WO2016088425A1 - Rotary drive mechanism - Google Patents
Rotary drive mechanism Download PDFInfo
- Publication number
- WO2016088425A1 WO2016088425A1 PCT/JP2015/075801 JP2015075801W WO2016088425A1 WO 2016088425 A1 WO2016088425 A1 WO 2016088425A1 JP 2015075801 W JP2015075801 W JP 2015075801W WO 2016088425 A1 WO2016088425 A1 WO 2016088425A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- variable resistor
- wiring board
- printed wiring
- connector
- rotary variable
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/30—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C10/00—Adjustable resistors
- H01C10/24—Adjustable resistors the contact moving along turns of a helical resistive element, or vica versa
Definitions
- the present invention relates to a rotational drive mechanism.
- Patent Document 1 Japanese Patent Laid-Open No. 2000-325375
- Patent Document 2 Japanese Patent Laid-Open No. 2000-325375
- the finger joint was bent by pulling the finger part with the wire, or the finger joint was extended by loosening the wire.
- the finger joint is merely bent and stretched, and the finger joint is not stopped at an arbitrary angle. Thus, it has been difficult to finely control the movement of the finger joint.
- an object of the present invention is to provide a rotation drive mechanism that can finely control the movement of a finger joint of a robot.
- the rotational drive mechanism of the present invention is: A first site; A second site; A connecting shaft portion rotatably connected to the first portion and the second portion, and non-rotatably attached to the first portion; At least one of the first part and the second part is connected to the connecting shaft part so as to change a central angle about the axial center of the connecting shaft part between the first part and the second part.
- the rotary variable resistor is configured to be rotatable and has a rotor for changing an output voltage according to a rotation angle;
- the rotor is non-rotatably attached to the connecting shaft portion so that a rotation angle of the rotor corresponds to a central angle between the first part and the second part, and
- the shaft center is disposed coaxially with the shaft center of the connecting shaft portion.
- the rotor is non-rotatably attached to the connecting shaft portion so that the rotational angle of the rotor corresponds to the central angle between the first part and the second part.
- the axis of the rotor is arranged coaxially with the axis of the connecting shaft. For this reason, the rotation angle of the rotor matches the relative rotation angle of the first part with respect to the second part. Therefore, the relative rotation angle of the first part with respect to the second part can be controlled by controlling the drive unit based on the output voltage of the rotary variable resistor.
- the rotary variable resistor can be installed in a narrow space by using a dead space. Therefore, the relative rotation of the first part and the second part can be finely controlled. For example, when the rotation drive mechanism is applied to a joint portion of a robot finger, the movement of the finger joint can be finely controlled.
- the rotation drive mechanism of one embodiment has a control device that controls the drive unit based on the output voltage of the rotary variable resistor.
- the rotation angle of the first part relative to the second part can be controlled using the output voltage of the rotary variable resistor. .
- control device detects the output voltage of the rotary variable resistor and controls the drive unit so that the rotation angle of the rotor becomes a predetermined angle. Control.
- the control device detects the output voltage of the rotary variable resistor and controls the drive unit so that the rotation angle of the rotor becomes a predetermined angle. Therefore, the rotation angle between the first part and the second part can be controlled to an arbitrary angle.
- a printed wiring board on which the rotary variable resistor is mounted A lead wire connected to the printed wiring board;
- the printed wiring board has wiring that is conducted to a terminal of the rotary variable resistor, The lead wire is connected to the wiring.
- the printed wiring board has wiring that is conducted to the terminal of the rotary variable resistor, and the lead wire is connected to the wiring. Accordingly, since the lead wire is attached to the printed wiring board, the lead wire is attached more firmly than when the lead wire is directly attached to the terminal of the rotary variable resistor.
- a printed wiring board on which the rotary variable resistor is mounted A lead portion connected to the printed wiring board;
- the printed wiring board has a first connector that is electrically connected to a terminal of the rotary variable resistor;
- the lead portion has a second connector and a lead wire conducted to the second connector, The first connector and the second connector are connected.
- the printed wiring board has the first connector that is electrically connected to the terminal of the rotary variable resistor, and the lead portion is the lead that is electrically connected to the second connector and the second connector.
- the first connector and the second connector are connected to each other. Therefore, since the lead wire is attached to the printed wiring board via the first and second connectors, the lead wire is attached more firmly than when the lead wire is directly attached to the terminal of the rotary variable resistor. .
- the first flexible printed wiring board has the first connector that is electrically connected to the terminal of the rotary variable resistor, and the second flexible printed wiring board has the second connector.
- the first connector and the second connector are connected. Therefore, since the second flexible printed wiring board is attached to the first flexible printed wiring board, the flexible printed wiring board is attached more firmly than when the lead wire is directly attached to the terminal of the rotary variable resistor. .
- the rotary variable resistor is: An insulating substrate; A resistor pattern and a current collector pattern provided on the insulating substrate and spaced apart from each other; The rotor rotatably attached to the insulating substrate; A slider attached to the rotor so as to be rotatable together with the rotor, and slidingly contacting the resistor pattern and the current collector pattern to conduct the resistor pattern and the current collector pattern.
- the maximum dimension effective as a variable resistance of the resistor pattern is equal to 4 mm or smaller than 4 mm.
- the maximum dimension effective as the variable resistance of the resistor pattern is equal to or smaller than 4 mm. Therefore, the rotary variable resistor becomes small, and the installation space for the rotary variable resistor can be reduced.
- the relative rotation of the first part and the second part can be finely controlled, and for example, the movement of the robot's finger joints and the like can be finely controlled.
- FIG. 1 It is a perspective view which shows the robot carrying the rotation drive mechanism of 1st Embodiment of this invention. It is an enlarged view of a robot's finger. It is a disassembled perspective view of a rotation drive mechanism. It is a disassembled perspective view of a rotation drive mechanism. It is an exploded sectional view of a rotation drive mechanism. It is a perspective view which shows a rotation type variable resistor. It is the disassembled perspective view seen from the downward direction of a rotary variable resistor. It is an exploded perspective view seen from the upper part of a rotation type variable resistor. It is a top view which shows the state which removed the case, rotor, and slider of the rotary variable resistor.
- FIG. 1 is a perspective view showing a robot equipped with the rotational drive mechanism of the first embodiment of the present invention.
- the robot 1 is a humanoid and behaves based on various commands.
- the robot 1 can move the neck, arms, legs, and the like in various directions and angles.
- the robot 1 has a plurality of fingers 2.
- the joint of the finger 2 can be bent and stretched.
- FIG. 2 is an enlarged view of the finger 2 of the robot 1.
- the finger 2 includes a first portion 21, a second portion 22, and a third portion 23 in order from the fingertip.
- the first part 21, the second part 22, and the third part 23 are connected so as to be swingable.
- the first portion 21 can be bent as indicated by a virtual line.
- the connecting portion between the first portion 21 and the second portion 22 and the connecting portion between the second portion 22 and the third portion 23 correspond to the joint portion of the finger 2.
- These connection portions are provided with a rotation drive mechanism 3.
- FIG. 3 and 4 are exploded perspective views of the rotary drive mechanism 3.
- FIG. FIG. 5 is an exploded cross-sectional view of the rotation drive mechanism 3. 3, 4, and 5 show the rotational drive mechanism 3 provided at the connection portion between the first portion 21 and the second portion 22 shown in FIG. 2.
- the description is abbreviate
- the rotation drive mechanism 3 includes a first portion 21 as a first portion, a second portion 22 as a second portion, a first portion 21, and a second portion 22.
- a connecting shaft portion 30 that rotatably connects the drive shaft 40 to drive at least one of the first portion 21 and the second portion 22 around the axis 30a of the connecting shaft portion 30;
- the rotary variable resistor 100 is attached, and the control device 50 controls the drive unit 40 based on the output voltage of the rotary variable resistor 100.
- the first portion 21 has a mounting piece 210, and the mounting piece 210 has a mounting hole 210a into which the connecting shaft portion 30 is fitted.
- the second portion 22 includes a first half 221 and a second half 222 that are separably connected to each other. The first half 221 and the second half 222 are arranged so as to sandwich the attachment piece 210.
- the connecting shaft part 30 includes a base part 31, a gear part 32 attached to the base part 31, and a shaft 33 attached to the center of the gear part 32.
- the base portion 31 is fitted into the attachment hole 210 a of the attachment piece 210 of the first portion 21.
- the connecting shaft portion 30 is attached to the first portion 21 so as not to rotate, and can rotate together with the first portion 21.
- the shaft center 30 a of the connecting shaft portion 30 coincides with the shaft center of the shaft 33.
- the drive unit 40 is, for example, a motor.
- the drive unit 40 is attached to the second portion 22.
- the output shaft 41 of the drive unit 40 meshes with the reduction gear 45.
- the reduction gear 45 is attached to the second portion 22.
- the reduction gear 45 meshes with the gear portion 32 of the connecting shaft portion 30.
- the drive part 40 moves the connection shaft part 30 directly via the reduction gear 45. That is, the drive unit 40 changes the first portion 21 to the second portion 22 so as to change the center angle about the axis 30a of the connecting shaft portion 30 between the first portion 21 and the second portion 22. On the other hand, it is driven around the axis 30a of the connecting shaft 30.
- the rotary variable resistor 100 has a case 110 and a rotor 103 that is rotatably fitted in the case 110.
- the detailed configuration of the rotary variable resistor 100 will be described later.
- the case 110 is fitted into a fitting boss portion 223 provided inside the second half 222 of the second portion 22. Thereby, the case 110 is attached to the second half 222 so as not to rotate.
- the rotor 103 changes the output voltage according to the rotation angle.
- the rotor 103 is attached to the connecting shaft portion 30 so as not to rotate.
- the rotor 103 has a mounting hole 131a at the center.
- the shaft 33 of the connecting shaft portion 30 is inserted into the mounting hole 131 a of the rotor 103.
- the shaft 33 and the mounting hole 131a are processed into a D-cut, and the shaft 33 and the rotor 103 rotate together.
- the shaft center 103 a of the rotor 103 is arranged coaxially with the shaft center 30 a of the connecting shaft portion 30.
- the tip of the shaft 33 is inserted into an insertion hole 223 a provided on the bottom surface of the fitting boss portion 223.
- the rotor 103 rotates relative to the second portion 22 and the axis 30a of the connecting shaft portion 30. Rotate together around That is, the rotation angle of the rotor 103 corresponds to the center angle between the first portion 21 and the second portion 22.
- the control device 50 is composed of, for example, a central processing unit.
- the control device 50 is disposed inside the robot 1.
- the control device 50 detects the output voltage of the rotary variable resistor 100 and controls the drive unit 40 so that the rotation angle of the rotor 103 becomes a predetermined angle.
- the lead wire 60 is connected to the terminals 111 and 112 of the rotary variable resistor 100 by welding.
- the lead wire 60 is connected to the control device 50.
- the control apparatus 50 can stop the 1st part 21 with respect to the 2nd part 22 at arbitrary angles based on various instructions.
- FIG. 6 is a perspective view showing the rotary variable resistor 100.
- FIG. 7A is an exploded perspective view of the rotary variable resistor 100 as viewed from below.
- FIG. 7B is an exploded perspective view of the rotary variable resistor 100 as seen from above.
- the rotary variable resistor 100 includes an insulating substrate 102, a resistor pattern 105 and a current collector pattern 106 provided on the insulating substrate 102, and an insulating substrate 102. It has the rotor 103 attached so that rotation was possible, and the slider 104 attached to the rotor 103 so that it could rotate with the rotor 103.
- the insulating substrate 102 is provided with first, second and third terminals 111, 112 and 113.
- the first terminal 111 has an exposed electrode 111 a provided in the insulating substrate 102 and exposed from the insulating substrate 102.
- the second terminal 112 has an exposed electrode 112a
- the third terminal 113 has an exposed electrode 113a.
- An electrode pattern 107 is provided on the insulating substrate 102.
- the electrode pattern 107 is located between the resistor pattern 105 and the current collector pattern 106 and the exposed electrodes 111a, 112a, 113a.
- the resistor pattern 105 and the current collector pattern 106 are electrically connected to the exposed electrodes 111a, 112a, and 113a through the electrode pattern 107.
- the resistor pattern 105 and the exposed electrodes 111a, 112a, and 113a are interposed via the electrode pattern 107. Can be indirectly conducted, and high reliability can be secured.
- a case 110 is detachably attached to the insulating substrate 102.
- Case 110 covers rotor 103, slider 104, resistor pattern 105, current collector pattern 106, and electrode pattern 107.
- FIG. 8 is a plan view showing a state in which the case 110, the rotor 103, and the slider 104 of the rotary variable resistor 100 are removed.
- the insulating substrate 102 has a rectangular shape in plan view.
- a hole 121 is provided in the insulating substrate 102.
- a boss 131 of the rotor 103 is fitted in the hole 121 of the insulating substrate 102.
- the rotor 103 rotates about the rotation axis C.
- the insulating substrate 102 and the rotor 103 are made of resin, for example.
- the resistor pattern 105 and the current collector pattern 106 are spaced apart from each other.
- the resistor pattern 105 has a shape in which an annular shape around the rotation axis C is partially cut out.
- the resistor pattern 105 has a first end 151 and a second end 152.
- the current collector pattern 106 has an annular shape around the rotation axis C.
- the current collector pattern 106 is located inside the resistor pattern 105.
