と、フリーピストン4の頂部4aと鍔付ナット9の鍔部9aとの間には、コイルばねS1,S2がそれぞれ介装される。これらコイルばねS1,S2からなるばね要素Sにより、フリーピストン4は圧力室L4内の所定の中立位置に位置決めされ、弾性支持される。 In the outer periphery of the free piston 4, an annular groove 4c is formed along the circumferential direction, and a hole 4d penetrating in the axial direction from the top 4a of the free piston 4 to the annular groove 4c is formed. Coil springs S1 and S2 are interposed between the top 4a of the free piston 4 and the top 5d of the housing 5, and between the top 4a of the free piston 4 and the flange 9a of the flanged nut 9. The The free piston 4 is positioned at a predetermined neutral position in the pressure chamber L4 and elastically supported by the spring element S including the coil springs S1 and S2.
 コイルばねS1の図2中の上端部は、ハウジング5の小内径部5c内に挿入され、コイルばねS1の図2中の下端部は、フリーピストン4の頂部4aの孔4dよりも内側に形成される環状の窪み4eに挿入される。コイルばねS2の図2中の上端部は、フリーピストン4の筒部4b内に挿入され、コイルばねS2の図2中の下端部は、鍔付ナット9の鍔部9aに形成される環状の窪み9bに挿入される。このように、各コイルばねS1,S2の上端部及び下端部は、挿入された状態となっているので、コイルばねS1,S2の著しい位置ずれを防止することができる。このため、各コイルばねS1,S2により安定的にフリーピストン4に附勢力を作用させることが可能になる。加えて、フリーピストン4がハウジング5に対して軸ぶれ等を起こして摺動抵抗が大きくなることを抑制することができる。また、フリーピストン4は、環状溝4cの図2中の上下の部分の筒部4bを介して大内径部5bの内周面へ摺接する。この摺動部の軸方向長さを十分に確保することによってもフリーピストン4の軸ぶれを抑制することができる。 The upper end portion of the coil spring S1 in FIG. 2 is inserted into the small inner diameter portion 5c of the housing 5, and the lower end portion of the coil spring S1 in FIG. 2 is formed inside the hole 4d of the top portion 4a of the free piston 4. Inserted into the annular recess 4e. The upper end portion of the coil spring S2 in FIG. 2 is inserted into the cylindrical portion 4b of the free piston 4, and the lower end portion of the coil spring S2 in FIG. 2 is an annular shape formed on the flange portion 9a of the hooked nut 9. It is inserted into the recess 9b. Thus, since the upper end part and lower end part of each coil spring S1, S2 are the inserted states, the remarkable position shift of coil spring S1, S2 can be prevented. For this reason, it becomes possible to make an urging | biasing force act on the free piston 4 stably by each coil spring S1, S2. In addition, it is possible to prevent the sliding resistance from increasing due to shaft displacement or the like of the free piston 4 with respect to the housing 5. The free piston 4 is in sliding contact with the inner peripheral surface of the large inner diameter portion 5b via the cylindrical portion 4b of the upper and lower portions of the annular groove 4c in FIG. The axial displacement of the free piston 4 can also be suppressed by ensuring a sufficient axial length of the sliding portion.
 ここで、フリーピストン4が中立位置にある場合、フリーピストン4の環状溝4cと可変オリフィス5fが対向し、タンク内作用室L3と伸側圧力室L40とは、可変オリフィス5f、環状溝4c及び孔4dを通じて連通する。しかし、フリーピストン4がハウジング5における大内径部5bと小内径部5cの境界部分に形成される段差面5g、あるいは、鍔付ナット9の鍔部9aに当接するストロークエンドまで変位すると、可変オリフィス5fは、フリーピストン4の摺動部によって完全に覆われる。この結果、タンク内作用室L3と伸側圧力室L40との連通は遮断される。 Here, when the free piston 4 is in the neutral position, the annular groove 4c of the free piston 4 and the variable orifice 5f face each other, and the in-tank working chamber L3 and the expansion side pressure chamber L40 include the variable orifice 5f, the annular groove 4c, and It communicates through the hole 4d. However, when the free piston 4 is displaced to the stepped surface 5g formed at the boundary portion between the large inner diameter portion 5b and the small inner diameter portion 5c in the housing 5 or the stroke end contacting the flange portion 9a of the flanged nut 9, the variable orifice 5 f is completely covered by the sliding portion of the free piston 4. As a result, the communication between the in-tank working chamber L3 and the expansion side pressure chamber L40 is blocked.
 つまり、フリーピストン4が中立位置から徐々に変位し、可変オリフィス5fの開口全てが環状溝4cに対向する状態から摺動部に対向する状態に移行する過程では、可変オリフィス5fの流路面積はフリーピストン4の変位量の増加に伴って徐々に減少する。このため、フリーピストン4の中立位置からの変位量に応じて、液体が伸側通路R3を通過する際の抵抗は徐々に増加する。そして、フリーピストン4がストロークエンドに達する前に、可変オリフィス5fは、対向する摺動部によって完全に閉塞され、タンク内作用室L3は固定オリフィス5eのみによって伸側圧力室L40と連通する。このとき、液体が伸側通路R3を通過する際の抵抗は最大となる。 That is, in the process in which the free piston 4 is gradually displaced from the neutral position and all the openings of the variable orifice 5f are shifted from the state facing the annular groove 4c to the state facing the sliding portion, the flow area of the variable orifice 5f is It gradually decreases as the displacement of the free piston 4 increases. For this reason, according to the amount of displacement from the neutral position of the free piston 4, the resistance when the liquid passes through the extension side passage R3 gradually increases. Before the free piston 4 reaches the stroke end, the variable orifice 5f is completely closed by the opposed sliding portion, and the tank working chamber L3 communicates with the expansion side pressure chamber L40 only by the fixed orifice 5e. At this time, the resistance when the liquid passes through the extension side passage R3 becomes maximum.
