WO2016088565A1 - 固体撮像装置、及び、電子機器 - Google Patents

固体撮像装置、及び、電子機器 Download PDF

Info

Publication number
WO2016088565A1
WO2016088565A1 PCT/JP2015/082550 JP2015082550W WO2016088565A1 WO 2016088565 A1 WO2016088565 A1 WO 2016088565A1 JP 2015082550 W JP2015082550 W JP 2015082550W WO 2016088565 A1 WO2016088565 A1 WO 2016088565A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
pixel
solid
frame
color filter
Prior art date
Application number
PCT/JP2015/082550
Other languages
English (en)
French (fr)
Inventor
北野 良昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016088565A1 publication Critical patent/WO2016088565A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/48Increasing resolution by shifting the sensor relative to the scene

Definitions

  • the present technology relates to a solid-state imaging device and an electronic device, and more particularly to a solid-state imaging device and an electronic device that can capture a high-quality image at high speed.
  • CMOS Complementary Metal Oxide Semiconductor
  • CMOS Complementary Metal Oxide Semiconductor
  • a subject image is picked up by a solid-state image pickup device having a color filter array in which a plurality of color filters are arranged two-dimensionally, and a signal of a color different from the pixel signal output from each pixel is Therefore, it is generated by interpolation processing based on pixel signals of pixels in the vicinity of the pixel.
  • Patent Document 1 Since the color information obtained by such interpolation processing is not accurate information, various techniques for obtaining accurate color information without using the interpolation processing have been proposed (for example, see Patent Document 1).
  • a color filter array is moved relative to a pixel array in which a plurality of pixels are two-dimensionally arranged, and light from all color filters is transmitted to each pixel. By receiving the light, the pixel signals of all colors are output from each pixel.
  • the present technology has been made in view of such a situation, and is capable of capturing a high-quality image at high speed.
  • the solid-state imaging device includes a color filter array in which a plurality of color filters having different transmission characteristics are two-dimensionally arranged, and a plurality of pixels to which light from the color filter is incident.
  • the color filter array is obtained by first imaging composed of pixel signals obtained by imaging before movement in units of pixels and imaging after movement in units of pixels. By combining the second frame made up of pixel signals, the first combined frame made up of only the pixel signals of the first color, the pixel signal of the second color, and the pixel signal of the third color are performed.
  • the color filters are arranged so as to obtain second composite frames alternately arranged at the same density in the direction and the column direction.
  • a color filter array in which a plurality of color filters having different transmission characteristics are two-dimensionally arranged and a plurality of pixels to which light from the color filter is incident are provided. And a pixel array arranged two-dimensionally.
  • the color filter array includes a first frame composed of pixel signals obtained by imaging before movement in pixel units, and a second frame composed of pixel signals obtained by imaging after movement in pixel units. , The first synthesized frame consisting only of the first color pixel signal, the second color pixel signal and the third color pixel signal at the same density in the row direction and the column direction.
  • the color filters are arranged so as to obtain second composite frames arranged alternately.
  • the electronic device includes a two-dimensional color filter array in which a plurality of color filters having different transmission characteristics are two-dimensionally arranged, and a plurality of pixels on which light from the color filter is incident.
  • the color filter array is obtained by first imaging composed of pixel signals obtained by imaging before movement in units of pixels and imaging after movement in units of pixels.
  • the second frame made up of pixel signals By combining the second frame made up of pixel signals, the first combined frame made up of only the pixel signals of the first color, the pixel signal of the second color, and the pixel signal of the third color are performed.
  • Driving the solid-state imaging device in which the color filters are arranged and the solid-state imaging device so as to obtain a second composite frame alternately arranged at the same density in the direction and the column direction. Drive to move An electronic device and a part.
  • a color filter array in which a plurality of color filters having different transmission characteristics are two-dimensionally arranged and light from the color filter are incident on the solid-state imaging device.
  • a pixel array in which a plurality of pixels are two-dimensionally arranged is provided.
  • the color filter array includes a first frame composed of pixel signals obtained by imaging before movement in pixel units, and a second frame composed of pixel signals obtained by imaging after movement in pixel units. , The first synthesized frame consisting only of the first color pixel signal, the second color pixel signal and the third color pixel signal at the same density in the row direction and the column direction.
  • the color filters are arranged so as to obtain second composite frames arranged alternately.
  • the solid-state imaging device includes a color filter array in which a plurality of color filters having different transmission characteristics are arranged two-dimensionally, and a plurality of pixels to which light from the color filter is incident.
  • the color filter array is arranged in units of a basic array pattern of 4 rows and 6 columns obtained by combining four array patterns of color filters of 2 rows and 3 columns.
  • the fourth array pattern is a point-symmetric combination with the center of the basic array pattern as a symmetric point, and includes a first color filter, a second color, and a third color filter. 2 arrangement
  • the pattern and the third array pattern composed of the color filters of the first color, the second color, and the third color are a point-symmetric combination with the center of the basic array pattern as a symmetry point This is a solid-state imaging device.
  • a color filter array in which a plurality of color filters having different transmission characteristics are two-dimensionally arranged, and a plurality of pixels to which light from the color filter is incident are provided. And a pixel array arranged two-dimensionally.
  • an array pattern of color filters of 2 rows and 3 columns is arranged in units of a basic array pattern of 4 rows and 6 columns, which is a combination of four, and a first color, a second color, and a first color
  • the first arrangement pattern including three color filters and the fourth arrangement pattern including the first color, the second color, and the third color filter are the basic arrangement.
  • the third arrangement pattern including the color, the second color, and the color filter of the third color is a point-symmetric combination with the center of the basic arrangement pattern as a symmetric point.
  • the electronic device includes a two-dimensional color filter array in which a plurality of color filters having different transmission characteristics are two-dimensionally arranged, and a plurality of pixels into which light from the color filter is incident.
  • the color filter array is arranged in units of a basic array pattern of 4 rows and 6 columns obtained by combining four array patterns of color filters of 2 rows and 3 columns.
  • the fourth array pattern is a point-symmetric combination with the center of the basic array pattern as a symmetric point, and includes a first color filter, a second color, and a third color filter. 2 array buffers
  • the third array pattern composed of the color filters of the first color, the second color, and the third color are point-symmetric with respect to the center of the basic array pattern. It is an electronic device provided with the solid-state imaging device used as a combination.
  • a color filter array in which a plurality of color filters having different transmission characteristics are two-dimensionally arranged and light from the color filter are incident on the solid-state imaging device.
  • a pixel array in which a plurality of pixels are two-dimensionally arranged is provided.
  • an array pattern of color filters of 2 rows and 3 columns is arranged in units of a basic array pattern of 4 rows and 6 columns, which is a combination of four, and a first color, a second color, and a first color
  • the first arrangement pattern including three color filters and the fourth arrangement pattern including the first color, the second color, and the third color filter are the basic arrangement.
  • the third arrangement pattern including the color, the second color, and the color filter of the third color is a point-symmetric combination with the center of the basic arrangement pattern as a symmetric point.
  • high-quality images can be taken at high speed.
  • a solid-state imaging device having a color filter array is moved in units of pixels, and light transmitted through all color filters of red (R), green (G), and blue (B) is incident on each pixel. Every time it is performed, all color information can be obtained by performing imaging a plurality of times. For example, in FIG. 1, a Bayer array color filter array is sequentially moved pixel by pixel from position A in FIG. 1 to positions B in FIG. 1, C in FIG. 1, and D in FIG. By performing the imaging four times, all the color information of red (R), green (G), and blue (B) can be obtained in each pixel, so that accurate color information can be obtained.
  • FIG. 1A when the pixel at the target position of interest (the cross mark in the figure) in the upper left enlarged region in the color filter array of the Bayer array is an R pixel, the first time. Imaging is performed. After the first imaging, the solid-state imaging device having the Bayer array color filter array is moved upward (column direction) by one pixel (moved in the direction of arrow A1 in FIG. 1B). In B of FIG. 1, the pixel at the target position is changed from the R pixel to the G pixel, and the second imaging is performed.
  • the solid-state imaging device having the Bayer array color filter array is moved by one pixel in the left direction (row direction) (moved in the direction of arrow A2 in FIG. 1C).
  • the pixel at the target position is changed from the G pixel to the B pixel, and the third imaging is performed.
  • the solid-state imaging device having the Bayer array color filter array is moved downward (column direction) by one pixel (moved in the direction of arrow A3 in FIG. 1D).
  • the pixel at the target position is changed from the B pixel to the G pixel, and the fourth imaging is performed.
  • the color filters of red (R), green (G), and blue (B) are obtained by shifting the solid-state imaging device having the color filter array in units of pixels.
  • the light from each pixel is received by each pixel and, for example, a total of four times of imaging is repeated at each position, whereby red (R), green (G), and blue (B) pixel signals are output from each pixel.
  • FIG. 2 is a timing chart for explaining an image capturing method using the pixel shift of FIG.
  • a pixel array in which a plurality of pixels into which light from a color filter arranged in a color filter array is incident is two-dimensionally arranged, a solid-state imaging device having a color filter array and a pixel array, The operation of the mechanical shutter that exposes or blocks light from the subject to the imaging device is shown in time series.
  • Monitoring is performed from time t10 to time t12. For example, when the user performs a shutter operation at time t12, the imaging operation is started. From time t12 to time t13, since the mechanical shutter is open, the first exposure is started in the pixel array, each pixel receives light from the subject, and charge (signal charge) is accumulated in the photodiode. Is done.
  • the solid-state imaging device is moved upward by one pixel (column direction), and the state of the color filter array transitions from the state A in FIG. 1 to the state B in FIG. Thereby, for example, the first imaging in the state of the color filter array shown in FIG. 1A is performed, and a first frame (1st frame) composed of pixel signals obtained by the first imaging is generated.
  • the second to fourth imaging is performed in the same manner as the first imaging. That is, from time t14 to time t16, the second imaging is performed, and a second frame (2nd frame) is generated.
  • the solid-state imaging device is moved leftward (row direction) by one pixel, and the state of the color filter array changes from the state B in FIG. 1 to the state C in FIG.
  • the third imaging is performed and a third frame (3rd frame) is generated.
  • the solid-state imaging device is moved downward by one pixel (column direction), and the state of the color filter array transitions from the state C in FIG. 1 to the state D in FIG. Then, from time t18 to time t20, the fourth imaging is performed, and a fourth frame (4th frame) is generated.
  • red (R), green (G), and red (R) are obtained by moving the solid-state imaging device in units of pixels and repeating the imaging four times.
  • the light from the blue (B) color filter is received by each pixel, and the first frame is obtained from the pixel signals of red (R), green (G), and blue (B) obtained from each pixel.
  • the fourth frame can be generated.
  • the image capturing is repeated four times while moving the solid-state image capturing device in units of pixels, so that exposure in the pixel array, signal readout, and the solid-state image capturing device Since a lot of time is required for movement or the like, for example, when imaging a subject that operates at high speed, the subject moves while the first to fourth frames are generated.
  • CMOS image sensor is mainly used as a solid-state imaging device.
  • a normal CMOS image sensor employs a rolling shutter system. Yes. In this rolling shutter system, it is difficult to increase the speed because the next exposure operation cannot be performed unless the readout of the charges accumulated in the photodiodes of all the pixels arranged in the pixel array is completed.
  • green (G) color filters are arranged in a checkered pattern, and red (R) and blue (B) color filters are alternately arranged for each column in the remaining portion. Therefore, a composite frame consisting only of green (G) pixel signals and a composite frame consisting of red (R) and blue (B) pixel signals are obtained.
  • red (R) and blue (B) rows with only red (R) pixel signals and rows with only blue (B) pixel signals appear alternately in the column direction. Since the spatial frequencies of red (R) and blue (B) are different in the horizontal direction and the vertical direction, for example, there is a possibility that a false color or a phenomenon in which the vertical and horizontal balances of the resolution are different will occur.
  • FIG. 4 is a diagram illustrating an image capturing method according to the present technology.
  • the solid-state imaging device 100 includes a color filter array 112 in which red (R), green (G), and blue (B) color filters are two-dimensionally arranged, and a color filter array 112.
  • the pixel array 113 includes a plurality of pixels on which light from the color filter is incident arranged two-dimensionally.
  • rows of green (G) color filters and rows of red (R) and blue (B) color filters are alternately arranged in the column direction.
  • the red (R) color filter and the blue (B) color filter are alternately arranged.
  • the first imaging for obtaining the pixel signal of the first frame is performed, and then the image plane of the solid-state imaging device 100 or the lens is moved by one pixel in the upper right direction (the direction of arrow A5 in FIG. 4). And the second imaging for obtaining the pixel signal of the second frame is performed, whereby the first frame and the second frame are obtained.
  • a row composed of pixel signals of red (R) and blue (B) and a row composed of only pixel signals of green (G) in the column direction. are alternately arranged, and in a row composed of red (R) and blue (B) pixel signals, red (R) pixel signals and blue (B) pixel signals are alternately arranged.
  • the second frame for example, in the column direction, a row consisting only of green (G) pixel signals and a row consisting of blue (B) and red (R) pixel signals are used.
  • a row consisting only of green (G) pixel signals and a row consisting of blue (B) and red (R) pixel signals are used.
  • blue (B) pixel signals and red (R) pixel signals are alternately arranged.
  • a second composite frame composed of pixel signals is obtained.
  • the red (R) pixel signal and the blue (B) pixel signal are the same in the row direction and the column direction. They are arranged alternately in density (so-called staggered arrangement).
  • staggered arrangement since the red (R) pixel signal and the blue (B) pixel signal can be obtained in a balanced manner in both the horizontal direction and the vertical direction, for example, generation of false colors can be suppressed.
  • the arrangement of the color filter array 112 in FIG. 4 is adopted, and the first frame and the second frame obtained by capturing before and after moving in an oblique direction in units of pixels are used.
  • the first synthesized frame including only the green (G) pixel signal, the red (R) pixel signal, and the blue (B) pixel signal are alternately alternated at the same density in the row direction and the column direction.
  • a second composite frame to be arranged is obtained.
  • a green (G) pixel signal and a red (R) or blue (B) pixel signal from all the pixels arranged in the pixel array 113 are in the horizontal and vertical directions. Since both can be obtained with good balance, a high-quality image can be taken at high speed.
  • FIG. 6 is a diagram illustrating a configuration example of an imaging apparatus having a solid-state imaging apparatus to which the present technology is applied.
  • the imaging device 10 in FIG. 6 is an imaging device having an imaging function such as a digital still camera or a digital video camera.
  • the imaging device 10 includes a solid-state imaging device 100, a lens unit 111, a signal processing unit 114, a control unit 115, and a driving unit 116.
  • the solid-state imaging device 100 includes a color filter array 112 and a pixel array 113.
  • the lens unit 111 includes one or a plurality of lens groups, and makes light (image light) from a subject incident on the light receiving surface of the solid-state imaging device 100.
  • the solid-state imaging device 100 is an image sensor such as a CMOS image sensor.
  • the solid-state imaging device 100 forms an image of light (image light) from the lens unit 111 on the light receiving surface, photoelectrically converts light and darkness of the imaged image light, and outputs the result to the signal processing unit 114 as a pixel signal.
  • the solid-state imaging device 100 includes a plurality of pixels having a color filter array 112 in which a plurality of color filters having different transparency are arranged two-dimensionally and a photoelectric conversion element (photodiode) on which light from the color filter is incident. Is composed of a pixel array 113 arranged in a two-dimensional manner, and a peripheral circuit unit (not shown) that performs pixel driving, A / D (Analog / Digital) conversion, and the like.
  • the signal processing unit 114 performs predetermined signal processing on the pixel signal output from the solid-state imaging device 100 according to the control from the control unit 115, and outputs the signal to a subsequent circuit.
  • the first frame is generated from the pixel signal obtained by the first imaging
  • the second frame is generated from the pixel signal obtained by the second imaging, or the first frame And a process of generating a composite frame from the second frame.
  • the control unit 115 controls the operation of each unit of the imaging device 10.
  • the drive unit 116 includes, for example, an ultrasonic linear actuator, a motor drive device, a piezo drive device, and the like used in the camera shake correction system of the imaging device 10.
  • the drive unit 116 has a drive control resolution equal to or less than the pixel pitch, and drives the solid-state imaging device 100 to move in units of pixels in accordance with control from the control unit 115. Note that the drive unit 116 may drive the lens unit 111 and move the image plane of the lens in accordance with control from the control unit 115.
  • the mechanical shutter 117 is provided on the front surface of the solid-state imaging device 100.
  • the mechanical shutter 117 exposes or blocks light from the lens unit 111 to the solid-state imaging device 100 in accordance with control from the control unit 115.
  • the imaging device 10 is configured as described above. Note that the solid-state imaging device 100 may be configured to include the signal processing unit 114.
  • FIG. 7 is a diagram illustrating an image capturing method according to the first embodiment.