- the resistor pattern 105 and the current collector pattern 106 are made of the same material, for example, a material in which a phenolic resin is impregnated with carbon black.
- the slider 104 is attached to the boss 131 and the two protrusions 132 of the rotor 103 and positioned.
- the slider 104 is formed in a substantially annular shape.
- the slider 104 has a first protrusion 141 and a second protrusion 142.
- the first protrusion 141 and the second protrusion 142 are electrically connected.
- the slider 104 is in sliding contact with the resistor pattern 105 and the current collector pattern 106 to conduct the resistor pattern 105 and the current collector pattern 106. That is, the first protrusion 141 is in sliding contact with the resistor pattern 105, and the second protrusion 142 is in sliding contact with the current collector pattern 106, so that the resistor pattern 105 and the current collector pattern 106 are electrically connected.
- the slider 104 is made of metal, for example.
- the electrode pattern 107 includes a first electrode part 171, a second electrode part 172, and a third electrode part 173.
- the first electrode portion 171 overlaps and contacts the first end portion 151 of the resistor pattern 105.
- the second electrode portion 172 overlaps and contacts the second end portion 152 of the resistor pattern 105.
- the third electrode portion 173 is formed in an annular shape.
- the third electrode part 173 overlaps and contacts the current collector pattern 106.
- the electrode pattern 107 is made of metal, for example.
- Part of the first terminal 111 and the second terminal 112 is drawn from the first side of the insulating substrate 102.
- a part of the third terminal 113 is drawn from the second side facing the first side of the insulating substrate 102.
- the exposed electrode 111a of the first terminal 111 overlaps and contacts the first electrode portion 171.
- the exposed electrode 112a of the second terminal 112 is in contact with the second electrode portion 172 in an overlapping manner.
- the exposed electrode 113a of the third terminal 113 overlaps and contacts the third electrode portion 173.
- the first, second, and third terminals 111, 112, and 113 are made of metal, for example.
- the first end portion 151 of the resistor pattern 105 and the exposed electrode 111a of the first terminal 111 are electrically connected via the first electrode portion 171.
- the second end portion 152 of the resistor pattern 105 and the exposed electrode 112a of the second terminal 112 are electrically connected via the second electrode portion 172.
- the current collector pattern 106 and the exposed electrode 113 a of the third terminal 113 are electrically connected via the third electrode portion 173.
- FIG. 9 is an explanatory diagram for explaining the operation of the rotary variable resistor 100.
- the slider 104 is shown in a simple shape.
- a constant voltage Vcc is applied between the first terminal 111 and the second terminal 112.
- Rotation of the slider 104 the voltage V 13 between the first terminal 111 and the third terminal 113 is changed. That is, the voltage V 13 changes according to the rotation angle of the slider 104. Then, by measuring this voltage V 13, it is possible to easily detect the rotation angle of the slider 104 (the rotor 103).
- the center position between the first end 151 and the second end 152 in the resistor pattern 105 with the rotation axis C as the center is set to a central angle of 0 °.
- the rotation angle on the second end 152 side is a positive value and the rotation angle on the first end 151 side is a negative value with the central angle 0 ° as a reference.
- positive values are indicated as (+) and negative values are indicated as ( ⁇ ).
- FIG. 10 is a graph showing the relationship between the output voltage ratio and the rotation angle.
- the vertical axis represents the output voltage ratio [%]
- the horizontal axis represents the rotation angle [°] of the slider 104 (rotor 103).
- the output voltage ratio is (V 13 / V cc ⁇ 100).
- the ideal value is an ideal straight line R (shown by an imaginary line)
- the actual measurement value is an actual measurement curve W (shown by a solid line).
- the inclination of the ideal straight line R is, for example, 100 [%] / 333.3 [°].
- the ideal straight line R and the actual measurement curve W overlap at the intersection of the rotation angle 0 ° and the output voltage ratio 50%.
- the maximum vertical deviation H from the ideal straight line R of the actual measurement curve W is referred to as electrical linearity (linearity) L [%].
- L shift amount / V cc ⁇ 100.
- the deviation amount is a voltage difference corresponding to the maximum vertical deviation H.
- the range of the rotation angle in which the electrical linearity L is guaranteed is ⁇ 160 ° or more and + 160 ° or less.
- the maximum dimension effective as the variable resistance of the resistor pattern 105 is Z [mm].
- the maximum dimension Z is the maximum dimension of the outer shape of the resistor pattern 105.
- the portion effective as the variable resistor of the resistor pattern 105 is a portion that functions as a resistor in the resistor pattern 105 and is a portion that does not overlap with the electrode patterns 171 and 172 in the resistor pattern 105.
- the maximum dimension Z of the resistor pattern 105 is, for example, the diameter when the outer shape of the resistor pattern 105 is circular, and the long side when the outer shape of the resistor pattern 105 is rectangular.
- the resistor pattern 105 and the current collector pattern 106 are configured by screen printing in the first direction X on the insulating substrate 102.
- the first direction X refers to the printing direction and refers to the direction in which the paste is conveyed with a squeegee on the screen film.
- the film thickness of the portion where the length in the direction orthogonal to the first direction X is maximum is likely to vary. For this reason, the inventor of the present application pays attention to this portion, and finds that if the variation in the film thickness of this portion is within a predetermined range, the variation in the entire film thickness of the resistor pattern 105 is reduced.
- a straight line parallel to the first direction X and passing through the rotation axis C when viewed from the direction along the rotation axis C is defined as a first straight line M1.
- the midpoint is the point located on the center of the width of the portion side where the length in the direction orthogonal to the first direction X of the resistor pattern 105 is maximum on the first straight line M1 (width of the top portion 155 of the resistor pattern 105).
- M0 The maximum length of the resistor pattern 105 in the direction orthogonal to the first direction X is the length D at a position orthogonal to the first line M1 at the intersection of the first line M1 and the inner periphery of the resistor pattern 105.
- a straight line passing through the middle point M0 and orthogonal to the first straight line M1 is defined as a second straight line M2.
- the maximum film thickness t2 is the film thickness at the end in the direction along the second straight line M2.
- the rotary variable resistor 100 is connected to the second portion 22 so that the central angle 0 ° (see FIG. 9) of the resistor pattern 105 matches the central angle of the movable region of the first portion 21 and the second portion 22. It is preferable to install. By doing so, the movable region of the first portion 21 and the second portion 22 can be made to correspond to the region of the resistor pattern 105, and the region of the resistor pattern 105 can be used effectively.
- the resistance pattern 105 A region effective as a variable resistor changes.
- the rotary variable resistor 100 is set so that the central angle of the effective region of the resistor pattern 105 as the variable resistor coincides with the central angle of the movable region of the first portion 21 and the second portion 22. Installed in the second portion 22. By doing so, the variable resistance region of the resistor pattern 105 can be used effectively.
- variable resistance region of the resistor pattern 105 is changed to change the variable resistance region of the resistor pattern 105 to the first portion 21 and the second portion 21. This can correspond to the movable region of the portion 22.
- the rotor 103 cannot rotate with respect to the connecting shaft portion 30 so that the rotation angle of the rotor 103 corresponds to the center angle between the first portion 21 and the second portion 22.
- the shaft center 103 a of the rotor 103 is disposed coaxially with the shaft center 30 a of the connecting shaft portion 30.
- the rotation angle of the rotor 103 matches the relative rotation angle of the first portion 21 with respect to the second portion 22. Therefore, the relative rotation angle of the first portion 21 with respect to the second portion 22 can be controlled by controlling the drive unit 40 based on the output voltage of the rotary variable resistor 100.
- the rotary variable resistor 100 can be installed in a narrow space by using a dead space. Therefore, the relative rotation of the first portion 21 and the second portion 22 can be finely controlled.
- control device 50 detects the output voltage of the rotary variable resistor 100 and controls the drive unit 40 so that the rotation angle of the rotor 103 becomes a predetermined angle. Therefore, the rotation angle between the first portion 21 and the second portion 22 can be controlled to an arbitrary angle.
- the maximum dimension effective as the variable resistance of the resistor pattern 105 is equal to 4 mm or smaller than 4 mm. Therefore, the rotary variable resistor 100 becomes small, and the installation space for the rotary variable resistor 100 can be reduced.
- FIG. 12 is a perspective view showing the rotation drive mechanism of the second embodiment of the present invention.
- the second embodiment is different from the first embodiment in the mounting structure of the rotary variable resistor. This different configuration will be described below. Note that in the second embodiment, the same reference numerals as those in the first embodiment have the same configurations as those in the first embodiment, and a description thereof will be omitted.
- the rotary variable resistor 100 is mounted on a printed wiring board 70.
- the lead wire 60 is connected to the printed wiring board 70.
- the printed wiring board 70 is electrically connected to the first wire 71 connected to the first terminal 111 of the rotary variable resistor 100 and the second wire 112 connected to the second terminal 112 of the rotary variable resistor 100.
- Wiring 72 The printed wiring board 70 is provided with a through hole 72 at a position corresponding to each of the first wiring 71 and the second wiring 72.
- the lead wire 60 is welded to each through hole 72 and connected to each of the first wiring 71 and the second wiring 72.
- the wiring that is conducted to the third terminal 113 (FIG. 7B) of the rotary variable resistor 100 is omitted.
- the lead wire 60 is attached to the printed wiring board 70, the lead wire 60 is compared with the case where the lead wire 60 is directly attached to the terminals 111, 112, 113 of the rotary variable resistor 100. The attachment of 60 becomes firm.
- FIG. 13A is a plan view showing a rotational drive mechanism of a third embodiment of the present invention.
- FIG. 13B is a perspective view showing the rotation drive mechanism of the third embodiment of the present invention.
- the third embodiment is different from the first embodiment in the mounting structure of the rotary variable resistor. This different configuration will be described below. Note that in the third embodiment, the same reference numerals as those in the first embodiment have the same configurations as those in the first embodiment, and a description thereof will be omitted.
- the rotary variable resistor 100 is mounted on a printed wiring board 70A.
- the lead portion 80 is connected to the printed wiring board 70A.
- the printed wiring board 70 ⁇ / b> A has a first connector 76 that is electrically connected to the terminals 111, 112, and 113 of the rotary variable resistor 100.
- the rotary variable resistor 100 is disposed on the front surface of the printed wiring board 70A, and the first connector 76 is disposed on the back surface of the printed wiring board 70A.
- the printed wiring board 70 ⁇ / b> A includes a first wiring 71 that is conductive to the first terminal 111, a second wiring 72 that is conductive to the second terminal 112, and a third wiring 73 that is conductive to the third terminal 113.
- the first, second, and third wirings 71, 72, and 73 are provided on the front surface and the back surface of the printed wiring board 70A through the through holes 72, respectively.
- the first connector 76 includes a first terminal 761, a second terminal 762, and a third terminal 763.
- the first terminal 761 is electrically connected to the first wire 71
- the second terminal 762 is electrically connected to the second wire 72
- the third terminal 763 is electrically connected to the third wire 73. That is, the first terminal 761 is electrically connected to the first terminal 111 of the rotary variable resistor 100
- the second terminal 762 is electrically connected to the second terminal 112 of the rotary variable resistor 100
- the third terminal 763 is It is electrically connected to the third terminal 113 of the rotary variable resistor 100.
- the lead portion 80 includes a second connector 81 and a lead wire 60 that is electrically connected to the second connector 81.
- the second connector 81 has three terminals (not shown), and each terminal is electrically connected to the lead wire 60.
- the first connector 76 and the second connector 81 are detachably connected.
- the first connector 76 is a female type
- the second connector 81 is a male type.
- the first connector 76 may be a male type
- the second connector 81 may be a female type.
- the lead wire 60 is attached to the printed wiring board 70A via the first and second connectors 76 and 81, the lead wire 60 is connected to the terminals 111, 112, and 112 of the rotary variable resistor 100. Compared with the case of attaching directly to 113, the attachment of the lead wire 60 becomes stronger.
- FIG. 14 is a perspective view showing the rotational drive mechanism of the fourth embodiment of the present invention.
- the fourth embodiment is different from the first embodiment in the mounting structure of the rotary variable resistor. This different configuration will be described below.
- symbol same as 1st Embodiment is the same structure as 1st Embodiment, the description is abbreviate
- the rotary variable resistor 100 is mounted on the first flexible printed wiring board 91.
- a second flexible printed wiring board 92 is connected to the first flexible printed wiring board 91.
- the first flexible printed wiring board 91 has a first connector 910 that is electrically connected to the terminals 111, 112, and 113 of the rotary variable resistor 100.
- the first connector 910 is provided on one side of the first flexible printed wiring board 91.
- the first flexible printed wiring board 91 includes a first wiring 911 that is conductive to the first terminal 111, a second wiring 912 that is conductive to the second terminal 112, and a third wiring 913 that is conductive to the third terminal 113.
- the first connector 910 corresponds to an end portion of the first wiring 911, an end portion of the second wiring 912, and an end portion of the third wiring 913.
- the second flexible printed wiring board 92 has a second connector 920.
- the second connector 920 has three wirings (not shown).
- the first connector 910 and the second connector 920 are detachably connected.
- the first connector 910 is male and the second connector 920 is female.
- the first connector 910 may be a female type, and the second connector 920 may be a male type.
- the first, second, and third wirings 911, 912, and 913 of the first connector 910 are connected to the three wirings of the second connector 920, respectively. Conducted.
- the lead wires are attached directly to the terminals 111, 112, 113 of the rotary variable resistor 100. Compared to the above, the attachment of the second flexible printed wiring board 92 is strengthened.
