WO2016088488A1 - Display device substrate, method for manufacturing display device substrate, and display device using same - Google Patents

Display device substrate, method for manufacturing display device substrate, and display device using same Download PDF

Info

Publication number
WO2016088488A1
WO2016088488A1 PCT/JP2015/080546 JP2015080546W WO2016088488A1 WO 2016088488 A1 WO2016088488 A1 WO 2016088488A1 JP 2015080546 W JP2015080546 W JP 2015080546W WO 2016088488 A1 WO2016088488 A1 WO 2016088488A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
black
display device
wiring
metal oxide
Prior art date
Application number
PCT/JP2015/080546
Other languages
French (fr)
Japanese (ja)
Inventor
幸弘 木村
福吉 健蔵
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to KR1020177010547A priority Critical patent/KR101935187B1/en
Priority to JP2016510337A priority patent/JP6070896B2/en
Priority to CN201580057277.0A priority patent/CN107077807B/en
Publication of WO2016088488A1 publication Critical patent/WO2016088488A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a display device substrate, a method of manufacturing a display device substrate, and a display device using the same.
  • a configuration in which a touch panel is attached to a display surface side of a display device on a mobile device such as a smartphone or a tablet is becoming common.
  • the touch panel is used as an input means for touching a pointer such as a finger.
  • a method of detecting the pointer of the touch panel is mainly performed as a change in capacitance at the touched portion.
  • the touch panel is an extra member of the display device from the viewpoint of increasing thickness and weight.
  • touch panels are mounted on mobile devices such as smartphones and tablets, but it is still difficult to avoid an increase in the thickness of the devices.
  • the resolution of the display device is increased to provide high-definition pixels, it may be difficult to input on the touch panel.
  • the pixel pitch is about 8 ⁇ m or more and 30 ⁇ m or less, and fine input (for example, pen input) is required. Therefore, it is desired to realize a touch panel that responds to the writing pressure of the input pen and the resolution required for the pen tip, and that can respond to high-speed input and sufficiently achieve high definition.
  • the line width of the black matrix in a touch panel having a high-definition pixel of 300 ppi or even 500 ppi or more is desirably a thin line of about 1 ⁇ m to 6 ⁇ m.
  • in-cell in which a touch sensing function is provided in a liquid crystal cell or a display device without using a touch panel, has been advanced.
  • a touch electrode group is provided on either or both of a display device substrate having a color filter and an array substrate in which an active element such as a thin film transistor (TFT) is provided, and static electricity generated between the touch electrode groups.
  • TFT thin film transistor
  • an organic film-based touch panel has a large base material expansion / contraction (for example, thermal expansion coefficient), and alignment of fine pixels of about 8 ⁇ m to 30 ⁇ m including alignment patterns of red pixels, green pixels, blue pixels, and black matrices (alignment). ) Is difficult and cannot be adopted as a display device substrate.
  • Patent document 1 is disclosing the laminated structure of a transparent conductive film and a light-shielding metal film on a plastic film.
  • this configuration cannot be used as “in-cell” and cannot be used as a high-definition color filter because of the base material being a film.
  • Patent Document 1 does not suggest in-cell technology and integration with a color filter.
  • Patent Document 1 exemplifies aluminum as the light-shielding metal film layer.
  • a photolithography technique using an alkaline developer is used.
  • aluminum metal wiring can be corroded by an alkali developer to form a color filter. Have difficulty.
  • Patent Document 1 discloses a technique that takes into consideration the possibility that light reflection on the surface of a light-shielding metal film is incident on a channel layer of a transistor included in an array substrate when used as a display device, resulting in malfunction of the transistor. Not disclosed.
  • Patent Document 2 discloses a laminated structure of a light absorbing layer and a conductive layer having a low total reflectance and a touch panel provided with this laminated structure.
  • Patent Document 2 does not suggest in-cell technology and integration with a color filter.
  • Patent Document 2 exemplifies aluminum as a material for the conductive pattern (or conductive layer).
  • a photolithography technique using an alkaline developer is used.
  • aluminum metal wiring can be corroded by an alkali developer to form a color filter. Have difficulty.
  • Patent Document 2 also discloses that the metal of the conductive layer is copper (Cu).
  • the metal of the conductive layer is copper (Cu).
  • the base material is made of a glass substrate such as alkali-free glass
  • copper, copper oxide, and copper oxynitride do not have sufficient adhesion to the substrate, and the adhesive strength is sufficient to attach and remove cellophane tape. It is not practical because it easily peels off.
  • Patent Document 2 does not disclose a specific technique for improving adhesion when the conductive layer is made of copper. Also, copper tends to form copper oxides on its surface over time, and its reliability is low in electrical mounting.
  • Patent Document 2 does not disclose a technique for improving contact resistance in consideration of mounting or a pattern forming means for wiring for touch sensing.
  • Patent Document 3 discloses a transparent conductive film made of an oxide of indium (In), tin (Sn), and zinc (Zn).
  • Patent Document 3 discloses a wiring structure for touch sensing for stable and highly reliable electrical connection, for example, a first conductive metal oxide layer and a copper layer or a copper alloy on a transparent substrate.
  • a black wiring having a structure in which a metal layer composed of two layers, a second conductive metal oxide layer, and a black layer mainly composed of carbon are laminated in this order with equal line widths.
  • the technology for forming the wiring for use is not disclosed. That is, the technique disclosed in Patent Document 3 does not consider the stability of electrical mounting necessary for the wiring for touch sensing and the visibility as a display device.
  • Patent Document 4 discloses a means for suppressing deterioration in image quality when liquid crystal driving line sequential scanning is performed.
  • a polysilicon semiconductor is used for an active element (TFT: “Thin” Film “Transistor”) that drives liquid crystal.
  • TFT Thin” Film “Transistor”
  • This technology prevents the decrease in the potential of the scanning signal line, which can be said to be inherent to polysilicon TFTs with a large off-leakage current, by providing a transfer circuit including a latch portion to hold the potential, and also prevents the deterioration in image quality of the liquid crystal display It is.
  • the present invention has been made in view of the above circumstances, and a first object of the present invention is to provide a touch sensing wiring that is highly adhesive to a substrate made of alkali-free glass and has good visibility. It is to provide a display device substrate.
  • a second object of the present invention is to provide a display device that can respond to high-speed and high-speed touch input, a display device substrate used for the display device, and a display device substrate including a color filter.
  • a third object of the present invention is to provide a display device substrate capable of stable electrical mounting.
  • the first aspect of the present invention comprises the following components. That is, a transparent substrate made of non-alkali glass and the transparent substrate are disposed between a plurality of pixels, and are disposed on the first conductive metal oxide layer and the first conductive metal oxide layer.
  • the black wiring extends in a first direction, and a plurality of the black wirings are arranged at a predetermined interval in a second direction substantially orthogonal to the first direction, and the black wiring includes the plurality of pixels.
  • a lead wiring having a terminal portion where the second conductive metal oxide layer is exposed at an end portion extending out of a display area; wherein the metal layer is formed of copper or a copper alloy; Carbon is the main coloring material, and the first and second conductive metal oxidations
  • the layer is formed of a mixed oxide of indium oxide, zinc oxide, and tin oxide, and the first conductive metal oxide layer, the metal layer, the second conductive metal oxide layer, and the black color
  • the layers are provided with a display device substrate having equal line widths.
  • the second aspect of the present invention is characterized by comprising the following embodiments. That is, a display device substrate including black wiring having a plurality of pixels divided into a display region having a plurality of pixels on a transparent substrate made of alkali-free glass and having a terminal portion at an end extending outside the display region. A first conductive metal oxide layer, a metal layer made of a copper layer or a copper alloy layer, and a second conductive metal oxide layer are formed on a transparent substrate made of alkali-free glass.
  • a film forming step a black photosensitive solution containing at least carbon and an alkali-soluble acrylic resin is applied onto the second conductive metal oxide layer, and dried to form a black film;
  • the black film on the transparent substrate is exposed through a halftone mask having a first pattern of wiring and a second pattern of the terminal portion having a light transmittance different from that of the first pattern, and an alkali developer is used.
  • the third aspect of the present invention is characterized by comprising the following embodiments. That is, a transparent substrate made of non-alkali glass and the transparent substrate are disposed between a plurality of pixels, and are disposed on the first conductive metal oxide layer and the first conductive metal oxide layer.
  • the black wiring extends in a first direction, and a plurality of the black wirings are arranged at a predetermined interval in a second direction substantially orthogonal to the first direction, and the black wiring includes the plurality of pixels.
  • a lead wiring having a terminal portion where the second conductive metal oxide layer is exposed at an end portion extending out of a display area; wherein the metal layer is formed of copper or a copper alloy; Carbon is the main coloring material, and the first and second conductive metal oxidations
  • the layer is formed of a mixed oxide of indium oxide, zinc oxide, and tin oxide, and the first conductive metal oxide layer, the metal layer, the second conductive metal oxide layer, and the black color
  • the layer includes a display device substrate having substantially the same line width, an array substrate fixed to face the display device substrate, a liquid crystal layer disposed between the display device substrate and the array substrate,
  • the array substrate includes, in plan view, active elements arranged at positions adjacent to a plurality of pixels and the black lines, and metal lines electrically connected to the active elements. And a touch metal line extending in a direction intersecting with the black line, and a display device provided.
  • the fourth aspect of the present invention is characterized by comprising the following embodiments. That is, a transparent substrate made of non-alkali glass and the transparent substrate are disposed between a plurality of pixels, and are disposed on the first conductive metal oxide layer and the first conductive metal oxide layer.
  • the black wiring extends in a first direction, and a plurality of the black wirings are arranged at a predetermined interval in a second direction substantially orthogonal to the first direction, and the black wiring includes the plurality of pixels.
  • a lead wiring having a terminal portion where the second conductive metal oxide layer is exposed at an end portion extending out of a display area; wherein the metal layer is formed of copper or a copper alloy; Carbon is the main coloring material, and the first and second conductive metal oxidations
  • the layer is formed of a mixed oxide of indium oxide, zinc oxide, and tin oxide, and the first conductive metal oxide layer, the metal layer, the second conductive metal oxide layer, and the black color
  • the layer has a substantially equal line width, and includes a display device substrate in which a transparent resin layer is laminated on the black wiring so as to cover at least the display region, and the display device substrate and the array substrate are opposed to each other.
  • a display device bonded via a liquid crystal layer wherein the display device substrate further includes a plurality of transparent conductive film wirings intersecting with the black wirings in plan view on the transparent resin layer, and the array substrate Provides a display device that includes active elements at positions adjacent to a plurality of pixels and the black wiring in a plan view.
  • substrate which comprises the board
  • FIG. 1 is a partial cross-sectional view of a display device substrate according to an embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view for explaining another example of the display device substrate of the present embodiment.
  • FIG. 3 is a schematic plan view of a display device substrate according to an embodiment of the present invention, in which pixels such as a red pixel, a green pixel, and a blue pixel are separated from each other and arranged in the long side direction. It is a figure which shows an example of the made black wiring.
  • FIG. 4 is a schematic plan view for explaining an example of the terminal portion of the black wiring in the display device substrate according to the embodiment.
  • FIG. 5 is a partial cross-sectional view of the terminal portion of the black wiring in the display device substrate according to the embodiment.
  • FIG. 6 is a partial cross-sectional view of a display device according to an embodiment of the present invention.
  • FIG. 7 is a plan view of the array substrate shown in FIG. 6 and shows the touch metal wiring and the light shielding pattern position.
  • FIG. 8 is a diagram showing an example of a cross section taken along line C-C ′ of the array substrate shown in FIG. 7.
  • FIG. 9 is a cross-sectional view illustrating the capacitance held between the touch metal wiring of the array substrate shown in FIG. 7 and the black wiring of the display device substrate.
  • FIG. 10 is a diagram illustrating an example of a configuration in which a color filter layer and a transparent resin layer are stacked on a black wiring in a display device substrate according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example of a configuration in which a color filter layer and a transparent resin layer are stacked on a black wiring in a display device substrate according to an embodiment of the present invention.
  • FIG. 11 is a partial cross section of a display device including the display device substrate shown in FIG.
  • FIG. 12 is a partial cross-sectional view of a display device substrate according to an embodiment of the present invention.
  • FIG. 13 is a partial cross-sectional view of a display device including the display device substrate 100 shown in FIG.
  • FIG. 14 is a plan view of the display device substrate shown in FIG.
  • FIG. 15 is a partial cross-sectional view showing each manufacturing process of the display device substrate according to the embodiment of the present invention.
  • FIG. 16 is a partial cross-sectional view of a display device substrate according to an embodiment of the present invention.
  • FIG. 17 is a partial cross-sectional view of a display device substrate according to an embodiment of the present invention.
  • FIG. 18 is a partial cross-sectional view showing each manufacturing process of the display device substrate according to the embodiment of the present invention.
  • FIG. 19 is a diagram for explaining another example of the display device substrate according to the embodiment of the present invention.
  • 20 is a partial cross-sectional view of a display device according to an embodiment including the display device substrate shown in FIG.
  • FIG. 21 is a diagram for explaining another example of the display device substrate according to the embodiment of the present invention.
  • FIG. 22 is a partial cross-sectional view of a display device according to an embodiment including the display device substrate shown in FIG.
  • each embodiment described below characteristic portions will be described, and for example, description of portions that are not different from the components of a normal display device will be omitted.
  • each embodiment will be described as an example of the display device substrate of the present invention or a liquid crystal display device including the same, but the display device substrate of the present invention is applied to other display devices such as an organic EL display device. Is possible.
  • FIG. 1 is a partial cross-sectional view of a display device substrate according to an embodiment of the present invention.
  • the display device substrate of this embodiment has a transparent substrate 15 and black wiring 6.
  • the black wiring 6 has a first conductive metal oxide layer 1, a metal layer 2, a second conductive metal oxide layer 3, and a black layer 4.
  • a black wiring 6 composed of a first conductive metal oxide layer 1, a metal layer 2, a second conductive metal oxide layer 3, and a black layer 4 is formed on a transparent substrate 15. It is equipped. For example, a plurality of black wirings 6 are arranged in a stripe pattern perpendicular to the paper surface.
  • the first conductive oxide layer 1, the metal layer 2, the second conductive metal oxide layer 3, and the black layer 4 are patterned using a well-known photolithography technique. A method for forming the black wiring 6 will be described later in detail.
  • the conductive metal oxide may be described as a mixed oxide or a composite oxide.
  • FIG. 2 is a partial cross-sectional view for explaining another example of the display device substrate of the present embodiment, and is a partial cross-sectional view of a display device substrate in which a transparent resin layer 9 is further laminated on the display device substrate shown in FIG. is there.
  • the display device substrate 100 shown in FIG. 2 has a transparent resin layer 9 laminated on the black wiring 6.
  • the transparent resin layer 9 can be formed of a thermosetting acrylic resin or the like.
  • the film thickness of the transparent resin layer 9 can be set arbitrarily.
  • the black layer 4 and the transparent resin layer 9 may have a configuration in which a plurality of layers having different optical characteristics such as a refractive index are stacked.
  • the position of the film surface on which the black wiring 6 is formed is upside down with respect to FIG. 1 in relation to the description of a display device described later (for example, shown in FIGS. 6 and 16).
  • the base material of the transparent substrate 15 is non-alkali glass having a small coefficient of thermal expansion. Similar to the transparent substrate 25 used for the array substrate described later, it is desirable to use a glass substrate. For example, an active element such as a transistor called a thin film transistor (TFT) is formed, and a glass substrate used for an organic EL display device or a liquid crystal display device can be applied.
  • TFT thin film transistor
  • the alkali-free glass employed as the base material of the transparent substrates 15 and 25 in this embodiment is a substrate material for a display device, and is typified by an aluminosilicate glass that does not substantially contain an alkali component.
  • Alkali-free glass defines that an alkali metal such as sodium (Na) or potassium (K) or an oxide thereof has a content of 1000 ppm or less as an alkali element and does not substantially contain an alkali component. .
  • the alkali element content is preferably low.
  • a substrate on which a liquid crystal driving transistor is formed is referred to as an array substrate.
  • a transistor may be referred to as a thin film transistor or an active element.
  • the black wiring 6 has a line width of the first conductive metal oxide layer 1, a line width of the metal layer 2, a line width of the second conductive metal oxide layer 3, and carbon as a main coloring material. It is desirable that the line widths of the black layers 4 are approximately equal to each other.
  • the total thickness of the first conductive metal oxide layer (adhesive layer) 1 containing indium, the metal layer 2 made of a copper layer or a copper alloy layer, and the black wiring 6 composed of the black layer 4 is 1 ⁇ m or less. It can be. If the thickness of the black wiring 6 exceeds 2 ⁇ m, the unevenness adversely affects the liquid crystal alignment, so it is desirable that the thickness be 1.5 ⁇ m or less.
  • the technology of the present embodiment is intended for display devices with high-definition pixels of, for example, 300 ppi (pixel per inch) and 500 ppi or more.
  • the line width of the black matrix corresponding to the black wiring 6 needs to be patterned with fine lines in the range of 1 ⁇ m to 6 ⁇ m. For example, if there is a variation of ⁇ 1 ⁇ m or more with respect to the 4 ⁇ m line width of the black wiring on the display device substrate, unevenness in display quality occurs, and the pixel aperture ratio decreases. It cannot be used as a substrate for the device.
  • the first conductive metal oxide layer 1, the metal layer 2, the second conductive metal oxide layer 3, and the black layer 4 constituting the black wiring 6 are positioned in the respective manufacturing steps. It is not realistic to combine them. When the phases are aligned with each other in the manufacturing process, a variation of about ⁇ 1.5 ⁇ m or more may occur. Therefore, it is quite difficult from the viewpoint of fine line formation to align so as to form the same pattern in a plurality of layers (a plurality of steps) so as not to affect the aperture ratio of the pixel of the display device.
  • “equal line width” means that each layer forming the black wiring 6 has a center position of the line width (a center position in a direction substantially orthogonal to the direction in which the wiring extends) and a variation in the line width are ⁇ This means that it falls within the range of 0.4 ⁇ m.
  • “equal line width” means that the cross-sectional shapes of the black layer 4, the conductive oxide layer 3, the metal layer 2, the conductive oxide layer 1, and the black layer 18 are as shown in FIGS. In other words, it is substantially aligned in the vertical direction Z (or thickness direction).
  • the pixel pitch for three colors of red (R), green (G), and blue (B) is around 17 ⁇ m.
  • two layers are formed on a black matrix (light shielding layer) having a line width of 4 ⁇ m.
  • the line width is about 10 ⁇ m.
  • the pixel aperture ratio is about 35% and cannot be used as a display device.
  • the line width of the black matrix is 4 ⁇ 0.4 ⁇ m, the pixel aperture ratio is about 60%.
  • the black wiring 6 is arranged in a stripe shape that is long in the direction Y perpendicular to the paper surface.
  • the black wiring 6 can be formed in various patterns in a shape that does not cause moiré with the black matrix.
  • a plurality of pixel openings are formed in the rectangular display area 19 (shown in FIG. 3) of the display device substrate.
  • the pixel opening may have a stripe shape, but may be a polygon having at least two sides parallel to each other. As a polygon whose two sides are parallel, for example, a rectangle, a hexagon, a V-shape (doglegged dog shape), or the like can be used.
  • the pattern of the black wiring 6 may be an electrically closed shape as a frame shape surrounding at least a part of the periphery of these polygonal pixels. Depending on whether the pattern shape is an electrically closed pattern or a partially opened pattern (providing a portion that is not connected in appearance) in plan view, the electric noise around the display device How to pick up changes. Alternatively, how to pick up electrical noise around the display device varies depending on the pattern shape and area of the black wiring 6.
  • the opening of the pixel can be divided into the black wiring 6 and the metal wiring or touch metal wiring on the array substrate side to obtain a pixel shape in a polygonal shape in plan view.
  • a black matrix (BM) can be provided separately.
  • the opening of the pixel is a polygon having at least two sides parallel to each other, and the black wiring 6 extends in a substantially straight line dividing the pixel in the longitudinal direction of the two sides.
  • the black layer 4 is made of, for example, a colored resin in which a black color material is dispersed. Although sufficient black color and low reflectance cannot be obtained with copper oxide or copper alloy oxide, the reflectance of visible light on the surface of the black wiring 6 according to the present embodiment is suppressed to 7% or less, And since it is the structure which clamps the metal layer 2 mentioned later, high light-shielding property is acquired simultaneously. In addition, by configuring the black wiring 6 with the transparent resin layer 9 having a refractive index of about 1.5, the reflectance at the interface with the transparent resin is 3% or less within the wavelength range of visible light. Low reflection can be achieved.
  • the reflectance at the interface with the transparent resin includes the reflectance at light wavelengths of 430 nm, 540 nm, and 620 nm, and the low reflectance is in the range of 0.1% to 3% in the visible range of 400 nm to 700 nm. Can be rate.
  • the black color material carbon, carbon nanotubes, or a mixture of a plurality of organic pigments can be applied.
  • carbon can be used as a main color material of 51% by mass or more with respect to the total amount of the color material, and an organic pigment such as blue or red can be added to adjust the reflection color.
  • an organic pigment such as blue or red
  • the reproducibility of the black layer 4 can be improved by adjusting the carbon concentration in the photosensitive black coating solution as the starting material (lowering the carbon concentration).
  • the pattern processing can be performed with a fine line of 1 ⁇ m or more and 6 ⁇ m or less as the line width of the black wiring 6.
  • the mass% carbon concentration is in the range of 4 to 50 with respect to the total solid content including the resin, the curing agent, and the pigment.
  • the carbon amount may be a carbon amount exceeding 50% by mass, but if the carbon concentration exceeds 50% by mass with respect to the total solid content, the suitability of the coating film tends to be lowered. Further, when the carbon concentration was 4% by mass or less, a sufficient black color could not be obtained, and the reflection of the underlying metal layer 2 was large and the visibility could be lowered. In the following embodiment, when there is no description of the carbon concentration of the black layer 4, this carbon concentration shall be about 40 mass% with respect to the total solid content.
  • the black layer 4 can give an optical density of 2 or less, for example, in transmission measurement, giving priority to exposure and pattern alignment (alignment) in photolithography, which is a subsequent process.
  • the black layer 4 may be formed using a mixture of a plurality of organic pigments for black color adjustment in addition to carbon.
  • the black layer 4 has a reflectance of 3% or less at the interface between the black layer 4 and the base material. It is desirable to adjust the content and type of the black color material, the resin used, and the film thickness. By optimizing these conditions, the reflectance at the interface with a substrate such as glass having a refractive index of approximately 1.5 can be reduced to 3% or less in the visible light wavelength region.
  • the reflectance of the black layer 4 is desirably 3% or less in consideration of preventing re-reflection of light from the backlight unit and improving the visibility of the observer.
  • the refractive index of the acrylic resin used for the color filter and the liquid crystal material is in the range of about 1.5 to 1.7.
  • an adhesive layer having a refractive index in the range of approximately 1.5 to 1.7, which bonds the cover glass (protective glass) of the display device and the display device, can also be used as the resin.
  • the metal forming the metal layer 2 is copper or a copper alloy.
  • the metal layer 2 if the thickness of the metal layer 2 is 100 nm or more, or 150 nm or more, the metal layer 2 hardly transmits visible light. Therefore, in the display device substrate according to the present embodiment, the black wiring 6 can obtain sufficient light shielding properties if the thickness of the metal layer 2 is, for example, about 100 nm to 300 nm.
  • the metal layer 2 can be a metal layer such as copper or copper alloy having alkali resistance.
  • alkali resistance is required is, for example, the case where there is a development step using an alkali developer in the subsequent step. Specifically, for example, a color filter or a black matrix is formed after the black wiring 6 is formed. Alkali resistance is also necessary when a terminal portion is formed on the black wiring 6 described later.
  • chromium has alkali resistance and can be applied as the metal layer 2 of the black wiring 6.
  • chromium has a large resistance value, and chromium ions generated in the manufacturing process are harmful, so that it is difficult to apply to actual production.
  • Copper or a copper alloy is desirable as the metal layer 2 from the viewpoint of a low resistance value. Copper or copper alloy is desirable as the metal layer 2 because of its good conductivity.
  • the metal layer 2 can contain an alloy element of 3 at% or less as a copper alloy.
  • the alloy element for example, one or more elements can be selected from magnesium, calcium, titanium, molybdenum, indium, tin, zinc, aluminum, beryllium, and nickel. Copper alloying can suppress copper diffusion and improve heat resistance as a copper alloy.
  • the resistance value of the black wiring 6 increases. An increase in the resistance value of the black wiring 6 is not preferable because there is a possibility that a drive voltage waveform rounding or a signal delay related to touch detection may occur.
  • Copper tends to cause migration and is insufficient in terms of reliability, but the reliability can be improved as a copper alloy by adding the above alloy element in an amount of 0.1 at% or more.
  • the content ratio of the alloy element can be 0.1 at% or more and 3 at% or less with respect to copper.
  • the first conductive metal oxide layer 1 is formed of a conductive metal oxide containing indium.
  • the second conductive metal oxide layer 3 is, for example, a mixed oxide (composite oxide) of indium oxide, zinc oxide, and tin oxide.
  • the first conductive metal oxide layer 1 and the second conductive metal oxide layer 3 mainly improve the adhesion between the transparent substrate 15 and the black wiring 6 and the adhesion between the metal layer 2 and the black layer 4. And a function of preventing disconnection when the metal layer 2 is scratched.
  • Copper, copper alloys, or oxides and nitrides thereof are generally poor in adhesion to a transparent substrate such as glass or a black layer 4 which is a dispersion of a black color material. Therefore, when the conductive metal oxide layer is not provided, peeling may occur at the interface between the metal layer 2 and the transparent substrate 15 and the interface between the metal layer 2 and the black layer 4.
  • the display device substrate that does not form the first conductive oxide layer 1 as an underlayer is not defective due to peeling.
  • defects due to electrostatic breakdown may occur in metal wiring, which is not practical. This electrostatic breakdown is a phenomenon in which static electricity is accumulated in the wiring pattern in a post-process such as color filter lamination, bonding to an array substrate, or a cleaning process, and pattern breakage or disconnection occurs due to electrostatic breakdown.
  • copper, copper alloys, or their oxides and nitrides usually have unstable electrical connections and lack reliability.
  • copper oxide or copper sulfide formed over time on a copper surface is close to an insulator and causes a problem in electrical mounting.
  • the metal layer 2 is likely to be scratched due to re-implementation of electrical mounting and troubles during handling. Since the conductive metal oxide containing indium is also a hard ceramic, the conductive metal oxide layer is rarely disconnected even if the metal layer is damaged.
  • the second conductive metal oxide layer 3 has a function of improving the electrical contact failure due to the change with time (formation of copper oxide) of the surface of copper or copper alloy as described above. For example, since the second conductive metal oxide layer 3 formed of a mixed oxide of indium oxide, zinc oxide, and tin oxide is exposed on the surface of the terminal portion 5, the contact resistance of the terminal portion 5 is reduced. It becomes low and becomes suitable for electrical mounting.
  • the resistance value as wiring is lowered by setting the indium oxide in the mixed oxide forming the second conductive metal oxide layer 3 to 0.8 or more in atomic ratio of indium, tin, and zinc. Is possible.
  • the atomic ratio of indium is more preferably 0.9 or more.
  • each of the first conductive metal oxide layer 1 and the second conductive metal oxide layer 3 can be formed as an oxide film that is slightly deficient in oxygen and has light absorption. Furthermore, the amount of zinc oxide and tin oxide in the mixed oxide forming the first conductive metal oxide layer 1 and the second conductive metal oxide layer 3 is 0.01 or more and 0 in terms of the atomic ratio of indium. It is preferably within a range of less than 0.08.
  • the amount of tin in the mixed oxide does not exceed 0.01 by atomic ratio, the low resistance of the conductive metal oxide layer cannot be obtained.
  • the amount of tin in the mixed oxide exceeds 0.08 in atomic ratio, it becomes difficult to etch the conductive metal oxide layer, and as a result, pattern formation of the metal layer 2 becomes difficult in the manufacturing method described later. there is a possibility.
  • the amount of zinc in the mixed oxide is preferably in the range of 0.02 or more and less than 0.2 in terms of the atomic ratio of indium. If the atomic ratio of zinc exceeds 0.2 and the atomic ratio of tin is less than 0.01, pattern formation with “equal line width” as black wiring becomes difficult.
  • the amount of zinc oxide increases, the layer formed of the mixed oxide is selectively etched in the wet etching process, and the line width of the metal layer becomes relatively large.
  • the amount of tin oxide increases, the metal layer is selectively etched in the wet etching process, and the line width of the conductive metal oxide layer becomes relatively large. If the amount of tin oxide is too large, the conductive metal oxide layer will not be etched.
  • the amount of zinc in the mixed oxide is preferably in the range of 0.02 to 0.13 in terms of indium atomic ratio.
  • the atomic ratio represented by In / (In + Zn + Sn) of indium (In), zinc (Zn), and tin (Sn) contained in the mixed oxide is greater than 0.8, and the atomic ratio of Zn / Sn is When the value is larger than 1, it is a condition for reproducing black wiring with “equal line width”.
  • FIG. 3 is a schematic plan view of the display device substrate according to the present embodiment, and the pixels such as the red pixel R, the green pixel G, and the blue pixel B are separated from each other and arranged in the long side direction. It is a figure which shows an example of the performed black wiring.
  • FIG. 3 is a plan view of the rectangular display region 19 when the display device of FIG. 6 to be described later is viewed from the observer direction V.
  • the display device substrate of this embodiment has a configuration that does not include a color filter layer.
  • the symbols R, G, and B shown in FIG. 3 are shown to indicate pixel positions, and the color filter may be omitted.
  • the display device using the display device substrate or the liquid crystal display device according to the present embodiment includes a control unit (not shown) that controls each of the video display and touch sensing.
  • touch sensing is, for example, an array of a plurality of wirings extending in the first direction, and orthogonal to the first direction, which is arranged (insulated) with these wirings at predetermined or constant intervals. It is premised on a capacitance method for determining whether or not a pointer such as a finger is touched by a change in capacitance generated at the intersection of each of the plurality of wirings extending in the second direction.
  • the black wiring 6 and the metal wiring 42 (hereinafter, this metal wiring is used as one electrode used when touch sensing is performed in the rectangular display area 19 and the surrounding area.
  • the arrangement position is called.
  • a region surrounded by the black wiring 6 and the touch metal wiring 42 is a pixel opening region.
  • the black wiring 6 is a wiring extending in the first direction (Y direction)
  • the touch metal wiring 42 orthogonal to the black wiring 6 is a wiring in the second direction (X direction).
  • the black wiring 6 in a plan view, has a plurality of wirings arranged in a second direction (X direction) at regular intervals.
  • the touch metal wiring 42 has a plurality of wirings arranged in the first direction (Y direction) in plan view.
  • the black wirings 6 are disposed so as to extend substantially parallel to each other in the Y direction.
  • the black wiring 6 includes a lead wiring (first wiring) 6 a extending from one end of the rectangular display area 19 to the outside of the other end, and a dummy wiring (second wiring) 6 b extending from one end of the rectangular display area 19 to the other end. And have.
  • two dummy wirings 6b are provided between the routing wirings 6a.
  • the dummy wiring 6b has a floating pattern that is electrically floating.
  • the number of thinning out wiring lines 6a (the number of dummy wirings 6b between the wiring lines 6a) and the ratio of the number of wiring wirings 6a to the number of dummy wirings 6b are appropriately set according to the purpose of use of the display device, etc. Should. Note that the role of the drive electrode for applying the touch sensing drive voltage may be either the black wiring 6 or the touch metal wiring 42, and the roles thereof can be interchanged.
  • the touch metal wiring 42 is arranged orthogonal to the black wiring 6 in plan view.
  • the touch metal wiring 42 is provided on an array substrate, which will be described later, and extends from one end of the rectangular display area 19 to the outside of the other end.
  • the color filter layer is formed so that pixels displaying the same color in the Y direction are arranged and pixels displaying different colors in the X direction are adjacent to each other. Is done.
  • the backlight unit includes LEDs for red light emission, green light emission, and blue light emission, and each time-division light emission and a liquid crystal synchronized with the light emission.
  • Color display can be performed by driving the layers.
  • a time-division backlight unit as shown in FIG. 3, for example, pixels that display the same color in the Y direction are arranged, and pixels that display different colors in the X direction are adjacent to each other. Is done.
  • FIG. 4 is a schematic plan view for explaining an example of the terminal portion of the black wiring in the display device substrate according to the embodiment.
  • FIG. 5 is a partial cross-sectional view taken along line AA ′ of the terminal portion of the black wiring in the display device substrate according to the embodiment.
  • the rectangular display area 19 and a part of the periphery thereof are covered with the transparent resin layer 9.
  • a terminal portion 5 is formed at an end where the black wiring 6 extends outside the rectangular display area 19.
  • the terminal portion 5 has a shape in which the second conductive metal oxide layer 3 is exposed on the surface so that electrical contact and mounting can be taken. Unlike the surface of the copper or copper alloy, the surface of the second conductive metal oxide layer 3 forms a new oxide and does not cause an electrical contact failure. Oxides and sulfides are likely to form over time on the surface of copper and copper alloys.
  • the second conductive metal oxide layer formed of the mixed oxide is stable over time and enables ohmic contact in electrical mounting.
  • the shape of the planar view of the terminal portion 5 is not limited to FIG.
  • the upper portion of the terminal portion 5 is removed in a circular or rectangular shape by means such as dry etching, and the second conductive metal oxide layer 3 on the surface of the terminal portion 5 is removed. May be exposed.
  • This conduction transition is made possible by disposing a conductor selected from an anisotropic conductive film, a minute metal sphere, or a resin sphere covered with a metal film on the seal portion.
  • FIG. 6 is a partial cross-sectional view of a display device according to an embodiment of the present invention. 6 is also a cross-sectional view in the DD ′ direction when the array substrate 35 and the display device substrate 100 of FIG. 7 are bonded together with the liquid crystal layer 30 therebetween.
  • the touch metal wiring 42 is not illustrated exactly, but in FIG. 6, the touch metal wiring 42 is assumed to be behind the paper surface, and the position is indicated by a broken line.
  • illustration of a polarizing plate, a retardation plate, an alignment film, a backlight unit, a gate line and a source line connected to an active element which is a transistor is omitted.
  • the display device of this embodiment includes a display device substrate 100, an array substrate 35, and a liquid crystal layer 30.
  • the display device of this embodiment is, for example, an FFS mode liquid crystal display device.
  • the array substrate 35 includes a transparent substrate 25, insulating layers 21, 22, and 23, a common electrode 32, a pixel electrode 36, and a touch metal wiring 42.
  • the transparent substrate 25 is preferably made of, for example, alkali-free glass having a small coefficient of thermal expansion.
  • the base material of the transparent substrate 25 is, for example, non-alkali glass having a small coefficient of thermal expansion, and it is desirable to use a glass substrate.
  • the alkali-free glass employed as the base material of the transparent substrates 15 and 25 in this embodiment is a substrate material for a display device, and is typified by an aluminosilicate glass that does not substantially contain an alkali component.
  • a common electrode 32 is disposed on the transparent substrate 25 via insulating layers 21 and 22.
  • the common electrodes 32 are arranged in a stripe shape extending in the Y direction and are electrically connected to each other.
  • the common electrode 32 is formed of a transparent conductive material such as ITO or IZO.
  • the pixel electrode 6 is formed of a transparent conductive material such as ITO or IZO, for example.
  • the liquid crystal of the liquid crystal layer 30 is aligned substantially horizontally with the substrate surface of the array substrate 35 and includes liquid crystal molecules.
  • the liquid crystal is driven by a fringe electric field generated between the pixel electrode 36 and the common electrode 32.
  • This liquid crystal driving method is called FFS (fringe field switching) or IPS (in plane switching).
  • the drive voltage for driving the liquid crystal layer 30 forms an electric field in a direction substantially parallel to the substrate surface of the array substrate 35, a so-called lateral electric field.
  • FIG. 7 is a plan view of the array substrate 25 shown in FIG. 6, showing the touch metal wiring 42 and the light shielding pattern position.
  • FIG. 7 is a plan view of the array substrate 35 shown in FIG.
  • FIG. 7 shows the positions of the touch metal wiring 42 and the light shielding pattern 43.
  • the array substrate 35 further includes a light shielding pattern 43 arranged in the same layer as the pixel electrode 36 and the touch metal wiring 42, a source line 40, a gate line 41, and a transistor (active element) 46.
  • the pixel electrode 36 is disposed in each pixel.
  • the pixel electrode 36 includes, for example, a plurality of strip patterns extending in the Y direction.
  • the pixel electrode 36 has a slit provided at a position facing the common electrode 32.
  • the plurality of strip patterns are electrically connected to each other by the light shielding pattern 43.
  • the source line 40 extends between the pixel electrodes 36 in the Y direction.
  • the source line 40 is electrically connected to a drive circuit (not shown).
  • a video signal is applied to the source line 40.
  • the drive circuit is included in the control unit (not shown), and the control unit controls a video signal and a gate signal related to video display, and a drive signal and a touch detection signal related to touch sensing described later.
  • the gate line 41 extends between the pixel electrodes 36 in the X direction.
  • the gate line 41 is electrically connected to a drive circuit (not shown). A gate signal of a transistor to be described later is applied to the gate line 41.
  • the touch metal wiring 42 is disposed on the upper layer of the gate line 41 through the insulating layers 21, 22, and 23.
  • the touch metal wiring 42 is electrically independent from the gate line 41 and the source line 40. That is, the touch metal wiring 42 is disposed so as to extend in the X direction between the pixel electrodes 36.
  • the touch metal wiring is electrically connected to a drive circuit (not shown). When touch sensing is performed, for example, a constant voltage or a predetermined pulse voltage is applied to the touch metal wiring 42.
  • the metal wiring such as the gate line 41 or the source line 40 of the array substrate 35 and the touch metal wiring 42 may be formed of the same metal material and configuration in the same process. In this case, the metal wiring formed in the same process and the touch metal wiring 42 are electrically independent.
  • the black wiring 6 and the touch metal wiring 42 can be used as an alternative to a black matrix frequently used in display devices for the purpose of improving display contrast. Since both can be formed of metal wiring, the light shielding property from a backlight unit (not shown) is high.
  • the light shielding pattern 43 is arranged in each pixel.
  • the light shielding pattern 43 is disposed in the same layer as the touch metal wiring 42 and is formed in the same process.
  • the light shielding pattern 43 may be a metal layer that is stacked in plural, or an antireflection film or a light absorption layer may be further laminated on the light shielding pattern 43.
  • the light shielding pattern 43 is formed on a channel layer 49 of an active element to be described later, and prevents light from entering the channel layer 49. Thus, malfunction of the transistor 46 can be prevented.
  • FIG. 8 is a diagram showing an example of a cross section taken along line CC ′ of the array substrate shown in FIG.
  • FIG. 8 shows a configuration of a transistor 46 including a channel layer 49 formed of an oxide semiconductor (In—Ga—Zn—O-based mixed oxide) as an active element of the display device of this embodiment.
  • the transistor 46 is a thin film transistor.
  • a metal wiring (gate line 41 and source line 40) that is electrically linked to the transistor 46, and a touch that runs parallel to the gate line via a plurality of insulating layers 21, 22, and 23 on the gate line 41.
  • the metal wiring 42 etc. are shown.
  • FIG. 8 does not limit the number of insulating layers included in the array substrate 35.
  • the illustrated transistor 46 has a bottom gate structure, the active element employed in the display device of this embodiment is not limited to the bottom gate transistor.
  • the transistor 46 includes a gate electrode GE, a source electrode SE, a drain electrode DE, and a channel layer 49.
  • the gate electrode GE is formed on the transparent substrate 25.
  • the gate electrode GE is disposed in the same layer as the gate line 41, and is electrically connected to the corresponding gate line 41 (or formed integrally).
  • the gate electrode GE is covered with the insulating layer 21.
  • the source electrode SE is disposed on the channel layer 49 on the insulating layer 21.
  • the source electrode SE is disposed in the same layer as the source line 40 and is electrically connected to (or integrally formed with) the corresponding source line 40.
  • the source electrode SE is covered with the insulating layer 22.
  • the drain electrode DE is disposed on the channel layer 49 on the insulating layer 21.
  • the drain electrode DE is disposed in the same layer as the source line 40 and the source electrode SE, and is electrically connected to the pixel electrode 36 through a contact hole 47 that penetrates the insulating layers 22 and 23.
  • the channel layer 49 is disposed on the insulating layer 21 at a position facing the gate electrode GE.
  • the channel layer 49 can be formed of a silicon-based semiconductor such as polysilicon or an oxide semiconductor.
  • the channel layer 49 is preferably an oxide semiconductor including two or more metal oxides of gallium, indium, zinc, tin, germanium, magnesium, and aluminum, which are called IGZO or the like.
  • IGZO oxide semiconductor
  • Such a transistor 46 has high memory characteristics (leakage current is small), and therefore it is easy to maintain the pixel capacitance after application of the liquid crystal driving voltage. Therefore, the display device can have a configuration in which the storage capacitor line (or the storage capacitor provided for each pixel) is omitted.
  • a transistor (active element) using IGZO with good memory characteristics for the channel layer 49 if a transistor (active element) using IGZO with good memory characteristics for the channel layer 49 is employed, a constant voltage (constant potential) when the transparent electrode pattern is set to a constant voltage (constant potential) is used. It is also possible to omit a storage capacitor (storage capacitor) necessary for voltage driving. Unlike a transistor using a silicon semiconductor, a transistor using IGZO as a channel layer has a very small leakage current. Therefore, for example, a transfer circuit including a latch unit described in Patent Document 4 of the prior art document can be omitted, and a simple A wiring structure can be obtained.
  • a liquid crystal display device using an array substrate including a transistor using an oxide semiconductor such as IGZO as a channel layer has a small leakage current of the transistor, so that the voltage after applying the liquid crystal driving voltage can be maintained and the transmittance can be maintained. it can.
  • the transistor 46 When an oxide semiconductor such as IGZO is used for the channel layer 49, the transistor 46 has high electron mobility, and a driving voltage corresponding to a required video signal is applied to the pixel electrode 36 in a short time, for example, 2 msec (milliseconds) or less. Can do.
  • one frame of double speed driving (when the number of display frames per second is 120 frames) is about 8.3 msec, and for example, 6 msec can be assigned to touch sensing.
  • the liquid crystal drive and the touch electrode drive may not be time-division driven.
  • the driving frequency of the liquid crystal and the driving frequency of the touch metal wiring can be made different.
  • the image refresh for maintaining the transmittance (again, again for maintaining the transmittance (or voltage holding) unlike the polysilicon semiconductor transistor).
  • Video signal writing) is not required. Therefore, a display device using an oxide semiconductor such as IGZO can be driven with low power consumption.
  • the liquid crystal can be driven at a high speed with a high voltage, and is excellent for 3D display capable of 3D display.
  • the thin film transistor 46 using an oxide semiconductor such as IGZO for the channel layer 49 has high memory properties as described above, flicker (display flickering) occurs even when the liquid crystal driving frequency is set to a low frequency of about 0.1 Hz to about 30 Hz. There is merit that is hard to occur.
  • the driving voltage applied to the pixel electrode 36 can be held for a long time.