  • rows of green (G) color filters and rows of red (R) and blue (B) color filters are alternately arranged in the column direction.
  • the red (R) color filter and the blue (B) color filter are alternately arranged.
  • a pixel signal for obtaining the first frame is output by the first imaging, and then moved by one pixel in the upper right direction (moved in the direction of arrow A7 in FIG. 7). Then, a pixel signal for obtaining the second frame is output by the second imaging.
  • rows composed of red (R) and blue (B) pixel signals and rows composed only of green (G) pixel signals are alternately arranged in the column direction.
  • a row composed of red (R) and blue (B) pixel signals a first frame in which red (R) pixel signals and blue (B) pixel signals are alternately arranged is obtained. .
  • rows composed of only green (G) pixel signals and rows composed of blue (B) and red (R) pixel signals are alternately arranged in the column direction.
  • a second frame in which blue (B) pixel signals and red (R) pixel signals are alternately arranged is obtained.
  • a first synthesis frame consisting only of green (G) pixel signals and a second synthesis consisting of red (R) and blue (B) pixel signals.
  • a frame will be obtained.
  • the red (R) pixel signal and the blue (B) pixel signal are the same in the row direction and the column direction. It will be arranged alternately by density.
  • FIG. 8 is a timing chart illustrating an image capturing method according to the first embodiment.
  • a solid-state imaging including a pixel array 113 in which a plurality of pixels to which light from a color filter arranged in the color filter array 112 is incident is two-dimensionally arranged, and the color filter array 112 and the pixel array 113.
  • the operations of the device 100 and the mechanical shutter 117 that exposes or blocks light from the subject to the solid-state imaging device 100 are shown in time series.
  • Monitoring is performed from time t30 to time t32.
  • time t32 for example, when a shutter operation is performed by the user, an imaging operation is started, and exposure of the first frame is started.
  • time t33 since the mechanical shutter 117 is open, in the pixel array 113, each pixel receives light from the subject, and charge (signal charge) is accumulated in the photodiode.
  • the drive unit 116 drives the solid-state imaging device 100 to move it by one pixel in the upper right direction (move in the direction of the arrow A7 in FIG. 7 described above).
  • the mechanical shutter 117 is closed from time t33 to time t34, the charge (signal charge) accumulated in the photodiode of each pixel is sequentially read out in the pixel array 113, and the signal reading operation in the first frame is performed. Is done. In this way, the first imaging is performed, and a pixel signal for generating the first frame is obtained.
  • the mechanical shutter 117 is opened again at time t34, and exposure of the second frame is started. From time t34 to time t35, since the mechanical shutter 117 is open, in the pixel array 113, each pixel receives light from the subject, and charges are accumulated in the photodiode. When the exposure of the second frame is completed at time t35, the mechanical shutter 117 is closed. Then, the driving unit 116 drives the solid-state imaging device 100 to move, for example, one pixel in the diagonally downward left direction so as to return the solid-state imaging device 100 to the original position and prepare for the next imaging.
  • the mechanical shutter 117 is closed, so in the pixel array 113, the charges (signal charges) accumulated in the photodiodes of each pixel are sequentially read out, and the second frame signal reading operation is performed. Is done. In this way, the second imaging is performed, and a pixel signal for generating the second frame is obtained.
  • the image processing is performed twice, so that the signal processing unit 114 performs a row including red (R) and blue (B) pixel signals and a row including only green (G) pixel signals.
  • the first frame alternately arranged in the column direction, and the row consisting only of the green (G) pixel signal and the row consisting of the blue (B) and red (R) pixel signals.
  • a second frame arranged alternately is generated.
  • the signal processing unit 114 synthesizes the first frame and the second frame so that the first synthesized frame including only the green (G) pixel signal and the red (R) and blue (B) pixels.
  • a second composite frame consisting of signals can be generated.
  • the imaging period from the start of imaging to the completion of imaging includes the exposure period of the first frame and the signal readout period, and the exposure period of the second frame, that is, two exposure periods and one exposure period. Since the signal readout period (from time t32 to time t35) is reached, for example, the subject can be imaged at a higher speed than when imaging is performed three times or four times.
  • the time point when the exposure period of the second frame ends is the time point when the imaging is completed, and the same applies to the following description.
  • the red (R) pixel signal and the blue (B) pixel signal in the row and column directions. Pixel signals are alternately arranged at the same density. Therefore, since the red (R) pixel signal and the blue (B) pixel signal can be obtained in a balanced manner in both the horizontal direction and the vertical direction, for example, generation of false colors can be suppressed.
  • the color filter array 112 having the color filter array of FIG. 7 is adopted, and the first frame and the second frame obtained by imaging before and after moving in the diagonal direction in units of pixels.
  • the first synthesized frame consisting only of the green (G) pixel signal, the red (R) pixel signal, and the blue (B) pixel signal have the same density in the row direction and the column direction.
  • a second composite frame arranged alternately is obtained. Then, by performing imaging twice, a green (G) pixel signal and a red (R) or blue (B) pixel signal from all the pixels arranged in the pixel array 113 are in the horizontal and vertical directions. Since both can be obtained with good balance, a high-quality image can be taken at high speed.
  • the solid-state imaging device 100 such as a CMOS image sensor
  • a signal readout operation for reading out charges (signal charges) accumulated in a photodiode is performed for each row of the pixel array 113, and the signal readout operation is completed.
  • the pixel starts accumulating charges again from the end point.
  • an all-pixel simultaneous electronic shutter of the solid-state imaging device 100 in which the exposure period of each pixel is the same has been developed.
  • the all-pixel simultaneous electronic shutter is an operation for starting exposure at the same time and ending the exposure at the same time for all pixels effective for imaging, and is also called a global shutter (global exposure).
  • a method for realizing global exposure there are a mechanical method and an electric method.
  • the openable / closable mechanical shutter 117 that shields the front surface of the solid-state imaging device 100 is used.
  • the mechanical shutter 117 is opened and exposure is started at the same time for all the pixels.
  • the mechanical shutter 117 is closed and all the pixels are shielded from light at the same time. Will do.
  • the electrical method exposure is started by performing a charge discharging operation for emptying the stored charge of the photodiode at the same time for all the pixels, and at the end of the exposure period, the transfer gate is driven at the same time for all the pixels to accumulate the accumulated light. All charges are transferred to the memory unit and held. Then, after resetting the floating diffusion layer, the charge held in the memory portion is transferred to the floating diffusion layer to read out the signal level.
  • a method of capturing an image when such an electrical method is employed will be described.
  • FIG. 9 is a diagram illustrating a pixel configuration corresponding to the global shutter system.
  • the pixel 200 in FIG. 9 corresponds to one pixel arranged two-dimensionally in the pixel array 113 in FIG.
  • the pixel 200 has, for example, a photodiode (PD) 221 as a photoelectric conversion element.
  • the photodiode 221 embeds an N-type buried layer 234 (N) by forming a P-type layer 233 (P +) on the substrate surface side with respect to a P-type well layer 232 formed on the N-type substrate 231. Is an embedded photodiode.
  • the pixel 200 includes a first transfer gate 222, a memory unit (MEM) 223, a second transfer gate 224, and a floating diffusion region (FD: Floating Diffusion) 225 in addition to the photodiode 221. Note that the pixel 200 is shielded from light by a light shielding film (not shown) that shields portions other than the opening for introducing light into the photodiode 221 and the contact portion of each transistor.
  • the first transfer gate 222 performs photoelectric conversion by the photodiode 221 and transfers the charges accumulated therein by applying a transfer pulse TRX to the gate electrode 222A.
  • the memory portion 223 is formed by an N-type buried channel 235 (N) formed under the gate electrode 222A, and holds the charge transferred from the photodiode 221 by the first transfer gate 222.
  • the second transfer gate 224 transfers the charge held in the memory unit 223 by applying a transfer pulse TRG to the gate electrode 224A.
  • the floating diffusion region 225 is a charge-voltage conversion unit including an N-type layer (N +), and converts the charge transferred from the memory unit 223 by the second transfer gate 224 into a voltage.
  • the pixel 200 further includes a reset transistor 226, an amplification transistor 227, and a selection transistor 228.
  • a reset transistor 226, an amplification transistor 227, and a selection transistor 228 are used as these transistors.
  • the reset transistor 226 is connected between the power supply VDD and the floating diffusion region 225, and resets the floating diffusion region 225 by applying a reset pulse RST to the gate electrode.
  • the amplification transistor 227 has a drain electrode connected to the power supply VDD and a gate electrode connected to the floating diffusion region 225, and reads the voltage of the floating diffusion region 225.
  • the drain electrode is connected to the source electrode of the amplification transistor 227, the source electrode is connected to the vertical signal line 217, and the selection pulse SEL is applied to the gate electrode, so that the pixel signal should be read out. Pixel 200 is selected.
  • one or more of the reset transistor 226, the amplification transistor 227, and the selection transistor 228 can be omitted depending on the pixel signal reading method, or can be shared among a plurality of pixels.
  • the pixel 200 further has a charge discharging unit 229 for discharging the accumulated charge of the photodiode 221.
  • the charge discharging unit 229 discharges the charge of the photodiode 221 to the drain unit 236 (N ++) of the N-type layer by applying a control pulse OFG to the gate electrode 229A at the start of exposure.
  • a predetermined voltage VDD is applied to the drain portion 236.
  • the solid-state imaging device 100 having the pixel array 113 in which a plurality of pixels 200 are two-dimensionally arranged, exposure is started at the same time for all pixels, exposure is completed at the same time for all pixels, and the charge accumulated in the photodiode 221 is By sequentially transferring the light to the light-shielded memory unit 223 and the floating diffusion region 225, global exposure is realized. By this global exposure, it is possible to perform image-free imaging with an exposure period in which all pixels coincide.
  • FIG. 10 is a timing chart illustrating an image capturing method according to the second embodiment. 10, operations of the solid-state imaging device 100 including the pixel array 113 in which the pixels 200 corresponding to the global shutter method of FIG. Has been. Note that FIG. 11 schematically shows the operation of the pixel array 113, and will be described with reference to it as appropriate. Further, in the second embodiment, when the pixel 200 of FIG. 9 is adopted, it is not necessary to provide the mechanical shutter 117 of FIG.
  • Monitoring is performed from time t50 to time t52.
  • time t52 for example, when the user performs a shutter operation, the imaging operation is started in the pixel array 113, and exposure of the first frame is started (A in FIG. 11).
  • a in FIG. 11 As a result, as shown in FIG. 11A, each pixel 200 arranged in the pixel array 113 receives light from the subject, and charges (signal charges) are accumulated in the photodiode 221. .
  • the transfer pulse TRX is applied to the gate electrode 222A, so that the first transfer gate 222 performs photoelectric conversion by the photodiode 221 and stores the charge accumulated therein.
  • the data is transferred to the memory unit 223 (B in FIG. 11).
  • the transfer pulse TRG is applied to the gate electrode 224 ⁇ / b> A in the pixel array 113, so that the charge held in the memory unit 223 of each pixel 200 ( Signal charge) is read, and the signal read operation of the first frame is started.
  • the drive unit 116 starts the operation of driving the solid-state imaging device 100 and moving the solid-state imaging device 100 diagonally upward by one pixel.
  • a control pulse OFG is applied to the gate electrode 229A, so that the accumulated charge of the photodiode 221 is discharged to the drain portion 236. Then, after the photodiode 221 is reset, exposure of the second frame is started (C in FIG. 11).
  • the image processing is performed twice, so that the signal processing unit 114 performs a row including red (R) and blue (B) pixel signals and a row including only green (G) pixel signals.
  • the first frame alternately arranged in the column direction, and the row consisting only of the green (G) pixel signal and the row consisting of the blue (B) and red (R) pixel signals.
  • a second frame arranged alternately is generated.
  • the signal processing unit 114 synthesizes the first frame and the second frame so that the first synthesized frame including only the green (G) pixel signal and the red (R) and blue (B) pixels.
  • a second composite frame consisting of signals can be generated.
  • the imaging period from the start of imaging to the completion of imaging, when the movement period (movement period) of the solid-state imaging device 100 is shorter than the signal readout period of the first frame, the solid-state imaging device 100 Since the second frame exposure is started immediately after the completion of the movement and the photodiode 221 is reset, there are two exposure periods and one movement period (time t52 to time t56). That is, the imaging period (two exposure periods and one movement period) in the second embodiment is the imaging period (two exposure periods and one signal readout in FIG. 8) in the first embodiment. Period), the imaging period can be further shortened.
  • the mechanical shutter 117 in FIG. 6 is not necessary, and the price and size of the imaging apparatus 10 are reduced. Is possible.
  • the exposure completion time of the first frame, the signal readout start time, and the movement start time of the solid-state imaging device 100 are illustrated as the same time t53.
  • the signal reading operation of the first frame and the moving operation of the solid-state imaging device 100 are started after the transfer of charge from the photodiode 221 to the memory unit 223 is completed after the exposure of the first frame is completed. Is done.
  • the movement completion time of the solid-state imaging device 100 and the exposure start time of the second frame are illustrated as the same time t54, but actually, after the movement of the solid-state imaging device 100 is completed, the photodiode 221 is illustrated. After resetting, exposure of the second frame is started.
  • the color filter array 112 having the color filter array of FIG. 7 and the pixel array 113 in which the pixels 200 of FIG.
  • the first combined frame consisting only of the green (G) pixel signal, the red (R) pixel signal and the blue frame
  • a second combined frame in which the pixel signals of (B) are alternately arranged at the same density in the row direction and the column direction is obtained.
  • a green (G) pixel signal and a red (R) or blue (B) pixel signal from all the pixels arranged in the pixel array 113 are in the horizontal and vertical directions. Since both can be obtained with good balance, a high-quality image can be taken at high speed.
  • the imaging is completed by closing the mechanical shutter 117 immediately after the exposure period of the second frame is completed.
  • the mechanical shutter 117 immediately after the exposure period of the second frame is completed.
  • FIG. 12 is a timing chart illustrating an image capturing method according to the third embodiment. 12, the pixel array 113 in which the pixels 200 corresponding to the global shutter system in FIG. 9 are two-dimensionally arranged, the solid-state imaging device 100 having the color filter array 112 and the pixel array 113, and the solid-state imaging device 100 are included.
  • the operation of the mechanical shutter 117 that exposes or blocks light from the subject is shown in time series.
  • FIG. 13 schematically shows the operation of the pixel array 113 and will be described with reference to it as appropriate.
  • Monitoring is performed from time t70 to time t72.
  • the mechanical shutter 117 is opened.
  • the imaging operation is started in the pixel array 113, and exposure of the first frame is started (A in FIG. 13).
  • a in FIG. 13A each pixel 200 arranged in the pixel array 113 receives light from the subject, and charges (signal charges) are accumulated in the photodiode 221. .
  • the charge accumulated in the photodiode 221 is transferred to the memory unit 223 by the first transfer gate 222 (B in FIG. 13).
  • the charge transfer is completed, a signal reading operation for the first frame and an operation for moving the solid-state imaging device 100 by one pixel in the upper right direction are started.
  • the movement of the solid-state imaging device 100 is completed at time t74, the charge accumulated in the photodiode 221 is discharged and reset, and exposure of the second frame is started (C in FIG. 13).
  • the mechanical shutter 117 is closed to complete the imaging.
  • the control pulse OFG applied to the gate electrode 229A is applied.
  • a pixel signal for generating the first frame is obtained.
  • the signal reading operation of the second frame is performed, and a pixel signal for generating the second frame is obtained.
  • the image processing is performed twice, so that the signal processing unit 114 performs a row including red (R) and blue (B) pixel signals and a row including only green (G) pixel signals.
  • the first frame alternately arranged in the column direction, and the row consisting only of the green (G) pixel signal and the row consisting of the blue (B) and red (R) pixel signals.
  • a second frame arranged alternately is generated.
  • the signal processing unit 114 synthesizes the first frame and the second frame so that the first synthesized frame including only the green (G) pixel signal and the red (R) and blue (B) pixels.
  • a second composite frame consisting of signals can be generated.
  • the imaging period in the third embodiment is the imaging period (two exposure periods and one signal readout in FIG. 8) in the first embodiment.
  • the exposure period is extremely shorter than the signal readout period. Even if compared, it will be further shortened.
  • the exposure completion time of the first frame, the signal readout start time, and the movement start time of the solid-state imaging device 100 are illustrated as the same time t73.
  • the signal reading operation of the first frame and the moving operation of the solid-state imaging device 100 are started after the transfer of charge from the photodiode 221 to the memory unit 223 is completed after the exposure of the first frame is completed. Is done.
  • the movement completion time of the solid-state imaging device 100 and the exposure start time of the second frame are illustrated as the same time t74, but actually, after the movement of the solid-state imaging device 100 is completed, the photodiode 221 is illustrated. After resetting, exposure of the second frame is started.
  • the case where the color filter array 112 having the color filter array of FIG. 4 or FIG. 7 is used has been described.
  • the first frame and the second frame are synthesized. By doing so, if the first composite frame consisting only of the green (G) pixel signal and the second composite frame consisting of the red (R) and blue (B) pixel signals shown in FIG.
  • the color filter array may be adopted. Therefore, a case where another color filter array is employed in the color filter array 112 will be described next.
  • FIG. 14 is a diagram for explaining another color filter arrangement.
  • the color filter array 112 included in the solid-state imaging device 100 is arranged in units of a color filter array of 2 rows and 2 columns, and in the column direction, a first filter composed of green (G) and blue (B) color filters.