- the present invention is not limited to the above-described embodiment, and the design can be changed without departing from the gist of the present invention.
- the feature points of the first to fourth embodiments may be variously combined.
- the first part is the first part and the second part is the second part.
- the first part may be the second part and the second part may be the first part, or the first part. May be one of the second part or the third part, and the second part may be the other of the second part or the third part.
- the drive unit is a motor.
- the drive unit may be a wire or a telescopic rod.
- the first part or the second part is moved directly without moving the connecting shaft part directly. May be.
- the first part is driven by the drive unit, but at least one of the first part and the second part may be driven.
- the rotary variable resistor has a case where the outer shape of the resistor pattern is a circle, but the outer shape of the resistor pattern may be an ellipse, a rectangle, or another polygon.
- Z ⁇ 4.0, Z ⁇ L ⁇ 10, and 1.0 ⁇ (t2 / t1) ⁇ 1.2 are satisfied. Either of them may be satisfied.
- the rotational drive mechanism of the present invention is used for a joint part of a robot finger, but it may be used for a joint part such as a neck, arm, or leg of the robot. Moreover, you may use the rotational drive mechanism of this invention for all the rotatable parts, such as the swinging part of the surveillance camera, and the swinging part of the flap of an air-conditioner.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Adjustable Resistors (AREA)
Abstract
This rotary drive mechanism has: a first portion; a second portion; a coupling shaft part that couples the first portion and the second portion; a drive part for driving the first portion around the shaft center of the coupling shaft part relative to the second portion; and a rotary type variable resistor attached to the coupling shaft part. The rotary type variable resistor has a rotor that is configured to be rotatable and that causes an output voltage to be changed according to a rotation angle. The rotor is attached to the coupling shaft part in a non-rotatable manner, and the shaft center of the rotor and the shaft center of the coupling shaft part are coaxially disposed.
Description
本発明は、回転駆動機構に関する。
The present invention relates to a rotational drive mechanism.
従来、ロボットの指の関節を動かすための回転駆動機構としては、特開2000-325375号公報(特許文献1)に記載されたものがあり、ワイヤーを用いていた。つまり、ワイヤーで指の部位を引っ張ることで指の関節を曲げ、または、ワイヤーを緩めることで指の関節を伸ばしていた。このように、従来では、指の関節の曲げ伸ばしを行うのみで、指の関節を任意の角度で停止することは行われていなかった。このように、指の関節の動きを細かに制御することは、困難であった。
Conventionally, as a rotational drive mechanism for moving a finger joint of a robot, there is one described in Japanese Patent Laid-Open No. 2000-325375 (Patent Document 1), and a wire has been used. In other words, the finger joint was bent by pulling the finger part with the wire, or the finger joint was extended by loosening the wire. As described above, conventionally, the finger joint is merely bent and stretched, and the finger joint is not stopped at an arbitrary angle. Thus, it has been difficult to finely control the movement of the finger joint.
ここで、何らかのセンサーを用いることが考えられるが、センサーを取り付けるためのスペースが必要となる問題が生じ、特に、ロボットが小型になると、その問題が顕著となる。
Here, it is conceivable to use some kind of sensor, but there arises a problem that a space for mounting the sensor is required. In particular, the problem becomes conspicuous when the robot becomes small.
そこで、本発明の課題は、ロボットの指の関節などの動きを細かに制御することができる回転駆動機構を提供することにある。
Therefore, an object of the present invention is to provide a rotation drive mechanism that can finely control the movement of a finger joint of a robot.
前記課題を解決するため、本発明の回転駆動機構は、
第1部位と、
第2部位と、
前記第1部位と前記第2部位とを回転可能に連結すると共に、前記第1部位に回転不能に取り付けられる連結軸部と、
前記第1部位と前記第2部位との間の前記連結軸部の軸心を中心とする中心角度を変化させるように、前記第1部位と前記第2部位との少なくとも一方を前記連結軸部の軸心を中心として駆動させる駆動部と、
前記連結軸部に取り付けられる回転型可変抵抗器と
を備え、
前記回転型可変抵抗器は、回転可能に構成されると共に回転角度に応じて出力電圧を変化させるための回転子を有し、
前記回転子の回転角度が、前記第1部位と前記第2部位との間の中心角度に対応するように、前記回転子は、前記連結軸部に回転不能に取り付けられると共に、前記回転子の軸心は、前記連結軸部の軸心と同軸に配置される。 In order to solve the above problems, the rotational drive mechanism of the present invention is:
A first site;
A second site;
A connecting shaft portion rotatably connected to the first portion and the second portion, and non-rotatably attached to the first portion;
At least one of the first part and the second part is connected to the connecting shaft part so as to change a central angle about the axial center of the connecting shaft part between the first part and the second part. A drive unit for driving around the axis of
A rotary variable resistor attached to the connecting shaft portion;
The rotary variable resistor is configured to be rotatable and has a rotor for changing an output voltage according to a rotation angle;
The rotor is non-rotatably attached to the connecting shaft portion so that a rotation angle of the rotor corresponds to a central angle between the first part and the second part, and The shaft center is disposed coaxially with the shaft center of the connecting shaft portion.
第1部位と、
第2部位と、
前記第1部位と前記第2部位とを回転可能に連結すると共に、前記第1部位に回転不能に取り付けられる連結軸部と、
前記第1部位と前記第2部位との間の前記連結軸部の軸心を中心とする中心角度を変化させるように、前記第1部位と前記第2部位との少なくとも一方を前記連結軸部の軸心を中心として駆動させる駆動部と、
前記連結軸部に取り付けられる回転型可変抵抗器と
を備え、
前記回転型可変抵抗器は、回転可能に構成されると共に回転角度に応じて出力電圧を変化させるための回転子を有し、
前記回転子の回転角度が、前記第1部位と前記第2部位との間の中心角度に対応するように、前記回転子は、前記連結軸部に回転不能に取り付けられると共に、前記回転子の軸心は、前記連結軸部の軸心と同軸に配置される。 In order to solve the above problems, the rotational drive mechanism of the present invention is:
A first site;
A second site;
A connecting shaft portion rotatably connected to the first portion and the second portion, and non-rotatably attached to the first portion;
At least one of the first part and the second part is connected to the connecting shaft part so as to change a central angle about the axial center of the connecting shaft part between the first part and the second part. A drive unit for driving around the axis of
A rotary variable resistor attached to the connecting shaft portion;
The rotary variable resistor is configured to be rotatable and has a rotor for changing an output voltage according to a rotation angle;
The rotor is non-rotatably attached to the connecting shaft portion so that a rotation angle of the rotor corresponds to a central angle between the first part and the second part, and The shaft center is disposed coaxially with the shaft center of the connecting shaft portion.
本発明の回転駆動機構によれば、回転子の回転角度が、第1部位と第2部位との間の中心角度に対応するように、回転子は、連結軸部に回転不能に取り付けられると共に、回転子の軸心は、連結軸部の軸心と同軸に配置される。このため、回転子の回転角度は、第1部位の第2部位に対する相対的な回転角度に一致する。したがって、回転型可変抵抗器の出力電圧に基づいて駆動部を制御することで、第1部位の第2部位に対する相対的な回転角度を制御することができる。また、回転子は、連結軸部に直接に取り付けられているので、デッドスペースを利用して、回転型可変抵抗器を狭小な空間に設置することができる。したがって、第1部位と第2部位の相対的な回転を細かに制御することができる。例えば、回転駆動機構をロボットの指の関節部分に適用した場合、指の関節の動きを細かに制御することができる。
According to the rotational drive mechanism of the present invention, the rotor is non-rotatably attached to the connecting shaft portion so that the rotational angle of the rotor corresponds to the central angle between the first part and the second part. The axis of the rotor is arranged coaxially with the axis of the connecting shaft. For this reason, the rotation angle of the rotor matches the relative rotation angle of the first part with respect to the second part. Therefore, the relative rotation angle of the first part with respect to the second part can be controlled by controlling the drive unit based on the output voltage of the rotary variable resistor. Further, since the rotor is directly attached to the connecting shaft portion, the rotary variable resistor can be installed in a narrow space by using a dead space. Therefore, the relative rotation of the first part and the second part can be finely controlled. For example, when the rotation drive mechanism is applied to a joint portion of a robot finger, the movement of the finger joint can be finely controlled.
また、一実施形態の回転駆動機構では、前記回転型可変抵抗器の出力電圧に基づいて前記駆動部を制御する制御装置を有する。
Also, the rotation drive mechanism of one embodiment has a control device that controls the drive unit based on the output voltage of the rotary variable resistor.
前記実施形態の回転駆動機構によれば、制御装置を有するので、回転型可変抵抗器の出力電圧を利用して、第1部位の第2部位に対する相対的な回転角度の制御を行うことができる。
According to the rotation drive mechanism of the embodiment, since the control device is provided, the rotation angle of the first part relative to the second part can be controlled using the output voltage of the rotary variable resistor. .
また、一実施形態の回転駆動機構では、前記制御装置は、前記回転型可変抵抗器の出力電圧を検出して、前記回転子の回転角度が予め定めた角度となるように、前記駆動部を制御する。
In one embodiment, the control device detects the output voltage of the rotary variable resistor and controls the drive unit so that the rotation angle of the rotor becomes a predetermined angle. Control.
前記実施形態の回転駆動機構によれば、制御装置は、回転型可変抵抗器の出力電圧を検出して、回転子の回転角度が予め定めた角度となるように、駆動部を制御する。したがって、第1部位と第2部位との回転角度を任意の角度に制御することができる。
According to the rotation drive mechanism of the above embodiment, the control device detects the output voltage of the rotary variable resistor and controls the drive unit so that the rotation angle of the rotor becomes a predetermined angle. Therefore, the rotation angle between the first part and the second part can be controlled to an arbitrary angle.
また、一実施形態の回転駆動機構では、
前記回転型可変抵抗器を搭載するプリント配線基板と、
前記プリント配線基板に接続されるリード線と
を有し、
前記プリント配線基板は、前記回転型可変抵抗器の端子に導通される配線を有し、
前記リード線は、前記配線に接続される。 Moreover, in the rotational drive mechanism of one embodiment,
A printed wiring board on which the rotary variable resistor is mounted;
A lead wire connected to the printed wiring board;
The printed wiring board has wiring that is conducted to a terminal of the rotary variable resistor,
The lead wire is connected to the wiring.
前記回転型可変抵抗器を搭載するプリント配線基板と、
前記プリント配線基板に接続されるリード線と
を有し、
前記プリント配線基板は、前記回転型可変抵抗器の端子に導通される配線を有し、
前記リード線は、前記配線に接続される。 Moreover, in the rotational drive mechanism of one embodiment,
A printed wiring board on which the rotary variable resistor is mounted;
A lead wire connected to the printed wiring board;
The printed wiring board has wiring that is conducted to a terminal of the rotary variable resistor,
The lead wire is connected to the wiring.
前記実施形態の回転駆動機構によれば、プリント配線基板は、回転型可変抵抗器の端子に導通される配線を有し、リード線は、配線に接続される。したがって、リード線をプリント配線基板に取り付けているので、リード線を回転型可変抵抗器の端子に直接に取り付ける場合に比べて、リード線の取り付けが強固になる。
According to the rotational drive mechanism of the above embodiment, the printed wiring board has wiring that is conducted to the terminal of the rotary variable resistor, and the lead wire is connected to the wiring. Accordingly, since the lead wire is attached to the printed wiring board, the lead wire is attached more firmly than when the lead wire is directly attached to the terminal of the rotary variable resistor.
また、一実施形態の回転駆動機構では、
前記回転型可変抵抗器を搭載するプリント配線基板と、
前記プリント配線基板に接続されるリード部と
を有し、
前記プリント配線基板は、前記回転型可変抵抗器の端子に導通される第1コネクタを有し、
前記リード部は、第2コネクタと前記第2コネクタに導通されるリード線とを有し、
前記第1コネクタと前記第2コネクタとは、接続される。 Moreover, in the rotational drive mechanism of one embodiment,
A printed wiring board on which the rotary variable resistor is mounted;
A lead portion connected to the printed wiring board;
The printed wiring board has a first connector that is electrically connected to a terminal of the rotary variable resistor;
The lead portion has a second connector and a lead wire conducted to the second connector,
The first connector and the second connector are connected.
前記回転型可変抵抗器を搭載するプリント配線基板と、
前記プリント配線基板に接続されるリード部と
を有し、
前記プリント配線基板は、前記回転型可変抵抗器の端子に導通される第1コネクタを有し、
前記リード部は、第2コネクタと前記第2コネクタに導通されるリード線とを有し、
前記第1コネクタと前記第2コネクタとは、接続される。 Moreover, in the rotational drive mechanism of one embodiment,
A printed wiring board on which the rotary variable resistor is mounted;
A lead portion connected to the printed wiring board;
The printed wiring board has a first connector that is electrically connected to a terminal of the rotary variable resistor;
The lead portion has a second connector and a lead wire conducted to the second connector,
The first connector and the second connector are connected.
