JP6462341B2 - Shock absorber - Google Patents

Shock absorber Download PDF

Info

Publication number
JP6462341B2
JP6462341B2 JP2014242800A JP2014242800A JP6462341B2 JP 6462341 B2 JP6462341 B2 JP 6462341B2 JP 2014242800 A JP2014242800 A JP 2014242800A JP 2014242800 A JP2014242800 A JP 2014242800A JP 6462341 B2 JP6462341 B2 JP 6462341B2
Authority
JP
Japan
Prior art keywords
chamber
pressure
pressure side
passage
shock absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014242800A
Other languages
Japanese (ja)
Other versions
JP2016104997A (en
Inventor
和隆 稲満
和隆 稲満
崇志 寺岡
崇志 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2014242800A priority Critical patent/JP6462341B2/en
Priority to PCT/JP2015/083142 priority patent/WO2016088629A1/en
Publication of JP2016104997A publication Critical patent/JP2016104997A/en
Application granted granted Critical
Publication of JP6462341B2 publication Critical patent/JP6462341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Description

この発明は、緩衝器に関するものである。   The present invention relates to a shock absorber.

従来、この種の緩衝器にあっては、車両の車体と車軸との間に介装されて車体振動を抑制する目的で使用され、例えば、シリンダと、シリンダ内に摺動自在に挿入されシリンダ内をロッド側の伸側室とピストン側の圧側室に区画するピストンと、ピストンに設けられて伸側室と圧側室を連通する第1通路と、ロッドの先端から側部に開通して伸側室と圧側室を連通する第2通路と、第2通路の途中に接続される圧力室を備えてロッドの先端に取り付けられたハウジングと、圧力室内に摺動自在に挿入され圧力室を伸側圧力室と圧側圧力室とに区画するフリーピストンと、フリーピストンを附勢するコイルばねとを備えて構成されている。すなわち、伸側圧力室は第2通路を介して伸側室に連通されるとともに、圧側圧力室は第2通路を介して圧側室に連通されるようになっている。   Conventionally, this type of shock absorber is used between the vehicle body and the axle of the vehicle to suppress vehicle body vibration. For example, a cylinder and a cylinder that is slidably inserted into the cylinder are used. A piston that divides the inside into a rod side extension side chamber and a piston side pressure side chamber, a first passage that is provided in the piston and communicates with the extension side chamber and the pressure side chamber; A second passage communicating with the pressure side chamber, a housing having a pressure chamber connected to the middle of the second passage and attached to the tip of the rod, and slidably inserted into the pressure chamber to extend the pressure chamber. And a free piston that is divided into a pressure side pressure chamber and a coil spring that biases the free piston. That is, the expansion side pressure chamber is communicated with the expansion side chamber via the second passage, and the compression side pressure chamber is communicated with the compression side chamber via the second passage.

このように構成された緩衝器は、圧力室がフリーピストンによって伸側圧力室と圧側圧力室とに区画されており、第2通路を介しては伸側室と圧側室とが直接的に連通されてはいないが、フリーピストンが移動すると伸側圧力室と圧側圧力室の容積比が変化し、フリーピストンの移動量に応じて圧力室内の液体が伸側室と圧側室へ出入りするため、見かけ上、伸側室と圧側室とが第2通路を介して連通されているが如くに振舞う。   In the shock absorber configured as described above, the pressure chamber is divided into the expansion side pressure chamber and the pressure side pressure chamber by the free piston, and the expansion side chamber and the pressure side chamber are directly communicated with each other via the second passage. However, when the free piston moves, the volume ratio between the expansion side pressure chamber and the compression side pressure chamber changes, and the liquid in the pressure chamber moves into and out of the expansion side chamber and the compression side chamber according to the amount of movement of the free piston. The extension side chamber and the pressure side chamber behave as if they are communicated with each other via the second passage.

ここで、圧側室の圧力を基準として、緩衝器の伸長作動時における伸側室と圧側室との差圧をPとし、伸側室から流出する液体の流量をQとし、上記差圧Pと第1通路を通過する液体の流量Q1との関係である係数をC1とし、伸側室と伸側圧力室内の差圧をP1とし、差圧P1と伸側室から伸側圧力室内に流入する液体の流量Q2との関係である係数をC2とし、圧側室と圧側圧力室の差圧をP2とし、この差圧P2と圧側圧力室から圧側室に流出する液体の流量Q2との関係である係数をC3とし、フリーピストンの受圧面積である断面積をAとし、フリーピストンの圧力室に対する変位をXとし、コイルばねのばね定数をKとして、流量Qに対する差圧Pの伝達関数を求めると、式(1)が得られる。なお、式(1)中、sはラプラス演算子を示している。   Here, on the basis of the pressure in the compression side chamber, the differential pressure between the expansion side chamber and the compression side chamber during the expansion operation of the shock absorber is P, the flow rate of the liquid flowing out from the expansion side chamber is Q, and the differential pressure P and the first pressure A coefficient which is a relationship with the flow rate Q1 of the liquid passing through the passage is C1, a differential pressure between the extension side chamber and the extension side pressure chamber is P1, and a flow rate Q2 of the liquid flowing into the extension side pressure chamber from the differential pressure P1 and the extension side chamber. The coefficient that is the relationship between the pressure side chamber and the pressure side pressure chamber is P2, and the coefficient that is the relationship between the pressure difference P2 and the flow rate Q2 of the liquid flowing from the pressure side pressure chamber to the pressure side chamber is C3. The transfer function of the differential pressure P with respect to the flow rate Q is obtained by assuming that the cross-sectional area, which is the pressure receiving area of the free piston, is A, the displacement of the free piston with respect to the pressure chamber is X, and the spring constant of the coil spring is K. ) Is obtained. In equation (1), s represents a Laplace operator.

Figure 0006462341
さらに、上記式(1)で示された伝達関数中のラプラス演算子sにjωを代入して、周波数伝達関数G(jω)の絶対値を求めると、以下の式(2)が得られる。
Figure 0006462341
Furthermore, substituting jω for the Laplace operator s in the transfer function shown in the above equation (1) to obtain the absolute value of the frequency transfer function G (jω) yields the following equation (2).

Figure 0006462341
上記各式から理解できるように、この緩衝器における流量Qに対する差圧Pの伝達関数の周波数特性は、Fa=K/{2・π・A・(C1+C2+C3)}とFb=K/{2・π・A・(C2+C3)}の2つの折れ点周波数を持ち、また、F<Faの領域においては、伝達ゲインは略C1となり、Fa≦F≦Fbの領域においてはC1からC1・(C2+C3)/(C1+C2+C3)まで漸減するように変化して、F>Fbの領域においては一定となる。すなわち、流量Qに対する差圧Pの伝達関数の周波数特性は、低周波数域では伝達ゲインが大きくなり、高周波数域では伝達ゲインが小さくなる。
Figure 0006462341
As can be understood from the above equations, the frequency characteristics of the transfer function of the differential pressure P with respect to the flow rate Q in this buffer are Fa = K / {2 · π · A 2 · (C1 + C2 + C3)} and Fb = K / {2 Π · A 2 · (C2 + C3)} has two breakpoint frequencies, and in the region of F <Fa, the transfer gain is substantially C1, and in the region of Fa ≦ F ≦ Fb, C1 to C1 · ( C2 + C3) / (C1 + C2 + C3), and changes so as to decrease gradually, and becomes constant in the region of F> Fb. That is, in the frequency characteristic of the transfer function of the differential pressure P with respect to the flow rate Q, the transfer gain increases in the low frequency range, and the transfer gain decreases in the high frequency range.

したがって、この緩衝器では、低周波数の振動の入力に対しては大きな減衰力を発生し、他方、高周波数の振動の入力に対しては小さな減衰力を発生することができるので、車両が旋回中等の入力振動周波数が低い場面においては高い減衰力を確実に発生可能であるとともに、車両が路面の凹凸を通過するような入力振動周波数が高い場面においては低い減衰力を確実に発生させて、車両における乗り心地を向上させることができる(例えば、特許文献1,2参照)。   Therefore, this shock absorber can generate a large damping force for low-frequency vibration input, and can generate a small damping force for high-frequency vibration input. In the scene where the input vibration frequency is low, it is possible to reliably generate a high damping force, and in the scene where the input vibration frequency is high such that the vehicle passes through the unevenness of the road surface, the damping force is surely generated. Riding comfort in the vehicle can be improved (see, for example, Patent Documents 1 and 2).

特開2006−336816号公報JP 2006-336816 A 特開2008−215459号公報JP 2008-215459 A

ここで、特開2006−336816号公報や、特開2008−215459号公報に開示の緩衝器において、上記した減衰特性を得るための周波数感応部がフリーピストン、圧力室、第2通路及びコイルばねを備えて構成されており、当該周波数感応部がロッドの先端部に取り付けられている。そして、周波数感応部がピストンから軸方向圧側室側に突出した形状となり、当該緩衝器のストローク長を確保しようとすると、緩衝器を車体に取り付けるための車体側取付部から、緩衝器を車軸に取り付けるための車軸側取付部までの長さ(以下、基本長という)が長くなり、車両への搭載性が悪化する。   Here, in the shock absorber disclosed in Japanese Patent Application Laid-Open No. 2006-336816 and Japanese Patent Application Laid-Open No. 2008-215459, the frequency sensitive unit for obtaining the above-described damping characteristics includes a free piston, a pressure chamber, a second passage, and a coil spring. The frequency sensitive part is attached to the tip of the rod. Then, the frequency sensitive part protrudes from the piston toward the axial pressure side chamber side, and when trying to secure the stroke length of the shock absorber, the shock absorber is attached to the axle from the vehicle body side attachment part for attaching the shock absorber to the vehicle body. The length to the axle side mounting portion for mounting (hereinafter referred to as the basic length) becomes long, and the mounting property to the vehicle deteriorates.

そこで、本発明は上記した不具合を改善するために創案されたものであって、その目的とするところは、ストローク長を確保しながら基本長を短くして車両への搭載性を向上できる緩衝器を提供することである。   Accordingly, the present invention was devised in order to improve the above-described problems, and the object of the present invention is to provide a shock absorber capable of improving the mountability to a vehicle by shortening the basic length while ensuring the stroke length. Is to provide.