  • the rows of one color filter array and the rows of the second color filter array made up of green (G) and red (R) color filters are alternately arranged, and the first color filter array and the second color filter array
  • the orientation of the green (G) color filters and the orientation of the blue (B) and red (R) color filters are arranged in reverse directions.
  • a pixel signal for obtaining the first frame is output by the first imaging, and is moved upward or downward (column direction) by two pixels (in the direction of arrow A8 in FIG. 14).
  • the pixel signal for obtaining the second frame is output by the second imaging.
  • a second synthesized frame (pixel arrangement on the right side of FIG. 14) is obtained.
  • the squares surrounded by thin lines represent the red (R) and blue (B) pixel signals obtained from the first frame, but are surrounded by thick lines.
  • Squares represent red (R) and blue (B) pixel signals obtained from the second frame.
  • the red (R) pixel signal and the blue (B) pixel signal are alternately arranged with the same density. Therefore, since the red (R) pixel signal and the blue (B) pixel signal can be obtained in a balanced manner in both the horizontal direction and the vertical direction, for example, generation of false colors can be suppressed.
  • FIG. 15 is a diagram for explaining still another color filter arrangement.
  • a pixel signal for obtaining the first frame is output by the first imaging, and then moved by one pixel in the upper right direction (moved in the direction of arrow A9 in FIG. 15). Then, a pixel signal for obtaining the second frame is output by the second imaging.
  • a second composite frame (pixel arrangement on the right side in FIG. 15) is obtained.
  • a square surrounded by a thin line represents the red (R) and blue (B) pixel signals obtained from the first frame, but surrounded by a thick line.
  • Squares represent red (R) and blue (B) pixel signals obtained from the second frame.
  • the red (R) pixel signal and the blue (B) pixel signal are alternately arranged with the same density. Therefore, since the red (R) pixel signal and the blue (B) pixel signal can be obtained in a balanced manner in both the horizontal direction and the vertical direction, for example, generation of false colors can be suppressed.
  • FIG. 16 is a diagram illustrating the resolution and false color simulation results for the above-described embodiment.
  • FIG. 16A shows the result of the simulation A of the resolution and the false color when the color filter arrangement of FIG. 1 is adopted.
  • B of FIG. 16 shows the result of simulation B of resolution and false color when the color filter array of FIG. 3 is adopted.
  • C in FIG. 16 shows the results of a simulation C of resolution and false colors when a color filter array (FIG. 4 or FIG. 7 or the like) to which the present technology is applied is adopted.
  • the resolution and the false color level are almost the same level and there is no fading.
  • the imaging speed can be greatly increased from four imaging operations to two imaging operations without degrading the image quality.
  • FIG. 16D the results of resolution D and false color simulation D when the color filter array using the Bayer array is adopted are illustrated for comparison.
  • FIG. 17 is a diagram illustrating an image capturing method according to the fourth embodiment.
  • the color filter array 112 included in the solid-state imaging device 100 is based on the array pattern of the color filter of 2 rows and 3 columns, and the variation is composed of 4 array patterns.
  • a column is a basic array pattern.
  • the array pattern 1 is composed of a color filter array of 2 rows and 3 columns.
  • color filters of green (G), red (R), and green (G) are arranged in order
  • color filters of red (R), green (G), and blue (B) are arranged. Arranged in order.
  • the array pattern 1 and the combination of point symmetry with the array pattern 1 become the array pattern 4. That is, the array pattern 4 is composed of a 2 ⁇ 3 color filter array. In the first row, blue (B), green (G), and red (R) color filters are sequentially arranged. Are arranged in order of green (G), red (R), and green (G) color filters.
  • the array pattern 2 is arranged on the upper right (that is, arranged on the right side of the array pattern 1), and the array pattern 2 is composed of a color filter array of 2 rows and 3 columns. , Green (G), blue (B), green (G) color filters are arranged in order, and in the second row, red (R), green (G), blue (B) color filters are arranged in order.
  • Green (G), blue (B), green (G) color filters are arranged in order
  • red (R), green (G), blue (B) color filters are arranged in order.
  • the array pattern 3 is combined with the array pattern 2 in a point-symmetric manner. That is, the array pattern 3 is composed of a color filter array of 2 rows and 3 columns. In the first row, blue (B), green (G), and red (R) color filters are sequentially arranged. Are arranged in order of green (G), blue (B), and green (G) color filters.
  • a high-quality image can be obtained by one imaging without driving the solid-state imaging device 100.
  • Imaging can be performed. That is, moire can be reduced by preparing four sets of 2 ⁇ 3 color filter array patterns and changing the color filter array for each set to a highly non-periodic array.
  • pixel signals of red (R), green (G), and blue (B) always exist in the vertical and horizontal directions (row direction and column direction), false color is suppressed and accurate color expression is achieved. Is possible.
  • the solid-state imaging device 100 since the solid-state imaging device 100 is not driven, it is suitable for high-speed imaging with low power consumption, and is particularly suitable for use in moving image imaging and the like.
  • the solid-state imaging device 100 is driven to generate the first frame and the second frame so that a composite frame can be obtained. That's fine.
  • a pixel signal for obtaining the first frame is output by the first imaging, and then, if the unit is an array pattern unit, it is moved by one array pattern diagonally downward to the right, that is, a pixel unit.
  • the second frame is obtained after moving 2 pixels in the downward direction (column direction) and 3 pixels in the right direction (row direction) (moving in the direction of arrow A10 in FIG. 17).
  • a pixel signal is output.
  • red (R) pixel signal and the blue (B) pixel signal are arranged in a balanced manner and have no periodicity.
  • the fourth embodiment by adopting the color filter array of FIG. 17, not only when performing pixel shift but also when not performing pixel shift, an image can be displayed at high speed. Since it is possible to capture an image, for example, in the imaging apparatus 10, a high-resolution mode (pixel shift: on) and a high-speed imaging mode (pixel shift: off) are prepared, and these modes are selected by the user. It may be.
  • FIG. 18 is a diagram illustrating a simulation result of the resolution and the false color according to the fourth embodiment.
  • FIG. 18 shows a simulation result of resolution and false color when the color filter array (FIG. 17) to which the present technology is applied is adopted. From the results of this simulation, it was confirmed that even with this fourth embodiment, the same high resolution, false color resistance, and moire resistance as in the first embodiment can be obtained under conditions with pixel shift. It was.
  • the present technology is not limited to application to the solid-state imaging device and the imaging device described above. That is, the present technology uses a solid-state imaging device or a camera module having an optical lens system in addition to the imaging device, a portable terminal device having an imaging function (for example, a smartphone or a tablet terminal), or an image reading unit.
  • the present invention can be applied to all electronic devices having a solid-state imaging device such as a copying machine.
  • FIG. 19 is a diagram illustrating a configuration example of an electronic device.
  • the electronic device 500 includes a lens unit 501, a solid-state imaging device 502, an image processing unit 503, a frame memory 504, a display unit 505, a recording unit 506, an operation unit 507, and a power supply unit 508.
  • the image processing unit 503, the frame memory 504, the display unit 505, the recording unit 506, the operation unit 507, and the power supply unit 508 are connected to each other via a bus line 509.
  • the lens unit 501 corresponds to the lens unit 111 (FIG. 6) described above.
  • the lens unit 501 includes one or a plurality of lens groups and the like, and makes light (image light) from a subject incident on the light receiving surface of the solid-state imaging device 502.
  • the solid-state image pickup device 502 corresponds to the above-described solid-state image pickup device 100 (FIG. 6) made of, for example, a CMOS image sensor.
  • the solid-state imaging device 502 includes a color filter array in which a plurality of color filters are arranged in a two-dimensional manner, a pixel array in which a plurality of pixels having photoelectric conversion elements are arranged in a dimensional shape, a peripheral circuit unit, and the like.
  • the solid-state imaging device 502 converts the amount of incident light imaged on the light receiving surface by the lens unit 501 into an electrical signal in units of pixels, and outputs the electrical signal to the image processing unit 503 as an image signal.
  • the image processing unit 503 performs camera signal processing on the image signal output from the solid-state imaging device 502. Image data obtained by the signal processing is temporarily stored in the frame memory 504 and supplied to the display unit 505 or the recording unit 506.
  • the display unit 505 includes, for example, a liquid crystal panel, an organic EL (Electro Luminescence) panel, and the like, and displays a moving image or a still image captured by the solid-state imaging device 502.
  • the recording unit 506 records moving image or still image data captured by the solid-state imaging device 502 on a recording medium such as a semiconductor memory or a video tape.
  • the operation unit 507 issues operation commands for various functions of the electronic device 500 in accordance with an operation from the user.
  • the power supply unit 508 appropriately supplies power necessary for the operations of the image processing unit 503, the frame memory 504, the display unit 505, the recording unit 506, and the operation unit 507 to these supply targets.
  • the electronic device 500 is provided with a drive unit that drives the solid-state imaging device 100 and moves it in units of pixels.
  • FIG. 20 is a diagram illustrating a usage example of the solid-state imaging device 100 as an image sensor.
  • the solid-state imaging device 100 described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray as follows. That is, as shown in FIG. 20, not only the above-described field of appreciation for capturing an image used for appreciation, but also, for example, the field of transportation, the field of home appliances, the field of medical care and healthcare, and the field of security.
  • the solid-state imaging device 100 can also be used in an apparatus used in the field of beauty, the field of sports, or the field of agriculture.
  • a device for capturing an image used for viewing such as a digital camera, a smartphone, or a mobile phone with a camera function (for example, FIG. 6).
  • the solid-state imaging device 100 can be used in the imaging device 10 of FIG.
  • the solid-state imaging device 100 can be used as a device used for traffic such as a monitoring camera and a distance measuring sensor for measuring a distance between vehicles.
  • a device used for home appliances such as a television receiver, a refrigerator, an air conditioner, etc. in order to take an image of a user's gesture and perform device operations in accordance with the gesture.
  • the solid-state imaging device 100 is used in medical and healthcare devices such as an endoscope and a blood vessel imaging device that receives infrared light. can do.
  • the solid-state imaging device 100 can be used in devices used for security, such as surveillance cameras for crime prevention and cameras for personal authentication. Further, in the field of beauty, for example, the solid-state imaging device 100 can be used in devices used for beauty, such as a skin measuring device that images skin and a microscope that images the scalp.
  • the solid-state imaging device 100 can be used in sports equipment such as action cameras and wearable cameras for sports applications.
  • the solid-state imaging device 100 can be used in an apparatus used for agriculture, such as a camera for monitoring the state of fields and crops.
  • the present technology can take the following configurations.
  • a color filter array in which a plurality of color filters having different transmission characteristics are two-dimensionally arranged; A plurality of pixels into which light from the color filter is incident are arranged in a two-dimensional manner, and The color filter array synthesizes a first frame composed of pixel signals obtained by imaging before movement in pixel units and a second frame composed of pixel signals obtained by imaging after movement in pixel units.
  • the first composite frame including only the pixel signals of the first color, the pixel signals of the second color, and the pixel signals of the third color are alternately arranged at the same density in the row direction and the column direction.
  • the solid-state imaging device in which the color filters are arranged so that a second synthesized frame is obtained.
  • the color filter array is In the column direction, rows of the color filters of the first color and rows of the color filters of the second color and the third color are alternately arranged, In the row of the color filters of the second color and the third color, the color filter of the second color and the color filter of the third color are alternately arranged.
  • Solid-state imaging device (3) The imaging for obtaining the pixel signal of the second frame is performed by imaging the image plane of the solid-state imaging device or lens by one pixel in an oblique direction after the imaging for obtaining the pixel signal of the first frame is performed. (2) The solid-state imaging device according to (2).
  • the pixel is a pixel corresponding to a global shutter system,
  • the memory unit in the pixel accumulates electric charges from the photoelectric conversion element for each frame so that the pixel signal of the first frame is read during the exposure period of the second frame.
  • the first color is green (G);
  • the second color is red (R) or blue (B);
  • the solid-state imaging device according to any one of (1) to (4), wherein the third color is blue (B) or red (R).
  • the color filter array is Arranged in units of 2 ⁇ 2 color filter array, In the column direction, a row of the first color filter array composed of the color filters of the first color and the second color, and a second of the color filter of the first color and the third color.
  • the rows of the color filter array are arranged alternately, In the first color filter array and the second color filter array, the orientation of the first color filter and the orientation of the second color and the third color filter Are arranged in reverse.
  • Imaging for obtaining the pixel signal of the second frame is performed by imaging the image plane of the solid-state imaging device or the lens in the column direction after imaging for obtaining the pixel signal of the first frame.
  • the first color is green (G);
  • the second color is red (R) or blue (B);
  • the solid state imaging device according to (6) or (7), wherein the third color is blue (B) or red (R).
  • the color filter array is In the row direction, the color filter columns of the first color and the color filter columns of the second color and the third color are alternately arranged,
  • the row of the color filters of the second color and the third color includes the color filter of the second color and the color filter of the third color alternately arranged in (1).
  • Solid-state imaging device (10) The imaging for obtaining the pixel signal of the second frame is performed by imaging the image plane of the solid-state imaging device or lens by one pixel in an oblique direction after the imaging for obtaining the pixel signal of the first frame is performed. (9) The solid-state imaging device according to (9).
  • the first color is green (G);
  • the second color is red (R) or blue (B);
  • the first composite frame including only the pixel signals of the first color, the pixel signals of the second color, and the pixel signals of the third color are alternately arranged at the same density in the row direction and the column direction.
  • An electronic device comprising: a driving unit that drives the solid-state imaging device and moves the solid-state imaging device in units of pixels.
  • a color filter array in which a plurality of color filters having different transmission characteristics are two-dimensionally arranged; A plurality of pixels into which light from the color filter is incident are arranged in a two-dimensional manner, and The color filter array is It is arranged in units of 4 ⁇ 6 basic array pattern, which is a combination of four 2 ⁇ 3 color filter array patterns, A first arrangement pattern comprising color filters of a first color, a second color, and a third color; and a color filter of the first color, the second color, and the third color.
  • the fourth arrangement pattern consisting of is a point-symmetric combination with the center of the basic arrangement pattern as the symmetry point,
  • a second arrangement pattern comprising color filters of the first color, the second color, and the third color, the first color, the second color, and the third color;
  • the third array pattern composed of the color filters is a point-symmetric combination with the center of the basic array pattern as a symmetry point.
  • the first color, and the color filter of the third color are arranged in order, In the second arrangement pattern, the first color, the third color, and the color filter of the first color are arranged in order in the first row, and the second row contains the second color. , The first color, and the color filter of the third color are arranged in order, In the third arrangement pattern, the color filters of the third color, the first color, and the second color are arranged in order in the first row, and the first filter is arranged in the second row. , The third color, and the color filter of the first color are arranged in order, In the fourth arrangement pattern, the color filters of the third color, the first color, and the second color are arranged in order in the first row, and the first filter is arranged in the second row.
  • the solid-state imaging device in which a color filter of the first color, the second color, and the color filter of the first color are arranged in order.
  • the color filter array synthesizes a first frame composed of pixel signals obtained by imaging before movement in pixel units and a second frame composed of pixel signals obtained by imaging after movement in pixel units.
  • the first composite frame consisting only of the pixel signal of the first color, the pixel signal of the second color, and the pixel signal of the third color are arranged in units of the basic array pattern.
  • the solid-state imaging device wherein the color filters are arranged so as to obtain second composite frames that are alternately arranged at the same density in the direction and the column direction.
  • Imaging for obtaining the pixel signal of the second frame is performed by imaging the image plane of the solid-state imaging device or the lens in the column direction after imaging for obtaining the pixel signal of the first frame.
  • the first color is green (G);
  • the second color is red (R);
  • a color filter array in which a plurality of color filters having different transmission characteristics are two-dimensionally arranged; A plurality of pixels into which light from the color filter is incident are two-dimensionally arranged, and The color filter array is It is arranged in units of 4 ⁇ 6 basic array pattern, which is a combination of four 2 ⁇ 3 color filter array patterns, A first arrangement pattern comprising color filters of a first color, a second color, and a third color; and a color filter of the first color, the second color, and the third color.
  • the fourth arrangement pattern consisting of is a point-symmetric combination with the center of the basic arrangement pattern as the symmetry point,
  • a second arrangement pattern comprising color filters of the first color, the second color, and the third color, the first color, the second color, and the third color;
  • An electronic apparatus comprising a solid-state imaging device that is a point-symmetric combination with the center of the basic array pattern as a symmetry point.
  • imaging device 100 solid-state imaging device, 111 lens unit, 112 color filter array, 113 pixel array, 114 signal processing unit, 115 control unit, 116 drive unit, 117 mechanical shutter, 200 pixels, 221 photodiode, 223 memory unit, 500 electronic devices, 502 solid-state imaging device