 以下、緩衝器Dの作動について説明する。 Hereinafter, the operation of the shock absorber D will be described.
 ロッド6がシリンダ1から退出する緩衝器Dの伸長作動時には、ピストン2により伸側室L1が圧縮されて圧側室L2が拡大し、ロッド退出体積分の液体がシリンダ1内で不足する。このため、伸側室L1の圧力が高まると同時に圧側室L2の圧力が低下して、伸側室L1と圧側室L2との間、及び、圧側室L2とタンク内作用室L3との間に差圧が生じる。そして、伸側室L1の液体がピストン2に積層される伸側バルブV1を開き、伸側ピストン通路2aを通過して圧側室L2に移動する。さらに、タンク内作用室L3の液体がベース部材3に積層される伸側バルブV3を開き、伸側ベース通路3aを通過して圧側室L2に移動する。これに加えて、タンク内作用室L3の液体は、伸側通路R3、伸側圧力室L40、圧側圧力室L41及び圧側通路R4からなる見かけ上の流路を通じて圧側室L2に移動する。このとき、ロッド退出体積分の液体がタンク内作用室L3から流出するので、摺動隔壁14が図1中の下側に押し下げられて気室Gが拡大する。このように、気室Gが拡大することによって、ロッド退出体積分のシリンダ内容積の変化は補償される。 During the extension operation of the shock absorber D in which the rod 6 is withdrawn from the cylinder 1, the extension side chamber L1 is compressed by the piston 2 and the compression side chamber L2 is expanded, so that the liquid for the rod withdrawal volume is insufficient in the cylinder 1. For this reason, the pressure in the expansion chamber L1 increases and the pressure in the compression chamber L2 decreases, and the differential pressure between the expansion chamber L1 and the compression chamber L2 and between the compression chamber L2 and the in-tank working chamber L3. Occurs. The liquid in the expansion side chamber L1 opens the expansion side valve V1 stacked on the piston 2, passes through the expansion side piston passage 2a, and moves to the compression side chamber L2. Furthermore, the expansion side valve V3 in which the liquid in the tank working chamber L3 is stacked on the base member 3 is opened, passes through the expansion side base passage 3a, and moves to the compression side chamber L2. In addition to this, the liquid in the tank working chamber L3 moves to the pressure side chamber L2 through an apparent flow path including the extension side passage R3, the extension side pressure chamber L40, the pressure side pressure chamber L41, and the pressure side passage R4. At this time, since the liquid of the rod withdrawal volume flows out from the in-tank working chamber L3, the sliding partition wall 14 is pushed downward in FIG. As described above, the expansion of the air chamber G compensates for the change in the cylinder internal volume corresponding to the rod withdrawal volume.
 一方、ロッド6がシリンダ1に進入する緩衝器Dの収縮作動時には、ピストン2により圧側室L2が圧縮されて伸側室L1が拡大し、ロッド進入体積分の液体がシリンダ1内で余剰となる。このため、圧側室L2の圧力が高まると同時に伸側室L1の圧力が低下して、伸側室L1と圧側室L2との間、及び、圧側室L2とタンク内作用室L3との間に差圧が生じる。そして、圧側室L2の液体がピストン2に積層される圧側バルブV2を開き、圧側ピストン通路2bを通過して伸側室L1に移動する。さらに、圧側室L2の液体がベース部材3に積層される圧側バルブV4を開き、圧側ベース通路3bを通過してタンク内作用室L3に移動する。これに加えて、圧側室L2の液体は、伸側通路R3、伸側圧力室L40、圧側圧力室L41及び圧側通路R4からなる見かけ上の流路を通じてタンク内作用室L3に移動する。このとき、ロッド進入体積分の液体がタンク内作用室L3に流入するので、摺動隔壁14が図1中の上側に押し上げられて気室Gが圧縮される。このように、気室Gが圧縮されることによって、ロッド進入体積分のシリンダ内容積の変化は補償される。 On the other hand, during the contraction operation of the shock absorber D in which the rod 6 enters the cylinder 1, the compression side chamber L <b> 2 is compressed by the piston 2 and the expansion side chamber L <b> 1 expands, and the liquid corresponding to the rod entry volume becomes redundant in the cylinder 1. For this reason, the pressure in the expansion side chamber L1 increases at the same time as the pressure in the compression side chamber L2, and the pressure difference between the expansion side chamber L1 and the compression side chamber L2 and between the compression side chamber L2 and the in-tank working chamber L3. Occurs. The liquid in the pressure side chamber L2 opens the pressure side valve V2 stacked on the piston 2, passes through the pressure side piston passage 2b, and moves to the expansion side chamber L1. Further, the pressure side valve V4 in which the liquid in the pressure side chamber L2 is stacked on the base member 3 is opened, passes through the pressure side base passage 3b, and moves to the in-tank working chamber L3. In addition, the liquid in the pressure side chamber L2 moves to the in-tank working chamber L3 through an apparent flow path including the expansion side passage R3, the expansion side pressure chamber L40, the pressure side pressure chamber L41, and the pressure side passage R4. At this time, since the liquid corresponding to the rod entry volume flows into the in-tank working chamber L3, the sliding partition wall 14 is pushed upward in FIG. 1, and the air chamber G is compressed. In this way, by compressing the air chamber G, a change in the cylinder internal volume corresponding to the rod entry volume is compensated.