  • the source line 40 and the gate line 41 (and the storage capacitor line) of the active element are formed of a copper wiring having a wiring resistance smaller than that of the aluminum wiring, and further, the IGZO that can be driven in a short time as the active element is used.
  • a sufficient period for scanning can be provided. That is, by applying an oxide semiconductor such as IGZO to the active element, the driving time of the liquid crystal or the like can be shortened, and a sufficient time can be provided for the time applied to touch sensing in the video signal processing of the entire display screen. This makes it possible to detect a change in the generated capacitance with high accuracy.
  • an oxide semiconductor such as IGZO for the channel layer 49, it is possible to substantially eliminate the influence of coupling noise in dot inversion driving and column inversion driving. This is because an active element using an oxide semiconductor can apply a voltage corresponding to a video signal to the pixel electrode 36 in a very short time (for example, 2 msec), and the pixel voltage after the video signal is applied. This is because the memory property is high and no new noise is generated during the retention period, and the influence on touch sensing can be reduced.
  • the pixel electrode 36 is electrically connected to the drain electrode DE through the contact hole 47.
  • the pixel electrode 36 is disposed in the same layer as the touch metal wiring 42 and the light shielding pattern 43.
  • the pixel electrode 36 and the light shielding pattern 43 are integrally formed. In other words, a part of the pixel electrode 36 located above the channel layer 49 is the light shielding pattern 43.
  • FIG. 9 is a cross-sectional view illustrating the capacitance C ⁇ b> 1 held between the touch metal wiring 42 of the array substrate 35 and the black wiring 6 of the display device substrate 100.
  • the touch metal wiring 42 and the gate line 41 at the overlapping positions are extended in a direction perpendicular to the paper surface (X direction) in FIG. 9 and run parallel to each other.
  • the black wiring 6 is actually located in the back of the drawing and is not shown as a cross-sectional view. However, for the sake of explanation, the black wiring 6 is shown by a broken line and schematically shows that the capacitance C1 is formed.
  • the liquid crystal driving of the common electrode 32 and the touch metal wiring 42 in touch sensing may be time-division driving, or the touch metal wiring 42 is not time-division driven. May be driven at a frequency different from that of the liquid crystal drive.
  • the touch metal wiring 42 can be used as a drive electrode or a detection electrode.
  • the electrostatic capacitance C1 related to touch detection is formed between the black wiring 6 and the touch metal wiring 42 orthogonal to the black wiring 6 in plan view.
  • the proximity or touch position of a pointer such as a finger to the display screen can be detected by the change in the capacitance C1.
  • the black wiring 6 and the touch metal wiring 42 are substantially orthogonal as shown in FIG. However, all the black wirings 6 and the touch metal wirings 42 do not have to be linked with a touch sensor controller (not shown) for driving or detection.
  • the touch sensing controller is included in the control unit (not shown).
  • the black wiring 6 may be provided with a dummy wiring 6b, and the driving or detection of the black wiring 6 and the touch metal wiring 42 is performed every third, every nine, or eighteen. It may be performed by thinning a predetermined number such as every other. When the number of thinning-outs is large, the touch sensing scanning time can be shortened, and high-speed touch detection becomes easy.
  • the black wiring 6 is a conductive wiring having a four-layer structure in which the first conductive metal oxide layer 1, the metal layer 2, the second conductive metal oxide layer 3, and the black layer 4 are laminated. is there.
  • the black wiring 6 can be used as a touch electrode in capacitive touch sensing.
  • the touch electrode is a general term for drive electrodes and detection electrodes used for touch sensing.
  • the drive electrode and the detection electrode may be referred to as drive wiring, detection wiring, black wiring, touch metal wiring, and transparent conductive film wiring, respectively.
  • a plurality of detection electrodes are arranged in a first direction (for example, the direction X) in a plan view, and the plurality of drive electrodes are connected to the second through an insulating layer in the stacking direction (direction Z). It is possible to adopt a configuration in which they are arranged side by side in the direction (for example, the Y direction).
  • an AC pulse signal is applied to the drive electrode at a frequency of 1 KHz to 100 KHz. Normally, a constant output waveform is maintained on the detection electrode by the application of the AC pulse signal.
  • a pointer such as a finger
  • a change appears in the output waveform of the detection electrode at that part, and the presence or absence of a touch is determined.
  • the distance to the display surface of a pointer such as a finger can be measured by the time from the proximity of the pointer to contact (usually several hundred ⁇ sec or more and several msec or less), the number of output pulses counted within that time, and the like.
  • the black wiring 6 can be used as the above-described drive electrode or detection electrode.
  • the touch metal wiring 42 (or transparent conductive film wiring) that is substantially orthogonal to the direction (for example, the Y direction) in which the black wiring 6 extends through an insulating layer such as the transparent resin layer 9 as a touch electrode to be paired with the black wiring 6.
  • the touch metal wiring 42 is a touch electrode that is a pair of the black wiring 6, and is disposed on the array substrate side.
  • the transparent conductive film wiring is a touch electrode that is a pair of the black wiring 6, and is disposed on the display substrate side. In the configuration in which the touch metal wiring 42 (or the transparent conductive film wiring) is provided, these wirings can be used as drive electrodes or detection electrodes.
  • a configuration including a transparent conductive film wiring extending substantially orthogonal to the direction in which the black wiring 6 extends will be specifically described.
  • the black layer 4 is used as a resist pattern, the second conductive metal oxide layer 3 containing indium, the metal layer 2 and the first conductive metal oxide layer 1 are wet-etched together to obtain a pattern of the metal layer 2 having the same line width as the black layer 4.
  • the color filter substrate can be manufactured by a simple process using the black wiring 6 having the same line width or pattern shape between the black layer 4 and the metal layer 2.
  • the line widths of the first conductive metal oxide layer 1, the metal layer 2, the second conductive metal oxide layer 3, and the black layer 4 constituting the black wiring 6 can be made equal by the above process. it can.
  • the black wiring 6 is configured to cover the metal layer 2 with the black layer 4 and has less visible light reflection, the metal layer 2 does not reflect light from the backlight unit of the display device when the liquid crystal display device is formed. . For this reason, it is possible to prevent the backlight light incident from the array substrate 35 side from reentering the channel layer 49 of the transistor 46 and to prevent the malfunction of the transistor 46.
  • the black wiring 6 has low resistance and alkali resistance, is in a state of high adhesion to a substrate that is non-alkali glass, and from a light source of a display device such as a backlight.
  • a display device substrate including a touch sensing wiring that reduces re-reflection of light can be provided. That is, it is possible to provide a display device substrate including a touch sensing wiring that has high adhesion to a substrate that is non-alkali glass and that has good visibility. Further, according to the present embodiment, it is possible to provide a display device that can respond to high-resolution and high-speed touch input, and a display device substrate used therefor. Further, according to the present embodiment, it is possible to provide a display device substrate capable of stable electrical mounting.
  • FIG. 10 is a diagram illustrating an example of a configuration in which a color filter layer and a transparent resin layer 9 are stacked on the black wiring 6 in the display device substrate according to the present embodiment.
  • FIG. 11 is a partial cross section of a display device including the display device substrate shown in FIG. Note that in FIG. 11, illustration of a polarizing plate, a retardation plate, an alignment film, a backlight unit, a gate line, a source line, and the like connected to a transistor which is an active element is omitted.
  • the second embodiment relates to a configuration in which color filter layers (red pixel R, green pixel G, and blue pixel B) are further stacked in the display device substrate of the above-described embodiment, and is related to the liquid crystal layer 30 and the liquid crystal drive.
  • the technology is the same as in the first embodiment.
  • the plan view of the display device of this embodiment viewed from the viewer direction V is the same as FIG.
  • Means for forming the ultra-thin black wiring 6 and the color filter layer (red pixel R, green pixel G, blue pixel B) flat and without gaps are, for example, combined with thermal reflow disclosed in WO14 / 115367. It is possible to apply a colored layer forming technique.
  • the display device substrate 100 further includes color filter layers (red pixels R, green pixels G, and blue pixels B) disposed on the black wiring 6.
  • the color filter layer transmits a red colored layer made of a resin colored so as to transmit red main wavelength light corresponding to the red pixel R, and transmits a green main wavelength light corresponding to the green pixel G.
  • a green colored layer made of a resin colored as described above and a blue colored layer made of a resin colored so as to transmit light having a blue main wavelength corresponding to the blue pixel B are provided.
  • the colored layers such as the red colored layer, the green colored layer, and the blue colored layer that form each of the red pixel R, the green pixel G, and the blue pixel B include, for example, dispersing an organic pigment in a photosensitive transparent resin, It is formed by a photolithography technique.
  • other colors such as a light color layer, a complementary color layer, and a white layer (transparent layer) may be added to the color filter layer.
  • each of the red pixel R, the green pixel G, and the blue pixel B has the same color.
  • a stripe pattern shape in which a plurality of patterns continuous in the Y direction are arranged in the X direction can be obtained.
  • the black wiring 6 and the touch metal wiring 42 (or the gate line 41) can form a grid-like black matrix that is orthogonal in a plan view.
  • the black wiring 6 and the touch metal wiring 42 (or the gate line 41) each have a stripe pattern, so that the alignment (alignment) is performed with high accuracy. Is unnecessary and can contribute to the improvement of the yield of the display device.
  • a transparent resin layer 9 is laminated on the color filter layer.
  • the black wiring 6 is extended in a direction perpendicular to the paper surface (Y direction) and arranged substantially parallel to each other.
  • the touch metal wiring 42 is not illustrated because it is located at the back of the page, but for the sake of explanation, it is indicated by a broken line and schematically shows that the capacitance C2 is formed.
  • the black wiring 6 and the touch metal wiring 42 are driven, and the change of the capacitance C2 generated between them is detected, The distance and contact between the pen or the like and the screen of the display device can be detected.
  • the black wiring 6 arranged in parallel to the Y direction is orthogonal to the touch metal wiring 42.
  • the touch metal wiring 42 is formed on the gate line 41 via the insulating layers 21, 22, and 23, and is electrically independent from the gate line 41 and the source line 40.
  • the black wiring 6 and the touch metal wiring 42 can be used as an alternative to a black matrix frequently used in display devices for the purpose of improving display contrast. Since both can be formed of metal wiring, the light shielding property from a backlight unit (not shown) is high.
  • the black wiring 6 having low resistance and alkali resistance in a state of high adhesion to a substrate made of alkali-free glass, and re-lighting from a light source of a display device such as a backlight.
  • a display device substrate including a touch sensing wiring that reduces reflection can be provided. That is, it is possible to provide a display device substrate including a touch sensing wiring that has high adhesion to a substrate that is non-alkali glass and that has good visibility.
  • a display device that can respond to high-resolution and high-speed touch input, and a display device substrate used therefor. Further, according to the present embodiment, it is possible to provide a display device substrate capable of stable electrical mounting.
  • FIG. 12 is a partial cross-sectional view of a display device substrate 200 according to the third embodiment.
  • FIG. 13 is a partial cross-sectional view of a liquid crystal display device including the display device substrate 200 shown in FIG. Note that in FIG. 13, illustration of a polarizing plate, a retardation plate, an alignment film, a backlight unit, a gate line, a source line, and the like connected to an active element which is a transistor is omitted.
  • the display device substrate 200 includes a color filter layer (red pixel R, green pixel G, and blue pixel B) disposed on the black wiring 6, and a transparent resin layer 9 disposed on the color filter layer. And a transparent conductive film wiring 7 disposed on the transparent resin layer 9.
  • This embodiment is different from the second embodiment in the structure in which the transparent conductive film wiring 7 is formed on the transparent resin layer 9 of the display device substrate 200, and the array substrate 45 is not provided with a common electrode. It is.
  • Each of the black wirings 6 extends in a direction perpendicular to the paper surface (Y direction) as in the first and second embodiments described above, and a plurality of black wirings 6 are stripes arranged in the X direction. It is formed in a pattern.
  • the color filter layer transmits a red colored layer made of a resin colored so as to transmit red main wavelength light corresponding to the red pixel R, and transmits a green main wavelength light corresponding to the green pixel G. And a green colored layer made of resin colored so as to correspond to the blue pixel B, and a blue colored layer made of resin colored so as to transmit light having a blue dominant wavelength.
  • a transparent resin layer 9 is laminated on the color filter layer.
  • the transparent resin layer 9 can be formed of a thermosetting acrylic resin or the like.
  • the film thickness of the transparent resin layer 9 was 1.5 ⁇ m.
  • the film thickness of the transparent resin layer 9 can be arbitrarily set as long as the black wiring 6 and the transparent conductive film wiring 7 are electrically insulated.
  • the black layer 4 and the transparent resin layer 9 may have a configuration in which a plurality of layers having different optical characteristics such as a refractive index are stacked.
  • the black layer 4 and the transparent resin layer 9 may have a multilayer structure.
  • the transparent conductive film wiring 7 is disposed on the transparent resin layer 9.
  • the transparent conductive film wiring 7 is formed of a transparent conductive material such as ITO or IZO, for example.
  • the transparent conductive film wiring 7 may be configured by laminating an auxiliary conductor such as a metal wiring in a form of being in electrical contact therewith.
  • the black wiring 6 and the transparent conductive film wiring 7 are orthogonal to each other through the transparent resin layer 9 that is a dielectric.
  • the pixel pitch in the direction X can be set to 21 ⁇ m
  • the black wiring width can be set to 4 ⁇ m
  • the width of the transparent conductive film wiring 7 can be set to 123 ⁇ m (the pitch of the transparent conductive film wiring 7 is 126 ⁇ m).
  • the capacitance C3 related to touch sensing is formed between the black wiring 6 and the transparent conductive film wiring 7. That is, in the present embodiment, the transparent conductive film wiring 7 is a common electrode and serves as a detection electrode of the touch electrode, and the black wiring 6 can be used as a drive electrode in touch sensing. A substantially constant capacitance C3 is formed between the black wiring 6 and the transparent conductive film wiring 7, but the capacitance C3 at that portion changes due to the contact or proximity of a pointer such as a finger, and the touch position is changed. To detect. The transparent conductive film wiring 7 and the black wiring 6 can perform touch sensing at high speed by thinning out the touch sensing to detect the touch signal.
  • the liquid crystal layer 30 is driven by a voltage between the pixel electrode 36 and the transparent conductive film wiring 7. That is, the transparent conductive film wiring 7 serves as a common electrode for liquid crystal driving. Therefore, in the liquid crystal display device of this embodiment, the liquid crystal driving voltage is applied in the Z direction (the thickness direction of the liquid crystal layer 30). That is, in the liquid crystal display device of this embodiment, the liquid crystal is driven by a so-called vertical electric field.
  • the liquid crystal driving may be liquid crystal driving by common inversion driving, or the pixel electrode 36 may be inversion driven by using the common electrode as a constant potential.
  • the array substrate 45 does not include a common electrode.
  • the pixel electrode 36 is a substantially rectangular electrode disposed in each pixel. Similar to the first embodiment, the pixel electrode 36 is electrically connected to the active element through the contact hole.
  • FIG. 14 is a plan view of the display device substrate 200 shown in FIG.
  • the black wiring 6 has a routing wiring 6a and a dummy wiring 6b, as in the example shown in FIG.
  • the routing wiring 6a extends from one end of the rectangular display area 19 to the outside of the other end.
  • the dummy wiring 6b extends from one end of the rectangular display area 19 to the other end.
  • Two dummy wirings 6b are arranged between the routing wirings 6a.
  • the transparent conductive film wiring 7 is arranged extending in a direction (X direction) substantially orthogonal to the direction (Y direction) in which the black wiring 6 extends, and a plurality of transparent conductive film wirings 7 are formed in a stripe pattern arranged in the Y direction. Is done.
  • the line width (width in the Y direction) of the transparent conductive film wiring 7 is substantially equal to the width of three rows of pixels arranged in the X direction.
  • the transparent conductive film wiring 7 extends from one end of the rectangular display area 19 to the outside of the other end.
  • the black wiring 6 and the transparent conductive film wiring 7 are thinned out as electrodes used for touch sensing control (hereinafter may be abbreviated as touch electrodes or touch wirings).
  • the thinned wiring may have an electrically floating shape (floating pattern).
  • the floating pattern may be switched to a detection electrode or a drive electrode by a switching element to perform high-definition touch sensing.
  • the floating pattern can be switched so as to be electrically connected to the ground (grounded to the housing).
  • a signal wiring of an active element such as a TFT may be temporarily grounded to a ground (such as a housing) when a touch sensing signal is detected.
  • touch wiring that requires time to reset the capacitance C3 detected by touch sensing control that is, touch wiring with a large time constant (product of capacitance and resistance value) in touch sensing, for example, odd and even rows May be alternately used for sensing, and driving with the time constant adjusted may be performed.
  • driving and detection may be performed by grouping a plurality of touch wires.
  • the grouping of a plurality of touch wires may not be line-sequential but may be a collective detection method called a self-detection method for each group.
  • Parallel driving may be performed in units of groups.
  • a difference detection method that takes a difference between detection signals of adjacent and adjacent touch wirings can be employed.
  • the black wiring 6 and the transparent conductive film wiring 7 can be used as detection electrodes or drive electrodes in touch sensing.
  • Either the black wiring 6 or the transparent conductive film wiring 7 may be a detection electrode and the other may be a drive electrode.
  • the transparent conductive film wiring 7 can be set to a constant common potential during touch sensing driving and liquid crystal driving. Alternatively, all the transparent conductive film wirings 7 can be grounded through high resistance. Further, the transparent conductive film wiring 7 having a constant common potential at the time of touch sensing driving and liquid crystal driving can play a role of a shielding film, that is, a part of driving signals for touch sensing driving and liquid crystal driving.
  • the value of the high resistance can be, for example, in the range of several gigaohms to several petaohms. Typically, it can be 1 teraohm or more and 50 teraohms or less.
  • the channel layer 49 of the thin film transistor of the display device is an oxide semiconductor such as IGZO
  • a resistance lower than 1 giga ohm may be used in order to alleviate a state in which the pixel of the display device is likely to be burned.
  • a resistor lower than 1 gigaohm may be used for the purpose of resetting the capacitance C3.
  • the display device using an oxide semiconductor such as IGZO for the channel layer 49 of the active element the above-described various devices in the touch sensing control are possible.
  • the black wiring 6 is thinned out and scanning is performed at a low density, the drive frequency can be lowered, and high-precision sensing and power consumption can be reduced.
  • high-density scanning that reduces the thinning of the black wiring 6 can be used for, for example, fingerprint authentication or input with a touch pen.
  • the constant potential applied to the transparent conductive film wiring 7 at the time of touch sensing driving and liquid crystal driving does not necessarily mean “0 (zero)” volts, but may be an intermediate constant potential with a high or low driving frequency, and may be offset.
  • the drive voltage may be different.
  • the transparent conductive film wiring 7 may be driven at a frequency different from the driving frequency of the pixel electrode 36 that drives the liquid crystal because the transparent conductive film wiring 7 has a constant potential during the touch sensing driving and the liquid crystal driving.
  • the common potential Vcom as a common electrode for driving liquid crystal is an AC rectangular signal that generally includes frame inversion in driving the liquid crystal, and an AC voltage of ⁇ 2.5 V or ⁇ 5 V, for example, is applied for each frame.
  • the AC voltage necessary for such driving is not handled as a constant potential.
  • the voltage fluctuation of the constant potential in the technique of the present embodiment needs to be a constant potential within a certain voltage fluctuation which is at least smaller than the threshold value (Vth) for driving the liquid crystal.
  • the touch sensing drive and the liquid crystal drive can be driven at different frequencies by setting the potential of the transparent conductive film wiring 7 to the same constant potential in both the touch sensing drive and the liquid crystal drive.
  • the constant potential transparent conductive film wiring 7 can serve as a shield for electrically separating the liquid crystal drive signal and the touch sensing drive signal.
  • a large fringe capacity can be obtained, and power consumption can be reduced by lowering the drive voltage in touch sensing while maintaining a high S / N ratio.
  • the driving conditions for touch sensing and the driving conditions (frequency, voltage, etc.) for liquid crystals can be made different.
  • the touch sensing drive frequency can be set to 1 KHz to 100 KHz
  • the liquid crystal drive frequency can be set to 0.1 Hz to 480 Hz.
  • touch sensing drive and liquid crystal drive can be time-shared.
  • the black wiring 6 is used as a drive electrode (scanning electrode)
  • the scanning frequency of capacitance detection can be arbitrarily adjusted according to the required touch input speed.
  • the black wiring 6 can be thinned and scanned.
  • the drive electrode and the detection electrode in touch sensing may be interchanged, and the transparent conductive film wiring 7 may be used as a drive electrode (scanning electrode) that applies a voltage at a constant frequency.
  • the voltage (AC signal) applied to the drive electrode in touch sensing or liquid crystal drive may be an inversion drive method in which positive and negative voltages are inverted. Touch sensing driving and liquid crystal driving may be performed in a time division manner, and may not be in a time division manner.
  • the influence on the liquid crystal display can be reduced by reducing the voltage width (amplitude) of the AC signal to be applied.
  • the driving frequency of the black electrode as the touch electrode and the signal detection timing are set to drive the liquid crystal. It can be set without depending on frequency and timing.
  • the drive frequency of the touch electrode can be a frequency different from the liquid crystal drive frequency or a higher drive frequency.
  • the liquid crystal driving frequency is 60 Hz or a driving frequency that is an integral multiple of 60 Hz.
  • the touch sensing part is affected by noise associated with the liquid crystal driving frequency.
  • a normal household power supply is an AC power supply of 50 Hz or 60 Hz, and the touch sensing part easily picks up noise from an electric device that operates with such an external power supply. Therefore, the influence of noise from liquid crystal driving or external electronic equipment can be greatly reduced by setting the frequency of touch driving to a different frequency slightly shifted from 50 Hz or 60 Hz or an integer multiple of these frequencies.
  • the shift amount may be a slight amount, for example, a shift amount of ⁇ 3% or more and ⁇ 17% or less from the noise frequency, and interference with the noise frequency can be reduced.
  • a different frequency that does not interfere with the liquid crystal driving frequency or the power supply frequency can be selected from the range of 1 Hz to 100 kHz for the touch driving frequency.
  • the influence of noise such as coupling noise in dot inversion driving can be reduced.
  • the liquid crystal drive frequency requires high-speed drive such as 240 Hz or 480 Hz and many video signals.
  • the touch drive frequency can be different from the liquid crystal drive frequency is increased.
  • this embodiment enables high-speed and high-precision touch sensing in a 3D display game machine. This embodiment is particularly useful for a display with a high touch input frequency such as a finger such as a game machine or a cash dispenser.
  • the power consumption in the touch sensing can be reduced by thinning out the touch position detection instead of supplying the drive voltage to all the black wirings (drive electrodes) 6.
  • An oxide semiconductor or a polysilicon semiconductor can be used for a channel layer of a transistor of an active element (TFT) (not shown), and the oxide semiconductor can be a metal oxide called IGZO or the like.
  • the channel layer an oxide semiconductor containing two or more metal oxides of gallium, indium, zinc, tin, germanium, magnesium, aluminum such as IGZO
  • the effect of coupling noise in dot inversion drive is almost Can be resolved.
  • an active element using an oxide semiconductor such as IGZO can process a rectangular signal driven by a liquid crystal, which is a video signal, in an extremely short time (for example, 2 msec), and a voltage at a pixel of a liquid crystal display after the application of the video signal. This is because there is no memory generated during the holding period, and the influence of noise in driving the liquid crystal can be further reduced.
  • an oxide semiconductor such as IGZO has a high electrical withstand voltage
  • the liquid crystal can be driven at a high speed with a high voltage, and is effective for 3D image display such as 3D.
  • a transistor using an oxide semiconductor such as IGZO for the channel layer has high memory properties, and thus has an advantage that flicker (display flicker) hardly occurs even when the liquid crystal driving frequency is set to a low frequency of about 0.1 Hz to 30 Hz.
  • an array substrate including a transistor whose channel layer is an oxide semiconductor such as IGZO can be applied to a liquid crystal display device with a horizontal electric field such as FFS, a liquid crystal display device with a vertical electric field such as VA, or an organic EL display device.
  • liquid crystal drive is dot inversion drive or column inversion drive with pixel electrodes, using IGZO with good memory properties, it is necessary for constant voltage drive with the transparent electrode pattern as a constant voltage (constant potential) It is also possible to omit a large storage capacitor (storage capacitor).
  • the liquid crystal driving may be dot inversion driving or column inversion driving (source inversion driving) in which the transparent conductive film wiring 7 that is a common electrode has a constant potential.
  • source inversion driving source inversion driving
  • column inversion driving using the transparent conductive film wiring 7 as a constant potential and dot inversion driving using the transparent conductive film wiring 7 as a constant potential may be combined.
  • the liquid crystal layer 30 is applied to the liquid crystal layer 30 by applying a liquid crystal driving voltage between the transparent conductive film wiring 7 as a common electrode and the pixel electrode 36 provided on the array substrate.
  • a liquid crystal driving voltage between the transparent conductive film wiring 7 as a common electrode and the pixel electrode 36 provided on the array substrate.
  • a voltage is applied in the thickness direction (vertical direction) Z of the liquid crystal layer 30 and the transparent substrates 15 and 25, and a liquid crystal driving method called a vertical electric field method is applied in this embodiment.
  • Liquid crystal driving methods applicable to the vertical electric field method include VA (Vertical Alignment), HAN (Hybrid-aligned Nematic), TN (Twisted Nematic), OCB (Optically Compensated Bend), CPA (Continuous Pinwheel Alignment), ECB (Electrically Controlled Birefringence), TBA (Transverse Bent Alignment) and the like can be mentioned, and these can be appropriately selected and used. Since the VA mode is excellent in normally black display, it is preferable to adopt the VA mode in order to make use of the black display.
  • the vertically aligned liquid crystal (VA) is superior to the horizontally aligned liquid crystal (FFS) in terms of front luminance and black level for black display.
  • FIG. 15 is a partial cross-sectional view showing each manufacturing process of the display device substrate according to the embodiment of the present invention.
  • a first conductive metal oxide layer which is a ternary mixed oxide film (conductive complex oxide layer) containing indium oxide, zinc oxide and tin oxide on a transparent substrate 15. 1, the metal layer 2, and the second conductive oxide layer 3 are continuously formed into the structure shown in a (film formation step).
  • a ternary mixed oxide film conductive complex oxide layer
  • the first conductive metal oxide layer 1, the metal layer 2, and the second conductive oxide layer 3 are formed so as to almost cover the surface of the transparent substrate 15.
  • the film forming apparatus uses a sputtering apparatus and continuously forms films without breaking the vacuum.
  • the composition of the metal layers of indium oxide, zinc oxide, tin oxide, and copper alloy in the first conductive metal oxide layer 1 and the second conductive metal oxide layer 3 was as follows. All are atomic percentages of metal elements in the mixed oxide (counting only of metal elements not counting oxygen elements; hereinafter expressed as at%).
  • Second conductive metal oxide layer; In: Zn: Sn > 91: 7: 2 ⁇
  • Metal layer: Cu: Mg > 99.5: 0.5
  • the amount of indium (In) contained in the first conductive metal oxide layer 1 and the second conductive metal oxide layer 3 needs to be greater than 80 at%.
  • the amount of indium (In) is preferably greater than 80 at%.
  • the amount of indium (In) is more preferably greater than 90 at%.
  • the amount of indium (In) is preferably greater than 90 at%.
  • the amount of indium (In) is less than 80 at%, the specific resistance of the conductive metal oxide layer to be formed is not preferable. If the amount of zinc (Zn) exceeds 20 at%, the alkali resistance of the conductive metal oxide (mixed oxide) decreases, which is not preferable.
  • the amount of zinc (Zn) contained in the first conductive metal oxide layer 1 and the second conductive metal oxide layer 3 needs to be larger than the amount of tin (Sn). If the tin content exceeds the zinc content, there will be problems with wet etching in the subsequent process. In other words, the etching of the metal layer made of copper or copper alloy is easier to enter than the conductive metal oxide layer, and the first conductive metal oxide layer 1, the metal layer 2, and the second conductive metal oxide layer. A difference in line width from 3 tends to occur.
  • the amount of tin (Sn) contained in the first conductive metal oxide layer 1 and the second conductive metal oxide layer 3 is preferably in the range of 0.5 at% or more and 6 at% or less. Tin is contained in an amount of 0.5 at% or more and 6 at% or less in comparison with the indium element, so that the ratio of the ternary mixed oxide film (conductive composite oxide layer) of indium, zinc and tin is increased. Resistance can be reduced. When the amount of tin exceeds 7 at%, the specific resistance of the ternary mixed oxide film (conductive composite oxide layer) becomes too large due to the addition of zinc.
  • the specific resistance is approximately a small range of 5 ⁇ 10 ⁇ 4 ⁇ cm or more and 3 ⁇ 10 ⁇ 4 ⁇ cm or less as the specific resistance of the single layer film of the mixed oxide film. Can fit inside. A small amount of other elements such as titanium, zirconium, magnesium, aluminum, and germanium can be added to the mixed oxide.
  • a black coating solution having alkali developability and photosensitivity containing carbon as a main coloring material is applied on the transparent substrate 15 and dried to form a black layer 4 having a configuration shown in b (Coating Process).
  • the coating thickness after drying of the black layer 4 was about 1.1 ⁇ m.
  • a substrate having the configuration shown in b is formed.
  • Exposure Note that the substrate of the mask is an artificial quartz substrate, and the transmittance is a transmittance with the artificial quartz substrate as a reference.
  • alkali development was performed to obtain a configuration shown in c (pattern formation step). That is, the substrate has a black wiring pattern 4a having a thickness of about 2 ⁇ m and a terminal pattern 4b having a thickness of about 1 ⁇ m. In this state, the second conductive metal oxide layer 3 is exposed between the black wiring patterns 4a and around the substrate.
  • the exposed second conductive metal oxide layer 3 is wet etched with an oxalic acid etchant, the metal layer 2 is wet etched with a phosphoric acid etchant, and the first conductive metal oxide is further etched with an oxalic acid etchant.
  • Layer 1 was wet-etched to obtain a substrate having the structure shown in d (wet-etching step). In this state, the first conductive metal oxide layer 1, the metal layer 2, and the second conductive metal oxide layer 3 between the black wiring patterns 4a are removed, and the transparent substrate 15 is exposed in this region.
  • the thickness of the black layer is 0.6 ⁇ m.
  • the gas introduced into the dry etching apparatus was 8 vol% oxygen added to an argon base gas.
  • the terminal part pattern 4b on the terminal part 5 is completely removed, the second conductive metal oxide layer 3 is exposed on the terminal part 5, and about 0.5 ⁇ m on the black wiring pattern. It was set as the board
  • the line width of the black wiring pattern 4a is about 4 ⁇ m, and the line widths of the first conductive metal oxide layer 1, the metal layer, and the second conductive oxide layer are equal to each other within ⁇ 0.2 ⁇ m. It was.
  • alignment (positioning) of the black layer 4, the first conductive metal oxide layer 1, the metal layer 2, and the second conductive oxide layer 3 is unnecessary. Therefore, it is not necessary to consider each ⁇ 1.5 ⁇ m alignment margin normally required for a display device substrate or the like. Therefore, a high aperture ratio can be obtained.
  • the thickness of the first conductive metal oxide layer 1 of the black wiring 6 is about 0.025 ⁇ m
  • the thickness of the metal layer 2 is about 0.15 ⁇ m
  • the first conductive metal oxide layer is about 0.025 ⁇ m
  • various film thicknesses including the film thickness of the black layer 4 can be set.
  • the color material used for the black layer 4 constituting the black wiring 6 is preferably mainly carbon.
  • a small amount of an organic pigment may be added to the photosensitive black coating solution.
  • a metal is coordinated in the pigment structure. When a film containing such an organic pigment is dry-etched, contamination due to the metal may occur. Considering this point, the composition of the photosensitive black coating solution is adjusted.
  • the process using the photomask is only required once, and there are advantages in reducing the mask cost and reducing the process.
  • FIG. 16 is a partial cross-sectional view of a display device substrate according to the fourth embodiment.
  • the black oxide layer 8 is inserted at the interface between the conductive metal oxide layer 1 and the metal layer 2 of the display device substrate 100 of the first embodiment described above.
  • the display device substrate of this embodiment can be provided as a modification of the above-described plurality of embodiments.
  • the display device substrate of this embodiment includes a black oxide layer 8 obtained by oxidizing a metal at the interface between the first conductive metal oxide layer 1 and the metal layer 2.
  • the black oxide layer 8 is formed of a metal oxide that can absorb even part of visible light.
  • the metal oxide constituting the black oxide layer 8 can be selected from metal oxides having various light absorption properties, but it is convenient to use an oxide of copper or a copper alloy used for the metal layer.
  • the black oxide layer 8 obtained by oxidizing this metal can be easily formed by introducing oxygen gas during vacuum film formation such as sputtering or ion plating.
  • the metal used for the material of the black oxide layer 8 may be a metal material that can impart a light absorption function by oxidizing a copper nickel alloy, a titanium alloy, or the like.
  • the film thickness of the black oxide layer 8 may be, for example, not less than 10 nm and not more than 200 nm.
  • the first conductive metal oxide layer has a thickness of 20 nm
  • the metal layer 2 is a copper magnesium alloy containing magnesium (Mg) 0.5 at%, and has a thickness of 150 nm.
  • the conductive metal oxide layer is formed of a thin film having a thickness of 20 nm.
  • the first and second conductive metal oxide layers can be easily wet-etched by forming an amorphous film by sputtering at room temperature.
  • the metal layer 2 may be formed of pure copper instead of a copper alloy.
  • the black oxide layer 8 In the case where the black oxide layer 8 is used as the metal layer, means for introducing an oxygen gas into a metal oxide film at the time of film formation by sputtering of copper or copper alloy is simple in the manufacturing process.
  • a copper alloy sputtering target is used, and oxygen gas is further added to argon gas.
  • the black oxide layer 8 is formed with a film thickness of 20 nm or more and 200 nm or less.
  • the introduction of only oxygen gas is stopped, and the metal layer 2 is formed with a copper alloy using only argon gas.
  • the second conductive metal oxide layer 3 was subsequently formed using an ITZO (In—Sn—Zn—O) target in the same manner as the first conductive metal oxide layer 1.
  • ITZO In—Sn—Zn—O
  • the first conductive metal oxide layer 1 / black oxide layer 8 / metal layer 2 / second conductive metal oxide layer 3 can be formed in this order.
  • the display device substrate of this embodiment can be formed.
  • the display device shown in FIG. 6 when viewed from the viewer direction V, there is light reflection from the metal layer 2 (reflection of outside light such as room light and sunlight), which may reduce visibility. .
  • the light reflection can be suppressed by inserting the black oxide layer 8 into the interface between the first conductive metal oxide layer 1 and the metal layer 2.
  • the display device substrate, the display device, and the method for manufacturing the display device substrate of the present embodiment it is possible to obtain the same effect as that of the above-described embodiment, and to avoid further deterioration in visibility. It becomes possible.
  • FIG. 17 is a partial cross-sectional view of a display device substrate according to the fifth embodiment.
  • a second black layer 18 is disposed between the transparent substrate 15 of the display device substrate and the first conductive metal oxide layer 1 shown in FIG.
  • the display device substrate of this embodiment can be provided as a modification of the above-described plurality of embodiments.
  • the same color material and transparent resin as those of the black layer 4 can be used.
  • the reflectance of the interface between the transparent substrate 15 and the second black layer 18 can be suppressed to 3% or less in the visible light range by adjusting the amount of the coloring material and the film thickness.
  • the difference between the manufacturing method of the present embodiment and the above-described fourth embodiment is that the application of the second black layer 18 and its hardening process are added as the first process, and the main process is the fourth process.
  • the form is the same.
  • FIG. 18 is a partial cross-sectional view showing each manufacturing process of the display device substrate according to the embodiment of the present invention.
  • the second black layer 18 is applied and hardened on the transparent substrate 15.
  • light may be used in combination.
  • the material of the second black layer 18 may be the same material as that of the black layer 4 of the first embodiment.
  • the thickness of the second black layer 18 is about 0.5 ⁇ m.
  • Steps shown from a to c in FIG. 18 are the same as the manufacturing method of the display device of the first to third embodiments described above.
  • the film thickness of the black wiring pattern 4a shown in FIG. 18d is 1.1 ⁇ m
  • the film thickness of the terminal part pattern 4b corresponding to the terminal part 5 of the 40% transmittance part of the halftone mask is 0.5 ⁇ m.
  • the film thickness of the second black layer 18 exposed between the black wiring patterns 4a shown in d of FIG. 18 is 0.5 ⁇ m.
  • the transparent substrate 15 and the first conductive metal oxide layer 1 when viewed from the observer direction V, the transparent substrate Since the reflectance of light at the interface between the first black layer 15 and the second black layer 18 can be 3% or less, it can be said that the structure is excellent from the viewpoint of visibility.
  • the display device substrate, the display device, and the method for manufacturing the display device substrate of the present embodiment it is possible to obtain the same effect as that of the above-described embodiment, and to avoid further deterioration in visibility. It becomes possible.
  • FIG. 19 is a diagram for explaining a display device substrate according to the sixth embodiment.
  • the black wiring 6 and the red pixel R, the green pixel G, and the blue pixel B of the color filter layer are arranged on different surfaces. It is a fragmentary sectional view of the provided display apparatus board
  • the display device substrate 100 includes a transparent substrate 15, a black wiring 6, a black matrix BM, a color filter layer (red pixel R, green pixel G, blue pixel B), and a transparent resin layer 9.
  • a transparent substrate 15 includes a black wiring 6, a black matrix BM, a color filter layer (red pixel R, green pixel G, blue pixel B), and a transparent resin layer 9.
  • a cover glass for reinforcing the strength via an adhesive or the like on the surface of the display device substrate (on the deflection plate in the liquid crystal display device), or A structure in which a polarizing plate is bonded can be applied.
  • the black wiring 6 and the color filter layer are disposed on different layers of the transparent substrate 15. That is, the transparent substrate 15 has a pair of opposing main surfaces, the black wiring 6 is disposed on one main surface, and the color filter layer is disposed on the other main surface. In this embodiment, the color filter layer is located on the liquid crystal layer side, and the black wiring 6 is disposed at a position where the black layer 4 can be viewed from the observer direction V via the transparent substrate 15.
  • the surface of the black layer 4 is covered with, for example, a polarizing plate (not shown) via an adhesive.
  • a polarizing plate (not shown)
  • the surface reflection of the black layer 4 itself is approximately half the reflectance.
  • the refractive index of the adhesive is approximately 1.5.
  • the reflectivity at the interface between the black layer 4 and the adhesive is a low reflectivity of 3% or less in the visible wavelength range of 400 nm to 700 nm.
  • the reflectance is measured using a microspectrometer, and the reference is an aluminum plate.
  • the black matrix BM is arranged in a lattice pattern on the transparent substrate 15. A portion of the black matrix BM extending in the Y direction faces the black wiring 6 with the transparent substrate 15 interposed therebetween.
  • the other configuration of the display device substrate of the present embodiment is the same as that of the display device substrate of the first embodiment.
  • the configurations of the array substrate 35 and the liquid crystal layer 30 are the same as those of the display device of the first embodiment except for the configuration of the touch metal wiring 37.
  • the touch metal wiring 37 can be formed at the same time in the same metal wiring manufacturing process as the gate electrode or source electrode (or drain electrode) of a transistor (active element) not shown.
  • the alignment of the liquid crystal layer 30 is controlled by an electric field generated by a voltage applied to the pixel electrode 36 and the common electrode 32 provided on the array substrate 35.
  • the liquid crystal drive is the same FFS system as in the first embodiment, and the liquid crystal layer 30 is aligned parallel to the surface of the array substrate 35.
  • the capacitance C4 for touch sensing is formed between the black wiring 6 and the touch metal wiring 37 provided on the array substrate 35.
  • the transistor When the transistor has a top gate structure, it may be formed at the same time as the touch metal wiring 37 in a metal layer that forms a light shielding layer that covers the channel layer of the transistor.
  • An oxide semiconductor or a polysilicon semiconductor can be used for the channel layer of the active element (not shown).
  • the black wiring 6 and the touch metal wiring 37 may be used by switching the roles of the detection electrode and the driving electrode in the touch sensing drive.
  • the method for forming the black wiring 6 on the transparent substrate 15 is the same as that in the first to third embodiments, and the description thereof is omitted. According to the display device substrate, the display device, and the display device substrate manufacturing method of the present embodiment, the same effects as those of the above-described embodiment can be obtained.
  • FIG. 21 is a diagram for explaining a display device substrate according to the seventh embodiment, in which the black wiring 6 and the red pixel R, green pixel G, and blue pixel B of the color filter layer are arranged on different surfaces. It is a fragmentary sectional view of the provided display apparatus board
  • the display device substrate 200 of the present embodiment has the same configuration as the display device substrate 100 shown in FIG. 19 except that the display device substrate 200 further includes a transparent conductive film wiring 7 disposed on the transparent resin layer 9.
  • FIG. 22 is a partial cross-sectional view of a display device according to an embodiment including the display device substrate shown in FIG. Note that in FIG. 22, notation of a polarizing plate, a retardation plate, an alignment film, a backlight unit, a gate line and a source line connected to an active element which is a transistor is omitted.
  • the array substrate 45 and the liquid crystal layer 30 of the display device of this embodiment have the same configuration as the array substrate 45 of the display device of the second embodiment shown in FIG. That is, the liquid crystal layer 30 is driven by a voltage applied between the pixel electrode 36 and the transparent conductive film wiring 7 that is a common electrode.
  • the liquid crystal driving voltage applied between the pixel electrode 36 and the transparent conductive film wiring 7 is a so-called vertical electric field applied in the Z direction (thickness direction of the liquid crystal layer 30).
  • the transparent conductive film wiring 7 is formed of a transparent conductive film called ITO.
  • the electrostatic capacitance C5 related to touch sensing is formed between the black wiring 6 and the transparent conductive film wiring 7, for example.
  • the black wirings 6 are arranged in a stripe pattern shape in the Y direction perpendicular to the paper surface.
  • the plan view of the display device substrate 200 viewed from the observer direction V is the same as that in FIG.
  • An oxide semiconductor or a polysilicon semiconductor can be used for the channel layer of the active element (not shown).
  • the display device substrate, the display device, and the display device substrate manufacturing method of the present embodiment the same effects as those of the above-described embodiment can be obtained. That is, according to the above-described embodiments, low-resistance and alkali-resistant black wiring that has high adhesion to a non-alkali glass substrate and light from a light source of a display device such as a backlight. It is possible to provide a display device substrate including a touch sensing wiring that reduces re-reflection.
  • a display device capable of responding to high-speed and high-speed touch input, a display device substrate used for the display device, and a display device substrate including a color filter. Moreover, according to the above-described plurality of embodiments, a display device substrate capable of stable electrical mounting can be provided.
  • the display device substrate, the display device, and the display device substrate manufacturing method according to the above-described embodiments can be applied with various modifications within the scope of the invention.
  • the display devices according to the above-described plurality of embodiments can be applied in various ways.
  • electronic devices that can be targeted by the display devices of the above-described embodiments mobile phones, portable game devices, personal digital assistants, personal computers, electronic books, video cameras, digital still cameras, head mounted displays, navigation systems, acoustics Examples include playback devices (car audio, digital audio player, etc.), copiers, facsimiles, printers, printer multifunction devices, vending machines, automatic teller machines (ATMs), personal authentication devices, optical communication devices, and the like.
  • ATMs automatic teller machines
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
  • Touch metal wiring 40 ... source line, 41 ... gate line, 43 ... light shielding pattern, SE ... source electrode, DE ... drain electrode, GE ... gate electrode, 49 ... channel layer, 46 ... transistor (active element), 47 ... contact Hall, 100, 200 ... display device substrate C1 ⁇ C5 ... capacitance