前記実施形態の回転駆動機構によれば、プリント配線基板は、回転型可変抵抗器の端子に導通される第1コネクタを有し、リード部は、第2コネクタと第2コネクタに導通されるリード線とを有し、第1コネクタと第2コネクタとは、接続される。したがって、リード線を第1、第2コネクタを介してプリント配線基板に取り付けているので、リード線を回転型可変抵抗器の端子に直接に取り付ける場合に比べて、リード線の取り付けが強固になる。
According to the rotation drive mechanism of the embodiment, the printed wiring board has the first connector that is electrically connected to the terminal of the rotary variable resistor, and the lead portion is the lead that is electrically connected to the second connector and the second connector. The first connector and the second connector are connected to each other. Therefore, since the lead wire is attached to the printed wiring board via the first and second connectors, the lead wire is attached more firmly than when the lead wire is directly attached to the terminal of the rotary variable resistor. .
また、一実施形態の回転駆動機構では、
前記回転型可変抵抗器を搭載する第1フレキシブルプリント配線基板と、
前記第1フレキシブルプリント配線基板に接続される第2フレキシブルプリント配線基板と
を有し、
前記第1フレキシブルプリント配線基板は、前記回転型可変抵抗器の端子に導通される第1コネクタを有し、
前記第2フレキシブルプリント配線基板は、第2コネクタを有し、
前記第1コネクタと前記第2コネクタとは、接続される。 Moreover, in the rotational drive mechanism of one embodiment,
A first flexible printed wiring board on which the rotary variable resistor is mounted;
A second flexible printed wiring board connected to the first flexible printed wiring board;
The first flexible printed wiring board has a first connector connected to a terminal of the rotary variable resistor,
The second flexible printed wiring board has a second connector,
The first connector and the second connector are connected.
前記回転型可変抵抗器を搭載する第1フレキシブルプリント配線基板と、
前記第1フレキシブルプリント配線基板に接続される第2フレキシブルプリント配線基板と
を有し、
前記第1フレキシブルプリント配線基板は、前記回転型可変抵抗器の端子に導通される第1コネクタを有し、
前記第2フレキシブルプリント配線基板は、第2コネクタを有し、
前記第1コネクタと前記第2コネクタとは、接続される。 Moreover, in the rotational drive mechanism of one embodiment,
A first flexible printed wiring board on which the rotary variable resistor is mounted;
A second flexible printed wiring board connected to the first flexible printed wiring board;
The first flexible printed wiring board has a first connector connected to a terminal of the rotary variable resistor,
The second flexible printed wiring board has a second connector,
The first connector and the second connector are connected.
前記実施形態の回転駆動機構によれば、第1フレキシブルプリント配線基板は、回転型可変抵抗器の端子に導通される第1コネクタを有し、第2フレキシブルプリント配線基板は、第2コネクタを有し、第1コネクタと第2コネクタとは、接続される。したがって、第2フレキシブルプリント配線基板を第1フレキシブルプリント配線基板に取り付けているので、リード線を回転型可変抵抗器の端子に直接に取り付ける場合に比べて、フレキシブルプリント配線基板の取り付けが強固になる。
According to the rotational drive mechanism of the embodiment, the first flexible printed wiring board has the first connector that is electrically connected to the terminal of the rotary variable resistor, and the second flexible printed wiring board has the second connector. The first connector and the second connector are connected. Therefore, since the second flexible printed wiring board is attached to the first flexible printed wiring board, the flexible printed wiring board is attached more firmly than when the lead wire is directly attached to the terminal of the rotary variable resistor. .
また、一実施形態の回転駆動機構では、
前記回転型可変抵抗器は、
絶縁基板と、
前記絶縁基板上に設けられ、互いに離隔して配置される抵抗体パターンおよび集電体パターンと、
前記絶縁基板に回転可能に取り付けられる前記回転子と、
前記回転子と共に回転可能となるように前記回転子に取り付けられ、前記抵抗体パターンおよび前記集電体パターンに摺接して前記抵抗体パターンと前記集電体パターンとを導通する摺動子と
を有し、
前記抵抗体パターンの可変抵抗として有効な最大寸法は、4mmと同等であるか、もしくは、4mmよりも小さい。 Moreover, in the rotational drive mechanism of one embodiment,
The rotary variable resistor is:
An insulating substrate;
A resistor pattern and a current collector pattern provided on the insulating substrate and spaced apart from each other;
The rotor rotatably attached to the insulating substrate;
A slider attached to the rotor so as to be rotatable together with the rotor, and slidingly contacting the resistor pattern and the current collector pattern to conduct the resistor pattern and the current collector pattern. Have
The maximum dimension effective as a variable resistance of the resistor pattern is equal to 4 mm or smaller than 4 mm.
前記回転型可変抵抗器は、
絶縁基板と、
前記絶縁基板上に設けられ、互いに離隔して配置される抵抗体パターンおよび集電体パターンと、
前記絶縁基板に回転可能に取り付けられる前記回転子と、
前記回転子と共に回転可能となるように前記回転子に取り付けられ、前記抵抗体パターンおよび前記集電体パターンに摺接して前記抵抗体パターンと前記集電体パターンとを導通する摺動子と
を有し、
前記抵抗体パターンの可変抵抗として有効な最大寸法は、4mmと同等であるか、もしくは、4mmよりも小さい。 Moreover, in the rotational drive mechanism of one embodiment,
The rotary variable resistor is:
An insulating substrate;
A resistor pattern and a current collector pattern provided on the insulating substrate and spaced apart from each other;
The rotor rotatably attached to the insulating substrate;
A slider attached to the rotor so as to be rotatable together with the rotor, and slidingly contacting the resistor pattern and the current collector pattern to conduct the resistor pattern and the current collector pattern. Have
The maximum dimension effective as a variable resistance of the resistor pattern is equal to 4 mm or smaller than 4 mm.
前記実施形態の回転駆動機構によれば、抵抗体パターンの可変抵抗として有効な最大寸法は、4mmと同等であるか、もしくは、4mmよりも小さい。したがって、回転型可変抵抗器は小型となり、回転型可変抵抗器の設置スペースを小さくできる。
According to the rotational drive mechanism of the above embodiment, the maximum dimension effective as the variable resistance of the resistor pattern is equal to or smaller than 4 mm. Therefore, the rotary variable resistor becomes small, and the installation space for the rotary variable resistor can be reduced.
本発明の回転駆動機構によれば、第1部位と第2部位の相対的な回転を細かに制御することができ、例えば、ロボットの指の関節などの動きを細かに制御することができる。
According to the rotational drive mechanism of the present invention, the relative rotation of the first part and the second part can be finely controlled, and for example, the movement of the robot's finger joints and the like can be finely controlled.
以下、本発明を図示の実施の形態により詳細に説明する。
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
(第1実施形態)
図1は、本発明の第1実施形態の回転駆動機構を搭載したロボットを示す斜視図である。図1に示すように、ロボット1は、人型であり、様々な命令に基づいて行動する。ロボット1は、首や腕や足などを様々な方向や角度に動かすことができる。ロボット1は、複数の指2を有する。指2の関節は、曲げ伸ばし可能である。 (First embodiment)
FIG. 1 is a perspective view showing a robot equipped with the rotational drive mechanism of the first embodiment of the present invention. As shown in FIG. 1, therobot 1 is a humanoid and behaves based on various commands. The robot 1 can move the neck, arms, legs, and the like in various directions and angles. The robot 1 has a plurality of fingers 2. The joint of the finger 2 can be bent and stretched.
図1は、本発明の第1実施形態の回転駆動機構を搭載したロボットを示す斜視図である。図1に示すように、ロボット1は、人型であり、様々な命令に基づいて行動する。ロボット1は、首や腕や足などを様々な方向や角度に動かすことができる。ロボット1は、複数の指2を有する。指2の関節は、曲げ伸ばし可能である。 (First embodiment)
FIG. 1 is a perspective view showing a robot equipped with the rotational drive mechanism of the first embodiment of the present invention. As shown in FIG. 1, the
図2は、ロボット1の指2の拡大図である。図2に示すように、指2は、指先から順に、第1部分21と第2部分22と第3部分23とを有する。第1部分21と第2部分22と第3部分23とは、それぞれ、揺動可能に接続されている。例えば、第1部分21は、仮想線に示すように、折り曲げ可能である。第1部分21と第2部分22との接続部分、および、第2部分22と第3部分23との接続部分は、指2の関節部分に相当する。これらの接続部分には、回転駆動機構3が設けられている。
FIG. 2 is an enlarged view of the finger 2 of the robot 1. As shown in FIG. 2, the finger 2 includes a first portion 21, a second portion 22, and a third portion 23 in order from the fingertip. The first part 21, the second part 22, and the third part 23 are connected so as to be swingable. For example, the first portion 21 can be bent as indicated by a virtual line. The connecting portion between the first portion 21 and the second portion 22 and the connecting portion between the second portion 22 and the third portion 23 correspond to the joint portion of the finger 2. These connection portions are provided with a rotation drive mechanism 3.
図3と図4は、回転駆動機構3の分解斜視図である。図5は、回転駆動機構3の分解断面図である。図3と図4と図5では、図2に示す第1部分21と第2部分22との接続部分に設けられている回転駆動機構3を示している。なお、第2部分22と第3部分23との接続部分に設けられている回転駆動機構3については、同様であるため、その説明を省略する。
3 and 4 are exploded perspective views of the rotary drive mechanism 3. FIG. FIG. 5 is an exploded cross-sectional view of the rotation drive mechanism 3. 3, 4, and 5 show the rotational drive mechanism 3 provided at the connection portion between the first portion 21 and the second portion 22 shown in FIG. 2. In addition, since it is the same about the rotational drive mechanism 3 provided in the connection part of the 2nd part 22 and the 3rd part 23, the description is abbreviate | omitted.
図3と図4と図5に示すように、回転駆動機構3は、第1部位としての第1部分21と、第2部位としての第2部分22と、第1部分21と第2部分22とを回転可能に連結する連結軸部30と、第1部分21と第2部分22との少なくとも一方を連結軸部30の軸心30aを中心として駆動させる駆動部40と、連結軸部30に取り付けられる回転型可変抵抗器100と、回転型可変抵抗器100の出力電圧に基づいて駆動部40を制御する制御装置50とを有する。
As shown in FIGS. 3, 4, and 5, the rotation drive mechanism 3 includes a first portion 21 as a first portion, a second portion 22 as a second portion, a first portion 21, and a second portion 22. A connecting shaft portion 30 that rotatably connects the drive shaft 40 to drive at least one of the first portion 21 and the second portion 22 around the axis 30a of the connecting shaft portion 30; The rotary variable resistor 100 is attached, and the control device 50 controls the drive unit 40 based on the output voltage of the rotary variable resistor 100.
第1部分21は、取付片210を有し、取付片210は、連結軸部30を嵌め込む取付孔210aを有する。第2部分22は、互いに分離可能に接続される第1半割体221および第2半割体222を有する。第1半割体221と第2半割体222とは、取付片210を挟むように配置される。
The first portion 21 has a mounting piece 210, and the mounting piece 210 has a mounting hole 210a into which the connecting shaft portion 30 is fitted. The second portion 22 includes a first half 221 and a second half 222 that are separably connected to each other. The first half 221 and the second half 222 are arranged so as to sandwich the attachment piece 210.
連結軸部30は、台部31と、台部31に取り付けられるギア部32と、ギア部32の中心に取り付けられる軸33とを有する。台部31は、第1部分21の取付片210の取付孔210aに嵌め込まれる。このため、連結軸部30は、第1部分21に回転不能に取り付けられ、第1部分21と共に回転可能となる。連結軸部30の軸心30aは、軸33の軸心に一致する。
The connecting shaft part 30 includes a base part 31, a gear part 32 attached to the base part 31, and a shaft 33 attached to the center of the gear part 32. The base portion 31 is fitted into the attachment hole 210 a of the attachment piece 210 of the first portion 21. For this reason, the connecting shaft portion 30 is attached to the first portion 21 so as not to rotate, and can rotate together with the first portion 21. The shaft center 30 a of the connecting shaft portion 30 coincides with the shaft center of the shaft 33.
駆動部40は、例えば、モータである。駆動部40は、第2部分22に取り付けられる。駆動部40の出力軸41は、減速ギア45に噛合する。減速ギア45は、第2部分22に取り付けられている。減速ギア45は、連結軸部30のギア部32に噛合する。これにより、駆動部40は、減速ギア45を介して、連結軸部30を直接に動かす。つまり、駆動部40は、第1部分21と第2部分22との間の連結軸部30の軸心30aを中心とする中心角度を変化させるように、第1部分21を第2部分22に対して連結軸部30の軸心30aを中心として駆動させる。
The drive unit 40 is, for example, a motor. The drive unit 40 is attached to the second portion 22. The output shaft 41 of the drive unit 40 meshes with the reduction gear 45. The reduction gear 45 is attached to the second portion 22. The reduction gear 45 meshes with the gear portion 32 of the connecting shaft portion 30. Thereby, the drive part 40 moves the connection shaft part 30 directly via the reduction gear 45. That is, the drive unit 40 changes the first portion 21 to the second portion 22 so as to change the center angle about the axis 30a of the connecting shaft portion 30 between the first portion 21 and the second portion 22. On the other hand, it is driven around the axis 30a of the connecting shaft 30.
回転型可変抵抗器100は、ケース110と、ケース110に回転可能に嵌め込まれる回転子103とを有する。なお、回転型可変抵抗器100の詳細な構成は、後述する。
The rotary variable resistor 100 has a case 110 and a rotor 103 that is rotatably fitted in the case 110. The detailed configuration of the rotary variable resistor 100 will be described later.