 伸縮作動時において緩衝器Dは、液体が第一主通路R1を構成する伸側ピストン通路2aや圧側ピストン通路2bと、第二主通路R2を構成する伸側ベース通路3aや圧側ベース通路3bを通過する際の抵抗に起因する減衰力を発生する。つまり、ピストン2やベース部材3に積層される伸側バルブV1,V3は、緩衝器Dの伸長作動時の伸側減衰力を発生する減衰力発生要素であり、圧側バルブV2,V4は、緩衝器Dの収縮作動時の圧側減衰力を発生する減衰力発生要素である。また、圧側室L2とタンク内作用室L3とは、第二主通路R2の他に、伸側通路R3、伸側圧力室L40、圧側圧力室L41及び圧側通路R4からなる見かけ上の流路を通じても連通しており、この見かけ上の流路と第二主通路R2とを流れる液体の流量の合計がロッド出没体積に相当する。このため、見かけ上の流路を通過する液体の流量が変化すると、第二主通路R2を通過する液体の流量が変化する。つまり、見かけ上の流路を通過する液体の流量を変化させることによって緩衝器Dの減衰力は変化する。 At the time of expansion / contraction operation, the shock absorber D has an extension side piston passage 2a and a pressure side piston passage 2b that constitute a first main passage R1, and an extension side base passage 3a and a pressure side base passage 3b that constitute a second main passage R2. Generates damping force due to resistance when passing. That is, the expansion side valves V1 and V3 stacked on the piston 2 and the base member 3 are damping force generating elements that generate the expansion side damping force during the expansion operation of the shock absorber D, and the compression side valves V2 and V4 are buffering. It is a damping force generating element that generates a compression side damping force when the container D is contracted. In addition to the second main passage R2, the pressure side chamber L2 and the in-tank working chamber L3 pass through an apparent flow path including an extension side passage R3, an extension side pressure chamber L40, a pressure side pressure chamber L41, and a pressure side passage R4. The total flow rate of the liquid flowing through the apparent flow path and the second main passage R2 corresponds to the rod retracting volume. For this reason, when the flow rate of the liquid passing through the apparent flow path changes, the flow rate of the liquid passing through the second main passage R2 changes. That is, the damping force of the shock absorber D changes by changing the flow rate of the liquid passing through the apparent flow path.
 詳述すると、緩衝器Dの伸縮作動時におけるピストン速度が同じである場合、低周波振動入力時の緩衝器Dの振幅は、高周波振動入力時の緩衝器Dの振幅よりも大きくなる。このように緩衝器Dに入力される振動の周波数が低い場合、振幅が大きいため、伸縮1周期で圧側室L2とタンク内作用室L3を行き交う液体の流量は大きくなる。この流量に略比例して、フリーピストン4の変位量は大きくなる。ここで、フリーピストン4は、ばね要素Sで附勢されているため、フリーピストン4の変位量が大きくなると、フリーピストン4が受けるばね要素Sからの附勢力も大きくなる。フリーピストン4がばね要素Sから受ける附勢力が大きくなるにつれて、伸側圧力室L40の圧力と圧側圧力室L41の圧力とに圧力差が生じて、タンク内作用室L3と伸側圧力室L40の差圧及び圧側室L2と圧側圧力室L41の差圧が小さくなり、見かけ上の流路を通過する流量が小さくなる。見かけ上の流路を通過する流量が小さい分、第二主通路R2を通過する液体の流量が大きくなり、緩衝器Dの伸長作動時には圧側室L2の圧力が低い状態に維持され、圧縮作動時には圧側室L2の圧力が高い状態に維持される。よって、緩衝器Dが発生する減衰力は大きい状態に維持される。 More specifically, when the piston speed during the expansion / contraction operation of the shock absorber D is the same, the amplitude of the shock absorber D at the time of low frequency vibration input is larger than the amplitude of the shock absorber D at the time of high frequency vibration input. Thus, when the frequency of the vibration input to the shock absorber D is low, the amplitude is large, so that the flow rate of the liquid flowing between the compression side chamber L2 and the tank internal chamber L3 increases in one expansion / contraction cycle. The displacement amount of the free piston 4 increases substantially in proportion to this flow rate. Here, since the free piston 4 is biased by the spring element S, when the displacement amount of the free piston 4 increases, the biasing force from the spring element S received by the free piston 4 also increases. As the biasing force received by the free piston 4 from the spring element S increases, a pressure difference occurs between the pressure in the expansion side pressure chamber L40 and the pressure in the pressure side pressure chamber L41, and the tank internal working chamber L3 and the expansion side pressure chamber L40 The differential pressure and the pressure difference between the pressure side chamber L2 and the pressure side pressure chamber L41 are reduced, and the flow rate passing through the apparent flow path is reduced. The flow rate of the liquid passing through the second main passage R2 is increased by the small flow rate that passes through the apparent flow path, and the pressure in the pressure side chamber L2 is kept low during the expansion operation of the shock absorber D, and during the compression operation. The pressure in the pressure side chamber L2 is kept high. Therefore, the damping force generated by the shock absorber D is maintained in a large state.