Abstract

 本技術は、高速に、かつ高品質な画像を撮像することができるようにする固体撮像装置、及び、電子機器に関する。 複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイとを備え、カラーフィルタアレイは、画素単位での移動前の撮像で得られる画素信号からなる第1のフレームと、画素単位での移動後の撮像で得られる画素信号からなる第2のフレームとを合成することで、第1の色の画素信号のみからなる第1の合成フレームと、第2の色の画素信号と第3の色の画素信号とが行方向と列方向に同一の密度で交互に配列される第2の合成フレームが得られるように、カラーフィルタが配列されている固体撮像装置が提供される。本技術は、例えば、CMOSイメージセンサ等の固体撮像装置に適用することができる。

Description

固体撮像装置、及び、電子機器
 本技術は、固体撮像装置、及び、電子機器に関し、特に、高速に、かつ高品質な画像を撮像することができるようにした固体撮像装置、及び、電子機器に関する。
 従来より、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の固体撮像装置は、デジタルスチルカメラやデジタルビデオカメラ等の撮像装置に広く用いられている。この種の撮像装置においては、複数のカラーフィルタが2次元状に配列されたカラーフィルタアレイを有する固体撮像装置により被写体像を撮像し、各画素から出力される画素信号とは異なる色の信号は、その画素の近傍の画素の画素信号に基づいた補間処理で生成することになる。
 このような補間処理で得られる色情報は正確な情報とはならないため、補間処理を用いずに正確な色情報を得るための各種の技術が提案されている(例えば、特許文献1参照)。この特許文献1に開示されている技術では、カラーフィルタアレイを、複数の画素が2次元状に配列された画素アレイに対して相対移動させて、全色のカラーフィルタからの光を、各画素により受光させることで、各画素から全色の画素信号が出力されるようにしている。
特開2003-163940号公報
 しかしながら、特許文献1に開示されている技術であると、カラーフィルタの色数に応じた回数の相対移動を行い、撮像を繰り返すことになるため、高速に画像を撮像することができない。そのため、高品質な画像を、より高速に撮像したいという要請があった。
 本技術はこのような状況に鑑みてなされたものであり、高速に、かつ高品質な画像を撮像することができるようにするものである。
 本技術の第1の側面の固体撮像装置は、複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイとを備え、前記カラーフィルタアレイは、画素単位での移動前の撮像で得られる画素信号からなる第1のフレームと、画素単位での移動後の撮像で得られる画素信号からなる第2のフレームとを合成することで、第1の色の画素信号のみからなる第1の合成フレームと、第2の色の画素信号と第3の色の画素信号とが行方向と列方向に同一の密度で交互に配列される第2の合成フレームが得られるように、前記カラーフィルタが配列されている固体撮像装置である。
 本技術の第1の側面の固体撮像装置においては、複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイとが設けられる。また、前記カラーフィルタアレイには、画素単位での移動前の撮像で得られる画素信号からなる第1のフレームと、画素単位での移動後の撮像で得られる画素信号からなる第2のフレームとを合成することで、第1の色の画素信号のみからなる第1の合成フレームと、第2の色の画素信号と第3の色の画素信号とが行方向と列方向に同一の密度で交互に配列される第2の合成フレームが得られるように、前記カラーフィルタが配列されている。
 本技術の第2の側面の電子機器は、複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイとを有し、前記カラーフィルタアレイは、画素単位での移動前の撮像で得られる画素信号からなる第1のフレームと、画素単位での移動後の撮像で得られる画素信号からなる第2のフレームとを合成することで、第1の色の画素信号のみからなる第1の合成フレームと、第2の色の画素信号と第3の色の画素信号とが行方向と列方向に同一の密度で交互に配列される第2の合成フレームが得られるように、前記カラーフィルタが配列されている固体撮像装置と、前記固体撮像装置を駆動して、画素単位で移動させる駆動部とを備える電子機器である。
 本技術の第2の側面の電子機器においては、固体撮像装置に、複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイとが設けられる。また、前記カラーフィルタアレイには、画素単位での移動前の撮像で得られる画素信号からなる第1のフレームと、画素単位での移動後の撮像で得られる画素信号からなる第2のフレームとを合成することで、第1の色の画素信号のみからなる第1の合成フレームと、第2の色の画素信号と第3の色の画素信号とが行方向と列方向に同一の密度で交互に配列される第2の合成フレームが得られるように、前記カラーフィルタが配列されている。
 本技術の第3の側面の固体撮像装置は、複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイとを備え、前記カラーフィルタアレイは、2行3列のカラーフィルタの配列パターンを、4つ組み合わせた4行6列の基本配列パターンの単位で配列され、第1の色、第2の色、及び、第3の色のカラーフィルタからなる第1の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第4の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとなり、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第2の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第3の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとなる固体撮像装置である。
 本技術の第3の側面の固体撮像装置においては、複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイとが設けられる。前記カラーフィルタアレイでは、2行3列のカラーフィルタの配列パターンが、4つ組み合わされた4行6列の基本配列パターンの単位で配列され、第1の色、第2の色、及び、第3の色のカラーフィルタからなる第1の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第4の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとされ、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第2の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第3の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとされる。
 本技術の第4の側面の電子機器は、複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイとを有し、前記カラーフィルタアレイは、2行3列のカラーフィルタの配列パターンを、4つ組み合わせた4行6列の基本配列パターンの単位で配列され、第1の色、第2の色、及び、第3の色のカラーフィルタからなる第1の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第4の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとなり、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第2の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第3の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとなる固体撮像装置を備える電子機器である。
 本技術の第4の側面の電子機器においては、固体撮像装置に、複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイとが設けられる。前記カラーフィルタアレイでは、2行3列のカラーフィルタの配列パターンが、4つ組み合わされた4行6列の基本配列パターンの単位で配列され、第1の色、第2の色、及び、第3の色のカラーフィルタからなる第1の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第4の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとされ、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第2の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第3の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとされる。
 本技術の第1の側面乃至第4の側面によれば、高速に、かつ高品質な画像を撮像することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
画素シフトを用いた画像の撮像方法を説明する図である。 画素シフトを用いた画像の撮像方法を説明するタイミングチャートである。 画素シフトを用いた画像の撮像方法の他の例を説明する図である。 本技術の画像の撮像方法を説明する図である。 第1フレームと第2フレームを合成して得られる合成フレームを説明する図である。 本技術を適用した固体撮像装置を有する撮像装置の構成例を示す図である。 第1の実施の形態の画像の撮像方法を説明する図である。 第1の実施の形態の画像の撮像方法を説明するタイミングチャートである。 グローバルシャッタ方式に対応した画素の構成を示す図である。 第2の実施の形態の画像の撮像方法を説明するタイミングチャートである。 第2の実施の形態の画像の撮像方法を説明する図である。 第3の実施の形態の画像の撮像方法を説明するタイミングチャートである。 第3の実施の形態の画像の撮像方法を説明する図である。 他のカラーフィルタ配列を説明する図である。 さらに他のカラーフィルタ配列を説明する図である。 シミュレーションの結果を示す図である。 第4の実施の形態の画像の撮像方法を説明する図である。 シミュレーションの結果を示す図である。 電子機器の構成例を示す図である。 固体撮像装置の使用例を示す図である。
 以下、図面を参照しながら本技術の実施の形態について説明する。なお、説明は以下の順序で行うものとする。
1.本技術の画像撮像の原理
2.固体撮像装置を有する撮像装置の構成
3.第1の実施の形態(基本の構成)
4.第2の実施の形態(グローバルシャッタ方式)
5.第3の実施の形態(露光期間が短い場合に対応)
6.変形例(他のカラーフィルタ配列)
7.第4の実施の形態(画素シフトを行う場合と行わない場合の双方に対応)
8.電子機器の構成
9.固体撮像装置の使用例
<1.本技術の画像撮像の原理>
(画素シフトを用いた画像の撮像方法)
 赤(R)、緑(G)、及び、青(B)のカラーフィルタが2次元状に配列されたカラーフィルタアレイを有する固体撮像装置において、各画素では、1つのカラーフィルタを透過した光が入射するため、被写体の撮像時に1つの画素から得られる色情報は、赤(R)、緑(G)、又は、青(B)のいずれか一色とされる。そのため、各画素から得ることのできない色情報は、近接する他の画素からの色情報により補間する必要があり、正確な色情報が得られないことになる。
 一方、カラーフィルタアレイを有する固体撮像装置等を画素単位で移動させて、各画素に、赤(R)、緑(G)、及び、青(B)のすべてのカラーフィルタを透過した光を入射させる度に、複数回の撮像を行うことで、すべての色情報を得ることができる。例えば、図1において、ベイヤー配列のカラーフィルタアレイを、図1のAの位置から、図1のB、図1のC、図1のDの位置に、画素単位で順次移動させて、各位置で4回の撮像を行うことで、各画素では、赤(R)、緑(G)、及び、青(B)のすべての色情報が得られるため、正確な色情報を得ることができる。
 具体的には、図1のAにおいて、ベイヤー配列のカラーフィルタアレイにおける左上の拡大領域内の注目している注目位置(図中のばつ印)の画素が、R画素である場合に、1回目の撮像が行われる。1回目の撮像が終了した後、ベイヤー配列のカラーフィルタアレイを有する固体撮像装置を、上方向(列方向)に1画素分移動(図1のBの矢印A1の方向に移動)させることで、図1のBにおいては、注目位置の画素がR画素からG画素に変更され、2回目の撮像が行われる。
 また、2回目の撮像が終了した後、ベイヤー配列のカラーフィルタアレイを有する固体撮像装置を、左方向(行方向)に1画素分移動(図1のCの矢印A2の方向に移動)させることで、図1のCにおいては、注目位置の画素がG画素からB画素に変更され、3回目の撮像が行われる。さらに、3回目の撮像が終了した後、ベイヤー配列のカラーフィルタアレイを有する固体撮像装置を、下方向(列方向)に1画素分移動(図1のDの矢印A3の方向に移動)させることで、図1のDにおいて、注目位置の画素がB画素からG画素に変更され、4回目の撮像が行われる。
 このように、画素シフトを用いた画像の撮像方法では、カラーフィルタアレイを有する固体撮像装置を画素単位でずらすことで、赤(R)、緑(G)、及び、青(B)のカラーフィルタからの光を、各画素に受光させて、例えば各位置で合計4回の撮像を繰り返すことにより、各画素から、赤(R)、緑(G)、及び、青(B)の画素信号を得ることができる。
 図2は、図1の画素シフトを用いた画像の撮像方法を説明するタイミングチャートである。図2においては、カラーフィルタアレイに配列されたカラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイと、カラーフィルタアレイや画素アレイを有する固体撮像装置と、固体撮像装置に対して被写体からの光を露光又は遮光するメカニカルシャッタの動作が時系列で表されている。
 時刻t10乃至時刻t12においては、モニタリングが行われている。時刻t12において、例えばユーザによりシャッタ操作が行われると、撮像動作が開始される。時刻t12乃至時刻t13においては、メカニカルシャッタは開いているので、画素アレイでは、1回目の露光が開始され、各画素が被写体からの光を受光し、フォトダイオードには電荷(信号電荷)が蓄積される。
 時刻t13乃至時刻t14においては、メカニカルシャッタが閉じられるので、画素アレイでは、各画素のフォトダイオードに蓄積された電荷が読み出される。また、時刻t13においては、固体撮像装置が上方向(列方向)に1画素分移動され、カラーフィルタアレイの状態が、図1のAの状態から、図1のBの状態に遷移する。これにより、例えば、図1のAに示したカラーフィルタアレイの状態における1回目の撮像が行われて、1回目の撮像で得られる画素信号からなる第1フレーム(1st frame)が生成される。
 以降、1回目の撮像と同様にして、2回目乃至4回目の撮像が行われる。すなわち、時刻t14乃至時刻t16において、2回目の撮像が行われ、第2フレーム(2nd frame)が生成される。また、時刻t15においては、固体撮像装置が左方向(行方向)に1画素分移動され、カラーフィルタアレイの状態が、図1のBの状態から、図1のCの状態に遷移する。
 時刻t16乃至時刻t18において、3回目の撮像が行われて、第3フレーム(3rd frame)が生成される。また、時刻t17においては、固体撮像装置が下方向(列方向)に1画素分移動され、カラーフィルタアレイの状態が、図1のCの状態から、図1のDの状態に遷移する。そして、時刻t18乃至時刻t20において、4回目の撮像が行われて、第4フレーム(4th frame)が生成される。
 このように、図1の画素シフトを用いた画像の撮像方法においては、固体撮像装置を画素単位で移動させて、4回の撮像を繰り返すことで、赤(R)、緑(G)、及び、青(B)のカラーフィルタからの光を、各画素に受光させて、各画素から得られる、赤(R)、緑(G)、及び、青(B)の画素信号から、第1フレーム乃至第4フレームを生成することができる。
 しかしながら、図1の画素シフトを用いた画像の撮像方法においては、固体撮像装置を画素単位で移動させながら、4回の撮像を繰り返すことで、画素アレイにおける露光や信号の読み出し、固体撮像装置の移動などに多くの時間を要するため、例えば、高速に動作する被写体を撮像する場合、第1フレーム乃至第4フレームを生成する間に、当該被写体が動いてしまうことになる。
 特に、現在、デジタルスチルカメラや、撮像機能を有するモバイル機器などにおいては、固体撮像装置として、CMOSイメージセンサを用いるのが主流であるが、通常のCMOSイメージセンサでは、ローリングシャッタ方式が採用されている。このローリングシャッタ方式においては、画素アレイに配列された全画素のフォトダイオードに蓄積された電荷の読み出しが完了しないと、次の露光動作に移れないため、さらに高速化が困難となる。
 また、図3に示すように、ベイヤー配列のカラーフィルタアレイを有する固体撮像装置において、1回目の撮像により第1フレームを生成した後に、右方向(行方向)に1画素分移動(図3の矢印A4の方向に移動)させて、2回目の撮像により第2フレームを生成することで、第1フレームと第2フレームを合成した合成フレームが得られるようにした画像の撮像方法が提案されている。