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

A display device substrate according to an embodiment is provided with: a transparent substrate; and a black wiring that includes a first conductive metal oxide layer arranged on the transparent substrate between a plurality of pixels, a metal layer arranged on the first conductive metal oxide layer, a second conductive metal oxide layer arranged on the metal layer, and a black layer arranged on the second conductive metal oxide layer. The black wiring extends in a first direction, and multiple instances of the black wiring are arranged, with a prescribed space therebetween, in a second direction orthogonal to the first direction. The black wiring includes a routing wiring provided with a terminal part, where the second conductive metal oxide layer is exposed, at an end part that is extended to the outside of a display area including a plurality of pixels. The metal layer is formed from copper or a copper alloy, and carbon is used as the primary coloring material of the black layer. The first and second conductive metal oxide layers are formed from a mixed oxide of indium oxide, zinc oxide, and tin oxide. The conductive metal oxide layer, the metal layer, the second conductive metal oxide layer, and the black layer are equal in line width.

Description

表示装置基板、表示装置基板の製造方法、及び、これを用いた表示装置Display device substrate, display device substrate manufacturing method, and display device using the same
 この発明は、表示装置基板、表示装置基板の製造方法、及び、これを用いた表示装置に関する。 The present invention relates to a display device substrate, a method of manufacturing a display device substrate, and a display device using the same.
 スマートフォンやタブレットなど携帯機器に、表示装置の表示面側にタッチパネルを貼付した構成が一般的になりつつある。タッチパネルは、指などポインタの接触などの入力手段として用いられる。タッチパネルのポインタの検出は、そのタッチ部分での静電容量変化として行われる方式が主流である。 A configuration in which a touch panel is attached to a display surface side of a display device on a mobile device such as a smartphone or a tablet is becoming common. The touch panel is used as an input means for touching a pointer such as a finger. A method of detecting the pointer of the touch panel is mainly performed as a change in capacitance at the touched portion.
 しかしながら、タッチパネルは厚み・重量増の観点で、表示装置の余分な部材である。最近では、タッチパネルは、スマートフォンやタブレットなど携帯機器に搭載されているが、やはり、機器の厚み増を回避することが困難であった。また、表示装置の解像度を高くして高精細画素としたときに、タッチパネルの入力が困難になることがあった。 However, the touch panel is an extra member of the display device from the viewpoint of increasing thickness and weight. Recently, touch panels are mounted on mobile devices such as smartphones and tablets, but it is still difficult to avoid an increase in the thickness of the devices. In addition, when the resolution of the display device is increased to provide high-definition pixels, it may be difficult to input on the touch panel.
 例えば、表示装置の解像度を300ppi(pixel per inch)、さらには、500ppi以上として高精細画素としたとき、画素ピッチは8μm以上30μm以下前後となり微細な入力(例えばペン入力)が必要となる。そのため、入力ペンの筆圧やペン先に必要な解像度に応え、更に、速い入力への対応、及び、高精細化に十分に応えるタッチパネルの実現が望まれている。例えば、300ppi、さらには、500ppi以上の高精細画素としたタッチパネルにおけるブラックマトリクスの線幅は、1μm以上6μm以下程度の細線にすることが望ましい。 
 一方で、近年、タッチパネルを用いずに、タッチセンシング機能を液晶セル内、あるいは表示装置に持たせる“インセル”と呼称されるタッチセンシング技術の開発が進んでいる。
For example, when the resolution of the display device is 300 ppi (pixel per inch), further 500 ppi or more and high definition pixels are used, the pixel pitch is about 8 μm or more and 30 μm or less, and fine input (for example, pen input) is required. Therefore, it is desired to realize a touch panel that responds to the writing pressure of the input pen and the resolution required for the pen tip, and that can respond to high-speed input and sufficiently achieve high definition. For example, the line width of the black matrix in a touch panel having a high-definition pixel of 300 ppi or even 500 ppi or more is desirably a thin line of about 1 μm to 6 μm.
On the other hand, in recent years, development of a touch sensing technique called “in-cell”, in which a touch sensing function is provided in a liquid crystal cell or a display device without using a touch panel, has been advanced.
 上記したように、カラーフィルタを具備する表示装置基板や、薄膜トランジスタ(TFT)などアクティブ素子を内設するアレイ基板のいずれかに、あるいは、両方にタッチ電極群を設け、タッチ電極群間に生じる静電容量の変化でタッチセンシングを行うインセル化が試みられている。しかし、有機フイルムベースのタッチパネルでは基材の伸縮(たとえば、熱膨張係数)が大きく、赤画素、緑画素、青画素やブラックマトリクスのパターンを含む8μm以上30μm以下程度の微細画素の位置あわせ(アライメント)が困難であり、表示装置基板としての採用はできない。 As described above, a touch electrode group is provided on either or both of a display device substrate having a color filter and an array substrate in which an active element such as a thin film transistor (TFT) is provided, and static electricity generated between the touch electrode groups. Attempts have been made to achieve in-cell touch sensing by changing the capacitance. However, an organic film-based touch panel has a large base material expansion / contraction (for example, thermal expansion coefficient), and alignment of fine pixels of about 8 μm to 30 μm including alignment patterns of red pixels, green pixels, blue pixels, and black matrices (alignment). ) Is difficult and cannot be adopted as a display device substrate.
 特許文献1は、プラスチックフィルム上に透明導電膜と遮光性金属膜の積層構成を、開示している。しかしながら、この構成では“インセル”として用いることができず、フィルムである基材のため高精細のカラーフィルタとして採用できない。特許文献1は、インセル技術およびカラーフィルタとの一体化は示唆していない。たとえば、特許文献1には、遮光性金属膜層としてアルミニウムが例示されている。赤画素、緑画素、青画素やブラックマトリクスの製造工程では、アルカリ現像液を用いたフォトリソグラフィの手法が用いられるが、アルミニウムの金属配線では、アルカリ現像液に腐食されカラーフィルタを形成することが困難である。 
 さらに、特許文献1は、遮光性金属膜の表面の光反射が、表示装置としたときにアレイ基板に具備されるトランジスタのチャネル層に入射し、トランジスタの誤動作となる可能性を考慮した技術を開示していない。
Patent document 1 is disclosing the laminated structure of a transparent conductive film and a light-shielding metal film on a plastic film. However, this configuration cannot be used as “in-cell” and cannot be used as a high-definition color filter because of the base material being a film. Patent Document 1 does not suggest in-cell technology and integration with a color filter. For example, Patent Document 1 exemplifies aluminum as the light-shielding metal film layer. In the manufacturing process of red pixels, green pixels, blue pixels, and black matrices, a photolithography technique using an alkaline developer is used. However, aluminum metal wiring can be corroded by an alkali developer to form a color filter. Have difficulty.
Further, Patent Document 1 discloses a technique that takes into consideration the possibility that light reflection on the surface of a light-shielding metal film is incident on a channel layer of a transistor included in an array substrate when used as a display device, resulting in malfunction of the transistor. Not disclosed.
 特許文献2は、全反射率の低い吸光層と導電層との積層構成及びこの積層構成を備えるタッチパネルを開示している。しかしながら、特許文献2は、インセル技術およびカラーフィルタとの一体化について示唆していない。たとえば、特許文献2には、導電性パターン(あるいは導電層)の材料としてアルミニウムが例示されている。赤画素、緑画素、青画素やブラックマトリクスの製造工程では、アルカリ現像液を用いたフォトリソグラフィの手法が用いられるが、アルミニウムの金属配線では、アルカリ現像液に腐食されカラーフィルタを形成することが困難である。 Patent Document 2 discloses a laminated structure of a light absorbing layer and a conductive layer having a low total reflectance and a touch panel provided with this laminated structure. However, Patent Document 2 does not suggest in-cell technology and integration with a color filter. For example, Patent Document 2 exemplifies aluminum as a material for the conductive pattern (or conductive layer). In the manufacturing process of red pixels, green pixels, blue pixels, and black matrices, a photolithography technique using an alkaline developer is used. However, aluminum metal wiring can be corroded by an alkali developer to form a color filter. Have difficulty.
 また、特許文献2は、導電層の金属が銅(Cu)であることも開示している。しかし、例えば基材を無アルカリガラスなどのガラス基板としたときに、銅や銅酸化物、銅酸窒化物は基板に対する十分な密着性がなく、セロハンテープなどを貼り付けて剥がす程度の粘着力で簡単に剥がれてしまうため実用的ではない。特許文献2には、導電層を銅としたときの密着性改善の具体的技術は開示されていない。また、銅は経時的にその表面に銅の酸化物を形成しやすく、電気的な実装では信頼性が低い。特許文献2には、実装を考慮したコンタクト抵抗の改善策や、タッチセンシング用の配線のパターン形成手段に関わる技術を開示していない。 Patent Document 2 also discloses that the metal of the conductive layer is copper (Cu). However, for example, when the base material is made of a glass substrate such as alkali-free glass, copper, copper oxide, and copper oxynitride do not have sufficient adhesion to the substrate, and the adhesive strength is sufficient to attach and remove cellophane tape. It is not practical because it easily peels off. Patent Document 2 does not disclose a specific technique for improving adhesion when the conductive layer is made of copper. Also, copper tends to form copper oxides on its surface over time, and its reliability is low in electrical mounting. Patent Document 2 does not disclose a technique for improving contact resistance in consideration of mounting or a pattern forming means for wiring for touch sensing.
 特許文献3は、インジウム(In)と錫(Sn)と亜鉛(Zn)の酸化物から成る透明導電膜を開示している。しかしながら、特許文献3には、安定した、高い信頼性ある電気的接続のためのタッチセンシング用の配線構造、例えば、透明基板上に第1の導電性金属酸化物層と、銅層あるいは銅合金層からなる金属層と、第2の導電性金属酸化物層と、カーボンを主たる色材とする黒色層とを、この順で、それぞれ等しい線幅にて積層した構成の黒色配線を、タッチセンシング用の配線として形成する技術は開示していない。すなわち、特許文献3に開示された技術は、タッチセンシング用の配線として必要な電気的実装の安定性と表示装置としての視認性を考慮していない。 Patent Document 3 discloses a transparent conductive film made of an oxide of indium (In), tin (Sn), and zinc (Zn). However, Patent Document 3 discloses a wiring structure for touch sensing for stable and highly reliable electrical connection, for example, a first conductive metal oxide layer and a copper layer or a copper alloy on a transparent substrate. A black wiring having a structure in which a metal layer composed of two layers, a second conductive metal oxide layer, and a black layer mainly composed of carbon are laminated in this order with equal line widths. The technology for forming the wiring for use is not disclosed. That is, the technique disclosed in Patent Document 3 does not consider the stability of electrical mounting necessary for the wiring for touch sensing and the visibility as a display device.
 特許文献4は、液晶駆動の線順次走査を行う場合の画質低下を抑える手段を、開示している。特許文献4は、液晶を駆動するアクティブ素子(TFT: Thin Film Transistor)にポリシリコン半導体を用いている。この技術は、オフリーク電流の多いポリシリコンのTFT固有とも言える走査信号線の電位低下を、ラッチ部を含む転送回路を具備させて電位保持を行う工夫により防ぐともに、液晶表示の画質低下を防ぐ技術である。 Patent Document 4 discloses a means for suppressing deterioration in image quality when liquid crystal driving line sequential scanning is performed. In Patent Document 4, a polysilicon semiconductor is used for an active element (TFT: “Thin” Film “Transistor”) that drives liquid crystal. This technology prevents the decrease in the potential of the scanning signal line, which can be said to be inherent to polysilicon TFTs with a large off-leakage current, by providing a transfer circuit including a latch portion to hold the potential, and also prevents the deterioration in image quality of the liquid crystal display It is.
特開2011- 65393号公報JP 2011-65393 A 特表2013-540331号公報Special table 2013-540331 gazette 特開2012- 26039号公報JP2012-26039A 特開2014-182203号公報JP 2014-182203 A
 本発明は、上記事情を鑑みてなされたものであり、本発明の第1の目的は、無アルカリガラスである基板と密着性の高い状態で、かつ、視認性の良好なタッチセンシング用配線を具備する表示装置基板を提供することである。 The present invention has been made in view of the above circumstances, and a first object of the present invention is to provide a touch sensing wiring that is highly adhesive to a substrate made of alkali-free glass and has good visibility. It is to provide a display device substrate.
 本発明の第2の目的は、高解像度で、かつ、高速なタッチ入力に応えられる表示装置、およびこれに用いる表示装置基板、カラーフィルタを具備する表示装置基板を提供することである。 
 本発明の第3の目的は、安定した電気的実装が可能な表示装置基板を提供することである。
A second object of the present invention is to provide a display device that can respond to high-speed and high-speed touch input, a display device substrate used for the display device, and a display device substrate including a color filter.
A third object of the present invention is to provide a display device substrate capable of stable electrical mounting.
 上記目的を達成するためにこの発明の第1の観点は、以下のような構成要素を備えている。すなわち、無アルカリガラスである透明基板と、前記透明基板上において、複数の画素間に配置され、第1の導電性金属酸化物層と、前記第1の導電性金属酸化物層上に配置された金属層と、前記金属層上に配置された第2の導電性金属酸化物層と、前記第2の導電性金属酸化物層上に配置された黒色層と、を含む黒色配線と、を備え、前記黒色配線は第1方向に延び、前記第1方向と略直交する第2方向に所定の間隔を置いて複数の前記黒色配線が配置され、前記黒色配線は、前記複数の画素を含む表示領域の外まで延びた端部において前記第2の導電性金属酸化物層が露出した端子部を備えた引回し配線を含み、前記金属層は銅あるいは銅合金で形成され、前記黒色層はカーボンを主たる色材とし、前記第1および第2の導電性金属酸化物層は、酸化インジウムと酸化亜鉛と酸化錫との混合酸化物で形成され、前記第1の導電性金属酸化物層、前記金属層、前記第2の導電性金属酸化物層、および、前記黒色層は、等しい線幅である、表示装置基板が提供される。 In order to achieve the above object, the first aspect of the present invention comprises the following components. That is, a transparent substrate made of non-alkali glass and the transparent substrate are disposed between a plurality of pixels, and are disposed on the first conductive metal oxide layer and the first conductive metal oxide layer. A black wiring including a metal layer, a second conductive metal oxide layer disposed on the metal layer, and a black layer disposed on the second conductive metal oxide layer. The black wiring extends in a first direction, and a plurality of the black wirings are arranged at a predetermined interval in a second direction substantially orthogonal to the first direction, and the black wiring includes the plurality of pixels. A lead wiring having a terminal portion where the second conductive metal oxide layer is exposed at an end portion extending out of a display area; wherein the metal layer is formed of copper or a copper alloy; Carbon is the main coloring material, and the first and second conductive metal oxidations The layer is formed of a mixed oxide of indium oxide, zinc oxide, and tin oxide, and the first conductive metal oxide layer, the metal layer, the second conductive metal oxide layer, and the black color The layers are provided with a display device substrate having equal line widths.
 また、この発明の第2の観点は以下のような実施態様を備えることを特徴とする。すなわち、無アルカリガラスである透明基板上に複数の画素を備える表示領域に、前記複数の画素を区分し、前記表示領域外に延びた端部に端子部を有する黒色配線を具備した表示装置基板の製造方法であって、無アルカリガラスである透明基板上に第1の導電性金属酸化物層と、銅層あるいは銅合金層からなる金属層と、第2の導電性金属酸化物層を形成する成膜工程と、少なくとも、カーボンとアルカリ可溶なアクリル樹脂を含む黒色感光液を前記第2の導電性金属酸化物層上に塗布し、乾燥させて黒色膜とする塗布工程と、前記黒色配線の第1パターンと、前記第1パターンと光透過率の異なる前記端子部の第2パターンとを具備するハーフトーンマスクを介して露光し、アルカリ現像液を用いて透明基板上の前記黒色膜を選択的に除去するとともに、前記黒色配線のパターンとして厚い黒色膜を残し、前記端子部のパターンとして薄い黒色膜を形成する黒色膜のパターン形成工程と、ウエットエッチングの手法にて、前記第1の導電性金属酸化物層と、前記銅層あるいは銅合金層からなる金属層と、前記第2の導電性金属酸化物層との3層の黒色膜で覆われていない部分を除去する工程と、ドライエッチングの手法にて、前記黒色配線のパターンとして厚い黒色膜の表面の一部を膜厚方向に除去するとともに、前記端子部のパターンとして薄い黒色膜を除去して前記端子部の第2の導電酸化物層の表面を露出させるドライエッチング工程と、を備え、前記透明基板上に第1の導電性金属酸化物層と、銅層あるいは銅合金層からなる金属層と、第2の導電性金属酸化物層と、カーボンを主たる色材とする黒色層とを、この順で、それぞれ等しい線幅にて積層した黒色配線を形成する、表示装置基板の製造方法が提供される。 The second aspect of the present invention is characterized by comprising the following embodiments. That is, a display device substrate including black wiring having a plurality of pixels divided into a display region having a plurality of pixels on a transparent substrate made of alkali-free glass and having a terminal portion at an end extending outside the display region. A first conductive metal oxide layer, a metal layer made of a copper layer or a copper alloy layer, and a second conductive metal oxide layer are formed on a transparent substrate made of alkali-free glass. A film forming step, a black photosensitive solution containing at least carbon and an alkali-soluble acrylic resin is applied onto the second conductive metal oxide layer, and dried to form a black film; The black film on the transparent substrate is exposed through a halftone mask having a first pattern of wiring and a second pattern of the terminal portion having a light transmittance different from that of the first pattern, and an alkali developer is used. Selectively remove In addition, a black film pattern forming step of forming a thin black film as the terminal portion pattern, leaving a thick black film as the black wiring pattern, and a wet etching technique, the first conductive metal oxide A step of removing a portion not covered with a three-layer black film of a physical layer, a metal layer made of the copper layer or copper alloy layer, and the second conductive metal oxide layer, and a dry etching technique Then, a part of the surface of the thick black film as the black wiring pattern is removed in the film thickness direction, and the thin black film is removed as the terminal part pattern to remove the second conductive oxide layer of the terminal part. A first etching metal oxide layer on the transparent substrate, a metal layer made of a copper layer or a copper alloy layer, and a second conductive metal oxide layer. When, And a black layer whose main coloring material Bon, in this order, to form a black wiring laminated at each equal line width, the method of manufacturing the display device substrate is provided.
 また、この発明の第3の観点は以下のような実施態様を備えることを特徴とする。すなわち、無アルカリガラスである透明基板と、前記透明基板上において、複数の画素間に配置され、第1の導電性金属酸化物層と、前記第1の導電性金属酸化物層上に配置された金属層と、前記金属層上に配置された第2の導電性金属酸化物層と、前記第2の導電性金属酸化物層上に配置された黒色層と、を含む黒色配線と、を備え、前記黒色配線は第1方向に延び、前記第1方向と略直交する第2方向に所定の間隔を置いて複数の前記黒色配線が配置され、前記黒色配線は、前記複数の画素を含む表示領域の外まで延びた端部において前記第2の導電性金属酸化物層が露出した端子部を備えた引回し配線を含み、前記金属層は銅あるいは銅合金で形成され、前記黒色層はカーボンを主たる色材とし、前記第1および第2の導電性金属酸化物層は、酸化インジウムと酸化亜鉛と酸化錫との混合酸化物で形成され、前記第1の導電性金属酸化物層、前記金属層、前記第2の導電性金属酸化物層、および、前記黒色層は、略等しい線幅である、表示装置基板を備え、前記表示装置基板と対向して固定されたアレイ基板と、前記表示装置基板と前記アレイ基板との間に配置された液晶層と、を備えた表示装置であって、前記アレイ基板は、平面視において、複数の画素の隣接位置および前記黒色配線と重なる位置に配置されたアクティブ素子と、前記アクティブ素子と電気的に接続した金属配線と、前記黒色配線と交差する方向に延びたタッチ金属配線と、具備した表示装置が提供される。 The third aspect of the present invention is characterized by comprising the following embodiments. That is, a transparent substrate made of non-alkali glass and the transparent substrate are disposed between a plurality of pixels, and are disposed on the first conductive metal oxide layer and the first conductive metal oxide layer. A black wiring including a metal layer, a second conductive metal oxide layer disposed on the metal layer, and a black layer disposed on the second conductive metal oxide layer. The black wiring extends in a first direction, and a plurality of the black wirings are arranged at a predetermined interval in a second direction substantially orthogonal to the first direction, and the black wiring includes the plurality of pixels. A lead wiring having a terminal portion where the second conductive metal oxide layer is exposed at an end portion extending out of a display area; wherein the metal layer is formed of copper or a copper alloy; Carbon is the main coloring material, and the first and second conductive metal oxidations The layer is formed of a mixed oxide of indium oxide, zinc oxide, and tin oxide, and the first conductive metal oxide layer, the metal layer, the second conductive metal oxide layer, and the black color The layer includes a display device substrate having substantially the same line width, an array substrate fixed to face the display device substrate, a liquid crystal layer disposed between the display device substrate and the array substrate, The array substrate includes, in plan view, active elements arranged at positions adjacent to a plurality of pixels and the black lines, and metal lines electrically connected to the active elements. And a touch metal line extending in a direction intersecting with the black line, and a display device provided.
 また、この発明の第4の観点は以下のような実施態様を備えることを特徴とする。すなわち、無アルカリガラスである透明基板と、前記透明基板上において、複数の画素間に配置され、第1の導電性金属酸化物層と、前記第1の導電性金属酸化物層上に配置された金属層と、前記金属層上に配置された第2の導電性金属酸化物層と、前記第2の導電性金属酸化物層上に配置された黒色層と、を含む黒色配線と、を備え、前記黒色配線は第1方向に延び、前記第1方向と略直交する第2方向に所定の間隔を置いて複数の前記黒色配線が配置され、前記黒色配線は、前記複数の画素を含む表示領域の外まで延びた端部において前記第2の導電性金属酸化物層が露出した端子部を備えた引回し配線を含み、前記金属層は銅あるいは銅合金で形成され、前記黒色層はカーボンを主たる色材とし、前記第1および第2の導電性金属酸化物層は、酸化インジウムと酸化亜鉛と酸化錫との混合酸化物で形成され、前記第1の導電性金属酸化物層、前記金属層、前記第2の導電性金属酸化物層、および、前記黒色層は、略等しい線幅であり、少なくとも前記表示領域を覆うように、前記黒色配線上に透明樹脂層を積層した表示装置基板を備え、前記表示装置基板と、アレイ基板とを向かい合うように、液晶層を介して貼り合わせた表示装置であって、前記表示装置基板は、前記透明樹脂層上に、平面視において、前記黒色配線と交差する複数の透明導電膜配線を更に備え、前記アレイ基板は、平面視において、複数の画素の隣接位置および前記黒色配線と重なる位置にアクティブ素子を具備した、表示装置が提供される。 The fourth aspect of the present invention is characterized by comprising the following embodiments. That is, a transparent substrate made of non-alkali glass and the transparent substrate are disposed between a plurality of pixels, and are disposed on the first conductive metal oxide layer and the first conductive metal oxide layer. A black wiring including a metal layer, a second conductive metal oxide layer disposed on the metal layer, and a black layer disposed on the second conductive metal oxide layer. The black wiring extends in a first direction, and a plurality of the black wirings are arranged at a predetermined interval in a second direction substantially orthogonal to the first direction, and the black wiring includes the plurality of pixels. A lead wiring having a terminal portion where the second conductive metal oxide layer is exposed at an end portion extending out of a display area; wherein the metal layer is formed of copper or a copper alloy; Carbon is the main coloring material, and the first and second conductive metal oxidations The layer is formed of a mixed oxide of indium oxide, zinc oxide, and tin oxide, and the first conductive metal oxide layer, the metal layer, the second conductive metal oxide layer, and the black color The layer has a substantially equal line width, and includes a display device substrate in which a transparent resin layer is laminated on the black wiring so as to cover at least the display region, and the display device substrate and the array substrate are opposed to each other. A display device bonded via a liquid crystal layer, wherein the display device substrate further includes a plurality of transparent conductive film wirings intersecting with the black wirings in plan view on the transparent resin layer, and the array substrate Provides a display device that includes active elements at positions adjacent to a plurality of pixels and the black wiring in a plan view.
 本発明によれば、無アルカリガラスである基板と密着性の高い状態で、かつ、視認性の良好なタッチセンシング用配線を具備する表示装置基板を提供することができる。 
 また、本発明によれば、高解像度で、かつ、高速なタッチ入力に応えられる表示装置、およびこれに用いる表示装置基板、カラーフィルタを具備する表示装置基板を提供することができる。 
 また、本発明によれば、安定した電気的実装が可能な表示装置基板を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the display apparatus board | substrate which comprises the board | substrate which is an alkali free glass, and is equipped with the wiring for touch sensing with a favorable visibility is provided.
Further, according to the present invention, it is possible to provide a display device capable of responding to high-speed and high-speed touch input, a display device substrate used therefor, and a display device substrate including a color filter.
In addition, according to the present invention, it is possible to provide a display device substrate capable of stable electrical mounting.
図1は、本発明の一実施形態に関わる表示装置基板の部分断面図である。FIG. 1 is a partial cross-sectional view of a display device substrate according to an embodiment of the present invention. 図2は、本実施形態の表示装置基板の他の例を説明する部分断面図である。FIG. 2 is a partial cross-sectional view for explaining another example of the display device substrate of the present embodiment. 図3は、本発明の一実施形態に関わる表示装置基板の模式平面図であり、赤画素、緑画素、青画素などの画素と、これら画素を区分し、かつ、長辺の方向に配設された黒色配線の一例を示す図である。FIG. 3 is a schematic plan view of a display device substrate according to an embodiment of the present invention, in which pixels such as a red pixel, a green pixel, and a blue pixel are separated from each other and arranged in the long side direction. It is a figure which shows an example of the made black wiring. 図4は、一実施形態の表示装置基板における黒色配線の端子部の一例を説明する模式平面図である。FIG. 4 is a schematic plan view for explaining an example of the terminal portion of the black wiring in the display device substrate according to the embodiment. 図5は、一実施形態の表示装置基板における黒色配線の端子部の部分断面図である。FIG. 5 is a partial cross-sectional view of the terminal portion of the black wiring in the display device substrate according to the embodiment. 図6は、本発明の一実施形態に関わる表示装置の部分断面図である。FIG. 6 is a partial cross-sectional view of a display device according to an embodiment of the present invention. 図7は、図6に示すアレイ基板の平面図であり、タッチ金属配線と遮光パターン位置を示す図である。FIG. 7 is a plan view of the array substrate shown in FIG. 6 and shows the touch metal wiring and the light shielding pattern position. 図8は、図7に示すアレイ基板の線C-C’における断面の一例を示す図である。FIG. 8 is a diagram showing an example of a cross section taken along line C-C ′ of the array substrate shown in FIG. 7. 図9は、図7に示すアレイ基板のタッチ金属配線と、表示装置基板の黒色配線との間に保持される静電容量について説明する断面図である。FIG. 9 is a cross-sectional view illustrating the capacitance held between the touch metal wiring of the array substrate shown in FIG. 7 and the black wiring of the display device substrate. 図10は、本発明の一実施形態に関わる表示装置基板において、黒色配線上にカラーフィルタ層と透明樹脂層を積層した構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of a configuration in which a color filter layer and a transparent resin layer are stacked on a black wiring in a display device substrate according to an embodiment of the present invention. 図11は、図10に示す表示装置基板を具備する、表示装置の部分断面である。FIG. 11 is a partial cross section of a display device including the display device substrate shown in FIG. 図12は、本発明の一実施形態に関わる表示装置基板の部分断面図である。FIG. 12 is a partial cross-sectional view of a display device substrate according to an embodiment of the present invention. 図13は、図12に示した表示装置基板100を具備した表示装置の部分断面図である。FIG. 13 is a partial cross-sectional view of a display device including the display device substrate 100 shown in FIG. 図14は、図13に示す表示装置基板を、観察者方向Vから見た平面図である。FIG. 14 is a plan view of the display device substrate shown in FIG. 図15は、本発明の一実施形態に関わる表示装置基板のそれぞれの製造工程を示す部分断面図である。FIG. 15 is a partial cross-sectional view showing each manufacturing process of the display device substrate according to the embodiment of the present invention. 図16は、本発明の一実施形態に関わる表示装置基板の部分断面図である。FIG. 16 is a partial cross-sectional view of a display device substrate according to an embodiment of the present invention. 図17は、本発明の一実施形態に関わる表示装置基板の部分断面図である。FIG. 17 is a partial cross-sectional view of a display device substrate according to an embodiment of the present invention. 図18は、本発明の一実施形態に関わる表示装置基板のそれぞれの製造工程を示す部分断面図である。FIG. 18 is a partial cross-sectional view showing each manufacturing process of the display device substrate according to the embodiment of the present invention. 図19は、本発明の一実施形態に関わる表示装置基板の他の例を説明するための図である。FIG. 19 is a diagram for explaining another example of the display device substrate according to the embodiment of the present invention. 図20は、図19に示す表示装置基板を具備する、一実施形態の表示装置の部分断面図である。20 is a partial cross-sectional view of a display device according to an embodiment including the display device substrate shown in FIG. 図21は、本発明の一実施形態に関わる表示装置基板の他の例を説明するための図である。FIG. 21 is a diagram for explaining another example of the display device substrate according to the embodiment of the present invention. 図22は、図21に示す表示装置基板を具備する、一実施形態の表示装置の部分断面図である。FIG. 22 is a partial cross-sectional view of a display device according to an embodiment including the display device substrate shown in FIG.
 以下、図面を参照してこの発明に係わる実施形態を説明する。 
 以下に説明する各実施形態では、特徴的な部分について説明し、例えば通常の表示装置の構成要素と差異のない部分については説明を省略する。また、それぞれ実施形態は、本発明の表示装置基板、あるいは、これを具備する液晶表示装置の例として説明するが、本発明の表示装置基板は有機EL表示装置のような他の表示装置に適用可能である。
Embodiments according to the present invention will be described below with reference to the drawings.
In each embodiment described below, characteristic portions will be described, and for example, description of portions that are not different from the components of a normal display device will be omitted. In addition, each embodiment will be described as an example of the display device substrate of the present invention or a liquid crystal display device including the same, but the display device substrate of the present invention is applied to other display devices such as an organic EL display device. Is possible.
 以下、本発明の一実施形態に関わる表示装置基板100を、図面を用いて説明する。なお、以下の全ての図面は、理解のしやすさを優先して各構成要素の厚さや寸法の比率は適宜調整している。 Hereinafter, a display device substrate 100 according to an embodiment of the present invention will be described with reference to the drawings. In all of the following drawings, the thicknesses and dimensional ratios of each component are appropriately adjusted in order to facilitate understanding.
 図1は、本発明の一実施形態に関わる表示装置基板の部分断面図である。 FIG. 1 is a partial cross-sectional view of a display device substrate according to an embodiment of the present invention.
 本実施形態の表示装置基板は、透明基板15と、黒色配線6とを有している。黒色配線6は、第1の導電性金属酸化物層1と、金属層2と、第2の導電性金属酸化物層3と、黒色層4とを有している。 The display device substrate of this embodiment has a transparent substrate 15 and black wiring 6. The black wiring 6 has a first conductive metal oxide layer 1, a metal layer 2, a second conductive metal oxide layer 3, and a black layer 4.
 図1に示すように、透明基板15上に、第1の導電性金属酸化物層1と金属層2と第2の導電性金属酸化物層3と黒色層4で構成される黒色配線6が具備されている。黒色配線6は、例えば、紙面に対して垂直方向のストライプパターンで複数、配設されている。第1の導電性酸化物層1と金属層2と第2の導電性金属酸化物層3と黒色層4は周知のフォトリソグラフィの手法を用いてパターン形成される。黒色配線6を形成する方法については後に詳細に説明する。なお、上記導電性金属酸化物は、混合酸化物、あるいは複合酸化物と記載することがある。 As shown in FIG. 1, a black wiring 6 composed of a first conductive metal oxide layer 1, a metal layer 2, a second conductive metal oxide layer 3, and a black layer 4 is formed on a transparent substrate 15. It is equipped. For example, a plurality of black wirings 6 are arranged in a stripe pattern perpendicular to the paper surface. The first conductive oxide layer 1, the metal layer 2, the second conductive metal oxide layer 3, and the black layer 4 are patterned using a well-known photolithography technique. A method for forming the black wiring 6 will be described later in detail. Note that the conductive metal oxide may be described as a mixed oxide or a composite oxide.
 図2は、本実施形態の表示装置基板の他の例を説明する部分断面図であって、図1に示す表示装置基板に、さらに透明樹脂層9を積層した表示装置基板の部分断面図である。 2 is a partial cross-sectional view for explaining another example of the display device substrate of the present embodiment, and is a partial cross-sectional view of a display device substrate in which a transparent resin layer 9 is further laminated on the display device substrate shown in FIG. is there.
 図2に示す表示装置基板100は、黒色配線6上に透明樹脂層9を積層している。透明樹脂層9は、熱硬化性を有するアクリル樹脂などで形成することができる。透明樹脂層9の膜厚は任意に設定できる。黒色層4や透明樹脂層9は、例えば、屈折率など光学特性が互いに異なる複数の層を積層する構成でも良い。なお、ここでは、後述する表示装置(たとえば図6、図16に示す)の説明の関係で、黒色配線6の形成している膜面の位置を図1と上下逆としている。 The display device substrate 100 shown in FIG. 2 has a transparent resin layer 9 laminated on the black wiring 6. The transparent resin layer 9 can be formed of a thermosetting acrylic resin or the like. The film thickness of the transparent resin layer 9 can be set arbitrarily. The black layer 4 and the transparent resin layer 9 may have a configuration in which a plurality of layers having different optical characteristics such as a refractive index are stacked. Here, the position of the film surface on which the black wiring 6 is formed is upside down with respect to FIG. 1 in relation to the description of a display device described later (for example, shown in FIGS. 6 and 16).
 透明基板15の基材は、熱膨張率の小さい無アルカリガラスである。後述するアレイ基板に用いる透明基板25と同様に、ガラス材質の基板を用いることが望ましい。例えば薄膜トランジスタ(TFT)と呼称されるトランジスタなどのアクティブ素子を形成して、有機EL表示装置や液晶表示装置に用いられるガラス基板が適用できる。本実施形態で透明基板15、25の基材として採用する無アルカリガラスは、表示装置用の基板材料であり、アルカリ成分を実質的に含まないアルミノ珪酸塩ガラスに代表される。無アルカリガラスとは、ナトリウム(Na)やカリウム(K)のようなアルカリ金属あるいはこれらの酸化物がアルカリ元素として1000ppm以下の含有率であることを、アルカリ成分を実質的に含まないと規定する。アルカリ元素の含有率は低いことが好ましい。なお、以下の説明では、液晶駆動用のトランジスタを形成した基板を、アレイ基板と呼ぶ。また、トランジスタを、薄膜トランジスタあるいはアクティブ素子と呼称することがある。 The base material of the transparent substrate 15 is non-alkali glass having a small coefficient of thermal expansion. Similar to the transparent substrate 25 used for the array substrate described later, it is desirable to use a glass substrate. For example, an active element such as a transistor called a thin film transistor (TFT) is formed, and a glass substrate used for an organic EL display device or a liquid crystal display device can be applied. The alkali-free glass employed as the base material of the transparent substrates 15 and 25 in this embodiment is a substrate material for a display device, and is typified by an aluminosilicate glass that does not substantially contain an alkali component. Alkali-free glass defines that an alkali metal such as sodium (Na) or potassium (K) or an oxide thereof has a content of 1000 ppm or less as an alkali element and does not substantially contain an alkali component. . The alkali element content is preferably low. In the following description, a substrate on which a liquid crystal driving transistor is formed is referred to as an array substrate. A transistor may be referred to as a thin film transistor or an active element.
 黒色配線6は、第1の導電性金属酸化物層1の線幅と、金属層2の線幅と、第2の導電性金属酸化物層3の線幅と、カーボンを主たる色材とする黒色層4の線幅とが、それぞれ略等しい線幅であることが望ましい。 The black wiring 6 has a line width of the first conductive metal oxide layer 1, a line width of the metal layer 2, a line width of the second conductive metal oxide layer 3, and carbon as a main coloring material. It is desirable that the line widths of the black layers 4 are approximately equal to each other.
 インジウムを含む第1の導電性金属酸化物層(接着層)1と、銅層あるいは銅合金層からなる金属層2と、黒色層4から構成される黒色配線6の厚みは、合計で1μm以下とすることができる。黒色配線6の厚みは、2μmを超えるとその凹凸が、液晶配向に悪影響を与えるため、1.5μm以下とすることが望ましい。 The total thickness of the first conductive metal oxide layer (adhesive layer) 1 containing indium, the metal layer 2 made of a copper layer or a copper alloy layer, and the black wiring 6 composed of the black layer 4 is 1 μm or less. It can be. If the thickness of the black wiring 6 exceeds 2 μm, the unevenness adversely affects the liquid crystal alignment, so it is desirable that the thickness be 1.5 μm or less.
 本実施形態の技術は、例えば、300ppi(pixel per inch)、さらには、500ppi以上の高精細画素の表示装置を対象としている。本実施形態の表示装置基板を高精細画素の表示装置に採用したときに、黒色配線6に相当するブラックマトリクスの線幅は、1μm以上6μm以下の範囲内の細線でパターン形成する必要がある。たとえば、表示装置基板において、黒色配線の4μmの線幅に対して、±1μm以上のばらつきがあれば、表示品質面でのムラが発生するため、また、画素開口率の低下が生じるため、表示装置の基板として使用することはできない。 The technology of the present embodiment is intended for display devices with high-definition pixels of, for example, 300 ppi (pixel per inch) and 500 ppi or more. When the display device substrate of the present embodiment is employed in a high-definition pixel display device, the line width of the black matrix corresponding to the black wiring 6 needs to be patterned with fine lines in the range of 1 μm to 6 μm. For example, if there is a variation of ± 1 μm or more with respect to the 4 μm line width of the black wiring on the display device substrate, unevenness in display quality occurs, and the pixel aperture ratio decreases. It cannot be used as a substrate for the device.
 また、黒色配線6を構成する第1の導電性金属酸化物層1と、金属層2と、第2の導電性金属酸化物層3と、黒色層4とを、それぞれの製造工程で互いに位置あわせすることも現実的ではない。製造工程で各相を互いに位置合わせした場合、およそ±1.5μm以上のばらつきが生じる可能性がある。したがって、表示装置の画素の開口率に影響を与えないように複数層(複数工程)で同一のパターンを形成するように位置合わせすることは細線形成の観点からかなり困難である。 Further, the first conductive metal oxide layer 1, the metal layer 2, the second conductive metal oxide layer 3, and the black layer 4 constituting the black wiring 6 are positioned in the respective manufacturing steps. It is not realistic to combine them. When the phases are aligned with each other in the manufacturing process, a variation of about ± 1.5 μm or more may occur. Therefore, it is quite difficult from the viewpoint of fine line formation to align so as to form the same pattern in a plurality of layers (a plurality of steps) so as not to affect the aperture ratio of the pixel of the display device.
 本実施形態で言う「等しい線幅」とは、黒色配線6を形成する各層の、線幅の中心位置(配線が延びる方向と略直交する方向における中心位置)及び線幅のそれぞれバラツキが、±0.4μmの範囲内に入ることを意味している。加えて、「等しい線幅」とは、図1や図17に示すように、黒色層4、導電性酸化物層3、金属層2、導電性酸化物層1、黒色層18の断面形状が、垂直方向Z(あるいは厚み方向)にほぼ揃っていることを言う。たとえば、500ppiの高精細画素では、赤(R)緑(G)青(B)の3色での画素ピッチが17μm前後となるが、例えば4μm線幅のブラックマトリクス(遮光層)に、2層の金属のそれぞれ位置合わせ許容差を考慮すると、その線幅はおよそ10μmとなる。この場合、画素開口率は35%程度となり、表示装置として使用することができなくなる。たとえば、ブラックマトリクスの線幅が4±0.4μmである場合には、画素開口率は約60%となる。 In this embodiment, “equal line width” means that each layer forming the black wiring 6 has a center position of the line width (a center position in a direction substantially orthogonal to the direction in which the wiring extends) and a variation in the line width are ± This means that it falls within the range of 0.4 μm. In addition, “equal line width” means that the cross-sectional shapes of the black layer 4, the conductive oxide layer 3, the metal layer 2, the conductive oxide layer 1, and the black layer 18 are as shown in FIGS. In other words, it is substantially aligned in the vertical direction Z (or thickness direction). For example, in a high-definition pixel of 500 ppi, the pixel pitch for three colors of red (R), green (G), and blue (B) is around 17 μm. For example, two layers are formed on a black matrix (light shielding layer) having a line width of 4 μm. Considering the alignment tolerance of each metal, the line width is about 10 μm. In this case, the pixel aperture ratio is about 35% and cannot be used as a display device. For example, when the line width of the black matrix is 4 ± 0.4 μm, the pixel aperture ratio is about 60%.
 図1および図2では、黒色配線6は紙面に対して、垂直な方向Yに長尺であるストライプ形状で配設されている。ただし、ブラックマトリクスを形成する場合には、黒色配線6は、ブラックマトリクスとモアレを発生しない形状にて種々のパターンで形成することができる。 1 and 2, the black wiring 6 is arranged in a stripe shape that is long in the direction Y perpendicular to the paper surface. However, when forming a black matrix, the black wiring 6 can be formed in various patterns in a shape that does not cause moiré with the black matrix.
 表示装置基板の矩形表示領域19内(図3に示す)には、複数の画素開口部が形成される。画素開口部は、ストライプ形状でも良いが、少なくとも2辺が平行である多角形とすることができる。2辺が平行である多角形として、例えば長方形、六角形、V字形状(doglegged shape)などとすることができる。黒色配線6のパターンを、これら多角形画素の周囲の少なくとも一部を囲う額縁形状として、電気的に閉じた形状とすることもできる。これらパターン形状は、平面視において、電気的に閉じたパターンであるか、一部を開放した(外観的に、つながっていない部分を設ける)パターンであるかによって、表示装置周辺の電気的ノイズの拾い方が変わる。あるいは、黒色配線6のパターン形状や面積によって、表示装置周辺の電気的ノイズの拾い方が変わる。 A plurality of pixel openings are formed in the rectangular display area 19 (shown in FIG. 3) of the display device substrate. The pixel opening may have a stripe shape, but may be a polygon having at least two sides parallel to each other. As a polygon whose two sides are parallel, for example, a rectangle, a hexagon, a V-shape (doglegged dog shape), or the like can be used. The pattern of the black wiring 6 may be an electrically closed shape as a frame shape surrounding at least a part of the periphery of these polygonal pixels. Depending on whether the pattern shape is an electrically closed pattern or a partially opened pattern (providing a portion that is not connected in appearance) in plan view, the electric noise around the display device How to pick up changes. Alternatively, how to pick up electrical noise around the display device varies depending on the pattern shape and area of the black wiring 6.
 なお、矩形表示領域19において、画素の開口部は、黒色配線6と、アレイ基板側の金属配線やタッチ金属配線で区分し、平面視、多角形での画素形状を得ることができる。あるいは、後の実施形態で示すように、別途ブラックマトリクス(BM)を設けることもできる。本実施形態では、画素の開口部は少なくとも2辺が平行な多角形であって、黒色配線6は、この2辺の長手方向に画素を区分する略直線状に延びている。このように形成することにより、黒色配線6が拾う電気的ノイズを抑制することができる。 In the rectangular display area 19, the opening of the pixel can be divided into the black wiring 6 and the metal wiring or touch metal wiring on the array substrate side to obtain a pixel shape in a polygonal shape in plan view. Alternatively, as shown in a later embodiment, a black matrix (BM) can be provided separately. In the present embodiment, the opening of the pixel is a polygon having at least two sides parallel to each other, and the black wiring 6 extends in a substantially straight line dividing the pixel in the longitudinal direction of the two sides. By forming in this way, electrical noise picked up by the black wiring 6 can be suppressed.
 以下、黒色配線6の各層1~4および透明樹脂層9の構成例について説明する。 
 (黒色層) 
 黒色層4は、例えば、黒色の色材を分散させた着色樹脂で構成されている。銅の酸化物や銅合金の酸化物では十分な黒の色や低い反射率が得られないが、本実施形態に関わる黒色配線6表面での可視光の反射率は7%以下に抑えられ、かつ、後述する金属層2を挟持する構成であるため、高い遮光性が同時に得られる。 
 また、黒色配線6を、およそ屈折率1.5の透明樹脂層9で覆う構成とすることで、透明樹脂との界面での反射率は、可視光の波長の範囲内で、3%以下の低反射とすることができる。たとえば、透明樹脂との界面での反射率を、光の波長430nm、540nm、620nmでの反射率を含み、可視域400nm以上700nm以下で、0.1%以上3%以下の範囲内の低反射率にすることができる。
Hereinafter, configuration examples of the layers 1 to 4 and the transparent resin layer 9 of the black wiring 6 will be described.
(Black layer)
The black layer 4 is made of, for example, a colored resin in which a black color material is dispersed. Although sufficient black color and low reflectance cannot be obtained with copper oxide or copper alloy oxide, the reflectance of visible light on the surface of the black wiring 6 according to the present embodiment is suppressed to 7% or less, And since it is the structure which clamps the metal layer 2 mentioned later, high light-shielding property is acquired simultaneously.
In addition, by configuring the black wiring 6 with the transparent resin layer 9 having a refractive index of about 1.5, the reflectance at the interface with the transparent resin is 3% or less within the wavelength range of visible light. Low reflection can be achieved. For example, the reflectance at the interface with the transparent resin includes the reflectance at light wavelengths of 430 nm, 540 nm, and 620 nm, and the low reflectance is in the range of 0.1% to 3% in the visible range of 400 nm to 700 nm. Can be rate.
 黒色の色材は、カーボン、カーボンナノチューブあるいは、複数の有機顔料の混合物が適用できる。カーボンを、例えば、色材全体の量に対して51質量%以上の主たる色材として用い、反射色の調整のため、青もしくは赤などの有機顔料を添加して用いることができる。たとえば、出発材料としての感光性の黒色塗布液中のカーボンの濃度を調整する(カーボン濃度を下げる)ことにより黒色層4の再現性を向上できる。 As the black color material, carbon, carbon nanotubes, or a mixture of a plurality of organic pigments can be applied. For example, carbon can be used as a main color material of 51% by mass or more with respect to the total amount of the color material, and an organic pigment such as blue or red can be added to adjust the reflection color. For example, the reproducibility of the black layer 4 can be improved by adjusting the carbon concentration in the photosensitive black coating solution as the starting material (lowering the carbon concentration).