 一方、緩衝器Dに高周波振動が入力される場合、振幅が低周波振動入力時よりも小さいため、伸縮1周期で圧側室L2とタンク内作用室L3を行き交う液体の流量は小さく、フリーピストン4の変位量も小さくなる。フリーピストン4の変位量が小さいと、伸側圧力室L40の圧力と圧側圧力室L41の圧力とが略同圧となり、タンク内作用室L3と伸側圧力室L40の差圧及び圧側室L2と圧側圧力室L41の差圧は低周波振動入力時よりも大きくなって、見かけ上の流路を通過する液体の流量は低周波振動入力時よりも増加する。見かけ上の流路を通過する流量が増加した分だけ、第二主通路R2を通過する流体の流量は減少することになるため、低周波振動入力時に比較して、緩衝器Dの伸長作動時では圧側室L2の圧力の低下度合が小さくなり、圧縮作動時では圧側室L2の圧力の上昇度合が小さくなる。このため、緩衝器Dが発生する減衰力は低周波振動入力時の減衰力よりも小さくなる。 On the other hand, when the high frequency vibration is input to the shock absorber D, the amplitude is smaller than that when the low frequency vibration is input. The amount of displacement becomes smaller. When the displacement of the free piston 4 is small, the pressure in the expansion side pressure chamber L40 and the pressure in the pressure side pressure chamber L41 become substantially the same pressure, and the differential pressure between the in-tank working chamber L3 and the expansion side pressure chamber L40 and the pressure side chamber L2 The pressure difference in the pressure side pressure chamber L41 becomes larger than that at the time of low frequency vibration input, and the flow rate of the liquid passing through the apparent flow path increases compared to that at the time of low frequency vibration input. Since the flow rate of the fluid passing through the second main passage R2 is decreased by the increase in the flow rate passing through the apparent flow path, when the buffer D is extended, compared to when the low frequency vibration is input. In, the degree of decrease in pressure in the pressure side chamber L2 becomes small, and the degree of increase in pressure in the pressure side chamber L2 becomes small during the compression operation. For this reason, the damping force generated by the shock absorber D is smaller than the damping force when the low frequency vibration is input.
 ここで、圧側室L2の圧力を基準として、緩衝器Dの伸長作動時におけるタンク内作用室L3と圧側室L2の差圧をPとし、タンク内作用室L3から流出する液体の流量をQとし、差圧Pと第二主通路R2を通過する液体の流量Q1との関係である係数をC1とし、タンク内作用室L3と伸側圧力室L40の差圧をP1とし、差圧P1とタンク内作用室L3から伸側圧力室L40に流入する液体の流量Q2との関係である係数をC2とし、圧側室L2と圧側圧力室L41の差圧をP2とし、差圧P2と圧側圧力室L41から圧側室L2に流出する液体の流量Q2との関係である係数をC3とし、フリーピストン4の受圧面積である断面積をAとし、フリーピストン4の圧力室R4に対する変位をXとし、ばね要素Sのばね定数をKとすると、流量Qに対する差圧Pの周波数伝達関数の周波数に対するゲイン特性は、従来例と同じく式(2)で示される特性となる。このように、緩衝器Dは、低周波数域の振動に対しては大きな減衰力を発生し、高周波数域の振動に対しては減衰力を小さくすることができ、緩衝器Dの減衰力の変化を入力振動周波数に依存させることができる。なお、緩衝器Dの圧縮作動時においても上述の伸長作動時と同様に、低周波数域の振動に対しては大きな減衰力を発生し、高周波数領域の振動に対しては減衰力を小さくすることができ、緩衝器Dの減衰力の変化を入力振動周波数に依存させることができる。また、緩衝器Dの減衰特性は、従来の緩衝器と同様に、係数C1、C2、C3、ばね要素Sのばね定数K、フリーピストン4の受圧面積Aを適宜変更することで設定される。伸側通路R3や圧側通路R4に設けられる絞り(固定オリフィス5eや可変オリフィス5f)は、各係数C1、C2、C3、ばね定数Kおよびフリーピストン4の受圧面積Aの設定によっては、設けなくてもよい。 Here, on the basis of the pressure in the pressure side chamber L2, the differential pressure between the tank working chamber L3 and the pressure side chamber L2 during the expansion operation of the shock absorber D is P, and the flow rate of the liquid flowing out from the tank working chamber L3 is Q. The coefficient which is the relationship between the differential pressure P and the flow rate Q1 of the liquid passing through the second main passage R2 is C1, the differential pressure between the tank working chamber L3 and the expansion side pressure chamber L40 is P1, and the differential pressure P1 and the tank The coefficient which is the relationship with the flow rate Q2 of the liquid flowing from the internal working chamber L3 into the expansion side pressure chamber L40 is C2, the differential pressure between the pressure side chamber L2 and the pressure side pressure chamber L41 is P2, and the differential pressure P2 and the pressure side pressure chamber L41. C3 is a coefficient which is a relationship with the flow rate Q2 of the liquid flowing out from the pressure side chamber L2, and A is a cross-sectional area which is a pressure receiving area of the free piston 4, and X is a displacement of the free piston 4 with respect to the pressure chamber R4. If the spring constant of S is K, Gain characteristic with respect to frequency of the frequency transfer function of the differential pressure P relative to the flow rate Q are characteristics indicated in the conventional example also by the formula (2). As described above, the shock absorber D can generate a large damping force with respect to vibrations in the low frequency range, and can reduce the damping force with respect to vibrations in the high frequency range. The change can be made dependent on the input vibration frequency. Even during the compression operation of the shock absorber D, a large damping force is generated for vibrations in the low frequency range and the damping force is reduced for vibrations in the high frequency range, as in the above-described expansion operation. The change of the damping force of the shock absorber D can be made to depend on the input vibration frequency. Further, the damping characteristics of the shock absorber D are set by appropriately changing the coefficients C1, C2, C3, the spring constant K of the spring element S, and the pressure receiving area A of the free piston 4 as in the conventional shock absorber. The restriction (fixed orifice 5e or variable orifice 5f) provided in the extension side passage R3 or the pressure side passage R4 may not be provided depending on the settings of the coefficients C1, C2, C3, the spring constant K, and the pressure receiving area A of the free piston 4. Also good.