上記課題を解決するための手段は、シリンダと、上記シリンダ内に摺動自在に挿入されて上記シリンダ内を伸側室と圧側室とに区画するピストンと、一端が上記ピストンに連結されるとともに他端が上記シリンダ外に延びるロッドと、上記シリンダの外側に取り付けられるタンクと、上記タンク内に形成されて上記ロッド出没体積分の上記シリンダ内容積変化を補償するリザーバと、上記リザーバと上記圧側室とを区画するベース部材と、上記伸側室と上記圧側室とを連通する第一主通路と、上記圧側室と上記リザーバとを連通する第二主通路と、上記タンク内に形成される圧力室と、上記圧力室内に移動自在に挿入されて上記圧力室を伸側圧力室と圧側圧力室とに区画するとともに上記伸側圧力室と上記圧側圧力室の連通を断つフリーピストンと、上記フリーピストンの上記圧力室に対する変位を抑制する附勢力を発生するばね要素と、上記伸側圧力室と上記リザーバとを連通する伸側通路と、上記圧側圧力室と上記圧側室とを連通する圧側通路とを備えることである。 Other with the means for solving the above problems, a cylinder, a piston for partitioning the slidably inserted in the said cylinder and expansion side chamber and the compression side chamber within the cylinder, one end is connected to the piston a rod end extending out of the cylinder, and a tank attached to the outside of the cylinder, a reservoir formed within the tank to compensate for the cylinder volume change of the rod retractable volume fraction, the reservoir and the pressure side chamber A first main passage communicating the extension side chamber and the pressure side chamber, a second main passage communicating the pressure side chamber and the reservoir, and a pressure chamber formed in the tank If, Furipisu sever communication of the extension side pressure chamber and the pressure side pressure chamber with inserted movably in the pressure chamber defining the pressure chamber and the extension side pressure chamber and the compression side pressure chamber And down, and a spring element for generating a biasing force to suppress the displacement with respect to the pressure chamber of the free piston, and the extension side passage communicating with the extension side pressure chamber and the reservoir, and the compression side pressure chamber and the compression side chamber And a pressure side passage that communicates with each other.

本発明によれば、ストローク長を確保しながら基本長を短くして車両への搭載性を向上できる。   According to the present invention, the basic length can be shortened while securing the stroke length, and the mountability to the vehicle can be improved.

本発明の一実施の形態に係る緩衝器を部分的に切欠いて示した正面図である。It is the front view which notched and showed the buffer which concerns on one embodiment of this invention partially. 図1の主要部を拡大して示した図である。It is the figure which expanded and showed the principal part of FIG.

以下に本発明の一実施の形態に係る緩衝器について、図面を参照しながら説明する。いくつかの図面を通して付された同じ符号は、同じ部品を示す。   A shock absorber according to an embodiment of the present invention will be described below with reference to the drawings. The same reference numerals used throughout the several drawings indicate the same parts.

図1に示すように、本実施の形態に係る緩衝器Dは、シリンダ1と、このシリンダ1内に摺動自在に挿入されて上記シリンダ1内を伸側室L1と圧側室L2とに区画するピストン2と、一端がこのピストン2に連結されるとともに他端が上記シリンダ1外に延びるロッド6と、上記シリンダ1の外側に取り付けられるタンク10と、このタンク10内に形成されて上記ロッド出没体積分の上記シリンダ内容積変化を補償するリザーバTと、このリザーバTと上記圧側室L2とを区画するベース部材3と、上記伸側室L1と上記圧側室L2とを連通する第一主通路R1と、上記圧側室L2と上記リザーバTとを連通する第二主通路R2と、上記タンク10内に形成される圧力室L4と、この圧力室L4内に移動自在に挿入されて上記圧力室L4を伸側圧力室L40と圧側圧力室L41とに区画するフリーピストン4と、このフリーピストン4の上記圧力室L4に対する変位を抑制する附勢力を発生するばね要素Sと、上記伸側圧力室L40と上記リザーバTとを連通する伸側通路R3と、上記圧側圧力室L41と上記圧側室L2とを連通する圧側通路R4とを備えている。   As shown in FIG. 1, the shock absorber D according to the present embodiment is slidably inserted into the cylinder 1 and divides the cylinder 1 into an extension side chamber L1 and a pressure side chamber L2. A piston 2; a rod 6 having one end connected to the piston 2 and the other end extending outside the cylinder 1; a tank 10 attached to the outside of the cylinder 1; A reservoir T that compensates for the change in volume in the cylinder corresponding to the volume, a base member 3 that partitions the reservoir T and the compression side chamber L2, and a first main passage R1 that communicates the extension side chamber L1 and the compression side chamber L2. A second main passage R2 communicating the pressure side chamber L2 and the reservoir T, a pressure chamber L4 formed in the tank 10, and a pressure chamber L4 movably inserted into the pressure chamber L4. A free piston 4 partitioned into an extension side pressure chamber L40 and a compression side pressure chamber L41, a spring element S that generates a biasing force that suppresses displacement of the free piston 4 with respect to the pressure chamber L4, and the extension side pressure chamber L40 An expansion side passage R3 that communicates with the reservoir T, and a pressure side passage R4 that communicates the pressure side pressure chamber L41 and the pressure side chamber L2 are provided.

以下、詳細に説明すると、本実施の形態に係る緩衝器Dは、車両の車体と車軸との間に介装されて車体振動を抑制する目的で使用されており、車体側に連結される車体側取付部(図示せず)と、車軸側に連結される車軸側取付部Jと、車体側取付部と車軸側取付部Jの間に介装される緩衝器本体D1とを備えている。   In the following, the shock absorber D according to the present embodiment will be described in detail. The shock absorber D is interposed between the vehicle body and the axle of the vehicle and used for the purpose of suppressing vehicle body vibration, and is connected to the vehicle body side. A side attachment portion (not shown), an axle side attachment portion J connected to the axle side, and a shock absorber body D1 interposed between the vehicle body side attachment portion and the axle side attachment portion J.

この緩衝器本体D1は、縦置きに配置される筒状のシリンダ1と、このシリンダ1内に摺動自在に挿入されるピストン2と、図1中下端がピストン2に連結されるとともに図1中上端がシリンダ1外に延びるロッド6と、シリンダ1の図1中上側開口部を塞ぐとともにロッド6を摺動自在に軸支する環状のヘッド部材11と、シリンダ1の図1中下側開口部を塞ぐ有底筒状のボトム部材12と、シリンダ1外に設けられるタンク10と、一端がボトム部材12に接続されるとともに他端がタンク10に接続されてシリンダ1内とタンク10内とを連通するジョイントパイプ13と、タンク10内に摺動自在に挿入される摺動隔壁14と、タンク10内における摺動隔壁14よりもジョイントパイプ13側に設けられるベース部材3及びハウジング5と、これらベース部材3とハウジング5とを連結する固定ロッド8とを備えている。   The shock absorber main body D1 has a cylindrical cylinder 1 arranged vertically, a piston 2 slidably inserted into the cylinder 1, and a lower end in FIG. A rod 6 whose middle and upper ends extend outside the cylinder 1, an annular head member 11 that closes the upper opening in FIG. 1 of the cylinder 1 and pivotally supports the rod 6 slidably, and a lower opening in FIG. A bottomed cylindrical bottom member 12 that closes the part, a tank 10 provided outside the cylinder 1, one end connected to the bottom member 12 and the other end connected to the tank 10, and the cylinder 1 and the tank 10 A joint pipe 13 communicating with each other, a sliding partition wall 14 slidably inserted into the tank 10, a base member 3 provided on the joint pipe 13 side of the sliding partition wall 14 in the tank 10, and a housing. A grayed 5, and a fixing rod 8 connecting the these base member 3 and the housing 5.

そして、シリンダ1外に延びるロッド6の図1中上端部に車体側取付部(図示せず)が固定され、ボトム部材12の底部に車軸側取付部Jが固定されているので、振動入力時にロッド6と共にピストン2がシリンダ1内を軸方向に移動して、緩衝器Dが伸縮作動する。なお、緩衝器本体D1の構成は上記の限りではなく、シリンダ1が車体側取付部材を介して車体側に連結されるとともに、ロッド6が車軸側取付部Jを介して車軸側に連結されて、緩衝器Dが倒立型に設定されるとしてもよい。 A vehicle body side mounting portion (not shown) is fixed to the upper end portion of the rod 6 extending outside the cylinder 1 in FIG. 1, and the axle side mounting portion J is fixed to the bottom portion of the bottom member 12. The piston 2 moves together with the rod 6 in the cylinder 1 in the axial direction, and the shock absorber D is expanded and contracted. The configuration of the shock absorber body D1 is not limited to the above, and the cylinder 1 is connected to the vehicle body side through the vehicle body side mounting member, and the rod 6 is connected to the axle side through the axle side mounting portion J. The shock absorber D may be set upside down.

シリンダ1内には、ピストン2で区画されるロッド6側の伸側室L1と、ピストン2側の圧側室L2とが形成されており、これらは作動油等の液体で満たされている。また、タンク10内には、ベース部材3で圧側室L2と区画されるリザーバTが形成されており、このリザーバTは、摺動隔壁14でジョイントパイプ13側のタンク内作用室L3と、反対側の気室Gとに区画され、タンク内作用室L3には上記液体が満たされる一方、上記気室Gには圧縮された気体が封入されている。   In the cylinder 1, an extension side chamber L1 on the rod 6 side defined by the piston 2 and a pressure side chamber L2 on the piston 2 side are formed, and these are filled with a liquid such as hydraulic oil. In addition, a reservoir T that is partitioned from the pressure side chamber L2 by the base member 3 is formed in the tank 10, and this reservoir T is opposite to the tank internal chamber L3 on the joint pipe 13 side by the sliding partition wall 14. The tank chamber is filled with the liquid, while the gas chamber G is filled with a compressed gas.

伸側室L1と圧側室L2とを区画するピストン2は、環状に形成されており、シリンダ1内に挿入されるロッド6の図1中下端部外周にナット7で保持されている。そして、このピストン2に、伸側室L1と圧側室L2とを連通する第一主通路R1が設けられている。この第一主通路R1は、伸側ピストン通路2aと圧側ピストン通路2bからなり、伸側ピストン通路2aの図1中下端はピストン2の図1中下方に積層されるリーフバルブからなる伸側バルブV1で開閉され、他方の圧側ピストン通路2bの図1中上端はピストン2の図1中上方に積層されるリーフバルブからなる圧側バルブV2で開閉される。これら伸側バルブV1及び圧側バルブV2は、共に環状に形成されて内周側にはロッド6の図1中下端部が挿入されており、内周側がロッド6に固定されるとともに外周側の撓みが許容された状態でピストン2に積層されている。   The piston 2 that partitions the extension side chamber L1 and the pressure side chamber L2 is formed in an annular shape, and is held by a nut 7 on the outer periphery of the lower end portion in FIG. 1 of the rod 6 inserted into the cylinder 1. The piston 2 is provided with a first main passage R1 that communicates the extension side chamber L1 and the pressure side chamber L2. The first main passage R1 is composed of an extension side piston passage 2a and a pressure side piston passage 2b, and the lower end of the extension side piston passage 2a in FIG. 1 is an extension side valve consisting of a leaf valve stacked below the piston 2 in FIG. The other pressure side piston passage 2b is opened and closed by a pressure side valve V2 including a leaf valve stacked on the upper side of the piston 2 in FIG. The extension side valve V1 and the pressure side valve V2 are both formed in an annular shape, and the lower end in FIG. 1 of the rod 6 is inserted on the inner peripheral side, the inner peripheral side is fixed to the rod 6 and the outer peripheral side is bent. Is laminated on the piston 2 in a permitted state.