 表示装置用大型露光装置を用いても、黒色配線6の画線幅として、たとえば、1μm以上6μm以下の細線でパターン加工できる。なお、本実施形態では、樹脂や硬化剤と顔料とを含めた全体の固形分に対して、4以上50以下の質量%カーボン濃度の範囲内としている。ここで、カーボン濃度が50質量%を超えるカーボン量としても良いが、全体の固形分に対してカーボン濃度が50質量%を超えると塗膜適性が落ちる傾向にある。また、カーボン濃度が4質量%以下としたときには、十分な黒色を得ることができず、下地の金属層2の反射が大きく視認性を低下させることがあった。以下の実施形態で、黒色層4のカーボン濃度の表記のない場合、このカーボン濃度は、全固形分に対して略40質量%としているものとする。 Even when a large exposure apparatus for a display device is used, the pattern processing can be performed with a fine line of 1 μm or more and 6 μm or less as the line width of the black wiring 6. In the present embodiment, the mass% carbon concentration is in the range of 4 to 50 with respect to the total solid content including the resin, the curing agent, and the pigment. Here, the carbon amount may be a carbon amount exceeding 50% by mass, but if the carbon concentration exceeds 50% by mass with respect to the total solid content, the suitability of the coating film tends to be lowered. Further, when the carbon concentration was 4% by mass or less, a sufficient black color could not be obtained, and the reflection of the underlying metal layer 2 was large and the visibility could be lowered. In the following embodiment, when there is no description of the carbon concentration of the black layer 4, this carbon concentration shall be about 40 mass% with respect to the total solid content.
 黒色層4は、後工程であるフォトリソグラフィでの露光やパターンの位置合わせ(アライメント)を優先して、例えば、透過測定での光学濃度を2以下とすることができる。黒色層4を、カーボン以外に、黒色の色調整として複数の有機顔料の混合物を用いて形成しても良い。黒色層4の反射率は、ガラスや透明樹脂などの基材の屈折率(約1.5)を考慮し、黒色層4とそれら基材との界面の反射率が3%以下となるよう、黒色色材の含有量や種類、用いる樹脂、膜厚を調整することが望ましい。これらの条件の最適化で、屈折率がおよそ1.5であるガラスなどの基材との界面の反射率を、可視光の波長領域内で3%以下の低反射率にすることができる。黒色層4の反射率は、バックライトユニットからの光の再反射防止や観察者の視認性向上を配慮して、3%以下とすることが望ましい。なお、通常、カラーフィルタに用いられるアクリル樹脂、また、液晶材料の屈折率は、おおよそ1.5以上1.7以下の範囲に入るものである。例えば、表示装置のカバーガラス(保護ガラス)と表示装置とを貼り合わせる、おおよそ1.5以上1.7以下の範囲内の屈折率の接着層を、上記の樹脂として用いることもできる。 The black layer 4 can give an optical density of 2 or less, for example, in transmission measurement, giving priority to exposure and pattern alignment (alignment) in photolithography, which is a subsequent process. The black layer 4 may be formed using a mixture of a plurality of organic pigments for black color adjustment in addition to carbon. In consideration of the refractive index of the base material such as glass or transparent resin (about 1.5), the black layer 4 has a reflectance of 3% or less at the interface between the black layer 4 and the base material. It is desirable to adjust the content and type of the black color material, the resin used, and the film thickness. By optimizing these conditions, the reflectance at the interface with a substrate such as glass having a refractive index of approximately 1.5 can be reduced to 3% or less in the visible light wavelength region. The reflectance of the black layer 4 is desirably 3% or less in consideration of preventing re-reflection of light from the backlight unit and improving the visibility of the observer. In general, the refractive index of the acrylic resin used for the color filter and the liquid crystal material is in the range of about 1.5 to 1.7. For example, an adhesive layer having a refractive index in the range of approximately 1.5 to 1.7, which bonds the cover glass (protective glass) of the display device and the display device, can also be used as the resin.
 (金属層) 
 金属層2を形成する金属は、銅あるいは銅合金である。銅の薄膜や銅合金の薄膜を用いる場合、金属層2の膜厚を100nm以上、あるいは150nm以上とすると、金属層2は、可視光をほとんど透過しなくなる。したがって、本実施形態に関わる表示装置基板において、黒色配線6は、金属層2の膜厚が例えば100nm以上300nm以下程度であれば十分な遮光性を得ることができる。
(Metal layer)
The metal forming the metal layer 2 is copper or a copper alloy. When using a copper thin film or a copper alloy thin film, if the thickness of the metal layer 2 is 100 nm or more, or 150 nm or more, the metal layer 2 hardly transmits visible light. Therefore, in the display device substrate according to the present embodiment, the black wiring 6 can obtain sufficient light shielding properties if the thickness of the metal layer 2 is, for example, about 100 nm to 300 nm.
 金属層2は、アルカリ耐性のある銅や銅合金などの金属層が適用できる。アルカリ耐性が必要な場合は、例えば、後工程でアルカリ現像液を用いる現像工程がある場合である。具体的には、例えば黒色配線6を形成した後に、カラーフィルタや、ブラックマトリクスなどを形成する場合などである。後述する黒色配線6に端子部を形成する場合にも、アルカリ耐性が必要性である。 The metal layer 2 can be a metal layer such as copper or copper alloy having alkali resistance. The case where alkali resistance is required is, for example, the case where there is a development step using an alkali developer in the subsequent step. Specifically, for example, a color filter or a black matrix is formed after the black wiring 6 is formed. Alkali resistance is also necessary when a terminal portion is formed on the black wiring 6 described later.
 なお、クロムはアルカリ耐性があり黒色配線6の金属層2として適用可能である。しかし、クロムは抵抗値が大きく、製造工程で生じるクロムイオンが有害であるため実際の生産への適用は困難である。銅や銅合金は、低い抵抗値であるという観点で金属層2として望ましい。銅や銅合金は、導電性が良好であるので、金属層2として望ましい。 Note that chromium has alkali resistance and can be applied as the metal layer 2 of the black wiring 6. However, chromium has a large resistance value, and chromium ions generated in the manufacturing process are harmful, so that it is difficult to apply to actual production. Copper or a copper alloy is desirable as the metal layer 2 from the viewpoint of a low resistance value. Copper or copper alloy is desirable as the metal layer 2 because of its good conductivity.
 金属層2は、銅合金として3at%以下の合金元素を含有させることができる。合金元素は、例えば、マグネシウム、カルシウム、チタン、モリブデン、インジウム、錫、亜鉛、アルミニウム、ベリリウム、ニッケルから1以上の元素を選択できる。銅の合金化により、銅の拡散を抑え、銅合金として耐熱性などを改善できる。金属層2に3at%を超える合金元素を添加すると、黒色配線6の抵抗値が大きくなる。黒色配線6の抵抗値が高くなると、タッチ検出に関わる駆動電圧の波形なまりや信号遅延を生じる可能性があるため、好ましくない。銅は、マイグレーションを起こしやすく、信頼性の面での不十分さがあるが、上記合金元素を0.1at%以上加えることで銅合金として信頼性を向上できる。合金元素の含有割合は、銅に対し、0.1at%以上3at%以下とすることができる。 The metal layer 2 can contain an alloy element of 3 at% or less as a copper alloy. As the alloy element, for example, one or more elements can be selected from magnesium, calcium, titanium, molybdenum, indium, tin, zinc, aluminum, beryllium, and nickel. Copper alloying can suppress copper diffusion and improve heat resistance as a copper alloy. When an alloy element exceeding 3 at% is added to the metal layer 2, the resistance value of the black wiring 6 increases. An increase in the resistance value of the black wiring 6 is not preferable because there is a possibility that a drive voltage waveform rounding or a signal delay related to touch detection may occur. Copper tends to cause migration and is insufficient in terms of reliability, but the reliability can be improved as a copper alloy by adding the above alloy element in an amount of 0.1 at% or more. The content ratio of the alloy element can be 0.1 at% or more and 3 at% or less with respect to copper.
 (導電性金属酸化物層) 
 第1の導電性金属酸化物層1は、例えば、インジウムを含む導電性の金属酸化物で形成される。第2の導電性金属酸化物層3は、例えば、酸化インジウムと酸化亜鉛と酸化錫との混合酸化物(複合酸化物)である。
(Conductive metal oxide layer)
For example, the first conductive metal oxide layer 1 is formed of a conductive metal oxide containing indium. The second conductive metal oxide layer 3 is, for example, a mixed oxide (composite oxide) of indium oxide, zinc oxide, and tin oxide.
 第1の導電性金属酸化物層1および第2の導電性金属酸化物層3は、主に透明基板15と黒色配線6との密着性の向上と、金属層2と黒色層4との密着性の向上と、金属層2に擦り傷ができたときの断線防止の機能を有する。 The first conductive metal oxide layer 1 and the second conductive metal oxide layer 3 mainly improve the adhesion between the transparent substrate 15 and the black wiring 6 and the adhesion between the metal layer 2 and the black layer 4. And a function of preventing disconnection when the metal layer 2 is scratched.
 銅、銅合金、あるいはこれらの酸化物、窒化物は、ガラスなど透明基板や黒色色材の分散体である黒色層4との密着性が、一般的に悪い。そのため、導電性金属酸化物層を設けない場合、金属層2と透明基板15との界面、および、金属層2と黒色層4との界面で剥がれを生じる可能性がある。銅あるいは銅合金をタッチセンシング用途の金属配線(金属層を細い配線としてパターン形成したもの)として用いる場合、第1の導電酸化物層1を下地層として形成しない表示装置基板は、剥がれによる不良以外にも金属配線に静電破壊による不良が生じる場合があり、実用的でない。この静電破壊は、カラーフィルタ積層などの後工程や、アレイ基板との貼り合わせや、洗浄工程などで配線パターンに静電気が蓄積され、静電破壊によりパターン欠け、断線などを生じる現象である。 Copper, copper alloys, or oxides and nitrides thereof are generally poor in adhesion to a transparent substrate such as glass or a black layer 4 which is a dispersion of a black color material. Therefore, when the conductive metal oxide layer is not provided, peeling may occur at the interface between the metal layer 2 and the transparent substrate 15 and the interface between the metal layer 2 and the black layer 4. When copper or copper alloy is used as a metal wiring for touch sensing (patterned with a metal layer as a thin wiring), the display device substrate that does not form the first conductive oxide layer 1 as an underlayer is not defective due to peeling. In addition, defects due to electrostatic breakdown may occur in metal wiring, which is not practical. This electrostatic breakdown is a phenomenon in which static electricity is accumulated in the wiring pattern in a post-process such as color filter lamination, bonding to an array substrate, or a cleaning process, and pattern breakage or disconnection occurs due to electrostatic breakdown.
 加えて、銅、銅合金、あるいはこれらの酸化物、窒化物は、通常、電気的な接続が不安定で信頼性に欠ける。たとえば、銅表面に経時的に形成される酸化銅や硫化銅は絶縁体に近く、電気的な実装に問題を生じる。黒色配線6の端部に設ける端子部5(図3に示す)において、電気的実装のやり直しや取り扱い時の不具合で金属層2に擦り傷が生じやすい。インジウムを含む導電性の金属酸化物は硬いセラミックでもあるため、金属層に傷が生じても導電性金属酸化物層は断線することが少ない。 In addition, copper, copper alloys, or their oxides and nitrides usually have unstable electrical connections and lack reliability. For example, copper oxide or copper sulfide formed over time on a copper surface is close to an insulator and causes a problem in electrical mounting. In the terminal portion 5 (shown in FIG. 3) provided at the end portion of the black wiring 6, the metal layer 2 is likely to be scratched due to re-implementation of electrical mounting and troubles during handling. Since the conductive metal oxide containing indium is also a hard ceramic, the conductive metal oxide layer is rarely disconnected even if the metal layer is damaged.
 また、第2の導電性金属酸化物層3は、上述のような銅や銅合金の表面の経時変化(銅酸化物の形成)による電気的コンタクト不良の改善の機能を有する。端子部5の表面は、例えば、酸化インジウムと酸化亜鉛と酸化錫との混合酸化物で形成した第2の導電性金属酸化物層3が露出することとなるため、端子部5のコンタクト抵抗が低くなり、電気的実装に適したものとなる。 Further, the second conductive metal oxide layer 3 has a function of improving the electrical contact failure due to the change with time (formation of copper oxide) of the surface of copper or copper alloy as described above. For example, since the second conductive metal oxide layer 3 formed of a mixed oxide of indium oxide, zinc oxide, and tin oxide is exposed on the surface of the terminal portion 5, the contact resistance of the terminal portion 5 is reduced. It becomes low and becomes suitable for electrical mounting.
 また、第2の導電性金属酸化物層3を形成する混合酸化物中の酸化インジウムを、インジウムと錫と亜鉛の原子比で0.8以上とすることで、配線としての抵抗値を下げることが可能である。なお、インジウムの原子比は、0.9以上とすることがさらに好ましい。 Moreover, the resistance value as wiring is lowered by setting the indium oxide in the mixed oxide forming the second conductive metal oxide layer 3 to 0.8 or more in atomic ratio of indium, tin, and zinc. Is possible. The atomic ratio of indium is more preferably 0.9 or more.
 また、第1の導電性金属酸化物層1と第2の導電性金属酸化物層3の各々は、酸化物としてやや酸素不足の、光吸収を持たせた膜として成膜することができる。 
 さらに、第1の導電性金属酸化物層1と第2の導電性金属酸化物層3を形成する混合酸化物中の酸化亜鉛と酸化錫の量は、インジウムの原子比で0.01以上0.08未満の範囲内であることが好ましい。
In addition, each of the first conductive metal oxide layer 1 and the second conductive metal oxide layer 3 can be formed as an oxide film that is slightly deficient in oxygen and has light absorption.
Furthermore, the amount of zinc oxide and tin oxide in the mixed oxide forming the first conductive metal oxide layer 1 and the second conductive metal oxide layer 3 is 0.01 or more and 0 in terms of the atomic ratio of indium. It is preferably within a range of less than 0.08.
 錫の混合酸化物中の量は、原子比で0.01を超える量を添加しないと導電性金属酸化物層の低い抵抗が得られない。錫の混合酸化物中の量は、原子比で0.08を超えると導電性金属酸化物層にエッチングが入りにくくなり、結果として、後述する製造方法において金属層2のパターン形成が困難となる可能性がある。 If the amount of tin in the mixed oxide does not exceed 0.01 by atomic ratio, the low resistance of the conductive metal oxide layer cannot be obtained. When the amount of tin in the mixed oxide exceeds 0.08 in atomic ratio, it becomes difficult to etch the conductive metal oxide layer, and as a result, pattern formation of the metal layer 2 becomes difficult in the manufacturing method described later. there is a possibility.
 さらに、亜鉛の混合酸化物中の量とは、インジウムの原子比で0.02以上0.2未満の範囲内であることが好ましい。亜鉛の原子比が0.2を超え、かつ、錫の原子比が0.01未満となると、黒色配線としての「等しい線幅」でのパターン形成が難しくなる。酸化亜鉛の量が増えると、ウエットエッチング工程で、この混合酸化物で形成された層が選択的にエッチングされ、金属層の線幅が相対的に大きくなってしまう。逆に、酸化錫の量が増えると、ウエットエッチング工程で、金属層が選択的にエッチングされ、導電性金属酸化物層の線幅が相対的に大きくなってしまう。酸化錫の量が多すぎると導電性金属酸化物層にエッチングが入らなくなってしまう。亜鉛の混合酸化物中の量は、インジウムの原子比で0.02以上0.13以下の範囲内であることが好ましい。 Furthermore, the amount of zinc in the mixed oxide is preferably in the range of 0.02 or more and less than 0.2 in terms of the atomic ratio of indium. If the atomic ratio of zinc exceeds 0.2 and the atomic ratio of tin is less than 0.01, pattern formation with “equal line width” as black wiring becomes difficult. When the amount of zinc oxide increases, the layer formed of the mixed oxide is selectively etched in the wet etching process, and the line width of the metal layer becomes relatively large. Conversely, when the amount of tin oxide increases, the metal layer is selectively etched in the wet etching process, and the line width of the conductive metal oxide layer becomes relatively large. If the amount of tin oxide is too large, the conductive metal oxide layer will not be etched. The amount of zinc in the mixed oxide is preferably in the range of 0.02 to 0.13 in terms of indium atomic ratio.
 すなわち、混合酸化物に含まれるインジウム(In)と亜鉛(Zn)と錫(Sn)のIn/(In+Zn+Sn)で示される原子比は、0.8より大きく、かつ、Zn/Snの原子比は1より大きいことが、「等しい線幅」での黒色配線を再現できる条件となる。 That is, the atomic ratio represented by In / (In + Zn + Sn) of indium (In), zinc (Zn), and tin (Sn) contained in the mixed oxide is greater than 0.8, and the atomic ratio of Zn / Sn is When the value is larger than 1, it is a condition for reproducing black wiring with “equal line width”.
 次に、本実施形態に関わる表示装置基板を含む表示装置について図面を参照して説明する。 
 図3は、本実施形態に関わる表示装置基板の模式平面図であり、赤画素R、緑画素G、青画素Bなどの画素と、これら画素を区分し、かつ、長辺の方向に配設された黒色配線6の一例を示す図である。
Next, a display device including a display device substrate according to the present embodiment will be described with reference to the drawings.
FIG. 3 is a schematic plan view of the display device substrate according to the present embodiment, and the pixels such as the red pixel R, the green pixel G, and the blue pixel B are separated from each other and arranged in the long side direction. It is a figure which shows an example of the performed black wiring.
 図3では、後に説明する図6の表示装置を観察者方向Vから見た矩形表示領域19の平面図である。なお、本実施態様の表示装置基板はカラーフィルタ層を含まない構成である。図3に示すR、G、Bの記号は、画素位置を示すために表記したものであって、カラーフィルタを省略した構成であっても構わない。 FIG. 3 is a plan view of the rectangular display region 19 when the display device of FIG. 6 to be described later is viewed from the observer direction V. Note that the display device substrate of this embodiment has a configuration that does not include a color filter layer. The symbols R, G, and B shown in FIG. 3 are shown to indicate pixel positions, and the color filter may be omitted.
 本実施形態の表示装置基板を用いた表示装置、あるいは液晶表示装置は、映像表示とタッチセンシングとのそれぞれの制御を行う制御部(図示せず)を備える。以下の記載において、タッチセンシングは、たとえば、第1方向に延びた複数本数の配線の並びと、これらの配線と所定あるいは一定の間隔おいて(絶縁して)配置された、第1方向と直交した第2方向に延びた複数本数の配線の並びとの、それぞれの配線の交差部に生じる静電容量の変化で、指などポインタのタッチの有無を判断する静電容量方式を前提としている。 The display device using the display device substrate or the liquid crystal display device according to the present embodiment includes a control unit (not shown) that controls each of the video display and touch sensing. In the following description, touch sensing is, for example, an array of a plurality of wirings extending in the first direction, and orthogonal to the first direction, which is arranged (insulated) with these wirings at predetermined or constant intervals. It is premised on a capacitance method for determining whether or not a pointer such as a finger is touched by a change in capacitance generated at the intersection of each of the plurality of wirings extending in the second direction.
 図3では、矩形表示領域19およびその周囲の領域における、黒色配線6および金属配線42(以下、この金属配線を、タッチセンシングを行う際に用いる一方の電極とする意味で、タッチ金属配線42と呼ぶ)の配置位置を示している。黒色配線6とタッチ金属配線42とに囲まれた領域は画素開口領域となる。図3において、例えば、黒色配線6を第1方向(Y方向)に延線する配線とし、これと直交するタッチ金属配線42を第2方向(X方向)の配線とする。図3に示すように、平面視、黒色配線6は複数本数の配線の並びを一定の間隔にて、第2方向(X方向)に持つ。タッチ金属配線42は、平面視、複数本数の配線の並びを第1方向(Y方向)に持つ。 In FIG. 3, the black wiring 6 and the metal wiring 42 (hereinafter, this metal wiring is used as one electrode used when touch sensing is performed in the rectangular display area 19 and the surrounding area. The arrangement position is called. A region surrounded by the black wiring 6 and the touch metal wiring 42 is a pixel opening region. In FIG. 3, for example, the black wiring 6 is a wiring extending in the first direction (Y direction), and the touch metal wiring 42 orthogonal to the black wiring 6 is a wiring in the second direction (X direction). As shown in FIG. 3, in a plan view, the black wiring 6 has a plurality of wirings arranged in a second direction (X direction) at regular intervals. The touch metal wiring 42 has a plurality of wirings arranged in the first direction (Y direction) in plan view.
 黒色配線6は、Y方向に互いに略平行に延びて配設される。黒色配線6は、矩形表示領域19の一端から他端の外まで延びた引回し配線(第1配線)6aと、矩形表示領域19の一端から他端まで延びたダミー配線(第2配線)6bとを有している。本実施形態では、引回し配線6aの間に2本のダミー配線6bが設けられている。ダミー配線6bは、電気的に浮いたフローティングパターンとする。引回し配線6aの間引き数(引回し配線6a間のダミー配線6bの本数)や、引回し配線6aの本数とダミー配線6bの本数との比は、表示装置の使用目的等に合わせて適宜設定すべきである。 
 なお、タッチセンシングの駆動電圧を印加する駆動電極の役割は、黒色配線6とタッチ金属配線42のいずれでも良く、その役割を入れ替えることができる。
The black wirings 6 are disposed so as to extend substantially parallel to each other in the Y direction. The black wiring 6 includes a lead wiring (first wiring) 6 a extending from one end of the rectangular display area 19 to the outside of the other end, and a dummy wiring (second wiring) 6 b extending from one end of the rectangular display area 19 to the other end. And have. In the present embodiment, two dummy wirings 6b are provided between the routing wirings 6a. The dummy wiring 6b has a floating pattern that is electrically floating. The number of thinning out wiring lines 6a (the number of dummy wirings 6b between the wiring lines 6a) and the ratio of the number of wiring wirings 6a to the number of dummy wirings 6b are appropriately set according to the purpose of use of the display device, etc. Should.
Note that the role of the drive electrode for applying the touch sensing drive voltage may be either the black wiring 6 or the touch metal wiring 42, and the roles thereof can be interchanged.
 タッチ金属配線42は、平面視において、黒色配線6と直交して配置している。タッチ金属配線42は、後述するアレイ基板に設けられ、矩形表示領域19の一端から他端の外まで延びている。 The touch metal wiring 42 is arranged orthogonal to the black wiring 6 in plan view. The touch metal wiring 42 is provided on an array substrate, which will be described later, and extends from one end of the rectangular display area 19 to the outside of the other end.
 なお、表示装置基板にカラーフィルタ層を設ける場合には、例えば、Y方向に同じ色を表示する画素が並び、X方向に互いに異なる色を表示する画素が隣り合うように、カラーフィルタ層が形成される。 When the color filter layer is provided on the display device substrate, for example, the color filter layer is formed so that pixels displaying the same color in the Y direction are arranged and pixels displaying different colors in the X direction are adjacent to each other. Is done.
 また、表示装置基板にカラーフィルタ層を設けない場合であっても、例えば、バックライトユニットに赤色発光、緑色発光、青色発光のLEDを具備させ、それぞれの時分割発光と、これに同期させる液晶層の駆動とでカラー表示を行うことができる。時分割発光のバックライトユニットを用いる場合には、図3に示すように、例えば、Y方向に同じ色を表示する画素が並び、X方向に互いに異なる色を表示する画素が隣り合うように構成される。 Further, even when the display device substrate is not provided with a color filter layer, for example, the backlight unit includes LEDs for red light emission, green light emission, and blue light emission, and each time-division light emission and a liquid crystal synchronized with the light emission. Color display can be performed by driving the layers. In the case of using a time-division backlight unit, as shown in FIG. 3, for example, pixels that display the same color in the Y direction are arranged, and pixels that display different colors in the X direction are adjacent to each other. Is done.
 図4は、一実施形態の表示装置基板における黒色配線の端子部の一例を説明する模式平面図である。 
 図5は、一実施形態の表示装置基板における黒色配線の端子部の線A-A´における部分断面図である。 
 矩形表示領域19とその周辺の一部は、透明樹脂層9で覆われている。黒色配線6が矩形表示領域19の外まで延びた端には端子部5が形成されている。
FIG. 4 is a schematic plan view for explaining an example of the terminal portion of the black wiring in the display device substrate according to the embodiment.
FIG. 5 is a partial cross-sectional view taken along line AA ′ of the terminal portion of the black wiring in the display device substrate according to the embodiment.
The rectangular display area 19 and a part of the periphery thereof are covered with the transparent resin layer 9. A terminal portion 5 is formed at an end where the black wiring 6 extends outside the rectangular display area 19.
 図5に示すように、端子部5は、表面に第2の導電性金属酸化物層3が露出し、電気的なコンタクトや実装がとれる形になっている。第2の導電性金属酸化物層3の表面は、銅や銅合金表面と異なり、新たな酸化物を形成して電気的コンタクト不良をもたらさない。銅や銅合金の表面には経時的に酸化物や硫化物が形成されやすい。混合酸化物で形成された第2の導電性金属酸化層は経時的にも安定し、電気的な実装でのオーミックコンタクトを可能とする。 As shown in FIG. 5, the terminal portion 5 has a shape in which the second conductive metal oxide layer 3 is exposed on the surface so that electrical contact and mounting can be taken. Unlike the surface of the copper or copper alloy, the surface of the second conductive metal oxide layer 3 forms a new oxide and does not cause an electrical contact failure. Oxides and sulfides are likely to form over time on the surface of copper and copper alloys. The second conductive metal oxide layer formed of the mixed oxide is stable over time and enables ohmic contact in electrical mounting.
 なお、端子部5の平面視の形状は図4に限定するものでない。たとえば、透明樹脂層9で端子部5上を覆った後に、ドライエッチングなどの手段で端子部5上部を円形状、矩形状に取り除いて端子部5表面の第2の導電性金属酸化物層3を露出させてもよい。この場合、表示装置の基板同士を貼り合わせるシール部において、表示装置基板からアレイ基板への導通の転移(トランスファ)を、シール部の厚み方向に行うことも可能である。この導通の転移は、異方性導電膜、微小な金属球、あるいは金属膜で覆った樹脂球などから選ばれる導体をシール部に配置することで可能となる。 In addition, the shape of the planar view of the terminal portion 5 is not limited to FIG. For example, after covering the terminal portion 5 with the transparent resin layer 9, the upper portion of the terminal portion 5 is removed in a circular or rectangular shape by means such as dry etching, and the second conductive metal oxide layer 3 on the surface of the terminal portion 5 is removed. May be exposed. In this case, it is also possible to perform transfer (transfer) from the display device substrate to the array substrate in the thickness direction of the seal portion in the seal portion that bonds the substrates of the display device. This conduction transition is made possible by disposing a conductor selected from an anisotropic conductive film, a minute metal sphere, or a resin sphere covered with a metal film on the seal portion.
 図6は、本発明の一実施形態に関わる表示装置の部分断面図である。 
 図6は、図7のアレイ基板35と表示装置基板100とを、液晶層30を介して対向した状態で貼り合わせたときの、D-D´方向の断面図でもある。なお、D-D´断面では、タッチ金属配線42は厳密には図示されないが、図6では、紙面奥にタッチ金属配線42があるものとして、破線でその位置を示した。また、図6では、偏光板、位相差版、配向膜、バックライトユニット、トランジスタであるアクティブ素子につながるゲート線やソース線などの図示を省略している。
FIG. 6 is a partial cross-sectional view of a display device according to an embodiment of the present invention.
6 is also a cross-sectional view in the DD ′ direction when the array substrate 35 and the display device substrate 100 of FIG. 7 are bonded together with the liquid crystal layer 30 therebetween. In the DD ′ cross section, the touch metal wiring 42 is not illustrated exactly, but in FIG. 6, the touch metal wiring 42 is assumed to be behind the paper surface, and the position is indicated by a broken line. In FIG. 6, illustration of a polarizing plate, a retardation plate, an alignment film, a backlight unit, a gate line and a source line connected to an active element which is a transistor is omitted.
 本実施形態の表示装置は、表示装置基板100と、アレイ基板35と、液晶層30とを備えている。本実施形態の表示装置は、例えば、FFSモードの液晶表示装置である。 
 アレイ基板35は、透明基板25と、絶縁層21、22、23と、共通電極32と、画素電極36と、タッチ金属配線42と、を有している。
The display device of this embodiment includes a display device substrate 100, an array substrate 35, and a liquid crystal layer 30. The display device of this embodiment is, for example, an FFS mode liquid crystal display device.
The array substrate 35 includes a transparent substrate 25, insulating layers 21, 22, and 23, a common electrode 32, a pixel electrode 36, and a touch metal wiring 42.
 透明基板25は、例えば熱膨張率の小さい無アルカリガラスを用いることが望ましい。 The transparent substrate 25 is preferably made of, for example, alkali-free glass having a small coefficient of thermal expansion.
 透明基板25の基材は、例えば熱膨張率の小さい無アルカリガラスであって、ガラス材質の基板を用いることが望ましい。本実施形態で透明基板15、25の基材として採用する無アルカリガラスは、表示装置用の基板材料であり、アルカリ成分を実質的に含まないアルミノ珪酸塩ガラスに代表される。 The base material of the transparent substrate 25 is, for example, non-alkali glass having a small coefficient of thermal expansion, and it is desirable to use a glass substrate. The alkali-free glass employed as the base material of the transparent substrates 15 and 25 in this embodiment is a substrate material for a display device, and is typified by an aluminosilicate glass that does not substantially contain an alkali component.
 透明基板25上には、絶縁層21、22を介して、共通電極32が配置されている。共通電極32は、例えば、Y方向に延びたストライプ状に配置され、互いに電気的に接続している。共通電極32は、例えばITOやIZO等の透明導電材料により形成されている。 A common electrode 32 is disposed on the transparent substrate 25 via insulating layers 21 and 22. For example, the common electrodes 32 are arranged in a stripe shape extending in the Y direction and are electrically connected to each other. The common electrode 32 is formed of a transparent conductive material such as ITO or IZO.
 共通電極32上には、絶縁層23を介して画素電極36およびタッチ金属配線42が配置されている。画素電極6は、例えばITOやIZO等の透明導電材料により形成されている。 On the common electrode 32, the pixel electrode 36 and the touch metal wiring 42 are arranged via the insulating layer 23. The pixel electrode 6 is formed of a transparent conductive material such as ITO or IZO, for example.
 液晶層30の液晶は、アレイ基板35の基板面と略水平に配向され液晶分子を含む。液晶の駆動は、画素電極36と共通電極32との間に生じるフリンジ電界で駆動する。この液晶駆動方式は、FFS(fringe field switching)、あるいはIPS(in plane switching)と呼ばれている。液晶層30を駆動するための駆動電圧は、アレイ基板35の基板面に略平行な方向の電界、いわゆる横電界を形成する。 The liquid crystal of the liquid crystal layer 30 is aligned substantially horizontally with the substrate surface of the array substrate 35 and includes liquid crystal molecules. The liquid crystal is driven by a fringe electric field generated between the pixel electrode 36 and the common electrode 32. This liquid crystal driving method is called FFS (fringe field switching) or IPS (in plane switching). The drive voltage for driving the liquid crystal layer 30 forms an electric field in a direction substantially parallel to the substrate surface of the array substrate 35, a so-called lateral electric field.
 図7は、図6に示すアレイ基板25の平面図であり、タッチ金属配線42と遮光パターン位置を示す図である。図7は、図6に図示したアレイ基板35の、観察者方向Vからの平面視である。 FIG. 7 is a plan view of the array substrate 25 shown in FIG. 6, showing the touch metal wiring 42 and the light shielding pattern position. FIG. 7 is a plan view of the array substrate 35 shown in FIG.
 図7では、タッチ金属配線42と遮光パターン43との位置を示している。アレイ基板35は、画素電極36およびタッチ金属配線42と同じ層に配置された遮光パターン43と、ソース線40と、ゲート線41と、トランジスタ(アクティブ素子)46と、を更に備えている。 FIG. 7 shows the positions of the touch metal wiring 42 and the light shielding pattern 43. The array substrate 35 further includes a light shielding pattern 43 arranged in the same layer as the pixel electrode 36 and the touch metal wiring 42, a source line 40, a gate line 41, and a transistor (active element) 46.
 画素電極36は、各画素に配置されている。画素電極36は、例えば、Y方向に延びる複数の帯状パターンを備えている。換言すると、画素電極36は、共通電極32と対向する位置に設けられたスリットを有している。複数の帯状パターンは、遮光パターン43により互いに電気的に接続している。 The pixel electrode 36 is disposed in each pixel. The pixel electrode 36 includes, for example, a plurality of strip patterns extending in the Y direction. In other words, the pixel electrode 36 has a slit provided at a position facing the common electrode 32. The plurality of strip patterns are electrically connected to each other by the light shielding pattern 43.
 ソース線40は、画素電極36間においてY方向に延びて配置している。ソース線40は、図示しない駆動回路と電気的に接続している。ソース線40には、映像信号が印加される。駆動回路は図示しない前記制御部に含まれ、この制御部は、映像表示に関わる映像信号とゲート信号と、後述するタッチセンシングに関わる駆動信号とタッチ検出信号を制御する。 The source line 40 extends between the pixel electrodes 36 in the Y direction. The source line 40 is electrically connected to a drive circuit (not shown). A video signal is applied to the source line 40. The drive circuit is included in the control unit (not shown), and the control unit controls a video signal and a gate signal related to video display, and a drive signal and a touch detection signal related to touch sensing described later.
 ゲート線41は、画素電極36間においてX方向に延びて配置している。ゲート線41は、図示しない駆動回路と電気的に接続している。ゲート線41には、後述するトランジスタのゲート信号が印加される。 The gate line 41 extends between the pixel electrodes 36 in the X direction. The gate line 41 is electrically connected to a drive circuit (not shown). A gate signal of a transistor to be described later is applied to the gate line 41.
 タッチ金属配線42は、絶縁層21、22、23を介して、ゲート線41の上層に配置している。タッチ金属配線42は、ゲート線41及びソース線40とは電気的に独立している。すなわち、タッチ金属配線42は、画素電極36間においてX方向に延びて配置している。タッチ金属配線は、図示しない駆動回路と電気的に接続している。タッチセンシングを行う際には、タッチ金属配線42には、例えば一定電圧が印加される、あるいは、所定のパルス電圧が印加される。 The touch metal wiring 42 is disposed on the upper layer of the gate line 41 through the insulating layers 21, 22, and 23. The touch metal wiring 42 is electrically independent from the gate line 41 and the source line 40. That is, the touch metal wiring 42 is disposed so as to extend in the X direction between the pixel electrodes 36. The touch metal wiring is electrically connected to a drive circuit (not shown). When touch sensing is performed, for example, a constant voltage or a predetermined pulse voltage is applied to the touch metal wiring 42.
 なお、アレイ基板35のゲート線41あるいはソース線40などの金属配線と、タッチ金属配線42とは同じ金属材料、構成で、同じ工程で形成されても良い。この場合、同工程で形成される金属配線とタッチ金属配線42とは電気的に独立している。 Note that the metal wiring such as the gate line 41 or the source line 40 of the array substrate 35 and the touch metal wiring 42 may be formed of the same metal material and configuration in the same process. In this case, the metal wiring formed in the same process and the touch metal wiring 42 are electrically independent.
 黒色配線6とタッチ金属配線42(あるいはゲート線41)は、表示のコントラスト向上の目的で表示装置に多用されるブラックマトリクスの代替として用いることができる。いずれも、金属の配線で形成できるので、図示されていないバックライトユニットからの光の遮光性は高い。 The black wiring 6 and the touch metal wiring 42 (or the gate line 41) can be used as an alternative to a black matrix frequently used in display devices for the purpose of improving display contrast. Since both can be formed of metal wiring, the light shielding property from a backlight unit (not shown) is high.
 遮光パターン43は、各画素に配置されている。遮光パターン43は、タッチ金属配線42と同じ層に配置し、同一の工程で形成される。遮光パターン43は、複数積層した金属層であっても良く、遮光パターン43上にさらに反射防止膜や光吸収層を積層しても良い。 The light shielding pattern 43 is arranged in each pixel. The light shielding pattern 43 is disposed in the same layer as the touch metal wiring 42 and is formed in the same process. The light shielding pattern 43 may be a metal layer that is stacked in plural, or an antireflection film or a light absorption layer may be further laminated on the light shielding pattern 43.
 遮光パターン43は、後述するアクティブ素子のチャネル層49上に形成され、チャネル層49への光の入射を防いでいる。このことにより、トランジスタ46の誤動作を防ぐことができる。 The light shielding pattern 43 is formed on a channel layer 49 of an active element to be described later, and prevents light from entering the channel layer 49. Thus, malfunction of the transistor 46 can be prevented.
 図8は、図7に示すアレイ基板の線C-C´における断面の一例を示す図である。 
 図8は、本実施形態の表示装置のアクティブ素子として、酸化物半導体(In-Ga-Zn-O系の混合酸化物)で形成されたチャネル層49を具備するトランジスタ46の構成を示している。トランジスタ46は、薄膜トランジスタである。このトランジスタ46に電気的に連携される金属配線(ゲート線41及びソース線40)、さらにゲート線41上に複数層の絶縁層21、22、23を介し、かつ、ゲート線と平行に走るタッチ金属配線42などを示している。
FIG. 8 is a diagram showing an example of a cross section taken along line CC ′ of the array substrate shown in FIG.
FIG. 8 shows a configuration of a transistor 46 including a channel layer 49 formed of an oxide semiconductor (In—Ga—Zn—O-based mixed oxide) as an active element of the display device of this embodiment. . The transistor 46 is a thin film transistor. A metal wiring (gate line 41 and source line 40) that is electrically linked to the transistor 46, and a touch that runs parallel to the gate line via a plurality of insulating layers 21, 22, and 23 on the gate line 41. The metal wiring 42 etc. are shown.
 なお、図8はアレイ基板35に含まれる絶縁層の層数を限定するものでない。また、図示したトランジスタ46はボトムゲート構造であるが、本実施形態の表示装置に採用するアクティブ素子は、ボトムゲート構造のトランジスタに限定されるものではない。 Note that FIG. 8 does not limit the number of insulating layers included in the array substrate 35. Although the illustrated transistor 46 has a bottom gate structure, the active element employed in the display device of this embodiment is not limited to the bottom gate transistor.
 トランジスタ46は、ゲート電極GEと、ソース電極SEと、ドレイン電極DEと、チャネル層49とを備えている。 
 ゲート電極GEは、透明基板25上に形成されている。ゲート電極GEは、ゲート線41と同じ層に配置され、対応するゲート線41と電気的に接続している(あるいは一体に形成されている)。ゲート電極GEは、絶縁層21に覆われている。 
 ソース電極SEは、絶縁層21上のチャネル層49上に配置している。ソース電極SEは、ソース線40と同じ層に配置され、対応するソース線40と電気的に接続している(あるいは一体に形成されている)。ソース電極SEは、絶縁層22に覆われている。 
 ドレイン電極DEは、絶縁層21上のチャネル層49上に配置している。ドレイン電極DEは、ソース線40およびソース電極SEと同じ層に配置され、絶縁層22、23を貫通するコンタクトホール47を介して、画素電極36と電気的に接続している。
The transistor 46 includes a gate electrode GE, a source electrode SE, a drain electrode DE, and a channel layer 49.
The gate electrode GE is formed on the transparent substrate 25. The gate electrode GE is disposed in the same layer as the gate line 41, and is electrically connected to the corresponding gate line 41 (or formed integrally). The gate electrode GE is covered with the insulating layer 21.
The source electrode SE is disposed on the channel layer 49 on the insulating layer 21. The source electrode SE is disposed in the same layer as the source line 40 and is electrically connected to (or integrally formed with) the corresponding source line 40. The source electrode SE is covered with the insulating layer 22.
The drain electrode DE is disposed on the channel layer 49 on the insulating layer 21. The drain electrode DE is disposed in the same layer as the source line 40 and the source electrode SE, and is electrically connected to the pixel electrode 36 through a contact hole 47 that penetrates the insulating layers 22 and 23.
 チャネル層49は、絶縁層21上において、ゲート電極GEと対向する位置に配置している。チャネル層49は、ポリシリコンなどシリコン系半導体、あるいは酸化物半導体で形成することができる。 The channel layer 49 is disposed on the insulating layer 21 at a position facing the gate electrode GE. The channel layer 49 can be formed of a silicon-based semiconductor such as polysilicon or an oxide semiconductor.
 トランジスタ46は、チャネル層49が、IGZOなどと呼称される、ガリウム、インジウム、亜鉛、錫、ゲルマニウム、マグネシウム、アルミニウムのうちの2種以上の金属酸化物を含む酸化物半導体であることが好ましい。このようなトランジスタ46はメモリー性が高い(リーク電流が少ない)ため、液晶駆動電圧印加後の画素容量を保持しやすい。このため、表示装置の保持容量線(あるいは画素毎に具備される保持容量)を省いた構成とすることができる。 In the transistor 46, the channel layer 49 is preferably an oxide semiconductor including two or more metal oxides of gallium, indium, zinc, tin, germanium, magnesium, and aluminum, which are called IGZO or the like. Such a transistor 46 has high memory characteristics (leakage current is small), and therefore it is easy to maintain the pixel capacitance after application of the liquid crystal driving voltage. Therefore, the display device can have a configuration in which the storage capacitor line (or the storage capacitor provided for each pixel) is omitted.
 例えば、後述するドット反転駆動の場合に、メモリー性の良好なIGZOをチャネル層49に用いたトランジスタ(アクティブ素子)を採用すると、透明電極パターンを一定の電圧(定電位)とするときの、定電圧駆動に必要な保持容量(ストーレッジキャパシタ)を省くことも可能である。IGZOをチャネル層とするトランジスタは、シリコン半導体を用いたトランジスタと異なり、リーク電流が極めて小さいので、例えば先行技術文献の特許文献4に記載あるラッチ部を含む転送回路を省くことができ、単純な配線構造とすることができる。また、IGZOなど酸化物半導体をチャネル層として用いたトランジスタを具備するアレイ基板を用いた液晶表示装置はトランジスタのリーク電流が小さいため、液晶駆動電圧印加後の電圧を保持でき、その透過率を維持できる。 For example, in the case of dot inversion driving, which will be described later, if a transistor (active element) using IGZO with good memory characteristics for the channel layer 49 is employed, a constant voltage (constant potential) when the transparent electrode pattern is set to a constant voltage (constant potential) is used. It is also possible to omit a storage capacitor (storage capacitor) necessary for voltage driving. Unlike a transistor using a silicon semiconductor, a transistor using IGZO as a channel layer has a very small leakage current. Therefore, for example, a transfer circuit including a latch unit described in Patent Document 4 of the prior art document can be omitted, and a simple A wiring structure can be obtained. In addition, a liquid crystal display device using an array substrate including a transistor using an oxide semiconductor such as IGZO as a channel layer has a small leakage current of the transistor, so that the voltage after applying the liquid crystal driving voltage can be maintained and the transmittance can be maintained. it can.
 IGZOなど酸化物半導体をチャネル層49に用いる場合、トランジスタ46は電子移動度が高く、例えば2msec(ミリ秒)以下の短時間で必要な映像信号に対応する駆動電圧を画素電極36に印加することができる。例えば、倍速駆動(1秒間の表示コマ数が120フレームである場合)の1フレームは約8.3msecであり、例えば、6msecをタッチセンシングに割り当てることができる。 When an oxide semiconductor such as IGZO is used for the channel layer 49, the transistor 46 has high electron mobility, and a driving voltage corresponding to a required video signal is applied to the pixel electrode 36 in a short time, for example, 2 msec (milliseconds) or less. Can do. For example, one frame of double speed driving (when the number of display frames per second is 120 frames) is about 8.3 msec, and for example, 6 msec can be assigned to touch sensing.
 透明電極パターンである駆動電極が、定電位であるときには、液晶駆動とタッチ電極駆動とを時分割駆動しなくてもよい。液晶の駆動周波数とタッチ金属配線の駆動周波数とは、異ならせることができる。例えばIGZOなど酸化物半導体をチャネル層49に用いたトランジスタ46では液晶駆動電圧印加後、透過率保持(あるいは電圧保持)のためポリシリコン半導体のトランジスタと異なり透過率保持のための映像のリフレッシュ(再度の映像信号の書き込み)が必要ない。従って、IGZOなど酸化物半導体を採用した表示装置は、低消費電力駆動が可能となる。 When the drive electrode that is the transparent electrode pattern is at a constant potential, the liquid crystal drive and the touch electrode drive may not be time-division driven. The driving frequency of the liquid crystal and the driving frequency of the touch metal wiring can be made different. For example, in the transistor 46 using an oxide semiconductor such as IGZO for the channel layer 49, after the liquid crystal driving voltage is applied, the image refresh for maintaining the transmittance (again, again for maintaining the transmittance (or voltage holding) unlike the polysilicon semiconductor transistor). Video signal writing) is not required. Therefore, a display device using an oxide semiconductor such as IGZO can be driven with low power consumption.
 IGZOなど酸化物半導体は、電気的な耐圧が高いので、高めの電圧で液晶を高速駆動でき、3D表示が可能な3次元映像表示に有力である。IGZOなど酸化物半導体をチャネル層49に用いる薄膜トランジスタ46は、上述のようにメモリー性が高いため、たとえば、液晶駆動周波数を0.1Hz以上30Hz以下程度の低周波数としてもフリッカー(表示のちらつき)を生じにくいメリットがある。IGZOをチャネル層とするトランジスタ46を用い、低周波でのドット反転駆動と、かつ、これと異なる周波数でのタッチ駆動を併用することで、低消費電力で、高画質の映像表示と高精度のタッチセンシングをともに得ることができる。 Since an oxide semiconductor such as IGZO has a high electrical withstand voltage, the liquid crystal can be driven at a high speed with a high voltage, and is excellent for 3D display capable of 3D display. Since the thin film transistor 46 using an oxide semiconductor such as IGZO for the channel layer 49 has high memory properties as described above, flicker (display flickering) occurs even when the liquid crystal driving frequency is set to a low frequency of about 0.1 Hz to about 30 Hz. There is merit that is hard to occur. By using the transistor 46 with IGZO as the channel layer and using dot inversion driving at a low frequency and touch driving at a frequency different from this, low power consumption, high-quality video display and high accuracy are achieved. Both touch sensing can be obtained.
 また、酸化物半導体をチャネル層49に用いるトランジスタ46は、前述のようにリーク電流が少ないため、画素電極36に印加した駆動電圧を長い時間保持できる。アクティブ素子のソース線40やゲート線41(および保持容量線)などをアルミニウム配線より配線抵抗の小さい銅配線で形成し、さらに、アクティブ素子として短時間で駆動できるIGZOを用いることで、タッチセンシングの走査を行うための期間を十分設けることが可能となる。すなわち、IGZOなどの酸化物半導体をアクティブ素子に適用することで液晶などの駆動時間を短くでき、表示画面全体の映像信号処理の中で、タッチセンシングに適用する時間に十分な余裕ができる。このことにより、発生する静電容量の変化を高精度で検出できる。 Further, since the transistor 46 using an oxide semiconductor for the channel layer 49 has a small leakage current as described above, the driving voltage applied to the pixel electrode 36 can be held for a long time. The source line 40 and the gate line 41 (and the storage capacitor line) of the active element are formed of a copper wiring having a wiring resistance smaller than that of the aluminum wiring, and further, the IGZO that can be driven in a short time as the active element is used. A sufficient period for scanning can be provided. That is, by applying an oxide semiconductor such as IGZO to the active element, the driving time of the liquid crystal or the like can be shortened, and a sufficient time can be provided for the time applied to touch sensing in the video signal processing of the entire display screen. This makes it possible to detect a change in the generated capacitance with high accuracy.
 さらに、チャネル層49をIGZOなど酸化物半導体とすることで、ドット反転駆動やカラム反転駆動でのカップリングノイズの影響をほぼ解消できる。これは、酸化物半導体を用いたアクティブ素子は、映像信号に対応する電圧を極めて短い時間(例えば、2msec)で画素電極36に印加することができ、また、その映像信号印加後の画素電圧を保持するメモリー性が高く、その保持期間に新たなノイズ発生はなく、タッチセンシングへの影響を軽減できるためである。 Furthermore, by using an oxide semiconductor such as IGZO for the channel layer 49, it is possible to substantially eliminate the influence of coupling noise in dot inversion driving and column inversion driving. This is because an active element using an oxide semiconductor can apply a voltage corresponding to a video signal to the pixel electrode 36 in a very short time (for example, 2 msec), and the pixel voltage after the video signal is applied. This is because the memory property is high and no new noise is generated during the retention period, and the influence on touch sensing can be reduced.