 つまり、緩衝器Dは、フリーピストン4、圧力室L4、伸側通路R3、圧側通路R4及びばね要素Sで構成される周波数感応部F1を備えることで、減衰力の変化を入力振動周波数に依存させることができる。そして、周波数感応部F1は、シリンダ1の外側に取り付けられるタンク10内に配置されている。このため、周波数感応部F1を備える緩衝器Dの基本長(ストローク基準位置にあるときの車体側取付部から車軸側取付部までの長さ)Mが短くなり、ストローク長を確保することができるとともに、車両への搭載性を向上させることができる。 That is, the shock absorber D includes a frequency sensitive portion F1 including the free piston 4, the pressure chamber L4, the extension side passage R3, the pressure side passage R4, and the spring element S, so that the change in damping force depends on the input vibration frequency. Can be made. And the frequency sensitive part F1 is arrange | positioned in the tank 10 attached to the outer side of the cylinder 1. As shown in FIG. For this reason, the basic length (the length from the vehicle body side mounting portion to the axle side mounting portion when in the stroke reference position) M of the shock absorber D including the frequency sensitive portion F1 is shortened, and the stroke length can be secured. At the same time, the mountability on the vehicle can be improved.
 また、タンク内作用室L3と気室Gとを区画する摺動隔壁14は、タンク内作用室L3側に凹部14aを備えている。緩衝器Dが最伸長し、摺動隔壁14が図1中の下方に変位すると、凹部14a内には、ハウジング5の図1中の上端が進入する。このように、摺動隔壁14に凹部14aを設けることで、タンク10の軸方向長さを短くすることができる。 Further, the sliding partition wall 14 that divides the in-tank working chamber L3 and the air chamber G has a recess 14a on the in-tank working chamber L3 side. When the shock absorber D is fully extended and the sliding partition wall 14 is displaced downward in FIG. 1, the upper end of the housing 5 in FIG. 1 enters the recess 14a. Thus, the axial direction length of the tank 10 can be shortened by providing the recessed part 14a in the sliding partition 14. FIG.
 また、緩衝器Dでは、ピストン2に積層される伸側バルブV1と圧側バルブV2の圧力流量特性を変え、ベース部材3に積層される伸側バルブV3と圧側バルブV4の圧力流量特性を同じにし、伸側減衰力を圧側減衰力よりも大きくしている。これにより車両の乗り心地を向上させている。 In the shock absorber D, the pressure flow characteristics of the expansion side valve V1 and the pressure side valve V2 stacked on the piston 2 are changed, and the pressure flow characteristics of the expansion side valve V3 and the pressure side valve V4 stacked on the base member 3 are made the same. The extension side damping force is made larger than the compression side damping force. This improves the ride comfort of the vehicle.
 ここで、例えば、JP2006-336816Aや、JP2008-215459Aに開示されるように、周波数感応部を構成する圧力室を伸側室と圧側室に連通させた緩衝器において、ピストンに設けられた伸側バルブと圧側バルブの圧力流量特性を変えて伸側減衰力を圧側減衰力よりも大きくすると、周波数感応部による減衰力低減効果を充分に発揮できなくなるおそれがある。詳述すると、緩衝器が高周波で伸縮を繰り返した場合に、伸側室の圧力が圧側室の圧力よりも高くなる傾向がある。このため、伸側室の圧力が伝播する伸側圧力室の圧力の方が、圧側室の圧力が伝播する圧側圧力室の圧力よりも高くなって、フリーピストンが圧側圧力室側へ偏って変位した状態となる。このようにフリーピストンが偏って変位すると、圧側圧力室側へのフリーピストンの変位可能な変位量が小さくなる。この結果、周波数感応部による減衰力低減効果を十分に発揮できなくなるおそれがある。 Here, for example, as disclosed in JP2006-336816A and JP2008-215459A, in a shock absorber in which a pressure chamber constituting a frequency sensitive portion is communicated with an extension side chamber and a pressure side chamber, an extension side valve provided on a piston is provided. If the expansion side damping force is made larger than the compression side damping force by changing the pressure flow characteristics of the compression side valve, the damping force reducing effect by the frequency sensitive part may not be sufficiently exhibited. More specifically, when the shock absorber repeatedly expands and contracts at a high frequency, the pressure in the extension side chamber tends to be higher than the pressure in the compression side chamber. For this reason, the pressure in the expansion side pressure chamber through which the pressure in the expansion side chamber propagates is higher than the pressure in the pressure side pressure chamber through which the pressure in the compression side chamber propagates, and the free piston is displaced toward the pressure side pressure chamber side. It becomes a state. When the free piston is biased and displaced in this way, the amount of displacement of the free piston toward the pressure side pressure chamber becomes small. As a result, there is a possibility that the damping force reduction effect by the frequency sensitive part cannot be sufficiently exhibited.
 しかしながら、上記構成の緩衝器Dでは、伸側減衰力と圧側減衰力に差をつけたとしても、ベース部材3に積層される伸側バルブV3と圧側バルブV4の圧力流量特性を同じにすることで、フリーピストン4の変位が伸側圧力室L40側や圧側圧力室L41側の一方に偏ることを抑制することができる。このため、伸側減衰力が圧側減衰力よりも大きく設定され、高周波振動が継続して入力される状況下においても、フリーピストン4の変位量を確保することができ、上述のような減衰力低減効果を発揮することができる。 However, in the shock absorber D configured as described above, even if there is a difference between the extension side damping force and the compression side damping force, the pressure flow characteristics of the extension side valve V3 and the compression side valve V4 stacked on the base member 3 are the same. Thus, it is possible to suppress the displacement of the free piston 4 from being biased to one of the expansion side pressure chamber L40 side and the pressure side pressure chamber L41 side. For this reason, even when the extension side damping force is set larger than the compression side damping force and the high frequency vibration is continuously inputted, the displacement amount of the free piston 4 can be secured, and the damping force as described above is obtained. A reduction effect can be exhibited.