ピストン2に積層される伸側バルブV1は、緩衝器Dの伸長作動時に伸側室L1と圧側室L2の差圧によって撓んで開弁し、伸側ピストン通路2aを開放して伸側室L1から圧側室L2へ移動する液体の流れに抵抗を与えるとともに、緩衝器Dの収縮作動時には伸側ピストン通路2aを閉塞するようになっていて、伸側ピストン通路2aを一方通行に設定している。また、ピストン2に積層される圧側バルブV2は、伸側バルブV1とは反対に、緩衝器Dの収縮作動時に圧側ピストン通路2bを開放して圧側室L2から伸側室L1に移動する液体の流れに抵抗を与えるとともに、緩衝器Dの伸長作動時には圧側ピストン通路2bを閉塞するようになっていて、圧側ピストン通路2bを一方通行に設定している。   The expansion side valve V1 stacked on the piston 2 is bent and opened by the differential pressure between the expansion side chamber L1 and the compression side chamber L2 when the shock absorber D is extended, opens the expansion side piston passage 2a, and is compressed from the expansion side chamber L1. A resistance is given to the flow of the liquid moving to the chamber L2, and the expansion side piston passage 2a is closed during the contraction operation of the shock absorber D, and the expansion side piston passage 2a is set to be one-way. The pressure side valve V2 stacked on the piston 2 is opposite to the expansion side valve V1, and the flow of the liquid that moves from the pressure side chamber L2 to the expansion side chamber L1 by opening the pressure side piston passage 2b when the shock absorber D is contracted. The pressure side piston passage 2b is closed when the shock absorber D is extended, and the pressure side piston passage 2b is set to be one-way.

さらに、本実施の形態において、ピストン2に積層される伸側バルブV1と圧側バルブV2は、異なる圧力流量特性(流量に対する圧力の特性)を持ち、緩衝器Dが伸縮作動する際のピストン速度が同じ場合、伸側バルブV1による抵抗が圧側バルブV2による抵抗よりも大きく設定され、これらピストン2に積層される伸側バルブV1と圧側バルブV2で緩衝器Dの基本的な減衰力を発生し、伸側減衰力が圧側減衰力よりも大きくなるようになっている。   Further, in the present embodiment, the expansion side valve V1 and the pressure side valve V2 stacked on the piston 2 have different pressure flow characteristics (pressure characteristics with respect to the flow rate), and the piston speed when the shock absorber D is expanded and contracted is high. In the same case, the resistance by the expansion side valve V1 is set larger than the resistance by the compression side valve V2, and the basic damping force of the shock absorber D is generated by the expansion side valve V1 and the compression side valve V2 stacked on the piston 2. The extension side damping force is larger than the compression side damping force.

なお、伸側バルブV1及び圧側バルブV2を構成するリーフバルブの積層枚数や厚みは、望む減衰特性に応じて任意に変更することができる。また、伸側バルブV1及び圧側バルブV2は、リーフバルブ以外のバルブとされてもよいが、リーフバルブは、薄い環状板であり、ロッド6に組み付けた際の軸方向長さを短くできるので、伸側バルブV1及び圧側バルブV2をリーフバルブとすることで、緩衝器Dのストローク長を確保し易くすることができる。   The number and thickness of the leaf valves constituting the extension side valve V1 and the pressure side valve V2 can be arbitrarily changed according to the desired damping characteristics. Further, the expansion side valve V1 and the pressure side valve V2 may be valves other than the leaf valve, but the leaf valve is a thin annular plate, and the axial length when assembled to the rod 6 can be shortened. By making the extension side valve V1 and the pressure side valve V2 into leaf valves, the stroke length of the shock absorber D can be easily secured.

つづいて、リザーバTのタンク内作用室L3とシリンダ1内の圧側室L2とを区画するベース部材3は、環状に形成されており、タンク10内に配置される固定ロッド8の外周に鍔付ナット9で保持されている。具体的に説明すると、図2に示すように、固定ロッド8は、ベース部材3が外周に取り付けられる軸本体8aと、この軸本体8aの図2中下端部に連結されて軸本体8aよりも外周側に張り出す鍔部8bと、軸本体8aの図2中上端部に連結されて、外周に螺子溝が形成される螺子部8cとを備えて構成されており、軸本体8aは螺子部8c側からベース部材3の内周側に挿通され、ベース部材3から突出した螺子部8cの外周に鍔付ナット9を螺合することで、鍔部8bと鍔付ナット9との間にベース部材3を挟んで固定する。また、固定ロッド8には、当該固定ロッド8を軸方向に貫通する圧側通路R4が形成されており、この圧側通路R4は、ジョイントパイプ13及びボトム部材12の内側を介して、ハウジング5内に形成される後述の圧側圧力室L41と圧側室L2とを連通する。なお、図示したところでは、この圧側通路R4には、抵抗となる弁要素が図示されていないが、絞り等の減衰力発生要素を設けるようにしてもよい。   Subsequently, the base member 3 that partitions the in-tank working chamber L3 of the reservoir T and the compression side chamber L2 in the cylinder 1 is formed in an annular shape, and is attached to the outer periphery of the fixed rod 8 disposed in the tank 10. It is held by a nut 9. Specifically, as shown in FIG. 2, the fixed rod 8 is connected to the shaft main body 8a to which the base member 3 is attached to the outer periphery, and the lower end of the shaft main body 8a in FIG. A flange portion 8b projecting to the outer peripheral side and a screw portion 8c connected to the upper end portion of the shaft main body 8a in FIG. 2 and having a screw groove formed on the outer periphery are provided. The shaft main body 8a is a screw portion. The base 9 is inserted between the flange 8b and the flange nut 9 by screwing the flange nut 9 into the outer periphery of the screw portion 8c that is inserted from the 8c side to the inner periphery of the base member 3 and protrudes from the base member 3. The member 3 is sandwiched and fixed. The fixed rod 8 is formed with a pressure side passage R4 penetrating the fixed rod 8 in the axial direction. The pressure side passage R4 is formed inside the housing 5 via the joint pipe 13 and the bottom member 12. A pressure side chamber L41 and a pressure side chamber L2, which will be described later, are formed to communicate with each other. In addition, although the valve element used as resistance is not illustrated in this pressure side channel | path R4 in illustration, you may make it provide damping force generation elements, such as a throttle | throttle.

固定ロッド8の軸本体8a外周に保持されるベース部材3には、ジョイントパイプ13及びボトム部材12の内側を介して、タンク内作用室L3と圧側室L2とを連通する第二主通路R2が設けられている。この第二主通路R2は、伸側ベース通路3aと圧側ベース通路3bからなり、伸側ベース通路3aの図2中下端はベース部材3の図2中下方に積層されるリーフバルブからなる伸側バルブV3で閉塞され、他方の圧側ベース通路3bの図2中上端はベース部材3の図2中上方に積層されるリーフバルブからなる圧側バルブV4で開閉される。これら伸側バルブV3及び圧側バルブV4は、共に環状に形成されて内周側には固定ロッド8の軸本体8aが挿入されており、内周側が固定ロッド8に固定されるとともに外周側の撓みが許容された状態でベース部材3に積層されている。   The base member 3 held on the outer periphery of the shaft body 8a of the fixed rod 8 has a second main passage R2 that communicates the in-tank working chamber L3 and the pressure side chamber L2 through the inside of the joint pipe 13 and the bottom member 12. Is provided. The second main passage R2 includes an extension side base passage 3a and a pressure side base passage 3b. The lower end of the extension side base passage 3a in FIG. 2 is an extension side formed of a leaf valve stacked below the base member 3 in FIG. 2 is closed by a valve V3, and the upper end of the other pressure-side base passage 3b in FIG. 2 is opened and closed by a pressure-side valve V4 composed of leaf valves stacked on the upper side of the base member 3 in FIG. The extension side valve V3 and the pressure side valve V4 are both formed in an annular shape, and the shaft body 8a of the fixed rod 8 is inserted on the inner peripheral side. The inner peripheral side is fixed to the fixed rod 8 and the outer peripheral side is bent. Is laminated on the base member 3 in a permitted state.

ベース部材3に積層される伸側バルブV3は、緩衝器Dの伸長作動時に圧側室L2とタンク内作用室L3の差圧によって撓んで開弁し、伸側ベース通路3aを開放してタンク内作用室L3から圧側室L2へ移動する液体の流れに抵抗を与えるとともに、緩衝器Dの収縮作動時には伸側ベース通路3aを閉塞するようになっていて、伸側ベース通路3aを一方通行に設定している。また、ベース部材3に積層される圧側バルブV4は、伸側バルブV3とは反対に、緩衝器Dの収縮作動時に圧側ベース通路3bを開放して圧側室L2からタンク内作用室L3に移動する液体の流れに抵抗を与えるとともに、緩衝器Dの伸長作動時には圧側ベース通路3bを閉塞するようになっていて、圧側ベース通路3bを一方通行に設定している。   The expansion side valve V3 stacked on the base member 3 is bent and opened by the differential pressure between the compression side chamber L2 and the in-tank working chamber L3 when the shock absorber D is extended, and the expansion side base passage 3a is opened to open the inside of the tank. A resistance is given to the flow of the liquid moving from the working chamber L3 to the pressure side chamber L2, and the expansion side base passage 3a is closed during the contraction operation of the shock absorber D, and the expansion side base passage 3a is set to be one-way. doing. Also, the pressure side valve V4 stacked on the base member 3 moves from the pressure side chamber L2 to the in-tank working chamber L3 by opening the pressure side base passage 3b when the shock absorber D is contracted, contrary to the expansion side valve V3. In addition to providing resistance to the flow of liquid, the compression side base passage 3b is closed when the shock absorber D is extended, and the compression side base passage 3b is set to be one-way.

さらに、本実施の形態において、ベース部材3に積層される伸側バルブV3と圧側バルブV4は、同じ圧力流量特性を持ち、ピストン速度が同じ場合、伸側バルブV3による抵抗と圧側バルブV4による抵抗が同じになるように設定されていて、緩衝器Dの伸縮作動時に付加的な減衰力を発生する。   Further, in the present embodiment, the extension side valve V3 and the pressure side valve V4 stacked on the base member 3 have the same pressure flow characteristics, and when the piston speed is the same, the resistance by the extension side valve V3 and the resistance by the pressure side valve V4. Are set to be the same, and an additional damping force is generated when the shock absorber D is expanded or contracted.