ケース110は、第2部分22の第2半割体222の内部に設けられた嵌込ボス部223に、嵌め込まれる。これにより、ケース110は、第2半割体222に回転不能に取り付けられる。
The case 110 is fitted into a fitting boss portion 223 provided inside the second half 222 of the second portion 22. Thereby, the case 110 is attached to the second half 222 so as not to rotate.
回転子103は、回転角度に応じて出力電圧を変化させるようにする。回転子103は、連結軸部30に回転不能に取り付けられる。回転子103は、中心に取付孔131aを有する。連結軸部30の軸33は、回転子103の取付孔131aに差し込まれる。軸33および取付孔131aは、Dカットに加工され、軸33および回転子103は、共回りする。回転子103の軸心103aは、連結軸部30の軸心30aと同軸に配置される。軸33の先端は、嵌込ボス部223の底面に設けられた差込孔223aに差し込まれる。
The rotor 103 changes the output voltage according to the rotation angle. The rotor 103 is attached to the connecting shaft portion 30 so as not to rotate. The rotor 103 has a mounting hole 131a at the center. The shaft 33 of the connecting shaft portion 30 is inserted into the mounting hole 131 a of the rotor 103. The shaft 33 and the mounting hole 131a are processed into a D-cut, and the shaft 33 and the rotor 103 rotate together. The shaft center 103 a of the rotor 103 is arranged coaxially with the shaft center 30 a of the connecting shaft portion 30. The tip of the shaft 33 is inserted into an insertion hole 223 a provided on the bottom surface of the fitting boss portion 223.
これにより、第1部分21が、第2部分22に対して連結軸部30の軸心30aを中心として回転すると、回転子103は、第2部分22に対して連結軸部30の軸心30aを中心として共に回転する。つまり、回転子103の回転角度は、第1部分21と第2部分22との間の中心角度に対応する。
Accordingly, when the first portion 21 rotates about the axis 30a of the connecting shaft portion 30 with respect to the second portion 22, the rotor 103 rotates relative to the second portion 22 and the axis 30a of the connecting shaft portion 30. Rotate together around That is, the rotation angle of the rotor 103 corresponds to the center angle between the first portion 21 and the second portion 22.
制御装置50は、例えば、中央処理装置から構成される。制御装置50は、ロボット1の内部に配置されている。制御装置50は、回転型可変抵抗器100の出力電圧を検出して、回転子103の回転角度が予め定めた角度となるように、駆動部40を制御する。具体的に述べると、回転型可変抵抗器100の端子111,112には、リード線60が溶接により接続される。リード線60は、制御装置50に接続される。そして、制御装置50は、様々な命令に基づいて、第1部分21を第2部分22に対して任意の角度で停止することができる。
The control device 50 is composed of, for example, a central processing unit. The control device 50 is disposed inside the robot 1. The control device 50 detects the output voltage of the rotary variable resistor 100 and controls the drive unit 40 so that the rotation angle of the rotor 103 becomes a predetermined angle. Specifically, the lead wire 60 is connected to the terminals 111 and 112 of the rotary variable resistor 100 by welding. The lead wire 60 is connected to the control device 50. And the control apparatus 50 can stop the 1st part 21 with respect to the 2nd part 22 at arbitrary angles based on various instructions.
図6は、回転型可変抵抗器100を示す斜視図である。図7Aは、回転型可変抵抗器100の下方からみた分解斜視図である。図7Bは、回転型可変抵抗器100の上方からみた分解斜視図である。
FIG. 6 is a perspective view showing the rotary variable resistor 100. FIG. 7A is an exploded perspective view of the rotary variable resistor 100 as viewed from below. FIG. 7B is an exploded perspective view of the rotary variable resistor 100 as seen from above.
図6と図7Aと図7Bに示すように、回転型可変抵抗器100は、絶縁基板102と、絶縁基板102上に設けられた抵抗体パターン105および集電体パターン106と、絶縁基板102に回転可能に取り付けられた回転子103と、回転子103と共に回転可能となるように回転子103に取り付けられた摺動子104とを有する。
As shown in FIGS. 6, 7A, and 7B, the rotary variable resistor 100 includes an insulating substrate 102, a resistor pattern 105 and a current collector pattern 106 provided on the insulating substrate 102, and an insulating substrate 102. It has the rotor 103 attached so that rotation was possible, and the slider 104 attached to the rotor 103 so that it could rotate with the rotor 103. FIG.
絶縁基板102には、第1と第2と第3端子111,112,113が設けられている。第1端子111は、絶縁基板102内に設けられ絶縁基板102上から露出する露出電極111aを有する。同様に、第2端子112は、露出電極112aを有し、第3端子113は、露出電極113aを有する。
The insulating substrate 102 is provided with first, second and third terminals 111, 112 and 113. The first terminal 111 has an exposed electrode 111 a provided in the insulating substrate 102 and exposed from the insulating substrate 102. Similarly, the second terminal 112 has an exposed electrode 112a, and the third terminal 113 has an exposed electrode 113a.
絶縁基板102上には、電極パターン107が設けられている。電極パターン107は、抵抗体パターン105および集電体パターン106と露出電極111a,112a,113aとの間に位置する。抵抗体パターン105および集電体パターン106と露出電極111a,112a,113aとは、電極パターン107を介して、導通する。このように、抵抗体パターン105と露出電極111a,112a,113aとが直接的に導通することが困難である場合、電極パターン107を介することで、抵抗体パターン105と露出電極111a,112a,113aとが間接的に導通することが可能となり、高い信頼性を確保できる。
An electrode pattern 107 is provided on the insulating substrate 102. The electrode pattern 107 is located between the resistor pattern 105 and the current collector pattern 106 and the exposed electrodes 111a, 112a, 113a. The resistor pattern 105 and the current collector pattern 106 are electrically connected to the exposed electrodes 111a, 112a, and 113a through the electrode pattern 107. Thus, when it is difficult for the resistor pattern 105 and the exposed electrodes 111a, 112a, and 113a to be directly conducted, the resistor pattern 105 and the exposed electrodes 111a, 112a, and 113a are interposed via the electrode pattern 107. Can be indirectly conducted, and high reliability can be secured.
絶縁基板102には、ケース110が着脱自在に取り付けられている。ケース110は、回転子103、摺動子104、抵抗体パターン105、集電体パターン106および電極パターン107を覆う。
A case 110 is detachably attached to the insulating substrate 102. Case 110 covers rotor 103, slider 104, resistor pattern 105, current collector pattern 106, and electrode pattern 107.
図8は、回転型可変抵抗器100のケース110、回転子103および摺動子104を取り除いた状態を示す平面図である。図7Aと図7Bと図8に示すように、絶縁基板102は、平面視、矩形状である。絶縁基板102には、孔部121が設けられている。絶縁基板102の孔部121には、回転子103のボス部131が嵌め込まれている。回転子103は、回転軸Cを中心として回転する。絶縁基板102および回転子103は、例えば、樹脂から構成される。
FIG. 8 is a plan view showing a state in which the case 110, the rotor 103, and the slider 104 of the rotary variable resistor 100 are removed. As shown in FIGS. 7A, 7B, and 8, the insulating substrate 102 has a rectangular shape in plan view. A hole 121 is provided in the insulating substrate 102. A boss 131 of the rotor 103 is fitted in the hole 121 of the insulating substrate 102. The rotor 103 rotates about the rotation axis C. The insulating substrate 102 and the rotor 103 are made of resin, for example.
抵抗体パターン105および集電体パターン106は、互いに離隔して配置される。抵抗体パターン105は、回転軸Cを中心とした環状を一部切り欠いた形状である。抵抗体パターン105は、第1端部151と第2端部152とを有する。集電体パターン106は、回転軸Cを中心とした環状である。集電体パターン106は、抵抗体パターン105の内側に位置している。抵抗体パターン105および集電体パターン106は、同一材料から構成され、例えば、フェノール系樹脂にカーボンブラックを含浸した材料から構成される。
The resistor pattern 105 and the current collector pattern 106 are spaced apart from each other. The resistor pattern 105 has a shape in which an annular shape around the rotation axis C is partially cut out. The resistor pattern 105 has a first end 151 and a second end 152. The current collector pattern 106 has an annular shape around the rotation axis C. The current collector pattern 106 is located inside the resistor pattern 105. The resistor pattern 105 and the current collector pattern 106 are made of the same material, for example, a material in which a phenolic resin is impregnated with carbon black.
摺動子104は、回転子103のボス部131および2つの突部132に取り付けられて、位置決めされる。摺動子104は、略環状に形成される。摺動子104は、第1突部141と第2突部142とを有する。第1突部141と第2突部142とは、導通している。摺動子104は、抵抗体パターン105および集電体パターン106に摺接して、抵抗体パターン105と集電体パターン106とを導通する。つまり、第1突部141は、抵抗体パターン105に摺接し、第2突部142は、集電体パターン106に摺接して、抵抗体パターン105と集電体パターン106とは、導通される。摺動子104は、例えば、金属から構成される。
The slider 104 is attached to the boss 131 and the two protrusions 132 of the rotor 103 and positioned. The slider 104 is formed in a substantially annular shape. The slider 104 has a first protrusion 141 and a second protrusion 142. The first protrusion 141 and the second protrusion 142 are electrically connected. The slider 104 is in sliding contact with the resistor pattern 105 and the current collector pattern 106 to conduct the resistor pattern 105 and the current collector pattern 106. That is, the first protrusion 141 is in sliding contact with the resistor pattern 105, and the second protrusion 142 is in sliding contact with the current collector pattern 106, so that the resistor pattern 105 and the current collector pattern 106 are electrically connected. . The slider 104 is made of metal, for example.
電極パターン107は、第1電極部171と第2電極部172と第3電極部173とを有する。第1電極部171は、抵抗体パターン105の第1端部151に重なって接触する。第2電極部172は、抵抗体パターン105の第2端部152に重なって接触する。第3電極部173は、環状に形成されている。第3電極部173は、集電体パターン106に重なって接触する。電極パターン107は、例えば、金属から構成される。
The electrode pattern 107 includes a first electrode part 171, a second electrode part 172, and a third electrode part 173. The first electrode portion 171 overlaps and contacts the first end portion 151 of the resistor pattern 105. The second electrode portion 172 overlaps and contacts the second end portion 152 of the resistor pattern 105. The third electrode portion 173 is formed in an annular shape. The third electrode part 173 overlaps and contacts the current collector pattern 106. The electrode pattern 107 is made of metal, for example.
第1端子111および第2端子112の一部は、絶縁基板102の第1辺から引き出されている。第3端子113の一部は、絶縁基板102の第1辺と対向する第2辺から引き出されている。第1端子111の露出電極111aは、第1電極部171に重なって接触する。第2端子112の露出電極112aは、第2電極部172に重なって接触する。第3端子113の露出電極113aは、第3電極部173に重なって接触する。第1と第2と第3端子111,112,113は、例えば、金属から構成される。
Part of the first terminal 111 and the second terminal 112 is drawn from the first side of the insulating substrate 102. A part of the third terminal 113 is drawn from the second side facing the first side of the insulating substrate 102. The exposed electrode 111a of the first terminal 111 overlaps and contacts the first electrode portion 171. The exposed electrode 112a of the second terminal 112 is in contact with the second electrode portion 172 in an overlapping manner. The exposed electrode 113a of the third terminal 113 overlaps and contacts the third electrode portion 173. The first, second, and third terminals 111, 112, and 113 are made of metal, for example.
抵抗体パターン105の第1端部151と第1端子111の露出電極111aとは、第1電極部171を介して、導通する。抵抗体パターン105の第2端部152と第2端子112の露出電極112aとは、第2電極部172を介して、導通する。集電体パターン106と第3端子113の露出電極113aとは、第3電極部173を介して、導通する。
The first end portion 151 of the resistor pattern 105 and the exposed electrode 111a of the first terminal 111 are electrically connected via the first electrode portion 171. The second end portion 152 of the resistor pattern 105 and the exposed electrode 112a of the second terminal 112 are electrically connected via the second electrode portion 172. The current collector pattern 106 and the exposed electrode 113 a of the third terminal 113 are electrically connected via the third electrode portion 173.
図9は、回転型可変抵抗器100の動作を説明する説明図である。図9では、摺動子104を単純な形状で示す。図9に示すように、第1端子111と第2端子112との間には、一定の電圧Vccが印加されている。摺動子104の回転により、第1端子111と第3端子113との間の電圧V13が変化する。つまり、摺動子104の回転角度に応じて電圧V13が変化する。そして、この電圧V13を測定することにより、摺動子104(回転子103)の回転角度を容易に検出することができる。
FIG. 9 is an explanatory diagram for explaining the operation of the rotary variable resistor 100. In FIG. 9, the slider 104 is shown in a simple shape. As shown in FIG. 9, a constant voltage Vcc is applied between the first terminal 111 and the second terminal 112. Rotation of the slider 104, the voltage V 13 between the first terminal 111 and the third terminal 113 is changed. That is, the voltage V 13 changes according to the rotation angle of the slider 104. Then, by measuring this voltage V 13, it is possible to easily detect the rotation angle of the slider 104 (the rotor 103).
図9において、回転軸Cを中心として、抵抗体パターン105における第1端部151と第2端部152との間の中心位置を、中央角度0°とする。中央角度0°を基準として、第2端部152側の回転角度を正の値とし、第1端部151側の回転角度を負の値とする。図9では、正の値を(+)として示し、負の値を(-)として示す。
9, the center position between the first end 151 and the second end 152 in the resistor pattern 105 with the rotation axis C as the center is set to a central angle of 0 °. The rotation angle on the second end 152 side is a positive value and the rotation angle on the first end 151 side is a negative value with the central angle 0 ° as a reference. In FIG. 9, positive values are indicated as (+) and negative values are indicated as (−).