 画素電極36は、コンタクトホール47を介して、ドレイン電極DEと電気的に接続されている。画素電極36は、タッチ金属配線42および遮光パターン43と同じ層に配置している。本実施形態では、画素電極36と遮光パターン43とは一体に形成されている。換言すると、画素電極36のチャネル層49の上層に位置する一部が遮光パターン43である。 The pixel electrode 36 is electrically connected to the drain electrode DE through the contact hole 47. The pixel electrode 36 is disposed in the same layer as the touch metal wiring 42 and the light shielding pattern 43. In the present embodiment, the pixel electrode 36 and the light shielding pattern 43 are integrally formed. In other words, a part of the pixel electrode 36 located above the channel layer 49 is the light shielding pattern 43.
 図9は、アレイ基板35のタッチ金属配線42と、表示装置基板100の黒色配線6との間に保持される静電容量C1について説明する断面図である。 
 平面視において、重なる位置にあるタッチ金属配線42とゲート線41とは、図9では、紙面に対し垂直方向(X方向)に延線され、互いに平行に走っている。なお、黒色配線6は、実際は紙面の奥に位置し、断面図として図示されないものであるが、説明のため破線で示し、静電容量C1が形成されることを模式的に示している。
FIG. 9 is a cross-sectional view illustrating the capacitance C <b> 1 held between the touch metal wiring 42 of the array substrate 35 and the black wiring 6 of the display device substrate 100.
In plan view, the touch metal wiring 42 and the gate line 41 at the overlapping positions are extended in a direction perpendicular to the paper surface (X direction) in FIG. 9 and run parallel to each other. The black wiring 6 is actually located in the back of the drawing and is not shown as a cross-sectional view. However, for the sake of explanation, the black wiring 6 is shown by a broken line and schematically shows that the capacitance C1 is formed.
 図6や図7に示す表示装置の構成では、共通電極32の液晶駆動と、タッチセンシングでのタッチ金属配線42の駆動は時分割駆動でも良く、あるいは、時分割駆動せずにタッチ金属配線42の駆動を液晶駆動と異なる周波数で駆動しても良い。タッチ金属配線42は、駆動電極あるいは検出電極として用いることができる。 In the configuration of the display device shown in FIGS. 6 and 7, the liquid crystal driving of the common electrode 32 and the touch metal wiring 42 in touch sensing may be time-division driving, or the touch metal wiring 42 is not time-division driven. May be driven at a frequency different from that of the liquid crystal drive. The touch metal wiring 42 can be used as a drive electrode or a detection electrode.
 タッチ検出に関わる静電容量C1は、黒色配線6と、この黒色配線6と平面視において直交するタッチ金属配線42との間で形成さる。この静電容量C1の変化により指などのポインタの表示画面への近接やタッチ位置を検出することができる。 The electrostatic capacitance C1 related to touch detection is formed between the black wiring 6 and the touch metal wiring 42 orthogonal to the black wiring 6 in plan view. The proximity or touch position of a pointer such as a finger to the display screen can be detected by the change in the capacitance C1.
 黒色配線6とタッチ金属配線42は、図3に示すように略直交するとともに、それぞれ複数本数配設されている。しかしながら、全ての黒色配線6およびタッチ金属配線42が、駆動、あるいは、検出のためにタッチセングコントローラー(図示せず)と連携されなくとも良い。タッチセンシングコントローラーは、図示しない前記制御部に含まれる。 The black wiring 6 and the touch metal wiring 42 are substantially orthogonal as shown in FIG. However, all the black wirings 6 and the touch metal wirings 42 do not have to be linked with a touch sensor controller (not shown) for driving or detection. The touch sensing controller is included in the control unit (not shown).
 例えば、図3において説明したように、黒色配線6はダミー配線6bを備えていても良く、黒色配線6およびタッチ金属配線42の駆動、あるいは、検出は、3本おき、9本おき、18本おきなど、所定本数間引いて行われても構わない。間引き本数の多い方が、タッチセンシング走査時間を短くでき、高速なタッチ検出が容易となる。 For example, as described in FIG. 3, the black wiring 6 may be provided with a dummy wiring 6b, and the driving or detection of the black wiring 6 and the touch metal wiring 42 is performed every third, every nine, or eighteen. It may be performed by thinning a predetermined number such as every other. When the number of thinning-outs is large, the touch sensing scanning time can be shortened, and high-speed touch detection becomes easy.
 次に、上記本実施形態の表示装置基板および表示装置における黒色配線6が担いうる役目について説明する。 
 上述のように黒色配線6は、第1の導電性金属酸化物層1と金属層2と第2の導電性金属酸化物層3と黒色層4とを積層した4層構成の導電性配線である。本実施形態および以下に説明する実施形態において、黒色配線6は、静電容量方式のタッチセンシングでのタッチ電極として用いることができる。タッチ電極とは、タッチセンシングに用いる駆動電極および検出電極の総称である。なお、本発明の記載において、駆動電極、検出電極をそれぞれ駆動配線、検出配線、あるいは黒色配線、タッチ金属配線や透明導電膜配線と記載することがある。
Next, the roles that the black wiring 6 in the display device substrate and display device of the present embodiment can play will be described.
As described above, the black wiring 6 is a conductive wiring having a four-layer structure in which the first conductive metal oxide layer 1, the metal layer 2, the second conductive metal oxide layer 3, and the black layer 4 are laminated. is there. In the present embodiment and the embodiments described below, the black wiring 6 can be used as a touch electrode in capacitive touch sensing. The touch electrode is a general term for drive electrodes and detection electrodes used for touch sensing. In the description of the present invention, the drive electrode and the detection electrode may be referred to as drive wiring, detection wiring, black wiring, touch metal wiring, and transparent conductive film wiring, respectively.
 タッチ電極は、たとえば、平面視において複数の検出電極を第1の方向(例えば方向X)に並べて配設し、積層方向(方向Z)にある絶縁層を介して、複数の駆動電極を第2の方向(例えばY方向)に並べて配設した構成をとることができる。駆動電極には、たとえば、1KHz以上100KHz以下の周波数で交流パルス信号が印加される。通常、この交流パルス信号の印加によって、検出電極には一定の出力波形が維持される。指などポインタの接触や近接があると、その部位の検出電極の出力波形に変化が現れ、タッチの有無が判断される。指などポインタの表示面までの距離は、ポインタの近接から接触するまでの時間(通常、数百μsec以上数msec以下)や、その時間内にカウントされる出力パルス数などで測定できる。 In the touch electrode, for example, a plurality of detection electrodes are arranged in a first direction (for example, the direction X) in a plan view, and the plurality of drive electrodes are connected to the second through an insulating layer in the stacking direction (direction Z). It is possible to adopt a configuration in which they are arranged side by side in the direction (for example, the Y direction). For example, an AC pulse signal is applied to the drive electrode at a frequency of 1 KHz to 100 KHz. Normally, a constant output waveform is maintained on the detection electrode by the application of the AC pulse signal. When there is contact or proximity of a pointer such as a finger, a change appears in the output waveform of the detection electrode at that part, and the presence or absence of a touch is determined. The distance to the display surface of a pointer such as a finger can be measured by the time from the proximity of the pointer to contact (usually several hundred μsec or more and several msec or less), the number of output pulses counted within that time, and the like.
 黒色配線6は、上述の駆動電極、あるいは、検出電極として用いることができる。黒色配線6の対となるタッチ電極として、透明樹脂層9などの絶縁層を介して黒色配線6が延びる方向(例えばY方向)に対して略直交するタッチ金属配線42(あるいは透明導電膜配線)を設けることができる。タッチ金属配線42は、黒色配線6の対となるタッチ電極であり、アレイ基板側に配設される。透明導電膜配線は、黒色配線6の対となるタッチ電極であり、表示基板側に配設される。タッチ金属配線42(あるいは透明導電膜配線)を設ける構成では、これら配線を駆動電極、あるいは、検出電極として用いることができる。後述する第3の実施形態において、黒色配線6が延びた方向に対して略直交して延びた透明導電膜配線を具備する構成を具体的に説明する。 The black wiring 6 can be used as the above-described drive electrode or detection electrode. The touch metal wiring 42 (or transparent conductive film wiring) that is substantially orthogonal to the direction (for example, the Y direction) in which the black wiring 6 extends through an insulating layer such as the transparent resin layer 9 as a touch electrode to be paired with the black wiring 6. Can be provided. The touch metal wiring 42 is a touch electrode that is a pair of the black wiring 6, and is disposed on the array substrate side. The transparent conductive film wiring is a touch electrode that is a pair of the black wiring 6, and is disposed on the display substrate side. In the configuration in which the touch metal wiring 42 (or the transparent conductive film wiring) is provided, these wirings can be used as drive electrodes or detection electrodes. In a third embodiment to be described later, a configuration including a transparent conductive film wiring extending substantially orthogonal to the direction in which the black wiring 6 extends will be specifically described.
 黒色配線6を構成する黒色層4と金属層2の線幅もしくはパターン形状が、同一の場合、黒色層4をレジストパターンとして用い、インジウムを含む第2の導電性金属酸化物層3、金属層2および第1の導電性金属酸化物層1を合わせてウエットエッチングし、黒色層4と線幅が同一の金属層2のパターンを得ることができる。このように、黒色層4と金属層2との線幅もしくはパターン形状が同一である黒色配線6を、簡易な工程でカラーフィルタ基板を製造できる。なお、上記の工程により、黒色配線6を構成する第1の導電性金属酸化物層1と金属層2と第2の導電性金属酸化物層3と黒色層4の線幅は等しくすることができる。 When the line width or pattern shape of the black layer 4 and the metal layer 2 constituting the black wiring 6 is the same, the black layer 4 is used as a resist pattern, the second conductive metal oxide layer 3 containing indium, the metal layer 2 and the first conductive metal oxide layer 1 are wet-etched together to obtain a pattern of the metal layer 2 having the same line width as the black layer 4. Thus, the color filter substrate can be manufactured by a simple process using the black wiring 6 having the same line width or pattern shape between the black layer 4 and the metal layer 2. Note that the line widths of the first conductive metal oxide layer 1, the metal layer 2, the second conductive metal oxide layer 3, and the black layer 4 constituting the black wiring 6 can be made equal by the above process. it can.
 黒色配線6は、黒色層4で金属層2を覆う、可視光反射の少ない構成であるため、液晶表示装置としたときに、表示装置のバックライトユニットからの光を、金属層2で反射しない。このため、アレイ基板35側から入射したバックライトの光が、トランジスタ46のチャネル層49に再入射することを防止し、トランジスタ46の誤動作を防止できる。 Since the black wiring 6 is configured to cover the metal layer 2 with the black layer 4 and has less visible light reflection, the metal layer 2 does not reflect light from the backlight unit of the display device when the liquid crystal display device is formed. . For this reason, it is possible to prevent the backlight light incident from the array substrate 35 side from reentering the channel layer 49 of the transistor 46 and to prevent the malfunction of the transistor 46.
 上記のように、本実施形態によれば、低抵抗でアルカリ耐性のある黒色配線6であって、無アルカリガラスである基板と密着性の高い状態、かつ、バックライトなど表示装置の光源からの光の再反射を低減するタッチセンシング用配線を具備する表示装置基板を提供することができる。すなわち、無アルカリガラスである基板と密着性の高い状態で、かつ、視認性の良好なタッチセンシング用配線を具備する表示装置基板を提供することができる。また、本実施形態によれば、高解像度で、かつ、高速なタッチ入力に応えられる表示装置、およびこれに用いる表示装置基板を提供することができる。また、本実施形態によれば、安定した電気的実装が可能な表示装置基板を提供することができる。 As described above, according to the present embodiment, the black wiring 6 has low resistance and alkali resistance, is in a state of high adhesion to a substrate that is non-alkali glass, and from a light source of a display device such as a backlight. A display device substrate including a touch sensing wiring that reduces re-reflection of light can be provided. That is, it is possible to provide a display device substrate including a touch sensing wiring that has high adhesion to a substrate that is non-alkali glass and that has good visibility. Further, according to the present embodiment, it is possible to provide a display device that can respond to high-resolution and high-speed touch input, and a display device substrate used therefor. Further, according to the present embodiment, it is possible to provide a display device substrate capable of stable electrical mounting.
 次に、第2の実施形態の表示装置基板および表示装置について図面を参照して説明する。 
 なお、以下の説明において、上述の実施形態と同様の構成については、同一の符号を付して説明を省略する。
Next, a display device substrate and a display device according to a second embodiment will be described with reference to the drawings.
In the following description, the same components as those in the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.
 図10は、本実施形態に関わる表示装置基板において、黒色配線6上にカラーフィルタ層と透明樹脂層9を積層した構成の一例を示す図である。 
 図11は、図10に示す表示装置基板を具備する、表示装置の部分断面である。なお、図11では、表示装置の偏光板、位相差版、配向膜、バックライトユニット、アクティブ素子であるトランジスタにつながるゲート線やソース線などの図示を省略している。
FIG. 10 is a diagram illustrating an example of a configuration in which a color filter layer and a transparent resin layer 9 are stacked on the black wiring 6 in the display device substrate according to the present embodiment.
FIG. 11 is a partial cross section of a display device including the display device substrate shown in FIG. Note that in FIG. 11, illustration of a polarizing plate, a retardation plate, an alignment film, a backlight unit, a gate line, a source line, and the like connected to a transistor which is an active element is omitted.
 第2の実施形態は、上述の実施意形態の表示装置基板において、更にカラーフィルタ層(赤画素R、緑画素G、青画素B)を積層した構成に関わり、液晶層30や液晶駆動に関わる技術は、第1の実施形態と同様である。 The second embodiment relates to a configuration in which color filter layers (red pixel R, green pixel G, and blue pixel B) are further stacked in the display device substrate of the above-described embodiment, and is related to the liquid crystal layer 30 and the liquid crystal drive. The technology is the same as in the first embodiment.
 本実施形態の表示装置を観察者方向Vから見た平面図は、図3と同様である。極細線の黒色配線6と、カラーフィルタ層(赤画素R、緑画素G、青画素B)を隙間なく、かつ、平坦に形成する手段は、たとえば、WO14/115367号公報の、熱リフローを併用する着色層形成技術を適用できる。 The plan view of the display device of this embodiment viewed from the viewer direction V is the same as FIG. Means for forming the ultra-thin black wiring 6 and the color filter layer (red pixel R, green pixel G, blue pixel B) flat and without gaps are, for example, combined with thermal reflow disclosed in WO14 / 115367. It is possible to apply a colored layer forming technique.
 本実施形態では、表示装置基板100は、黒色配線6上に配置されたカラーフィルタ層(赤画素R、緑画素G、青画素B)を更に備えている。カラーフィルタ層は、赤画素Rに対応して赤色の主波長の光を透過するように着色された樹脂からなる赤色の着色層と、緑画素Gに対応して緑色の主波長の光を透過するように着色された樹脂からなる緑色の着色層と、青画素Bに対応して青色の主波長の光を透過するように着色された樹脂からなる青色の着色層とを備えている。 In the present embodiment, the display device substrate 100 further includes color filter layers (red pixels R, green pixels G, and blue pixels B) disposed on the black wiring 6. The color filter layer transmits a red colored layer made of a resin colored so as to transmit red main wavelength light corresponding to the red pixel R, and transmits a green main wavelength light corresponding to the green pixel G. A green colored layer made of a resin colored as described above and a blue colored layer made of a resin colored so as to transmit light having a blue main wavelength corresponding to the blue pixel B are provided.
 赤画素R、緑画素G、青画素Bのそれぞれを形成する赤色の着色層、緑色の着色層、青色の着色層などの着色層は、たとえば、有機顔料を感光性の透明樹脂に分散させ、フォトリソグラフィの手法で形成する。カラーフィルタ層には、赤色の着色層、緑色の着色層、青色の着色層の着色層以外に、淡色層、補色層、白層(透明層)などの他の色加えても良い。 The colored layers such as the red colored layer, the green colored layer, and the blue colored layer that form each of the red pixel R, the green pixel G, and the blue pixel B include, for example, dispersing an organic pigment in a photosensitive transparent resin, It is formed by a photolithography technique. In addition to the red colored layer, the green colored layer, and the blue colored layer, other colors such as a light color layer, a complementary color layer, and a white layer (transparent layer) may be added to the color filter layer.
 本実施形態の表示装置基板100では、Y方向に延びた黒色配線6がX方向に並んだストライプパターン形状で形成されるため、赤画素R、緑画素G、青画素Bのそれぞれも、同じ色でY方向に連続したパターンをX方向に複数並べたストライプパターン形状とすることができる。赤画素R、緑画素G、青画素Bをストライプパターンで形成すると、黒色配線6とタッチ金属配線42(あるいはゲート線41)とで、平面視において直交する格子状のブラックマトリクスを形成できる。 In the display device substrate 100 of the present embodiment, since the black wiring 6 extending in the Y direction is formed in a stripe pattern shape arranged in the X direction, each of the red pixel R, the green pixel G, and the blue pixel B has the same color. Thus, a stripe pattern shape in which a plurality of patterns continuous in the Y direction are arranged in the X direction can be obtained. When the red pixel R, the green pixel G, and the blue pixel B are formed in a stripe pattern, the black wiring 6 and the touch metal wiring 42 (or the gate line 41) can form a grid-like black matrix that is orthogonal in a plan view.
 上記の表示装置基板100とアレイ基板35とを貼り合わせる際には、黒色配線6と、タッチ金属配線42(あるいはゲート線41)とのそれぞれがストライプパターンであるので高精度の位置合わせ(アライメント)が不必要となり、表示装置の収率改善に寄与できる。 
 カラーフィルタ層上には、透明樹脂層9が積層している。
When the display device substrate 100 and the array substrate 35 are bonded together, the black wiring 6 and the touch metal wiring 42 (or the gate line 41) each have a stripe pattern, so that the alignment (alignment) is performed with high accuracy. Is unnecessary and can contribute to the improvement of the yield of the display device.
A transparent resin layer 9 is laminated on the color filter layer.
 図10および図11において、黒色配線6は、紙面に対し垂直方向(Y方向)に延線され、互いに略平行に配置している。なお、タッチ金属配線42は、紙面の奥に位置するため本来図示されないが、説明のため破線で示し、静電容量C2が形成されることを模式的に示している。本実施形態の表示装置においても、上述の実施形態と同様に、黒色配線6とタッチ金属配線42とを駆動して、これらの間に生じる静電容量C2の変化を検出することにより、指先やペン等と表示装置の画面との距離や接触を検出することができる。 10 and 11, the black wiring 6 is extended in a direction perpendicular to the paper surface (Y direction) and arranged substantially parallel to each other. Note that the touch metal wiring 42 is not illustrated because it is located at the back of the page, but for the sake of explanation, it is indicated by a broken line and schematically shows that the capacitance C2 is formed. Also in the display device of the present embodiment, as in the above-described embodiment, the black wiring 6 and the touch metal wiring 42 are driven, and the change of the capacitance C2 generated between them is detected, The distance and contact between the pen or the like and the screen of the display device can be detected.
 平面視において、Y方向に平行に配設される黒色配線6は、タッチ金属配線42と直交している。タッチ金属配線42は、絶縁層21、22、23を介して、ゲート線41上に形成され、ゲート線41及びソース線40とは電気的に独立している。 In the plan view, the black wiring 6 arranged in parallel to the Y direction is orthogonal to the touch metal wiring 42. The touch metal wiring 42 is formed on the gate line 41 via the insulating layers 21, 22, and 23, and is electrically independent from the gate line 41 and the source line 40.
 黒色配線6とタッチ金属配線42(あるいはゲート線41)とは、表示のコントラスト向上の目的で表示装置に多用されるブラックマトリクスの代替として用いることができる。いずれも、金属の配線で形成できるので、図示されていないバックライトユニットからの光の遮光性は高い。 The black wiring 6 and the touch metal wiring 42 (or the gate line 41) can be used as an alternative to a black matrix frequently used in display devices for the purpose of improving display contrast. Since both can be formed of metal wiring, the light shielding property from a backlight unit (not shown) is high.
 上記のように、本実施形態の表示装置基板および表示装置によれば、上述の実施形態と同様の効果を得ることができる。すなわち、本実施形態によれば、低抵抗でアルカリ耐性のある黒色配線6であって、無アルカリガラスである基板と密着性の高い状態、かつ、バックライトなど表示装置の光源からの光の再反射を低減するタッチセンシング用配線を具備する表示装置基板を提供することができる。すなわち、無アルカリガラスである基板と密着性の高い状態で、かつ、視認性の良好なタッチセンシング用配線を具備する表示装置基板を提供することができる。また、本実施形態によれば、高解像度で、かつ、高速なタッチ入力に応えられる表示装置、およびこれに用いる表示装置基板を提供することができる。また、本実施形態によれば、安定した電気的実装が可能な表示装置基板を提供することができる。 As described above, according to the display device substrate and the display device of the present embodiment, the same effects as those of the above-described embodiment can be obtained. That is, according to the present embodiment, the black wiring 6 having low resistance and alkali resistance, in a state of high adhesion to a substrate made of alkali-free glass, and re-lighting from a light source of a display device such as a backlight. A display device substrate including a touch sensing wiring that reduces reflection can be provided. That is, it is possible to provide a display device substrate including a touch sensing wiring that has high adhesion to a substrate that is non-alkali glass and that has good visibility. Further, according to the present embodiment, it is possible to provide a display device that can respond to high-resolution and high-speed touch input, and a display device substrate used therefor. Further, according to the present embodiment, it is possible to provide a display device substrate capable of stable electrical mounting.
 次に、第3の実施形態の表示装置基板および表示装置について図面を参照して説明する。 
 図12は、第3の実施形態に関わる表示装置基板200の部分断面図である。
Next, a display device substrate and a display device according to a third embodiment will be described with reference to the drawings.
FIG. 12 is a partial cross-sectional view of a display device substrate 200 according to the third embodiment.
 図13は、図12に示した表示装置基板200を具備した液晶表示装置の部分断面図である。なお、図13において、表示装置の偏光板、位相差版、配向膜、バックライトユニット、トランジスタであるアクティブ素子につながるゲート線やソース線などの図示は省略している。 FIG. 13 is a partial cross-sectional view of a liquid crystal display device including the display device substrate 200 shown in FIG. Note that in FIG. 13, illustration of a polarizing plate, a retardation plate, an alignment film, a backlight unit, a gate line, a source line, and the like connected to an active element which is a transistor is omitted.
 本実施形態では、表示装置基板200は、黒色配線6上に配置されたカラーフィルタ層(赤画素R、緑画素G、青画素B)と、カラーフィルタ層上に配置された透明樹脂層9と、透明樹脂層9上に配置された透明導電膜配線7と、を更に備えている。 
 本実施形態が第2の実施形態と異なっている点は、表示装置基板200の透明樹脂層9上に透明導電膜配線7を形成した構造であり、アレイ基板45が共通電極を備えていない点である。
In the present embodiment, the display device substrate 200 includes a color filter layer (red pixel R, green pixel G, and blue pixel B) disposed on the black wiring 6, and a transparent resin layer 9 disposed on the color filter layer. And a transparent conductive film wiring 7 disposed on the transparent resin layer 9.
This embodiment is different from the second embodiment in the structure in which the transparent conductive film wiring 7 is formed on the transparent resin layer 9 of the display device substrate 200, and the array substrate 45 is not provided with a common electrode. It is.
 黒色配線6のそれぞれは、上述の第1の実施形態および第2の実施形態と同様に、紙面に対して垂直な方向(Y方向)に延び、複数の黒色配線6がX方向に並んだストライプパターンに形成されている。 Each of the black wirings 6 extends in a direction perpendicular to the paper surface (Y direction) as in the first and second embodiments described above, and a plurality of black wirings 6 are stripes arranged in the X direction. It is formed in a pattern.
 カラーフィルタ層は、赤画素Rに対応して赤色の主波長の光を透過するように着色された樹脂からなる赤色の着色層と、緑画素Gに対応して緑色の主波長の光を透過するように着色された樹脂からなる緑色の着色層と、青画素Bに対応して青色の主波長の光を透過するように着色された樹脂からなる青色の着色層と、を備えている。カラーフィルタ層上には、透明樹脂層9が積層している。 The color filter layer transmits a red colored layer made of a resin colored so as to transmit red main wavelength light corresponding to the red pixel R, and transmits a green main wavelength light corresponding to the green pixel G. And a green colored layer made of resin colored so as to correspond to the blue pixel B, and a blue colored layer made of resin colored so as to transmit light having a blue dominant wavelength. A transparent resin layer 9 is laminated on the color filter layer.
 透明樹脂層9は、熱硬化性を有するアクリル樹脂などで形成することができる。この例では、透明樹脂層9の膜厚は1.5μmとした。透明樹脂層9の膜厚は、黒色配線6と透明導電膜配線7とが電気的に絶縁される範囲で任意に設定できる。黒色層4や透明樹脂層9は、例えば、屈折率など光学特性が互いに異なる複数の層を積層する構成でも良い。上述した、第1の実施形態および第2の実施形態でも同様に、黒色層4や透明樹脂層9を多層構成としても構わない。 The transparent resin layer 9 can be formed of a thermosetting acrylic resin or the like. In this example, the film thickness of the transparent resin layer 9 was 1.5 μm. The film thickness of the transparent resin layer 9 can be arbitrarily set as long as the black wiring 6 and the transparent conductive film wiring 7 are electrically insulated. The black layer 4 and the transparent resin layer 9 may have a configuration in which a plurality of layers having different optical characteristics such as a refractive index are stacked. Similarly, in the first embodiment and the second embodiment described above, the black layer 4 and the transparent resin layer 9 may have a multilayer structure.
 透明導電膜配線7は、透明樹脂層9上に配置している。透明導電膜配線7は、例えばITOやIZO等の透明導電材料により形成されている。なお、透明導電膜配線7には、これと電気的に接触させる形で金属配線などの補助導体を積層して構成しても構わない。 The transparent conductive film wiring 7 is disposed on the transparent resin layer 9. The transparent conductive film wiring 7 is formed of a transparent conductive material such as ITO or IZO, for example. The transparent conductive film wiring 7 may be configured by laminating an auxiliary conductor such as a metal wiring in a form of being in electrical contact therewith.
 本実施形態の表示装置基板および表示装置では、黒色配線6と透明導電膜配線7は、誘電体である透明樹脂層9を介して直交している。たとえば、方向Xの画素ピッチを21μm、黒色配線幅を4μm、透明導電膜配線7の幅を123μm(透明導電膜配線7のピッチは126μm)と設定できる。 In the display device substrate and the display device of the present embodiment, the black wiring 6 and the transparent conductive film wiring 7 are orthogonal to each other through the transparent resin layer 9 that is a dielectric. For example, the pixel pitch in the direction X can be set to 21 μm, the black wiring width can be set to 4 μm, and the width of the transparent conductive film wiring 7 can be set to 123 μm (the pitch of the transparent conductive film wiring 7 is 126 μm).
 本実施形態では、タッチセンシングに関わる静電容量C3は、黒色配線6と透明導電膜配線7との間に形成される。すなわち、当実施形態において、透明導電膜配線7は共通電極であり、かつ、タッチ電極の検出電極の役割を担い、黒色配線6は、タッチセンシングでの駆動電極として用いることができる。黒色配線6と透明導電膜配線7の間には、おおよそ一定の静電容量C3が形成されているが、指などポインタの接触あるいは近接によりその部位の静電容量C3が変化し、タッチ位置を検出する。透明導電膜配線7や黒色配線6は、タッチセンシング時に間引いてタッチ信号の検出を行うことで、タッチセンシングの高速化をはかることができる。 In this embodiment, the capacitance C3 related to touch sensing is formed between the black wiring 6 and the transparent conductive film wiring 7. That is, in the present embodiment, the transparent conductive film wiring 7 is a common electrode and serves as a detection electrode of the touch electrode, and the black wiring 6 can be used as a drive electrode in touch sensing. A substantially constant capacitance C3 is formed between the black wiring 6 and the transparent conductive film wiring 7, but the capacitance C3 at that portion changes due to the contact or proximity of a pointer such as a finger, and the touch position is changed. To detect. The transparent conductive film wiring 7 and the black wiring 6 can perform touch sensing at high speed by thinning out the touch sensing to detect the touch signal.
 また、液晶層30は、画素電極36と、透明導電膜配線7との間の電圧で駆動される。すなわち、透明導電膜配線7は、液晶駆動での共通電極となる。したがって、本実施形態の液晶表示装置では、液晶駆動電圧はZ方向(液晶層30の厚み方向)に印加される。すなわち、本実施形態の液晶表示装置では、いわゆる縦電界により液晶が駆動される。液晶駆動は、コモン反転駆動による液晶駆動であってもよく、あるいは共通電極を定電位として画素電極36を反転駆動しても良い。 Further, the liquid crystal layer 30 is driven by a voltage between the pixel electrode 36 and the transparent conductive film wiring 7. That is, the transparent conductive film wiring 7 serves as a common electrode for liquid crystal driving. Therefore, in the liquid crystal display device of this embodiment, the liquid crystal driving voltage is applied in the Z direction (the thickness direction of the liquid crystal layer 30). That is, in the liquid crystal display device of this embodiment, the liquid crystal is driven by a so-called vertical electric field. The liquid crystal driving may be liquid crystal driving by common inversion driving, or the pixel electrode 36 may be inversion driven by using the common electrode as a constant potential.
 アレイ基板45は、共通電極を備えていない。画素電極36は各画素に配置された略矩形状の電極である。画素電極36は、上述の第1の実施形態と同様に、コンタクトホールを介してアクティブ素子と電気的に接続される。 The array substrate 45 does not include a common electrode. The pixel electrode 36 is a substantially rectangular electrode disposed in each pixel. Similar to the first embodiment, the pixel electrode 36 is electrically connected to the active element through the contact hole.
 図14は、図13に示す表示装置基板200を、観察者方向Vから見た平面図である。 FIG. 14 is a plan view of the display device substrate 200 shown in FIG.
 黒色配線6は、図3に示した例と同様に、引回し配線6aと、ダミー配線6bとを有している。引回し配線6aは、矩形表示領域19の一端から他端の外まで延びている。ダミー配線6bは、矩形表示領域19の一端から他端まで延びている。引回し配線6aの間には、2本のダミー配線6bが配置している。 The black wiring 6 has a routing wiring 6a and a dummy wiring 6b, as in the example shown in FIG. The routing wiring 6a extends from one end of the rectangular display area 19 to the outside of the other end. The dummy wiring 6b extends from one end of the rectangular display area 19 to the other end. Two dummy wirings 6b are arranged between the routing wirings 6a.
 透明導電膜配線7は、黒色配線6が延びた方向(Y方向)と略直交した方向(X方向)に延びて配置され、複数の透明導電膜配線7がY方向に並んだストライプパターンに形成される。図14では、透明導電膜配線7の線幅(Y方向の幅)は、X方向に並んだ画素の行の3行分の幅と略等しくなっている。透明導電膜配線7は、矩形表示領域19の一端から他端の外まで延びて配置している。 The transparent conductive film wiring 7 is arranged extending in a direction (X direction) substantially orthogonal to the direction (Y direction) in which the black wiring 6 extends, and a plurality of transparent conductive film wirings 7 are formed in a stripe pattern arranged in the Y direction. Is done. In FIG. 14, the line width (width in the Y direction) of the transparent conductive film wiring 7 is substantially equal to the width of three rows of pixels arranged in the X direction. The transparent conductive film wiring 7 extends from one end of the rectangular display area 19 to the outside of the other end.
 黒色配線6と透明導電膜配線7とは、第1の実施形態および第2の実施形態と同様に、タッチセンシング制御に用いる電極(以下、タッチ電極あるいはタッチ配線と省略することがある)として間引いて駆動することが可能である。間引いた配線は、例えば、電気的に浮いた形(フローティングパターン)としても良い。 
 フローティングパターンは、スイッチング素子により、検出電極や駆動電極に切り替えて高精細なタッチセンシングを行っても良い。あるいは、フローティングパターンは、グランド(筐体に接地)と電気的に接続するように切り替えることもできる。タッチセンシングのS/N比改善のため、タッチセンシングの信号検出時にTFTなどアクティブ素子の信号配線を一時、グランド(筐体など)に接地しても良い。
As with the first and second embodiments, the black wiring 6 and the transparent conductive film wiring 7 are thinned out as electrodes used for touch sensing control (hereinafter may be abbreviated as touch electrodes or touch wirings). Can be driven. For example, the thinned wiring may have an electrically floating shape (floating pattern).
The floating pattern may be switched to a detection electrode or a drive electrode by a switching element to perform high-definition touch sensing. Alternatively, the floating pattern can be switched so as to be electrically connected to the ground (grounded to the housing). In order to improve the S / N ratio of touch sensing, a signal wiring of an active element such as a TFT may be temporarily grounded to a ground (such as a housing) when a touch sensing signal is detected.
 また、タッチセンシング制御で検出する静電容量C3のリセットに時間を要する、タッチ配線、すなわち、タッチセンシングでの時定数(容量と抵抗値の積)が大きいタッチ配線では、たとえば奇数行と偶数行とを交互にセンシングに利用し、時定数の大きさを調整した駆動を行っても良い。あるいは、複数本数のタッチ配線をグルーピングして駆動や検出を行っても良い。複数本数のタッチ配線のグルーピングは、線順次とせず、そのグループ単位でセルフ検出方式とも呼称される、一括検出の手法をとっても良い。グループ単位での、並列駆動を行っても良い。あるいは寄生容量などのノイズキャンセルのため、近接、隣接するタッチ配線の検出信号の差をとる差分検出方式をとることができる。 Further, in touch wiring that requires time to reset the capacitance C3 detected by touch sensing control, that is, touch wiring with a large time constant (product of capacitance and resistance value) in touch sensing, for example, odd and even rows May be alternately used for sensing, and driving with the time constant adjusted may be performed. Alternatively, driving and detection may be performed by grouping a plurality of touch wires. The grouping of a plurality of touch wires may not be line-sequential but may be a collective detection method called a self-detection method for each group. Parallel driving may be performed in units of groups. Alternatively, in order to cancel noise such as parasitic capacitance, a difference detection method that takes a difference between detection signals of adjacent and adjacent touch wirings can be employed.
 上述の第1の実施形態および第2の実施形態でも同様に、黒色配線6や透明導電膜配線7は、タッチセンシングでの、検出電極あるいは駆動電極とすることができる。黒色配線6と透明導電膜配線7とのどちらか一方が検出電極であり、他方が駆動電極であればよい。 Similarly, in the first embodiment and the second embodiment described above, the black wiring 6 and the transparent conductive film wiring 7 can be used as detection electrodes or drive electrodes in touch sensing. Either the black wiring 6 or the transparent conductive film wiring 7 may be a detection electrode and the other may be a drive electrode.
 透明導電膜配線7は、タッチセンシング駆動時及び液晶駆動時には定電位の共通電位とすることができる。あるいは、すべての透明導電膜配線7を、高抵抗を介在させて接地することができる。また、タッチセンシング駆動時及び液晶駆動時には定電位の共通電位とした透明導電膜配線7は、タッチセンシング駆動と液晶駆動のそれぞれ駆動信号を区分する、いわば、シールド膜の役割を担うことができる。上記の高抵抗の値は、たとえば、数ギガオーム以上数ペタオーム以下の範囲とすることができる。代表的には、1テラオーム以上50テラオーム以下とすることができる。しかしながら、表示装置の薄膜トランジスタのチャネル層49をIGZOなど酸化物半導体とする場合、表示装置の画素の焼きつきが生じやすい状態を緩和するため、1ギガオームより低い抵抗を用いても良い。また、タッチセンシングにおいて、静電容量C3のリセット回路を設けない簡易制御では、この静電容量C3のリセットの目的で、1ギガオームより低い抵抗を用いても良い。IGZOなど酸化物半導体をアクティブ素子のチャネル層49に用いる表示装置では、タッチセンシング制御における、上記の種々の工夫が可能となる。 The transparent conductive film wiring 7 can be set to a constant common potential during touch sensing driving and liquid crystal driving. Alternatively, all the transparent conductive film wirings 7 can be grounded through high resistance. Further, the transparent conductive film wiring 7 having a constant common potential at the time of touch sensing driving and liquid crystal driving can play a role of a shielding film, that is, a part of driving signals for touch sensing driving and liquid crystal driving. The value of the high resistance can be, for example, in the range of several gigaohms to several petaohms. Typically, it can be 1 teraohm or more and 50 teraohms or less. However, when the channel layer 49 of the thin film transistor of the display device is an oxide semiconductor such as IGZO, a resistance lower than 1 giga ohm may be used in order to alleviate a state in which the pixel of the display device is likely to be burned. In the touch sensing, in the simple control without providing the reset circuit for the capacitance C3, a resistor lower than 1 gigaohm may be used for the purpose of resetting the capacitance C3. In the display device using an oxide semiconductor such as IGZO for the channel layer 49 of the active element, the above-described various devices in the touch sensing control are possible.
 また、黒色配線6の間引きを多くして低密度での走査を行うと、駆動周波数を低くでき高い精度のセンシング、消費電力の削減を行うことができる。逆に黒色配線6の間引きを少なくする高密度での走査により、例えば、指紋認証やタッチペンによる入力などに活用できる。 Also, if the black wiring 6 is thinned out and scanning is performed at a low density, the drive frequency can be lowered, and high-precision sensing and power consumption can be reduced. Conversely, high-density scanning that reduces the thinning of the black wiring 6 can be used for, for example, fingerprint authentication or input with a touch pen.
 タッチセンシング駆動時及び液晶駆動時に透明導電膜配線7に印加する定電位は、必ずしも“0(ゼロ)”ボルトを意味するものでなく、駆動周波数の高低の中間の定電位としても良く、オフセットさせた駆動電圧にしても良い。タッチセンシング駆動時及び液晶駆動時において、透明導電膜配線7は定電位であるため、液晶を駆動する画素電極36の駆動周波数と異なる周波数で、透明導電膜配線7を駆動しても良い。 The constant potential applied to the transparent conductive film wiring 7 at the time of touch sensing driving and liquid crystal driving does not necessarily mean “0 (zero)” volts, but may be an intermediate constant potential with a high or low driving frequency, and may be offset. The drive voltage may be different. The transparent conductive film wiring 7 may be driven at a frequency different from the driving frequency of the pixel electrode 36 that drives the liquid crystal because the transparent conductive film wiring 7 has a constant potential during the touch sensing driving and the liquid crystal driving.
 なお、液晶駆動の共通電極としての共通電位Vcomは、一般的に液晶駆動でのフレーム反転を含む交流矩形信号であり、たとえば±2.5V、あるいは±5Vの交流電圧をフレーム毎に印加する。本実施形態では、こうした駆動に必要な交流電圧は定電位として扱わない。本実施形態の技術での定電位の電圧変動は、少なくとも液晶駆動の閾値(Vth)より小さい一定の電圧変動以内の定電位である必要がある。 Note that the common potential Vcom as a common electrode for driving liquid crystal is an AC rectangular signal that generally includes frame inversion in driving the liquid crystal, and an AC voltage of ± 2.5 V or ± 5 V, for example, is applied for each frame. In the present embodiment, the AC voltage necessary for such driving is not handled as a constant potential. The voltage fluctuation of the constant potential in the technique of the present embodiment needs to be a constant potential within a certain voltage fluctuation which is at least smaller than the threshold value (Vth) for driving the liquid crystal.
 本実施形態において、透明導電膜配線7の電位を、タッチセンシング駆動および液晶駆動とも同じ定電位とすることで、タッチセンシング駆動と液晶駆動とを異なる周波数で駆動できる。定電位の透明導電膜配線7は、液晶駆動信号とタッチセンシング駆動信号を電気的に分離するシールドの役割を担うことができる。 In the present embodiment, the touch sensing drive and the liquid crystal drive can be driven at different frequencies by setting the potential of the transparent conductive film wiring 7 to the same constant potential in both the touch sensing drive and the liquid crystal drive. The constant potential transparent conductive film wiring 7 can serve as a shield for electrically separating the liquid crystal drive signal and the touch sensing drive signal.
 本実施形態の表示装置基板200では、大きなフリンジ容量を得ることができ、高いS/N比を保ちながらも、タッチセンシングでの駆動電圧を下げることで消費電力を減らすことができる。 In the display device substrate 200 of the present embodiment, a large fringe capacity can be obtained, and power consumption can be reduced by lowering the drive voltage in touch sensing while maintaining a high S / N ratio.
 また、黒色配線6をタッチセンシングでの駆動電極とし、透明導電膜配線7を検出電極とすると、タッチセンシングの駆動条件と液晶の駆動条件(周波数や電圧など)を異なるものにできる。タッチセンシングの駆動周波数と液晶の駆動周波数を異なるものとすることで、それぞれ駆動の影響を受けにくくできる。タッチセンシングの駆動周波数を1KHz以上100KHz以下とし、液晶駆動の周波数を0.1Hz以上480Hz以下とすることができる。IGZOなど酸化物半導体をチャネル層とするTFTアレイ基板を用いた液晶表示装置とすることで、例えば、0.1Hz以上30Hz以下の低周波駆動としてもフリッカー(映像のチラツキ)のない表示を低消費電力で行うことができる。 Further, if the black wiring 6 is used as a drive electrode for touch sensing and the transparent conductive film wiring 7 is used as a detection electrode, the driving conditions for touch sensing and the driving conditions (frequency, voltage, etc.) for liquid crystals can be made different. By making the drive frequency of touch sensing different from the drive frequency of liquid crystal, it can be made less susceptible to the influence of the drive. The touch sensing drive frequency can be set to 1 KHz to 100 KHz, and the liquid crystal drive frequency can be set to 0.1 Hz to 480 Hz. By using a TFT array substrate that uses an oxide semiconductor such as IGZO as a channel layer, it is possible to reduce display without flicker (flickering of images) even when driving at a low frequency of 0.1 Hz to 30 Hz. Can be done with electric power.
 さらには、タッチセンシング駆動と液晶駆動を時分割にすることもできる。黒色配線6を駆動電極(走査電極)とする場合に、要求されるタッチ入力の速さにあわせて静電容量検出の走査周波数を任意に調整できる。 Furthermore, touch sensing drive and liquid crystal drive can be time-shared. When the black wiring 6 is used as a drive electrode (scanning electrode), the scanning frequency of capacitance detection can be arbitrarily adjusted according to the required touch input speed.
 さらには、速い応答性を得るために、黒色配線6を間引いて走査することができる。また、タッチセンシングでの駆動電極と検出電極を入れ替え、透明導電膜配線7を一定の周波数での電圧を印加する駆動電極(走査電極)としても良い。なお、タッチセンシングや液晶駆動での、駆動電極に印加する電圧(交流信号)は、正負の電圧を反転する反転駆動方式であってもよい。タッチセンシング駆動と液晶駆動とは時分割で行われてもよく、時分割でなくてもよい。 
 また、駆動電極に印加する電圧(交流信号)として、印加する交流信号の電圧幅(振幅)を小さくすることで液晶表示への影響を軽減できる。
Furthermore, in order to obtain a quick response, the black wiring 6 can be thinned and scanned. Alternatively, the drive electrode and the detection electrode in touch sensing may be interchanged, and the transparent conductive film wiring 7 may be used as a drive electrode (scanning electrode) that applies a voltage at a constant frequency. Note that the voltage (AC signal) applied to the drive electrode in touch sensing or liquid crystal drive may be an inversion drive method in which positive and negative voltages are inverted. Touch sensing driving and liquid crystal driving may be performed in a time division manner, and may not be in a time division manner.
In addition, as the voltage (AC signal) applied to the drive electrode, the influence on the liquid crystal display can be reduced by reducing the voltage width (amplitude) of the AC signal to be applied.
 上記のように、本実施形態の表示装置基板および表示装置では、透明導電膜配線7の電位が定電位であるため、タッチ電極としての黒色電極の駆動周波数や信号検出のタイミングを、液晶の駆動周波数やタイミングに依存することなく設定できる。タッチ電極の駆動周波数を、液晶駆動の周波数と異なる周波数、あるいは、より高い駆動周波数とすることができる。 As described above, in the display device substrate and the display device of the present embodiment, since the potential of the transparent conductive film wiring 7 is a constant potential, the driving frequency of the black electrode as the touch electrode and the signal detection timing are set to drive the liquid crystal. It can be set without depending on frequency and timing. The drive frequency of the touch electrode can be a frequency different from the liquid crystal drive frequency or a higher drive frequency.
 一般に、液晶駆動の周波数は、60Hz、あるいは、この整数倍の駆動周波数である。通常、タッチセンシング部位は、液晶駆動の周波数に伴うノイズの影響を受ける。さらに、通常の家庭電源は50Hzあるいは60Hzの交流電源であり、こうした外部電源で動作する電気機器からのノイズを、タッチセンシング部位が拾いやすい。従って、タッチ駆動の周波数を50Hzや60Hzの周波数から、あるいはこれら周波数の整数倍から若干シフトさせた異なる周波数とすることで、液晶駆動や外部の電子機器からのノイズの影響を大きく低減できる。シフト量は、若干量で良く、たとえば、ノイズ周波数から±3%以上±17%以下のシフト量で良く、ノイズ周波数との干渉を低減できる。例えば、タッチ駆動の周波数は、1Hz以上100kHz以下の範囲から、上記液晶駆動周波数や電源周波数と干渉しない異なる周波数を選択できる。液晶駆動周波数や電源周波数と干渉しない異なる周波数を選択することで、たとえば、ドット反転駆動でのカップリングノイズなどノイズの影響を軽減できる。 Generally, the liquid crystal driving frequency is 60 Hz or a driving frequency that is an integral multiple of 60 Hz. Usually, the touch sensing part is affected by noise associated with the liquid crystal driving frequency. Furthermore, a normal household power supply is an AC power supply of 50 Hz or 60 Hz, and the touch sensing part easily picks up noise from an electric device that operates with such an external power supply. Therefore, the influence of noise from liquid crystal driving or external electronic equipment can be greatly reduced by setting the frequency of touch driving to a different frequency slightly shifted from 50 Hz or 60 Hz or an integer multiple of these frequencies. The shift amount may be a slight amount, for example, a shift amount of ± 3% or more and ± 17% or less from the noise frequency, and interference with the noise frequency can be reduced. For example, a different frequency that does not interfere with the liquid crystal driving frequency or the power supply frequency can be selected from the range of 1 Hz to 100 kHz for the touch driving frequency. By selecting different frequencies that do not interfere with the liquid crystal driving frequency and the power supply frequency, for example, the influence of noise such as coupling noise in dot inversion driving can be reduced.
 3D(立体映像)表示を行う表示装置の場合、通常の2次元画像の表示に加え、3次元的に手前の画像や奥にある画像を表示するために複数の映像信号(例えば右目用の映像信号と左目用の映像信号)が必要となる。このため、液晶駆動の周波数は、たとえば、240Hzあるいは480Hzなどの高速駆動及び多くの映像信号が必要となる。このとき、タッチ駆動の周波数を液晶駆動の周波数と異なるものにできる本実施形態のメリットは大きくなる。たとえば、本実施形態により3D表示のゲーム機器において、高速・高精度のタッチセンシングを可能とする。本実施形態では、ゲーム機器や現金自動支払機などの指などのタッチ入力頻度の高いディスプレイにおいても特に有用である。 In the case of a display device that performs 3D (stereoscopic video) display, in addition to displaying a normal two-dimensional image, a plurality of video signals (for example, a right-eye video) are displayed to display a three-dimensional front image or a back image. Signal and video signal for the left eye). For this reason, the liquid crystal drive frequency requires high-speed drive such as 240 Hz or 480 Hz and many video signals. At this time, the merit of the present embodiment in which the touch drive frequency can be different from the liquid crystal drive frequency is increased. For example, this embodiment enables high-speed and high-precision touch sensing in a 3D display game machine. This embodiment is particularly useful for a display with a high touch input frequency such as a finger such as a game machine or a cash dispenser.