なお、伸側バルブV3及び圧側バルブV4を構成するリーフバルブの積層枚数や厚みは、望む減衰特性に応じて任意に変更することができる。また、伸側バルブV3及び圧側バルブV4は、リーフバルブ以外のバルブとされてもよいが、リーフバルブは、薄い環状板であり、固定ロッド8に組み付けた際の軸方向長さを短くできるので、伸側バルブV3及び圧側バルブV4をリーフバルブとすることで、タンク10の軸方向長さを短くできる。   The number and thickness of the leaf valves constituting the extension side valve V3 and the pressure side valve V4 can be arbitrarily changed according to the desired damping characteristics. Further, the extension side valve V3 and the pressure side valve V4 may be valves other than the leaf valve, but the leaf valve is a thin annular plate, and the axial length when assembled to the fixed rod 8 can be shortened. By making the expansion side valve V3 and the pressure side valve V4 leaf valves, the axial length of the tank 10 can be shortened.

戻って、固定ロッド8の螺子部8cに螺合される鍔付ナット9の鍔部9aには、ベース部材3の反対側から有頂筒状のハウジング5の開口部5aが加締めにより固定されており、このハウジング5でタンク内作用室L3内に圧力室L4が区画されている。そして、この圧力室L4内には、フリーピストン4が摺動自在に挿入されるとともに、ばね要素Sが設けられている。圧力室L4は、フリーピストン4で図2中上側の伸側圧力室L40と、図2中下側の圧側圧力室L41とに区画されている。また、ばね要素Sは、フリーピストン4の図2中上下に配置されるコイルばねS1,S2からなり、フリーピストン4の圧力室L4に対する変位量に比例してその変位を抑制する附勢力をフリーピストン4に作用させている。   Returning to the flange portion 9a of the flanged nut 9 screwed into the screw portion 8c of the fixed rod 8, the opening portion 5a of the top tubular housing 5 is fixed by caulking from the opposite side of the base member 3. The housing 5 defines a pressure chamber L4 in the tank working chamber L3. In the pressure chamber L4, a free piston 4 is slidably inserted and a spring element S is provided. The pressure chamber L4 is divided by the free piston 4 into an extension side pressure chamber L40 on the upper side in FIG. 2 and a pressure side pressure chamber L41 on the lower side in FIG. The spring element S is composed of coil springs S1 and S2 arranged above and below the free piston 4 in FIG. 2, and has a free urging force that suppresses the displacement in proportion to the amount of displacement of the free piston 4 relative to the pressure chamber L4. It acts on the piston 4.

内側に圧力室L4を区画するハウジング5は、鍔付ナット9の鍔部9aに固定される開口部5aと、この開口部5aから図2中上側に延びる筒状の大内径部5bと、この大内径部5bよりも小さい内径を有し大内径部5bから図2中上側に延びる筒状の小内径部5cと、この小内径部5cの図2中上側開口を塞ぐ頂部5dとを備えている。なお、本実施の形態において、ハウジング5は、一つの部品からなるが、複数の部品を組み合わせて構成されるとしてもよい。また、ハウジング5がベース部材3のジョイントパイプ13側に取り付けられるようになっていてもよい。   The housing 5 that divides the pressure chamber L4 inside includes an opening 5a that is fixed to the flange portion 9a of the flanged nut 9, a cylindrical large inner diameter portion 5b that extends upward from the opening 5a in FIG. A cylindrical small inner diameter portion 5c having an inner diameter smaller than the large inner diameter portion 5b and extending upward from the large inner diameter portion 5b in FIG. 2, and a top portion 5d for closing the upper opening in FIG. 2 of the small inner diameter portion 5c. Yes. In the present embodiment, the housing 5 is composed of one component, but may be configured by combining a plurality of components. Further, the housing 5 may be attached to the joint pipe 13 side of the base member 3.

ハウジング5の頂部5dの中心部分は、ハウジング5の内側に向けて突出しており、上記中心部分には、タンク内作用室L3と伸側圧力室L40とを連通する固定オリフィス5eが設けられている。さらに、大内径部5bには、タンク内作用室L3と伸側圧力室L40とを連通し、フリーピストン4で開閉される可変オリフィス5fが設けられている。つまり、本実施の形態において、リザーバTのタンク内作用室L3と伸側圧力室L40とを連通する伸側通路R3は、固定オリフィス5eと可変オリフィス5fとを備えて構成される。また、上記したように、固定ロッド8に形成される圧側通路R4は、ジョイントパイプ13及びボトム部材12の内側を介して、圧側圧力室L41と圧側室L2とを連通している。   A central portion of the top portion 5d of the housing 5 protrudes toward the inside of the housing 5, and a fixed orifice 5e that communicates the in-tank working chamber L3 and the expansion side pressure chamber L40 is provided at the central portion. . Further, the large inner diameter portion 5 b is provided with a variable orifice 5 f that communicates with the in-tank working chamber L 3 and the expansion side pressure chamber L 40 and is opened and closed by the free piston 4. That is, in the present embodiment, the expansion side passage R3 that communicates the in-tank working chamber L3 and the expansion side pressure chamber L40 of the reservoir T includes the fixed orifice 5e and the variable orifice 5f. In addition, as described above, the pressure side passage R4 formed in the fixed rod 8 communicates the pressure side pressure chamber L41 and the pressure side chamber L2 via the joint pipe 13 and the inside of the bottom member 12.

このように、タンク内作用室L3と伸側圧力室L40が伸側通路R3によって連通され、圧側室L2と圧側圧力室L41が圧側通路R4によって連通され、伸側圧力室L40と圧側圧力室L41の容積は、フリーピストン4がハウジング5内で変位することによって変化するので、この緩衝器Dにおいては、伸側通路R3、伸側圧力室L40、圧側圧力室L41及び圧側通路R4からなる流路が、見かけ上、タンク内作用室L3と圧側室L2とを連通している。つまり、タンク内作用室L3と圧側室L2は、伸側ベース通路3aと圧側ベース通路3bからなる第二主通路R2の他にも、上記した見かけ上の流路によっても連通されることになる。   Thus, the tank working chamber L3 and the expansion side pressure chamber L40 are communicated by the expansion side passage R3, the pressure side chamber L2 and the pressure side pressure chamber L41 are communicated by the pressure side passage R4, and the expansion side pressure chamber L40 and the pressure side pressure chamber L41 are communicated. Is changed by the displacement of the free piston 4 in the housing 5, in the shock absorber D, the flow path comprising the expansion side passage R3, the expansion side pressure chamber L40, the pressure side pressure chamber L41, and the pressure side passage R4. However, apparently, the in-tank working chamber L3 and the pressure side chamber L2 communicate with each other. That is, the in-tank working chamber L3 and the pressure side chamber L2 are communicated not only by the above-described apparent flow path but also by the second main passage R2 composed of the expansion side base passage 3a and the pressure side base passage 3b. .

伸側圧力室L40と圧側圧力室L41を区画するフリーピストン4は、頂部4aと、この頂部4aの外周部から図2中下方に延びる筒部4bとを備えて有頂筒状に形成されており、ハウジング5の大内径部5b内に摺動自在に挿入されている。本実施の形態において、大内径部5bの軸心線とシリンダ1の軸心線が平行になっているので、緩衝器Dの図1中左右方向の幅を小さくできるが、シリンダ1の軸心線と大内径部5bの軸心線が交差するように設定し、緩衝器D全体が図1中上下に振動することによって、フリーピストン4のハウジング5に対する上下方向の振動が励起されることを避けるようにしてもよい。   The free piston 4 that divides the expansion side pressure chamber L40 and the compression side pressure chamber L41 includes a top portion 4a and a cylindrical portion 4b extending downward from the outer peripheral portion of the top portion 4a in FIG. And is slidably inserted into the large inner diameter portion 5 b of the housing 5. In the present embodiment, since the axis of the large inner diameter portion 5b and the axis of the cylinder 1 are parallel, the width of the shock absorber D in the left-right direction in FIG. It is set that the vibration of the free piston 4 in the vertical direction with respect to the housing 5 is excited by setting the wire and the axis of the large inner diameter portion 5b to intersect, and the entire shock absorber D vibrates up and down in FIG. It may be avoided.

また、フリーピストン4の外周には、周方向に沿う環状溝4cが形成されるとともに、フリーピストン4の頂部4aから環状溝4cにかけて軸方向に貫通する孔4dが形成されている。そして、フリーピストン4の頂部4aとハウジング5の頂部5dとの間と、フリーピストン4の頂部4aと鍔付ナット9の鍔部9aとの間には、コイルばねS1,S2がそれぞれ介装されており、これらコイルばねS1,S2からなるばね要素Sにより、フリーピストン4は圧力室L4内の所定の中立位置に位置決めされた上で弾性支持されている。   Further, an annular groove 4c is formed on the outer periphery of the free piston 4 along the circumferential direction, and a hole 4d penetrating in the axial direction from the top 4a of the free piston 4 to the annular groove 4c is formed. Coil springs S1 and S2 are interposed between the top 4a of the free piston 4 and the top 5d of the housing 5, and between the top 4a of the free piston 4 and the flange 9a of the flanged nut 9, respectively. The free piston 4 is elastically supported after being positioned at a predetermined neutral position in the pressure chamber L4 by the spring element S including the coil springs S1 and S2.

本実施の形態において、コイルばねS1の図2中上端部がハウジング5の小内径部5c内に挿入されるとともに、コイルばねS1の図2中下端がフリーピストン4の頂部4aの孔4dよりも内側に形成される環状の窪み4eに挿入され、コイルばねS2の図2中上端部がフリーピストン4の筒部4b内に挿入されるとともに、コイルばねS2の図2中下端が鍔付ナット9の鍔部9aに形成される環状の窪み9bに挿入されるようになっているので、コイルばねS1,S2の著しい位置ずれが防止されている。このため、これらコイルばねS1,S2で安定的にフリーピストン4に附勢力を作用させることが可能になるとともに、フリーピストン4がハウジング5に対して軸ぶれ等を起こして摺動抵抗が大きくなってしまうことがないようになっている。また、フリーピストン4は、筒部4bを備え、環状溝4cの図2中上下を大内径部5bの内周面へ摺接する摺動部としているので、当該摺動部の軸方向長さの確保が容易で、これによっても、フリーピストン4の軸ぶれが抑制される。   In the present embodiment, the upper end portion of the coil spring S1 in FIG. 2 is inserted into the small inner diameter portion 5c of the housing 5, and the lower end of the coil spring S1 in FIG. 2 is more than the hole 4d of the top portion 4a of the free piston 4. 2 is inserted into the annular recess 4e formed inside, and the upper end portion of the coil spring S2 in FIG. 2 is inserted into the cylindrical portion 4b of the free piston 4, and the lower end of the coil spring S2 in FIG. The coil springs S1 and S2 are prevented from being significantly misaligned because they are inserted into the annular recess 9b formed in the flange 9a. For this reason, it is possible to stably apply an urging force to the free piston 4 with the coil springs S1 and S2, and the free piston 4 causes shaft shake or the like with respect to the housing 5 to increase the sliding resistance. It is designed not to end up. Further, the free piston 4 includes a cylindrical portion 4b, and the upper and lower portions of the annular groove 4c in FIG. 2 are slidably contacting the inner peripheral surface of the large inner diameter portion 5b. It is easy to ensure, and this also suppresses the shaft shake of the free piston 4.