 さらに、正立型の緩衝器Dでは、ロッド6が車体側に連結されるとともにシリンダ1が車軸側に連結され、周波数感応部F1は車両のばね下に配置される。このため、周波数感応部がロッドに結合される緩衝器と比較し、フリーピストン4がストロークエンドに達した時の打音がロッド6を介して車体側に伝播され難くなり、搭乗者が打音を知覚し難くなる。 Furthermore, in the upright shock absorber D, the rod 6 is connected to the vehicle body side, the cylinder 1 is connected to the axle side, and the frequency sensitive portion F1 is disposed under the spring of the vehicle. For this reason, compared with a shock absorber in which the frequency sensitive part is coupled to the rod, the hitting sound when the free piston 4 reaches the stroke end is less likely to be propagated to the vehicle body side via the rod 6, and the rider makes a hitting sound. It becomes difficult to perceive.
 以下、上記実施形態に係る緩衝器Dの作用効果について説明する。 Hereinafter, the function and effect of the shock absorber D according to the above embodiment will be described.
 緩衝器Dは、シリンダ1と、シリンダ1内に摺動自在に挿入されてシリンダ1内を伸側室L1と圧側室L2とに区画するピストン2と、一端がピストン2に連結されるとともに他端がシリンダ1外に延びるロッド6と、シリンダ1の外側に取り付けられるタンク10と、タンク10内に形成されてロッド出没体積分のシリンダ内容積の変化を補償するリザーバTと、リザーバTと圧側室L2とを区画するベース部材3と、伸側室L1と圧側室L2とを連通する第一主通路R1と、圧側室L2とリザーバTとを連通する第二主通路R2と、タンク10内に形成される圧力室L4と、圧力室L4内に移動自在に挿入されて圧力室L4を伸側圧力室L40と圧側圧力室L41とに区画するフリーピストン4と、フリーピストン4の圧力室L4に対する変位を抑制する附勢力を発生するばね要素Sと、伸側圧力室L40とリザーバTとを連通する伸側通路R3と、圧側圧力室L41と圧側室L2とを連通する圧側通路R4と、を備える。 The shock absorber D includes a cylinder 1, a piston 2 that is slidably inserted into the cylinder 1, and divides the cylinder 1 into an extension side chamber L 1 and a compression side chamber L 2, and one end connected to the piston 2 and the other end Rod 6 extending outside the cylinder 1, a tank 10 attached to the outside of the cylinder 1, a reservoir T that is formed in the tank 10 to compensate for a change in the cylinder volume corresponding to the rod protruding and retracting volume, and the reservoir T and the pressure side chamber Formed in the tank 10 is a base member 3 that divides L2, a first main passage R1 that communicates the expansion side chamber L1 and the compression side chamber L2, a second main passage R2 that communicates the compression side chamber L2 and the reservoir T, and The pressure chamber L4, the free piston 4 that is movably inserted into the pressure chamber L4 and divides the pressure chamber L4 into the expansion side pressure chamber L40 and the pressure side pressure chamber L41, and the pressure chamber L4 of the free piston 4 A spring element S that generates an urging force that suppresses displacement, an extension side passage R3 that communicates the extension side pressure chamber L40 and the reservoir T, a pressure side passage R4 that communicates the pressure side pressure chamber L41 and the pressure side chamber L2, Is provided.
 上記構成によれば、フリーピストン4、圧力室L4、伸側通路R3、圧側通路R4及びばね要素Sから構成される周波数感応部F1は、シリンダ1の外側に配置されるタンク10内に設けられる。このため、緩衝器Dのストローク長を確保したとしても緩衝器Dの基本長Mを短くすることができ、車両への搭載性を向上させることができる。 According to the above configuration, the frequency sensitive portion F1 including the free piston 4, the pressure chamber L4, the extension side passage R3, the pressure side passage R4, and the spring element S is provided in the tank 10 disposed outside the cylinder 1. . For this reason, even if the stroke length of the shock absorber D is ensured, the basic length M of the shock absorber D can be shortened, and the mountability to the vehicle can be improved.
 また、第二主通路R2は、リザーバTと圧側室L2とを連通する伸側ベース通路3aと圧側ベース通路3bとからなり、伸側ベース通路3aの途中には、伸長作動時に開弁してリザーバTから圧側室L2に向かう流体の流れを許容する伸側バルブV3が設けられ、圧側ベース通路3bの途中には、圧縮作動時に開弁して圧側室L2からリザーバTに向かう流体の流れを許容する圧側バルブV4が設けられる。伸側バルブV3と圧側バルブV4とは、同じ圧力流量特性を有する。 The second main passage R2 includes an extension side base passage 3a and a pressure side base passage 3b communicating the reservoir T and the pressure side chamber L2, and is opened during the extension operation in the middle of the extension side base passage 3a. An expansion valve V3 that allows the flow of fluid from the reservoir T to the pressure side chamber L2 is provided, and the flow of fluid from the pressure side chamber L2 to the reservoir T is opened in the compression side base passage 3b during compression operation. An allowable pressure side valve V4 is provided. The expansion side valve V3 and the pressure side valve V4 have the same pressure flow characteristics.
 上記構成によれば、第二主通路R2を通って、リザーバTから圧側室L2へ向かう液体の流れに与える抵抗と、圧側室L2からリザーバTへ向かう液体の流れに与える抵抗とを同じにすることができる。このため、フリーピストン4の偏りを抑制することができ、減衰力低減効果を発揮することができる。 According to the above configuration, the resistance given to the liquid flow from the reservoir T to the pressure side chamber L2 through the second main passage R2 is the same as the resistance given to the liquid flow from the pressure side chamber L2 to the reservoir T. be able to. For this reason, the bias | inclination of the free piston 4 can be suppressed and the damping force reduction effect can be exhibited.