 また、タッチセンシング駆動において、駆動電圧を、黒色配線(駆動電極)6の全てに供給するのでなく、間引きしてタッチ位置検出を行うことで、タッチセンシングでの消費電力を低減できる。 Further, in the touch sensing drive, the power consumption in the touch sensing can be reduced by thinning out the touch position detection instead of supplying the drive voltage to all the black wirings (drive electrodes) 6.
 図示していないアクティブ素子(TFT)のトランジタのチャネル層は、酸化物半導体やポリシリコン半導体を用いることができる、酸化物半導体は、IGZOなどと呼称される金属酸化物とすることができる。 An oxide semiconductor or a polysilicon semiconductor can be used for a channel layer of a transistor of an active element (TFT) (not shown), and the oxide semiconductor can be a metal oxide called IGZO or the like.
 チャネル層をIGZOなどガリウム、インジウム、亜鉛、錫、ゲルマニウム、マグネシウム、アルミニウムのうちの2種以上の金属酸化物を含む酸化物半導体とすることで、ドット反転駆動でのカップリングノイズの影響をほぼ解消できる。これは、IGZOなど酸化物半導体を用いたアクティブ素子は、映像信号である液晶駆動の矩形信号を極めて短い時間(たとえば2msec)で処理でき、また、映像信号印加後の液晶表示の画素での電圧を保持できるメモリー性があるため、その保持期間の間では新たなノイズ発生はなく、液晶駆動でのノイズの影響をさらに減少できるからである。 By making the channel layer an oxide semiconductor containing two or more metal oxides of gallium, indium, zinc, tin, germanium, magnesium, aluminum such as IGZO, the effect of coupling noise in dot inversion drive is almost Can be resolved. This is because an active element using an oxide semiconductor such as IGZO can process a rectangular signal driven by a liquid crystal, which is a video signal, in an extremely short time (for example, 2 msec), and a voltage at a pixel of a liquid crystal display after the application of the video signal. This is because there is no memory generated during the holding period, and the influence of noise in driving the liquid crystal can be further reduced.
 また、IGZOなど酸化物半導体は、電気的な耐圧が高いので、高めの電圧で液晶を高速駆動でき、3Dなど3次元映像表示に有力である。IGZOなど酸化物半導体をチャネル層に用いるトランジスタは、メモリー性が高いため、たとえば、液晶駆動周波数を0.1Hz以上30Hz以下程度の低周波としてもフリッカー(表示のちらつき)を生じにくいメリットがある。 In addition, since an oxide semiconductor such as IGZO has a high electrical withstand voltage, the liquid crystal can be driven at a high speed with a high voltage, and is effective for 3D image display such as 3D. A transistor using an oxide semiconductor such as IGZO for the channel layer has high memory properties, and thus has an advantage that flicker (display flicker) hardly occurs even when the liquid crystal driving frequency is set to a low frequency of about 0.1 Hz to 30 Hz.
 また、IGZOをチャネル層とするトランジスタを用いた場合、低周波でのドット反転駆動あるいはカラム反転駆動と、かつ、これと異なる周波数でのタッチ駆動とを併用することで、低消費電力で、高画質の映像表示と高精度のタッチセンシングをともに得ることができる。なお、チャネル層をIGZOなど酸化物半導体とするトランジスタを備えるアレイ基板は、FFSなどの横電界の液晶表示装置、VAなど縦電界の液晶表示装置、あるいは有機EL表示装置に適用できる。 In addition, when a transistor having IGZO as a channel layer is used, a combination of dot inversion driving or column inversion driving at a low frequency and touch driving at a frequency different from this enables low power consumption and high power consumption. Both high-quality image display and high-precision touch sensing can be obtained. Note that an array substrate including a transistor whose channel layer is an oxide semiconductor such as IGZO can be applied to a liquid crystal display device with a horizontal electric field such as FFS, a liquid crystal display device with a vertical electric field such as VA, or an organic EL display device.
 また、液晶駆動を、画素電極でのドット反転駆動やカラム反転駆動とするときに、メモリー性の良好なIGZOを用いれば、透明電極パターンを一定の電圧(定電位)として、定電圧駆動に必要な保持容量(ストーレッジキャパシタ)を省くことも可能である。液晶駆動は、ドット反転駆動のほか共通電極である透明導電膜配線7を定電位とするカラム反転駆動(ソース反転駆動)であっても良い。あるいは、透明導電膜配線7を定電位とするカラム反転駆動と、透明導電膜配線7を定電位とするドット反転駆動とを組み合わせても良い。 Also, when liquid crystal drive is dot inversion drive or column inversion drive with pixel electrodes, using IGZO with good memory properties, it is necessary for constant voltage drive with the transparent electrode pattern as a constant voltage (constant potential) It is also possible to omit a large storage capacitor (storage capacitor). The liquid crystal driving may be dot inversion driving or column inversion driving (source inversion driving) in which the transparent conductive film wiring 7 that is a common electrode has a constant potential. Alternatively, column inversion driving using the transparent conductive film wiring 7 as a constant potential and dot inversion driving using the transparent conductive film wiring 7 as a constant potential may be combined.
 当実施形態の液晶表示装置は、液晶層30を、共通電極である透明導電膜配線7とアレイ基板に具備される画素電極36との間に、液晶の駆動電圧を印加して液晶層30を駆動する。液晶層30や透明基板15、25の厚み方向(縦方向)Zに電圧が印加され、縦電界方式と呼ばれる液晶駆動方式を当実施形態で適用している。 In the liquid crystal display device of this embodiment, the liquid crystal layer 30 is applied to the liquid crystal layer 30 by applying a liquid crystal driving voltage between the transparent conductive film wiring 7 as a common electrode and the pixel electrode 36 provided on the array substrate. To drive. A voltage is applied in the thickness direction (vertical direction) Z of the liquid crystal layer 30 and the transparent substrates 15 and 25, and a liquid crystal driving method called a vertical electric field method is applied in this embodiment.
 縦電界方式に適用可能な液晶駆動方式には、VA(Vertical Alignment)、HAN(Hybrid-aligned Nematic)、TN(Twisted Nematic)、OCB(Optically Compensated Bend)、CPA(Continuous Pinwheel Alignment)、ECB(Electrically Controlled Birefringence)、TBA(Transverse Bent Alignment)などが挙げられ、適宜選択して用いることができる。なお、VAモードは、ノーマリーブラック表示が秀でているため、黒表示を活かすためにVAモードを採用することが好ましい。また、垂直配向の液晶(VA)は、水平配向の液晶(FFS)より正面輝度の高さ、及び黒表示の黒レベルの高さの観点で優れている。 Liquid crystal driving methods applicable to the vertical electric field method include VA (Vertical Alignment), HAN (Hybrid-aligned Nematic), TN (Twisted Nematic), OCB (Optically Compensated Bend), CPA (Continuous Pinwheel Alignment), ECB (Electrically Controlled Birefringence), TBA (Transverse Bent Alignment) and the like can be mentioned, and these can be appropriately selected and used. Since the VA mode is excellent in normally black display, it is preferable to adopt the VA mode in order to make use of the black display. The vertically aligned liquid crystal (VA) is superior to the horizontally aligned liquid crystal (FFS) in terms of front luminance and black level for black display.
 続いて、上述の第1乃至第3実施形態の表示装置基板の製造方法について説明する。 
 図15は、本発明の一実施形態に関わる表示装置基板のそれぞれの製造工程を示す部分断面図である。
Next, a method for manufacturing the display device substrate according to the first to third embodiments will be described.
FIG. 15 is a partial cross-sectional view showing each manufacturing process of the display device substrate according to the embodiment of the present invention.
 図15に示すように、透明基板15上に、酸化インジウムと酸化亜鉛と酸化錫を含む3元系混合酸化物膜(導電性の複合酸化物層)である第1の導電性金属酸化物層1と金属層2と第2の導電酸化物層3とを連続成膜して、aに示す構成とする(成膜工程)。 As shown in FIG. 15, a first conductive metal oxide layer which is a ternary mixed oxide film (conductive complex oxide layer) containing indium oxide, zinc oxide and tin oxide on a transparent substrate 15. 1, the metal layer 2, and the second conductive oxide layer 3 are continuously formed into the structure shown in a (film formation step).
 第1の導電性金属酸化物層1と、金属層2と、第2の導電性酸化物層3とは、透明基板15の表面をほぼ覆うように膜付けされる。成膜装置はスパッタリング装置を用い、真空を破らずに連続成膜する。 The first conductive metal oxide layer 1, the metal layer 2, and the second conductive oxide layer 3 are formed so as to almost cover the surface of the transparent substrate 15. The film forming apparatus uses a sputtering apparatus and continuously forms films without breaking the vacuum.
 第1の導電性金属酸化物層1と第2の導電性金属酸化物層3とのそれぞれ酸化インジウムと酸化亜鉛と酸化錫、及び、銅合金である金属層の組成は、下記とした。いずれも、混合酸化物中の金属元素でのアトミックパーセント(酸素元素をカウントしない金属元素のみのカウント。以下、at%で表記)である。 
 ・第1の導電性金属酸化物層;   In:Zn:Sn ⇒  90:8:2 
 ・第2の導電性金属酸化物層;   In:Zn:Sn ⇒  91:7:2 
 ・金属層       ;     Cu:Mg  ⇒ 99.5 : 0.5 
 第1の導電性金属酸化物層1と第2の導電性金属酸化物層3とに含まれるインジウム(In)の量は、80at%より多く含有させる必要がある。インジウム(In)の量は、80at%より多い方が好ましい。インジウム(In)の量は、90at%より多い方がさらに好ましい。インジウム(In)の量は、90at%より多い方が好ましい。インジウム(In)の量は、80at%より少ないと形成する導電性金属酸化物層の比抵抗が大きくなり好ましくない。亜鉛(Zn)の量は、20at%を超えると導電性金属酸化物(混合酸化物)の耐アルカリ性が低下するので好ましくない。
The composition of the metal layers of indium oxide, zinc oxide, tin oxide, and copper alloy in the first conductive metal oxide layer 1 and the second conductive metal oxide layer 3 was as follows. All are atomic percentages of metal elements in the mixed oxide (counting only of metal elements not counting oxygen elements; hereinafter expressed as at%).
First conductive metal oxide layer; In: Zn: Sn ⇒ 90: 8: 2
Second conductive metal oxide layer; In: Zn: Sn => 91: 7: 2
・ Metal layer: Cu: Mg => 99.5: 0.5
The amount of indium (In) contained in the first conductive metal oxide layer 1 and the second conductive metal oxide layer 3 needs to be greater than 80 at%. The amount of indium (In) is preferably greater than 80 at%. The amount of indium (In) is more preferably greater than 90 at%. The amount of indium (In) is preferably greater than 90 at%. When the amount of indium (In) is less than 80 at%, the specific resistance of the conductive metal oxide layer to be formed is not preferable. If the amount of zinc (Zn) exceeds 20 at%, the alkali resistance of the conductive metal oxide (mixed oxide) decreases, which is not preferable.
 第1の導電性金属酸化物層1と第2の導電性金属酸化物層3に含まれる亜鉛(Zn)の量は、錫(Sn)の量より多くする必要がある。錫の含有量が亜鉛含有量を超えてくると、後工程でのウエットエッチングで支障が出てくる。換言すれば、銅あるいは銅合金である金属層のエッチングが導電性金属酸化物層より入りやすくなり、第1の導電性金属酸化物層1と金属層2と第2の導電性金属酸化物層3との線幅に差が生じやすくなる。 The amount of zinc (Zn) contained in the first conductive metal oxide layer 1 and the second conductive metal oxide layer 3 needs to be larger than the amount of tin (Sn). If the tin content exceeds the zinc content, there will be problems with wet etching in the subsequent process. In other words, the etching of the metal layer made of copper or copper alloy is easier to enter than the conductive metal oxide layer, and the first conductive metal oxide layer 1, the metal layer 2, and the second conductive metal oxide layer. A difference in line width from 3 tends to occur.
 第1の導電性金属酸化物層1と第2の導電性金属酸化物層3に含まれる錫(Sn)の量は、0.5at%以上6at%以下の範囲内が好ましい。錫は、インジウム元素との比較で、0.5at%以上6at%以下を含有させることで、上記インジウムと亜鉛と錫との3元系混合酸化物膜(導電性の複合酸化物層)の比抵抗を小さくすることができる。錫の量が7at%を超えると、亜鉛の添加も伴うことで3元系混合酸化物膜(導電性の複合酸化物層)の比抵抗が大きくなりすぎる。上記の範囲内で亜鉛及び錫の量を調整することで、比抵抗をおおよそ、混合酸化物膜の単層膜の比抵抗として5×10-4Ωcm以上3×10-4Ωcm以下の小さな範囲内に収めることができる。上記混合酸化物中には、チタン、ジルコニウム、マグネシウム、アルミニウム、ゲルマニウムなど他の元素を少量、添加することもできる。 The amount of tin (Sn) contained in the first conductive metal oxide layer 1 and the second conductive metal oxide layer 3 is preferably in the range of 0.5 at% or more and 6 at% or less. Tin is contained in an amount of 0.5 at% or more and 6 at% or less in comparison with the indium element, so that the ratio of the ternary mixed oxide film (conductive composite oxide layer) of indium, zinc and tin is increased. Resistance can be reduced. When the amount of tin exceeds 7 at%, the specific resistance of the ternary mixed oxide film (conductive composite oxide layer) becomes too large due to the addition of zinc. By adjusting the amounts of zinc and tin within the above range, the specific resistance is approximately a small range of 5 × 10 −4 Ωcm or more and 3 × 10 −4 Ωcm or less as the specific resistance of the single layer film of the mixed oxide film. Can fit inside. A small amount of other elements such as titanium, zirconium, magnesium, aluminum, and germanium can be added to the mixed oxide.
 次に、透明基板15上に、主たる色材としてカーボンを含有するアルカリ現像性と感光性を備える黒色塗布液を塗布し、乾燥させ、黒色層4を形成し、bに示す構成とした(塗布工程)。黒色層4の乾燥後の塗布膜厚は、約1.1μmとした。 Next, a black coating solution having alkali developability and photosensitivity containing carbon as a main coloring material is applied on the transparent substrate 15 and dried to form a black layer 4 having a configuration shown in b (Coating Process). The coating thickness after drying of the black layer 4 was about 1.1 μm.
 次に、透過率100%の領域と、透過率40%の端子部パターンの領域と、透過率0%の黒色配線パターンの領域とを持つハーフトーンマスクを用いて、bに示す構成の基板を露光する。なお、当該マスクの基板は人工石英基板であり、透過率はその人工石英基板をレファレンスとする透過率である。露光後、アルカリ現像し、cに示す構成とした(パターン形成工程)。すなわち、約2μm膜厚の黒色配線パターン4aと、約1μm膜厚の端子部パターン4bを持つ基板とした。この状態では、黒色配線パターン4a間や基板周辺には、第2の導電性金属酸化物層3が露出している。 Next, using a halftone mask having a region with a transmittance of 100%, a terminal pattern region with a transmittance of 40%, and a region of a black wiring pattern with a transmittance of 0%, a substrate having the configuration shown in b is formed. Exposure. Note that the substrate of the mask is an artificial quartz substrate, and the transmittance is a transmittance with the artificial quartz substrate as a reference. After the exposure, alkali development was performed to obtain a configuration shown in c (pattern formation step). That is, the substrate has a black wiring pattern 4a having a thickness of about 2 μm and a terminal pattern 4b having a thickness of about 1 μm. In this state, the second conductive metal oxide layer 3 is exposed between the black wiring patterns 4a and around the substrate.
 次に、露出した第2の導電性金属酸化物層3を蓚酸系エッチャントでウエットエッチングし、りん酸系エッチャントで金属層2をウエットエッチングし、さらに蓚酸系エッチャントで第1の導電性金属酸化物層1をウエットエッチングし、dに示す構成の基板とした(ウエットエッチング工程)。この状態で黒色配線パターン4a間の第1の導電性金属酸化物層1、金属層2、および、第2の導電性金属酸化物層3が取り除かれ、この領域では透明基板15が露出する。 Next, the exposed second conductive metal oxide layer 3 is wet etched with an oxalic acid etchant, the metal layer 2 is wet etched with a phosphoric acid etchant, and the first conductive metal oxide is further etched with an oxalic acid etchant. Layer 1 was wet-etched to obtain a substrate having the structure shown in d (wet-etching step). In this state, the first conductive metal oxide layer 1, the metal layer 2, and the second conductive metal oxide layer 3 between the black wiring patterns 4a are removed, and the transparent substrate 15 is exposed in this region.
 次に、ドライエッチング装置を用いて、黒色層の厚みにて0.6μmエッチングする条件でドライエッチングを行った。ドライエッチング装置に導入するガスは、アルゴンのベースガスに8vol%の酸素を加えたものとした。ドライエッチングにて、端子部5上の端子部パターン4bは完全に除去され、端子部5に第2の導電性金属酸化物層3が露出され、また、黒色配線パターン上には約0.5μm厚みの黒色層4が残されたeに示す構成の基板とした(ドライエッチング工程)。黒色配線パターン4aの線幅は約4μmであり、第1の導電性金属酸化物層1と金属層と第2の導電酸化物層の線幅は±0.2μm以内のそれぞれ等しい線幅であった。 Next, using a dry etching apparatus, dry etching was performed under the condition that the thickness of the black layer is 0.6 μm. The gas introduced into the dry etching apparatus was 8 vol% oxygen added to an argon base gas. By dry etching, the terminal part pattern 4b on the terminal part 5 is completely removed, the second conductive metal oxide layer 3 is exposed on the terminal part 5, and about 0.5 μm on the black wiring pattern. It was set as the board | substrate of the structure shown to e where the black layer 4 of thickness was left (dry etching process). The line width of the black wiring pattern 4a is about 4 μm, and the line widths of the first conductive metal oxide layer 1, the metal layer, and the second conductive oxide layer are equal to each other within ± 0.2 μm. It was.
 なお、本実施形態に関わる技術では、黒色層4と、第1の導電性金属酸化物層1と、金属層2と、第2の導電酸化物層3とのアライメント(位置あわせ)が不必要であるため、表示装置基板などで通常必要なそれぞれ±1.5μmのアライメントマージンを考慮しなくて良い。そのため、高い開口率を得ることができる。 In the technology according to this embodiment, alignment (positioning) of the black layer 4, the first conductive metal oxide layer 1, the metal layer 2, and the second conductive oxide layer 3 is unnecessary. Therefore, it is not necessary to consider each ± 1.5 μm alignment margin normally required for a display device substrate or the like. Therefore, a high aperture ratio can be obtained.
 なお、この例では、黒色配線6の第1の導電性金属酸化物層1の膜厚は約0.025μm、金属層2の膜厚は約0.15μm、第1の導電性金属酸化物層1の膜厚は約0.025μmとしたが、黒色層4の膜厚含め、これらの膜厚は種々設定が可能である。 In this example, the thickness of the first conductive metal oxide layer 1 of the black wiring 6 is about 0.025 μm, the thickness of the metal layer 2 is about 0.15 μm, and the first conductive metal oxide layer. Although the film thickness of 1 was about 0.025 μm, various film thicknesses including the film thickness of the black layer 4 can be set.
 黒色配線6を構成する黒色層4に用いる色材は、主に、カーボンであることが望ましい。黒色層4から生じる反射色を調整するために、有機顔料を少量、感光性黒色塗布液に添加してもよい。しかし、多くの有機顔料においては、顔料構造の中に金属が配位されている。このような有機顔料を含有する膜をドライエッチングすると、その金属に起因するコンタミネーションが発生することがある。この点を考慮し、感光性黒色塗布液の配合が調整される。あるいは、有機顔料を含まず、ドライエッチング性の良好なカーボンのみの色材とすることは好ましい。有機顔料を多く含む黒色層は、ドライエッチング時に大きな表面あれを生じる傾向にある。 
 以上のように、本実施形態に関わる表示装置基板の製造方法では、フォトマスクを用いる工程は1回で済み、マスク費用の削減と、工程削減のメリットがある。
The color material used for the black layer 4 constituting the black wiring 6 is preferably mainly carbon. In order to adjust the reflection color generated from the black layer 4, a small amount of an organic pigment may be added to the photosensitive black coating solution. However, in many organic pigments, a metal is coordinated in the pigment structure. When a film containing such an organic pigment is dry-etched, contamination due to the metal may occur. Considering this point, the composition of the photosensitive black coating solution is adjusted. Alternatively, it is preferable to use a carbon-only coloring material that does not contain an organic pigment and has good dry etching properties. A black layer containing a large amount of organic pigment tends to cause large surface roughness during dry etching.
As described above, in the method for manufacturing a display device substrate according to the present embodiment, the process using the photomask is only required once, and there are advantages in reducing the mask cost and reducing the process.
 次に、第4の実施形態に関わる表示装置基板、表示装置および表示装置基板の製造方法について説明する。 
 図16は、第4の実施形態に関わる表示装置基板の部分断面図である。 
 本実施形態の表示装置基板では、上述の第1の実施形態の表示装置基板100の導電性金属酸化物層1と金属層2との界面に黒色酸化物層8を挿入している。なお、本実施形態の表示装置基板は、上述の複数の実施態様の変形例として提供することができる。
Next, a display device substrate, a display device, and a method for manufacturing the display device substrate according to the fourth embodiment will be described.
FIG. 16 is a partial cross-sectional view of a display device substrate according to the fourth embodiment.
In the display device substrate of this embodiment, the black oxide layer 8 is inserted at the interface between the conductive metal oxide layer 1 and the metal layer 2 of the display device substrate 100 of the first embodiment described above. Note that the display device substrate of this embodiment can be provided as a modification of the above-described plurality of embodiments.
 本実施形態の表示装置基板は、第1の導電性金属酸化物層1と金属層2との界面に、金属を酸化させた黒色酸化物層8を具備している。黒色酸化物層8は、可視光を一部でも吸収できる金属酸化物で形成される。黒色酸化物層8を構成する金属酸化物は、種々の光吸収性がある金属酸化物から選択できるが、金属層に用いる、銅あるいは銅合金の酸化物とすることが簡便である。この金属を酸化させた黒色酸化物層8は、スパッタリングやイオンプレーティングなどの真空成膜時に酸素ガスを導入することで容易に成膜できる。黒色酸化物層8の材料と用いる金属は、上記のほか、銅ニッケル合金、チタン合金などを酸化することで光吸収の機能を付与できる金属材料を適用できる。黒色酸化物層8の膜厚は、たとえば、10nm以上200nm以下としても良い。 The display device substrate of this embodiment includes a black oxide layer 8 obtained by oxidizing a metal at the interface between the first conductive metal oxide layer 1 and the metal layer 2. The black oxide layer 8 is formed of a metal oxide that can absorb even part of visible light. The metal oxide constituting the black oxide layer 8 can be selected from metal oxides having various light absorption properties, but it is convenient to use an oxide of copper or a copper alloy used for the metal layer. The black oxide layer 8 obtained by oxidizing this metal can be easily formed by introducing oxygen gas during vacuum film formation such as sputtering or ion plating. In addition to the above, the metal used for the material of the black oxide layer 8 may be a metal material that can impart a light absorption function by oxidizing a copper nickel alloy, a titanium alloy, or the like. The film thickness of the black oxide layer 8 may be, for example, not less than 10 nm and not more than 200 nm.
 なお、本実施形態では、第1の導電性金属酸化物層を20nm膜厚にて、金属層2をマグネシウム(Mg)0.5at%含む銅マグネシウム合金で150nmの膜厚にて、さらに第2の導電性金属酸化物層を20nm膜厚の薄膜にて形成している。第1及び第2の導電性金属酸化物層は、室温でのスパッタリングにてアモルファスで成膜することで、容易にウエットエッチング加工できる。金属層2は銅合金でなく純銅で形成しても良い。 In the present embodiment, the first conductive metal oxide layer has a thickness of 20 nm, the metal layer 2 is a copper magnesium alloy containing magnesium (Mg) 0.5 at%, and has a thickness of 150 nm. The conductive metal oxide layer is formed of a thin film having a thickness of 20 nm. The first and second conductive metal oxide layers can be easily wet-etched by forming an amorphous film by sputtering at room temperature. The metal layer 2 may be formed of pure copper instead of a copper alloy.
 金属層を黒色酸化物層8とする場合、銅や銅合金のスパッタリングなどによる成膜時に、酸素ガスを導入して金属酸化膜とする手段が製造工程上、簡便である。第1の導電性金属酸化物層をITZO(In-Sn-Zn-O)のターゲットを用いてスパッタリング成膜のあと、銅合金のスパッタリングターゲットを用い、さらにアルゴンガスにさらに酸素ガスを加えて、たとえば、20nm以上200nm以下の膜厚で黒色酸化物層8を成膜する。次に、酸素ガスのみの導入を停止し、アルゴンガスのみで、銅合金にて金属層2を成膜する。次に真空を破らずに、続いて第2の導電性金属酸化物層3を、第1の導電性金属酸化物層1と同様、ITZO(In-Sn-Zn-O)のターゲットを用いてスパッタリング成膜することで、第1の導電性金属酸化物層1/黒色酸化物層8/金属層2/第2の導電性金属酸化物層3の順に成膜ができる。 In the case where the black oxide layer 8 is used as the metal layer, means for introducing an oxygen gas into a metal oxide film at the time of film formation by sputtering of copper or copper alloy is simple in the manufacturing process. After the first conductive metal oxide layer is formed by sputtering using an ITZO (In—Sn—Zn—O) target, a copper alloy sputtering target is used, and oxygen gas is further added to argon gas. For example, the black oxide layer 8 is formed with a film thickness of 20 nm or more and 200 nm or less. Next, the introduction of only oxygen gas is stopped, and the metal layer 2 is formed with a copper alloy using only argon gas. Next, without breaking the vacuum, the second conductive metal oxide layer 3 was subsequently formed using an ITZO (In—Sn—Zn—O) target in the same manner as the first conductive metal oxide layer 1. By performing the sputtering film formation, the first conductive metal oxide layer 1 / black oxide layer 8 / metal layer 2 / second conductive metal oxide layer 3 can be formed in this order.
 上記のように成膜した後は、上述の第1乃至第3の実施形態の製造方法と同様に、ハーフトーンマスクを用いて露光し、アルカリ現像し、ウエットエッチングを行った後、ドライエッチングを行い、本実施形態の表示装置基板を形成することができる。 After film formation as described above, exposure is performed using a halftone mask, alkali development is performed, wet etching is performed, and dry etching is performed, as in the manufacturing methods of the first to third embodiments described above. The display device substrate of this embodiment can be formed.
 例えば、図6に示す表示装置では、観察者方向Vから見た場合に、金属層2からの光反射(室内光や太陽光など外光の反射)があり、視認性を低下する場合がある。本実施形態では、黒色酸化物層8を第1の導電性金属酸化物層1と金属層2との界面に挿入することで、上記の光反射を抑制することができる。 For example, in the display device shown in FIG. 6, when viewed from the viewer direction V, there is light reflection from the metal layer 2 (reflection of outside light such as room light and sunlight), which may reduce visibility. . In the present embodiment, the light reflection can be suppressed by inserting the black oxide layer 8 into the interface between the first conductive metal oxide layer 1 and the metal layer 2.
 すなわち、本実施形態の表示装置基板、表示装置、および、表示装置基板の製造方法によれば、上述の実施形態と同様の効果を得ることができるとともに、更に視認性の低下を回避することが可能となる。 That is, according to the display device substrate, the display device, and the method for manufacturing the display device substrate of the present embodiment, it is possible to obtain the same effect as that of the above-described embodiment, and to avoid further deterioration in visibility. It becomes possible.
 次に、第5の実施形態に関わる表示装置基板、表示装置および表示装置基板の製造方法について説明する。 
 図17は、第5の実施形態に関わる表示装置基板の部分断面図である。 
 本実施形態の表示装置基板は、例えば図1に示す表示装置基板の透明基板15と第1の導電性金属酸化物層1との間に、第2の黒色層18を配置している。本実施形態の表示装置基板は、上述の複数の実施態様の変形例として提供することができる。
Next, a display device substrate, a display device, and a method for manufacturing the display device substrate according to the fifth embodiment will be described.
FIG. 17 is a partial cross-sectional view of a display device substrate according to the fifth embodiment.
In the display device substrate of this embodiment, for example, a second black layer 18 is disposed between the transparent substrate 15 of the display device substrate and the first conductive metal oxide layer 1 shown in FIG. The display device substrate of this embodiment can be provided as a modification of the above-described plurality of embodiments.
 第2の黒色層18の形成には、黒色層4と同様な色材や透明樹脂を用いることができる。透明基板15と第2の黒色層18の界面の反射率は、その色材の量や膜厚の調整で、光の可視域で3%以下に抑えることが可能である。 For the formation of the second black layer 18, the same color material and transparent resin as those of the black layer 4 can be used. The reflectance of the interface between the transparent substrate 15 and the second black layer 18 can be suppressed to 3% or less in the visible light range by adjusting the amount of the coloring material and the film thickness.
 本実施形態の製造方法と、上述の第4の実施形態との差異は、最初の工程として第2の黒色層18の塗布とその硬膜工程が加わるのみで、主要な工程は第4の実施形態と同じである。 The difference between the manufacturing method of the present embodiment and the above-described fourth embodiment is that the application of the second black layer 18 and its hardening process are added as the first process, and the main process is the fourth process. The form is the same.
 図18は、本発明の一実施形態に関わる表示装置基板のそれぞれの製造工程を示す部分断面図である。 
 図18のoに示すように、透明基板15上に第2の黒色層18を、塗布、硬膜する。硬膜は、光を併用しても良いが、たとえば、250℃の熱処理で硬膜させることが簡便である。第2の黒色層18の材料は、第1の実施形態の黒色層4と同じ材料でよい。本実施形態では、第2の黒色層18の膜厚は、約0.5μmとした。
FIG. 18 is a partial cross-sectional view showing each manufacturing process of the display device substrate according to the embodiment of the present invention.
As shown in o of FIG. 18, the second black layer 18 is applied and hardened on the transparent substrate 15. For the dura film, light may be used in combination. For example, it is easy to dura the film by heat treatment at 250 ° C. The material of the second black layer 18 may be the same material as that of the black layer 4 of the first embodiment. In the present embodiment, the thickness of the second black layer 18 is about 0.5 μm.
 図18のaからcに示す工程は、上述の第1乃至第3の実施形態の表示装置の製造方法と同様である。 
 図18のdに示す黒色配線パターン4aの膜厚は、1.1μmであり、ハーフトーンマスクの40%透過率部分の端子部5に相当する端子部パターン4bの膜厚は0.5μmである。図18のdに示す黒色配線パターン4aのパターン間に露出した第2の黒色層18の膜厚は0.5μmである。この状態の表示装置基板に対してドライエッチング量を0.6μmと設定することで、端子部5に相当する端子部パターン4bと黒色配線パターン4aのパターン間に露出する第2の黒色層18とをドライエッチング工程により完全に除去できる。図18のeに示す表示装置基板は、このドライエッチング工程を経た表示装置基板である。
Steps shown from a to c in FIG. 18 are the same as the manufacturing method of the display device of the first to third embodiments described above.
The film thickness of the black wiring pattern 4a shown in FIG. 18d is 1.1 μm, and the film thickness of the terminal part pattern 4b corresponding to the terminal part 5 of the 40% transmittance part of the halftone mask is 0.5 μm. . The film thickness of the second black layer 18 exposed between the black wiring patterns 4a shown in d of FIG. 18 is 0.5 μm. By setting the dry etching amount to 0.6 μm for the display device substrate in this state, the second black layer 18 exposed between the terminal part pattern 4b corresponding to the terminal part 5 and the black wiring pattern 4a, Can be completely removed by a dry etching process. The display device substrate shown in FIG. 18e is a display device substrate that has undergone this dry etching process.
 例えば、図6に示す液晶表示装置では、観察者方向Vから見た場合に、金属層2からの光反射(室内光や太陽光など外光の反射)があり、視認性を低下させる場合があった。本実施形態の実施形態では、透明基板15と第1の導電性金属酸化物層1との間に第2の黒色層18を加えた構成では、観察者方向Vから見たときに、透明基板15と第2の黒色層18との界面の光の反射率を3%以下とすることができるので、視認性観点から優れた構成といえる。 For example, in the liquid crystal display device shown in FIG. 6, when viewed from the observer direction V, there is light reflection from the metal layer 2 (reflection of outside light such as room light and sunlight), which may reduce visibility. there were. In the embodiment of the present embodiment, in the configuration in which the second black layer 18 is added between the transparent substrate 15 and the first conductive metal oxide layer 1, when viewed from the observer direction V, the transparent substrate Since the reflectance of light at the interface between the first black layer 15 and the second black layer 18 can be 3% or less, it can be said that the structure is excellent from the viewpoint of visibility.
 すなわち、本実施形態の表示装置基板、表示装置、および、表示装置基板の製造方法によれば、上述の実施形態と同様の効果を得ることができるとともに、更に視認性の低下を回避することが可能となる。 That is, according to the display device substrate, the display device, and the method for manufacturing the display device substrate of the present embodiment, it is possible to obtain the same effect as that of the above-described embodiment, and to avoid further deterioration in visibility. It becomes possible.
 次に、第6の実施形態の表示装置基板、表示装置、および、表示装置基板の製造方法について説明する。 
 図19は、第6の実施形態に関わる表示装置基板を説明するための図であって、黒色配線6と、カラーフィルタ層の赤画素R、緑画素G、青画素Bとが異なる面に配設されている表示装置基板の部分断面図である。
Next, a display device substrate, a display device, and a method for manufacturing the display device substrate according to the sixth embodiment will be described.
FIG. 19 is a diagram for explaining a display device substrate according to the sixth embodiment. The black wiring 6 and the red pixel R, the green pixel G, and the blue pixel B of the color filter layer are arranged on different surfaces. It is a fragmentary sectional view of the provided display apparatus board | substrate.
 本実施形態の表示装置基板100は、透明基板15と、黒色配線6と、ブラックマトリクスBMと、カラーフィルタ層(赤画素R、緑画素G、青画素B)と、透明樹脂層9と、を有している。 The display device substrate 100 according to the present embodiment includes a transparent substrate 15, a black wiring 6, a black matrix BM, a color filter layer (red pixel R, green pixel G, blue pixel B), and a transparent resin layer 9. Have.
 本実施形態を含め、ここに説明する複数の実施形態関わる表示装置では、表示装置基板表面(液晶表示装置では偏向板の上)に接着剤などを介して、強度補強のためのカバーガラス、あるいは偏光板を貼り合わせた構成を適用できる。 In the display device according to a plurality of embodiments described herein including this embodiment, a cover glass for reinforcing the strength via an adhesive or the like on the surface of the display device substrate (on the deflection plate in the liquid crystal display device), or A structure in which a polarizing plate is bonded can be applied.
 本実施形態の表示装置基板の変形例であり、黒色配線6とカラーフィルタ層とは、透明基板15の異なる面の上層に配設されている。すなわち、透明基板15は対向した一対の主面を有し、一方の主面上に黒色配線6が配置し、他方の主面上にカラーフィルタ層が配置している。本実施態様では、カラーフィルタ層が液晶層側に位置し、透明基板15を介して黒色配線6は黒色層4が観察者方向Vから視認できる位置に配置している。 This is a modification of the display device substrate of the present embodiment, and the black wiring 6 and the color filter layer are disposed on different layers of the transparent substrate 15. That is, the transparent substrate 15 has a pair of opposing main surfaces, the black wiring 6 is disposed on one main surface, and the color filter layer is disposed on the other main surface. In this embodiment, the color filter layer is located on the liquid crystal layer side, and the black wiring 6 is disposed at a position where the black layer 4 can be viewed from the observer direction V via the transparent substrate 15.
 黒色層4の表面は、例えば、接着剤を介して偏光板(図示せず)などで覆われることになる。この場合、黒色層4の表面が空気に覆われているときと比較すると、黒色層4自体の表面反射がおよそ半分の反射率となる。例えば接着剤の屈折率は、およそ1.5である。黒色層4と接着剤との界面の反射率は、光の波長400nm以上700nm以下の可視域で、3%以下の低い反射率となる。なお、反射率の測定は、顕微分光計を用い、レファレンスはアルミニウム板である。 The surface of the black layer 4 is covered with, for example, a polarizing plate (not shown) via an adhesive. In this case, compared with the case where the surface of the black layer 4 is covered with air, the surface reflection of the black layer 4 itself is approximately half the reflectance. For example, the refractive index of the adhesive is approximately 1.5. The reflectivity at the interface between the black layer 4 and the adhesive is a low reflectivity of 3% or less in the visible wavelength range of 400 nm to 700 nm. The reflectance is measured using a microspectrometer, and the reference is an aluminum plate.
 ブラックマトリクスBMは、透明基板15上において格子状に配置している。ブラックマトリクスBMのY方向に延びた部分は、透明基板15を介して黒色配線6と対向している。本実施形態の表示装置基板の上記以外の構成は、第1の実施形態の表示装置基板と同様の構成である。 The black matrix BM is arranged in a lattice pattern on the transparent substrate 15. A portion of the black matrix BM extending in the Y direction faces the black wiring 6 with the transparent substrate 15 interposed therebetween. The other configuration of the display device substrate of the present embodiment is the same as that of the display device substrate of the first embodiment.
 図20は、図19に示す表示装置基板を具備する、一実施形態の表示装置の部分断面図である。 
 アレイ基板35および液晶層30の構成は、タッチ金属配線37の構成以外は上述の第1の実施形態の表示装置と同様である。タッチ金属配線37は、たとえば、図示されていないトランジスタ(アクティブ素子)のゲート電極あるいはソース電極(又はドレイン電極)と同じ金属配線の製造工程で同時に形成できる。
20 is a partial cross-sectional view of a display device according to an embodiment including the display device substrate shown in FIG.
The configurations of the array substrate 35 and the liquid crystal layer 30 are the same as those of the display device of the first embodiment except for the configuration of the touch metal wiring 37. The touch metal wiring 37 can be formed at the same time in the same metal wiring manufacturing process as the gate electrode or source electrode (or drain electrode) of a transistor (active element) not shown.
 液晶層30は、アレイ基板35に具備された画素電極36と共通電極32とに印加される電圧により生じる電界により配向制御される。液晶駆動は、第1の実施形態と同じFFS方式であり、液晶層30はアレイ基板35の面と平行な配向がなされている。 The alignment of the liquid crystal layer 30 is controlled by an electric field generated by a voltage applied to the pixel electrode 36 and the common electrode 32 provided on the array substrate 35. The liquid crystal drive is the same FFS system as in the first embodiment, and the liquid crystal layer 30 is aligned parallel to the surface of the array substrate 35.
 本実施形態の液晶表示装置では、タッチセンシングのための静電容量C4は、黒色配線6と、アレイ基板35に具備されるタッチ金属配線37との間に形成される。トランジスタがトップゲート構造の場合、トランジスタのチャネル層をカバーする遮光層を形成する金属層にて、タッチ金属配線37と同時に形成しても良い。図示を省略したアクティブ素子のチャネル層は、酸化物半導体あるいはポリシリコン半導体を用いることができる。 
 黒色配線6とタッチ金属配線37はタッチセンシング駆動において、検出電極と駆動電極の役割を入れ替えて用いても良い。
In the liquid crystal display device of this embodiment, the capacitance C4 for touch sensing is formed between the black wiring 6 and the touch metal wiring 37 provided on the array substrate 35. When the transistor has a top gate structure, it may be formed at the same time as the touch metal wiring 37 in a metal layer that forms a light shielding layer that covers the channel layer of the transistor. An oxide semiconductor or a polysilicon semiconductor can be used for the channel layer of the active element (not shown).
The black wiring 6 and the touch metal wiring 37 may be used by switching the roles of the detection electrode and the driving electrode in the touch sensing drive.
 なお、本実施形態において、透明基板15に黒色配線6を形成する方法は第1乃至第3の実施形態と同様であるため説明を省略する。 
 本実施形態の表示装置基板、表示装置、および、表示装置基板の製造方法によれば、上述の実施形態と同様の効果を得ることができる。
In the present embodiment, the method for forming the black wiring 6 on the transparent substrate 15 is the same as that in the first to third embodiments, and the description thereof is omitted.
According to the display device substrate, the display device, and the display device substrate manufacturing method of the present embodiment, the same effects as those of the above-described embodiment can be obtained.
 次に、第7の実施形態に関わる表示装置基板、表示装置、および、表示装置基板の製造方法について説明する。 
 図21は、第7の実施形態に関わる表示装置基板を説明するための図であって、黒色配線6と、カラーフィルタ層の赤画素R、緑画素G、青画素Bとが異なる面に配設されている表示装置基板の部分断面図である。
Next, a display device substrate, a display device, and a method for manufacturing the display device substrate according to the seventh embodiment will be described.
FIG. 21 is a diagram for explaining a display device substrate according to the seventh embodiment, in which the black wiring 6 and the red pixel R, green pixel G, and blue pixel B of the color filter layer are arranged on different surfaces. It is a fragmentary sectional view of the provided display apparatus board | substrate.
 本実施形態の表示装置基板200は、透明樹脂層9上に配置された透明導電膜配線7を更に有している点以外は、図19に示す表示装置基板100と同様の構成である。 The display device substrate 200 of the present embodiment has the same configuration as the display device substrate 100 shown in FIG. 19 except that the display device substrate 200 further includes a transparent conductive film wiring 7 disposed on the transparent resin layer 9.
 図22は、図21に示す表示装置基板を具備する、一実施形態の表示装置の部分断面図である。なお、図22において、偏光板、位相差版、配向膜、バックライトユニット、トランジスタであるアクティブ素子につながるゲート線やソース線などの表記は省略した。 FIG. 22 is a partial cross-sectional view of a display device according to an embodiment including the display device substrate shown in FIG. Note that in FIG. 22, notation of a polarizing plate, a retardation plate, an alignment film, a backlight unit, a gate line and a source line connected to an active element which is a transistor is omitted.
 本実施形態の表示装置のアレイ基板45および液晶層30は、例えば図13に示す第2の実施形態の表示装置におけるアレイ基板45と同様の構成である。すなわち、液晶層30は、画素電極36と、共通電極である透明導電膜配線7との間に印加される電圧により駆動される。画素電極36と透明導電膜配線7との間に印加される液晶駆動電圧は、Z方向(液晶層30の厚み方向)に印加される、いわゆる縦電界である。透明導電膜配線7は、ITOと呼称される透明導電膜で形成される。 The array substrate 45 and the liquid crystal layer 30 of the display device of this embodiment have the same configuration as the array substrate 45 of the display device of the second embodiment shown in FIG. That is, the liquid crystal layer 30 is driven by a voltage applied between the pixel electrode 36 and the transparent conductive film wiring 7 that is a common electrode. The liquid crystal driving voltage applied between the pixel electrode 36 and the transparent conductive film wiring 7 is a so-called vertical electric field applied in the Z direction (thickness direction of the liquid crystal layer 30). The transparent conductive film wiring 7 is formed of a transparent conductive film called ITO.
 タッチセンシングに関わる静電容量C5は、例えば、黒色配線6と透明導電膜配線7との間に形成される。黒色配線6の並びは紙面に対して垂直なY方向にストライプパターン形状で配列される。観察者方向Vから見た表示装置基板200の平面視は、図14と同様である。図示を省略したアクティブ素子のチャネル層は、酸化物半導体あるいはポリシリコン半導体を用いることができる。 The electrostatic capacitance C5 related to touch sensing is formed between the black wiring 6 and the transparent conductive film wiring 7, for example. The black wirings 6 are arranged in a stripe pattern shape in the Y direction perpendicular to the paper surface. The plan view of the display device substrate 200 viewed from the observer direction V is the same as that in FIG. An oxide semiconductor or a polysilicon semiconductor can be used for the channel layer of the active element (not shown).
 本実施形態の表示装置基板、表示装置、および、表示装置基板の製造方法によれば、上述の実施形態と同様の効果を得ることができる。 
 すなわち、上述の複数の実施形態によれば、低抵抗でアルカリ耐性のある黒色配線であって、無アルカリガラスである基板と密着性の高い状態、かつ、バックライトなど表示装置の光源からの光の再反射を低減するタッチセンシング用配線を具備する表示装置基板を提供することができる。
According to the display device substrate, the display device, and the display device substrate manufacturing method of the present embodiment, the same effects as those of the above-described embodiment can be obtained.
That is, according to the above-described embodiments, low-resistance and alkali-resistant black wiring that has high adhesion to a non-alkali glass substrate and light from a light source of a display device such as a backlight. It is possible to provide a display device substrate including a touch sensing wiring that reduces re-reflection.
 また、上述の複数の実施形態によれば、高解像度で、かつ、高速なタッチ入力に応えられる表示装置、およびこれに用いる表示装置基板、カラーフィルタを具備する表示装置基板を提供することができる。 
 また、上述の複数の実施形態によれば、安定した電気的実装が可能な表示装置基板を提供することができる。
Further, according to the above-described embodiments, it is possible to provide a display device capable of responding to high-speed and high-speed touch input, a display device substrate used for the display device, and a display device substrate including a color filter. .
Moreover, according to the above-described plurality of embodiments, a display device substrate capable of stable electrical mounting can be provided.
 上記の複数の実施形態の表示装置基板、表示装置、および、表示装置基板の製造方法は、発明の趣旨が変わらない範囲で様々に変更して適用することができる。 
 例えば、上述の複数の実施形態に関わる表示装置は、種々の応用が可能である。上述の複数の実施形態の表示装置が対象とできる電子機器として、携帯電話、携帯型ゲーム機器、携帯情報端末、パーソナルコンピュータ、電子書籍、ビデオカメラ、デジタルスチルカメラ、ヘッドマウントディスプレイ、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤー等)、複写機、ファクシミリ、プリンター、プリンター複合機、自動販売機、現金自動預け入れ払い機(ATM)、個人認証機器、光通信機器などが挙げられる。上記の各実施形態は、自由に組み合わせて用いることができる。
The display device substrate, the display device, and the display device substrate manufacturing method according to the above-described embodiments can be applied with various modifications within the scope of the invention.
For example, the display devices according to the above-described plurality of embodiments can be applied in various ways. As electronic devices that can be targeted by the display devices of the above-described embodiments, mobile phones, portable game devices, personal digital assistants, personal computers, electronic books, video cameras, digital still cameras, head mounted displays, navigation systems, acoustics Examples include playback devices (car audio, digital audio player, etc.), copiers, facsimiles, printers, printer multifunction devices, vending machines, automatic teller machines (ATMs), personal authentication devices, optical communication devices, and the like. Each of the above embodiments can be used in any combination.
 要するにこの発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。 In short, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.
1…第1の導電性金属酸化物層、2…金属層、3…第2の導電性金属酸化物層、4…黒色層、4a…黒色配線パターン、4b…端子部パターン、5…端子部、6…黒色配線、6a…引回し配線(第1配線)、6b…ダミー配線(第2配線)、7…透明導電膜配線、8…黒色酸化物層、9…透明樹脂層、15、25…透明基板、18…黒色層、19…矩形表示領域、21~23…絶縁層、25、35、45…アレイ基板、30…液晶層、32…共通電極、36…画素電極、37、42…タッチ金属配線、40…ソース線、41…ゲート線、43…遮光パターン、SE…ソース電極、DE…ドレイン電極、GE…ゲート電極、49…チャネル層、46…トランジスタ(アクティブ素子)、47…コンタクトホール、100、200…表示装置基板、C1~C5…静電容量 DESCRIPTION OF SYMBOLS 1 ... 1st conductive metal oxide layer, 2 ... Metal layer, 3 ... 2nd conductive metal oxide layer, 4 ... Black layer, 4a ... Black wiring pattern, 4b ... Terminal part pattern, 5 ... Terminal part , 6 ... black wiring, 6a ... routing wiring (first wiring), 6b ... dummy wiring (second wiring), 7 ... transparent conductive film wiring, 8 ... black oxide layer, 9 ... transparent resin layer, 15, 25 ... Transparent substrate, 18 ... Black layer, 19 ... Rectangular display area, 21-23 ... Insulating layer, 25, 35, 45 ... Array substrate, 30 ... Liquid crystal layer, 32 ... Common electrode, 36 ... Pixel electrode, 37, 42 ... Touch metal wiring, 40 ... source line, 41 ... gate line, 43 ... light shielding pattern, SE ... source electrode, DE ... drain electrode, GE ... gate electrode, 49 ... channel layer, 46 ... transistor (active element), 47 ... contact Hall, 100, 200 ... display device substrate C1 ~ C5 ... capacitance