ここで、フリーピストン4が中立位置にある場合、フリーピストン4の環状溝4cと可変オリフィス5fが対向して可変オリフィス5f、環状溝4c及び孔4dを介しタンク内作用室L3と伸側圧力室L40とが連通する。しかし、フリーピストン4がハウジング5における大内径部5bと小内径部5cの境界部分に形成される段差面5g、あるいは、鍔付ナット9の鍔部9aに当接するストロークエンドまで変位すると、フリーピストン4の摺動部と可変オリフィス5fが完全にオーバーラップして、タンク内作用室L3と伸側圧力室L40の連通が遮断されるので、可変オリフィス5fが閉塞される。   Here, when the free piston 4 is in the neutral position, the annular groove 4c of the free piston 4 and the variable orifice 5f face each other, and the in-tank working chamber L3 and the expansion side pressure chamber are interposed via the variable orifice 5f, the annular groove 4c and the hole 4d. L40 communicates. However, when the free piston 4 is displaced to the stepped surface 5g formed at the boundary portion between the large inner diameter portion 5b and the small inner diameter portion 5c in the housing 5 or the stroke end contacting the flange portion 9a of the flanged nut 9, the free piston Since the sliding portion 4 and the variable orifice 5f completely overlap with each other and the communication between the in-tank working chamber L3 and the expansion side pressure chamber L40 is blocked, the variable orifice 5f is closed.

つまり、この緩衝器Dの場合、フリーピストン4が中立位置から変位し、可変オリフィス5fの開口全てが環状溝4cに対向する状況から摺動部に対向する状況に移行すると、変位量の増加に伴い可変オリフィス5fの流路面積が徐々に減少し、液体が伸側通路R3を通過する際の抵抗が徐々に増加するようになっている。そして、フリーピストン4がストロークエンドに達する以前に、可変オリフィス5fが完全に摺動部に対向して閉塞され、タンク内作用室L3が固定オリフィス5eのみによって伸側圧力室L40に連通する。このとき、液体が伸側通路R3を通過する際の抵抗が最大となる。   That is, in the case of the shock absorber D, when the free piston 4 is displaced from the neutral position and the state in which all the openings of the variable orifice 5f are opposed to the annular groove 4c is changed to the situation in which the sliding portion is opposed, the displacement amount increases. Along with this, the flow passage area of the variable orifice 5f gradually decreases, and the resistance when the liquid passes through the extension side passage R3 gradually increases. Before the free piston 4 reaches the stroke end, the variable orifice 5f is completely closed so as to face the sliding portion, and the tank working chamber L3 communicates with the expansion side pressure chamber L40 only by the fixed orifice 5e. At this time, the resistance when the liquid passes through the extension side passage R3 is maximized.

以下、本実施の形態に係る緩衝器Dの作動について説明する。   Hereinafter, the operation of the shock absorber D according to the present embodiment will be described.

ロッド6がシリンダ1から退出する緩衝器Dの伸長作動時には、ピストン2で伸側室L1が圧縮されて圧側室L2が拡大し、ロッド退出体積分の液体がシリンダ1内で不足するので、伸側室L1の圧力が高まると同時に圧側室L2の圧力が低下して、伸側室L1と圧側室L2との間、及び、圧側室L2とタンク内作用室L3との間に差圧が生じる。そして、伸側室L1の液体がピストン2に積層される伸側バルブV1を開き、伸側ピストン通路2aを通過して圧側室L2に移動する。さらに、タンク内作用室L3の液体がベース部材3に積層される伸側バルブV3を開き、伸側ベース通路3aを通過して圧側室L2に移動するとともに、伸側通路R3、伸側圧力室L40、圧側圧力室L41及び圧側通路R4からなる見かけ上の流路を介して圧側室L2に移動する。このとき、ロッド退出体積分の液体がタンク内作用室L3から流出するので、摺動隔壁14が図1中下側に押し下げられて気室Gが拡大し、当該気室Gでロッド退出体積分のシリンダ内容積変化を補償できる。   During the extension operation of the shock absorber D in which the rod 6 is withdrawn from the cylinder 1, the expansion side chamber L1 is compressed by the piston 2 and the compression side chamber L2 is expanded, so that the liquid for the rod withdrawal volume is insufficient in the cylinder 1, At the same time as the pressure in L1 increases, the pressure in the pressure side chamber L2 decreases, and a differential pressure is generated between the expansion side chamber L1 and the pressure side chamber L2 and between the pressure side chamber L2 and the in-tank working chamber L3. The liquid in the expansion side chamber L1 opens the expansion side valve V1 stacked on the piston 2, passes through the expansion side piston passage 2a, and moves to the compression side chamber L2. Furthermore, the expansion side valve V3 in which the liquid in the in-tank working chamber L3 is stacked on the base member 3 is opened, passes through the expansion side base passage 3a and moves to the compression side chamber L2, and the expansion side passage R3, the expansion side pressure chamber. It moves to the pressure side chamber L2 through an apparent flow path composed of L40, the pressure side pressure chamber L41 and the pressure side passage R4. At this time, since the liquid corresponding to the rod withdrawal volume flows out from the in-tank working chamber L3, the sliding partition wall 14 is pushed downward in FIG. 1 to enlarge the air chamber G, and the rod withdrawal volume integral in the air chamber G. It is possible to compensate for changes in the cylinder volume.

反対に、ロッド6がシリンダ1に進入する緩衝器Dの収縮作動時には、ピストン2で圧側室L2が圧縮されて伸側室L1が拡大し、ロッド進入体積分の液体がシリンダ1内で余剰となるので、圧側室L2の圧力が高まると同時に伸側室L1の圧力が低下して、伸側室L1と圧側室L2との間、及び、圧側室L2とタンク内作用室L3との間に差圧が生じる。そして、圧側室L2の液体がピストン2に積層される圧側バルブV2を開き、圧側ピストン通路2bを通過して伸側室L1に移動する。さらに、圧側室L2の液体がベース部材3に積層される圧側バルブV4を開き、圧側ベース通路3bを通過してタンク内作用室L3に移動するとともに、伸側通路R3、伸側圧力室L40、圧側圧力室L41及び圧側通路R4からなる見かけ上の流路を介してタンク内作用室L3に移動する。このとき、ロッド進入体積分の液体がタンク内作用室L3に流入するので、摺動隔壁14が図1中上側に押し上げられて気室Gが圧縮され、当該気室Gでロッド進入体積分のシリンダ内容積変化を補償できる。   On the contrary, when the shock absorber D in which the rod 6 enters the cylinder 1 is contracted, the compression side chamber L2 is compressed by the piston 2 and the expansion side chamber L1 expands, and the liquid corresponding to the rod entry volume becomes surplus in the cylinder 1. Therefore, the pressure in the compression side chamber L2 increases and simultaneously the pressure in the expansion side chamber L1 decreases, and a differential pressure is generated between the expansion side chamber L1 and the compression side chamber L2 and between the compression side chamber L2 and the in-tank working chamber L3. Arise. The liquid in the pressure side chamber L2 opens the pressure side valve V2 stacked on the piston 2, passes through the pressure side piston passage 2b, and moves to the expansion side chamber L1. Furthermore, the pressure side valve V4 in which the liquid in the pressure side chamber L2 is stacked on the base member 3 is opened, passes through the pressure side base passage 3b and moves to the tank internal working chamber L3, and the extension side passage R3, the extension side pressure chamber L40, It moves to the in-tank working chamber L3 via an apparent flow path composed of the pressure side pressure chamber L41 and the pressure side passage R4. At this time, since the liquid corresponding to the rod entry volume flows into the in-tank working chamber L3, the sliding partition wall 14 is pushed upward in FIG. 1 and the air chamber G is compressed. Compensates for cylinder volume changes.

そして、伸縮作動時において緩衝器Dは、液体が第一主通路R1を構成する伸側ピストン通路2aや圧側ピストン通路2bと、第二主通路R2を構成する伸側ベース通路3aや圧側ベース通路3bを通過する際の抵抗に起因する減衰力を発生する。つまり、ピストン2やベース部材3に積層される伸側バルブV1,V3は、緩衝器Dの伸長作動時の伸側減衰力を発生する減衰力発生要素であり、圧側バルブV2,V4は、緩衝器Dの収縮作動時の圧側減衰力を発生する減衰力発生要素である。また、圧側室L2とタンク内作用室L3は、第二主通路R2の他に、伸側通路R3、伸側圧力室L40、圧側圧力室L41及び圧側通路R4からなる見かけ上の流路を介しても連通しており、第二主通路R2と当該見かけ上の流路を流れる液体の流量の合計がロッド出没体積分となる。このため、見かけ上の流路を通過する液体の流量が変化すると、第二主通路R2を通過する液体の流量が変化するので、見かけ上の流路を通過する液体の流量の変化により緩衝器Dの減衰力が変化する。   During the expansion / contraction operation, the shock absorber D is configured such that the liquid is the extension side piston passage 2a and the compression side piston passage 2b that constitute the first main passage R1, and the extension side base passage 3a and the compression side base passage that constitute the second main passage R2. A damping force due to the resistance when passing through 3b is generated. That is, the expansion side valves V1 and V3 stacked on the piston 2 and the base member 3 are damping force generating elements that generate the expansion side damping force during the expansion operation of the shock absorber D, and the compression side valves V2 and V4 are buffering. It is a damping force generating element that generates a compression side damping force when the container D is contracted. In addition to the second main passage R2, the pressure side chamber L2 and the tank working chamber L3 are connected via an apparent flow path including an extension side passage R3, an extension side pressure chamber L40, a pressure side pressure chamber L41, and a pressure side passage R4. However, the total flow rate of the liquid flowing through the second main passage R2 and the apparent flow path is the rod retracting volume integral. For this reason, when the flow rate of the liquid passing through the apparent flow path changes, the flow rate of the liquid passing through the second main passage R2 changes. The damping force of D changes.