 この画像の撮像方法であると、ベイヤー配列では、緑(G)のカラーフィルタが市松状に配され、残った部分に、赤(R)と青(B)のカラーフィルタが一列ごとに交互に配されるので、緑(G)の画素信号のみからなる合成フレームと、赤(R)と青(B)の画素信号からなる合成フレームが得られることになる。
 しかしながら、赤(R)と青(B)からなる合成フレームでは、列方向に、赤(R)の画素信号のみの行と、青(B)の画素信号のみの行とが交互に表れてしまい、赤(R)と青(B)の空間周波数が水平方向と垂直方向で異なるため、例えば、偽色の発生や、解像度の縦横のバランスが異なる現象が発生する恐れがある。
(本技術の画像の撮像方法)
 図4は、本技術の画像の撮像方法を説明する図である。
 図4において、固体撮像装置100は、赤(R)、緑(G)、及び、青(B)のカラーフィルタが2次元状に配列されたカラーフィルタアレイ112と、カラーフィルタアレイ112に配列されたカラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイ113から構成されている。
 本技術の画像の撮像方法では、カラーフィルタアレイ112の配列として、その列方向に、緑(G)のカラーフィルタの行と、赤(R)と青(B)のカラーフィルタの行とが交互に配列され、かつ、赤(R)と青(B)のカラーフィルタの行では、赤(R)のカラーフィルタと、青(B)のカラーフィルタとが交互に配列されるようにする。
 そして、第1フレームの画素信号を得るための1回目の撮像が行われ、その後、固体撮像装置100又はレンズの像面を、右斜め上方向に1画素分移動(図4の矢印A5の方向に移動)させて、第2フレームの画素信号を得るための2回目の撮像が行われることで、第1フレームと第2フレームが得られる。
 ここでは、図5に示すように、第1フレームとしては、例えば、列方向に、赤(R)と青(B)の画素信号からなる行と、緑(G)の画素信号のみからなる行とが交互に配列され、かつ、赤(R)と青(B)の画素信号からなる行では、赤(R)の画素信号と、青(B)の画素信号とが交互に配列されている。また、図5に示すように、第2フレームとしては、例えば、列方向に、緑(G)の画素信号のみからなる行と、青(B)と赤(R)の画素信号からなる行とが交互に配列され、かつ、青(B)と赤(R)の画素信号からなる行では、青(B)の画素信号と、赤(R)の画素信号とが交互に配列されている。
 そして、図5に示すように、これらの第1フレームと第2フレームを合成することで、緑(G)の画素信号のみからなる第1合成フレームと、赤(R)と青(B)の画素信号からなる第2合成フレームが得られることになる。ただし、赤(R)と青(B)の画素信号からなる第2合成フレームにおいては、行方向と列方向に、赤(R)の画素信号と、青(B)の画素信号が、同一の密度で交互に配列されることになる(いわゆる千鳥配列となる)。このように、赤(R)の画素信号と、青(B)の画素信号を、水平方向と垂直方向ともにバランスよく得ることができるため、例えば偽色の発生を抑制することができる。
 以上のように、本技術の画像の撮像方法においては、図4のカラーフィルタアレイ112の配列を採用し、画素単位で斜め方向に移動させる前後の撮像で得られる第1フレームと第2フレームを合成することで、緑(G)の画素信号のみからなる第1合成フレームと、赤(R)の画素信号と青(B)の画素信号とが行方向と列方向に同一の密度で交互に配列される第2合成フレームが得られる。そして、2回の撮像を行うことで、画素アレイ113に配列された全ての画素から、緑(G)の画素信号と、赤(R)又は青(B)の画素信号が水平方向と垂直方向ともにバランスよく得られることになるので、高速に、かつ高品質な画像を撮像することができるようになる。
<2.固体撮像装置を有する撮像装置の構成>
 図6は、本技術を適用した固体撮像装置を有する撮像装置の構成例を示す図である。
 図6の撮像装置10は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像機能を有する撮像装置である。図6において、撮像装置10は、固体撮像装置100、レンズ部111、信号処理部114、制御部115、及び、駆動部116から構成される。また、固体撮像装置100は、カラーフィルタアレイ112と、画素アレイ113を含んで構成される。
 レンズ部111は、1又は複数のレンズ群等から構成され、被写体からの光(像光)を、固体撮像装置100の受光面上に入射させる。固体撮像装置100は、CMOSイメージセンサ等のイメージセンサである。固体撮像装置100は、レンズ部111からの光(像光)を受光面に結像させて、結像した像の光の明暗を光電変換して、画素信号として信号処理部114に出力する。
 固体撮像装置100は、複数の異なる透過性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイ112と、カラーフィルタからの光が入射される光電変換素子(フォトダイオード)を有する複数の画素が2次元状に配列された画素アレイ113と、画素の駆動やA/D(Analog/Digital)変換等を行う周辺回路部(不図示)などから構成されている。
 信号処理部114は、制御部115からの制御に従い、固体撮像装置100から出力される画素信号に対する所定の信号処理を行い、後段の回路に出力する。例えば、この信号処理としては、1回目の撮像で得られる画素信号から、第1フレームを生成したり、2回目の撮像で得られる画素信号から第2フレームを生成したり、あるいは、第1フレームと第2フレームから合成フレームを生成したりする処理等が行われる。制御部115は、撮像装置10の各部の動作を制御する。
 駆動部116は、例えば、撮像装置10の手ぶれ補正システムに用いられる超音波リニアアクチュエータやモータ駆動装置、ピエゾ駆動装置等から構成される。駆動部116は、画素ピッチ以下の駆動制御分解能を有しており、制御部115からの制御に従い、固体撮像装置100を駆動して画素単位で移動させる。なお、駆動部116は、制御部115からの制御に従い、レンズ部111を駆動して、レンズの像面を動かすようにしてもよい。
 メカニカルシャッタ117は、固体撮像装置100の前面に設けられる。メカニカルシャッタ117は、制御部115からの制御に従い、固体撮像装置100に対して、レンズ部111からの光を露光又は遮光する。
 撮像装置10は、以上のように構成される。なお、固体撮像装置100は、信号処理部114を含んで構成されるようにしてもよい。
<3.第1の実施の形態>
(画像の撮像方法)
 図7は、第1の実施の形態の画像の撮像方法を説明する図である。
 図7において、固体撮像装置100が有するカラーフィルタアレイ112では、その列方向に、緑(G)のカラーフィルタの行と、赤(R)と青(B)のカラーフィルタの行とが交互に配列され、かつ、赤(R)と青(B)のカラーフィルタの行では、赤(R)のカラーフィルタと、青(B)のカラーフィルタとが交互に配列されている。
 固体撮像装置100においては、まず、1回目の撮像により第1フレームを得るための画素信号を出力し、次に、右斜め上方向に1画素分移動(図7の矢印A7の方向に移動)してから、2回目の撮像により第2フレームを得るための画素信号を出力することになる。
 これにより、図7に示すように、例えば、列方向に、赤(R)と青(B)の画素信号からなる行と、緑(G)の画素信号のみからなる行とが交互に配列され、かつ、赤(R)と青(B)の画素信号からなる行では、赤(R)の画素信号と、青(B)の画素信号とが交互に配列されている第1フレームが得られる。
 また、図7に示すように、例えば、列方向に、緑(G)の画素信号のみからなる行と、青(B)と赤(R)の画素信号からなる行とが交互に配列され、かつ、青(B)と赤(R)の画素信号からなる行では、青(B)の画素信号と、赤(R)の画素信号とが交互に配列されている第2フレームが得られる。
 そして、これらの第1フレームと第2フレームを合成することで、緑(G)の画素信号のみからなる第1合成フレームと、赤(R)と青(B)の画素信号からなる第2合成フレームが得られることになる。ただし、赤(R)と青(B)の画素信号からなる第2合成フレームにおいては、行方向と列方向に、赤(R)の画素信号と、青(B)の画素信号が、同一の密度で交互に配列されることになる。
(タイミングチャート)
 図8は、第1の実施の形態の画像の撮像方法を説明するタイミングチャートである。図8においては、カラーフィルタアレイ112に配列されたカラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイ113と、カラーフィルタアレイ112と画素アレイ113を有する固体撮像装置100と、固体撮像装置100に対して被写体からの光を露光又は遮光するメカニカルシャッタ117の動作が時系列で表されている。
 時刻t30乃至時刻t32においては、モニタリングが行われている。時刻t32において、例えばユーザによりシャッタ操作が行われると、撮像動作が開始され、第1フレームの露光が開始される。時刻t32乃至時刻t33においては、メカニカルシャッタ117は開いているので、画素アレイ113では、各画素が被写体からの光を受光し、フォトダイオードには電荷(信号電荷)が蓄積される。時刻t33において、第1フレームの露光が完了すると、メカニカルシャッタ117が閉じられる。そして、駆動部116は、固体撮像装置100を駆動して、右斜め上方向に1画素分移動(上述した図7の矢印A7の方向に移動)させる。
 また、時刻t33乃至時刻t34においては、メカニカルシャッタ117が閉じられるので、画素アレイ113では、各画素のフォトダイオードに蓄積された電荷(信号電荷)が順次読み出され、第1フレームの信号読み出し動作が行われる。このようにして、1回目の撮像が行われて、第1フレームを生成するための画素信号が得られる。
 そして、固体撮像装置100の移動が完了し、かつ画素アレイ113の全画素からの信号読み出し動作が完了すると、時刻t34において、メカニカルシャッタ117が再度開かれ、第2フレームの露光が開始される。時刻t34乃至時刻t35においては、メカニカルシャッタ117は開いているので、画素アレイ113では、各画素が被写体からの光を受光し、フォトダイオードには電荷が蓄積される。時刻t35において、第2フレームの露光が完了すると、メカニカルシャッタ117が閉じられる。そして、駆動部116は、固体撮像装置100を駆動することで、例えば左斜め下方向に1画素分移動させて、固体撮像装置100を元の位置に戻して次の撮像に備えるようにする。
 また、時刻t35乃至時刻t36においては、メカニカルシャッタ117が閉じられるので、画素アレイ113では、各画素のフォトダイオードに蓄積された電荷(信号電荷)が順次読み出され、第2フレームの信号読み出し動作が行われる。このようにして、2回目の撮像が行われて、第2フレームを生成するための画素信号が得られる。
 このようにして、2回の撮像が行われることで、信号処理部114によって、赤(R)と青(B)の画素信号からなる行と、緑(G)の画素信号のみからなる行とが、列方向に交互に配列される第1フレーム、及び、緑(G)の画素信号のみからなる行と、青(B)と赤(R)の画素信号からなる行とが、列方向に交互に配列される第2フレームが生成される。そして、信号処理部114は、これらの第1フレームと第2フレームを合成することで、緑(G)の画素信号のみからなる第1合成フレームと、赤(R)と青(B)の画素信号からなる第2合成フレームを生成することができる。
 なお、この場合において、撮像開始から撮像完了までにかかる撮像期間としては、第1フレームの露光期間と信号読み出し期間、及び、第2フレームの露光期間、すなわち、2回の露光期間と1回の信号読み出し期間(時刻t32乃至時刻t35)となるので、例えば3回や4回の撮像を行う場合と比べて、高速に被写体を撮像することができる。ただし、ここでは、説明の都合上、第2フレームの露光期間が終了した時点を、撮像が完了した時点としており、以下の説明でも同様であるものとする。
 また、2つの合成フレームのうち、赤(R)と青(B)の画素信号からなる第2合成フレームでは、行方向と列方向に、赤(R)の画素信号と、青(B)の画素信号が、同一の密度で交互に配列されることになる。そのため、赤(R)の画素信号と、青(B)の画素信号を、水平方向と垂直方向ともにバランスよく得ることができるので、例えば、偽色の発生を抑制することができる。
 以上のように、第1の実施の形態においては、図7のカラーフィルタ配列を有するカラーフィルタアレイ112を採用し、画素単位で斜め方向に移動させる前後の撮像で得られる第1フレームと第2フレームを合成することで、緑(G)の画素信号のみからなる第1合成フレームと、赤(R)の画素信号と青(B)の画素信号とが行方向と列方向に同一の密度で交互に配列される第2合成フレームが得られる。そして、2回の撮像を行うことで、画素アレイ113に配列された全ての画素から、緑(G)の画素信号と、赤(R)又は青(B)の画素信号が水平方向と垂直方向ともにバランスよく得られることになるので、高速に、かつ高品質な画像を撮像することができるようになる。
<4.第2の実施の形態>
 ところで、CMOSイメージセンサ等の固体撮像装置100では、一般的に、フォトダイオードに蓄積された電荷(信号電荷)を読み出す信号読み出し動作が画素アレイ113の行ごとに行われ、信号読み出し動作が終了した画素は、その終了時点から、再度、電荷の蓄積を開始する。このように画素アレイ113の行ごとに信号読み出し動作を行うことにより、固体撮像装置100においては、全ての画素において電荷の蓄積期間を一致させることができず、被写体が動いている場合などに撮像画像に歪みが生じてしまう。例えば、上下方向にまっすぐな物が横方向に動いているのを撮像した場合に、それが傾いているように写ることになる。
 このような被写体の像に歪みが生じることを回避するために、各画素の露光期間が同一となるような固体撮像装置100の全画素同時電子シャッタが開発されている。全画素同時電子シャッタとは、撮像に有効な全ての画素について、同時に露光を開始し、同時に露光を終了する動作を行うものであり、グローバルシャッタ(グローバル露光)とも呼ばれる。グローバル露光を実現するための方式としては、機械的な方式と電気的な方式とがある。
 機械的な方式では、上述したように、固体撮像装置100の前面を遮光する開閉可能なメカニカルシャッタ117が利用される。この方式では、メカニカルシャッタ117を開放して全画素同時に露光を開始し、露光期間終了時点で、メカニカルシャッタ117を閉じて全画素同時に遮光することで、フォトダイオードで光電荷が発生する期間が一致することになる。
 一方、電気的な方式では、フォトダイオードの蓄積電荷を空にする電荷排出動作を全画素同時に行って露光を開始し、露光期間終了時点で、転送ゲートを全画素同時に駆動して蓄積された光電荷を全てメモリ部に転送して保持する。そして、浮遊拡散層をリセットした後に、メモリ部の保持電荷を、浮遊拡散層に転送して信号レベルの読み出しが行われる。以下、このような電気的な方式を採用した場合における、画像の撮像方法について説明する。
(グローバルシャッタ方式の画素の構成例)
 図9は、グローバルシャッタ方式に対応した画素の構成を示す図である。図9の画素200は、図6の画素アレイ113において、2次元状に配列された1つの画素に対応している。
 図9において、画素200は、光電変換素子として、例えばフォトダイオード(PD)221を有している。フォトダイオード221は、例えば、N型基板231に形成されたP型ウェル層232に対して、P型層233(P+)を基板表面側に形成してN型埋め込み層234(N)を埋め込むことによって形成される埋め込み型フォトダイオードである。
 画素200は、フォトダイオード221に加えて、第1転送ゲート222、メモリ部(MEM)223、第2転送ゲート224及び浮遊拡散領域(FD:Floating Diffusion)225を有する。なお、画素200は、フォトダイオード221に光を導入する開口部や、各トランジスタのコンタクト部など以外の部分を遮光する遮光膜(図示せず)により遮光されている。
 第1転送ゲート222は、フォトダイオード221で光電変換され、その内部に蓄積された電荷を、ゲート電極222Aに転送パルスTRXが印加されることによって転送する。メモリ部223は、ゲート電極222Aの下に形成されたN型の埋め込みチャネル235(N)によって形成され、第1転送ゲート222によってフォトダイオード221から転送された電荷を保持する。
 第2転送ゲート224は、メモリ部223に保持された電荷を、ゲート電極224Aに転送パルスTRGが印加されることによって転送する。浮遊拡散領域225は、N型層(N+)からなる電荷電圧変換部であり、第2転送ゲート224によってメモリ部223から転送された電荷を電圧に変換する。
 画素200はさらに、リセットトランジスタ226、増幅トランジスタ227、及び、選択トランジスタ228を有している。なお、図9の例では、これらのトランジスタとして、NチャネルのMOSトランジスタを用いている。
 リセットトランジスタ226は、電源VDDと浮遊拡散領域225との間に接続されており、ゲート電極にリセットパルスRSTが印加されることによって浮遊拡散領域225をリセットする。増幅トランジスタ227は、ドレイン電極が電源VDDに接続され、ゲート電極が浮遊拡散領域225に接続されており、浮遊拡散領域225の電圧を読み出す。
 選択トランジスタ228は、例えば、ドレイン電極が増幅トランジスタ227のソース電極に、ソース電極が垂直信号線217にそれぞれ接続されており、ゲート電極に選択パルスSELが印加されることで、画素信号を読み出すべき画素200を選択する。
 なお、リセットトランジスタ226、増幅トランジスタ227、及び、選択トランジスタ228については、その1つあるいは複数を画素信号の読み出し方法によって省略したり、複数の画素間で共有したりすることも可能である。
 画素200はさらに、フォトダイオード221の蓄積電荷を排出するための電荷排出部229を有している。この電荷排出部229は、露光開始時にゲート電極229Aに制御パルスOFGが印加されることで、フォトダイオード221の電荷をN型層のドレイン部236(N++)に排出する。ドレイン部236には、所定の電圧VDDが印加されている。