図10は、出力電圧比と回転角度との関係を示すグラフである。縦軸に、出力電圧比[%]を示し、横軸に、摺動子104(回転子103)の回転角度[°]を示す。出力電圧比は、(V13/Vcc×100)である。図10に示すように、理想値を(仮想線に示す)理想直線Rとし、実測値を(実線に示す)実測曲線Wとする。理想直線Rの傾きは、例えば、100[%]/333.3[°]である。理想直線Rと実測曲線Wとは、回転角度0°と出力電圧比50%との交点で重なる。
FIG. 10 is a graph showing the relationship between the output voltage ratio and the rotation angle. The vertical axis represents the output voltage ratio [%], and the horizontal axis represents the rotation angle [°] of the slider 104 (rotor 103). The output voltage ratio is (V 13 / V cc × 100). As shown in FIG. 10, the ideal value is an ideal straight line R (shown by an imaginary line), and the actual measurement value is an actual measurement curve W (shown by a solid line). The inclination of the ideal straight line R is, for example, 100 [%] / 333.3 [°]. The ideal straight line R and the actual measurement curve W overlap at the intersection of the rotation angle 0 ° and the output voltage ratio 50%.
実測曲線Wの理想直線Rからの最大垂直偏差Hを、電気的直線度(リニアリティ)L[%]という。電気的直線度Lの値が小さいほど、直線性が良好となる。具体的には、L=ずれ量/Vcc×100である。ずれ量とは、最大垂直偏差Hに対応する電圧差をいう。図10において、電気的直線度Lが保証される回転角度の範囲は、-160°以上であり、かつ、+160°以下である。
The maximum vertical deviation H from the ideal straight line R of the actual measurement curve W is referred to as electrical linearity (linearity) L [%]. The smaller the value of the electrical linearity L, the better the linearity. Specifically, L = shift amount / V cc × 100. The deviation amount is a voltage difference corresponding to the maximum vertical deviation H. In FIG. 10, the range of the rotation angle in which the electrical linearity L is guaranteed is −160 ° or more and + 160 ° or less.
図8に示すように、抵抗体パターン105の可変抵抗として有効な最大寸法をZ[mm]とする。最大寸法Zは、抵抗体パターン105の外形の最大寸法をいう。抵抗体パターン105の可変抵抗として有効な部分とは、抵抗体パターン105のうちの抵抗体として機能する部分であり、抵抗体パターン105のうちの電極パターン171,172と重ならない部分をいう。抵抗体パターン105の最大寸法Zとは、例えば、抵抗体パターン105の外形が円形であるときの直径をいい、抵抗体パターン105の外形が長方形であるときの長辺をいう。
As shown in FIG. 8, the maximum dimension effective as the variable resistance of the resistor pattern 105 is Z [mm]. The maximum dimension Z is the maximum dimension of the outer shape of the resistor pattern 105. The portion effective as the variable resistor of the resistor pattern 105 is a portion that functions as a resistor in the resistor pattern 105 and is a portion that does not overlap with the electrode patterns 171 and 172 in the resistor pattern 105. The maximum dimension Z of the resistor pattern 105 is, for example, the diameter when the outer shape of the resistor pattern 105 is circular, and the long side when the outer shape of the resistor pattern 105 is rectangular.
ここで、最大寸法Z[mm]と電気的直線度L[%]との関係において、Z≦4.0、かつ、Z×L<10を満たす。したがって、Z≦4.0を満たすので、回転型可変抵抗器100を小型にできる。Z×L<10を満たすので、電気的直線度を向上できる。したがって、小型化と高精度化の両立を実現することができる。これに対して、Z>4.0を満たすと、回転型可変抵抗器100が大型になり、Z×L≧10を満たすと、電気的直線度が悪化する。
Here, in the relationship between the maximum dimension Z [mm] and the electrical linearity L [%], Z ≦ 4.0 and Z × L <10 are satisfied. Therefore, since Z ≦ 4.0 is satisfied, the rotary variable resistor 100 can be reduced in size. Since Z × L <10 is satisfied, the electrical linearity can be improved. Therefore, both miniaturization and high accuracy can be realized. On the other hand, when Z> 4.0 is satisfied, the rotary variable resistor 100 becomes large, and when Z × L ≧ 10 is satisfied, the electrical linearity deteriorates.
図8に示すように、抵抗体パターン105および集電体パターン106は、絶縁基板102上に第1方向Xにスクリーン印刷することで、構成される。第1方向Xとは、印刷方向をいい、スクリーン膜上でペーストをスキージで搬送する方向をいう。
As shown in FIG. 8, the resistor pattern 105 and the current collector pattern 106 are configured by screen printing in the first direction X on the insulating substrate 102. The first direction X refers to the printing direction and refers to the direction in which the paste is conveyed with a squeegee on the screen film.
通常、抵抗体パターン105において、第1方向Xに直交する方向の長さが最大となる部分の膜厚は、ばらつきやすい。このため、本願発明者は、この部分に着目し、この部分の膜厚のばらつきが所定範囲にあれば、抵抗体パターン105の全体の膜厚のばらつきは、小さくなることを、見出した。
Usually, in the resistor pattern 105, the film thickness of the portion where the length in the direction orthogonal to the first direction X is maximum is likely to vary. For this reason, the inventor of the present application pays attention to this portion, and finds that if the variation in the film thickness of this portion is within a predetermined range, the variation in the entire film thickness of the resistor pattern 105 is reduced.
具体的に述べると、回転軸Cに沿った方向からみて、第1方向Xに平行でかつ回転軸Cを通過する直線を第1直線M1とする。第1直線M1上で抵抗体パターン105の第1方向Xに直交する方向の長さが最大となる部分側の幅(抵抗体パターン105の頂部155の幅)の中央に位置する点を中点M0とする。抵抗体パターン105の第1方向Xに直交する方向の最大長さとは、第1直線M1と抵抗体パターン105の内周との交点で第1直線M1と直交する位置での長さDである。中点M0を通過すると共に第1直線M1に直交する直線を第2直線M2とする。第2直線M2での抵抗体パターン105の断面において、図11に示すように、第2直線M2に沿った方向の中央部の膜厚をt1とし、最大膜厚をt2としたとき、1.0≦(t2/t1)<1.2を満たす。抵抗体パターン105の上面は、凹面であるため、最大膜厚t2は、第2直線M2に沿った方向の端部の膜厚となる。
Specifically, a straight line parallel to the first direction X and passing through the rotation axis C when viewed from the direction along the rotation axis C is defined as a first straight line M1. The midpoint is the point located on the center of the width of the portion side where the length in the direction orthogonal to the first direction X of the resistor pattern 105 is maximum on the first straight line M1 (width of the top portion 155 of the resistor pattern 105). Let M0. The maximum length of the resistor pattern 105 in the direction orthogonal to the first direction X is the length D at a position orthogonal to the first line M1 at the intersection of the first line M1 and the inner periphery of the resistor pattern 105. . A straight line passing through the middle point M0 and orthogonal to the first straight line M1 is defined as a second straight line M2. In the cross section of the resistor pattern 105 along the second straight line M2, as shown in FIG. 11, when the central film thickness in the direction along the second straight line M2 is t1, and the maximum film thickness is t2, 0 ≦ (t2 / t1) <1.2 is satisfied. Since the upper surface of the resistor pattern 105 is a concave surface, the maximum film thickness t2 is the film thickness at the end in the direction along the second straight line M2.
したがって、1.0≦(t2/t1)<1.2を満たすので、抵抗体パターン105の膜厚のばらつきは小さくなって、電気的直線度を向上できる。したがって、小型の回転型可変抵抗器100においても、高精度化を実現することができる。これに対して、1.2≦(t2/t1)を満たすと、電気的直線度が悪化する。
Therefore, since 1.0 ≦ (t2 / t1) <1.2 is satisfied, the variation in the film thickness of the resistor pattern 105 is reduced, and the electrical linearity can be improved. Therefore, high precision can be achieved even in the small rotary variable resistor 100. On the other hand, when 1.2 ≦ (t2 / t1) is satisfied, the electrical linearity deteriorates.
次に、回転型可変抵抗器100の第2部分22への実装について説明する。抵抗体パターン105の中央角度0°(図9参照)が、第1部分21と第2部分22との可動領域の中央角度に一致するように、回転型可変抵抗器100を第2部分22に設置することが好ましい。こうすることで、第1部分21および第2部分22の可動領域と抵抗体パターン105の領域とを対応させることができ、抵抗体パターン105の領域を有効に利用することができる。
Next, the mounting of the rotary variable resistor 100 on the second portion 22 will be described. The rotary variable resistor 100 is connected to the second portion 22 so that the central angle 0 ° (see FIG. 9) of the resistor pattern 105 matches the central angle of the movable region of the first portion 21 and the second portion 22. It is preferable to install. By doing so, the movable region of the first portion 21 and the second portion 22 can be made to correspond to the region of the resistor pattern 105, and the region of the resistor pattern 105 can be used effectively.
なお、電極パターン107の第1、第2電極部171,172の大きさを変え、抵抗体パターン105の第1、第2電極部171,172に重なる面積を変更したとき、抵抗体パターン105の可変抵抗として有効な領域は、変化する。このとき、抵抗体パターン105の可変抵抗として有効な領域の中央の角度が、第1部分21と第2部分22との可動領域の中央の角度に一致するように、回転型可変抵抗器100を第2部分22に設置する。こうすることで、抵抗体パターン105の可変抵抗領域を有効に利用することができる。また、回転型可変抵抗器100を第2部分22に設置する向きにかかわらず、抵抗体パターン105の可変抵抗領域を変えることで、抵抗体パターン105の可変抵抗領域を第1部分21および第2部分22の可動領域に対応させることができる。
When the size of the first and second electrode portions 171 and 172 of the electrode pattern 107 is changed and the area overlapping the first and second electrode portions 171 and 172 of the resistor pattern 105 is changed, the resistance pattern 105 A region effective as a variable resistor changes. At this time, the rotary variable resistor 100 is set so that the central angle of the effective region of the resistor pattern 105 as the variable resistor coincides with the central angle of the movable region of the first portion 21 and the second portion 22. Installed in the second portion 22. By doing so, the variable resistance region of the resistor pattern 105 can be used effectively. Regardless of the direction in which the rotary variable resistor 100 is installed in the second portion 22, the variable resistance region of the resistor pattern 105 is changed to change the variable resistance region of the resistor pattern 105 to the first portion 21 and the second portion 21. This can correspond to the movable region of the portion 22.
前記回転駆動機構3によれば、回転子103の回転角度が、第1部分21と第2部分22との間の中心角度に対応するように、回転子103は、連結軸部30に回転不能に取り付けられ、回転子103の軸心103aは、連結軸部30の軸心30aに同軸に配置される。このため、回転子103の回転角度は、第1部分21の第2部分22に対する相対的な回転角度に一致する。したがって、回転型可変抵抗器100の出力電圧に基づいて駆動部40を制御することで、第1部分21の第2部分22に対する相対的な回転角度を制御することができる。また、回転子103は、連結軸部30に直接に取り付けられているので、デッドスペースを利用して、回転型可変抵抗器100を狭小な空間に設置することができる。したがって、第1部分21と第2部分22の相対的な回転を細かに制御することができる。
According to the rotational drive mechanism 3, the rotor 103 cannot rotate with respect to the connecting shaft portion 30 so that the rotation angle of the rotor 103 corresponds to the center angle between the first portion 21 and the second portion 22. The shaft center 103 a of the rotor 103 is disposed coaxially with the shaft center 30 a of the connecting shaft portion 30. For this reason, the rotation angle of the rotor 103 matches the relative rotation angle of the first portion 21 with respect to the second portion 22. Therefore, the relative rotation angle of the first portion 21 with respect to the second portion 22 can be controlled by controlling the drive unit 40 based on the output voltage of the rotary variable resistor 100. Moreover, since the rotor 103 is directly attached to the connecting shaft part 30, the rotary variable resistor 100 can be installed in a narrow space by using a dead space. Therefore, the relative rotation of the first portion 21 and the second portion 22 can be finely controlled.
また、制御装置50は、回転型可変抵抗器100の出力電圧を検出して、回転子103の回転角度が予め定めた角度となるように、駆動部40を制御する。したがって、第1部分21と第2部分22との回転角度を任意の角度に制御することができる。
Further, the control device 50 detects the output voltage of the rotary variable resistor 100 and controls the drive unit 40 so that the rotation angle of the rotor 103 becomes a predetermined angle. Therefore, the rotation angle between the first portion 21 and the second portion 22 can be controlled to an arbitrary angle.
また、抵抗体パターン105の可変抵抗として有効な最大寸法は、4mmと同等であるか、もしくは、4mmよりも小さい。したがって、回転型可変抵抗器100は小型となり、回転型可変抵抗器100の設置スペースを小さくできる。
Further, the maximum dimension effective as the variable resistance of the resistor pattern 105 is equal to 4 mm or smaller than 4 mm. Therefore, the rotary variable resistor 100 becomes small, and the installation space for the rotary variable resistor 100 can be reduced.