詳述すると、緩衝器Dの伸縮作動時におけるピストン速度が同じである場合、低周波振動入力時の緩衝器Dの振幅は、高周波振動入力時の緩衝器Dの振幅よりも大きくなる。このように緩衝器Dに入力される振動の周波数が低い場合、振幅が大きいため、伸縮1周期で圧側室L2とタンク内作用室L3を行き交う液体の流量は大きくなる。この流量に略比例して、フリーピストン4が動く変位も大きくなるが、フリーピストン4はばね要素Sで附勢されているため、フリーピストン4の変位が大きくなると、フリーピストン4が受けるばね要素Sからの附勢力も大きくなり、その分、伸側圧力室L40の圧力と圧側圧力室L41の圧力に差圧が生じて、タンク内作用室L3と伸側圧力室L40の差圧及び圧側室L2と圧側圧力室L41の差圧が小さくなり、上記の見かけ上の流路を通過する流量が小さくなる。この見かけ上の流路を通過する流量が小さい分、第二主通路R2を通過する液体の流量が大きくなり、緩衝器Dの伸長作動時には圧側室L2が減圧され、圧縮作動時には圧側室L2が増圧される。よって、緩衝器Dが発生する減衰力が大きいまま維持される。   More specifically, when the piston speed at the time of expansion / contraction operation of the shock absorber D is the same, the amplitude of the shock absorber D at the time of low frequency vibration input is larger than the amplitude of the shock absorber D at the time of high frequency vibration input. Thus, when the frequency of the vibration input to the shock absorber D is low, the amplitude is large, so that the flow rate of the liquid flowing between the compression side chamber L2 and the tank internal chamber L3 increases in one expansion / contraction cycle. Although the displacement of the free piston 4 is increased in proportion to the flow rate, the free piston 4 is biased by the spring element S. Therefore, when the displacement of the free piston 4 increases, the spring element that the free piston 4 receives is increased. The urging force from S is also increased, and a differential pressure is generated between the pressure in the expansion side pressure chamber L40 and the pressure side pressure chamber L41, and the pressure difference between the in-tank chamber L3 and the expansion side pressure chamber L40 and the pressure side chamber are increased. The differential pressure between L2 and the pressure side pressure chamber L41 is reduced, and the flow rate passing through the apparent flow path is reduced. The flow rate of the liquid passing through the second main passage R2 is increased by the small flow rate passing through this apparent flow path, the pressure side chamber L2 is depressurized when the shock absorber D is extended, and the pressure side chamber L2 is reduced during the compression operation. Increased pressure. Therefore, the damping force generated by the shock absorber D is kept large.

反対に、緩衝器Dに高周波振動が入力される場合、振幅が低周波振動入力時よりも小さいため、伸縮1周期で圧側室L2とタンク内作用室L3を行き交う液体の流量は小さく、フリーピストン4の動く変位も小さくなる。その分、伸側圧力室L40の圧力と圧側圧力室L41の圧力が略同圧となり、タンク内作用室L3と伸側圧力室L40の差圧及び圧側室L2と圧側圧力室L41の差圧は低周波振動入力時よりも大きくなって、上記の見かけ上の流路を通過する液体の流量が低周波振動入力時よりも増大する。この見かけ上の流路を通過する流量が増大した分は、第二主通路R2を通過する流体の流量が減少することになり、低周波振動入力時に比較して、緩衝器Dの伸長作動時では圧側室L2の減圧度合が小さくなり、圧縮作動時では圧側室L2の増圧度合が小さくなる。すると、緩衝器Dが発生する減衰力は低周波振動入力時の減衰力よりも小さくなる。   On the contrary, when the high frequency vibration is input to the shock absorber D, the amplitude is smaller than that when the low frequency vibration is input. Therefore, the flow rate of the liquid flowing between the compression side chamber L2 and the in-tank working chamber L3 is small in one expansion and contraction cycle. The moving displacement of 4 is also reduced. Accordingly, the pressure in the expansion side pressure chamber L40 and the pressure in the pressure side pressure chamber L41 become substantially the same, and the differential pressure between the in-tank working chamber L3 and the expansion side pressure chamber L40 and the differential pressure between the pressure side chamber L2 and the pressure side pressure chamber L41 are as follows. It becomes larger than when low-frequency vibration is input, and the flow rate of the liquid passing through the apparent flow path is increased as compared with when low-frequency vibration is input. The increase in the flow rate passing through this apparent flow path results in a decrease in the flow rate of the fluid passing through the second main passage R2, and when the shock absorber D is extended compared to when the low frequency vibration is input. The pressure reduction degree of the pressure side chamber L2 becomes small, and the pressure increase degree of the pressure side chamber L2 becomes small during the compression operation. Then, the damping force generated by the shock absorber D is smaller than the damping force when the low frequency vibration is input.

ここで、圧側室L2の圧力を基準として、緩衝器Dの伸長作動時におけるタンク内作用室L3と圧側室L2の差圧をPとし、タンク内作用室L3から流出する液体の流量をQとし、上記差圧Pと第二主通路R2を通過する液体の流量Q1との関係である係数をC1とし、タンク内作用室L3と伸側圧力室L40の差圧をP1とし、差圧P1とタンク内作用室L3から伸側圧力室L40に流入する液体の流量Q2との関係である係数をC2とし、圧側室L2と圧側圧力室L41の差圧をP2とし、この差圧P2と圧側圧力室L41から圧側室L2に流出する液体の流量Q2との関係である係数をC3とし、フリーピストン4の受圧面積である断面積をAとし、フリーピストン4の圧力室4に対する変位をXとし、ばね要素Sのばね定数をKとすると、流量Qに対する差圧Pの周波数伝達関数の周波数に対するゲイン特性は、従来例と同じく式(2)で示される特性となり、緩衝器Dは、低周波数域の振動に対しては大きな減衰力を発生し、高周波数域の振動に対しては減衰力を小さくすることができ、緩衝器Dの減衰力の変化を入力振動周波数に依存させることができる。なお、緩衝器Dの圧縮作動時においても上述の伸長作動時と同様に、低周波数域の振動に対しては大きな減衰力を発生し、高周波数領域の振動に対しては減衰力を小さくすることができ、緩衝器Dの減衰力の変化を入力振動周波数に依存させることができる。また、緩衝器Dの減衰特性の設定は、従来の緩衝器と同様に係数C1、C2、C3、ばね要素Sのばね定数K、フリーピストン4の受圧面積Aで設定されるが、各係数C1、C2、C3、ばね定数Kおよびフリーピストン4の受圧面積Aの設定いかんで伸側通路R3や圧側通路R4に設けられる絞り(固定オリフィス5eや可変オリフィス5f)の有無も任意である。 Here, on the basis of the pressure in the pressure side chamber L2, the differential pressure between the tank working chamber L3 and the pressure side chamber L2 during the expansion operation of the shock absorber D is P, and the flow rate of the liquid flowing out from the tank working chamber L3 is Q. The coefficient which is the relationship between the pressure difference P and the flow rate Q1 of the liquid passing through the second main passage R2 is C1, the pressure difference between the tank working chamber L3 and the expansion side pressure chamber L40 is P1, and the pressure difference P1 The coefficient which is the relationship with the flow rate Q2 of the liquid flowing into the expansion side pressure chamber L40 from the in-tank working chamber L3 is C2, and the differential pressure between the pressure side chamber L2 and the pressure side pressure chamber L41 is P2, and this differential pressure P2 and the pressure side pressure The coefficient that is the relationship with the flow rate Q2 of the liquid flowing out from the chamber L41 to the pressure side chamber L2 is C3, the cross-sectional area that is the pressure receiving area of the free piston 4 is A, and the displacement of the free piston 4 with respect to the pressure chamber L4 is X. , And the spring constant of the spring element S is K Then, the gain characteristic with respect to the frequency of the frequency transfer function of the differential pressure P with respect to the flow rate Q becomes a characteristic represented by the equation (2) as in the conventional example, and the shock absorber D has a large damping force against vibration in a low frequency range. The damping force can be reduced with respect to the vibration in the high frequency range, and the change in the damping force of the shock absorber D can be made to depend on the input vibration frequency. Even during the compression operation of the shock absorber D, a large damping force is generated for vibrations in the low frequency range and the damping force is reduced for vibrations in the high frequency range, as in the above-described expansion operation. The change of the damping force of the shock absorber D can be made to depend on the input vibration frequency. The damping characteristics of the shock absorber D are set by coefficients C1, C2, C3, the spring constant K of the spring element S, and the pressure receiving area A of the free piston 4 as in the conventional shock absorber. , C2, C3, the spring constant K, and the pressure receiving area A of the free piston 4 are set, and the presence or absence of a throttle (fixed orifice 5e or variable orifice 5f) provided in the extension side passage R3 or the pressure side passage R4 is also arbitrary.

つまり、本実施の形態において、フリーピストン4、圧力室L4、伸側通路R3、圧側通路R4及びばね要素Sを備えて周波数感応部F1が構成されており、当該周波数感応部F1を備えることで、上記したように減衰力の変化を入力振動周波数に依存させることができる。そして、本実施の形態においては、周波数感応部F1がシリンダ1の外側に取り付けられるタンク10内に配置されているので、周波数感応部F1を備える緩衝器Dにおいて、ストローク長を確保したとしていても、基本長(ストローク基準位置にあるときの車体側取付部から車軸側取付部までの長さ)Mを短くすることができ、車両への搭載性を向上させることができる。   That is, in the present embodiment, the frequency sensitive portion F1 is configured to include the free piston 4, the pressure chamber L4, the extension side passage R3, the pressure side passage R4, and the spring element S, and the frequency sensitive portion F1 is provided. As described above, the change in the damping force can be made to depend on the input vibration frequency. In the present embodiment, since the frequency sensitive part F1 is arranged in the tank 10 attached to the outside of the cylinder 1, even if the stroke length is secured in the shock absorber D provided with the frequency sensitive part F1. The basic length (the length from the vehicle body side mounting portion to the axle side mounting portion when the stroke is at the stroke reference position) M can be shortened, and the mountability to the vehicle can be improved.

また、本実施の形態に係る緩衝器Dでは、リザーバTにおけるタンク内作用室L3と気室Gとを区画する摺動隔壁14は、タンク内作用室L3側に凹部14aを備えており、緩衝器Dが最伸長した際には、ハウジング5の図1中上端が上記凹部14aに進入することを許容しており、タンク10の軸方向長さが大きくなることを抑制している。   Further, in the shock absorber D according to the present embodiment, the sliding partition wall 14 that divides the in-tank working chamber L3 and the air chamber G in the reservoir T is provided with a recess 14a on the in-tank working chamber L3 side. When the container D is extended to the maximum, the upper end in FIG. 1 of the housing 5 is allowed to enter the recess 14a, and the axial length of the tank 10 is prevented from increasing.