 複数の画素200が2次元状に配列された画素アレイ113を有する固体撮像装置100においては、全画素同時に露光を開始し、全画素同時に露光を終了し、フォトダイオード221に蓄積された電荷を、遮光されたメモリ部223及び浮遊拡散領域225へ順次転送することで、グローバル露光を実現する。このグローバル露光により、全画素一致した露光期間による歪みのない撮像が可能とされる。
(タイミングチャート)
 図10は、第2の実施の形態の画像の撮像方法を説明するタイミングチャートである。図10においては、図9のグローバルシャッタ方式に対応した画素200が2次元状に配列された画素アレイ113と、カラーフィルタアレイ112と画素アレイ113を有する固体撮像装置100の動作が時系列で表されている。なお、図11には、画素アレイ113の動作が模式的に表されており、適宜参照しながら説明するものとする。また、第2の実施の形態において、図9の画素200を採用した場合には、図6のメカニカルシャッタ117を設ける必要はない。
 時刻t50乃至時刻t52においては、モニタリングが行われている。時刻t52において、例えばユーザによりシャッタ操作が行われると、画素アレイ113においては撮像動作が開始され、第1フレームの露光が開始される(図11のA)。これにより、図11のAに示すように、画素アレイ113に配列された各画素200では、被写体からの光が受光され、フォトダイオード221には、電荷(信号電荷)が蓄積されることになる。
 時刻t53において、第1フレームの露光が完了すると、ゲート電極222Aに転送パルスTRXが印加されることで、第1転送ゲート222は、フォトダイオード221で光電変換されてその内部に蓄積された電荷を、メモリ部223に転送する(図11のB)。そして、フォトダイオード221からメモリ部223に、電荷の転送が完了すると、画素アレイ113では、ゲート電極224Aに転送パルスTRGが印加されることで、各画素200のメモリ部223に保持された電荷(信号電荷)が読み出され、第1フレームの信号読み出し動作が開始される。また、それと同時に、駆動部116は、固体撮像装置100を駆動して、右斜め上方向に1画素分移動させる動作を開始する。
 時刻t54において、固体撮像装置100の移動が完了すると、ゲート電極229Aに制御パルスOFGが印加されることで、フォトダイオード221の蓄積電荷がドレイン部236に排出される。そして、フォトダイオード221がリセットされた後に、第2フレームの露光が開始される(図11のC)。
 その後、時刻t54において、第1フレームの信号読み出し動作が完了すると、第1フレームを生成するための画素信号が得られることになる。また、時刻t56において、第2フレームの露光が完了すると、時刻t56乃至時刻t57においては、第2フレームの信号読み出し動作が行われ、第2フレームを生成するための画素信号が得られることになる。
 このようにして、2回の撮像が行われることで、信号処理部114によって、赤(R)と青(B)の画素信号からなる行と、緑(G)の画素信号のみからなる行とが、列方向に交互に配列される第1フレーム、及び、緑(G)の画素信号のみからなる行と、青(B)と赤(R)の画素信号からなる行とが、列方向に交互に配列される第2フレームが生成される。そして、信号処理部114は、これらの第1フレームと第2フレームを合成することで、緑(G)の画素信号のみからなる第1合成フレームと、赤(R)と青(B)の画素信号からなる第2合成フレームを生成することができる。
 なお、この場合において、撮像開始から撮像完了までにかかる撮像期間としては、固体撮像装置100の移動期間(移動期間)が、第1フレームの信号読み出し期間よりも短い場合には、固体撮像装置100の移動が完了して、フォトダイオード221をリセットした後に、直ちに第2フレームの露光が開始されるので、2回の露光期間と1回の移動期間(時刻t52乃至時刻t56)となる。すなわち、第2の実施の形態における撮像期間(2回の露光期間と1回の移動期間)は、第1の実施の形態における撮像期間(図8の2回の露光期間と1回の信号読み出し期間)と比べて、さらに撮像期間を短縮することができる。
 また、第2の実施の形態においては、画素アレイ113において、グローバルシャッタ方式に対応した画素200を用いているため、図6のメカニカルシャッタ117が不要となり、撮像装置10の低価格化や小型化が可能となる。
 なお、図10のタイミングチャートにおいては、説明の簡略化のために、第1フレームの露光完了時刻と信号読み出し開始時刻と、固体撮像装置100の移動開始時刻は、同一の時刻t53として図示しているが、実際には、第1フレームの信号読み出し動作と、固体撮像装置100の移動動作は、第1フレームの露光完了後、フォトダイオード221からメモリ部223に電荷の転送が完了してから開始される。同様にまた、固体撮像装置100の移動完了時刻と、第2フレームの露光開始時刻は、同一の時刻t54として図示しているが、実際には、固体撮像装置100の移動完了後、フォトダイオード221がリセットされた後に、第2フレームの露光が開始される。
 以上のように、第2の実施の形態においては、図7のカラーフィルタ配列を有するカラーフィルタアレイ112と、図9の画素200が2次元状に配列された画素アレイ113を採用し、画素単位で斜め方向に移動させる前後の撮像で得られる第1フレームと第2フレームを合成することで、緑(G)の画素信号のみからなる第1合成フレームと、赤(R)の画素信号と青(B)の画素信号とが行方向と列方向に同一の密度で交互に配列される第2合成フレームが得られる。そして、2回の撮像を行うことで、画素アレイ113に配列された全ての画素から、緑(G)の画素信号と、赤(R)又は青(B)の画素信号が水平方向と垂直方向ともにバランスよく得られることになるので、高速に、かつ高品質な画像を撮像することができるようになる。
<5.第3の実施の形態>
 ところで、第2の実施の形態において、露光期間が信号読み出し期間よりも極端に短い場合には、第2フレームの露光期間が完了した後に、直ちにメカニカルシャッタ117を閉じることで、撮像を完了させることも可能である。以下、第3の実施の形態として、そのような場合について説明する。
(タイミングチャート)
 図12は、第3の実施の形態の画像の撮像方法を説明するタイミングチャートである。図12においては、図9のグローバルシャッタ方式に対応した画素200が2次元状に配列された画素アレイ113と、カラーフィルタアレイ112と画素アレイ113を有する固体撮像装置100と、固体撮像装置100に対して被写体からの光を露光又は遮光するメカニカルシャッタ117の動作が時系列で表されている。なお、図13には、画素アレイ113の動作が模式的に表されており、適宜参照しながら説明するものとする。
 時刻t70乃至時刻t72においては、モニタリングが行われている。なお、メカニカルシャッタ117は開放されている。時刻t72において、例えばユーザによりシャッタ操作が行われると、画素アレイ113においては撮像動作が開始され、第1フレームの露光が開始される(図13のA)。これにより、図13のAに示すように、画素アレイ113に配列された各画素200では、被写体からの光が受光され、フォトダイオード221には、電荷(信号電荷)が蓄積されることになる。
 時刻t73において、第1フレームの露光が完了すると、第1転送ゲート222によって、フォトダイオード221に蓄積された電荷が、メモリ部223に転送される(図13のB)。電荷の転送が完了すると、第1フレームの信号読み出し動作と、固体撮像装置100を右斜め上方向に1画素分移動させる動作が開始される。時刻t74において、固体撮像装置100の移動が完了すると、フォトダイオード221の蓄積電荷が排出されてリセットされ、第2フレームの露光が開始される(図13のC)。
 その後、時刻t75において、第1フレームの信号読み出し動作が完了する前に、第2フレームの露光が完了するので、メカニカルシャッタ117を閉じて、撮像を完了させる。なお、メカニカルシャッタ117の開閉時に、画素アレイ113においては、複数の画素200ごとに、露光時間が微妙に異なるという現象が起こりうるが、その場合には、ゲート電極229Aに印加する制御パルスOFGを調整して、画素200ごとにリセット動作をずらすことで、第2フレームの露光開始のタイミングを調整して、全画素で同じ露光時間とすることができる。
 また、時刻t76において、第1フレームの信号読み出し動作が完了すると、第1フレームを生成するための画素信号が得られることになる。また、時刻t76乃至時刻t77においては、第2フレームの信号読み出し動作が行われ、第2フレームを生成するための画素信号が得られることになる。
 このようにして、2回の撮像が行われることで、信号処理部114によって、赤(R)と青(B)の画素信号からなる行と、緑(G)の画素信号のみからなる行とが、列方向に交互に配列される第1フレーム、及び、緑(G)の画素信号のみからなる行と、青(B)と赤(R)の画素信号からなる行とが、列方向に交互に配列される第2フレームが生成される。そして、信号処理部114は、これらの第1フレームと第2フレームを合成することで、緑(G)の画素信号のみからなる第1合成フレームと、赤(R)と青(B)の画素信号からなる第2合成フレームを生成することができる。
 なお、この場合において、撮像開始から撮像完了までにかかる撮像期間としては、露光期間が信号読み出し期間よりも極端に短い場合には、第2フレームの露光が完了した後に、直ちにメカニカルシャッタ117が閉じられて、撮像が完了されるので、2回の露光期間と1回の移動期間(時刻t72乃至時刻t75)となる。すなわち、第3の実施の形態における撮像期間(2回の露光期間と1回の移動期間)は、第1の実施の形態における撮像期間(図8の2回の露光期間と1回の信号読み出し期間)と比べて短縮されているだけでなく、露光期間が信号読み出し期間よりも極端に短いため、第2の実施の形態における(図10の2回の露光期間と1回の移動期間)と比べてもさらに短縮されることになる。
 なお、図12のタイミングチャートにおいては、説明の簡略化のために、第1フレームの露光完了時刻と信号読み出し開始時刻と、固体撮像装置100の移動開始時刻は、同一の時刻t73として図示しているが、実際には、第1フレームの信号読み出し動作と、固体撮像装置100の移動動作は、第1フレームの露光完了後、フォトダイオード221からメモリ部223に電荷の転送が完了してから開始される。同様にまた、固体撮像装置100の移動完了時刻と、第2フレームの露光開始時刻は、同一の時刻t74として図示しているが、実際には、固体撮像装置100の移動完了後、フォトダイオード221がリセットされた後に、第2フレームの露光が開始される。
<6.変形例>
 ところで、上述した実施の形態では、図4又は図7のカラーフィルタ配列を有するカラーフィルタアレイ112が採用された場合を説明したが、カラーフィルタアレイ112としては、第1フレームと第2フレームを合成することで、図5に示した緑(G)の画素信号のみからなる第1合成フレームと、赤(R)と青(B)の画素信号からなる第2合成フレームを得ることができれば、他のカラーフィルタ配列を採用するようにしてもよい。そこで、次に、カラーフィルタアレイ112において、他のカラーフィルタ配列を採用した場合について説明する。
(カラーフィルタ配列の変形例1)
 図14は、他のカラーフィルタ配列を説明する図である。
 図14において、固体撮像装置100が有するカラーフィルタアレイ112では、2行2列のカラーフィルタ配列の単位で配列され、その列方向に、緑(G)と青(B)のカラーフィルタからなる第1カラーフィルタ配列の行と、緑(G)と赤(R)のカラーフィルタからなる第2カラーフィルタ配列の行とが交互に配列され、かつ、第1カラーフィルタ配列と第2カラーフィルタ配列では、緑(G)のカラーフィルタの配列の向き、及び、青(B)と赤(R)のカラーフィルタの配列の向きが逆向きに配列されている。
 固体撮像装置100においては、まず、1回目の撮像により第1フレームを得るための画素信号を出力し、上方向又は下方向(列方向)に2画素分移動(図14の矢印A8の方向に移動)してから、2回目の撮像により第2フレームを得るための画素信号を出力することになる。
 そして、これらの第1フレームと第2フレームを合成することで、緑(G)の画素信号のみからなる第1合成フレーム(不図示)と、赤(R)と青(B)の画素信号からなる第2合成フレーム(図14の右側の画素配列)が得られることになる。なお、図14の右側の画素配列では、細い線で囲まれた四角が、第1フレームから得られる赤(R)と青(B)の画素信号を表している一方、太い線で囲まれた四角が、第2フレームから得られる赤(R)と青(B)の画素信号を表している。
 ここで、図14の右側に示した、赤(R)と青(B)の画素信号からなる第2合成フレームにおいては、行方向と列方向に、赤(R)の画素信号と、青(B)の画素信号が、同一の密度で交互に配列される。そのため、赤(R)の画素信号と、青(B)の画素信号を、水平方向と垂直方向ともにバランスよく得ることができるので、例えば、偽色の発生を抑制することができる。
(カラーフィルタ配列の変形例2)
 図15は、さらに他のカラーフィルタ配列を説明する図である。
 図15において、固体撮像装置100が有するカラーフィルタアレイ112では、その行方向に、緑(G)のカラーフィルタの列と、赤(R)と青(B)のカラーフィルタの列とが交互に配列され、かつ、赤(R)と青(B)のカラーフィルタの列では、赤(R)のカラーフィルタと、青(B)のカラーフィルタとが交互に配列されている。
 固体撮像装置100においては、まず、1回目の撮像により第1フレームを得るための画素信号を出力し、次に右斜め上方向に1画素分移動(図15の矢印A9の方向に移動)してから、2回目の撮像により第2フレームを得るための画素信号を出力することになる。
 そして、これらの第1フレームと第2フレームを合成することで、緑(G)の画素信号のみからなる第1合成フレーム(不図示)と、赤(R)と青(B)の画素信号からなる第2合成フレーム(図15の右側の画素配列)が得られることになる。なお、図15の右側の画素配列では、細い線で囲まれた四角が、第1フレームから得られる赤(R)と青(B)の画素信号を表している一方、太い線で囲まれた四角が、第2フレームから得られる赤(R)と青(B)の画素信号を表している。
 ここで、図15の右側に示した、赤(R)と青(B)の画素信号からなる第2合成フレームにおいては、行方向と列方向に、赤(R)の画素信号と、青(B)の画素信号が、同一の密度で交互に配列される。そのため、赤(R)の画素信号と、青(B)の画素信号を、水平方向と垂直方向ともにバランスよく得ることができるので、例えば、偽色の発生を抑制することができる。
(シミュレーションの結果)
 図16は、上述した実施の形態についての解像度と偽色のシミュレーションの結果を示す図である。
 図16のAは、図1のカラーフィルタ配列を採用した場合における解像度と偽色のシミュレーションAの結果を示している。図16のBは、図3のカラーフィルタ配列を採用した場合における解像度と偽色のシミュレーションBの結果を示している。
 一方、図16のCは、本技術を適用したカラーフィルタ配列(図4又は図7等)を採用した場合における解像度と偽色のシミュレーションCの結果を示している。これらのシミュレーションの結果からも明らかなように、シミュレーションCとシミュレーションAでは、解像度と偽色のレベルはほぼ同等レベルで遜色はない。このことにより、画質を落とすことなく、4回の撮像から2回の撮像へ、大きく撮像速度を高速化することが可能であることが確認される。
 なお、図16のDには、ベイヤー配列を用いたカラーフィルタ配列を採用した場合における解像度と偽色のシミュレーションDの結果を、比較のために例示している。
<7.第4の実施の形態>
 上述した実施の形態においては、第1フレームと第2フレームを生成するための画素信号を得るに際して、固体撮像装置100を駆動して、所定の方向に画素単位で移動させることが前提となっていたが、次に、第4の実施の形態として、固体撮像装置100を駆動して画素シフトを行う場合と、固体撮像装置100を駆動せずに画素シフトを行わない場合の双方で、高速に、かつ高品質な画像を撮像することが可能な画像の撮像方法について説明する。
 図17は、第4の実施の形態の画像の撮像方法を説明する図である。
 図17において、固体撮像装置100が有するカラーフィルタアレイ112では、2行3列のカラーフィルタの配列パターンを基本として、そのバリエーションが4つの配列パターンからなり、それらの配列パターンを組み合わせた4行6列が、基本配列パターンとされる。
 具体的には、この基本配列パターンにおいて、左上に配置される2行3列のカラーフィルタを配列パターン1とすれば、配列パターン1は、2行3列のカラーフィルタ配列からなり、その1行目には、緑(G)、赤(R)、緑(G)のカラーフィルタが順に配列され、2行目には、赤(R)、緑(G)、青(B)のカラーフィルタが順に配列される。
 ここで、基本配列パターンの中心を対称点として、配列パターン1と点対称な組み合わせが配列パターン4となるようにする。すなわち、配列パターン4は、2行3列のカラーフィルタ配列からなり、その1行目には、青(B)、緑(G)、赤(R)のカラーフィルタが順に配列され、2行目には、緑(G)、赤(R)、緑(G)カラーフィルタが順に配列される。
 また、基本配列パターンにおいて、配列パターン2は右上に配置(すなわち、配列パターン1の右隣に配置)され、配列パターン2は、2行3列のカラーフィルタ配列からなり、その1行目には、緑(G)、青(B)、緑(G)のカラーフィルタが順に配列され、2行目には、赤(R)、緑(G)、青(B)のカラーフィルタが順に配列される。
 さらに、基本配列パターンの中心を対称点として、配列パターン2と点対称な組み合わせが配列パターン3となるようにする。すなわち、配列パターン3は、2行3列のカラーフィルタ配列からなり、その1行目には、青(B)、緑(G)、赤(R)のカラーフィルタが順に配列され、2行目には、緑(G)、青(B)、緑(G)のカラーフィルタが順に配列される。