(第2実施形態)
図12は、本発明の第2実施形態の回転駆動機構を示す斜視図である。第2実施形態は、第1実施形態とは、回転型可変抵抗器の実装構造が相違する。この相違する構成を以下に説明する。なお、第2実施形態において、第1実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。 (Second Embodiment)
FIG. 12 is a perspective view showing the rotation drive mechanism of the second embodiment of the present invention. The second embodiment is different from the first embodiment in the mounting structure of the rotary variable resistor. This different configuration will be described below. Note that in the second embodiment, the same reference numerals as those in the first embodiment have the same configurations as those in the first embodiment, and a description thereof will be omitted.
図12は、本発明の第2実施形態の回転駆動機構を示す斜視図である。第2実施形態は、第1実施形態とは、回転型可変抵抗器の実装構造が相違する。この相違する構成を以下に説明する。なお、第2実施形態において、第1実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。 (Second Embodiment)
FIG. 12 is a perspective view showing the rotation drive mechanism of the second embodiment of the present invention. The second embodiment is different from the first embodiment in the mounting structure of the rotary variable resistor. This different configuration will be described below. Note that in the second embodiment, the same reference numerals as those in the first embodiment have the same configurations as those in the first embodiment, and a description thereof will be omitted.
図12に示すように、回転型可変抵抗器100は、プリント配線基板70に搭載される。リード線60は、プリント配線基板70に接続される。
As shown in FIG. 12, the rotary variable resistor 100 is mounted on a printed wiring board 70. The lead wire 60 is connected to the printed wiring board 70.
具体的に述べると、プリント配線基板70は、回転型可変抵抗器100の第1端子111に導通される第1配線71と、回転型可変抵抗器100の第2端子112に導通される第2配線72とを有する。プリント配線基板70には、第1配線71および第2配線72のそれぞれに対応する位置に、スルーホール72が設けられている。リード線60は、各スルーホール72に溶接されて、第1配線71および第2配線72のそれぞれに接続される。なお、図中、回転型可変抵抗器100の第3端子113(図7B)に導通される配線を省略している。
More specifically, the printed wiring board 70 is electrically connected to the first wire 71 connected to the first terminal 111 of the rotary variable resistor 100 and the second wire 112 connected to the second terminal 112 of the rotary variable resistor 100. Wiring 72. The printed wiring board 70 is provided with a through hole 72 at a position corresponding to each of the first wiring 71 and the second wiring 72. The lead wire 60 is welded to each through hole 72 and connected to each of the first wiring 71 and the second wiring 72. In the drawing, the wiring that is conducted to the third terminal 113 (FIG. 7B) of the rotary variable resistor 100 is omitted.
第2実施形態によれば、リード線60をプリント配線基板70に取り付けているので、リード線60を回転型可変抵抗器100の端子111,112,113に直接に取り付ける場合に比べて、リード線60の取り付けが強固になる。
According to the second embodiment, since the lead wire 60 is attached to the printed wiring board 70, the lead wire 60 is compared with the case where the lead wire 60 is directly attached to the terminals 111, 112, 113 of the rotary variable resistor 100. The attachment of 60 becomes firm.
(第3実施形態)
図13Aは、本発明の第3実施形態の回転駆動機構を示す平面図である。図13Bは、本発明の第3実施形態の回転駆動機構を示す斜視図である。第3実施形態は、第1実施形態とは、回転型可変抵抗器の実装構造が相違する。この相違する構成を以下に説明する。なお、第3実施形態において、第1実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。 (Third embodiment)
FIG. 13A is a plan view showing a rotational drive mechanism of a third embodiment of the present invention. FIG. 13B is a perspective view showing the rotation drive mechanism of the third embodiment of the present invention. The third embodiment is different from the first embodiment in the mounting structure of the rotary variable resistor. This different configuration will be described below. Note that in the third embodiment, the same reference numerals as those in the first embodiment have the same configurations as those in the first embodiment, and a description thereof will be omitted.
図13Aは、本発明の第3実施形態の回転駆動機構を示す平面図である。図13Bは、本発明の第3実施形態の回転駆動機構を示す斜視図である。第3実施形態は、第1実施形態とは、回転型可変抵抗器の実装構造が相違する。この相違する構成を以下に説明する。なお、第3実施形態において、第1実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。 (Third embodiment)
FIG. 13A is a plan view showing a rotational drive mechanism of a third embodiment of the present invention. FIG. 13B is a perspective view showing the rotation drive mechanism of the third embodiment of the present invention. The third embodiment is different from the first embodiment in the mounting structure of the rotary variable resistor. This different configuration will be described below. Note that in the third embodiment, the same reference numerals as those in the first embodiment have the same configurations as those in the first embodiment, and a description thereof will be omitted.
図13Aと図13Bに示すように、回転型可変抵抗器100は、プリント配線基板70Aに搭載される。プリント配線基板70Aに、リード部80が接続される。
As shown in FIGS. 13A and 13B, the rotary variable resistor 100 is mounted on a printed wiring board 70A. The lead portion 80 is connected to the printed wiring board 70A.
具体的に述べると、プリント配線基板70Aは、回転型可変抵抗器100の端子111,112,113に導通される第1コネクタ76を有する。回転型可変抵抗器100は、プリント配線基板70Aの表面に配置され、第1コネクタ76は、プリント配線基板70Aの裏面に配置される。
Specifically, the printed wiring board 70 </ b> A has a first connector 76 that is electrically connected to the terminals 111, 112, and 113 of the rotary variable resistor 100. The rotary variable resistor 100 is disposed on the front surface of the printed wiring board 70A, and the first connector 76 is disposed on the back surface of the printed wiring board 70A.
プリント配線基板70Aは、第1端子111に導通される第1配線71と、第2端子112に導通される第2配線72と、第3端子113に導通される第3配線73とを有する。第1、第2、第3配線71,72,73は、それぞれ、スルーホール72を介して、プリント配線基板70Aの表面と裏面とに設けられている。
The printed wiring board 70 </ b> A includes a first wiring 71 that is conductive to the first terminal 111, a second wiring 72 that is conductive to the second terminal 112, and a third wiring 73 that is conductive to the third terminal 113. The first, second, and third wirings 71, 72, and 73 are provided on the front surface and the back surface of the printed wiring board 70A through the through holes 72, respectively.
第1コネクタ76は、第1端子761と第2端子762と第3端子763とを有する。第1端子761は、第1配線71に導通され、第2端子762は、第2配線72に導通され、第3端子763は、第3配線73に導通される。つまり、第1端子761は、回転型可変抵抗器100の第1端子111と導通し、第2端子762は、回転型可変抵抗器100の第2端子112と導通し、第3端子763は、回転型可変抵抗器100の第3端子113と導通する。
The first connector 76 includes a first terminal 761, a second terminal 762, and a third terminal 763. The first terminal 761 is electrically connected to the first wire 71, the second terminal 762 is electrically connected to the second wire 72, and the third terminal 763 is electrically connected to the third wire 73. That is, the first terminal 761 is electrically connected to the first terminal 111 of the rotary variable resistor 100, the second terminal 762 is electrically connected to the second terminal 112 of the rotary variable resistor 100, and the third terminal 763 is It is electrically connected to the third terminal 113 of the rotary variable resistor 100.
リード部80は、第2コネクタ81と第2コネクタ81に導通されるリード線60とを有する。第2コネクタ81は、図示しない3つの端子を有し、各端子は、リード線60に導通される。
The lead portion 80 includes a second connector 81 and a lead wire 60 that is electrically connected to the second connector 81. The second connector 81 has three terminals (not shown), and each terminal is electrically connected to the lead wire 60.
第1コネクタ76と第2コネクタ81とは、着脱自在に接続される。第1コネクタ76は、雌型であり、第2コネクタ81は、雄型である。なお、第1コネクタ76は、雄型であり、第2コネクタ81は、雌型であってもよい。第1コネクタ76と第2コネクタ81とが接続されると、第1コネクタ76の第1、第2、第3端子761,762,763のそれぞれは、第2コネクタ81の3つの端子のそれぞれに導通される。
The first connector 76 and the second connector 81 are detachably connected. The first connector 76 is a female type, and the second connector 81 is a male type. The first connector 76 may be a male type, and the second connector 81 may be a female type. When the first connector 76 and the second connector 81 are connected, the first, second, and third terminals 761, 762, and 763 of the first connector 76 are connected to the three terminals of the second connector 81, respectively. Conducted.
第3実施形態によれば、リード線60を第1、第2コネクタ76,81を介してプリント配線基板70Aに取り付けているので、リード線60を回転型可変抵抗器100の端子111,112,113に直接に取り付ける場合に比べて、リード線60の取り付けが強固になる。
According to the third embodiment, since the lead wire 60 is attached to the printed wiring board 70A via the first and second connectors 76 and 81, the lead wire 60 is connected to the terminals 111, 112, and 112 of the rotary variable resistor 100. Compared with the case of attaching directly to 113, the attachment of the lead wire 60 becomes stronger.
(第4実施形態)
図14は、本発明の第4実施形態の回転駆動機構を示す斜視図である。第4実施形態は、第1実施形態とは、回転型可変抵抗器の実装構造が相違する。この相違する構成を以下に説明する。なお、第4実施形態において、第1実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。 (Fourth embodiment)
FIG. 14 is a perspective view showing the rotational drive mechanism of the fourth embodiment of the present invention. The fourth embodiment is different from the first embodiment in the mounting structure of the rotary variable resistor. This different configuration will be described below. In addition, in 4th Embodiment, since the code | symbol same as 1st Embodiment is the same structure as 1st Embodiment, the description is abbreviate | omitted.
図14は、本発明の第4実施形態の回転駆動機構を示す斜視図である。第4実施形態は、第1実施形態とは、回転型可変抵抗器の実装構造が相違する。この相違する構成を以下に説明する。なお、第4実施形態において、第1実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。 (Fourth embodiment)
FIG. 14 is a perspective view showing the rotational drive mechanism of the fourth embodiment of the present invention. The fourth embodiment is different from the first embodiment in the mounting structure of the rotary variable resistor. This different configuration will be described below. In addition, in 4th Embodiment, since the code | symbol same as 1st Embodiment is the same structure as 1st Embodiment, the description is abbreviate | omitted.
図14に示すように、回転型可変抵抗器100は、第1フレキシブルプリント配線基板91に搭載される。第1フレキシブルプリント配線基板91に、第2フレキシブルプリント配線基板92が接続される。
As shown in FIG. 14, the rotary variable resistor 100 is mounted on the first flexible printed wiring board 91. A second flexible printed wiring board 92 is connected to the first flexible printed wiring board 91.
具体的に述べると、第1フレキシブルプリント配線基板91は、回転型可変抵抗器100の端子111,112,113に導通される第1コネクタ910を有する。第1コネクタ910は、第1フレキシブルプリント配線基板91の一辺に設けられる。
Specifically, the first flexible printed wiring board 91 has a first connector 910 that is electrically connected to the terminals 111, 112, and 113 of the rotary variable resistor 100. The first connector 910 is provided on one side of the first flexible printed wiring board 91.
第1フレキシブルプリント配線基板91は、第1端子111に導通される第1配線911と、第2端子112に導通される第2配線912と、第3端子113に導通される第3配線913とを有する。第1コネクタ910は、第1配線911の端部と第2配線912の端部と第3配線913の端部とに相当する。第2フレキシブルプリント配線基板92は、第2コネクタ920を有する。第2コネクタ920は、図示しない3つの配線を有する。
The first flexible printed wiring board 91 includes a first wiring 911 that is conductive to the first terminal 111, a second wiring 912 that is conductive to the second terminal 112, and a third wiring 913 that is conductive to the third terminal 113. Have The first connector 910 corresponds to an end portion of the first wiring 911, an end portion of the second wiring 912, and an end portion of the third wiring 913. The second flexible printed wiring board 92 has a second connector 920. The second connector 920 has three wirings (not shown).
第1コネクタ910と第2コネクタ920とは、着脱自在に接続される。第1コネクタ910は、雄型であり、第2コネクタ920は、雌型である。なお、第1コネクタ910は、雌型であり、第2コネクタ920は、雄型であってもよい。第1コネクタ910と第2コネクタ920とが接続されると、第1コネクタ910の第1、第2、第3配線911,912,913のそれぞれは、第2コネクタ920の3つの配線のそれぞれに導通される。
The first connector 910 and the second connector 920 are detachably connected. The first connector 910 is male and the second connector 920 is female. The first connector 910 may be a female type, and the second connector 920 may be a male type. When the first connector 910 and the second connector 920 are connected, the first, second, and third wirings 911, 912, and 913 of the first connector 910 are connected to the three wirings of the second connector 920, respectively. Conducted.
第4実施形態によれば、第2フレキシブルプリント配線基板92を第1フレキシブルプリント配線基板91に取り付けているので、リード線を回転型可変抵抗器100の端子111,112,113に直接に取り付ける場合に比べて、第2フレキシブルプリント配線基板92の取り付けが強固になる。
According to the fourth embodiment, since the second flexible printed wiring board 92 is attached to the first flexible printed wiring board 91, the lead wires are attached directly to the terminals 111, 112, 113 of the rotary variable resistor 100. Compared to the above, the attachment of the second flexible printed wiring board 92 is strengthened.
なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で設計変更可能である。例えば、第1から第4実施形態のそれぞれの特徴点を様々に組み合わせてもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and the design can be changed without departing from the gist of the present invention. For example, the feature points of the first to fourth embodiments may be variously combined.