また、本実施の形態に係る緩衝器Dでは、ピストン2に積層される伸側バルブV1と圧側バルブV2の圧力流量特性を変えるとともに、ベース部材3に積層される伸側バルブV3と圧側バルブV4の圧力流量特性を同じにして、伸側減衰力を圧側減衰力よりも大きくしており、これにより車両の乗り心地を向上させいる。   Further, in the shock absorber D according to the present embodiment, the pressure flow characteristics of the extension side valve V1 and the pressure side valve V2 stacked on the piston 2 are changed, and the extension side valve V3 and the pressure side valve V4 stacked on the base member 3 are changed. The extension side damping force is made larger than the compression side damping force so that the ride comfort of the vehicle is improved.

ここで、例えば、特開2006−336816号公報や、特開2008−215459号公報に開示のように、周波数感応部を構成する圧力室を伸側室と圧側室に連通させた緩衝器において、ピストンに設けた伸側バルブと圧側バルブの圧力流量特性を変えることで伸側減衰力を圧側減衰力よりも大きくすると、周波数感応部による減衰力低減効果を充分に発揮できなくなる可能性がある。詳述すると、緩衝器が高周波で伸縮を繰り返した場合に、伸側室の圧力が圧側室の圧力よりも高くなる傾向がある。このため、伸側室の圧力が伝播する伸側圧力室の圧力の方が、圧側室の圧力が伝播する圧側圧力室の圧力よりも高くなって、フリーピストンが圧側圧力室側へ偏って変位した状態となる。そして、このようにフリーピストンの変位に偏りが生じると、フリーピストンの圧側圧力室側へのストローク余裕が小さくなって、周波数感応部による減衰力低減効果を充分に発揮できなくなる可能性がある。   Here, for example, as disclosed in Japanese Patent Application Laid-Open No. 2006-336816 and Japanese Patent Application Laid-Open No. 2008-215459, in a shock absorber in which a pressure chamber constituting a frequency sensitive portion is communicated with an extension side chamber and a pressure side chamber, If the extension side damping force is made larger than the compression side damping force by changing the pressure flow characteristics of the extension side valve and the pressure side valve provided in the valve, the damping force reduction effect by the frequency sensitive part may not be fully exhibited. More specifically, when the shock absorber repeatedly expands and contracts at a high frequency, the pressure in the extension side chamber tends to be higher than the pressure in the compression side chamber. For this reason, the pressure in the expansion side pressure chamber through which the pressure in the expansion side chamber propagates is higher than the pressure in the pressure side pressure chamber through which the pressure in the compression side chamber propagates, and the free piston is displaced toward the pressure side pressure chamber side. It becomes a state. If the displacement of the free piston is biased in this way, the stroke margin of the free piston toward the pressure side pressure chamber becomes small, and the damping force reducing effect by the frequency sensitive part may not be fully exhibited.

しかしながら、本実施の形態においては、車両の乗り心地を良好にするために伸側減衰力と圧側減衰力に差をつけたとしても、ベース部材3に積層される伸側バルブV3と圧側バルブV4の圧力流量特性を同じにすることで、フリーピストン4の変位が伸側圧力室L40側や圧側圧力室L41側の一方に偏ることを抑制できる。このため、本実施の形態においては、伸側減衰力が圧側減衰力よりも大きく設定され、高周波振動が継続して入力される状況下においても、フリーピストン4のストローク余裕を確保することができ、減衰力低減効果を失うことがない。   However, in this embodiment, even if there is a difference between the extension side damping force and the compression side damping force in order to improve the riding comfort of the vehicle, the extension side valve V3 and the compression side valve V4 stacked on the base member 3 are used. By making the pressure flow characteristics of the same, the displacement of the free piston 4 can be suppressed from being biased to one of the expansion side pressure chamber L40 side and the pressure side pressure chamber L41 side. For this reason, in this embodiment, the extension side damping force is set larger than the compression side damping force, and the stroke margin of the free piston 4 can be secured even in a situation where high-frequency vibration is continuously input. The damping force reduction effect is not lost.

さらに、本実施の形態において、ロッド6が車体側に連結されるとともにシリンダ1が車軸側に連結されていて、緩衝器Dが正立型に設定されており、周波数感応部F1が車両のばね下に配置されている。このため、フリーピストン4がストロークエンドに達した時の打音がロッド6を介して車体側に伝播され難く、搭乗者が上記打音を知覚し難くなる。   Further, in the present embodiment, the rod 6 is connected to the vehicle body side, the cylinder 1 is connected to the axle side, the shock absorber D is set upright, and the frequency sensitive portion F1 is a spring of the vehicle. Located below. For this reason, it is difficult for the hitting sound when the free piston 4 reaches the stroke end to be propagated to the vehicle body side via the rod 6, and it becomes difficult for the passenger to perceive the hitting sound.

以下、本実施の形態に係る緩衝器Dの作用効果について説明する。   Hereinafter, the operational effects of the shock absorber D according to the present embodiment will be described.

本実施の形態において、緩衝器Dは、タンク10内に摺動自在に挿入されてリザーバTをタンク内作用室L3と気室Gとに区画する摺動隔壁14を備えている。そして、上記タンク内作用室L3には、第二主通路R2が接続されており、上記気室Gには、圧縮された気体が封入されている。   In the present embodiment, the shock absorber D includes a sliding partition wall 14 that is slidably inserted into the tank 10 and partitions the reservoir T into an in-tank working chamber L3 and an air chamber G. A second main passage R2 is connected to the tank working chamber L3, and the gas chamber G is filled with compressed gas.

上記構成によれば、タンク内作用室L3が摺動隔壁14を介して気室Gで加圧されているので、第二主通路R2を通ってタンク内作用室L3から圧側室L2に向かう液体の流れに伸側バルブV3で抵抗を与えるようにしても、緩衝器Dの伸長作動時に圧側室L2が負圧となることを抑制できる。このため、上記したように、ベース部材3に積層される伸側バルブV3と圧側バルブV4の圧力流量特性を同じにし易い。   According to the above configuration, since the tank working chamber L3 is pressurized in the air chamber G through the sliding partition wall 14, the liquid traveling from the tank working chamber L3 to the pressure side chamber L2 through the second main passage R2. Even if resistance is given to the flow by the expansion side valve V3, it is possible to suppress the pressure side chamber L2 from becoming negative pressure when the shock absorber D is extended. For this reason, as described above, it is easy to make the pressure flow characteristics of the expansion side valve V3 and the pressure side valve V4 laminated on the base member 3 the same.

また、本実施の形態において、第二主通路R2は、リザーバTと圧側室L2とを連通する伸側ベース通路3aと圧側ベース通路3bとからなり、上記伸側ベース通路3aの途中には、伸長作動時に開弁して上記リザーバTから上記圧側室L2に向かう流体の流れを許容する伸側バルブV3が設けられており、上記圧側ベース通路3bの途中には、圧縮作動時に開弁して上記圧側室L2から上記リザーバTに向かう流体の流れを許容する圧側バルブV4が設けられている。そして、上記伸側バルブV3と上記圧側バルブV4は、同じ圧力流量特性を持つ。   Further, in the present embodiment, the second main passage R2 includes an extension side base passage 3a and a pressure side base passage 3b communicating the reservoir T and the pressure side chamber L2, and in the middle of the extension side base passage 3a, An expansion side valve V3 that opens during the expansion operation and allows the flow of fluid from the reservoir T toward the pressure side chamber L2 is provided. In the middle of the pressure side base passage 3b, the valve opens during the compression operation. A pressure side valve V4 that allows the flow of fluid from the pressure side chamber L2 toward the reservoir T is provided. The extension side valve V3 and the pressure side valve V4 have the same pressure flow characteristics.

上記構成によれば、第二主通路R2を通って、リザーバTから圧側室L2へ向かう液体の流れに与える抵抗と、圧側室L2からリザーバTへ向かう液体の流れに与える抵抗を同じにできるので、フリーピストン4の偏りを抑制でき、減衰力低減効果を失うことを防ぐことができる。   According to the above configuration, the resistance given to the flow of liquid from the reservoir T to the pressure side chamber L2 through the second main passage R2 and the resistance given to the flow of liquid from the pressure side chamber L2 to the reservoir T can be made the same. The bias of the free piston 4 can be suppressed and the loss of the damping force reduction effect can be prevented.

また、本実施の形態において、緩衝器Dは、シリンダ1と、このシリンダ1内に摺動自在に挿入されて上記シリンダ1内を伸側室L1と圧側室L2とに区画するピストン2と、一端がこのピストン2に連結されるとともに他端が上記シリンダ1外に延びるロッド6と、上記シリンダ1の外側に取り付けられるタンク10と、このタンク10内に形成されて上記ロッド出没体積分の上記シリンダ内容積変化を補償するリザーバTと、このリザーバTと上記圧側室L2とを区画するベース部材3と、上記伸側室L1と上記圧側室L2とを連通する第一主通路R1と、上記圧側室L2と上記リザーバRとを連通する第二主通路R2と、上記タンク10内に形成される圧力室L4と、この圧力室L4内に移動自在に挿入されて上記圧力室L4を伸側圧力室L40と圧側圧力室L41とに区画するフリーピストン4と、このフリーピストン4の上記圧力室L4に対する変位を抑制する附勢力を発生するばね要素Sと、上記伸側圧力室L40と上記リザーバTとを連通する伸側通路R3と、上記圧側圧力室L41と上記圧側室L2とを連通する圧側通路R4とを備えている。   In the present embodiment, the shock absorber D includes a cylinder 1, a piston 2 that is slidably inserted into the cylinder 1 and divides the cylinder 1 into an expansion side chamber L 1 and a compression side chamber L 2, and one end Is connected to the piston 2 and has the other end extending outside the cylinder 1, a tank 10 attached to the outside of the cylinder 1, and the cylinder formed in the tank 10 for the rod protruding and retracting volume. A reservoir T that compensates for changes in the internal volume, a base member 3 that partitions the reservoir T and the pressure side chamber L2, a first main passage R1 that communicates the extension side chamber L1 and the pressure side chamber L2, and the pressure side chamber A second main passage R2 communicating L2 and the reservoir R; a pressure chamber L4 formed in the tank 10; and a pressure chamber L4 that is movably inserted into the pressure chamber L4 to expand the pressure chamber L4 A free piston 4 partitioned into a chamber L40 and a pressure side pressure chamber L41, a spring element S that generates a biasing force that suppresses displacement of the free piston 4 with respect to the pressure chamber L4, the extension side pressure chamber L40, and the reservoir T And a pressure side passage R4 that communicates the pressure side pressure chamber L41 and the pressure side chamber L2.