 また、緩衝器Dは、タンク10内に摺動自在に挿入されてリザーバTをタンク内作用室L3と気室Gとに区画する摺動隔壁14を備える。そして、タンク内作用室L3には、第二主通路R2が接続されており、気室Gには、圧縮された気体が封入されている。 Further, the shock absorber D includes a sliding partition wall 14 that is slidably inserted into the tank 10 and partitions the reservoir T into an in-tank working chamber L3 and an air chamber G. A second main passage R2 is connected to the in-tank working chamber L3, and a compressed gas is sealed in the air chamber G.
 上記構成によれば、タンク内作用室L3が摺動隔壁14を介して気室Gで加圧されているので、第二主通路R2を通ってタンク内作用室L3から圧側室L2に向かう液体の流れに伸側バルブV3で抵抗を与えるようにしても、緩衝器Dの伸長作動時に圧側室L2が負圧となることを抑制できる。このため、ベース部材3に積層される伸側バルブV3と圧側バルブV4との圧力流量特性を同じにすることができる。 According to the above configuration, since the tank working chamber L3 is pressurized in the air chamber G through the sliding partition wall 14, the liquid traveling from the tank working chamber L3 to the pressure side chamber L2 through the second main passage R2. Even if resistance is given to the flow by the expansion side valve V3, it is possible to suppress the pressure side chamber L2 from becoming negative pressure when the shock absorber D is extended. For this reason, the pressure flow characteristics of the expansion side valve V3 and the pressure side valve V4 laminated on the base member 3 can be made the same.
 上記構成の緩衝器Dのピストン2には、第一主通路R1が形成されるとともに、第一主通路R1を開閉する伸側バルブV1や圧側バルブV2が積層される。この構成に代えて、伸側室L1と圧側室L2とを連通する第一主通路R1をシリンダ1の外側に設け、第一主通路R1を開閉する伸側バルブV1や圧側バルブV2をシリンダ1の外に設けた構成としてもよい。このようにした場合、緩衝器Dの基本長Mを更に短くすることができる。 A first main passage R1 is formed in the piston 2 of the shock absorber D configured as described above, and an extension side valve V1 and a pressure side valve V2 for opening and closing the first main passage R1 are stacked. Instead of this configuration, the first main passage R1 that communicates the expansion side chamber L1 and the pressure side chamber L2 is provided outside the cylinder 1, and the expansion side valve V1 and the pressure side valve V2 that open and close the first main passage R1 are provided in the cylinder 1. It is good also as a structure provided outside. In this case, the basic length M of the shock absorber D can be further shortened.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 本願は2014年12月1日に日本国特許庁に出願された特願2014-242800に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2014-242800 filed with the Japan Patent Office on December 1, 2014, the entire contents of which are incorporated herein by reference.

Claims (3)

  1.  シリンダと、
     前記シリンダ内に摺動自在に挿入されて前記シリンダ内を伸側室と圧側室とに区画するピストンと、
     一端が前記ピストンに連結されるとともに他端が前記シリンダ外に延びるロッドと、
     前記シリンダの外側に取り付けられるタンクと、
     前記タンク内に形成されて前記ロッドの出没体積分の前記シリンダ内容積変化を補償するリザーバと、
     前記リザーバと前記圧側室とを区画するベース部材と、
     前記伸側室と前記圧側室とを連通する第一主通路と、
     前記圧側室と前記リザーバとを連通する第二主通路と、
     前記タンク内に形成される圧力室と、
     前記圧力室内に移動自在に挿入されて前記圧力室を伸側圧力室と圧側圧力室とに区画するフリーピストンと、
     前記フリーピストンの前記圧力室に対する変位を抑制する附勢力を発生するばね要素と、
     前記伸側圧力室と前記リザーバとを連通する伸側通路と、
     前記圧側圧力室と前記圧側室とを連通する圧側通路と、を備える緩衝器。
    A cylinder,
    A piston that is slidably inserted into the cylinder and divides the cylinder into an extension side chamber and a pressure side chamber;
    A rod having one end connected to the piston and the other end extending out of the cylinder;
    A tank attached to the outside of the cylinder;
    A reservoir that is formed in the tank and compensates for the change in volume in the cylinder corresponding to the volume of the rod in and out;
    A base member that partitions the reservoir and the pressure side chamber;
    A first main passage communicating the extension side chamber and the pressure side chamber;
    A second main passage communicating the pressure side chamber and the reservoir;
    A pressure chamber formed in the tank;
    A free piston that is movably inserted into the pressure chamber and divides the pressure chamber into an extension side pressure chamber and a pressure side pressure chamber;
    A spring element that generates a biasing force that suppresses displacement of the free piston with respect to the pressure chamber;
    An extension-side passage communicating the extension-side pressure chamber and the reservoir;
    A shock absorber comprising: the pressure side pressure chamber and a pressure side passage communicating the pressure side chamber.
  2.  請求項1に記載の緩衝器であって、
     前記第二主通路は、前記リザーバと前記圧側室とを連通する伸側ベース通路及び圧側ベース通路からなり、
     前記伸側ベース通路には、伸長作動時に開弁して前記リザーバから前記圧側室に向かう流体の流れを許容する伸側バルブが設けられ、
     前記圧側ベース通路には、圧縮作動時に開弁して前記圧側室から前記リザーバに向かう流体の流れを許容する圧側バルブが設けられ、
     前記伸側バルブと前記圧側バルブとは、同じ圧力流量特性を持つ緩衝器。
    The shock absorber according to claim 1,
    The second main passage is composed of an extension side base passage and a pressure side base passage communicating the reservoir and the pressure side chamber,
    The extension side base passage is provided with an extension side valve that opens during the extension operation and allows the flow of fluid from the reservoir toward the pressure side chamber,
    The pressure side base passage is provided with a pressure side valve that opens during compression operation and allows a fluid flow from the pressure side chamber toward the reservoir,
    The extension side valve and the pressure side valve are shock absorbers having the same pressure flow characteristics.