前記実施形態では、第1部位を第1部分とし、第2部位を第2部分としているが、第1部位を第2部分とし、第2部位を第1部分としてもよく、または、第1部位を第2部分または第3部分の一方とし、第2部位を第2部分または第3部分の他方としてもよい。
In the embodiment, the first part is the first part and the second part is the second part. However, the first part may be the second part and the second part may be the first part, or the first part. May be one of the second part or the third part, and the second part may be the other of the second part or the third part.
前記実施形態では、駆動部をモータとしているが、駆動部をワイヤーや伸縮ロッドなどとしてもよく、この場合、連結軸部を直接に動かさず、第1部位や第2部位を直接に動かすようにしてもよい。
In the above embodiment, the drive unit is a motor. However, the drive unit may be a wire or a telescopic rod. In this case, the first part or the second part is moved directly without moving the connecting shaft part directly. May be.
前記実施形態では、駆動部により第1部位を駆動させているが、第1部位と第2部位との少なくとも一方を駆動させるようにしてもよい。
In the above embodiment, the first part is driven by the drive unit, but at least one of the first part and the second part may be driven.
前記実施形態では、回転型可変抵抗器において、抵抗体パターンの外形が、円形である場合を示しているが、抵抗体パターンの外形が、楕円や四角形やその他の多角形であってもよい。
In the above embodiment, the rotary variable resistor has a case where the outer shape of the resistor pattern is a circle, but the outer shape of the resistor pattern may be an ellipse, a rectangle, or another polygon.
前記実施形態では、回転型可変抵抗器において、Z≦4.0、かつ、Z×L<10を満たし、かつ、1.0≦(t2/t1)<1.2を満たしているが、何れか一方を満たすようにしてもよい。
In the embodiment, in the rotary variable resistor, Z ≦ 4.0, Z × L <10, and 1.0 ≦ (t2 / t1) <1.2 are satisfied. Either of them may be satisfied.
前記実施形態では、本発明の回転駆動機構を、ロボットの指の関節部分に用いているが、ロボットの首や腕や足などの関節部分に用いてもよい。また、本発明の回転駆動機構を、監視カメラの首振り部分や、エアコンのフラップの揺動部分などのあらゆる回転可能な部分に用いてもよい。
In the above embodiment, the rotational drive mechanism of the present invention is used for a joint part of a robot finger, but it may be used for a joint part such as a neck, arm, or leg of the robot. Moreover, you may use the rotational drive mechanism of this invention for all the rotatable parts, such as the swinging part of the surveillance camera, and the swinging part of the flap of an air-conditioner.
1 ロボット
2 指
21 第1部分(第1部位)
22 第2部分(第2部位)
23 第3部分
3 回転駆動機構
30 連結軸部
30a 軸心
40 駆動部
50 制御装置
60 リード線
70,70A プリント配線基板
71 第1配線
72 第2配線
73 第3配線
76 第1コネクタ
761 第1端子
762 第2端子
763 第3端子
80 リード部
81 第2コネクタ
91 第1フレキシブルプリント配線基板
910 第1コネクタ
92 第2フレキシブルプリント配線基板
920 第2コネクタ
100 回転型可変抵抗器
103 回転子
103a 軸心
105 抵抗体パターン
110 ケース
111 第1端子
112 第2端子
113 第3端子 1Robot 2 Finger 21 First Part (First Part)
22 2nd part (2nd part)
233rd part 3 Rotation drive mechanism 30 Connection shaft part 30a Axis center 40 Drive part 50 Control device 60 Lead wire 70, 70A Printed wiring board 71 1st wiring 72 2nd wiring 73 3rd wiring 76 1st connector 761 1st terminal 762 2nd terminal 763 3rd terminal 80 Lead part 81 2nd connector 91 1st flexible printed wiring board 910 1st connector 92 2nd flexible printed wiring board 920 2nd connector 100 Rotary variable resistor 103 Rotor 103a Axle 105 Resistor pattern 110 Case 111 First terminal 112 Second terminal 113 Third terminal
2 指
21 第1部分(第1部位)
22 第2部分(第2部位)
23 第3部分
3 回転駆動機構
30 連結軸部
30a 軸心
40 駆動部
50 制御装置
60 リード線
70,70A プリント配線基板
71 第1配線
72 第2配線
73 第3配線
76 第1コネクタ
761 第1端子
762 第2端子
763 第3端子
80 リード部
81 第2コネクタ
91 第1フレキシブルプリント配線基板
910 第1コネクタ
92 第2フレキシブルプリント配線基板
920 第2コネクタ
100 回転型可変抵抗器
103 回転子
103a 軸心
105 抵抗体パターン
110 ケース
111 第1端子
112 第2端子
113 第3端子 1
22 2nd part (2nd part)
23
Claims (7)
- 第1部位と、
第2部位と、
前記第1部位と前記第2部位とを回転可能に連結すると共に、前記第1部位に回転不能に取り付けられる連結軸部と、
前記第1部位と前記第2部位との間の前記連結軸部の軸心を中心とする中心角度を変化させるように、前記第1部位と前記第2部位との少なくとも一方を前記連結軸部の軸心を中心として駆動させる駆動部と、
前記連結軸部に取り付けられる回転型可変抵抗器と
を備え、
前記回転型可変抵抗器は、回転可能に構成されると共に回転角度に応じて出力電圧を変化させるための回転子を有し、
前記回転子の回転角度が、前記第1部位と前記第2部位との間の中心角度に対応するように、前記回転子は、前記連結軸部に回転不能に取り付けられると共に、前記回転子の軸心は、前記連結軸部の軸心と同軸に配置される、回転駆動機構。 A first site;
A second site;
A connecting shaft portion rotatably connected to the first portion and the second portion, and non-rotatably attached to the first portion;
At least one of the first part and the second part is connected to the connecting shaft part so as to change a central angle about the axial center of the connecting shaft part between the first part and the second part. A drive unit for driving around the axis of
A rotary variable resistor attached to the connecting shaft portion;
The rotary variable resistor is configured to be rotatable and has a rotor for changing an output voltage according to a rotation angle;
The rotor is non-rotatably attached to the connecting shaft portion so that a rotation angle of the rotor corresponds to a central angle between the first part and the second part, and A rotation drive mechanism in which an axis is arranged coaxially with an axis of the connecting shaft part. - 前記回転型可変抵抗器の出力電圧に基づいて前記駆動部を制御する制御装置を有する、請求項1に記載の回転駆動機構。 The rotary drive mechanism according to claim 1, further comprising a control device that controls the drive unit based on an output voltage of the rotary variable resistor.
- 前記制御装置は、前記回転型可変抵抗器の出力電圧を検出して、前記回転子の回転角度が予め定めた角度となるように、前記駆動部を制御する、請求項2に記載の回転駆動機構。 The rotational drive according to claim 2, wherein the control device detects an output voltage of the rotary variable resistor and controls the drive unit so that a rotational angle of the rotor becomes a predetermined angle. mechanism.
- 前記回転型可変抵抗器を搭載するプリント配線基板と、
前記プリント配線基板に接続されるリード線と
を有し、
前記プリント配線基板は、前記回転型可変抵抗器の端子に導通される配線を有し、
前記リード線は、前記配線に接続される、請求項1から3の何れか一つに記載の回転駆動機構。 A printed wiring board on which the rotary variable resistor is mounted;
A lead wire connected to the printed wiring board;
The printed wiring board has wiring that is conducted to a terminal of the rotary variable resistor,
The rotation drive mechanism according to claim 1, wherein the lead wire is connected to the wiring. - 前記回転型可変抵抗器を搭載するプリント配線基板と、
前記プリント配線基板に接続されるリード部と
を有し、
前記プリント配線基板は、前記回転型可変抵抗器の端子に導通される第1コネクタを有し、
前記リード部は、第2コネクタと前記第2コネクタに導通されるリード線とを有し、
前記第1コネクタと前記第2コネクタとは、接続される、請求項1から3の何れか一つに記載の回転駆動機構。 A printed wiring board on which the rotary variable resistor is mounted;
A lead portion connected to the printed wiring board;
The printed wiring board has a first connector that is electrically connected to a terminal of the rotary variable resistor;
The lead portion has a second connector and a lead wire conducted to the second connector,
The rotation drive mechanism according to any one of claims 1 to 3, wherein the first connector and the second connector are connected. - 前記回転型可変抵抗器を搭載する第1フレキシブルプリント配線基板と、
前記第1フレキシブルプリント配線基板に接続される第2フレキシブルプリント配線基板と
を有し、
前記第1フレキシブルプリント配線基板は、前記回転型可変抵抗器の端子に導通される第1コネクタを有し、
前記第2フレキシブルプリント配線基板は、第2コネクタを有し、
前記第1コネクタと前記第2コネクタとは、接続される、請求項1から3の何れか一つに記載の回転駆動機構。 A first flexible printed wiring board on which the rotary variable resistor is mounted;
A second flexible printed wiring board connected to the first flexible printed wiring board;
The first flexible printed wiring board has a first connector connected to a terminal of the rotary variable resistor,
The second flexible printed wiring board has a second connector,
The rotation drive mechanism according to any one of claims 1 to 3, wherein the first connector and the second connector are connected. - 前記回転型可変抵抗器は、
絶縁基板と、
前記絶縁基板上に設けられ、互いに離隔して配置される抵抗体パターンおよび集電体パターンと、
前記絶縁基板に回転可能に取り付けられる前記回転子と、
前記回転子と共に回転可能となるように前記回転子に取り付けられ、前記抵抗体パターンおよび前記集電体パターンに摺接して前記抵抗体パターンと前記集電体パターンとを導通する摺動子と
を有し、
前記抵抗体パターンの可変抵抗として有効な最大寸法は、4mmと同等であるか、もしくは、4mmよりも小さい、請求項1から6の何れか一つに記載の回転駆動機構。 The rotary variable resistor is:
An insulating substrate;
A resistor pattern and a current collector pattern provided on the insulating substrate and spaced apart from each other;
The rotor rotatably attached to the insulating substrate;
A slider attached to the rotor so as to be rotatable together with the rotor, and slidingly contacting the resistor pattern and the current collector pattern to conduct the resistor pattern and the current collector pattern. Have
The rotational drive mechanism according to any one of claims 1 to 6, wherein a maximum dimension effective as a variable resistance of the resistor pattern is equal to or smaller than 4 mm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-244140 | 2014-12-02 | ||
JP2014244140 | 2014-12-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016088425A1 true WO2016088425A1 (en) | 2016-06-09 |
Family
ID=56091383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/075801 WO2016088425A1 (en) | 2014-12-02 | 2015-09-11 | Rotary drive mechanism |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016088425A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5841929U (en) * | 1981-09-16 | 1983-03-19 | エスエムケイ株式会社 | Switch device with connector |
JPH11195510A (en) * | 1997-12-26 | 1999-07-21 | Teikoku Tsushin Kogyo Co Ltd | Rotary variable resistor and connecting structure between metallic members |
JP2002267439A (en) * | 2001-03-06 | 2002-09-18 | Sony Corp | Rotational angle detector |
JP2006062019A (en) * | 2004-08-26 | 2006-03-09 | Sharp Corp | Robot hand |
-
2015
- 2015-09-11 WO PCT/JP2015/075801 patent/WO2016088425A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5841929U (en) * | 1981-09-16 | 1983-03-19 | エスエムケイ株式会社 | Switch device with connector |
JPH11195510A (en) * | 1997-12-26 | 1999-07-21 | Teikoku Tsushin Kogyo Co Ltd | Rotary variable resistor and connecting structure between metallic members |
JP2002267439A (en) * | 2001-03-06 | 2002-09-18 | Sony Corp | Rotational angle detector |
JP2006062019A (en) * | 2004-08-26 | 2006-03-09 | Sharp Corp | Robot hand |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7802995B2 (en) | Rotatable connector connecting two flexible printed circuit boards | |
US20220112886A1 (en) | Electrical connections for sma actuators | |
US7429977B2 (en) | Joystick controller | |
WO2004051199A1 (en) | Liquid level detection device | |
JP3631990B2 (en) | Slip ring and slip ring integrated motor | |
WO2016088425A1 (en) | Rotary drive mechanism | |
JP5163565B2 (en) | Rotation sensor | |
CN214039877U (en) | Angular displacement sensor, remote controller and engineering vehicle | |
WO2004106867A1 (en) | Liquid level detector | |
JP2002064001A (en) | Resistor element, variable resistor using the same, and method of manufacturing the same | |
JP4735396B2 (en) | Input device | |
CN215567674U (en) | Gear actuating mechanism | |
JP4279724B2 (en) | Rotational position detection device and actuator device | |
JP2020188146A (en) | Rotating electronic component, and manufacturing method of rotating electronic component | |
JP6157313B2 (en) | Connection device | |
JP4090237B2 (en) | Potentiometer | |
CN215984379U (en) | Angular displacement sensor, remote controller and engineering vehicle | |
US9793075B2 (en) | Rotary input device | |
JP2000260608A (en) | Variable resistor and manufacture of resistance element substrate using the same | |
CN102468079B (en) | Multidirectional input device | |
KR100514693B1 (en) | FPCB and connector structure | |
JP4519332B2 (en) | robot | |
JP7411212B2 (en) | Resistance element for variable resistor | |
CN110797228A (en) | Rotary switch | |
JP6884990B2 (en) | Electronics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15865824 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15865824 Country of ref document: EP Kind code of ref document: A1 |