上記構成によれば、フリーピストン4、圧力室L4、伸側通路R3、圧側通路R4及びばね要素Sを備えて構成される周波数感応部F1を、シリンダ1の外側に配置されるタンク10内に設けているので、緩衝器Dのストローク長を確保したとしても緩衝器Dの基本長Mを短くすることができ、車両への搭載性を向上させることができる。   According to the above configuration, the frequency sensitive portion F1 including the free piston 4, the pressure chamber L4, the extension side passage R3, the pressure side passage R4, and the spring element S is disposed in the tank 10 disposed outside the cylinder 1. Since it is provided, even if the stroke length of the shock absorber D is secured, the basic length M of the shock absorber D can be shortened, and the mountability to the vehicle can be improved.

さらに、本実施の形態においては、第一主通路R1がピストン2に形成されており、このピストン2に第一主通路R1を開閉する伸側バルブV1や圧側バルブV2が積層されているが、第一主通路R1がシリンダ1の外側を通って伸側室L1と圧側室L2とを連通し、第一主通路R1を開閉する伸側バルブV1や圧側バルブV2をシリンダ1外に設けるようにしてもよい。このようにした場合、緩衝器Dの基本長Mを更に短くすることができる。   Further, in the present embodiment, the first main passage R1 is formed in the piston 2, and the expansion side valve V1 and the pressure side valve V2 for opening and closing the first main passage R1 are laminated on the piston 2. The first main passage R1 communicates with the extension side chamber L1 and the pressure side chamber L2 through the outside of the cylinder 1, and the extension side valve V1 and the pressure side valve V2 for opening and closing the first main passage R1 are provided outside the cylinder 1. Also good. In this case, the basic length M of the shock absorber D can be further shortened.

以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱することなく改造、変形及び変更を行うことができることは理解すべきである。   Although preferred embodiments of the present invention have been described in detail above, it should be understood that modifications, variations and changes may be made without departing from the scope of the claims.

D 緩衝器
G 気室
L1 伸側室
L2 圧側室
L3 タンク内作用室
L4 圧力室
L40 伸側圧力室
L41 圧側圧力室
R1 第一主通路
R2 第二主通路
R3 伸側通路
R4 圧側通路
S ばね要素
T リザーバ
V3 伸側バルブ
V4 圧側バルブ
1 シリンダ
2 ピストン
3 ベース部材
3a 伸側ベース通路
3b 圧側ベース通路
4 フリーピストン
6 ロッド
10 タンク
14 摺動隔壁
D Buffer G Air chamber L1 Extension side chamber L2 Pressure side chamber L3 In-tank action chamber L4 Pressure chamber L40 Extension side pressure chamber L41 Pressure side pressure chamber R1 First main passage R2 Second main passage R3 Extension side passage R4 Pressure side passage S Spring element T Reservoir V3 Extension side valve V4 Pressure side valve 1 Cylinder 2 Piston 3 Base member 3a Extension side base passage 3b Pressure side base passage 4 Free piston 6 Rod 10 Tank 14 Sliding partition

Claims (3)

シリンダと、
上記シリンダ内に摺動自在に挿入されて上記シリンダ内を伸側室と圧側室とに区画するピストンと、
一端が上記ピストンに連結されるとともに他端が上記シリンダ外に延びるロッドと、
上記シリンダの外側に取り付けられるタンクと、
上記タンク内に形成されて上記ロッド出没体積分の上記シリンダ内容積変化を補償するリザーバと、
上記リザーバと上記圧側室とを区画するベース部材と、
上記伸側室と上記圧側室とを連通する第一主通路と、
上記圧側室と上記リザーバとを連通する第二主通路と、
上記タンク内に形成される圧力室と、
上記圧力室内に移動自在に挿入されて上記圧力室を伸側圧力室と圧側圧力室とに区画するとともに上記伸側圧力室と上記圧側圧力室の連通を断つフリーピストンと、
上記フリーピストンの上記圧力室に対する変位を抑制する附勢力を発生するばね要素と、
上記伸側圧力室と上記リザーバとを連通する伸側通路と、
上記圧側圧力室と上記圧側室とを連通する圧側通路とを備える
ことを特徴とする緩衝器。
A cylinder,
A piston that is slidably inserted into the cylinder and divides the cylinder into an extension side chamber and a pressure side chamber;
A rod other end extending out of the cylinder with one end connected to said piston,
A tank attached to the outside of the cylinder;
A reservoir that is formed in the tank and compensates for a change in the volume of the cylinder corresponding to the volume of the rod;
A base member defining the said reservoir and the pressure side chamber,
A first main passage communicating the extension side chamber and the pressure side chamber;
A second main passage communicating the pressure side chamber and the reservoir;
A pressure chamber formed in the tank;
A free piston that is movably inserted into the pressure chamber and divides the pressure chamber into an extension side pressure chamber and a pressure side pressure chamber and disconnects the extension side pressure chamber and the pressure side pressure chamber ;
A spring element for generating the inhibit biasing force of the displacement with respect to the pressure chamber of the free piston,
An extension side passage communicating the extension side pressure chamber and the reservoir;
A shock absorber comprising a pressure side passage communicating the pressure side pressure chamber and the pressure side chamber.
上記第二主通路は、上記リザーバと上記圧側室とを連通する伸側ベース通路と圧側ベース通路とからなり、
上記伸側ベース通路の途中には、伸長作動時に開弁して上記リザーバから上記圧側室に向かう流体の流れを許容する伸側バルブが設けられており、
上記圧側ベース通路の途中には、圧縮作動時に開弁して上記圧側室から上記リザーバに向かう流体の流れを許容する圧側バルブが設けられており、
上記伸側バルブと上記圧側バルブは、同じ圧力流量特性を持つ
ことを特徴とする請求項1に記載の緩衝器。
The second main passage includes an extension side base passage and a pressure side base passage communicating the reservoir and the pressure side chamber,
In the middle of the extension side base passage, there is provided an extension side valve that opens during the extension operation and allows the flow of fluid from the reservoir toward the pressure side chamber,
In the middle of the pressure side base passage, there is provided a pressure side valve that opens during compression operation and allows the flow of fluid from the pressure side chamber toward the reservoir,
The shock absorber according to claim 1, wherein the extension side valve and the pressure side valve have the same pressure flow characteristics.
上記タンク内に摺動自在に挿入されて上記リザーバをタンク内作用室と気室とに区画する摺動隔壁を備えており、
上記タンク内作用室には、上記第二主通路が接続されており、
上記気室には、圧縮された気体が封入されている
ことを特徴とする請求項1または請求項2に記載の緩衝器。
A sliding partition wall that is slidably inserted into the tank and divides the reservoir into a tank working chamber and an air chamber;
The second main passage is connected to the working chamber in the tank,
The shock absorber according to claim 1 or 2, wherein a compressed gas is sealed in the air chamber.
JP2014242800A 2014-12-01 2014-12-01 Shock absorber Active JP6462341B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014242800A JP6462341B2 (en) 2014-12-01 2014-12-01 Shock absorber
PCT/JP2015/083142 WO2016088629A1 (en) 2014-12-01 2015-11-26 Damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014242800A JP6462341B2 (en) 2014-12-01 2014-12-01 Shock absorber

Publications (2)

Publication Number Publication Date
JP2016104997A JP2016104997A (en) 2016-06-09
JP6462341B2 true JP6462341B2 (en) 2019-01-30

Family

ID=56091575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014242800A Active JP6462341B2 (en) 2014-12-01 2014-12-01 Shock absorber

Country Status (2)

Country Link
JP (1) JP6462341B2 (en)
WO (1) WO2016088629A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085502B2 (en) 2017-08-28 2021-08-10 Qa1 Precision Products, Inc. Bleed needle for a hydraulic system
US11105390B2 (en) 2017-08-28 2021-08-31 Qa1 Precision Products, Inc. Shock absorber with dry valving
USD869259S1 (en) 2017-08-28 2019-12-10 Qa1 Precision Products, Inc. Valve component
USD872837S1 (en) 2017-08-28 2020-01-14 Qa1 Precision Products, Inc. Bleed needle
USD866408S1 (en) 2017-08-28 2019-11-12 Qa1 Precision Products, Inc. Shock absorber
CN109027112A (en) * 2018-09-21 2018-12-18 萍乡市凯越机电设备有限公司 damping device for electromechanical equipment
CN109027108A (en) * 2018-09-21 2018-12-18 萍乡市凯越机电设备有限公司 The damping device of electromechanical equipment
CN109083973A (en) * 2018-09-21 2018-12-25 萍乡市凯越机电设备有限公司 Modified damping device for electromechanical equipment
CN109058672A (en) * 2018-09-21 2018-12-21 萍乡市凯越机电设备有限公司 Electromechanical equipment damping device
CN109027107A (en) * 2018-09-21 2018-12-18 萍乡市凯越机电设备有限公司 Electromechanical equipment damping device
CN109058370A (en) * 2018-09-21 2018-12-21 萍乡市凯越机电设备有限公司 Novel shock absorption device for electromechanical equipment
CN109356958B (en) * 2018-12-17 2023-08-22 中国空气动力研究与发展中心超高速空气动力研究所 Self-resetting buffer device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768648B2 (en) * 2007-03-02 2011-09-07 カヤバ工業株式会社 Shock absorber
JP5639870B2 (en) * 2010-12-10 2014-12-10 カヤバ工業株式会社 Hydraulic shock absorber for vehicles
JP2013194763A (en) * 2012-03-16 2013-09-30 Tein:Kk Fluid pressure shock absorber

Also Published As

Publication number Publication date
WO2016088629A1 (en) 2016-06-09
JP2016104997A (en) 2016-06-09

Similar Documents

Publication Publication Date Title
JP6462341B2 (en) Shock absorber
JP4996952B2 (en) Shock absorber
JP6108550B2 (en) Shock absorber
JP4768648B2 (en) Shock absorber
JP5466437B2 (en) Shock absorber
JP5822359B2 (en) Shock absorber
JP4909765B2 (en) Shock absorber
JP5603817B2 (en) Shock absorber
WO2016088536A1 (en) Damper
JP4939308B2 (en) Shock absorber
JP5878840B2 (en) Shock absorber
JP5681596B2 (en) Shock absorber
JP2013007425A (en) Shock absorber
WO2016088637A1 (en) Damper
JP5870427B2 (en) Shock absorber
JP6027462B2 (en) Shock absorber
JP2010196842A (en) Shock absorber
JP5690179B2 (en) Shock absorber
JP4909766B2 (en) Shock absorber
JP5618417B2 (en) Shock absorber
JP2010144786A (en) Shock absorbing device
JP5681595B2 (en) Shock absorber
JP5640133B2 (en) Shock absorber
JP6082277B2 (en) Shock absorber
JP5909538B2 (en) Shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181227

R151 Written notification of patent or utility model registration

Ref document number: 6462341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350