Claims (15)

  1.  無アルカリガラスである透明基板と、
     前記透明基板上において、複数の画素間に配置され、第1の導電性金属酸化物層と、前記第1の導電性金属酸化物層上に配置された金属層と、前記金属層上に配置された第2の導電性金属酸化物層と、前記第2の導電性金属酸化物層上に配置された黒色層と、を含む黒色配線と、を備え、
     前記黒色配線は第1方向に延び、前記第1方向と略直交する第2方向に所定の間隔を置いて複数の前記黒色配線が配置され、
     前記黒色配線は、前記複数の画素を含む表示領域の外まで延びた端部において前記第2の導電性金属酸化物層が露出した端子部を備えた引回し配線を含み、
     前記金属層は銅あるいは銅合金で形成され、
     前記黒色層はカーボンを主たる色材とし、
     前記第1および第2の導電性金属酸化物層は、酸化インジウムと酸化亜鉛と酸化錫との混合酸化物で形成され、
     前記第1の導電性金属酸化物層、前記金属層、前記第2の導電性金属酸化物層、および、前記黒色層は、等しい線幅である、表示装置基板。
    A transparent substrate that is alkali-free glass;
    A first conductive metal oxide layer, a metal layer disposed on the first conductive metal oxide layer, and a metal layer disposed between the plurality of pixels on the transparent substrate. A black wiring including a second conductive metal oxide layer formed and a black layer disposed on the second conductive metal oxide layer,
    The black wiring extends in a first direction, and a plurality of the black wirings are arranged at a predetermined interval in a second direction substantially orthogonal to the first direction,
    The black wiring includes a lead wiring provided with a terminal portion where the second conductive metal oxide layer is exposed at an end portion extending outside a display region including the plurality of pixels,
    The metal layer is formed of copper or a copper alloy,
    The black layer is mainly composed of carbon,
    The first and second conductive metal oxide layers are formed of a mixed oxide of indium oxide, zinc oxide and tin oxide;
    The display device substrate, wherein the first conductive metal oxide layer, the metal layer, the second conductive metal oxide layer, and the black layer have equal line widths.
  2.  前記混合酸化物に含まれるインジウム(In)と亜鉛(Zn)と錫(Sn)のIn/(In+Zn+Sn)で示される原子比は、0.8より大きく、かつ、Zn/Snの原子比は1より大きい請求項1に記載の表示装置基板。 The atomic ratio of In / (In + Zn + Sn) of indium (In), zinc (Zn), and tin (Sn) contained in the mixed oxide is greater than 0.8, and the atomic ratio of Zn / Sn is 1 The display device substrate of claim 1, which is larger.
  3.  前記黒色層に含まれるカーボンの含有量が4質量%以上50質量%以下の範囲内にある請求項1に記載の表示装置基板。 The display device substrate according to claim 1, wherein a content of carbon contained in the black layer is in a range of 4 mass% to 50 mass%.
  4.  前記第1の導電性金属酸化物層と前記金属層との界面に、金属を酸化させた黒色酸化物層を更に具備したことを特徴とする請求項1に記載の表示装置基板。 The display device substrate according to claim 1, further comprising a black oxide layer obtained by oxidizing a metal at an interface between the first conductive metal oxide layer and the metal layer.
  5.  前記透明基板と前記第1の導電性金属酸化物層との界面に、第2の黒色層を更に具備し、
     前記第2の黒色層は前記黒色配線と等しい線幅である請求項1に記載の表示装置基板。
    A second black layer at the interface between the transparent substrate and the first conductive metal oxide layer;
    The display device substrate according to claim 1, wherein the second black layer has a line width equal to that of the black wiring.
  6.  少なくとも前記表示領域を覆うように、前記黒色配線上に透明樹脂層を積層した、請求項1に記載の表示装置基板。 The display device substrate according to claim 1, wherein a transparent resin layer is laminated on the black wiring so as to cover at least the display region.
  7.  前記黒色配線の上層において、前記複数の画素のそれぞれに配置された赤色の着色層、青色の着色層、および緑色の着色層を含むカラーフィルタ層と、前記カラーフィルタ層上に前記表示領域を覆うように透明樹脂層を積層した、請求項1に記載の表示装置基板。 In the upper layer of the black wiring, a color filter layer including a red coloring layer, a blue coloring layer, and a green coloring layer disposed in each of the plurality of pixels, and covering the display area on the color filter layer The display device substrate according to claim 1, wherein transparent resin layers are laminated as described above.
  8.  無アルカリガラスである透明基板上に複数の画素を備える表示領域に、前記複数の画素を区分し、前記表示領域外に延びた端部に端子部を有する黒色配線を具備した表示装置基板の製造方法であって、
     無アルカリガラスである透明基板上に第1の導電性金属酸化物層と、銅層あるいは銅合金層からなる金属層と、第2の導電性金属酸化物層を形成する成膜工程と、
     少なくとも、カーボンとアルカリ可溶なアクリル樹脂を含む黒色感光液を前記第2の導電性金属酸化物層上に塗布し、乾燥させて黒色膜とする塗布工程と、
     前記黒色配線の第1パターンと、前記第1パターンと光透過率の異なる前記端子部の第2パターンとを具備するハーフトーンマスクを介して露光し、アルカリ現像液を用いて透明基板上の前記黒色膜を選択的に除去するとともに、前記黒色配線のパターンとして厚い黒色膜を残し、前記端子部のパターンとして薄い黒色膜を形成する黒色膜のパターン形成工程と、
     ウエットエッチングの手法にて、前記第1の導電性金属酸化物層と、前記銅層あるいは銅合金層からなる金属層と、前記第2の導電性金属酸化物層との3層の黒色膜で覆われていない部分を除去するウエットエッチング工程と、
     ドライエッチングの手法にて、前記黒色配線のパターンとして厚い黒色膜の表面の一部を膜厚方向に除去するとともに、前記端子部のパターンとして薄い黒色膜を除去して前記端子部の第2の導電酸化物層の表面を露出させるドライエッチング工程と、を備え、
     前記透明基板上に第1の導電性金属酸化物層と、銅層あるいは銅合金層からなる金属層と、第2の導電性金属酸化物層と、カーボンを主たる色材とする黒色層とを、この順で、それぞれ等しい線幅にて積層した黒色配線を形成する、表示装置基板の製造方法。
    Manufacture of a display device substrate having a black wiring having a terminal area at an end extending outside the display area, the display area having a plurality of pixels on a transparent substrate made of alkali-free glass. A method,
    A film forming step of forming a first conductive metal oxide layer, a metal layer made of a copper layer or a copper alloy layer, and a second conductive metal oxide layer on a transparent substrate made of alkali-free glass;
    Applying a black photosensitive solution containing at least carbon and an alkali-soluble acrylic resin on the second conductive metal oxide layer, and drying to form a black film; and
    It exposes through the halftone mask which comprises the 1st pattern of the said black wiring, and the said 2nd pattern of the said terminal part from which the light transmittance differs from the said 1st pattern, The said on a transparent substrate using an alkali developing solution A black film pattern forming step of selectively removing the black film, leaving a thick black film as the pattern of the black wiring, and forming a thin black film as the pattern of the terminal portion,
    Using a wet etching technique, a three-layer black film comprising the first conductive metal oxide layer, the metal layer made of the copper layer or the copper alloy layer, and the second conductive metal oxide layer A wet etching process to remove the uncovered part;
    A part of the surface of the thick black film as the black wiring pattern is removed in the film thickness direction by the dry etching technique, and the thin black film is removed as the terminal part pattern to remove the second of the terminal part. A dry etching step of exposing the surface of the conductive oxide layer,
    On the transparent substrate, a first conductive metal oxide layer, a metal layer made of a copper layer or a copper alloy layer, a second conductive metal oxide layer, and a black layer mainly composed of carbon. In this order, a method of manufacturing a display device substrate, in which black wirings are stacked with equal line widths.
  9.  請求項1乃至請求項7のいずれか1項に記載の表示装置基板と、前記表示装置基板と対向して固定されたアレイ基板と、前記表示装置基板と前記アレイ基板との間に配置された液晶層と、を備えた表示装置であって、
     前記アレイ基板は、平面視において、複数の画素の隣接位置および前記黒色配線と重なる位置に配置されたアクティブ素子と、前記アクティブ素子と電気的に接続した金属配線と、前記黒色配線と交差する方向に延びたタッチ金属配線と、具備した表示装置。
    8. The display device substrate according to claim 1, an array substrate fixed opposite to the display device substrate, and the display device substrate and the array substrate. A display device comprising a liquid crystal layer,
    The array substrate has, in plan view, an active element disposed at a position adjacent to a plurality of pixels and a position overlapping the black wiring, a metal wiring electrically connected to the active element, and a direction intersecting the black wiring And a touch metal wiring extending to the display, and a display device.
  10.  前記アクティブ素子が、ガリウム、インジウム、亜鉛、錫、ゲルマニウム、マグネシウム、アルミニウムの2種以上の混合金属酸化物で形成されるチャネル層を具備するトランジスタである請求項9に記載の表示装置。 The display device according to claim 9, wherein the active element is a transistor including a channel layer formed of a mixed metal oxide of two or more of gallium, indium, zinc, tin, germanium, magnesium, and aluminum.
  11.  前記アレイ基板は前記チャネル層を覆う遮光パターンを更に備え、
     前記タッチ金属配線と前記遮光パターンとは同じ層に配置されている請求項10に記載の表示装置。
    The array substrate further comprises a light shielding pattern covering the channel layer,
    The display device according to claim 10, wherein the touch metal wiring and the light shielding pattern are arranged in the same layer.
  12.  前記液晶層の配向が、前記アレイ基板の面に平行である請求項9に記載の表示装置。 The display device according to claim 9, wherein the alignment of the liquid crystal layer is parallel to the surface of the array substrate.
  13.  請求項6あるいは請求項7に記載の表示装置基板と、アレイ基板とを向かい合うように、液晶層を介して貼り合わせた表示装置であって、
     前記表示装置基板は、前記透明樹脂層上に、平面視において、前記黒色配線と交差する複数の透明導電膜配線を更に備え、
     前記アレイ基板は、平面視において、複数の画素の隣接位置および前記黒色配線と重なる位置にアクティブ素子を具備した、表示装置。
    A display device in which the display device substrate according to claim 6 or 7 and the array substrate are bonded to each other via a liquid crystal layer,
    The display device substrate further includes a plurality of transparent conductive film wirings intersecting the black wirings in a plan view on the transparent resin layer,
    The array substrate includes an active element at a position adjacent to a plurality of pixels and a position overlapping with the black wiring in a plan view.
  14.  前記アクティブ素子が、ガリウム、インジウム、亜鉛、錫、ゲルマニウム、マグネシウム、アルミニウムの2種以上の混合金属酸化物で形成されるチャネル層を具備するトランジスタである請求項13に記載の表示装置。 14. The display device according to claim 13, wherein the active element is a transistor including a channel layer formed of a mixed metal oxide of two or more of gallium, indium, zinc, tin, germanium, magnesium, and aluminum.
  15.  前記液晶層の配向が、前記アレイ基板の面に垂直である請求項13に記載の表示装置。 14. The display device according to claim 13, wherein the alignment of the liquid crystal layer is perpendicular to the surface of the array substrate.
PCT/JP2015/080546 2014-12-05 2015-10-29 Display device substrate, method for manufacturing display device substrate, and display device using same WO2016088488A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177010547A KR101935187B1 (en) 2014-12-05 2015-10-29 Display device substrate, method for manufacturing display device substrate, and display device using same
JP2016510337A JP6070896B2 (en) 2014-12-05 2015-10-29 Display device substrate, display device substrate manufacturing method, and display device using the same
CN201580057277.0A CN107077807B (en) 2014-12-05 2015-10-29 Display device substrate, the manufacturing method of display device substrate and the display device using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014247206 2014-12-05
JP2014-247206 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016088488A1 true WO2016088488A1 (en) 2016-06-09