 このような配列パターン1乃至配列パターン4からなる基本配列パターンが繰り返し配置されたカラーフィルタアレイ112を用いることで、固体撮像装置100を駆動することなく、1回の撮像で、高画質な画像を撮像することが可能となる。すなわち、2行3列のカラーフィルタの配列パターンを4セット用意し、各セットごとのカラーフィルタ配列を変えて、非周期性の高い配列にすることで、モアレを軽減することができる。また、縦横方向(行方向と列方向)には必ず、赤(R)、緑(G)、青(B)の画素信号が存在することになるため、偽色を抑制し、正確な色表現が可能となる。また、この場合には、固体撮像装置100を駆動しないため、低消費電力で、かつ、高速撮像に向いており、特に、動画撮像等の用途に用いられると好適である。
 また、さらなる高品質な画像を求める場合には、上述した実施の形態と同様に、固体撮像装置100を駆動して、第1フレームと第2フレームを生成し、合成フレームが得られるようにすればよい。
 具体的には、まず、1回目の撮像により第1フレームを得るための画素信号を出力し、次に、配列パターン単位とすれば、右斜め下方向に1配列パターン分移動、すなわち、画素単位では、下方向(列方向)に2画素と右方向(行方向)に3画素分移動(図17の矢印A10の方向に移動)してから、2回目の撮像により第2フレームを得るための画素信号を出力することになる。
 そして、これらの第1フレームと第2フレームを合成することで、図17に示すように、緑(G)の画素信号のみからなる第1合成フレームと、赤(R)と青(B)の画素信号からなる第2合成フレームが得られることになる。
 ここで、図17に示した、赤(R)と青(B)の画素信号からなる第2合成フレームでは、4行6列の基本配列パターンに対応した4×6画素(の画素信号)のブロック単位で見てみると、どの行とどの列に対しても等しく、赤(R)の画素信号と、青(B)の画素信号がバランスよく配置され、かつ周期性を持っていないことから、偽色やモアレ等を抑制することが可能となる。
 以上のように、第4の実施の形態においては、図17のカラーフィルタ配列を採用することで、画素シフトを行う場合だけでなく、画素シフトを行わない場合であっても、高速に画像を撮像することが可能となるので、例えば、撮像装置10において、高解像度モード(画素シフト:オン)と、高速撮像モード(画素シフト:オフ)を用意して、それらのモードをユーザにより選択させるようにしてもよい。
(シミュレーションの結果)
 図18は、第4の実施の形態についての解像度と偽色のシミュレーションの結果を示す図である。
 図18は、本技術を適用したカラーフィルタ配列(図17)を採用した場合における解像度と偽色のシミュレーションの結果を示している。このシミュレーションの結果から、この第4の実施の形態を用いても、画素シフト有りの条件下において第1の実施の形態と同様の高い解像度や偽色耐性、モアレ耐性を得られることが確認された。
<8.電子機器の構成>
 本技術は、上述した固体撮像装置や撮像装置への適用に限られるものではない。すなわち、本技術は、固体撮像装置や撮像装置のほかに光学レンズ系等を有するカメラモジュール、撮像機能を有する携帯端末装置(例えばスマートフォンやタブレット型端末)、又は画像読取部に固体撮像装置を用いる複写機など、固体撮像装置を有する電子機器全般に対して適用可能である。
 図19は、電子機器の構成例を示す図である。
 図19において、電子機器500は、レンズ部501、固体撮像装置502、画像処理部503、フレームメモリ504、表示部505、記録部506、操作部507、及び、電源部508から構成される。また、電子機器500において、画像処理部503、フレームメモリ504、表示部505、記録部506、操作部507、及び、電源部508は、バスライン509を介して相互に接続されている。
 レンズ部501は、上述したレンズ部111(図6)に相当するものである。レンズ部501は、1又は複数のレンズ群等から構成され、被写体からの光(像光)を、固体撮像装置502の受光面上に入射させる。
 固体撮像装置502は、例えばCMOSイメージセンサ等からなる上述の固体撮像装置100(図6)に相当するものである。固体撮像装置502は、複数のカラーフィルタが2次元状に配列されたカラーフィルタアレイと、光電変換素子を有する複数の画素が次元状に配列された画素アレイと、その周辺回路部などを有する。固体撮像装置502は、レンズ部501によって受光面上に結像された入射光の光量を、画素単位で電気信号に変換して、画像信号として画像処理部503に出力する。
 画像処理部503は、固体撮像装置502から出力される画像信号に対してカメラ信号処理を施す。当該信号処理により得られる画像データは、フレームメモリ504に一時的に格納され、表示部505又は記録部506に供給される。
 表示部505は、例えば、液晶パネルや有機EL(Electro Luminescence)パネル等から構成され、固体撮像装置502で撮像された動画又は静止画を表示する。記録部506は、固体撮像装置502で撮像された動画又は静止画の画像データを、半導体メモリやビデオテープ等の記録媒体に記録する。
 操作部507は、ユーザからの操作に従い、電子機器500が有する各種の機能についての操作指令を発する。電源部508は、画像処理部503、フレームメモリ504、表示部505、記録部506、及び、操作部507の動作に必要となる電力を、これらの供給対象に対して適宜供給する。なお、図示はしていないが、電子機器500には、固体撮像装置100を駆動して、画素単位で移動させる駆動部が設けられる。
<9.固体撮像装置の使用例>
 図20は、イメージセンサとしての固体撮像装置100の使用例を示す図である。
 上述した固体撮像装置100は、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。すなわち、図20に示すように、上述した、鑑賞の用に供される画像を撮像する鑑賞の分野だけでなく、例えば、交通の分野、家電の分野、医療やヘルスケアの分野、セキュリティの分野、美容の分野、スポーツの分野、又は、農業の分野において用いられる装置でも、固体撮像装置100を使用することができる。
 具体的には、上述したように、鑑賞の分野において、例えば、デジタルカメラやスマートフォン、カメラ機能付きの携帯電話機等の、鑑賞の用に供される画像を撮像するための装置(例えば、図6の撮像装置10や、図19の電子機器500)で、固体撮像装置100を使用することができる。
 交通の分野において、例えば、自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮像する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置で、固体撮像装置100を使用することができる。
 家電の分野において、例えば、ユーザのジェスチャを撮像して、そのジェスチャに従った機器操作を行うために、テレビ受像機や冷蔵庫、エアーコンディショナ等の家電に供される装置で、固体撮像装置100を使用することができる。また、医療やヘルスケアの分野において、例えば、内視鏡や、赤外光の受光による血管撮像を行う装置等の、医療やヘルスケアの用に供される装置で、固体撮像装置100を使用することができる。
 セキュリティの分野において、例えば、防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置で、固体撮像装置100を使用することができる。また、美容の分野において、例えば、肌を撮像する肌測定器や、頭皮を撮像するマイクロスコープ等の、美容の用に供される装置で、固体撮像装置100を使用することができる。
 スポーツの分野において、例えば、スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置で、固体撮像装置100を使用することができる。また、農業の分野において、例えば、畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置で、固体撮像装置100を使用することができる。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。例えば、上述した複数の実施の形態の全て又は一部を組み合わせた形態を採用することができる。
 また、本技術は、以下のような構成をとることができる。
(1)
 複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、
 前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイと
 を備え、
 前記カラーフィルタアレイは、画素単位での移動前の撮像で得られる画素信号からなる第1のフレームと、画素単位での移動後の撮像で得られる画素信号からなる第2のフレームとを合成することで、第1の色の画素信号のみからなる第1の合成フレームと、第2の色の画素信号と第3の色の画素信号とが行方向と列方向に同一の密度で交互に配列される第2の合成フレームが得られるように、前記カラーフィルタが配列されている
 固体撮像装置。
(2)
 前記カラーフィルタアレイは、
  その列方向に、前記第1の色のカラーフィルタの行と、前記第2の色及び前記第3の色のカラーフィルタの行とが交互に配列され、
  前記第2の色及び前記第3の色のカラーフィルタの行は、前記第2の色のカラーフィルタと、前記第3の色のカラーフィルタとが交互に配列されている
 (1)に記載の固体撮像装置。
(3)
 前記第2のフレームの画素信号を得るための撮像は、前記第1のフレームの画素信号を得るための撮像が行われた後に、前記固体撮像装置又はレンズの像面を、斜め方向に1画素分移動させてから行われる
 (2)に記載の固体撮像装置。
(4)
 前記画素は、グローバルシャッタ方式に対応した画素であり、
 前記画素内のメモリ部は、フレームごとに、光電変換素子からの電荷を蓄積することで、前記第2のフレームの露光期間に、前記第1のフレームの画素信号が読み出されるようにする
 (3)に記載の固体撮像装置。
(5)
 前記第1の色は、緑(G)であり、
 前記第2の色は、赤(R)又は青(B)であり、
 前記第3の色は、青(B)又は赤(R)である
 (1)乃至(4)のいずれか一項に記載の固体撮像装置。
(6)
 前記カラーフィルタアレイは、
  2行2列のカラーフィルタ配列の単位で配列され、
  その列方向に、前記第1の色及び前記第2の色のカラーフィルタからなる第1のカラーフィルタ配列の行と、前記第1の色及び前記第3の色のカラーフィルタからなる第2のカラーフィルタ配列の行とが交互に配列され、
  前記第1のカラーフィルタ配列と前記第2のカラーフィルタ配列では、前記第1の色のカラーフィルタの配列の向き、及び、前記第2の色と前記第3の色のカラーフィルタの配列の向きが逆に配列されている
 (1)に記載の固体撮像装置。
(7)
 前記第2のフレームの画素信号を得るための撮像は、前記第1のフレームの画素信号を得るための撮像が行われた後に、前記固体撮像装置又はレンズの像面を、列方向に2画素分移動させてから行われる
 (6)に記載の固体撮像装置。
(8)
 前記第1の色は、緑(G)であり、
 前記第2の色は、赤(R)又は青(B)であり、
 前記第3の色は、青(B)又は赤(R)である
 (6)又は(7)に記載の固体撮像装置。
(9)
 前記カラーフィルタアレイは、
  その行方向に、前記第1の色のカラーフィルタの列と、前記第2の色及び前記第3の色のカラーフィルタの列とが交互に配置され、
  前記第2の色及び前記第3の色のカラーフィルタの列は、前記第2の色のカラーフィルタと、前記第3の色のカラーフィルタとが交互に配列されている
 (1)に記載の固体撮像装置。
(10)
 前記第2のフレームの画素信号を得るための撮像は、前記第1のフレームの画素信号を得るための撮像が行われた後に、前記固体撮像装置又はレンズの像面を、斜め方向に1画素分移動させてから行われる
 (9)に記載の固体撮像装置。
(11)
 前記第1の色は、緑(G)であり、
 前記第2の色は、赤(R)又は青(B)であり、
 前記第3の色は、青(B)又は赤(R)である
 (9)又は(10)に記載の固体撮像装置。
(12)
 複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、
 前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイと
 を有し、
 前記カラーフィルタアレイは、画素単位での移動前の撮像で得られる画素信号からなる第1のフレームと、画素単位での移動後の撮像で得られる画素信号からなる第2のフレームとを合成することで、第1の色の画素信号のみからなる第1の合成フレームと、第2の色の画素信号と第3の色の画素信号とが行方向と列方向に同一の密度で交互に配列される第2の合成フレームが得られるように、前記カラーフィルタが配列されている
 固体撮像装置と、
 前記固体撮像装置を駆動して、画素単位で移動させる駆動部と
 を備える電子機器。
(13)
 複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、
 前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイと
 を備え、
 前記カラーフィルタアレイは、
  2行3列のカラーフィルタの配列パターンを、4つ組み合わせた4行6列の基本配列パターンの単位で配列され、
  第1の色、第2の色、及び、第3の色のカラーフィルタからなる第1の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第4の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとなり、
  前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第2の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第3の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとなる
 固体撮像装置。
(14)
 前記カラーフィルタアレイにおいて、
  前記第1の配列パターンでは、1行目には、前記第1の色、前記第2の色、及び、前記第1の色のカラーフィルタが順に配列され、2行目には、前記第2の色、前記第1の色、及び、前記第3の色のカラーフィルタが順に配列され、
  前記第2の配列パターンでは、1行目には、前記第1の色、前記第3の色、及び、前記第1の色のカラーフィルタが順に配列され、2行目には、前記第2の色、前記第1の色、及び、前記第3の色のカラーフィルタが順に配列され、
  前記第3の配列パターンでは、1行目には、前記第3の色、前記第1の色、及び、前記第2の色のカラーフィルタが順に配列され、2行目には、前記第1の色、前記第3の色、及び、前記第1の色のカラーフィルタが順に配列され、
  前記第4の配列パターンでは、1行目には、前記第3の色、前記第1の色、及び、前記第2の色のカラーフィルタが順に配列され、2行目には、前記第1の色、前記第2の色、及び、前記第1の色のカラーフィルタが順に配列される
 (13)に記載の固体撮像装置。
(15)
 前記カラーフィルタアレイは、画素単位での移動前の撮像で得られる画素信号からなる第1のフレームと、画素単位での移動後の撮像で得られる画素信号からなる第2のフレームとを合成することで、前記第1の色の画素信号のみからなる第1の合成フレームと、前記第2の色の画素信号と前記第3の色の画素信号とが、前記基本配列パターンの単位で、行方向と列方向に同一の密度で交互に配列される第2の合成フレームが得られるように、前記カラーフィルタが配列されている
 (14)に記載の固体撮像装置。
(16)
 前記第2のフレームの画素信号を得るための撮像は、前記第1のフレームの画素信号を得るための撮像が行われた後に、前記固体撮像装置又はレンズの像面を、列方向に2画素分と行方向に3画素分移動させてから行われる
 (15)に記載の固体撮像装置。
(17)
 前記第1の色は、緑(G)であり、
 前記第2の色は、赤(R)であり、
 前記第3の色は、青(B)である
 (13)乃至(16)のいずれか一項に記載の固体撮像装置。
(18)
 複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、
 前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイと
 を有し、
 前記カラーフィルタアレイは、
  2行3列のカラーフィルタの配列パターンを、4つ組み合わせた4行6列の基本配列パターンの単位で配列され、
  第1の色、第2の色、及び、第3の色のカラーフィルタからなる第1の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第4の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとなり、
  前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第2の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第3の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとなる
 固体撮像装置を備える
 電子機器。
 10 撮像装置, 100 固体撮像装置, 111 レンズ部, 112 カラーフィルタアレイ, 113 画素アレイ, 114 信号処理部, 115 制御部, 116 駆動部, 117 メカニカルシャッタ, 200 画素, 221 フォトダイオード, 223 メモリ部, 500 電子機器, 502 固体撮像装置