  3.  請求項1に記載の緩衝器であって、
     前記タンク内に摺動自在に挿入されて前記リザーバをタンク内作用室と気室とに区画する摺動隔壁をさらに備え、
     前記タンク内作用室には、前記第二主通路が接続され、
     前記気室には、圧縮された気体が封入される緩衝器。
    The shock absorber according to claim 1,
    A sliding partition that is slidably inserted into the tank and divides the reservoir into a tank working chamber and an air chamber;
    The second main passage is connected to the working chamber in the tank,
    A shock absorber in which compressed gas is enclosed in the air chamber.
PCT/JP2015/083142 2014-12-01 2015-11-26 Damper WO2016088629A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-242800 2014-12-01
JP2014242800A JP6462341B2 (en) 2014-12-01 2014-12-01 Shock absorber

Publications (1)

Publication Number Publication Date
WO2016088629A1 true WO2016088629A1 (en) 2016-06-09

Family

ID=56091575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083142 WO2016088629A1 (en) 2014-12-01 2015-11-26 Damper

Country Status (2)

Country Link
JP (1) JP6462341B2 (en)
WO (1) WO2016088629A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD866408S1 (en) 2017-08-28 2019-11-12 Qa1 Precision Products, Inc. Shock absorber
USD869259S1 (en) 2017-08-28 2019-12-10 Qa1 Precision Products, Inc. Valve component
USD872837S1 (en) 2017-08-28 2020-01-14 Qa1 Precision Products, Inc. Bleed needle
US11085502B2 (en) 2017-08-28 2021-08-10 Qa1 Precision Products, Inc. Bleed needle for a hydraulic system
US11105390B2 (en) 2017-08-28 2021-08-31 Qa1 Precision Products, Inc. Shock absorber with dry valving

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109027107A (en) * 2018-09-21 2018-12-18 萍乡市凯越机电设备有限公司 Electromechanical equipment damping device
CN109058672A (en) * 2018-09-21 2018-12-21 萍乡市凯越机电设备有限公司 Electromechanical equipment damping device
CN109027108A (en) * 2018-09-21 2018-12-18 萍乡市凯越机电设备有限公司 The damping device of electromechanical equipment
CN109027112A (en) * 2018-09-21 2018-12-18 萍乡市凯越机电设备有限公司 damping device for electromechanical equipment
CN109083973A (en) * 2018-09-21 2018-12-25 萍乡市凯越机电设备有限公司 Modified damping device for electromechanical equipment
CN109058370A (en) * 2018-09-21 2018-12-21 萍乡市凯越机电设备有限公司 Novel shock absorption device for electromechanical equipment
CN109356958B (en) * 2018-12-17 2023-08-22 中国空气动力研究与发展中心超高速空气动力研究所 Self-resetting buffer device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215459A (en) * 2007-03-02 2008-09-18 Kayaba Ind Co Ltd Shock absorbing device
JP2012122575A (en) * 2010-12-10 2012-06-28 Kyb Co Ltd Hydraulic shock absorber for vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194763A (en) * 2012-03-16 2013-09-30 Tein:Kk Fluid pressure shock absorber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215459A (en) * 2007-03-02 2008-09-18 Kayaba Ind Co Ltd Shock absorbing device
JP2012122575A (en) * 2010-12-10 2012-06-28 Kyb Co Ltd Hydraulic shock absorber for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD866408S1 (en) 2017-08-28 2019-11-12 Qa1 Precision Products, Inc. Shock absorber
USD869259S1 (en) 2017-08-28 2019-12-10 Qa1 Precision Products, Inc. Valve component
USD872837S1 (en) 2017-08-28 2020-01-14 Qa1 Precision Products, Inc. Bleed needle
US11085502B2 (en) 2017-08-28 2021-08-10 Qa1 Precision Products, Inc. Bleed needle for a hydraulic system
US11105390B2 (en) 2017-08-28 2021-08-31 Qa1 Precision Products, Inc. Shock absorber with dry valving

Also Published As

Publication number Publication date
JP2016104997A (en) 2016-06-09
JP6462341B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
WO2016088629A1 (en) Damper
JP6108550B2 (en) Shock absorber
JP4996952B2 (en) Shock absorber
JP4768648B2 (en) Shock absorber
JP5466437B2 (en) Shock absorber
WO2016088536A1 (en) Damper
JP5603817B2 (en) Shock absorber
JP5809490B2 (en) Shock absorber
JP5878840B2 (en) Shock absorber
JP2012052630A (en) Shock absorber
JP4939308B2 (en) Shock absorber
JP5681596B2 (en) Shock absorber
JP2013007425A (en) Shock absorber
JP2010196842A (en) Shock absorber
JP5870427B2 (en) Shock absorber
JP5690179B2 (en) Shock absorber
WO2016088637A1 (en) Damper
JP5618417B2 (en) Shock absorber
JP5831976B2 (en) Shock absorber
JP4909766B2 (en) Shock absorber
JP2010144786A (en) Shock absorbing device
JP5166334B2 (en) Shock absorber
JP5681595B2 (en) Shock absorber
JP5618418B2 (en) Shock absorber
JP5909538B2 (en) Shock absorber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866063

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866063

Country of ref document: EP

Kind code of ref document: A1