Family

ID=56091443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080546 WO2016088488A1 (en) 2014-12-05 2015-10-29 Display device substrate, method for manufacturing display device substrate, and display device using same

Country Status (5)

Country Link
JP (1) JP6070896B2 (en)
KR (1) KR101935187B1 (en)
CN (1) CN107077807B (en)
TW (1) TWI663586B (en)
WO (1) WO2016088488A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054926A (en) * 2015-09-09 2017-03-16 凸版印刷株式会社 Wiring board, semiconductor device and liquid crystal display device
CN107703685A (en) * 2016-08-08 2018-02-16 东京应化工业株式会社 The manufacture method of layered product and layered product
WO2018051487A1 (en) * 2016-09-16 2018-03-22 凸版印刷株式会社 Display device and display device substrate
WO2018073690A1 (en) * 2016-10-21 2018-04-26 Semiconductor Energy Laboratory Co., Ltd. Touch sensor, display device, display module, and electronic device
JP2018084803A (en) * 2016-11-25 2018-05-31 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Oled integrated touch sensor and oled display containing the same
JP2019001007A (en) * 2017-06-12 2019-01-10 東京応化工業株式会社 Laminate and method for manufacturing laminate
WO2019087332A1 (en) * 2017-11-01 2019-05-09 株式会社ワコム Position detection system and touch sensor
JP2019135589A (en) * 2018-02-05 2019-08-15 凸版印刷株式会社 Display device
CN110931507A (en) * 2018-09-19 2020-03-27 夏普株式会社 Active matrix substrate, method for manufacturing same, and method for manufacturing liquid crystal display device
JP2020166057A (en) * 2019-03-28 2020-10-08 株式会社ジャパンディスプレイ Display device with detector
TWI715631B (en) * 2016-09-20 2021-01-11 日商凸版印刷股份有限公司 Display device and display device substrate
CN112785917A (en) * 2019-11-04 2021-05-11 群创光电股份有限公司 Electronic device
TWI735597B (en) * 2016-08-08 2021-08-11 日商東京應化工業股份有限公司 Manufacturing method of substrate
JP2021521632A (en) * 2018-04-06 2021-08-26 グロ アーベーGlo Ab Light emitting diode array including multilayer bus electrode and its manufacturing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054874A (en) * 2016-09-29 2018-04-05 株式会社ジャパンディスプレイ Display device
TWI631513B (en) * 2016-11-08 2018-08-01 關鍵禾芯科技股份有限公司 Fingerprint identification module
CN110161767A (en) * 2018-02-11 2019-08-23 宁波祢若电子科技有限公司 A kind of composite transparent conductive layer and the large area electrochromic device of uniform response
TWI694424B (en) * 2019-03-29 2020-05-21 友達光電股份有限公司 Display apparatus and manufacturing method thereof
CN111402737A (en) * 2020-03-26 2020-07-10 昆山国显光电有限公司 Display panel
CN113192973A (en) * 2021-04-02 2021-07-30 Tcl华星光电技术有限公司 Array substrate and micro light-emitting diode display panel
KR102361655B1 (en) * 2021-04-07 2022-02-14 부경대학교 산학협력단 Method of manufacturing display panel with no color unevenness using inkjet printing
TWI776654B (en) * 2021-08-24 2022-09-01 友達光電股份有限公司 Display apparatus and fabricating method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072581A (en) * 2008-09-22 2010-04-02 Dainippon Printing Co Ltd Color filter, display device, and method for manufacturing color filter
JP2010072584A (en) * 2008-09-22 2010-04-02 Dainippon Printing Co Ltd Substrate for display, and display
JP2011128208A (en) * 2009-12-15 2011-06-30 Toppan Printing Co Ltd Color filter substrate and method for manufacturing the same
JP2012098687A (en) * 2010-10-29 2012-05-24 Samsung Mobile Display Co Ltd Touch screen panel incorporated liquid crystal display device
JP2012215764A (en) * 2011-04-01 2012-11-08 Toppan Printing Co Ltd Color filter substrate and liquid crystal display device including the same
JP2012220670A (en) * 2011-04-07 2012-11-12 Toppan Printing Co Ltd Color filter with touch panel electrode and manufacturing method therefor
WO2013018495A1 (en) * 2011-07-29 2013-02-07 シャープ株式会社 Touch panel substrate and display panel
JP2013174900A (en) * 2013-04-18 2013-09-05 Toppan Printing Co Ltd Method of manufacturing color filter substrate with touch panel electrode
WO2013141056A1 (en) * 2012-03-22 2013-09-26 シャープ株式会社 Color filter-integrated touch panel
JP2013246289A (en) * 2012-05-25 2013-12-09 Panasonic Liquid Crystal Display Co Ltd Liquid crystal display device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060035164A (en) * 2004-10-21 2006-04-26 삼성전자주식회사 Metal line method for manufacturing thereof and array substrate having the same and method for manufacturing thereof and display panel having the same
JP4846726B2 (en) 2005-09-20 2011-12-28 出光興産株式会社 Sputtering target, transparent conductive film and transparent electrode
WO2007063966A1 (en) * 2005-12-02 2007-06-07 Idemitsu Kosan Co., Ltd. Tft substrate and tft substrate manufacturing method
JP5435556B2 (en) 2009-09-16 2014-03-05 日本写真印刷株式会社 Conductive sheet, laminated conductive sheet and conductive pattern sheet, laminated conductive sheet manufacturing method, transparent antenna or transparent display or touch input sheet manufacturing method
JP5984310B2 (en) 2010-10-19 2016-09-06 エルジー・ケム・リミテッド Structure, touch panel, and display including conductive pattern
CN103247531B (en) * 2012-02-14 2016-02-17 群康科技(深圳)有限公司 Thin-film transistor and preparation method thereof and display
US8907871B2 (en) * 2012-03-15 2014-12-09 Corning Incorporated Touch screen assemblies for electronic devices
CN102799014B (en) * 2012-09-07 2014-09-10 深圳市华星光电技术有限公司 Method for producing liquid crystal display panel
KR102101262B1 (en) * 2013-01-25 2020-04-16 도판 인사츠 가부시키가이샤 Color filter substrate, liquid-crystal display device, and method for manufacturing color filter substrate
JP2014182203A (en) 2013-03-18 2014-09-29 Japan Display Inc Display device, and electronic equipment
EP3168719B1 (en) * 2014-07-10 2019-03-20 Toppan Printing Co., Ltd. Black electrode substrate, production method for black electrode substrate, and display device
CN104503127B (en) * 2014-12-01 2017-10-13 深圳市华星光电技术有限公司 Array base palte and preparation method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072581A (en) * 2008-09-22 2010-04-02 Dainippon Printing Co Ltd Color filter, display device, and method for manufacturing color filter
JP2010072584A (en) * 2008-09-22 2010-04-02 Dainippon Printing Co Ltd Substrate for display, and display
JP2011128208A (en) * 2009-12-15 2011-06-30 Toppan Printing Co Ltd Color filter substrate and method for manufacturing the same
JP2012098687A (en) * 2010-10-29 2012-05-24 Samsung Mobile Display Co Ltd Touch screen panel incorporated liquid crystal display device
JP2012215764A (en) * 2011-04-01 2012-11-08 Toppan Printing Co Ltd Color filter substrate and liquid crystal display device including the same
JP2012220670A (en) * 2011-04-07 2012-11-12 Toppan Printing Co Ltd Color filter with touch panel electrode and manufacturing method therefor
WO2013018495A1 (en) * 2011-07-29 2013-02-07 シャープ株式会社 Touch panel substrate and display panel
WO2013141056A1 (en) * 2012-03-22 2013-09-26 シャープ株式会社 Color filter-integrated touch panel
JP2013246289A (en) * 2012-05-25 2013-12-09 Panasonic Liquid Crystal Display Co Ltd Liquid crystal display device
JP2013174900A (en) * 2013-04-18 2013-09-05 Toppan Printing Co Ltd Method of manufacturing color filter substrate with touch panel electrode

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054926A (en) * 2015-09-09 2017-03-16 凸版印刷株式会社 Wiring board, semiconductor device and liquid crystal display device
TWI735597B (en) * 2016-08-08 2021-08-11 日商東京應化工業股份有限公司 Manufacturing method of substrate
CN107703685A (en) * 2016-08-08 2018-02-16 东京应化工业株式会社 The manufacture method of layered product and layered product
CN107703685B (en) * 2016-08-08 2022-03-18 东京应化工业株式会社 Laminate and method for producing laminate
CN109478110A (en) * 2016-09-16 2019-03-15 凸版印刷株式会社 Display device and display device substrate
JPWO2018051487A1 (en) * 2016-09-16 2018-09-13 凸版印刷株式会社 Display device and display device substrate
KR20190028759A (en) * 2016-09-16 2019-03-19 도판 인사츠 가부시키가이샤 Display device and display device substrate
WO2018051487A1 (en) * 2016-09-16 2018-03-22 凸版印刷株式会社 Display device and display device substrate
KR102207053B1 (en) * 2016-09-16 2021-01-25 도판 인사츠 가부시키가이샤 Display device and display device substrate
TWI715631B (en) * 2016-09-20 2021-01-11 日商凸版印刷股份有限公司 Display device and display device substrate
JP2018073408A (en) * 2016-10-21 2018-05-10 株式会社半導体エネルギー研究所 Touch sensor, display device, display module, and electronic device
JP7505096B2 (en) 2016-10-21 2024-06-24 株式会社半導体エネルギー研究所 Semiconductor Device
US11614816B2 (en) 2016-10-21 2023-03-28 Semiconductor Energy Laboratory Co., Ltd. Touch sensor, display device, display module, and electronic device
WO2018073690A1 (en) * 2016-10-21 2018-04-26 Semiconductor Energy Laboratory Co., Ltd. Touch sensor, display device, display module, and electronic device
US11204658B2 (en) 2016-10-21 2021-12-21 Semiconductor Energy Laboratory Co., Ltd. Touch sensor, display device, display module, and electronic device
JP2018084803A (en) * 2016-11-25 2018-05-31 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Oled integrated touch sensor and oled display containing the same
JP2019001007A (en) * 2017-06-12 2019-01-10 東京応化工業株式会社 Laminate and method for manufacturing laminate
JPWO2019087332A1 (en) * 2017-11-01 2020-11-19 株式会社ワコム Position detection system and touch sensor
US11294506B2 (en) 2017-11-01 2022-04-05 Wacom Co., Ltd. Position detection system and touch sensor
WO2019087332A1 (en) * 2017-11-01 2019-05-09 株式会社ワコム Position detection system and touch sensor
US11914817B2 (en) 2017-11-01 2024-02-27 Wacom Co., Ltd. Position detection system and touch sensor
JP2019135589A (en) * 2018-02-05 2019-08-15 凸版印刷株式会社 Display device
JP7013902B2 (en) 2018-02-05 2022-02-01 凸版印刷株式会社 Display device
JP7289849B2 (en) 2018-04-06 2023-06-12 ナノシス, インコーポレイテッド Light-emitting diode array including multilayer bus electrodes, and manufacturing method thereof
JP2021521632A (en) * 2018-04-06 2021-08-26 グロ アーベーGlo Ab Light emitting diode array including multilayer bus electrode and its manufacturing method
CN110931507A (en) * 2018-09-19 2020-03-27 夏普株式会社 Active matrix substrate, method for manufacturing same, and method for manufacturing liquid crystal display device
CN110931507B (en) * 2018-09-19 2023-06-06 夏普株式会社 Active matrix substrate, method for manufacturing active matrix substrate, and method for manufacturing liquid crystal display device
JP7281940B2 (en) 2019-03-28 2023-05-26 株式会社ジャパンディスプレイ Display device with detector
JP2020166057A (en) * 2019-03-28 2020-10-08 株式会社ジャパンディスプレイ Display device with detector
CN112785917A (en) * 2019-11-04 2021-05-11 群创光电股份有限公司 Electronic device
CN112785917B (en) * 2019-11-04 2023-10-10 群创光电股份有限公司 electronic device

Also Published As

Publication number Publication date
JPWO2016088488A1 (en) 2017-04-27
CN107077807A (en) 2017-08-18
TW201631564A (en) 2016-09-01
KR20170066443A (en) 2017-06-14
TWI663586B (en) 2019-06-21
CN107077807B (en) 2019-11-08
JP6070896B2 (en) 2017-02-01
KR101935187B1 (en) 2019-03-18

Similar Documents

Publication Publication Date Title
JP6070896B2 (en) Display device substrate, display device substrate manufacturing method, and display device using the same
US10031601B2 (en) Black electrode, method of manufacturing black electrode substrate and display device
US10452221B2 (en) Liquid crystal display device
JP5673782B1 (en) Liquid crystal display
US10055058B2 (en) Liquid crystal display device with touch sensing function and plurality of transparent electrode patterns
KR102055740B1 (en) Liquid crystal display
US10437115B2 (en) Liquid crystal display device
KR102101028B1 (en) Display device
WO2017195339A1 (en) Display device
JP6528557B2 (en) Display device substrate, method of manufacturing display device substrate, and display device using the same
TWI591402B (en) Liquid crystal display device
TW201741749A (en) Display device capable of performing a stable touch sensing operation with an increased sensitivity
TW201642107A (en) Liquid crystal display device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016510337

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177010547

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866064

Country of ref document: EP

Kind code of ref document: A1