Claims (18)

  1.  複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、
     前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイと
     を備え、
     前記カラーフィルタアレイは、画素単位での移動前の撮像で得られる画素信号からなる第1のフレームと、画素単位での移動後の撮像で得られる画素信号からなる第2のフレームとを合成することで、第1の色の画素信号のみからなる第1の合成フレームと、第2の色の画素信号と第3の色の画素信号とが行方向と列方向に同一の密度で交互に配列される第2の合成フレームが得られるように、前記カラーフィルタが配列されている
     固体撮像装置。
  2.  前記カラーフィルタアレイは、
      その列方向に、前記第1の色のカラーフィルタの行と、前記第2の色及び前記第3の色のカラーフィルタの行とが交互に配列され、
      前記第2の色及び前記第3の色のカラーフィルタの行は、前記第2の色のカラーフィルタと、前記第3の色のカラーフィルタとが交互に配列されている
     請求項1に記載の固体撮像装置。
  3.  前記第2のフレームの画素信号を得るための撮像は、前記第1のフレームの画素信号を得るための撮像が行われた後に、前記固体撮像装置又はレンズの像面を、斜め方向に1画素分移動させてから行われる
     請求項2に記載の固体撮像装置。
  4.  前記画素は、グローバルシャッタ方式に対応した画素であり、
     前記画素内のメモリ部は、フレームごとに、光電変換素子からの電荷を蓄積することで、前記第2のフレームの露光期間に、前記第1のフレームの画素信号が読み出されるようにする
     請求項3に記載の固体撮像装置。
  5.  前記第1の色は、緑(G)であり、
     前記第2の色は、赤(R)又は青(B)であり、
     前記第3の色は、青(B)又は赤(R)である
     請求項3に記載の固体撮像装置。
  6.  前記カラーフィルタアレイは、
      2行2列のカラーフィルタ配列の単位で配列され、
      その列方向に、前記第1の色及び前記第2の色のカラーフィルタからなる第1のカラーフィルタ配列の行と、前記第1の色及び前記第3の色のカラーフィルタからなる第2のカラーフィルタ配列の行とが交互に配列され、
      前記第1のカラーフィルタ配列と前記第2のカラーフィルタ配列では、前記第1の色のカラーフィルタの配列の向き、及び、前記第2の色と前記第3の色のカラーフィルタの配列の向きが逆に配列されている
     請求項1に記載の固体撮像装置。
  7.  前記第2のフレームの画素信号を得るための撮像は、前記第1のフレームの画素信号を得るための撮像が行われた後に、前記固体撮像装置又はレンズの像面を、列方向に2画素分移動させてから行われる
     請求項6に記載の固体撮像装置。
  8.  前記第1の色は、緑(G)であり、
     前記第2の色は、赤(R)又は青(B)であり、
     前記第3の色は、青(B)又は赤(R)である
     請求項7に記載の固体撮像装置。
  9.  前記カラーフィルタアレイは、
      その行方向に、前記第1の色のカラーフィルタの列と、前記第2の色及び前記第3の色のカラーフィルタの列とが交互に配置され、
      前記第2の色及び前記第3の色のカラーフィルタの列は、前記第2の色のカラーフィルタと、前記第3の色のカラーフィルタとが交互に配列されている
     請求項1に記載の固体撮像装置。
  10.  前記第2のフレームの画素信号を得るための撮像は、前記第1のフレームの画素信号を得るための撮像が行われた後に、前記固体撮像装置又はレンズの像面を、斜め方向に1画素分移動させてから行われる
     請求項9に記載の固体撮像装置。
  11.  前記第1の色は、緑(G)であり、
     前記第2の色は、赤(R)又は青(B)であり、
     前記第3の色は、青(B)又は赤(R)である
     請求項10に記載の固体撮像装置。
  12.  複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、
     前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイと
     を有し、
     前記カラーフィルタアレイは、画素単位での移動前の撮像で得られる画素信号からなる第1のフレームと、画素単位での移動後の撮像で得られる画素信号からなる第2のフレームとを合成することで、第1の色の画素信号のみからなる第1の合成フレームと、第2の色の画素信号と第3の色の画素信号とが行方向と列方向に同一の密度で交互に配列される第2の合成フレームが得られるように、前記カラーフィルタが配列されている
     固体撮像装置と、
     前記固体撮像装置を駆動して、画素単位で移動させる駆動部と
     を備える電子機器。
  13.  複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、
     前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイと
     を備え、
     前記カラーフィルタアレイは、
      2行3列のカラーフィルタの配列パターンを、4つ組み合わせた4行6列の基本配列パターンの単位で配列され、
      第1の色、第2の色、及び、第3の色のカラーフィルタからなる第1の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第4の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとなり、
      前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第2の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第3の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとなる
     固体撮像装置。
  14.  前記カラーフィルタアレイにおいて、
      前記第1の配列パターンでは、1行目には、前記第1の色、前記第2の色、及び、前記第1の色のカラーフィルタが順に配列され、2行目には、前記第2の色、前記第1の色、及び、前記第3の色のカラーフィルタが順に配列され、
      前記第2の配列パターンでは、1行目には、前記第1の色、前記第3の色、及び、前記第1の色のカラーフィルタが順に配列され、2行目には、前記第2の色、前記第1の色、及び、前記第3の色のカラーフィルタが順に配列され、
      前記第3の配列パターンでは、1行目には、前記第3の色、前記第1の色、及び、前記第2の色のカラーフィルタが順に配列され、2行目には、前記第1の色、前記第3の色、及び、前記第1の色のカラーフィルタが順に配列され、
      前記第4の配列パターンでは、1行目には、前記第3の色、前記第1の色、及び、前記第2の色のカラーフィルタが順に配列され、2行目には、前記第1の色、前記第2の色、及び、前記第1の色のカラーフィルタが順に配列される
     請求項13に記載の固体撮像装置。
  15.  前記カラーフィルタアレイは、画素単位での移動前の撮像で得られる画素信号からなる第1のフレームと、画素単位での移動後の撮像で得られる画素信号からなる第2のフレームとを合成することで、前記第1の色の画素信号のみからなる第1の合成フレームと、前記第2の色の画素信号と前記第3の色の画素信号とが、前記基本配列パターンの単位で、行方向と列方向に同一の密度で交互に配列される第2の合成フレームが得られるように、前記カラーフィルタが配列されている
     請求項14に記載の固体撮像装置。
  16.  前記第2のフレームの画素信号を得るための撮像は、前記第1のフレームの画素信号を得るための撮像が行われた後に、前記固体撮像装置又はレンズの像面を、列方向に2画素分と行方向に3画素分移動させてから行われる
     請求項15に記載の固体撮像装置。
  17.  前記第1の色は、緑(G)であり、
     前記第2の色は、赤(R)であり、
     前記第3の色は、青(B)である
     請求項16に記載の固体撮像装置。
  18.  複数の異なる透過特性を有するカラーフィルタが2次元状に配列されたカラーフィルタアレイと、
     前記カラーフィルタからの光が入射される複数の画素が2次元状に配列された画素アレイと
     を有し、
     前記カラーフィルタアレイは、
      2行3列のカラーフィルタの配列パターンを、4つ組み合わせた4行6列の基本配列パターンの単位で配列され、
      第1の色、第2の色、及び、第3の色のカラーフィルタからなる第1の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第4の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとなり、
      前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第2の配列パターンと、前記第1の色、前記第2の色、及び、前記第3の色のカラーフィルタからなる第3の配列パターンとは、前記基本配列パターンの中心を対称点として、点対称な組み合わせとなる
     固体撮像装置を備える
     電子機器。
PCT/JP2015/082550 2014-12-03 2015-11-19 固体撮像装置、及び、電子機器 WO2016088565A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014245310 2014-12-03
JP2014-245310 2014-12-03

Publications (1)

Publication Number Publication Date
WO2016088565A1 true WO2016088565A1 (ja) 2016-06-09

Family

ID=56091515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082550 WO2016088565A1 (ja) 2014-12-03 2015-11-19 固体撮像装置、及び、電子機器

Country Status (1)

Country Link
WO (1) WO2016088565A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018018995A1 (zh) * 2016-07-29 2018-02-01 广东欧珀移动通信有限公司 图像色彩处理方法、装置及终端设备
CN112804435A (zh) * 2021-03-05 2021-05-14 京东方科技集团股份有限公司 摄像模组及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163940A (ja) * 2001-11-28 2003-06-06 Seiko Epson Corp ディジタルカメラ及びディジタルカメラによる撮像方法
JP2005260383A (ja) * 2004-03-10 2005-09-22 Nec Corp 画像入力装置及びそれに用いる画像入力方法
JP2006049950A (ja) * 2004-07-30 2006-02-16 Sony Corp 動画像変換装置、動画像復元装置、および方法、並びにコンピュータ・プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163940A (ja) * 2001-11-28 2003-06-06 Seiko Epson Corp ディジタルカメラ及びディジタルカメラによる撮像方法
JP2005260383A (ja) * 2004-03-10 2005-09-22 Nec Corp 画像入力装置及びそれに用いる画像入力方法
JP2006049950A (ja) * 2004-07-30 2006-02-16 Sony Corp 動画像変換装置、動画像復元装置、および方法、並びにコンピュータ・プログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018018995A1 (zh) * 2016-07-29 2018-02-01 广东欧珀移动通信有限公司 图像色彩处理方法、装置及终端设备
CN112804435A (zh) * 2021-03-05 2021-05-14 京东方科技集团股份有限公司 摄像模组及电子设备
CN112804435B (zh) * 2021-03-05 2022-09-13 京东方科技集团股份有限公司 摄像模组及电子设备

Similar Documents

Publication Publication Date Title
CN107112342B (zh) 固态摄像装置和电子设备
US10498983B2 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
JP2021121123A (ja) 固体撮像装置およびその駆動方法、並びに電子機器
TWI504256B (zh) 固態成像裝置,其訊號處理方法,及電子設備
US8704926B2 (en) CMOS image sensor with selectable hard-wired binning
JP4988075B1 (ja) 撮像装置及び画像処理装置
US7821571B2 (en) Solid-state imaging device, method of driving solid-state imaging device, and imaging apparatus
US10811447B2 (en) Solid-state imaging device, driving method, and electronic equipment
JP2011061514A (ja) 撮像装置及び撮像方法
JP2009159186A (ja) 撮像素子の駆動装置、撮像素子の駆動方法、撮像装置、及び撮像素子
JP2012090118A (ja) 撮像素子及び撮像装置
US8896736B2 (en) Solid-state imaging device, imaging apparatus and signal reading method having photoelectric conversion elements that are targets from which signals are read in the same group
JP7118893B2 (ja) 撮像素子および撮像方法、並びに電子機器
WO2016152512A1 (ja) 固体撮像装置、及び、電子機器
WO2016088565A1 (ja) 固体撮像装置、及び、電子機器
WO2016084629A1 (ja) 固体撮像素子および電子機器
WO2016208416A1 (ja) 固体撮像装置および電子機器
JP2018078405A (ja) 固体撮像素子、固体撮像素子の駆動方法、及び、電子機器
WO2017163925A1 (ja) 半導体装置、固体撮像装置、および電子機器
WO2019216029A1 (ja) 撮像装置、電子機器および駆動方法
JP6019295B2 (ja) 固体撮像装置及びカメラシステム
JP2016187072A (ja) イメージセンサ、処理方法、及び、電子機器
JP4427538B2 (ja) ディジタル・カメラおよびその動作制御方法
JP2022125515A (ja) 画像センサおよび電子機器
WO2017187975A1 (ja) 固体撮像素子、駆動方法、および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP